一軸圧縮試験機で圧縮した雪の切削破壊抵抗

著者	磯部 金治,小林 俊市,宮村 兵衛
雑誌名	国立防災科学技術センター 研究報告
巻	26
ページ	105-131
発行年	1981-11
URL	http://doi.org/10.24732/nied.00000853

624.14

ー軸圧縮試験機で圧縮した雪の切削破壊抵抗

磯 部 金 治*• 小 林 俊 市**• 宮 村 兵 衛***

国立防災科学技術センター雪害実験研究所

Studies on the Cutting Resistance of Compacted Snow in Cold Room

By

Kaneharu Isobe, Toshiichi Kobayashi and Hyoe Miyamura

Institute of Snow and Ice Studies, National Research Center for Disaster Prevention, Suyoshi, Nagaoka, Niigata-ken, 940, Japan

Abstract

This paper is a result of studies on the cutting resistance of compacted snow by the use of a revolving table in the cold room.

The test specimens were collected from 3 different areas in the mountains by snow sampler (100 mm diameter). These samples were compacted at 10 mm per minute to a desired density (0.28 to 0.78 g/cm^3) by a uniaxial compressing machine (compressed capacity 5 ton) in the cold room.

The 12 test specimens (width-length-height: about $100 \times 150 \times 70$ mm) were put on the revolving table in a circle at 52 cm intervals. The relation of the compacted stress and Kinoshita's hardness was proportional to the 4th power of density of these samples of compacted snow.

The extent of the experimental conditions was as follows:

(1)	Cutting blade					
	Width:	20, 30 and 50 mm (3 types)				
	Rake angle:	zero to 47 degrees (5 types)				
(2)	Cutting condition					
	Speed:	5 to 128 cm/sec				
	Cutting depth:	2 to 12 mm				
	Temperature:	-1 to $\sim 16^{\circ}$ C				
-		0 11				

The results of the tests are as follows:

(1) The horizontal cutting resistance of compacted snow (F_c) was represented in proportion to the 3rd to 4th power of density and increased linearly with increasing cutting depth and blade width.

(2) The relationship between the horizontal cutting resistance of compacted snow (F_c) and the temperature (t), rake angle of blade (α) was represented by an exponential equation.

(3)The horizontal cutting resistance of compacted snow (F_c) and cutting power (P_c) was represented by the next equation.

$$F_c = \tau \quad h \ b \ f \ T$$

$$\tau = K \delta^n$$

$$f = 2.13 \ (0.977)^{\alpha}$$

$$T = 0.57 \ (-t)^{0.35}$$

$$P_c = F_c \ V/270$$

horizontal cutting resistance (kgf)

where

 F_c :

au : unit horizontal cutting stress (kgf/cm²)

K: coefficient of proportion

 δ : density (g/cm³)

n : exponent (3~4)

h : cutting depth (cm)

b : cutting width (cm)

f : rectified coefficient of rake angle of blade

 α : rake angle (degree)

T : rectified coefficient of temperature

t : temperature (°C)

 P_c : cutting power (PS)

V : cutting speed (km/h).

1. まえがき

本報告は、山間地のしまり雪、または、新雪層からスノーサンプラーで採雪した試料を、 低温室において一軸圧縮試験機で人工的に圧縮し(以下「人工圧雪または、圧雪」とする) その試料を、金属刃により切削実験を行ったものである、本研究は、科学技術庁国立防災科 学技術センターで実施した特別研究「圧雪の発生機構及び処理工法に関する研究」の小テー マとして実施した.

本報告は、圧雪処理工法の適性化と処理機械の設計の基礎データとして役立てるため、人 工圧雪の密度、硬度、温度、切刃の形状、切削深さ、切削速度と水平比切削抵抗の関係を求 め、圧雪の各種性質、作業条件による機械的処理エネルギー、ならびに効率を求めようとし たものである.路面圧雪は、均一な組織構造体として取扱うことがむずかしいので、本実験 では、人工圧雪を用いて、路面圧雪の力学的性質に大きく影響を及ぼすと思われる上記条件 を低温室内で再現し、それぞれの人工圧雪試料の組織、密度、温度を一定条件に保って、切 削実験を実施した.

2. 実験方法

2.1 試料の採取

実験用試料は、国道17号線の山間部3カ所で、降雪直後の新雪、あるいは、長期堆雪した 深さ1m程度のざらめ層の下層に堆雪した、しまり雪の層から採取した.試料は、内径100 mm、長さ400mmの、アクリル製透明スノーサンプラーで水平に採雪し、その雪を、サン プラー内でアクリル製ピストンにより予備圧縮の後、ポリエチレン製の袋に入れて、ドライ アイスを詰めた茶箱で運搬し、雪害実験研究所の低温室に保管した、新雪のサンプルは、前 夜降雪のあった約20~25 cmの新雪層から同様に採雪した(写真-1)、新雪密度が小さく、 予備圧縮試料が短くなったので、二個のサンプルを合体し、さらに400mm以下に圧縮して、 同様に処理して茶箱で運搬した、表1に採雪地における試料の採雪条件を示した。

写真 1 試料の採取状況 Photo.1 Sampling of snow.

表 1	試料採取状況一覧表
Table 1	Conditions of snow sampling.

	▶採雪 年月日	天候	気温の	採雪場所の 地 形	標高 SL(m)	採	雪	法	雪	質	雪温	予備圧縮 密 度 (9 /cm)
А	54 2 14	曇時々晴	2 5 7	国道17号線二 居地区旧国道の 近くの松手山尾 根先端北斜面の 吹きだまり(二 居川左岸の日陰)	820	深さ約1 mの 度の大きいし サンプラーを プラー内で2	ざらめ層 まり雪の 挿入して 0~30	の下部の密)層に平行に 「採雪。サン mm予備圧縮	1月中 降雪の たしま	コ旬頃 つあっ Eり雪	0	0.2 7 3 0.4 1
В	54 2 16	曇 時 々 晴	-1.2 \$ 0.3	国道17号線船 ケ沢トンネル入 ロ(上り)左側 平坦地の日陰	900	前夜の積雪層 平行にサンプ 後,予備圧縮 分の試料を合 ラー内で気質 (前夜は低こ 温とともに表 は温度低下と	(20をサン ラし体のの は し い し の ゆ 体 が で 裕 に で の の が の の の の の の の の の の の の の の の の	250ml)に えし よし ポヨの フラー2本 れをサンプ 加まで 圧縮。 、ていたが 雪)午後昇 出す。夕方 化。	昨夜0 (手つ 0.13 0.0 9	つ新雪 で固る 6~ 81 /m)	-02 \$ 0	0.2 3 \$ 0.3 1
С	54 2 27	黉	0	国道17号線火 打峠附近杉林の 中の平坦地	1,0 0 0	深さ約1mの たく締め固ま より,主とし グを行い,2 合体して予備 とする。	ざらめ層 った薄い て垂直に 〜 3 個の i圧縮し ,	の下部のか しまり雪層 (サンプリン)サンブルを 1つの試料	かなり 雪に近 のつえ り雪	ざらめ 1く氷 2のま こしま	0	0.4 5 \$ 0.6

2.2 試料の前処理(圧縮,整形,接着)

採取試料は,室温-4.5~-5.5°Cの低温室に数日間保存した.低温室内が乾燥している - 107ため、ポリエチレン袋の中でも試料の表層数mmが昇華し、円柱が変形していた.その資料 を、保存時と同温度の低温室で整形し、内径101mmの鋳鉄製圧縮用半割りモールド内に装 てんし、圧縮容量5tの一軸圧縮試験機で、毎分10mmの速度で圧縮した(写真2,3,表 2). 圧縮量は、試料の最終長さ68~165mmの範囲で数群に分け、各種の密度(0.28~ 0.78g/cm³)のテストピースを作製した(写真4).

圧縮後のテストピースは、ポリエチレン袋に入れて、一4.5~-5.5°Cの低温室内の茶箱 に保管し、順次切削実験を行った。切削試料は、採雪グループごとに区分し、その中から12 個を選び、4密度群に分類した。それぞれのテストピースの2面を、写真5に示すようにか んなで平行に整形し(厚さ50~70mm)、その試料を、回転圧雪試験機のテーブル上へ、あ らかじめ0℃近くに冷やした井戸水を噴霧し、接着した。

写真 2 半割りモールド Photo.2 Mold of separated type. 表 2 一軸円縮試驗機の什様

т

写真 3 一軸圧縮試験機 Photo. 3 Test machine for uniaxial compression.

	_		
able	2	Specifications of uniax	ial compression test machine.

	項 目	ŧ	住 様
	規	格	谷藤機械工業 電動CBR試験機改造型
+	型	式	ひずみ制御方式
4	量大荷重容	量	5 ton
	圧 縮 速	度	$0.1 \sim 500$ mm/min
	供試体寸	法	最大100Ø×250mm
体	電 動	機	0.75KW (1HP),3相 200V
	変 速	機	リングコーン式無段変速,変速比1:1(
	减 速	機	スパーギャ滅速 , 5段階 , 1/5 n
÷⊥	ロードセ	n	共和電業LU-5TE,5ton
ा च असर	変 位	計	共和電業DT-100A, 0~100mm
2019	ひずみ測定	器	三 栄 測 器 6 M 5 7 A
цþ	記録	計	渡辺測器W×4402 (XYレコーダ)

写真 5 試験試料の整形 Photo. 5 Trimming of test specimens.

写真 4 圧縮試料 Photo. 4 Compressed snow samples.

2.3 人工圧雪の圧縮特性

ー軸圧縮試験機による, 圧縮力 ~ 変位曲線(オシログラム)の形状を図 I に示した.オ シログラムの一般的傾向は, 試料の初期圧縮段階では, 内部の雪粒子がずれながら空隙を埋 め, のこぎり刃状の軌跡を描き, 各ピーク値が少しずつ上昇する. 採取した試料の雪質と内 部空隙(初期密度)の違いにより, このオシログラムの波形と継続時間が異なる. さらに圧 縮を続けて行くと, 試料内部の空隙を埋めるための断続的なすべりがなくなり, A 点を始点 とし, 上方に凹ななめらかな指数曲線状のカーブを描き急上昇する. 図1の上限のB 点がそ の試料の設定最大圧縮力になり, 同時に, その点が試料の最大変位量(最大密度)である. 表3 は図1のオシログラムの各軸の単位と, 対象となった試料の性状を示したものである.

国立防災科学技術センター研究報告 第26号 1981年11月

試 料	(試料分類)	No	$A_1 - 6$	$A_1 - 7$
試	験年月日			5 4.4.1 0	(am)
室櫃	(任 雪 温)		C	- 4.5 ~	5. 5
初敏	試 料 長	さ	mm	8 9.5	8 1
形	試料正味重	量	9	391.5	4 2 9.4
期後	試 料 密	度	9 /cm	0.287	0.315
サンプ	ラ - 内 径 × 長	さ	m	101×	107
臣	縮 速 度		mm/分	1	0
** •	変 位	量	mm	1 3.1	4 9.6
1%/A. #9	密	度	9 /cm	0.311	0.447
포요	応	カ	Kgf ∕cm²	1.6	2.7
	試 料 長	さ	mm	8 9.5	8 1
終日	密	度	9 /cm	0.546	0.662
期点	応	カ	Kgf∕cm²	1 2.9	2 5.7
	硬度(木下式)	Kgf ∕cm²	47	105
X レ戦 いう正	変位量 (X 軸)	mm/マイクロストレーン	0.03	0 0 8
Y 夕保	圧縮力 (Y 軸)	kgf/マイクロストレーン	1.26	8 4
そ	の	他		茶 箱	<i>No.</i> 6

表 3 圧縮力・変位曲線の圧縮試料条件 Table 3 Specifications of compacted snow.

なお、圧縮過程の応力は、半割リモールドの側壁と試料の側部すべり摩擦が含まれている.

図2は、それぞれの採雪グループごとに各圧縮試料の最大密度と最大圧縮応力、硬度(木 下式)の関係を示したものである.圧縮応力は、密度の増大に対して指数曲線状に上昇する. 試料グループAとBの値はほぼ一致するが、Cは同密度に対して、硬度が全体に少し小さく、 圧縮応力は、密度の高い試料で上昇割合が大きくなっている.図2の密度と圧縮応力の関係 を示す曲線と、図1のなめらかな曲線はともに近似の指数曲線状のカーブを描く.したがっ て、3カ所の異なる場所で採取した、雪質の異なる試料の圧縮力~変位曲線ではあるが、す べて、ほぼ同一の線上にくる.図2の硬度は、圧雪温度-4.5~-5.5°Cにおける切削実験

-110 -

中に計測したものを示した.一般の路面圧雪の 硬度は,密度の4乗に比例するとされているが

(木下ほか,1970),本実験では直線に近い. これは圧雪密度が 0.4 g/c m³以下の試料の硬度 を計測していないことに原因があると思われる. なお,各グループごとの人工圧雪試料の特性は, それぞれの切削実験グループのところで示す. 写真6~8は,実験に使用した代表的な3密度 群の試料の顕微鏡写真を示す.粒子の結合状況 と密度の違いについては,この組織写真から明 確な差を読みとることはできなかった.

2.4 切削試験設備と試験方法

切削試験試料は、3地区の圧雪試料を2.5の 表5に示すように、それぞれのグループ分けを 行った.その資料を、回転圧雪試験機(図3, 写真9)のテーブル上へ、4密度群12個(標準) の試料を接着した(写真10).テーブルは、手 動で回転させることができ、切削刃を固定して、 円周テーブル上の切削試料を回転移動させた. 切削実験速度は5~128 cm/secの範囲であっ た.

切削刃は,写真11,表4に示す幅20~50mm の8種を用い,試験条件が変るごとに,すくい 面とにげ面を800~1000番砥石で整形し,三分 力計に固定した.

三分力計は、写真12に示す支持板にとりつけた.支持板は、切削位置、切削深さを変化させるため、上下左右にハンドルで移動できる.水 平ハンドルによって切削刃を横に移動させ切削

写真 6 圧雪試料の組織 (A₂₁ - 0.55 g /cm³) Photo. 6 Texture of the specimen with density 0.55g/cm³.

写真 7 圧雪試料の組織 $(A_{20} - 0.6 \text{ g/cm}^3)$ Photo. 7 Texture of the specimen with density 0.6 g/cm^3 .

写真 8 圧雪試料の組織 (A22-0.7g /cm³) Photo. 8 Texture of the specimen with density 0.7g/cm³.

深さを一定に設定すると、試料の幅と切削刃の幅により2回の切削試験ができる。切削深さ は、上下ハンドルで自由に調整できる。実験の切削深さの範囲は1~15 mmで、接着面の氷 の影響が入らないよう、左右2条を支互にくり返し実験を続けた(写真13)。

2.5 試験の種類と切削条件

圧雪の切削抵抗は,密度,硬度,温度等のほか,切削深さ,切削速度,切削刃の寸法・形

国立防災科学技術センター研究報告 第26号 1981年11月

図 3 回転圧雪試験機

Fig. 3 Snow compacting machine with revolving table.

写真 9 回転圧雪試験機 Photo. 9 Snow compacting machine with revolving table.

写真 10 回転テーブル上の圧雪試料 Photo. 10 Specimens on the revolving table.

写真 11 切削刃 Photo. 11 Cutting blades.

表 4 切削刃寸法 Table 4 Specifications of cutting blades.

	τÞ	a	8	
NU.	mm	度	度	e 😫
1	30	0	15	
2	30	13.5	15	
3	30	18.5	15	10 14 14 14 14 14 14 14
4	30	32.5	15	
5	29	47.0	15	6 0 18 1
6	30	29.0	15	
7	50	34.0	15	≪…すくい角 切覧簡
8	20	32.5	15)…にげ角

状(すくい角,にげ角,切削幅,刃先厚さ,仕上状況)等の各種切削条件により大きく影響 される.これらの条件のうち,2.4 でのべたように,切削刃は,写真11,表4 に示す切削幅 20~50 mmの8種を用い,4 密度群12個1 グループとして,表5 に示す各実験組合わせで実

写真 12 三分力計と支持板 Photo. 12 Three-directional load-cell and its holder.

写真 13 人工圧雪の切削状況 Photo. 13 Cutting of compacted snow.

施した.実験は、あらかじめ一定切削深さを設定し、なるべく一定の切削速度(20~60 cm / sec)になるように、テーブルを回転させる方法をとった.

2.6 計測法

二次元切削の主分力(水平力)ならびに背分力(垂直力)の検出は,2.4 に示す三分力計 を用いた.円形テーブル上で試料が回転する関係で,送り分力(横方向)に円周側から回転 中心の方向にわずかの力が検出された.回転テーブルの円周速度は,ボール紙で20mm間隔に 切かきを作りテーブル側面に接着し,光電スイッチと組合わせてパルスの検出を行った.切 削破壊力は,切削刃が試料のせん断面に亀裂を入れ,それをせん断しながら連続的に移動す る.それに従って,三分力計で波状の応力が検出される.その応力は,切削刃のすくい角と 形状,圧雪密度,切削深さ,切削速度等により大きく変化し,変動幅,変動ピッチも異なる. 図4は,そのオシログラムを示したものである.

切削深さは、三分力計支持板の上下移動ハンドルの所にある回転目盛,ならびに、ノギス を併用して測定した.温度の測定には、すべてサーミスタ温度計を使用した.室温は、感温 部を回転テーブル附近に設置した.圧雪温度は、感温部を回転テーブル上の圧雪接着面に設 置し、テーブルの回転軸に取りつけたスリップリングを介して、温度記録計へ導いた.さら に、ダミー用として2個の圧縮用テストピースへ、それぞれの感温部を埋め込み、温度記録 計へ導いた.表6に使用計測器と計測法を整理して示した.

2.7 切削力読み取り方法

圧雪のせん断破壊時のオシログラムは、2.6 でのべたように波状に検出される.人工圧雪 の試料は、現地採雪、予備圧縮、運搬、保存、圧縮、整形、接着と一連の試料処理を経て切 削試料として利用されるが、同一試料でも、まったく均一な組織としては存在しえない.し たがって、各瞬間の切削破壊面の応力は変動があり、オシログラムには、ピーク値の異なる 波形が連続的に表示される.また、実験は、まったく同じ場所の切削を再現することは不可 能である.したがって、応力の読み取りは、切削破壊の波形の2~3のピーク値の包絡線の

7. 31)	
~S. 54.	
2. 14	
54. 2	
S.	
$14 \sim$	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
2.	1020100
(54.	10000000000000000000000000000000000000
切削実験行程表および実験条件の組合せ表	0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
10	ų
羕	,

Table 5 Schedule of tests and combinations of experimental conditions.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	¥ \$		英	H. 籠	Þ,	通用面	叶い整形後有		16	引天教			ф]	魚	#		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	変換量	#]∃ #	宿武料 値	1 密度範囲	年月	後着	テーブル上の	切削误	菜類	机制在月日	識	比雪温	切削刃	切削深さ	切削速度	対象武科	a marter at another at another at a marter at a marte
$ \begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \lambda_{1} \\ \lambda_{2} $	र र	日年月1	日格数	(8 / cm)		個数	後 着 順 位	AG.	分類		(W)	(C)	(%)	(==)	(cm/sec)	(3%)	- (或件, 訂阅状況)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							2, 4, 6, 5, 8				1~ 8	-55,-8	4	3	28.6~63.2	13 個	
$ \begin{array}{c} \lambda_{2} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} $							9,3,10,11,13				9~12	-16	4	2,4,5,6	18.6~37	2,5,3,13,1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-			051-071			1,7,12			E /0	13~14	-16	4	4	5.8~69.8	1,7,13	「スピード試験
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4/16	117	1127-3891	5 1	6			Ŷ	0/0	$15 \sim 20$	-12, - 8 -4	4	3	23.2~41.4	4,6,8,9,10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	1 4		41~105				•	пv	6 1 9	21~24	7	4	4,5	19.4~30	6,8,10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ř V									7170	25~28	4	4	2,6	17.4~41.4	2,6,5,8	1 463 3-31
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(¥										29~38	-2.5, -2, -1	4	3 (4)	19.8~43.5	4,9,11,12	Ma 7~38 14
$ \left\{ \begin{array}{c c c c c c c c c c c c c c c c c c c $					_						39~40	-4	4	3	23.5~39.5	13 個	(切削深さ 4 ma
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16.			0.55~0.78			21,20,15,22			5/15	1~14	7	5,2,3,1	33	20~61	12 個	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	4/11	12~2514	(13~544)	5/1	4 12	17,24,23,16	5	Λ12	2	$13 \sim 20$	-12; -16		en	21~67	12 個	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	_		\ 49~110/			25,14,19,18			5/17	19~26	-16	3,1,5,2	e	28~71	12 個	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A.			015-064						5/18	$l \sim 5$	-5.4	1,5,3,4,2	e	21~65	7,3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	() ()	26/6 PL	1~1010	13~266	123	и х	7,3,8,1,4	ų	~	(午後) (6~13	"	4,8,7	3	25~89	8,1,4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	福			33~01 /	- 10	2 2		Þ	•	5/19	$14 \sim 16$	*	2	3,2,4	23~41	8,1,4	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2									(~10:02)	17~32	"	4, A ₃ , B ₃	3	27~100	8,1,4	A25~32
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2/21	1~6 6	0.31 - 0.66 1/22 - 31.7	0.0		1,4,6,8,9			5/25	予論	-4	4	25,12	21.1~44.4	1,16,24	,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	æ			(微小~80)	↓ (午後	, 12	10,11,14,16	-	B ₁	(13:30~)	l∼ 4			10,5	2	は剝離	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(144	007 0 0 .		1/0~220			18, 24, 25				-0 -0						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	福 4	10 2/21	- 18 T 9	(nx-338) 第小一937	2/2	5 19	2,17,15,26 23 22 20 13	6	a	2/28	1~ 2	j.	4	5,10	5.9~1 4.8	12 個	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0.29~0.57	(多方		12,7,5,3	3	5	3/3	80 2	ĥ	4	6,3,4,5	25.5~56.9	12 個	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~ 4)	2/23	8 20-28 9	0.6~16.8	6				3	1:30-22:30	6 (0	5	4	4	3.49~53.8	3	く スピード戦略
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	+	+	「成小~48」 nee_n7e													1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	27 3/3	6 6~1	/13.4~56.8						3/4	م ار	-4.5~	4	32456	21~42	15 (14	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				30~100/	1 3/4	15	1~15	ŝ) 0	18:00		0.0	5			15 個本 3 組	
2/27 3/4 10-15 6 (87-564) 2/27 3/4 10-15 6 (87-564) 25-03	3			0.50~0.75	(1 夜	~				~21:55)	10~13	•	4	m	4.7~128	にわける	く スピード試験
	2	27 3/4	10~15 6	(8.7~56.4) 9.5~03							14~23		5,1,3,4,2	es.	19.8~46.2	15 個	

- 114 -

国立防災科学技術センター研究報告 第26号 1981年11月

- 115 -

国立防災科学技術センター研究報告 第26号 1981年11月

表 6 計測準備作業および計測,測定機材と測定法

Table 6 Method of measurement and instruments.

作業項目 及び 測定項目	使 用 機 祇 及 び 測 定 器	測定器(ビックアップ)仕様 (出力~容量~感度~精度)	測 定 法
採 雪 及び 密度測定	スノーサンプラー はかり	内径×長さ:100×400ma (透明アクリル,厚さ5ma) 御定範囲:40~8009 最小目盛:29	山間地(表1)のしまり当または新雪層へ、スノーサンプ ラーを水平に押し込んで採雪(写真1)。そのサンプラー にビストンを押し込み予備圧縮をして茶箱に入れて低温室 へ保管。採雪層ならびに予備圧縮した圧雪の密度測定。
人工圧雪の 作成と 圧縮力の 測 定	- 軸圧縮試験機 (写真3,表2) - 軸圧縮モールド	 電動CBR試験機改造 (谷藤機械KK) 最大荷重容量:5 ton 圧縮速度:0.1~500mp√min 内径×長さ:101×170ma (毎鉄製二ツ割り) (写真2) 	低温室に保管してある圧雪試料を整形して圧縮試験機用半 割りモールド(写真2)へ挿入し、-5℃の一定温室で一 軸圧縮試験機を用いて数組の変位量に設定し、定速度 (10 m//min)の圧縮を行い、数組の密度群の人工圧雪 試料を作成(写真4)。圧縮力及び変位量は一軸圧縮試験 機のビックアップの信号を計測室のX-Yレコーダへ記録 した。
試料整形	カンナ・ノコギリ	写真 5	円柱型圧縮試料を平行に削り,回転テーブルへ接着しやす いよう整形。
 切削力測定 及び 水平力 主分力) 垂直力 (育分力) の検定 (図5,6) 	三分力計(工具動 力計)(写真12) 回転圧雪試験機 (写真9,図3) ストレインメータ ベン書き オシログラフ	三分力計 共和電業TD-300KA(AK9387) (主分力) 300Kgf (背分力) 150Kgf (送り分力) 200Kgf 共和電業DPM-8E(0~1000HZ) 渡辺測器リニアコーダWTR-281 (アンブ:WA294,ガルシンメータ: G12,±20mm)	低温室の回転圧雪試験機のスライド式ホルダーに三分力計 をとりつけ,設定深さに保持し,テーブル上の圧雪を回転 させ切削低抗を測定(写真13)。 三分力計の圧縮力の電気信号は,ケーブルにで計測室のス トレインメータ及びペン書さオシログラフへ入力(図4)
切 削 スピード	光電ビックアップ (図4)	サンクス・RS-120HF-2	テーブルの外周へ巾20mmの切欠きを約10個作ったボール紙を張りつけ,光電ビックアップをテーブルの横へ固定し,その出力を計測室へペン書きオシログラフへ入力。
切削深さ	スライド式 クロスヘッド 変 位 計	ハンドル目盛 1/80mm 昭和測器 TCL-50F (容量:0~50mm)	ハンドル目盛とノギスを利用。 P 試験のとさは変位計を利用。
圧雪硬度	木下式硬度計	先端貫入棒:60 おもり :1 kg 落下高さ :主として20 cm	試験条件が変わるごとに回転テーブル上に接着してある人 工圧雪上へ木下式硬度計の貫入棒を置き測定。
王雪温度	サーミスタ温度計 温度記録計	 感熱部:タカラ工業YE-60 (-15~5℃:2個,30~10℃:2個) 変換器:タカラ工業M32 (精度:±19FS) "E402 (1) 千野製作所 E11800-06 	現地採雪時の気温,雪温の測定。 回転テーブルの底面,低温室各1,及びダミー用圧雪2個 ヘサーミスタ温度素子を設置し計測室の打点式温度記録計 へ入力。
圧雪密度	はかり	日本オーハウス KO-1600 測定範囲: 0.1~26109 最小目盛: 100mg	主として一軸圧縮後の円筒状試料の最終密度測定(写真4)
顕微鏡組	顕 徴 鏡	日本光学 POH (偏光顕微鏡)	必要に応じて人工圧雪の組織写真の撮影(写真6~8)。
その他	切削刃研摩	800,1000番砥石	実験条件の変化ごとに切削刀のすくい面,にげ面を砥石で 研摩し,条件を一定に保った。

平均値を読んで,その試料の最大切削力とした.図に示すように,同一試料を同一条件で切 削しても最大切削力には変動がみられる.

2.8 三分力計の検定

三分力計は、工具動力計と称し、主として金属材料の切削実験に使用されるものであるが、

本実験では、装着方法が異なるので、較正係数は仕様通りには使えない、そこで、図5,6 に示すように、三分力計に実験用の切削刃を取りつけて検定を行った、計器特性により水平 力に垂直力の影響が加わり、その値は垂直力の値の約6.7±1.3%となり、真の水平力は図に 示すとおり、三分力計の主分力の読みの1.04倍から垂直力の影響を差し引いたものとなる。 したがって、垂直力が大きければ相殺され、三分力計の読みそのままが、ほぼ真の水平力と して使用できるが、垂直力が比較的小さい場合は、主分力計の読みより4%大きい値が真の 水平力となる。

本報告では,水平力を中心に解析したが,それに使用した水平力の値は,三分力計の値を 修正しないでそのまま使用した.

3. 実験結果

3.1 実験結果の総括

実験は表5に示す切削条件で実施した。3ケ所で採取した圧雪試料(A~C)を,それぞれ4密 度群12個を一組にして,圧雪の密度,硬度,温度,切削深さ,切削刃の形状,切削速度の影響等それぞれ条件を変えて切削実験を実施し,それらの条件と水平切削抵抗の関係を調べた. 水平切削抵抗は,圧雪密度の影響が大きいので,グラフの解析は主として横軸に密度を採用 した。

以下に,各圧雪試料グループ別に切削実験結果を示した.表7は,それらの結果を解析項 目別に整理し,それぞれの特性を比較しやすいようにしたものである.

	解	ħ	ŕ	項	E		図番	切削実 験順位	試料 分類	試 験 月 日	圧雪温 (℃)	切削刃	切削深 (mm)	横軸基準	縦軸基準	備考
Æ	雪		式	料	特	性	2	1~6	A,B,C	2⁄21 ~4⁄11	-4.5 -5.5	-	-	任雪密度	E縮応力 硬 度	図-7,10,15 の合体
			"				- 7	1,2	В	2⁄21~23	11	-	-	7	п •п	図-15と硬度 特性ほぼ同一
			"				10	3	C	3⁄3-4	,	-		"	a a	図-7と圧縮特性 ほぼ同一硬度小
			"				15	4~6	Α	2/27 4/10~11	11	-	-	"	a a	
_			11	(3	まとめ	5)	25	-	A, B, C	上記主 なデータ	"	-	-	一軸田縮 応 力	硬 度	図-27参
圧	讆?	品戊	É	(/	1段附	告)	16	4	A11	5/8~9	-5.5 ~-1 6	-	-	圧雪密度	"	
-	0			(5	5段附	专)	17	4	A ₁₁	5⁄10~11	\sim^{-1}	-	-	"	"	
	n			C	1)	18	4	A ₁₁ (4種)	5⁄10~11	$ \begin{array}{c} -1 \\ \sim -1 & 6 \end{array} $	-	-	圧雪温度	0	
Æ		雪		硬		度	27	-	A1, A11 B ₂	主 な データ	\sim^{-5}	4	-	硬度	水 平 比 切削抵抗	
切	削 (深 3	さ段	の階	変)	化	8	1	B1	2⁄25	$^{-4.5}_{-5.5}$	4	5~12	任雪密度	水 平 切削抵抗	
laboration for	(5	<i>"</i> 段	階)		9	2	B2	2/28 3/3	-5	4	3~10	a	σ	
	(5	<i>"</i> 段	階)		11	3	С	3⁄4	$-4.5 \\ \sim -5.5$	4.	2~6	a	11	図-9より 30%小
切	削 (「) t <	り い角	の 自4 ŧ	変 重)	化	12	3	С	3⁄4	$-4.5 \\ \sim -5.5$	$^{1,3}_{\sim 5}$	3	11	水 平 比 切削抵抗	圧縮応力の グラフ
	(1	#	<u>5 t</u>	重)		21	5	A ₁₂	5⁄15	-4.5 ~-5.5	1~5	3	"	"	図-28参
	("	3≹	重)		23	6	A ₂	5⁄18~19	-4	3~5~ 7,8	3	//	"	
	(1		5 種	重)		24	6	A2 (2種)	5⁄18~19	-4	1~5	4	すくい角	"	
切	削刃	の	变化	: (‡	28))	28	-	A 12,C A2	-	$-4 \\ \sim -5.5$	1~5	3~4	0	比 率	図-12,21,23 ~24のまとめ
切(切)	削入 间刃5	1及	び、温	。 這 定 変	度変 七4月	化鹅	22	5	A ₁₂	5⁄15~17	$^{-8}_{\sim -16}$	1,2,3,5	3	任雪密度	水 平 比 切削抵抗	温度変化 すくい角変化
臣	雪 (倡 4	投	度階	変)	化	20	4	A ₁₁	5⁄8~9	-5.5 ~-16	4	3	#	"	
	(0 0)		19	4	A ₁₁ (3種)	5⁄9~11	$^{-4}_{\sim -16}$	4	, 3	任雪温度	11	
切	削	速	废	Ø	変	化	13	3	С	3⁄4	$-4.5 \\ \sim -5.5$	4	3	王雪密度	水 平 比 切削抵抗	図 - 14 オシログラム

表 7 切削実験結果の一覧表 Table 7 The whole results of experiments.

3.2 圧雪試料(第1回圧縮グループ)の切削抵抗

図7は、2月21日~23日第1回目の圧縮グループ(試料B)の試験試料の特性図である.密 度範囲は、0.28~0.71(g/cm³)の広い範囲にわたっている.この資料を使用し、切削刃 No.4(すくい角32.5度)を用いて、深さ3~12mmの切削実験を行った.実験結果を図 8、9に示す.水平切削抵抗は、密度増大に対して、指数関数的に増大する(密度の3~4 乗に比例).切削深さの変化と水平切削抵抗の変化は、ほぼ一次関数で示される.図8と図 9では、圧雪試料グループが異なり、切削抵抗曲線の曲率が異なるが、切削深さ5mmでは よく一致する.図8の切削深さ10、12mmでは、切削力の変動も大きく、データが少ないこ

ともあって,図9と一致しない.この実験 グループは,試料内にざらめ雪,氷がまじ り,他のグループとくらべ,同一密度に対 して硬度が少し高いグループである.し たがって,切削抵抗も全体に高くなってい る.

3.3 圧雪試料(第2回圧縮グループ)の 切削抵抗

図10は3月3~4日第2回目の圧縮グル ープ(試料C)の圧雪切削試験試料の特性 図である.3カ所の採取試料の中で,同一 密度に対して硬度が最も小さい.これは,

-119 -

採取時に上層部のざらめ層により圧密され、かつざらめ化していたしまり雪層から採取した ためで、試料の最終圧縮密度の範囲は、0.5~0.75g/cm³で比較的密度の大きい試料が多 41.

図11は、図8、図9と同じく、切削刃No.4を用いて、切削深さ2~6mmの切削実験を 行ったものである。水平切削抵抗は同一傾向を示しているが、横軸を密度基準で示すと、硬 度が小さいためか、図9に比べ全体に30%程度小さい値を示している.実験式を計算してみ

ると、水平切削抵抗は密度の3乗に比例し ている

図12は、同一条件で、すくい角の異なる 5種類の切削刃による切削実験結果である. すくい角の変化により、圧雪試料の破壊面 のせん断角が変化し,破断面積の違いによ り、水平比切削抵抗は大きく変化する、切 削刃No.1は、No.5のほぼ2.5倍の水平 比切削抵抗となる.切削刃No.2の試験は,図10 切削試料面が接着面に近く、圧雪組織内に Fig. 10 Relation between density, compres-氷粒を含み、同一試料であっても密度なら

sive stress and Kinoshita's hardness of compacted snow (sample C).

びに硬度の変化があったものと思われ、最初の試験よりかなり高い値となっていた.

図13は、切削速度を4.7~128 cm/sec に変化させたときの、水平比切削抵抗の違いを示 したものである、低速では、ばらつきが大きく、わずかに値が大きくなっているが、明らか な差は認められない、したがって、一般の切削実験結果の整理は、特に低速、高速の場合以 外は切削速度は無視した、図14は、同一試料について切削速度を変えたとき、水平切削抵抗 のオシログラムの波形を示したものである、高速切削では、連続した波形のピークが、低速

にくらべわずかに小さくなっている.低速では, 大小の,のこぎり刃状の波形が連続している.

3.4 圧雪試料(第3回圧縮グループ)の切削

抵抗

図15は、4月10日~11日の第3回圧縮グルー プ(試料A₁)と2月27日の圧縮試料(試料A₂) の圧雪切削試料の特性図である.第1回圧縮グ ループとほぼ同じ圧縮応力,ならびに硬度特性 曲線を描く.密度範囲は、0.45~0.78 g/cm³ で,第1回圧縮グループより密度の高い試料が 多い.

図 14 低速ならびに高速切削時のオシログラム

Fig. 14 Pen-oscillograms of cutting resistance (several speeds).

図16,17は,第3回圧縮グループ(試料A₁)の実験試料を,各温度条件を変化させながら 切削実験を行い,その直後圧雪硬度を測定した時の試料の温度と硬度の関係を示したもので ある.密度変化に対し硬度は大きくなっているが,指数関数的に増大していない.これは, 図15に示すように,A₁試料の圧雪硬度上昇率が,高密度で小さいためと思われる.

図18は、4種類の圧雪試料について、上記と同様の方法により測定したときの温度と硬度の関係を示したものである.硬度は、温度低下によりなだらかな上昇曲線を描いている.

図19は、図18の試料の同条件による温度と水平比切削抵抗の関係を示したものである、曲線の形状は同様であるが、硬度に比べて低温度における上昇率が小さい、切削抵抗は、密度 依存性が非常に強いが、温度変化にも影響されることがわかる.

図20は、図19の試料に他の試料を加えて、密度基準による、温度変化と水平比切削抵抗の

- 121 -

一軸圧縮試験機で圧縮した雪の切削破壊抵抗 - 磯部・小林・宮村

関係を示したものである.各試料ごとの温度 の影響はわかるが,全体としての傾向は,試 料によっては同一密度でも硬度の小さい試料 があり,硬度による影響が大きく出て,変動 が大きく,温度による影響は明確ではない.

図21, 22は、試料グループA12の切削実験 結果である. 図21は, A12 試料を各種の切削 刃を用いたときの水平比切削抵抗を密度基準 で示したものである。図12にほぼ重なり、実 験式は,密度の3乗に比例する式がよく適合 する. 切削刃No. 1の変動が多く図12にくら ベ少し大きい. 同様に、切削刃No.5は、圧 雪密度の大きい試料の抵抗が小さくなってい る. これは、密度の大きい試料グループで、 硬度の上昇率が小さいためと思われる、図22 は、切削刃の違いと圧雪温度違いによる水平 比切削抵抗の変化を密度基準で同時に示した ものである、切削刃の違いによる切削抵抗変 化は,同様に大きいが,温度による影響は明 確に現われていないものもある。曲線は、切 削刃No.5を基準にした実験式で計算した位 置(点線)とかなりずれている.

図23,24は,A₂試料の切削実験結果である. 図23は、図12,21,22と同様に、切削刃の変 化と水平比切削抵抗の実験結果である.切削 刃No.5は、図12によく一致しているが、No 4、No.3は約20%大きい.切削刃No.7、 8の形状は、No.4と同一であるが、切削幅 がそれぞれ50,20mmのものである.水平比 切削抵抗は、No.4と大きな違いはない.図 24は、2種類の試料について、5種類の切削 刃の、すくい角の変化と切削抵抗の関係を調 べ、その結果をすくい角基準で示したもので ある(図12,21,22,23参照).

Fig. 15 Relation between density, compressive stress and Kinoshita's hardness of compacted snow (sample A).

Fig. 16 Relation between temperature

and hardness of compacted snow. (kg(/d))

-122 -

- 123 -

4. 考察

4.1 人工圧雪の力学的性質

4.1.1 圧縮応力と密度について

雪を一軸圧縮試験機で圧縮(速度10mm/ 分)した,人工圧雪試料の密度と圧縮応力, ならびに,硬度の関係を示したものが図2で ある.異なる三場所の雪質にもかかわらず, 圧縮応力と密度の関係はほぼ一致し,圧縮応 力は,密度の4乗に比例している.図25は, 前記3試料グループの特徴を見るため,一軸 圧縮応力と硬度の関係を調べたものである.

圧縮応力の大きいところで硬度の上昇率が小さくなっているが、圧縮応力と密度曲線は、 なめらかな上昇曲線を描いているので、高密度の試料の組織構造のもろいものがあったか、 (A、C 試料)、硬度測定器の特性が原因と思われる。

図 25 圧雪の圧縮応力と硬度 Fig. 25 Relation between compressive stress and Kinoshita's hardness.

4.1.2 密度と硬度について

任雪の切削破壊応力は、雪の粒子、または結晶状の氷粒が、網目状に密に結合している状態を分断するので、密度の高い圧雪ほどせん断応力は増大する.図2,7,10,15~17は、 木下式硬度計により、各切削試験ごとに測定した試料グループの、硬度と人工圧雪密度の関係を示したものである.圧雪の硬度と密度の一般的傾向は、密度が大きくなるに従い硬度が 上昇し、密度 0.5g/cm³付近で急上昇するので、全体の傾向として、上方に凹な指数関数の 関係で示される.本測定では、測定条件を一定にするため、硬度測定に6¢の貫入棒を統一 して使用したので、密度の軟い範囲の試料の硬度が欠測値となっている.また、前節で検討 したように、高密度部分で硬度が指数関数的に増加せず、全体として直線的な関係がみられ る、圧雪の硬度は、密度の4乗に比例する実験式が提示されているが(木下他、1970)、欠 測値を推定して実験式を計算してみると、図10、15に示すように密度の4乗にほぼ比例する ことがわかる.圧雪の硬度は、試料片の上層より左右二条を順番に切削し、その切削面を測

-124 -

定するので、同一場所の再現は不可能であり、硬度測定値のばらつきの原因となったと思われる(写真13).

4.1.3 雪温と硬度について

一般に, 圧雪の温度低下により硬度が増すと報告されているが⁽²⁾今回の試験温度範囲は, 0~-16(C°)を7段階に設定し,それぞれの切削条件ごとに硬度測定を行った. 圧雪温度 と硬度の関係は,図18に示すとおり指数曲線状に上昇し,0°Cに接近するに従い低下し,全 体として上方に凸な上昇曲線を描く.

4.2 切削理論の導入

圧雪の切削メカニズムを検討するために、金属材料の切削理論の導入を試みた、金属材料 を切削するとき、切りくずの生成状態は、流れ形、せん断形、裂断形、および、き裂形の4 種に大別されている。せん断形は、被削材料がいくぶんもろく、せん断すべりを生じやすい 金属材料にみられる切削状態で、塑性変形に続くすべり破壊によって、切りくずの一塊が生 じ、この過程が一定のピッチで繰返される。一般に大切削厚さ、小すくい角の場合のほか、 切削装置の剛性が低い切削条件で発生しやすいといわれている。き裂形は、ぜい性材料(硬 質プラスチック、普通鋳鉄)などにみられる形態で、刃先から工作物表面まで瞬間的にぜい 性き裂(脆性亀裂)が発生し、切りくずは、ほとんど塑性変形を受けないといわれている。

今回の実験の観察結果から、人工圧雪の切削形態は、せん断形とき裂形である. 0℃に近い圧雪は、比較的軟く、薄く切削する場合は、せん断形となり、低温のかたい圧雪とか、密度の大きい圧雪、氷盤、氷等の切削の場合はき裂形によく似ている.

切削模型として、図26に示すように、刃先から被削材上面に向って広がるせん断域を不連続面とみなし、二次元変形域を無視し、理想化された変形を考えた、流れ形切りくずの二次元切削抵抗Rを導く、せん断面切削模型が考えられている。そのときの平面A — B をせん断面と呼び、切削力は F_c と F_t に分けて測定される。切削刃が被削物を引裂く力と切りくずの慣性力を無視すれば、Rは切削力R'と平衡し、図26の幾何学的関係から以下の式が導かれている。

$$\tan \phi = r_c \cos \alpha / (1 - \sin \alpha) \tag{1}$$

$$\tan \beta = (F_t + F_c \tan \alpha) / (F_c - F_t \tan \alpha)$$
(2)

$$\tau_s = F_s \sin \phi \neq b t_1 \tag{3}$$

$$F_{c} = \tau_{s} \cdot b \cdot t_{1} \cos \left(\beta - \alpha\right) / \sin \phi \cos \left(\phi + \beta - \alpha\right)$$
(4)

$$F_t = \tau_s \cdot b \cdot t_1 \sin (\beta - \alpha) / \sin \phi \cos (\phi + \beta - \alpha)$$
(5)

ここに, α:切削刃のすくい角

 t_1 :切削厚さ(深さ)

- t_2 :切りくず厚さ
- r_c :切削比 ($r_c = t_1 \neq t_2$)

国立防災科学技術センター研究報告 第26号 1981年11月

- F。:切削刃進行方面分力(主分力)
- F_t:切削刃方向の分力
- β :切削刃すくい面の平均摩擦角 ($\mu = \tan \beta$)
- ₹s:せん断面の平均せん断応力
- b : 切削幅

図 26 二次元切削抵抗模型(機械工学便覧による) Fig. 26 Model of two-dimensional cutting resistance.

上式から,圧雪の切削抵抗が金属材料と同様の切削形態をとるとすれば,式(4)から水平切 削抵抗が導かれる.その力は,圧雪の特性で。と切削幅,切削深さ,切削すくい角,切削状況 (せん断角 Ø 等),すくい面の摩擦角等に影響されることがわかる.実際の切削・破壊は,

圧雪の内部組織の不均一,すくい面の摩擦角の変動等複雑に変化し,仮定に基づく単純な模型どおりには切削されていないので,この式をそのまま導入するには適しないが,実験結果より式の一部が導入できるので,この式を検討しながら結果の解析を試みた.

4.3 人工圧雪の力学的性質と比切削抵抗

4.3.1 雪温と比切削抵抗

圧雪の温度変化と比切削抵抗は、図19に示すように低温では上昇率は小さい.硬度変化と 同様に、低温から0℃に近づくにしたがい、硬度の低下率は大きくなるので、全体として上 方に凸の曲線となる.気温が0°C以上になれば、氷の融解が始まり、圧雪は軟化し硬度は急 激に低下する.0°C以上の気温にさらされる圧雪の熱収支とその平衡状態は、不安定で条件設 定とその解析は非常に困難であるので、0°C以下における圧雪の温度と切削強度の実験を実 施した.実験式は、図19から、温度補正係数Tの式として、温度影響曲線を式(6)に示した.

$$= 0.57 (-t)^{0.35}$$
(6)

2212

T

T:切削抵抗温度補正係数(t = -5℃ 基準)

t:室温(切削時の圧雪の温度,0℃)

4.3.2 密度と比切削抵抗

圧雪の比切削抵抗は、図8,9,11,12,21~23に示すように、圧雪密度の指数関数で示 される.実験式は、B 試料で圧雪密度の4 乗に比例する式が適合する(図9).高密度で硬 度上昇割合が小さいA,C 試料では、圧雪密度の3 乗に比例する実験式が適合する.今回の 実験条件の中では、圧雪密度が水平切削抵抗に最も大きな影響を及ぼしている.気温−5℃ No.4切削刃を基準にして、圧雪密度と比切削抵抗の関係を示す実験式は、(7)式で示される.

$$\tau = K \delta^n$$
(7)

ここに τ:単位垂直切削断面積当りの切削力(kgf /cm²)

- K:係数,雪質,硬度特性等圧雪の性質により異なる.
- δ : 圧雪密度 (g/cm³)
- n::切削材料の密度と強度特性によりきまる.
- 4.3.3 硬度と比切削抵抗

圧雪の硬度測定(木下式)と切削刃による切削破壊は,圧雪組織に対して類似の力学的効 果を及ぼしているので,両者の関係について検討してみた.図27に示すように,圧雪硬度100 kgf/cm²までは,ばらつきは多いがほぼ直線関係にある.圧雪硬度が120 kgf/cm²を超えて いるデータは,室温を一10℃に保ったときの試験値であり,圧雪硬度に対する比切削抵抗の 上昇率が低下しているが,温度低下による圧雪の硬度特性と切削特性が異なると思われる.

4.4 切削刃の形状と比切削抵抗

4.4.1 すくい角の変化と比切削抵抗

図12, 21~24は、すくい角の異なる5種類(一定幅30mm)の切削刃による切削試験結果 である.式(1)~(4)で明らかなように、すくい角が大きい程、せん断角が大きくなり水平切削 抵抗力は小さくなる.No.5の切削刃による圧雪のせん断切りくずは小さく、切削抵抗 F_e の 変動幅が小さい.理論式(4)に従えば、 $\phi \geq \beta$ が測定値から計算できるが、本実験では、あら かじめ一定深さに設定した切削実験であり、垂直力が非常に小さかった.また、 β は単純な クーロン摩擦ではなく、すくい角の変化で大きく変動するといわれている.したがって、計 算式で求める事は困難であり、図12、21~24の実験結果から、すくい角0°を基準にして示し たものが図28である.この関係を指数曲線で推定し、圧雪の切削抵抗のすくい角補正係数fの式として、No.4切削刃($\alpha = 32.5$ 度)を基準に、すくい角影響曲線を8式に示した.

 $f = 2 \cdot 13 (0 \cdot 977)^{\alpha}$ (8) ここに f : 圧雪切削抵抗のすくい角補正係数

α:すくい角 (度)

図 28 すくい角と水平比切削抵抗の変化率 Fig. 28 Proportion of unit horizontal cutting resistance of different rake angles of each blade.

4.4.2 切削幅と比切削抵抗

切削幅の変化に対する切削抵抗は、式(4)によれば切削幅に対して一次式で示される.実験の結果、切削幅20~50 mmの3種の切削力による比切削抵抗は、図23に示すようにほぼ一致する.したがって、式(4)の切削幅 b がそのまま適用できる.

4.5 切削条件と比切削抵抗

4.5.1 切削速度と比切削抵抗

圧雪のせん断抵抗 τ_s は、一般に密度、温度条件の他、ひずみ速度にも影響されると思われるので、切削速度の変化について実験してみたが、図13、14に示すように、本実験範囲(5 ~ 128 cm/sec)では、20 cm/sec以下でピーク値が大きくなる傾向があるが、明らかな相違はみられなかった、したがって、データ整理ならびに解析は速度条件を無視した.

4.5.2 切削深さと比切削抵抗

切削深さの増大は,式(4)によって破断面の増大をもたらし切削抵抗は増大する.図8,9, 11から切削抵抗を比較すると,ほとんど変化はみられない.切削深さは,切削抵抗に 対して線形関係にあるものと思われる.図8は,データが少ないので明確な比例関係は見ら れないが,図9,11は,密度基準に対する水平切削抵抗を示す各実験式の係数が,切削深さ と明確な比例関係にあることを示す.

5. まとめ

今までの実験結果ならびに式(1)~(4)を利用して,圧雪の水平切削抵抗と各種切削条件の関係をまとめると,次のようになった.圧雪の水平切削抵抗は,圧雪特性(硬度,密度)により大きく影響される.その関係を密度基準で示すと,密度の3~4乗に比例する実験式がよく適合する.水平切削抵抗と切削幅,切削深さの関係は,線型関係になる.水平切削抵抗は,すくい角が小さくなるに従い,すくい角 α 度の修正指数曲線状になだらかに上昇する.同様に,温度低下とともに指数曲線状に上昇する.切削刃先端の性状は,摩擦角,せん断角の変動をもたらし,水平切削抵抗に影響を及ぼすことが定性的に明らかとなったが,数値化できなかった.切削速度は明確な変化が見られなかった.

上記結果を,実験数が多かったNo.4切削刃(すくい角32.5度)による室温一5℃の切削 データを中心に整理すると,式(9)~(13)の一般式で示される.

$F_c = \tau \cdot h \cdot b \cdot f \cdot T$	(9)
$\tau = K \delta^n$	(10)
$f = 2 \cdot 13 \times (0.977)^{\alpha}$	αIJ
$T = 0.57 (-t)^{0.35}$	Q2)
$P_c = F_c \cdot V \swarrow 270$	(13)

- ここに F_c:水平切削抵抗力(kgf)
 - τ :単位切削断面積当りの水平切削抵抗力(kgf /cm²)
 - K :実験式による係数でK=32 (図8), K=60 (図9), K=25.5 (図11)
 - n :切削材料の密度と強度特性によりきまる定数でn=3 (図8, 11, 12),
 n=4 (図9)
 - δ :圧雪密度 (g/cm³)
 - h :切削深さ(cm)
 - b :切削幅 (cm)
 - f :切削抵抗のすくい角補正係数(a = 32.5 度基準)
 - α :切削刃のすくい角(度)
 - T :切削抵抗の温度補正係数(t = -5℃基準)
 - t :室温(℃),本実験では室温と圧雪温度がほぼ一致していた.
 - P_c :切削仕事率(PS)
 - V :切削速度(km/h)

切削抵抗と密度の関係を示す図8~9,11,図21の関係式を整理し、それらの関係から、 圧雪密度と単位切削断面積当りの水平切削抵抗力を式00で計算し、図化したものが図29であ る.いま,基準値として,気温一5°C,すくい角32.5度,切削深さ及び切削幅1 cmをとり, それらの数値を(9)~0.2)式に代入して計算した結果を,水平切削抵抗 F_c を計算する単位切削 抵抗力とすれば,図29の $\tau - \delta$ の関係式の縦軸の単位を kgf ($F_c - \delta$)に置きかえて読み取 ることができる.また,式0.3)の右辺 F_c に図29から読みとった値(kgf)と単位切削速度 V = 1 km/hの値を代入して計算したときの人工圧雪の切削速度 5-128 cm/sec (0.18 - 4.61 km/h)における $P_c - \delta$ の関係は,図30に示される.この図から,切削条件(切削 速度,切削幅,切削すくい角),温度条件,圧雪条件等がきまれば,前記条件における切削 仕事率(水平切削抵抗成分)の計算ができる.

あとがき

低温室での人工圧雪の切削実験の結果,切削抵抗に影響を与える条件と,人工圧雪の力学 的諸性質との関係を,実験式として求めることができた.

路面圧雪の切削上の問題で、今後実用上必要とされるもののひとつとして高速切削がある. 時速20 km/h あるいはそれ以上の高速域での切削には、多様に変化する路面圧雪の力学的 性質との関係を求める切削機構が解明されなければならないが、この研究はその際の有用な 手がかりを与えるものと考えている.

おわりに,本稿の作成にあたり,雪害実験研究所栗山弘所長,野原以左武第3研究室長から有益な助言をいただいた.ここに記して感謝の意を表する.

参考文献

- 1) 機械工学便覧(改訂第6版)第4章,工作機械.119-121.
- 2) 木下誠一(1960): 積雪の硬度(I), 低温科学, 物理篇, 第19輯, 119-134.
- 3) 木下・秋田谷・田沼(1970): 道路上の雪氷の調査 II. 低温科学, 物理篇, 第28輯, 311-323.
- 4) 小林俊市(1978): 圧雪硬度の温度および密度による変化、国立防災科学技術センター研究報告, 第20号, 267-291.
- 5) 田中・野原・岡崎・小山(1974): 路面圧雪処理に関する研究.防災科学技術綜合研究報告,第 33号, 5-54.

(1981年7月3日 原稿受理)