Christina Lipscombe, Chinyere Ebo, Daphne Metellus, Rose M. Martorana, Arjun Nair, Harsh Patel, Annam Humayun, Jennifer Dang, Megan Michaels, Matthew Finnegan, Faosat Muftau-Lediju, Lucy Checchio, Anahi McIntyre, Qian Chen, Robert Barsotti, and Lindon Young Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131

Introduction

Activation of protein kinase C beta II (PKCβII) is known to stimulate polymorphonuclear leukocyte (PMN) NADPH oxidase (NOX-2) to produce superoxide (SO). PKCβII is dependent on diacylglycerol (DAG) and calcium for its activation. Activated PKCBII then binds to its selective receptor for activated C kinase (RACK) which enhances PKCβII translocation to the cell membrane and subsequent phosphorylation of membrane bound proteins (1,2). Of these, PKCβII phosphorylation of NOX-2 generates SO release (Figs. 1 and 2). PKCβII can be activated by both phorbol 12-myristate 13-acetate (PMA) and N-formyl-Lmethionyl-L-leucyl-L-phenylalanine (fMLP). PMA, a lipid soluble broad-spectrum PKC agonist, is a DAG mimetic that directly activates PKCβII. fMLP is a chemotactic receptor agonist that directly activates PKCβII via the G-protein signaling cascade (see Fig. 1).

Figure 1. Schematic representation of PKCβII role in stimulating SO release in PMNs. PMN chemotactic G-protein receptors are activated by fMLP. Activated receptor stimulates phospholipase C beta (PLC β) to produce second messengers, inositol 1,4,5 trisphosphate $(Ins(1,4,5)P_2)$ and DAG respectively from phosphatidyl inositol 4,5 bisphosphate ($Ptdlns(4,5)P_2$). $Ins(1,4,5)P_2$ stimulates Ca^{2+} release from the endoplasmic reticulum (ER). Ca²⁺ and DAG directly activate PKCβII. PMA also directly activates PKC_βII. Activated PKCβII phosphorylates NADPH oxidase, which then releases SO (Adapted from 3).

Inhibition of tissue NOX-2 attenuates the inflammation mediated vascular injury seen in various diseases, including diabetes, myocardial infarction and organ transplantation (4). Previously, a myristoylated (myr-) selective PKCβII RACK peptide inhibitor (*N*-myr-SLNPEWNET; myr-PKCβII-) was found to dose dependently inhibit PMA and fMLP-induced PMN SO release and myocardial ischemia/reperfusion (MI/R) injury via the mechanism depicted in Figure 2 (3,5,6). Myristoylation of peptides is known to potentiate their entry into the cell via simple diffusion through the cell membrane to affect PKC activity (7). However, the role of myr-PKCβII RACK peptide activator (*N*-myr-SVEIWD; myr-PKCβII+) on regulation of PMN SO release has not been studied (8). The aim of the current study is to compare the effects of myr-PKC β II+/- on fMLP or PMA-induced PMN SO release.

interaction (bottom; Adapted from 2).

Protein Kinase C Beta II Peptide Modulation of Superoxide Release in Rat Polymorphonuclear Leukocytes

Hypothesis

We hypothesize that myr-PKCβII+ would increase fMLP or PMA -induced PMN SO release, whereas, myr-PKCβII- would decrease this response as compared to non-drug treated controls. We further predict that unconjugated, native PKCβII+/- peptide sequences would not differ from non-drug treated controls.

Research Design

Isolation of PMNs. Male Sprague-Dawley rats (350-400g, Charles River, Springfield MA) under anesthesia of 2.5% isoflurane were injected intraperitoneally (I.P.) with 16ml of 0.5% glycogen dissolved in PBS to cause accumulation of PMNs. After 16–18h, rats were re-anesthetized with isoflurane and the PMNs were harvested by peritoneal lavage as previously described (5,7).

Measurement of SO Release From Rat PMNs. The SO release from PMNs was measured spectrophotometrically by the reduction of ferricytochrome c and superoxide dismutase (SOD) 10μ g/ml was used as positive control, as previously described (3,5,7). Please refer to schematic diagram below:

Stimulation with PMA (100nM) or fMLP (1µM)

Statistical Analysis

All data in the text and figures are presented as means \pm S.E.M. The data were analyzed by ANOVA using the Fisher's PLSD test. Probability values of <0.05 are considered to be statistically significant.

controls and was significantly decreased by myr-PKC β II- (0.08 \pm 0.02) at 60 sec. By contrast, myr-PKC β II+ increased to (0.11 \pm 0.03) at 30 sec. was not different from non-drug treated controls. Native PKC β +/- peptides were not different from non-drug controls throughout the timecourse. SOD (n=8) reduced SO release >90% (not shown). Cell viability was >95% in all groups (not shown).

Center for Chronic Disorders of Aging

Young Therapeutics, LLC

Res. 2007 Jun;55(6): p. 467-76. Epub 2007 May 3.

Symposium, Michal Lebl (Editor), American Peptide Society, p. 288-289, 2011.

8. Kheifets V, Mochly-Rosen D. Insight into intra- and inter-molecular interactions of PKC: design of specific modulators of kinase function. Pharmacol