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ABSTRACT 

Background: Hepatocyte to biliary transdifferentiation has been documented in various models 

of bile duct injury. In this process, mature hepatocytes transform into mature biliary epithelial 

cells by acquiring biliary phenotypic markers.  Several signaling pathways including PI3 kinase, 

Notch, Hes1, Sox9, and Hippo are shown to be involved in the process. However, if Oct4 is 

involved in hepatocyte to biliary transdifferentiation is unknown. Methods: We investigated the 

role of Oct4 in hepatocyte to biliary transdifferentiation utilizing an in vitro organoid culture 

system as a model of transdifferentiation. Oct4 was inhibited using adenovirus containing Oct4 

shRNA. Hepatocyte specific HNF-4α and biliary specific HNF-1β & CK19 expression were 

assessed to gauge the extent of transdifferentiation. Results: Oct4 was induced during hepatocyte 

to biliary transdifferentiation. Oct4 inhibition significantly downregulated the appearance of 

biliary cells from hepatocytes. This was accompanied by a significant downregulation of 

signaling pathways including Notch, Sox9, and Hippo. Conclusion: Our findings suggest that 

Oct4 is crucial for hepatocyte to biliary transdifferentiation and maturation and that it acts 

upstream of Notch, Sox9, and Hippo signaling in this model. This finding identifies new 

signaling through Oct4 in plasticity between hepatocytes and biliary epithelial cells, which can 

be potentially utilized to identify new strategies in chronic biliary diseases.  
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INTRODUCTION 

Transdifferentiation, also known as lineage reprogramming, is a process where one mature 

somatic cell transforms into another mature somatic cell without undergoing an intermediate 

pluripotent state 
1
. Hepatocyte to biliary transdifferentiation (HBT) is activated when there is 

extensive loss of functional biliary cells, and the resident biliary cells are unable/insufficient to 

proliferate to compensate for the loss. Under such situations, hepatocytes can transdifferentiate to 

biliary cells and help regenerate the bile ducts 
2-4

. There is now growing evidence for this 

pathway, and current and future studies in this area are geared toward identifying the 

mechanisms and drivers that bring about this change. In recent years, many efforts have been 

aimed at generating pluripotent stem cells from somatic cells by inducing high expression of a 

combination of transcription (reprogramming) factors including Sox2, Octamer binding protein 4 

(Oct4), Nanog, Klf4, and cMyc
5-7

. While these reprogramming factors are expressed in stem 

cells, their expression in adult somatic cells with high potential for clonal expansion such as 

hepatocytes has been less explored. Our previous study has documented that adult rat liver 

expresses some of these reprogramming factors in hepatocytes and biliary cells during liver 

regeneration and hepatocyte proliferation 
8
. We further demonstrated that inhibition of these 

reprogramming factors affects the survival and proliferation of hepatocytes in culture. Oct4 has 

been previously shown to be involved with cellular reprogramming in mammalian 

embyogenesis
9,10

 .  High expression of Oct4 is also associated with dedifferentiation of somatic 

cells in prostrate
11

 and breast
12

 tumorigenesis. However, whether Oct4 is involved in HBT (a 

process involving somatic cell reprogramming) is not known and is the objective of the present 

study. We chose the in vitro organoid culture model of HBT for this purpose due to ease of 

mechanistic intervention. Primary hepatocytes, when cultured in roller bottles with chemically 
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defined Hepatocyte Growth Medium (HGM)
13

, transdifferentiate into biliary epithelial cells over 

a period of 21 days
14,15

. In this model, the top/surface layer of hepatocytes facing the culture 

medium starts transdifferentiating into biliary epithelial cells between days 6-10
14

. Previous 

studies have established that it is the hepatocytes that transdifferentiate into biliary epithelial 

cells both in vivo and in this model, by using the DPPIV chimeric rat liver in which DPPIV was 

only expressed in hepatocytes
4,14

. To investigate the role of Oct4 in HBT, we inhibited Oct4 in 

this system using adenovirus containing shRNA for Oct4. Various signaling pathways that have 

previously been shown to participate in transdifferentiation were also assessed in this model. 

Notch signaling is involved with liver regeneration
16,17

 and biliary proliferation
18

. Recent studies 

have also identified the role of Notch signaling
19

 and Hippo pathway
20

 in in vivo models of 

HBT. Hence we looked at the expression of Notch and Yes associated protein 1 (Yap1, Hippo 

pathway), in our model before and after Oct4 inhibition. Sekiya et al have reported that Hes 

family transcription factor 1 (Hes1) is essential for conversion of hepatocytes into biliary lineage 

cells at the onset of intrahepatic colangiocarcinoma
21

. Thus we also looked at Hes1 levels before 

and after Oct4 inhibition. Other studies have identified ‘liver progenitor cells’ that have 

differentiated into hepatocytes or biliary cells in different cell injury models. These progenitor 

cells are identified based on expression of markers such as Lgr5
22

, Afp
23

, Sox9
24,25

, and OV6
26

, 

among others. Whether hepatocytes that transdifferentiate to biliary cells express any of these 

progenitor markers is not known and was also investigated in the present study. Farnesoid X 

Receptor (Fxr) acts as a bile acid sensor 
27

, and upon binding with bile acids and activation, 

translocates to the nucleus and induces or inhibits the expression of a variety of genes involved 

in metabolism  and lipid homeostasis 
28

. Fxr-dependent bile acid signaling is also required for 

normal liver regeneration
29

.  Rat and human primary hepatocyte cultures are known to release 
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bile acids in media
30

. In the hepatocyte organoid culture (transdifferentiation model), the 

surface/top layer of hepatocytes (that gets maximum exposure to bile acids in the media) is the 

one that undergoes transdifferentiation to biliary epithelial cells. To assess if Fxr signaling in 

altered in hepatocytes during HBT, Fxr levels were also investigated in this model. 

MATERIALS AND METHODS 

Organoid cultures 

Male Fisher 344 rats (150–200 g) were purchased from Charles River Laboratories (Fredrick, 

MD). Animals were allowed food and water ad libitum. All animals received humane care 

according to the criteria outlined in the Guide for the Care and Use of Laboratory Animals 

prepared by the National Academy of Sciences and our institute. Hepatocytes were isolated by 

adaptation of the calcium two step collagenase perfusion technique as previously described
13,31

. 

Freshly isolated hepatocytes were added to roller bottles (850 cm
2
 surface) obtained from Falcon 

(Franklin Lakes, NJ). Each bottle contained 210,000,000 freshly isolated hepatocytes in 250 ml 

of Hepatocyte Growth Medium (HGM) medium1 supplemented with HGF (20 ng/ml) and EGF 

(10 ng/m). The bottles were rotated at a rate of 2.5 rotations per minute and kept in an incubator 

maintained at 37°C, saturated humidity, and 5% CO2. The composition of HGM is described 

previously
15

. Organoid culture tissue was harvested on days 3, 6, 10, 15, and 21 for 

immunohistochemistry as well as mRNA and protein extraction for further analysis. 

Total RNA extraction 

Total RNA was extracted from plated cells according to the manufacturer’s protocol using the 

RNA Bee reagent (Invitrogen, Carlsbad, USA). The isolated RNA was treated with Turbo DNA-

free (Ambion, Austin, TX) according to the manufacturer’s instructions. RNA was quantified by 
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spectrophotometry at 260 nm, and purity was assessed by optical density 260/280 ratio. The 

RNA was stored at −80°C.  

cDNA synthesis 

Five micrograms RNA per sample was reverse transcribed using random hexamer to cDNA 

by using SuperScriptIII reverse transcriptase (Invitrogen, CA) according to the 

manufacturer’s protocol. A no reverse transcriptase (RT) control was also included. 

Real time RTPCR 

Gene-specific primers used for rat were obtained from SuperArray Biosciences Corporation as 

follows: Gapdh (PPR06557B), Oct4 (PPR59727A), HNF-4α (PPR49773A), HNF-1β 

PPR45380A), CK19 (PPR44322A), Sox9 (PPR53329A), Afp (PPR44288A), Notch1 

(PPR47971A), Notch2 (PPR51608A), Hes1 (PPR46895C), Yap1 (PPR54845A). Expression 

levels were determined by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-

PCR) using SYBR green, and levels were normalized relative to expression of Gapdh in each 

sample. Fold change in gene expression was calculated by using the 2 (−ΔΔCt) method 
32

. 

Reverse transcribed samples were amplified in parallel on an ABI prism 7000 SDS instrument 

(Applied Biosystems, Foster city, CA). qRT-PCR for each sample was performed in triplicate in 

a 20 μl reaction with 50 ng of cDNA, 5 picomoles of each primer, and 1X SYBR green PCR mix 

(Qiagen # 330510). The standard conditions for real time PCR were as follows: 2 minutes at 

50°C, 10 minutes at 95°C followed by 40 cycles of 15 seconds denaturation at 95°C, and 

elongation at 60°C for 45 seconds. A dissociation curve analysis was performed at the end of 

every run. A no RT and a no template control were also included in every run. PCR products 

were resolved on 2% agarose gels and visualized with GelRed™ Nucleic Acid Gel Stain. 
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Oct4 inhibition studies  

 Adenovirus containing shRNA for Oct4 was made at the University of Pittsburgh virus core 

facility. Short hairpin RNA (shRNA) targeting rat Oct4 was cloned in the BamH1-kpn1 site of 

adenovirus shuttle vector under the control of the human H1 promoter with enhanced green 

fluorescent protein (eGFP) marker. Appropriate scrambled shRNA negative controls were also 

included. We confirmed authenticity of the clones by digesting with Sfi 1 enzyme and 

sequencing (M13 Forward). Oraganoid cultures were treated with either adenovirus containing 

scramble shRNA (AD-Scr, control) or Oct4 shRNA (AD-Oct4). Knock down efficiency of target 

genes was confirmed by transfecting primary mouse hepatocytes using standard protocols. MOI 

of 5 was determined to be optimal for infection of primary hepatocytes based on pilot studies. 

Tissue was collected on day 21. 

Rat Oct4 target sequence used was as follows: 

Forward oligo: 

5'  GATCC  GAACCGTGTGAGGTGGAAC TCAAGAG GTTCCACCTCACACGGTTC TT

TTTT GGTAC  3’ 

Reverse oligo: 

5’ C AAAAAA GAACCGTGTGAGGTGGAAC CTCTTGA GTTCCACCTCACACGGTTC 

G 3’ 

Oct4 ELISA 

Protein levels in nuclear extracts were assessed by harvesting cells from day 21 organoid cultures 

treated with AD-Scr and AD-Oct4. Nuclear extracts were prepared using NE-PER 

Nuclear and cytoplasmic extraction kit according to manufacturer’s protocol (Pierce 



Copyright © 2017 Cognizant Communication Corporation 

8 
GE-000565 Gene Expression: The Journal of Liver Research early e-pub; provisional acceptance December 4, 2017 

Biotechnology Cat. # 78833, Rockford, IL). For Oct4 ELISA, 50 μg of total protein was used 

according to manufacturer’s protocol (MyBiosource, MBS2501619, San Diego, CA).  

Immunohistochemistry on organoid culture tissues 

Paraffin-embedded tissue sections (4 μm thick) were used for H&E, as well as 

immunohistochemical staining. Antigen retrieval was achieved by heating the slides in the 

microwave at high power in 1×citrate buffer for 10 minutes. The tissue sections were blocked in 

blue blocker for 20 minutes followed by incubation with primary antibody overnight at 4°C. The 

primary antibody was then linked to biotinylated secondary antibody followed by routine avidin 

biotin complex method. Diaminobenzidine was used as the chromogen, which resulted in a 

brown reaction product. Primary antibodies used were as follows: Oct4 (ab27985, 1:100), HNF-

4α (R&D H1415, 1:500), HNF-1β (SC7411, 1:250). 

Statistical evaluation. The statistical analysis was performed using SPSS v22 (IBM corp., 

Chicago, IL, USA). The data were analyzed using repeated measures one way analysis of 

variance (RMANOVA) for time course studies and independent Student’s t-test for Oct4 

inhibition studies. The results are expressed as means ± SEM obtained from three independent 

experiments. p≤0.05 was considered as statistically significant and p≤0.001 as highly significant. 

This is denoted as *p≤0.05, **p≤0.01, and ***p≤0.001. 

RESULTS 

Organization of organoid cultures 

H&E stain: The organoid cultures were started with freshly isolated hepatocytes following liver 

perfusion. Tissue samples collected over a time course of 21 days exhibited the following 

development (Fig.1): At day 3, the hepatocytes formed small islands in a random fashion. Over 
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time, the hepatocytes aligned themselves on top of each other to form a multilayered tissue. By 

day 6, a more distinct pattern of cells appeared as some hepatocytes aligned themselves to form 

the top layer. On day 10 and 15, the culture looked more defined with the hepatocyte nuclei of 

the top layer appearing smaller and cuboidal (potentially undergoing HBT) as compared to the 

bigger and rounder hepatocyte nuclei in the intermediate layer (thick arrows). By day 21, the 

organoid culture was complete with visibly distinct nuclei of hepatocytes and biliary epithelial 

cells. It consisted of multilayered cells arranged in a three dimensional fashion with the top layer 

of biliary epithelial cells facing the media (Fig.1, thin arrows), an intermediate layer of 

hepatocytes (Fig.1, thick arrows) and connective tissue, and a basal layer of endothelial cells 

attached to the inner surface of the bottle. The endothelial cells in this system are most likely 

from a small number of contaminating cells during liver perfusion and isolation of primary 

hepatocytes 
15

. These observations are consistent with previous study establishing this model for 

HBT 
14,15

. 

Appearance of biliary cells: Biliary specific Hepatocyte Nuclear Factor1β (HNF-1β) was used to 

assess the appearance of biliary epithelial cells in this model. As expected, we did not see any 

biliary cells at the beginning of hepatocyte culture at day 3 (Fig.2). By day 6, some nuclei stained 

positive for this biliary marker. The HNF-1β positive cells were scattered throughout the 

organoid culture  and did not form a distinct layer. Note that many of these nuclei that stained 

positive for HNF-1β were rounder and bigger (resembling hepatocyte nuclei) rather than 

cuboidal and smaller (resembling biliary nuclei) indicating the acquisition of biliary markers by 

hepatocytes (Fig.2 D6, thin arrow) on their path to becoming biliary cells. These were the cells 

that would potentially transdifferentiate and mature to a biliary phenotype as the culture 

progressed. This changed by day 10, when a majority of these positive nuclei had aligned 
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themselves at the surface layer position and the positive nuclei were smaller and cuboidal as 

compared to the bigger and round hepatocyte nuclei in the intermediate later. By day 15, a 

distinct surface layer of HNF-1β positive nuclei was visible (thin arrows). By day 21, the biliary 

layer was very well defined (thin arrows). All the nuclei in the intermediate layer were negative 

for HNF-1β indicating their commitment to hepatocytic phenotype (Fig.2, thick arrows). 

Oct 4 is induced during transdifferentiation 

To determine if Oct4 is induced in hepatocytes during transdifferentiation, Oct4 expression was 

measured at mRNA and protein level over a time course in organoid cultures (Fig.3). 

Immunohistochemical staining indicated numerous Oct4 positive nuclei at day 6 (Fig.3A) 

scattered throughout the tissue. By day 10 and 15, the staining pattern became more distinct with 

nuclei in the surface layer (potential biliary cells, thin arrows) staining stronger than nuclei in the 

intermediate layer (that remain hepatocytes). Some nuclei remained negative for Oct4 indicating 

their commitment to hepatocytic phenotype. By day 21, the newly formed biliary cells that 

underwent transdifferentiation stained strongly for Oct4 (thin arrows), whereas the hepatocyte 

nuclei in the intermediate layer that did not transdifferentiate were negative (thick arrows). Oct4 

was also significantly induced as early as 6 days in cultures when compared to day 3 (Fig.3B-C), 

and remained elevated through day 21 in cultures. Oct4 expression also exhibited two waves of 

induction, first at day 6 and second at day 15. 

Biliary markers and precursors are induced during HBT  

Biliary specific nuclear factor HNF-1β was significantly induced starting at day 6 and remained 

elevated through day 21 in cultures (Fig.4A). This corroborates with generation of biliary 

phenotype in this model (Fig.2). Sox9, which is shown to be a biliary precursor/marker increased 

significantly on day 6 as compared to day 3 and remained elevated through day 21 in cultures 
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(Fig.4B). Biphenotypic marker Afp expression was significantly induced at day 10 in culture as 

compared to day 3 and remained induced through day 21 (Fig.4C). LGR5 and OV6 were 

assessed but were not detectable in our model. Bile acid receptor Fxr was induced significantly 

on day 10 and came back to day 3 levels by day 15 (Fig.4D). 

Oct4 inhibition studies  

Oct4 was inhibited using adenovirus containing shRNA for Oct4 (AD-Oct4) or scramble controls 

(AD-Scr) as per Fig.5A. Transfection of hepatocyte cultures led to 70% transfection as assessed 

by eGFP through day 14 in culture without significant toxicity (Fig.5B). Tissue samples from 

culture were collected at day 21 for all assessments following OCT4 inhibition. We observed the 

following: Oct4 expression: Oct4 mRNA (Fig.5C) and protein (ELISA) (Fig.5D) on day 21 was 

significantly lower in AD-Oct4 group as compared to AD-Scr group indicating that Oct4 was 

successfully inhibited using our experimental protocol. Biliary specific markers HNF-1β and 

CK19 were significantly downregulated in the AD-Oct4 group as compared to AD-Scr controls 

(Fig.5E, G).  At the same time, there were no significant differences in hepatocyte specific 

marker HNF-4α expression between the AD-Scr and AD-Oct4 group, suggesting that Oct4 

inhibition did not negatively affect the hepatocytes (Fig.5F). Decreased biliary marker 

expression was further corroborated by HNF-1β staining pattern. While AD-Scr group exhibited 

abundant HNF-1β positive biliary cells at the surface layer of cultures (Fig.6A-C, thin arrows), 

such cells were very scarce in the AD-Oct4 group (Fig. 6D-F). Moreover, the staining intensity 

was also lower in Oct4 inhibited group. We did observe, however, that the cells at the surface of 

the organoid culture in AD-Oct4 group, even though mostly negative for HNF1β, were smaller 

than hepatocytes with an intermediate morphology (Fig.6D-F, thick arrows). Most of these HNF-

1β negative cells turned out to be positive for hepatocyte specific HNF-4α (Fig. 7C-D), 
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suggesting that these cells were not able to complete their transition from hepatocyte to biliary 

phenotype. On the contrary, surface layer cells of AD-Scr cultures were negative for HNF-4α 

staining (Fig. 7 A-B, thick arrows) suggesting their successful transition to biliary lineage. 

Hepatocytes and biliary cells were counted in tissue sections stained for HNF-1β before and after 

Oct4 inhibition in oraganoid culture. The following criteria were used for identification of cells: 

Hepatocytes: HNF-1β negative (blue) big round nuclei. Biliary cells: HNF-1β positive (brown) 

small cuboidal shaped nuclei. One ribbon of organoid culture tissue was considered as one unit. 

Number of hepatocytes and biliary cells in each unit were counted. Over 100 such ribbons were 

assessed from AD-Scr and AD-Oct4 treatment groups. Following Oct4 inhibition, there was a 

significant decrease in biliary to hepatocyte cell ratio as compared to AD-Scr controls (Fig.7E). 

The total number of hepatocytes between the two groups was comparable (Fig.7F) indicating that 

Oct4 inhibition did not affect the viability of hepatocytes that might have led to decreased biliary 

cells.   

Previous studies have associated Notch signaling with generation of biliary phenotype. For this 

reason, we assessed the levels of Notch1 and Notch2 in our model. Both of these were 

significantly downregulated in AD-Oct4 group as compared to AD-Scr controls (Fig.8A-B, F). 

Sox9 (precursor for biliary phenotype) was significantly downregulated in Oct4 inhibited group 

as compared to control (Fig.8C, F). Yap1 signaling was also downregulated in Oct4 inhibited 

group (Fig.8D, F). Hes1, previously shown to be required for conversion of hepatocyte to biliary 

phenotype, was also downregulated by Oct4 inhibition (Fig.8E, F).  
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DISCUSSION 

Our results indicate that Oct4 plays an important role in HBT. In our study, Oct4 expression is 

induced starting at day 6 in this HBT model. This is also the time point when some cells start 

expressing biliary marker HNF-1β  in this model 
14

 (Fig.2, D6). This induction is seen in many 

hepatocytes in anticipation of transdifferentiation. However, only the surface cells that actually 

undergo HBT retain OCT4 staining till the end, whereas cells in intermediate layer that remain 

hepatocytes start losing Oct4 induction (Figure 3). Time course studies in organoid cultures show 

that induction of Oct4 is accompanied by induction of bi-phenotypic marker Afp at day 10 

(Fig.4C). This is suggestive of the phenotypic transformation in hepatocytes during HBT and the 

presence of an intermediate state. Pathways previously shown to be involved in HBT such as 

Yap1, Sox9, and Hes1 are upregulated in this study, indicating their involvement in HBT process 

and endorsing previous studies reporting their role in HBT. Following Oct4 inhibition, these 

genes were significantly downregulated, suggesting that they are downstream of Oct4 induction 

in hepatocytes. This resulted in decreased number of biliary cells (Fig. 6, 7E) at the end of the 

study as assessed by biliary specific markers HNF-1β and CK19 (Fig.5E, G). In our study, the 

first wave of Oct4 induction is seen around day 6, followed by a much stronger expression again 

at day 15 (Fig.3B-C). This could be attributed to previous studies showing that too little or too 

much Oct4 expression leads to differentiation of cells
33

. It is possible that the second wave of 

Oct4 induction at day 15 in our study could drive differentiation and maturation of new biliary 

cells derived from hepatocytes. The expression of bile acid receptor Fxr in this model is 

interesting. Fxr receptor expression was significantly induced at day 10 in organoid culture 

(Fig.4D). This could be in response to high extracellular bile acid levels in the media generated 

by hepatocytes. Since increase in Fxr provides negative feedback for bile synthesis, this finding 
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is not surprising in this study utilizing organoid culture model, which lacks biliary cells at the 

beginning. Moreover, on day 15 onwards, following HBT and appearance of biliary cells, Fxr 

levels came back to normal, which further corroborates the role of Fxr signaling in intracellular 

bile production especially in the presence/absence of biliary cells. Based on our data, it appears 

that Oct4 is a driver for plasticity between hepatocytes and biliary cells in the in vitro organoid 

culture model of HBT. From the morphology of the cells in Fig.6 D-F, it appears that early steps 

towards full biliary transdifferentiation are taken in this process, but the expression of Oct4 is 

required for other signaling pathways (Sox9, Notch, etc.) to be activated for the fully mature 

HNF-1β  and CK19 expressing biliary cells to emerge.  This is further confirmed by HNF-4α 

positive cells in the surface layer of Oct4 inhibited cultures (Fig.7C-D) as compared to controls 

(Fig.7A-B). These cells although smaller and cuboidal and similar in shape to controls are 

negative for HNF-1β staining. Moreover, CK19, a marker for mature biliary cells is also 

significantly downregulated in these cells (Fig.5G). Further studies are required to elucidate the 

extracellular signals that drive hepatocytes to undergo phenotypic transformation into biliary 

cells by upregulating Oct4. Whether increased extracellular bile levels can initiate this signaling 

in hepatocytes is an interesting avenue for future direction.  
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FIGURE LEGENDS 

 

Figure 1: Organization of cells in organoid culture. 

Representative photomicrographs of H&E stained tissue samples obtained over a time course of 

21 days. Biliary cells with smaller cuboidal nuclei appear at the surface layer (thin arrows), 

whereas hepatocytes with bigger round nuclei form the intermediate later (thick arrows). 

Original magnification x 200. 

 

Figure 2: Appearance of biliary cells form hepatocytes over a time course of 21 days in 

organoid culture. 

Representative photomicrographs of biliary specific marker HNF-1β in organoid culture tissue 

samples. –ve represents ‘no primary antibody’ control. Thin arrows indicate HNF-1β positive 

nuclei undergoing/undergone HBT. Thick arrows indicate HNF-1β negative nuclei that retain 

hepatocytic phenotype. Original magnification x 200, insert x 400. 

 

Figure 3: Oct4 expression during HBT over a time course of 21 days in organoid culture. 

a) Representative photomicrographs of Oct4 immunohistochemistry in organoid culture tissue 

samples. –ve represents ‘no primary antibody’ control. Thin arrows indicate Oct4 positive nuclei 

undergoing HBT. Thick arrows indicate Oct4 negative nuclei that retain hepatocytic phenotype. 

Original magnification x 200. b) Representative blots of PCR product and c) mRNA levels 

assessed by qRT-PCR and expressed as fold change relative to Gapdh. Significantly different 

from day 3 (D3) time point, **p≤0.01, ***p≤0.001.  
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Figure 4: Genes involved with HBT in organoid culture over a time course of 21 days. 

mRNA levels of a) HNF-1β, b) Sox9, c) Afp, and d) Fxr as assessed by qRT-PCR and expressed 

as fold change relative to Gapdh. Significantly different from day 3 (D3) time point, *p≤0.05, 

**p≤0.01, ***p≤0.001.  

 

Figure 5: Oct4 inhibition in organoid cultures 

A) Time line for Oct4 inhibition using adenovirus in organoid culture. B) eGFP in hepatocytes 

infected with adenovirus containing shRNA for Oct4, MOI 5, >70 % infection observed at day 

14 in culture. Original magnification x 100. C-G: analyzed from D21 samples treated with 

shRNA for Oct4 (AD-Oct4) or shRNA for scramble control (AD-Scr). C) mRNA levels of Oct4 

assessed by qRT-PCR and expressed as fold change relative to GAPDH. D) Oct4 protein 

assessed by ELISA. mRNA levels as assessed by qRT-PCR and expressed as fold change 

relative to GAPDH of E) biliary specific marker HNF-1β,  F) hepatocyte specific marker HNF-

4α, and G) biliary specific marker CK19. Significantly different from AD-Scr control, *p≤0.05, 

**p≤0.01.  

 

Figure 6: Appearance of biliary cells from hepatocytes following Oct4 inhibition. 

Representative photomicrographs of biliary specific marker HNF-1β following Oct4 inhibition in 

organoid culture tissue samples on day 21. (A-C): treated with AD-Scr. (D-F): treated with AD-

Oct4. Thin arrows indicate HNF-1β positive biliary cells. Thick arrows indicate lack of HNF-1β 

positive biliary cells. Original magnification x 200 (A, B, D, E) and x 400 (C & F). 

 

Figure 7: Effect of Oct4 inhibition on hepatocytes 
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Representative photomicrographs of hepatocyte specific HNF-4α following Oct4 inhibition in 

organoid culture tissue samples on day 21. (A-B): treated with AD-Scr. (C-D): treated with AD-

Oct4. Thick arrows indicate HNF-4α negative cells. Thin arrows indicate HNF-4α positive cells. 

Original magnification x 400. Cell counts of hepatocytes and biliary epithelial cells following 

Oct4 inhibition. E) Biliary to hepatocyte ratio and F) number of hepatocytes. **Significantly 

different from AD-Scr control, p≤0.01.  

 

Figure 8: Expression of genes associated with HBT following Oct4 inhibition. 

mRNA levels of a) Notch1, b) Notch2, c) Sox9, d) YAP1, and e) Hes1 as assessed by qRT-PCR 

and expressed as fold change relative to Gapdh on day 21. f) Representative blots of PCR 

product following Oct4 inhibition. Significantly different from AD-Scr control, *p≤0.05, 

**p≤0.01.  
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Figure 6 
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