

#### **Protein Kinase C Beta II Peptide Inhibitor Elicits Robust Effects on Attenuating Myocardial Ischemia/Reperfusion Injury** Daphne Metellus, Christina Lipscombe, Chinyere Ebo, Rose M. Martorana, Anahi McIntyre, Arjun Nair, Harsh Patel, Annam Humayun, Jennifer Dang, Matthew Finnegan, Faosat Muftau-Lediju, Lucy Checchio, Megan Michaels, Qian Chen, Robert Barsotti, and Lindon Young

# Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131

# Introduction

Heart disease remains the leading cause of death in adults in the United States and worldwide, with coronary artery disease being the most common form that often leads to a myocardial infarction. While rapid restoration of coronary blood flow is crucial to preserving cardiac tissue function, it also results in an additional insult known as myocardial ischemia/reperfusion (MI/R) injury. MI/R injury may be attenuated by inhibiting the generation of reactive oxygen species (ROS) upon cardio-angioplasty following a heart attack. Protein kinase C beta II (PKCβII) generates ROS during reperfusion via cytokine receptor activation (Figure 1) (1). Activated PKCβII (via Ca<sup>2+</sup> and second messenger diacylgylcerol) binds to its selective receptor for activated C kinase (RACK). RACK enhances PKC<sub>β</sub>II translocation to the cell membrane and its interaction with substrates, like NADPH oxidase (NOX-2) (2). PKCβII phosphorylates and activates NOX-2 which then generates ROS (Figure 2) (3,4).



Figure 1. . Schematic representation of PKCBII mediated activation of mitochondrial reactive oxygen species (ROS) and NADPH oxidase superoxide  $(O_2-)$  release and decreased NO release from eNOS in MI/R (adapted from [5,6]). MI/R induces cytokine receptor activation leading to activation of PKC βII via diacylglycerol (DAG). Activated PKCβII increases ROS and O<sub>2</sub>release from damaged mitochondria and NADPH oxidase, respectively, and decreases eNOS activity. It also stimulates mitochondrial p66Shc protein, a component in the pathway resulting in opening of the mitochondrial permeability transition pore (PTP), which in turn leads to release of proapoptotic factors into the cytosol to further promote tissue injury during reperfusion.

Inhibition of tissue NOX-2 attenuates inflammation mediated vascular injury seen in various diseases, including diabetes and myocardial infarction (4). Previously, a myristoylated (myr-) selective PKCβII peptide inhibitor (*N*-myr-SLNPEWNET; myr-PKCβII-) was found to dose dependently inhibit superoxide (SO) release and MI/R injury via the mechanism depicted in Figure 2 (3, 6, 7). Myristoylation of peptides is known to potentiate their entry into the cell via simple diffusion through the cell membrane to affect PKC activity (8). However, the effect of myr-PKCβII peptide activator (*N*-myr-SVEIWD; myr-PKCβII+) on MI/R injury has not been studied (9).



translocation to the cell membrane via RACK binding and its interaction with substrates, like NOX-2, while PKCβII- inhibits that interaction (bottom; Adapted from [2]).

# Hypothesis

Of the many proteins that PKCβII phosphorylates, for the purposes of this study, we believe NOX-2 phosphorylation is a key pathway in the ROS mediated damage in MI/R injury. Thus, we hypothesize that myr-PKCβII- will reduce infarct size and improve postreperfused cardiac function as compared to non-drug treated controls, whereas myr-PKC $\beta$ II+ treated hearts will not improve these parameters.

# **Research Design**

Male Sprague-Dawley rats (~300g, Charles River, Springfield, MA) were anesthetized with I.P. pentobarbital (60mg/kg) and anticoagulated with 1000U of heparin. The heart was then removed and placed on the perfusion needle of the Langendorff apparatus. A pressure transducer was placed into the left ventricle to measure cardiac function, as previously described (6,7).



All data in the text, figures, and table are presented as means  $\pm$  S.E.M. The data were analyzed by ANOVA using the Fisher's PLSD test. Probability values of <0.05 are considered to be statistically significant.



**Figure 3.** Time course of left ventricular developed pressure (LVDP) for control, myr-PKCβII+/- MI/R studies. Myr-PKC<sub>β</sub>II- treated hearts showed a trend to improve LVDP after the first five minutes of reperfusion and this trend was exhibited throughout the 50 minute reperfusion time course. This was significantly different from both control and myr-PKC $\beta$ II+ treated hearts during the reperfusion period. \*p<0.05 vs. non-drug treated controls, ##p<0.01 vs. myr-PKCβII+.

| <b>Table 1.</b> Initial and final cardiac function values and infarct size for control, myr-PKC $\beta$ II+/- MI/R studies; *p<0.05, **p<0.01 vs. non-drug treated controls; #p<0.05, ##p<0.01 vs. myr-PKC $\beta$ II+. Representative sections shown are both sides of a 2mm mid-wall section for each MI/R study group. +dP/dt <sub>max</sub> = contractility, -dP/dt <sub>min</sub> = relaxation, LVDP = left ventricular developed pressure, LVESP = left ventricular end systolic pressure, LVEDP = left ventricular end diastolic pressure. |                |                      |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|----------------------|
| Cardiac Function and<br>Infarct Size Indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Control (n= 9) | PKCβ Inhibitor (n=8) | PKCβ Activator (n=9) |
| Initial Flow (mL/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20±2           | 17±1                 | 18±2                 |
| Final Flow (mL/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10±1           | 10±1                 | 11±2                 |
| Initial +dP/dt <sub>max</sub><br>(mmHg/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2428±81        | 2316±48              | 2430±65              |
| Final +dP/dt <sub>max</sub><br>(mmHg/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 906±137        | 1585±165**##         | 989±161              |
| Initial -dP/dt <sub>min</sub><br>(mmHg/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1685±87       | -1637±46             | -1630±76             |
| Final -dP/dt <sub>min</sub><br>(mmHg/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -855±118       | -1048±121*#          | -814±103             |
| Initial LVDP (mmHg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96±3           | 89±2                 | 91±3                 |
| Final LVDP (mmHg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48±9           | 67±7*##              | 43±7                 |
| Initial LVESP (mmHg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105±4          | 98±2                 | 98±3                 |
| Final LVESP (mmHg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106±5          | 104±5                | 104±3                |
| Initial LVEDP (mmHg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9±1            | 8±1                  | 7±1                  |
| Final LVEDP (mmHg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58±5           | 37±7**##             | 58±4                 |
| Initial Heart Rate<br>(BPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 273±5          | 276±8                | 280±10               |
| Final Heart Rate<br>(BPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 258±8          | 247±5                | 246±8                |
| Infarct Size (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26±5           | 14±3*                | 25±3                 |
| Representative<br>Sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                      |                      |

#### **Infarct size**

Myr-PKCβII- treated hearts had significantly reduced infarct size compared to controls. We believe there was no significant difference between myr-PKCBII- and myr-PKCBII+ because NOX-2 mediated ROS generation during reperfusion may be maximally activated by tissue cytokines and further stimulation by myr-PKC $\beta$ II+ does not result in additional tissue injury. **Cardiac function** 

Myr-PKCβII- improved post-reperfused cardiac function (vs. both control and myr-PKCβII+). The significant improvement in final post-reperfusion LVDP in myr-PKCβII- treated hearts is attributed to the significant reduction in final LVEDP values (i.e. ~37mmHg) compared to control and myr-PKCβII+ hearts (i.e. ~58mmHg), and is reflected in the significant restoration of the final maximal rate of contractility  $(+dP/dt_{max})$  and relaxation  $(-dP/dt_{min})$ . These results suggest that: 1) Inhibition of myocardial tissue NOX-2 activity may be the principal pathway through which myr-PKCβII- mediates its cardio-protective effects in MI/R injury. 2) Treatment with myr-PKCβII- would be an effective strategy to limit MI/R injury in heart attack patients upon reperfusion via fibrinolytic therapy, angioplasty or coronary artery bypass surgery.

1. Korchak HM, Kilpatrick LE. Roles for beta II-protein kinase C and RACK1 in positive and negative signaling for superoxide anion generation in differentiated HL60 cells. J Biol Chem. 2001 Mar 23;276(12): p. 8910-7. Epub 2000 Dec 18. 2. Csukai M, Mochly-Rosen D. Pharmacologic modulation of protein kinase C isozymes: The role of racks and subcellular localization. Pharmacol Res. 1999. 39(4): p. 253-259. 3. Young L, et al., Gö 6983: A Fast Acting Protein Kinase C Inhibitor that Attenuates myocardial Ischemia/Reperfusion Injury. Cardiovasc Drug

Rev. 2005. 23(3): p. 255-272 4. Chen Q., et al. Nox2ds-Tat, A Peptide Inhibitor of NADPH Oxidase, Exerts Cardioprotective Effects by Attenuating Reactive Oxygen Species During Ischemia/Reperfusion Injury. American Journal of Biomedical Sciences 8(3): 208-227, 2016. 5. Cosentino F., et al. Final Common Molecular Pathways of Aging and Cardiovascular Disease: Role of the p66Shc Protein. Arterioscler Thromb Vasc Biol, 2008. 28: p. 622-28.

6. Lipscombe C., et al. Protein kinase C beta II (PKC βII) peptide inhibitor exerts cardioprotective effects in myocardial ischemia/reperfusion *injury*. Proceedings of the 24<sup>th</sup> Am. Peptide Symposium Ved Srivastava, Andrei Yudin, and Michal Lebl (Editors) American Peptide Society, 24: p.165-168, 2015.

7. Omiyi D., et al. Protein kinase C betaII peptide inhibitor exerts cardioprotective effects in rat cardiac ischemia/reperfusion injury. J Pharmacol Exp Ther, 2005. 314(2): p. 542-51.

8. Perkins KA., et al. Myristoylation of protein kinase C beta II/zeta peptide inhibitors, or caveolin-1 peptide facilitates rapid attenuation of phorbol 12-myristate 13-acetate (PMA) or N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) activated leukocyte superoxide release. Proceedings of the 22<sup>nd</sup> American Peptide Symposium, Michal Lebl (Editor), American Peptide Society, p. 288-289, 2011 9. Kheifets V, Mochly-Rosen D. Insight into intra- and inter-molecular interactions of PKC: design of specific modulators of kinase function. Pharmacol Res. 2007 Jun;55(6): p. 467-76. Epub 2007 May 3.





### Conclusions

## References