Learned Hand Never Played Nintendo:
A Better Way to Think about the Non-Literal,
Non-Visual Software Copyright Cases

David W.T. Danielst

The rapid development of computer science has left courts
struggling to fit new technologies into the traditional framework
of intellectual property law. One of the most difficult legal issues
is defining the limits of copyright protection for computer soft-
ware. For about a decade, courts have held that the literal code
of a computer program enjoys copyright protection in the same
way that a literary work does.! But this conclusion does not
settle whether and how the non-literal structure of a computer
program should be protected. Under long-standing case law, one
can infringe on the copyright of a play or novel not only by
copying the literal words, but also by duplicating the work’s plot
or structure.? Courts have likewise concluded that copying the
non-literal structure of a computer program counts as a copyright
infringement.?

T A.B. 1989, Princeton University; M.A. (A.B.D.) 1991, The University of California
(Berkeley); J.D. Candidate 1994, The University of Chicago.

' Apple Computer, Inc. v Franklin Computer Corp., 714 F2d 1240, 1249 (3d Cir
1983). See also Williams Electronics, Inc. v Artic International, Inc., 685 F2d 870, 875 (3d
Cir 1982).

2 See Nichols v Universal Pictures Corp., 45 F2d 119, 121 (2d Cir 1930).

3 See, for example, Whelan Associates, Inc. v Jaslow Dental Laboratory, Inc., 797 F2d
1222, 1245-46 (8d Cir 1986); Computer Associates International, Inc. v Altai, Inc., 982 F2d
693, 701 (2d Cir 1992). These cases deal with the non-visual structure of the program. Re-
lated but distinct cases involve the visual interface of the computer software. In the visual
interface cases, courts have considered the possibility of copyrighting the overall “look and
feel” of a computer program and investigated the extent to which one can copy specific
visual elements that serve as an interface with the user. Both sets of cases often refer to
the same case law and read as though they were applying the same law to both situa-
tions. See, for example, Apple Computer, Inc. v Microsoft Corp., 799 F Supp 1006, 1041-42
(N D Cal 1992); Lotus Development Corp. v Paperback Software Intl, 740 F Supp 37, 62-
68 (D Mass 1990); Williams Electronics, 685 F2d at 873-74. This Comment assumes these
two categories pose distinct legal problems, each of which deserves independent treatment
notwithstanding the overlapping case law. In particular, visual interfaces present distinct
practical problems. For example, as more people use programs with a particular visual
interface, they derive increased utility from software with a similar “look and feel.” This is
the phenomenon of “network externalities.” See Peter S. Menell, An Analysis of the Scope
of Copyright Protection for Application Programs, 41 Stan L Rev 1045, 1066-71 (1989).

613

614 The University of Chicago Law Review [61:613

Non-literal computer copyright cases have beena headache
for the courts because the issues involved tend to push the
boundary of copyright law into areas generally associated with
patent law. Copyright law traditionally protects the literal word
and, by extension, literal computer code. Patent law protects
inventions and processes and, by extension, computer “ideas.”
Courts, however, have gradually expanded copyright protection to
-guard against those who would copy non-literal elements of a
computer program.’ This expansion has created a set of nominal
“copyright” cases which straddle the conceptual border between*
patent and copyright rules. By protecting non-literal expression
through copyright, courts in effect protect ideas—but this mud-
dles the border where copyright ends and patent begins.

Like most intellectual property conundrums, this problem
involves the need to preserve incentives for innovation without
stifling subsequent improvement. Classically, copyright law has
protected only the literal word. Under the theory that literary
innovation can proceed apace even if past authors have strong
property rights in their texts, the grant of copyright protection is
readily given and long lasting. The law is stingier in granting
monopolies through patent rights. Because technical innovation
often builds on the earlier work of others, the federal government
awards patent protection only if an invention clears certain
hurdles, and even then only for a relatively short period of time.

When courts extend copyright protection to non-literal ex-
pression, they risk granting copyright protection in instances that
only warrant whatever protection patent law may afford. A
computer program is both a series of written instructions that a
microprocessor executes and the embodiment of a process. Pro-
cesses generally fall under patent rules, and as such, computer
programs look to be unlikely candidates for even literal copyright
protection. A computer program’s non-literal features seem to be
even more unlikely candidates for copyright protection. Even so,
almost without exception, courts hold that both literal and non-
literal aspects of computer programs deserve copyright protec-
tion.

This Comment argues that courts facing computer copyright
issues have seen one difficulty where in fact there are two.
Courts have traditionally evaluated the problem of non-literal
copying, both for literary works and, recently, for computer
programs, in terms of a distinction between idea and expression;

4 See Altai, 982 F2d 693; Whelan, 797 F2d 1222,

1994] Software Copyright Cases 615

only expressions receive copyright protection. But this distinction
is not especially helpful in thinking about non-literal software
copyrights. Instead, we must carefully distinguish two issues that
courts often conflate. First, we need a framework for comparing
the structures of two similar programs so that courts can decide
what counts as “copying.” Second, we need rules that articulate a
clearer boundary between those non-literal elements of a comput-
er program that should be subject to patent rules and those
elements that merit the more lenient protection of copyright. This
Comment sets out an approach designed to meet both of these
needs. It argues that merger doctrine can help articulate a
clearer boundary between the proper spheres of copyright and
patent, while a selection test that is attentive to unfair competi-
tion through copying will help frame the comparison of similar
programs.

I. COMPUTER SOFTWARE: THE ELUSIVENESS OF “STRUCTURE”

This section provides a brief tour through the world of soft-
ware design and operation® in order to answer a central yet elu-
sive question: what exactly is the non-literal, non-visual strue-
ture of a computer program? Given the great diversity of comput-
er software, the courts have understandably adopted a case-by-
case approach to defining “structure,” assigning that label to a
broad range of software elements. But even though courts have
refrained from attempting a single, universally applicable defini-
tion of a program’s “structure,” one can make some generaliza-
tions about the nature of computer programming in order to
understand the particular issues to which the case law responds.

Computer programs are sequences of instructions designed to
manipulate a computer in a particular way. When a programmer
sets out to write a program, he generally begins by identifying as
clearly as possible the task he wants to automate. He then di-
vides that overarching task into a hierarchy of simpler subtasks,
and then those subtasks into smaller ones. The overall purpose is
broken down into discrete, manageable pieces called modules or
subroutines. Between these modules flow data, and again, the
programmer maps out this flow in advance.®

5 For a comprehensive account, see Anthony L. Clapes, et al, Silicon Epics and
Binary Bards: Determining the Proper Scope of Copyright Protection for Computer Pro-
grams, 34 UCLA L Rev 1493 (1987).

5 See Altai, 982 F2d at 697-98.

616 The University of Chicago Law Review [61:613

Isolating each of the individual steps in these modules can be
very laborious and time consuming.” Depending on his program-
ming style, one programmer might map out the relationship
between steps with flow charts. Another might sketch the func-
tion of his work by using pseudocode—an English-like notation
which is not itself a programming language, but that mimics the
instructional nature of such languages.? Regardless of the meth-
od used, the programmer usually has considerable discretion in
deciding how to articulate the smaller tasks that carry out a
larger function. The sound exercise of this discretion forms the
essence of programming skill.

Once the programmer sketches the program’s outline, he can
encode the result in the computer language of his choice. He has
a wide range to choose from. So-called high-level languages, such
as COBOL, FORTRAN, PASCAL, C, or C++, produce an end
result known as source code. The source code is a sequence of in-
structions that are intelligible to a human, but not to the comput-
er itself. In order for the computer to act on those instructions, a
program must “compile” the source code into a series of 0’s and
1’s (binary form) known as the object code.’ The resulting pro-
gram, in its source code form, can be a list of instructions thou-
sands or even millions of lines long. That list will have its own
internal coherence and its own set of landmarks. In operation, it
behaves and interacts with its user in its own peculiar way.

Courts have included both internal structure and outward
behavior as elements of the program’s “structure.”® The Third

" See, for example, Whelan, 797 F2d at 1231 (“Ms. Whelan spent a tremendous
amount of time studying Jaslow Labs, organizing the modules and subroutines for the
Dentalab program, and working out the data arrangements, and a comparatively small
amount of time actually coding the Dentalab program.”).

8 Jeff Duntemann, Parts Isn’t Parts, Dr. Dobb’s Journal 146-47 (Oct 1992) (“There’s
no standard definition for pseudocode s with flowcharts, pseudocode can be imple-
mented in any structured language. It’s a much shorter trip to real code than from
flowcharts, since all the control-flow structures are there in the pseudocode in English-like
form.”),

° High-level programming languages are the commercial standard, but alternatives
do exist. Some languages, notably BASIC, require no object code. The source code is fed
directly into the computer via an interpreter. Still other languages require no interpreter
and can be used by the computer as is (Assembly, for example). The original programming
method required little or no code at all. The keepers of the very first computer, the now-
ancient ENTAC, programmed that machine by connecting cables in different patterns.
Newer technology allows a programmer to develop software without actually writing all
the code himself. These code generators overcome some of the more onerous obstacles to
programming, increasing the speed of writing software. See Andrew Johnson-Laird,
Reverse Engineering of Software: Separating Legal Mythology from Actual Technology, 5
Software L J 331, 337 (1992).

-1 See Arthur Miller, Copyright Protection for Computer Programs, Databases, and

1994] Software Copyright Cases 617

Circuit used the phrase “structure, sequence and organization” as
a shorthand way of referring to this combination.” The breadth
of that particular locution has been criticized by some,” though
perhaps unfairly.”® In any case, what the user sees is conceptu-
ally distinct from the arrangement of the program’s guts. To keep
the distinction between visual and non-visual structure clear,
this Comment will use “non-literal, non-visual structure” to des-
ignate the organization of static code and “visual structure” to
refer to the program’s operation from the user’s perspective.

Non-literal structure comes in a variety of forms. Program
design presents an easily understandable conception of what can
count as non-literal, non-visual structure: the hierarchical divi-
sion of tasks into subtasks, the interaction of one module with
another, and the way that data passes from one part of the pro-
gram to the other. But “structure” has other senses as well. One
court found that the type, length, and names of data fields in a
program were protected as software structure.”® Another court
extended protection to the sequence of signals that operated as
an electronic key to unlock a particular piece of hardware.” In
short, it is hard to specify in advance what elements of a comput-
er program count as non-literal structure. The inquiry is inevita-
bly fact-driven, but law does guide the inquiry in one way: courts
are especially concerned with any copying of non-literal structure
that makes the plagiarist’s job easier.”

Computer Generated Works: Is Anything New Since CONTU?, 106 Harv L Rev 955, 977
(1993) (CONTU was a Congressional commission whose 1980 report influenced several
changes to the copyright statute to accommodate computer software.).

' Whelan, 797 F2d at 1224 n 1, 1248.

2 See Randall Davis, The Nature of Software and its Consequences for Establishing
and Evaluating Similarity, 5 Software L J 299, 316 (1992); Sega Enterprises, Ltd. v
Accolade, Ine., 977 F2d 1510, 1524-25 (9th Cir 1993).

3 See Miller, 106 Harv L Rev at 997-98 (suggesting that Whelan was true to the
common law at the time, but that courts have since properly refined their approach).

" This latter category includes the whole range of visual contrivances generated by
the software to allow the user to receive and enter information into his computer. Liti-
gants have fought over the copyright of program menus, Lotus Development Corp. v
Borland International, Inc., 799 F Supp 203 (D Mass 1992), Lotus Development Corp. v
Paperback Software International, 740 F Supp 37, 62-68 (D Mass 1990); over the use of
graphical icons and windows as a means of representing information, Apple Computer,
Inc. v Microsoft Corp., 799 F Supp 1006 (N D Cal 1992); and over the sequence of screens
and graphs, Autoskill, Inc. v National Educational Support Systems, 793 F Supp 1557,
1560 (D NM 1992).

* CMAZX/Cleveland, Inc. v UCR, Inc., 804 F Supp 337, 355 (M D Ga 1992).

18 Atari Games Corp. v Nintendo of America Inc., 975 F2d 832, 840 (Fed Cir 1992).

7 See, for example, Altai, 982 F2d at 701, quoting Nichols v Universal Pictures Corp.,
45 F2d 119, 121 (2d Cir 1930) (“It is of course essential to any protection of literary prop-

618 The University of Chicago Law Review .[61:613

This -concern helps identify where a court should focus its
attention, but raises in turn an attendant risk. Because software
is inherently functional, aggressive protection of non-literal struc-
ture may blur the distinction between what properly belongs to
the realm of patent and what belongs to copyright. The next
Section shows why this is an especially acute problem for com-
puter programs.

II. DOCTRINAL DEVELOPMENT

A. A Copyright Primer and the Muddle of Idea, Process, and
Expression

Copyright law, naturally enough, protects against copying
(though not against independent invention as would a patent). In
comparison with patent law, the right granted is generous, gener-
ally lasting for the life of the author plus fifty years.”® Patent
law, meanwhile, offers protection only for seventeen years from
the date of registration.”” Moreover, the law grants a copyright
liberally. While a patentable invention must be useful,
nonobvious, and novel,”’ copyrighted material need only be origi-
nal—a threshold so low that even a phone book can qualify.
Since copying is often difficult to prove, the law creates a rebut-
table presumption of copying if the plaintiff proves that the copi-
er had access to the material and the copy is substantially simi-
lar to the original.??

erty . . . that the right cannot be limited to the text, else a plagiarist would escape by
immaterial variations.”).

8 17 USC § 302(a) (1988).

¥ 85 USC § 154 (1988).

% 35 USC §§ 100-04 (1988).

* See Feist Publications v Rural Telephone Service Co., 499 US 340, 361 (1991).

% Paul Goldstein, 2 Copyright § 7.2.1 at 8 (Little, Brown, 1989). There is disagree-
ment over how to view the connection between substantial similarity and copyrightability.
Some courts first ask whether the alleged copy is substantially similar to the original and
then ask whether the similarity constitutes a copyright infringement. Whelan, 797 F2d at
1232. Others distinguish between “probative” similarity and substantial similarity.
“Probative” similarity is a factual inquiry into whether copying took place; “substantial”
similarity embodies the legal inquiry into whether the copying vieclated a right held by the
plaintiff. See Melville B. Nimmer and David Nimmer, Nimmer on Copyright § 13.01[B] at
13-8 to 13-15 (Matthew Bender, 1993) (“Nimmer”). These distinctions have led to confu-
sion in both case law and commentary. Some refer to substantial similarity as a legal
question, see Comment, A Square Peg in ¢ Round Hole: The Proper Substantial Similarity
Test for Nonliteral Aspects of Computer Programs, 68 Wash L Rev 351 (1993), while
others, such as the Whelan court, refer to substantial similarity as a factual inquiry. 797
F2d at 1245-46. This Comment follows the Whelan approach.

1994] Software Copyright Cases 619

The protection of copyright law extends beyond the literal
word to protect non-literal elements as well.” How far this pro-
tection should extend is a perennial problem for copyright law.
The longstanding distinction has been that copyright, at common
law and under modern statutes, only protects expression, not
ideas or processes.” Processes and—in the sense of inven-
tions—ideas are properly subjects of patent protection. For in-
stance, copyright law protects a book about accounting (expres-
sion), but that protection does not extend to the accounting meth-
od itself (process).” (The latter would be, if anything, subject to
patent rules.) Likewise, copyright protects the plot of Romeo and
Juliet (expression), but not the basic story line of boy meets girl
(idea).”® :

Distinguishing ideas from expression is often a somewhat
slippery enterprise. In the context of literary works, Learned
Hand put the problem most clearly and attempted to solve it
with his celebrated abstraction test:

[Ulpon any work . . . a great number of patterns of increas-
ing generality will fit equally well, as more and more of the
incident is left out. The last may perhaps be no more than
the most general statement of what the [work] is about, and
at times might consist only of its title; but there is a point in
this series of abstractions where they are no longer protect-
ed, since otherwise the [author] could prevent the use of his
“ideas,” to which, apart from their expression, his property is
never extended.”

"Idea/expression distinction” is an unfortunate way of putting the
real nature of the legal test. Whenever courts grant protection to
a story line or even to a translation, they are already protecting,
in an important sense, the idea of the work rather than the liter-
al text. In effect, Hand’s abstraction test is not a way of distin-
guishing an idea from an expression, but rather a way of distin-
guishing protectable ideas from unprotectable ideas based on a

® Nichols, 45 F2d 119 (plot of a play protected); Peter Pan Fabrics, Inc. v Martin
Weiner Corp., 274 F2d 487 (2d Cir 1960) (general design of a piece of fabric protected);
Roth Greeting Cards v United Card Co., 429 F2d 1106 (9th Cir 1970) (“total concept and
feel” of a greeting card protected).
See 17 USC § 102(b) (1988); Baker v Selden, 101 US 99, 102 (1879).
See Baker, 101 US at 104-05.
See 3 Nimmer § 13.03[A][1]{b] at 13-34 to 13-39 (cited in note 22).
Nichols, 45 F2d at 121.

¥R BN

620 The University of Chicago Law Review [61:613

criterion of generality.®® As such, Hand’s solution is more a
method of analysis than a hard and fast test. Fixing the right
level of abstraction must necessarily be ad hoc. Hand himself
despaired of finding a better method.”® Courts have naturally
turned to Hand’s abstraction test as the starting point for deter-
mining how far copyright protection extends to computer pro-
grams. Unfortunately, the nature of computer programs makes a
straightforward application of the idea/expression doctrine—a
doctrine developed for literary works—impossible.

The central insight of the computer revolution was the dis-
covery that mathematical functions and other recursive processes
generally can be expressed through a series of 0’s and 1’s. Unfor-
tunately, that insight baffles copyright law. To give computer
programs any protection at all, one must extend copyright rules
to cover processes in at least one sense; the literal code of a pro-
gram, after all, is an algorithm that embodies a process. If one
copyrights the program, one in effect copyrights a process.

However, not all processes embodied in code look like proper
candidates for copyright protection. For example, a programmer
may desire to write a bit of code to add together a hundred num-
bers. The code that he writes embodies an algorithm in two ways.
First, the program executes the mathematical algorithm of addi-
tion. In a second sense, the program is itself a sequence of in-
structions that allow the computer to carry out the mathematical
process. Certainly, copyright should not extend so far as to pro-
tect a mathematical algorithm; yet generously expanding non-
literal protection of computer code risks protecting the algorithm
that the programmer sets out to reduce to code. That outcome
may stifle subsequent innovation. If the protection is drawn too
narrowly, however, then one may fail to accord copyright protec-
tion to the creative and original expression that the code embod-
ies.

This difficulty resembles the problem that Learned Hand
grappled with in the context of literary works, but only by rough
analogy. Again courts must attempt to fix some level of generali-
ty at which copyright protection ends. However, for literature,

% See generally 3 Nimmer § 13.03[A][1][a] at 13-31 (cited in note 22).

“Obviously, no principle can be stated as to when an imitator has gone beyond the
‘idea,” and borrowed its ‘expression.” Peter Pan Fabrics, 274 F2d at 489. Others have pro-
posed rules, such as the Chaffee pattern test and the “total concept and feel” test, to
tackle essentially the same problem. 3 Nimmer § 13.03[A][1][b]-[A]{1][c] at 13-31 to 13-41.
But these rules generally suffer from the same deficiencies as the Hand analysis: neither
gives a judge a hard-edged rule to apply.

1994] Software Copyright Cases 621

fixing the right level of generality does two things simultaneous-
ly. It allows a court to pick out the relevant abstract fea-
tures—plot, characters, and so on—to prevent non-literal plagia-
rists, yet it also permits the court to pick a low enough level of
generality such that the copyright need not discourage subse-
quent authors from writing a somewhat similar work. Computer
software, as we shall see, is different in that it is harder to envi-
sion the tradeoff between protecting against copying and the
costs of restricting such copying as lying on a single continuum.
Instead of having a single rule, such as the abstraction test, to
balance the need for protection and the desire to encourage fur-
ther invention, this Comment argues that it would be better to
have a different rule which attends to each concern separately.
Courts have yet to discern this distinction clearly, and are
thereby missing an opportunity to provide a more coherent and
manageable system for software protection.

B. The Leading Computer Copyright Cases: Whelan and Altai

The Third Circuit staked out the strongest copyright protec-
tion position for structural similarity in Whelan Associates, Inc. v
Jaslow Dental Laboratory, Inc.®® Jaslow, a dental lab owner,
decided that his business would be more efficient if computer
automated. Finding that the programming requirements were
beyond his expertise, Jaslow hired Whelan to write the appropri-
ate software. Whelan duly wrote a program in a language known
as EDL (Event Driven Language), which worked only on rela-
tively expensive computers. Jaslow hoped to sell this software to
other dental laboratories, but in order to do so, it had to be us-
able on less expensive machines. Toward this end, Jaslow re-
wrote the program in BASIC, rendering it useful on a wide range
of much cheaper computers. After Jaslow terminated all of his
agreements with Whelan, Whelan sued for infringement of the
structure of the EDL program.

Because the two programs were written in different comput-
er languages, they shared no identical code. Moreover, Jaslow’s
copy was not a straightforward translation of EDL into BASIC.
Otherwise, however, the two programs had very similar struc-
tures. The court found that the two programs shared the follow-

® 797 F2d 1222 (34 Cir 1986).
3 14 at 1225-26.

622 - The University of Chicago Law Review [61:613

ing elements: five subroutines which functioned identically, the
file structure, and some screen outputs.®

The Third Circuit used general common law principles to
decide whether such similarity amounted to copyright infringe-
ment. The court began with standard copyright law, noting that
infringement is presumed if the plaintiff can show access and
substantial similarity.®® Access was not a question in Whelan,
nor, the court found, was substantial similarity. However, the
court still had to decide whether the offending program, by copy-
ing the structure of Whelan’s code, infringed on protectable ex-
pression. Conceding the difficulty of this task, the court fixed on
one standard:

[TThe purpose or function of a utilitarian work would be the
work’s idea, and everything that is not necessary to that
purpose or function would be part of the expression of the
idea Where there are various means of achieving the
desired purpose, then the particular means chosen is not

necessary to the purpose; hence, there is expression, not
: 34
idea.

The court preferred to state the purpose at a general level: the
program’s idea was “the efficient management of a dental labo-
ratory.”® Since that idea could be implemented in several ways,
the court found that all of the dental lab program’s structure
counted as part of the program’s expression.*

At the other end of the spectrum of copyright protection
stands the Second Circuit’s decision in Computer Associates Inter-
national v Altai.* Computer Associates marketed a scheduling
program called CA-Scheduler, which scheduled and controlled
various tasks performed on a particular family of IBM computers.
CA-Scheduler had one component designated “Adapter” which
allowed the program to run on either of three different operating
systems. After this program was developed, one of Computer
Associate’s employees, Claude Arney, went to work for Altai, a

2 Id at 1242-46.

3 Id at 1231-32.

% 1d at 1236 (emphasis omitted).

% 1d at 1236 n 28.

% Id. The program’s expression thus included “the manner in which the program
operates, controls and regulates the computer in receiving, assembling, calculating,
retaining, correlating, and producing useful information either on a screen, print-out or by
audio communication.” Id at 1239, quoting the district court’s opinion in the same case,
609 F Supp 1307, 1320 (E D Pa 1985).

¥ 982 F2d 693 (2d Cir 1992).

1994] Software Copyright Cases 623

competitor. Altai had its own computer scheduler called ZEKE,
but that program could only run on one IBM operating system.
Unbeknownst to either of his employers, Arney had secreted
away some of the source code for the Adapter component. Using
this code, Arney set out to build a new adapter component for
Altai—so that ZEKE, like CA-Scheduler, could run on several
operating system platforms. Altai’s new, more versatile schedul-
ing program was renamed OSCAR.*

Altai first learned about the copying when the summons for
the lawsuit arrived. Arney was summarily fired. Altai immediate-
ly began to rework the copied portions of OSCAR, using engi-
neers who knew nothing of the copied code. Computer Associates
persisted in its suit, claiming that even the new copy bore a sub-
stantial similarity to the structure of its Adapter program. But
while the trial court found some structural similarities between
the two programs, it held that these similarities resulted from
shared functions and operating systems and therefore refused to
find a copyright violation.*

The Second Circuit affirmed. While holding that non-literal
program structure could obtain copyright protection, the court
rejected the Whelan approach for defining the extent of that pro-
tection.” Instead, the court suggested a three-part procedure by
which to judge infringement: abstraction of the various layers of
program structure, filtration of unprotectable elements, and com-
parison of the protected elements with the infringing product.

The abstraction process takes its inspiration from Learned
Hand. The Altai court instructed trial judges to analyze the pro-
gram in question by dissecting its structure starting at the lowest
level of abstraction, then working up to higher and higher levels
of description. As the court put it, “a court should dissect the
allegedly copied program’s structure and isolate each level of
abstraction contained within it. This process begins with the code
and ends with an articulation of the program’s ultimate func-
tiOD..”42

The Altai court then introduced a second step: filtration.
Once the program has been separated into conceptual layers, the
judges should discard the unprotectable elements before judging

% Computer Associates, Inc. v Altai, Inc., 775 F Supp 544, 549-54 (E D NY 1991).
% Id at 561-62.

@ Altai, 982 F2d at 702, 705-06.

4 1d at 706.

2 1d at 707.

624 The University of Chicago Law Review [61:613

infringement. For instance, a judge should filter away any pieces
of the program that are already in the public domain,” elements
dictated by external factors,” and elements mandated by effi-
ciency.”

Only after abstraction and filtration does Alfai require a
comparison of the two works. By that point, the finder of fact
should have isolated the “golden nugget” of protectable expres-
sion—one which, if found in the copy, would amount to an in-
fringement.*® The court believed that its new method of analysis
narrowed the scope of copyright protection, and that such steps
were necessary to preserve the integrity of “certain fundamental
tenets of copyright doctrine.””

III. THE SQUARE PEG AND THE ROUND HOLE

Courts have felt ill at ease as they have sought to apply
traditional copyright doctrine to the area of computer software.
The Altai court, for example, labelled the exercise an effort to fit
“the proverbial square peg in a round hole.” In part, ‘this
should be no surprise: it would be odd indeed if copyright doc-
trines designed for literary works could be applied wholesale to
computer code. There is an important dissimilarity between liter-

¢ 1d at 710.

“ 1d at 709. Here, the court elaborated on the scénes & faire doctrine, which holds
that where “it is virtually impossible to write about a particular historical era or fictional
theme without employing certain ‘stock’ or standard literary devices,” those devices get no
protection from copyright. Hoehling v Universal City Studios, 618 F2d 972, 979 (2d Cir
1980). As the Altai court noted, it is often difficult to write a program to perform a par-
ticular function without utilizing standard techniques. 982 F2d at 709. For instance, in
Altai itself, much of the similarity in the programs arose because both were designed to
interact with the same operating systems. Under the Altai court’s reading, traditional
scénes & faire doctrine would exclude protection when any such situation arose. For
example, when hardware requirements or the software demand that the program be
written in a certain way, copyright would not protect the program’s structure. Similarly, if
widespread practices in the programming community point to a single way of approaching
the design, that design approach cannot be copyrighted. This limitation seems very close
to the constraint on protecting elements drawn from the public domain.

% Altai, 982 F2d at 707-09. In the Altai court’s view, efficiency concerns may limit
the choice of subroutines in a program. Since efficiency is supposedly the industry’s goal,
the court found that programmers may independently hit upon the same design method.
Thus, the court concluded that a similar, efficient structure may just as likely be an
independent creation as a copy. Id at 708. This rule also stems from the merger doctrine,
which prevents copyright from extending a monopoly over a given idea when the idea can
only be expressed in a limited number of ways. Id. See also Concrete Machinery Co., Inc. v
Classic Lawn Ornaments, Inc., 843 F2d 600, 606-07 (1st Cir 1988).

46 Altai, 982 F2d at 710.

4 1Id at 712.

4 1d.

1994] Software Copyright Cases 625

ature and computer software. For software, unlike for literature,
the creative expression is just a set of instructions aimed at a
utilitarian goal.” Thus, while both literature and computer soft-
ware require an inquiry into the proper border between idea and
expression, software cases involve the additional difficulty of
fixing the proper boundary between the mutually exclusive areas
of patentable functionality and copyrightable expression. The
importance of this last distinction becomes clearer after consider-
ing the reasons for protecting software structure.

A. Why Bother Protecting Non-Literal, Non-Visual Structure?
The Case for Copyright Protection

The case for protection against infringement through non-
literal similarity depends critically on the assumption that a
second programmer who copies the structure of the first can cut
the time and costs required to bring a similar product to market.
Rapid innovation is a fact of life in the software industry. When
a new product offering a unique feature or service is first intro-
duced, it will attract both customers and imitators. Once those
imitators bring their own products to market, the number of
units the original developer can sell, or the price that he can
charge, declines. In the absence of further innovation, sales of the
original product will taper off over time.*

The window of opportunity that copyright law creates by
protecting against imitations is crucial. If too short, then the
rewards may be too small to merit production of the software in
the first place. The need to preserve an adequate lead time sug-
gests the need for intellectual property rights to protect the origi-
nal programmer’s innovation. This is a public good problem: since
it is hard to exclude others from copying the innovation and mar-
keting it themselves, the original programmer cannot reap the
full value of his labor without copyright protection.

Articulating the need for protection, however, does not lead
us to the rule best suited to fulfilling that need. Suppose, for
example, that BlurtPerfect Corporation wants to add a new fea-
ture to its already existing software product, perhaps a spell-
checker to its renowned BlurtPerfect word processor. Assume a

¥ This reasoning would apply to some written work as well, such as technical manu-
als or other instructional materials. See Goldstein, 2 Copyright § 8.4.1.3 at 109-11 (cited
in note 22).

% See Anthony Lawrence Clapes, Software, Copyright and Competition 25-27 (Quo-
rum, 1989).

626 The University of Chicago Law Review [61:613

world where BlurtPerfect enjoys only trade secret and literal
copyright protection.” Further suppose that the spell-checking
feature is the first of its kind on any word processor and that this
development will give BlurtPerfect a competitive advantage, but
one lasting only six months. Thereafter, other manufacturers will
be able to develop spell-checkers independently for their word
processors. BlurtPerfect calculates that the increased profits
made during the six-month lead time will just exceed the costs of
the improvement, so it decides to add the innovation.

In such a case, if BlurtPerfect’s competitors, by whatever
means, copy elements of the program’s non-literal structure,
thereby reducing their own development time by a month, then it
would make no sense for BlurtPerfect to add the innovation. Two
sorts of rules can remedy this outcome. A patent-like rule would
grant BlurtPerfect exclusive use of the spell-checker feature
whether its rivals develop it independently or not. Alternatively,
one could protect BlurtPerfect against non-literal copying, leaving
rivals free to develop the feature themselves. The second of these
rules is superior. While both rules get a spell-checking feature
into the marketplace, the first forces other manufacturers either
to license the technology from BlurtPerfect or go without a spell-
checker altogether. In a highly competitive industry where prog-
ress is incremental, that amounts to a recipe for stifling innova-
tion.

Existing patent law reflects that conclusion. Although it is
now possible to patent certain kinds of software and software fea-
tures, protection is difficult to obtain and the application process
is quite slow. Only a narrow range of software can satisfy the re-
quirement that a program or feature be novel, non-obvious, and
useful.”® That may be as it should. If the software industry is

51 Trade secret law arises from state common and statutory law and protects “[alny
formula, pattern, device or compilation of information” used in business to give an advan-
tage over competitors. Restatement of Torts § 757 comment b (1939). Trade secret law
prevents anyone in a confidential relationship with the holder of the secret (an employee,
for example) from disclosing that information. See, for example, @-Co Industries, Inc. v
Hoffman, 625 F Supp 608 (S D NY 1985).

8 See 85 USC §§ 101-03. See also Clapes, Software at 208 (cited in note 50). Software
patents are gaining in popularity in part because of the unsettled state of copyright law.
Roughly 16,000 software-related patents have been issued to date, though their validity
has yet to be tested in the courts. Mitch Betts, Vendors seek patents as copyright suits
grow, Computerworld 109 (Oct 11, 1993). Patents have already been granted on a range of
important pieces of software, including a data compression program, John Soat, Patent
Litigation; Did Microsoft ‘Stac’ Deck?, InformationWeek 15 (Feb 1, 1993), and a multi-
media encyclopedia. Patent pyrotechnics; CD-ROM publisher claims rights to advanced
multimedia retrieval technology, Computerworld 28 (Nov 22, 1993).

1994] Software Copyright Cases 627

such that protecting the developer’s lead time is a sufficient in-
centive for innovation, then patent protection is unnecessary (and
only a burden on subsequent innovation).”® This seems to be the
actual state of affairs. Software technology had exploded even -
before patent protection was generally available.*

Although providing copyright protection for some non-literal
program elements appears the better regime, critics have raised
two objections. First, some argue that a copyright rule would be
superfluous. The initial justification for the rule depends on the
assumption that non-literal copying somehow aids the develop-
ment of rival programs. Critics of copyright protection argue that
while this assumption is correct in a limited number of cases, it
does not fit the vast majority. Commercial programs are general-
ly distributed in object code form only. While expert program-
mers may be able to read small portions of such code, its helpful-
ness in reconstructing the original source code is limited. Indeed,
it is telling that the two leading cases dealing with this copyright
question, Whelan and Altai, involved insiders who stole company
secrets. That observation has led some to conclude that trade
secret protection is enough to solve the problem at hand.”

This argument against copyright protection suffers from .
several weaknesses. Unlike copyright, trade secret law makes no
presumption of copying from access and similarity; the burden
remains on the plaintiff to show misappropriation. Software com-
panies may also have legitimate reasons for showing their source
code to outsiders. For example, programmers from different com-
panies often exchange ideas and code.”® If companies had to rely
solely on trade secret protection, this fruitful practice—which,
under trade secret law, often constitutes waiver of trade secret
protection®—might come to an end. Finally, trade secret protec-
tion cannot in any case protect against those instances in which a

% This does not render patent law entirely inappropriate for computer programs.
Where the development costs are heavy or the potential for reward uncertain, then a lead
time may not provide enough incentive to innovate. In such cases, patent law has a role to
play in creating adequate incentives.

% The Patent and Trademark Office generally began to grant patents for software
only after the Supreme Court’s decisions in Diamond v Diehr, 450 US 175 (1981), and
Diamond v Bradley, 450 US 381 (1981).

® See Note, Copyright Protection for Software Architecture: Just Say No!, 1988 Colum
Bus L Rev 823, 849-51.

¥ See Maury M. Tepper, 111, Copyright Law: Integrating Successive Filtering into the
Bifurcated Substantial Similarity Inquiry in Software Copyright Cases: A Standard for
Determining the Scope of Copyright Protection for Non-Literal Elements of Computer
Programs, 14 Camp L Rev 1, 55 (1991).

¥ See Restatement of Torts § 757 comment b (1939).

628 The University of Chicago Law Review [61:613

programmer with a great deal of patience disassembles the object
code of a program into a more intelligible source code.

Second, critics of copyright for non-literal structure object
that such protection will lead to patent-like protection. When we
allow the copyrighting of non-literal, non-visual structure, these
critics note, we protect not only how the program works, but also
what the program does. Yet this effectively circumvents the more
stringent requirements of patent law. That increases the risk of
providing too much protection, of awarding a monopoly where
there should be none, and of stifling innovation.

This is the more difficult objection, and the remainder of this
Comment responds to it. The above analysis of how to preserve
incentives points us in the right direction. First, one must ask
what sorts of things a court should look at when evaluating
structural similarity. These will be the elements of a program
which, if copied, allow an infringer to reproduce a program more
easily. This inquiry, however, is distinct from the second prob-
lem: deciding which elements of a program should be subject to
the more rigorous standards of patent law.

B. Whelan and Its Critics: A Defense against Overstatement

The analysis set forth in Whelan has drawn generous
amounts of criticism.® I shall not explore most of these as this
Comment is not so much concerned with defending Whelan as
with offering a way for courts to approach the software copyright
issue. Toward this end, however, it is still important to under-
stand the chief criticism of Whelan and why it is in part misdi-
rected.

Many have attacked Whelan’s distinction between idea and
expression.”® Under Whelan, a program’s general function or
purpose (for example, the efficient operation of a dental lab) is
unprotectable. Everything that is not necessary to this function
counts as protectable expression. Nimmer objects that the “cru-
cial flaw” of this reasoning is that more than one idea underlies
any given computer program.® This criticism is undoubtedly
correct. Although a program’s general function counts as
uncopyrightable idea, there may be other functional elements in

% See Altai, 982 F2d at 705-06; Menell, 41 Stan L Rev at 1082-83 (cited in note 3);
Note, Idea, Process, or Protected Expression?: Determining the Scope of Copyright Protec-
tion of the Structure of Computer Programs, 88 Mich L Rev 866, 881-82 (1990).

% Altai, 982 F2d at 705, citing Nimmer § 13.03[F] at 13-62 (cited in note 22).

% 3 Nimmer § 13.03[F](1] at 13-127.

1994] Software Copyright Cases 629

the structure which also count as uncopyrightable ideas.” But
fixing the proper distinction between what belongs to patent law
and what belongs to copyright is not the only question that
Whelan attempts to address. The same Whelan rule also tries to
establish a guide as to which structural elements a judge should
compare for copyright purposes. The Whelarn answer is that a
judge may compare structure at any level of abstraction, however
high.

This is not an absurd position. By way of illustration, sup-
pose that a court had to decide a case involving a program that
allowed salesmen to calculate the proper size of replacement
parts for a customer’s machinery.” The heart of the program
consists of several algorithms that engineers use to calculate the
proper size. A rival company is now suspected of copying the
original software into a similar product of its own. The court
makes the following findings: no similarity between the two ob-
ject codes and source codes; substantially similar data and con-
trol flow; substantially similar overall structure within the mod-
ules that perform the calculations; identical algorithms; and
substantially similar ordering of some modules within the overall
program when described at a high level of abstraction, but not so
with the ordering on the lower, more detailed level.

Initially, a court should determine which elements of the
program are even eligible for copyright protection. One might
ask, for instance, whether the algorithms should be protected by
copyright law at all. One might choose to characterize the algo-
rithms as processes and thus only extend protection if they meet
the criteria demanded by patent rules.

That inquiry is distinct from deciding which similarities one
should compare in the first place. For instance, does substantial
similarity of data flow count as an infringement? How similar
does the ordering of modules have to be before one finds infringe-
ment? These questions are more closely akin to one-half of the
problem faced by Learned Hand. At some high level of generality,
copying is not a concern—only at the lower levels does it become

¢ For instance, if market necessities force a programmer to design cotton marketing
software with certain functional similarities that all such programs must have, then the
“idea” of the program includes those functions and not just its overall purpose. Plains Cot-
ton Cooperative Association of Lubbock, Texas v Goodpasture Computer Service, Inc., 807
F2d 1256, 1262 n 4 (5th Cir 1987).

€ This situation is modeled on Gates Rubber Co. v Bando American, Inc., 798 F Supp
1499 (D Colo 1992), vacated in part and remanded in Gates Rubber Co. v Bando Chemi-
cal, 9 F3d 823 (10th Cir 1993).

630 The University of Chicago Law Review [61:613

so. For example, if Shakespeare held an enforceable copyright for
Romeo and Juliet, West Side Story would arguably infringe it.
But West Side Story would infringe not because it, too, is a boy-
meets-girl story; rather, it would infringe because it shares spe-
cific expressions of that general plot. Somewhere between a very
abstract and a very specific description of plot lies a level at
which a court should make a judgment as between the two sto-
ries. The Whelan test can best be understood as addressing this
question of finding the right level of generality. Nimmer and
Altai take it only as an attempt to sort out elements properly
protected by copyright from those properly governed by patent.

" This is not to suggest that the Whelan approach is without
its difficulties. Nimmer and Altai correctly conclude that Whelan
gives courts little reliable guidance on how to separate out the
copyrightable elements from the patentable (though they do not
word their objections in this way).® Also, Whelan’s insistence
that the comparison between computer programs can take place
at the highest level of abstraction appears rather rigid. While it

_is not necessarily absurd to compare programs at the highest
levels,* it should not be mandatory. For its part, Altai improves
on Whelan by better articulating the twin difficulties that lie
behind the computer copyright problem. But Alfai contains prob-
lems of its own.

C. Altai and Its Supporters: Caveats

The Altai decision made three innovations in the debate over
non-literal software copyright: its adoption of its own version of
the abstraction test;* its provision of a specific list of items to
be filtered out as uncopyrightable; and its insistence that the filtra-
tion occur prior to the comparison of the two programs.® The
decision is an important and positive contribution and was im-
mediately recognized as such,” but its innovations are not en-
tirely for the better.

8 Altai, 982 F2d at '705; 3 Nimmer § 13.03[F] at 13-62.34 (cited in note 22).

% Note that the Altai decision does not disagree with this point. Its abstraction doc-
trine calls for a comparison of the two programs at every level, including the most gen-
eral. 982 F2d at 707.

¢ REarlier courts had applied a similar analysis. See Lotus Development v Paperback
Software International, 740 F Supp 87, 61 (D Mass 1990).

® Altai, 982 F2d at 706-12.

¥ See David Bender, Computer Associates v. Altai: Rationality Prevails, The Comput-
er Lawyer 1 (Aug 1992).

1994] Software Copyright Cases 631

The shortcomings result in part from unforeseen consequen-
ces of Altai’s doctrine.®® They also result from the Altai court’s
failure to recognize the need to articulate a clear line between
patent and copyright, and to adequately protect certain structur-
al innovations that fall on the copyright side of the line.

Altai’s formulation of the abstraction doctrine can be under-
stood as an attempt to protect such structural innovations. Fol-
lowing Hand’s approach, the court suggested that “a court should
dissect the allegedly copied program’s structure and isolate each
level of abstraction contained within it.”® Then, after filtering
out unprotectable elements, a court must compare each of these lev-
els to the allegedly infringing program.” The Altai test, though
it looks theoretically tidy, becomes somewhat messy in practice.
After all, comparing each level of abstraction for a given program
is a cumbersome task—with perhaps millions of lines of code,
multiple authors, and theoretically limitless ways of describing
the program’s functionality.

In defining the relevant levels of comparison, the appellate
Altai decision followed the district court’s lead, noting: “As ap-
plied to computer software programs, this abstraction test would

% One controversial element of Al¢ai appears at first to be only an innocuous method-
ological innovation. The Altai court ruled that unprotectable elements of a computer pro-
gram must be filtered out before a comparison is made to judge substantial similarity.
The justification for this move seems straightforward: if one filters after comparing,
unprotected expression may be included in the judgment as to substantial similarity. 3
Nimmer §§ 13.03[F] at 13-142 to 13-143 (cited in note 22).

The observation seems a near tautology, but it has important consequences, especial-
ly in disputes involving visual interfaces. For example, Apple Computer, Inc. v Microsoft
Corp., 799 F Supp 1006 (N D Cal 1992), hinged on the copyrightability of the look and feel
of the Macintosh interface. Most of the elements of the Macintosh interface lacked the
requisite originality for copyright protection, but arguably the look and feel of the inter-
face was original and protectable. The district court, adopting Altai’s methodology, filtered
out the unprotectable elements, leaving nothing behind to copyright (since a bare gestalt
is rather difficult to identify in the absence of its components). Id at 1047.

This result seems contrary to the reason originally advanced for the filter/compare
sequence. The test is not supposed to be substantive; it is not supposed to decide what is
and is not copyrightable, but rather should only set the preconditions for comparison. By
filtering before one compares, one effectively rules out the possibility of finding a copy-
right in the bare look and feel of an interface made up of unoriginal components. That
amounts to a substantive conclusion about what should and should not be copyrighted. It
may very well turn out that one wants to deny copyright protection to look or feel, but
that should be an independent question from deciding whether to compare and then filter
or vice versa. The district court in Gates Rubber recognized this problem. 798 F Supp at
1517. Although the Tenth Circuit vacated this part of the Gates Rubber opinion, 9 F3d at
849, it is important to note that filtration prior to comparison runs the risk of losing the
forest for the trees. See also Miller, 106 Harv L Rev at 1006 (cited in note 10).

® Altai, 982 F2d at 707.

" Id.

632 The University of Chicago Law Review [61:613

progress in order of ‘increasing generality’ from object code, to
source code, to parameter lists, to services required, to general
outline.”” The difficulty with this analysis is not just that the
court mistakes what counts as different levels of generali-
ty—though it is partially that.” Nor is the difficulty just a lack
of technical sophistication—though it is again some of that.”

The real difficulty lies with the Hand test itself—or more
specifically, the Altai court’s version of it. Learned Hand designed
his abstraction test to solve a particular problem: to find one
right level of generality at which a court could compare a poten-
tially infringing literary work to the original. The Altai court
revises the Hand test by abstracting out each level of generality
in a given computer program. In so doing, it also removes the
justification for applying the abstraction doctrine in the first
place. Hand conceived of his abstraction test as a way to distin-
guish idea from expression by picking a level of generality to
make a comparison. Under his test, a court fixed that level prag-
matically—with an eye on the balance between incentives to pro-
duce and the costs of restricting access. As such, whatever level
of generality a court ultimately chose, the Hand test held out the
hope of an optimal balance of benefit and cost. Altai’s abstraction
test attempts no such balance.” By insisting that a court com-
pare each level of abstraction between programs, Altai aban-
doned the goal that copyright protection for a given level of ab-
straction will preserve incentives to create new software.”

A different problem infects the Altai court’s understanding of
those elements that should be filtered out to yield the golden
nugget of protected expression. Articulating specific categories
that fall beyond the scope of copyright amounts to a significant
advance over Whelan; such categories go a long way toward de-
lineating where copyright rules end and patent begins. Unfortu-

" 1d at 714.

" Just as an English translation of the Iliad is not more “general” than the Greek
original, source code is not more “general” than object code. It is simply a different lan-
guage.

" For a more systematic treatment of how to delineate levels of abstraction within a
computer program, see Note, Defining Computer Program Parts Under Learned Hand’s
Abstraction Test in Software Copyright Infringement Cases, 91 Mich L Rev 526, 533 (1992)
(proposing a set of “computer part definitions” to be used in conjunction with Hand’s
abstraction test).

™ To be fair, the Altai court did justify its overall test by balancing competing inter-
ests, 982 F2d at 711-12.

" The same criticism applies as well to the more sophisticated attempts to apply the
Altai abstraction test. See, for example, Note, 91 Mich L Rev 526; Gates Rubber, 9 F3d at
834-36.

1994] Software Copyright Cases 633

nately, one of the key Altai categories, elements dictated by effi-
ciency, is not as well-crafted as one might like; the category is
both too broad and too narrow.

The Altai court maintained that “efficiency concerns may so
narrow the practical range of choice as to make only one or two
forms of expression workable options.”™ As a result, the fact
that two programmers have reached the same result may lead to
an inference of independent creation rather than an inference of
copying.” Nimmer throws some light on what the court intend-
ed by this argument, using the example of two well-known data
sorting algorithms: a quicksort and a bubble sort.”” When sort-
ing, for example, a list of a thousand names into alphabetical
order, the bubble sort requires one million permutations, but the
quicksort only seven thousand. Thus the quicksort is significantly
more efficient. Nimmer points out that any two sorting programs
are likely to employ the quicksort algorithm and yet may well
have been created separately; the similarity therefore does not
give rise to an inference of copying.” This argument, however,
only goes so far. Suppose the slower bubble sort algorithm is a
well-known industry standard, but a new program enters the
market utilizing the better quicksort technique. If shortly there-
after another program enters the market with the quicksort al-
gorithm, then one might infer that the second program copied
from the first.

The better justification for Altai’s denial of copyright to effi-
cient elements of computer structure stems from the by-now-
familiar worry about innovation.** Extending copyright protec-
tion to the non-literal aspects of a program’s structure runs the
risk of extending patent-like protection to a subject matter for
which patent was not intended. This argument for the efficiency
test, however, has an important drawback. There is a difference
between an algorithm that the program executes and the algo-
rithm embodied directly in the code. Suppose a programmer
writes a program designed to alphabetize a list of names. Sup-
pose further that he selects the quicksort algorithm as the most

" Altai, 982 F2d at 708. One commentator has defined efficiency concerns in pro-
gramming as speed of execution, level of memory utilization, and level of compatibility
with data storage methods. Menell, 41 Stan L Rev at 1085 (cited in note 3).

7 Altai, 982 F2d at 708-09.

" 8 Nimmer § 13.03[F1{2] at 13-131 to 13-132 (cited in note 22).

™ Id at 13-132.

% See generally Menell, 41 Stan I, Rev 1045. See also Wkelan, 797 F2d at 1236-38;
Altai, 982 F2d at 701.

634 The University of Chicago Law Review [61:613

efficient available technique. If he is a good programmer, then
the coding of that algorithm will be efficient in a different
sense—the code will take up little space in memory and will be
able to execute the quicksort algorithm with a minimum number
of instructions to the computer. Although an ideally coded ver-
sion of the quicksort algorithm may theoretically exist, as a prac-
tical matter, competent programmers can encode that process in
a variety of ways. A clumsy programmer’s coding may be less effi-
cient than that of a talented programmer, even though both use
the efficient quicksort algorithm.

Copyright should not protect an efficient algorithm that the
program merely executes (quicksort, for example). Such a sorting
algorithm can appear in a variety of software, and allowing its
inventor to protect it through copyright may well quash subse-
quent innovation. However, there is no similar reason against
protecting an algorithm embodied directly in the code (since that
algorithm reflects the programmer’s skill). Generally, there are a
variety of ways of coding any given algorithm, process, or func-
tion. Extending copyright to efficient code runs little risk of lock-
ing up the fundamental techniques of programming on which
innovation and progress depends.

This realization is important because it illustrates a persis-
tent problem. Courts rightly worry about granting copyright pro-
tection when only one route or a small number of routes are
available to programmers. In such cases, the impulse is to pro-
vide protection, if at all, through patent law. The Whelan court
addressed the problem by denying copyright protection to any
structural element that was necessary to accomplish the general
function of the program. The Altai court tackled the problem by
declaring certain elements of a program to be unprotectable
based on efficiency concerns, external concerns, and the merger
and scénes @ faire doctrines. Neither approach is free from diffi-
culty, but the general goal of each is worth pursuing further.

IV. ROUNDING THE SQUARE PEG

For literary works, Learned Hand’s abstraction test allows a
judge to balance the incentives to produce against the costs of re-
stricted access by picking a level of generality along a single
continuum. Computer program copyright also involves a tradeoff
between incentives and access costs, but the argument of this
Comment thus far shows that it makes no sense to think about
that tradeoff in terms of a single continuum. Rather it is best to
break the problem into its two constitutive parts: guaranteeing

1994] Software Copyright Cases 635

that software companies have an incentive to create new soft-
ware and preserving the ability of newcomers to innovate on
existing technology. The Whelan rule attends to the former con-
cern but slights the latter, while the Altai rule has the reverse
weakness. A better approach treats each half of the tradeoff in
turn, and this section proposes a test to do just that.

A. Abstraction or Selection?

The challenge when comparing literary plots is to pick a
point of abstraction that is specific enough so that not all works
of a literary genre count as substantially similar, yet general
enough so that a work may be protected against “immaterial
variations.”® The analogous problem in the computer context is
to pick out those non-literal structural features that competitors
would want to pirate. Although the complexity of software in
turn makes the determination more complex, courts are not quite
as much at sea as we might think. Courts have found ready-
made handrails. Hierarchy of modules,”” file structure,® data
flow,* command flow,*® and parameter lists®*® all help guide a
decision. One commentator has even described fourteen charac-
teristics or levels of abstraction that courts can use to make com-
parisons.”

As with literature, a hard and fast rule is of little use in the
software context. Unfortunately, while judges are commonly
familiar with literature, they are not necessarily familiar with
the intricacies of computer technology. Judges have well-devel-
oped intuitions about what is and is not important in comparing
two works of literature. One cannot hope for a similar under-
standing of computer programming, due to its more technical
nature.

Inevitably, judges will have to rely on expert testimony and
past precedent to guide the selection of structural elements. Even
so, the underlying goals of copyright law should guide their dis-
cretion. Copyright protection must reward initial market entrants

8 Nichols v Universal Pictures Corp., 45 F2d 119, 121 (2d Cir 1939).

8 See, for example, Pearl Systems v Competition Electronics, 1988 US Dist LEXIS
15428, *7-12 (S D Fla 1988).

8 See, for example, Whelan, 797 F2d at 1242-43; CMAX/Cleveland v UCR, 804 F
Supp 337, 355 (M D Ga 1992).

8 See, for example, Whelan, 797 F2d at 1242-43; CMAX, 804 F Supp at 355.

& See, for example, Alfai, 982 F2d at 714-15.

& 1d.

¥ Davis, The Nature of Software, 5 Software L J at 317-25 (cited in note 12).

636 "~ The University of Chicago Law Review [61:613

without locking out later innovators. Given this goal, courts
should compare twoe programs with an eye toward whether their
similarities are ones that reduce the cost and time of producing
the infringing program so much as to create a disincentive for the
initial programmer to enter the market. If the similarities are
not of this sort, then the old program should not stand in the
way of the new—just as one would not object to a play whose plot
similarities are not extensive enough to interfere with the com-
mercial prospects of the book that it resembles.

This approach takes the place of the Altai court’s version of
the abstraction test, and in doing so frees courts from the notion
that their job is to pick out software features on the basis of an
inquiry into levels of generality. Learned Hand’s original justifi-
cation for talking about levels of generality was closely tied to
works of literature. For computer software it makes sense to drop
talk of an abstraction test altogether and instead frame the prob-
lem as one of selection.

B. The Application of Merger Doctrine to Clarify the
Patent/Copyright Border

Some courts have implicitly used Hand’s abstraction test or
the Whelan rule when trying to fix the boundary between patent
and copyright.®® The above analysis of Whelan and Altai sug-
gests that such an approach may be misguided. Therefore, rather
than depending on the admittedly ad hoc abstraction test, it is
better to try to formulate rules with sharper edges. Here the
Altai court was on the right course insofar as it attempted to
employ the merger and scénes & faire doctrines to create clear
rules governing what should and should not be copyrightable:
elements in the public domain, elements dictated by external
factors, and elements mandated by efficiency. What the Altai
court failed to do was to recognize that all these rules are just
particular instances of a broader merger doctrine—a doctrine
that extends beyond the categories that the Altai court would
filter out.

The merger doctrine prevents copyright from attaching to
any expression when the underlying idea can only be expressed
in a limited number of ways.* When this condition holds, the

See, for example, Altai, 982 F2d at 706-07; Atari Games Corp. v Nintendo of
America Inc., 975 F2d 832, 839 (Fed Cir 1992); Lotus Development Corp. v Paperback
Software International, 740 F Supp 37, 60 (D Mass 1990).

% See, for example, Concrete Machinery Co., Inc. v Classic Lawn Ornaments, Inc., 843

1994] Software Copyright Cases 637

idea and expression have in essence “merged”; thus, protecting
the expression would necessarily protect the idea. Unfortunately,
the doctrine is somewhat slippery. For example, one court has
held that copyright does not protect a jewel-encrusted, life-like
bee pin since there are only a limited number of ways to express
the idea of such a pin.* This particular outcome depends, of
course, on what the court picks as the relevant idea. If the court
had decided that the idea was that of a bejewelled pin, then
merger would not apply to block a copyright on this particular
bee, because there are many kinds of bejewelled pins. This shows
a general limitation on the usefulness of merger: since the idea of
an expression is often debatable, other considerations must be
used to determine what will be considered the relevant idea.

The trick is to identify those elements of a computer program
that we fear would stifle innovation if protected by copyright
rules.” These elements should count as the “ideas” of a pro-
gram. If those elements can be encoded in only a small number of
ways, then the merger doctrine would properly prevent a monop-
oly of that “idea.”

There is some agreement as to what should count as an idea
for these purposes. The kind of program is one example. If a
program that calculates cotton futures, for instance, can have
only one structural configuration, then that structure cannot be
copyrighted since it would amount to patent-like protection.”
Likewise, certain program features should also be treated as
“ideas.” Consider a standard word processor. Features such as
spell checking, grammar checking, outlining, footnoting, and
underlining are standard on any mainstream product. Again,
copyright protection for any of these would tend to stifle competi-
tion as surely as if a patent were granted. Algorithms which have
a general use in a number of different sorts of programs should
also be counted as ideas. For example, bubble sorts and
quicksorts are useful in data base programs, word processors,
spreadsheets, and any other software that requires the sorting of
data. If these could only be expressed in a small number of ways,
then they too look like favorable candidates for application of the
merger doctrine.

F2d 600, 606-07 (1st Cir 1988).

% Herbert Rosenthal Jewelry Corp. v Kalpakian, 446 F2d 738, 742 (9th Cir 1971).

' For a discussion of the same problem in the context of computer compatibility, see
Note, Merger and the Machines: An Analysis of the Pro-Compatibility Trend in Computer
Software Copyright Cases, 45 Stan L Rev 1061, 1072-97 (1993).

See Plains Cotton, 807 F2d at 1262.

638 The University of Chicago Law Review

Yet the merger doctrine would not exclude all program ele-
ments from copyright protection. Elements that a programmer
could design in different ways would still be protected. Hence,
many of the structural features of a computer program seen in
Whelan and Altai—such as data flow, data structure, macros, and
parameter lists—should all be deemed copyrightable. As a gener-
al rule, courts should seek to distinguish program elements
which display the exercise of the programmer’s art from those
program elements which are the objectives of his art. The merger
doctrine fleshes out that rough distinction.

While the distinction must remain somewhat ad hoc, its
application is now at least guided by the understanding that
copyright should not stand in the way of progress in software
technology. This rule does not eliminate discretion in making
that choice, but it does frame the issue more clearly than previ-
ous tests.

CONCLUSION

Whelan and Altai are perhaps best viewed not as opposing
cases, but as points on a continuum in the development of com-
puter copyright. Both agree that the non-literal structure of a
computer program deserves protection. Whelan articulated a rule
whereby copyright would protect everything that is not necessary
to the purpose or function of the program. Altai did not altogeth-
er disagree with that rule, but attempted to add hard edges to a
rule by which courts could sort out protectable from
unprotectable elements. The rules proposed above, the applica-
tion of the merger doctrine and the selection test, do not dramati-
cally differ from the conclusion reached by the Alfai court. But
they go further to resolve the confusion that Alfai only partially
addressed. By making these distinctions more reliable, courts can
go a long way to shape proper incentives for future innovation.

