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Abstract 

The current study was designed to examine the appropriateness and effectiveness of a 

neuropsychologically based performance consistency model in comparison to traditional 

psychometric conceptualizations of reliability when examining test-retest performance on 

the Wechsler Adult Intelligence Scale – Third Edition (WAIS–III).  Regardless of 

whether the sample was grouped by total sample or in reference to subject performance to 

the mean, an overall progression effect rather than regression to the mean was noted.  

When grouping subjects in terms of their relation to the mean, a poor goodness of fit 

obtained via chi-square analysis was found between traditional psychometric reliability 

estimates and actual results obtained via the performance consistency model.  These 

findings are discussed in terms of the clinical utility of viewing changes in test-retest 

performance as potentially meaningful indicators of changes in cognitive functioning.  

This calls into question the appropriateness of previous research, which has typically 

eschewed the practice of subtest level interpretation of cognitive processing. 
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Chapter 1 

 
Introduction 

The duties of school psychologists are many and varied.  They consult and 

problem solve with teachers, conduct group sessions, provide individual counseling, 

assist with systems level change, and design and monitor interventions.  Perhaps the most 

traditional duty of a school psychologist is that of assessment.  Although school 

psychologists utilize many assessment modalities, cognitive assessment is undoubtedly at 

the core of professional practice.  This practice has been shown to be a theoretically and 

statistically sound method for assessing student strengths and weaknesses (Sattler, 2001).   

However, traditional cognitive assessment also has its detractors.  Among the 

arguments made are that intelligence tests fail to address aspects of multiple 

intelligences/learning styles, are culturally and/or racially biased, and take valuable time 

away from developing and monitoring interventions (Hale & Fiorello, 2001).  In recent 

years, response to intervention (RTI) has arisen as a prominent issue in education.  This is 

a tiered model that indicates children should receive successively more intense levels of 

intervention when evidencing academic or, to a lesser extent, behavioral difficulties.  

Although this model would reduce the number of children classified as learning disabled, 

it provides no insight into individual cognitive variations, assuming a lack of assessment 

of cognitive strengths and weaknesses.  Providing interventions to children without this 

knowledge of their strengths and weaknesses is poor professional practice (Hale & 

Fiorello, 2004).  

In the face of new approaches to school psychology practice such as RTI, the field 

of traditional cognitive testing needs to make assessment more meaningful in terms of 



2 
 

linking assessment directly to intervention.  Just as there are multiple opinions on the 

utility of cognitive testing, there are also various opinions on how to interpret cognitive 

test results.  Very broadly speaking, there are those who believe that only global or 

overall/full scale scores should be interpreted and those who believe that meaningful 

interpretation of cognitive testing results lies at the composite and/or subtest level of 

analysis.  Proponents of global/full scale analysis believe that only the overall score on a 

cognitive test should be interpreted.  In composite/subtest level analysis, practitioners 

look for meaning in the scatter or profile of individual subtest scaled scores and standard 

scores on cognitive composites that comprise a cognitive battery.  Furthermore, these 

practitioners believe that variation in subtest performance could indicate neurologic, 

learning, and emotional difficulties (Watkins, 2003).   

Statement of the problem. 

 There are perceived inadequacies of the traditional psychometric model in 

offering realistic, clinically meaningful information about variation in test performance 

based on repeated administration of subtest tasks.   

Purpose of the study. 

 The purpose of this study was to use Wechsler Adult Intelligence Scale – Third 

Edition (WAIS–III) standardization test-retest data to determine the extent to which a 

neuropsychologically based performance model fit the WAIS–III subtest test-retest data 

and how the decision consistency model of reliability data analyses compares with 

traditional psychometric correlational analyses.  A variation of a decision consistency 

model that incorporates neuropsychologically based knowledge was used to examine 

expected Wechsler Adult Intelligence Scale – Third Edition (WAIS–III) subtest score 
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patterns of change in performance from time 1 to time 2 and to offer a means to test the 

utility of this neuropsychologically based performance model for clinical practice.   

Research questions. 

Question 1: To what extent does a neuropsychologically based performance 

consistency model fit WAIS–III subtest test-retest data, and how do the data generated by 

a performance consistency model compare to the data generated by the traditional 

psychometric model ? Extrapolating from the findings in the neuropsychological 

literature, the following patterns of performance variation from time 1 testing to time 2 

testing were hypothesized: 

1. For a majority of cases, subtests that primarily involve retrieval from long-term 

storage or association with stored knowledge (Vocabulary, Information, Word 

Reasoning, and Similarities subtests) would yield score differences that reflect no 

change in performance or minor fluctuations in performance of -1 or +1 resulting 

from minor variations in cognitive efficiency; cases with changes would be biased 

toward a progression effect, that is, increases would outnumber decreases, even in 

situations in which regression to the mean would predict performance decreases or no 

change. 

2. For a majority of cases, subtests that primarily involve the initial registration of and 

manipulation of verbal information in the mind (Digit Span Forward and Backward, 

Digit Span, Letter–Number Sequencing, and Arithmetic subtests) would vary in 

degree and frequency, depending on the specific nature of the subtest task.  Subtests 

that involve the holding and manipulation of nonmeaningful, decontextual 

information (Digit Span Forward, Digit Span Backward, Digit Span) would distribute 
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relatively equally around a central tendency of no change, with relatively fewer but 

equal numbers of cases having positive and negative change both above and below 

the mean.  Tasks that primarily involve the initial registration and manipulation of 

verbal manipulation that is more contextual and meaningful (Arithmetic and to a 

lesser degree Letter-Number Sequencing) would have a pattern of performance closer 

to that of tasks involving retrieval from long-term storage.   

3. For a majority of cases, subtests that primarily involve novel problem solving (Matrix 

Reasoning, Picture Concepts, Block Design, and Picture Concepts subtest) or 

processing speed applied to simple but relatively novel tasks (Coding, Symbol 

Search, and Cancellation subtests) would yield score differences that reflect positive 

changes in performance, reflecting a greater progression effect than a regression 

effect.  Score decreases would be similar in magnitude both in cases in which time 1 

scores were above the mean and in cases in which time 1 scores were below the 

mean, due to greater effects of cognitive inefficiencies, thereby negating the effect of 

regression to the mean thought to be caused by random distribution of measurement 

error both above and below the mean.   

4. When considered in total, the test-retest results would support an alternate model of 

performance change consistent with the neuropsychological literature on practice 

effects and cognitive efficiency and inefficiency, rather than a model of no change or 

fluctuations in the form of regression to the mean based on the traditional 

psychometric conceptualization of reliability.   

Question 2: Does a neuropsychologically oriented performance consistency 

method offer any potential advantages over traditional psychometric methods in the type 
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of information it provides test consumers regarding WAIS–III subtest performance 

patterns? 
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Chapter 2 

Literature Review 

 This literature review incorporates a wide range of topics necessary for 

understanding the conceptual bases for this study.  The review includes a discussion of 

clinical approaches to intelligence test score interpretation, comparing and contrasting 

global, composite score interpretation approaches with factor score and subtest score 

approaches; theoretical perspectives on the effects of aging on cognition; the specific 

cognitive capacities measured by the WAIS–III; the neuropsychology of practice-related 

changes in intelligence test performance; the traditional psychometric conceptualization 

of the construct of test reliability; the limitations of the traditional correlational 

procedures for determining test reliability; and alternative models for determining test 

reliability.   

Global vs. Factor or Subtest Level Interpretation of Intelligence Test 

Performance 

Full Scale IQ interpretation: Internal consistency and academic achievement.  

As noted in Chapter 1, one school of thought regarding interpretation of intelligence test 

scores is that only global or full scale IQ (FSIQ) should be interpreted when examining 

the results of cognitive testing.  According to Watkins (2003), although subtest level 

analysis is a practice commonly employed by many psychologists, this interpretation is 

not appropriate for professional practice and lacks both clinical and statistical 

significance.  Watkins explains further that while there is a multitude of evidence 



7 
 

supporting interpretation of cognitive assessment results at the global level, psychologists 

have begun to apply interpretation to the subtest level despite the lack of evidence.   

A review of the literature does indeed find support for the exclusive use of full 

scale IQ in interpretation.  One argument for the appropriateness of full scale IQ 

interpretation is from a psychometric perspective.  Watkins (2003) indicates that it is 

often incorrectly assumed that subtests are as psychometrically precise as full scale 

scores.  Global IQ composites have stronger internal consistency reliability coefficients in 

comparison to subtest coefficients.  For example, subtest reliability coefficients for the 

Wechsler Intelligence Scale for Children – Fourth Edition (WISC–IV; Wechsler, 2003) 

subtest reliability coefficients range from .79 to .90, with a median of .86 and index 

coefficients ranging from .88 for the Processing Speed Index to .97 for the full scale 

composite (Wechsler, 2003).   

Another argument for the exclusive interpretive use of global intelligence 

quotients relates to academic achievement.  Watkins and Glutting (2000) used regression 

analysis to examine the extent to which the Wechsler Intelligence Scale for Children – 

Third Edition (WISC–III, Wechsler, 1991) subtest variability predicted academic 

achievement in the areas of reading and math for both exceptional and nonexceptional 

students.  The results of their study indicated that, for both learning disabled and non- 

learning-disabled students, subtest variability provided no meaningful prediction of 

reading and math scores beyond that predicted by the full scale scores.  It was specifically 

noted that overall ability level accounted for more than half of the variance in 

performance on academic measures and that subtest profiles accounted for only an 

additional 5% to 8%.  This led the researchers to conclude that to interpret full scale IQ is 
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to act in congruence with scientific evidence, whereas to interpret subtest level 

performance is to act against scientific evidence.  Further support for the power of FSIQ 

in predicting academic achievement is provided in a study conducted by Kahana, 

Youngstrom, and Glutting (2002).  These researchers used student performance on the 

Differential Ability Scales (DAS) to show that although approximately 80% of students 

had a statistically significant intracognitive discrepancy, the overall ability score proved 

to be the most statistically useful predictor of academic achievement.  They additionally 

found that intracognitive scatter added no further predictive power in determining 

academic achievement.  

McGrew and Knopik (1996) examined subtest scatter in predicting academic 

achievement in the areas of reading, writing, and math.  They specifically noted that 

although intracognitive strengths and weaknesses were common in the sample, these 

strengths and weaknesses were not found to be predictive of low academic achievement.   

One study of note extended the findings of those mentioned above to a sample of 

students diagnosed with attention deficit/hyperactivity disorder (ADHD).  Mayes and 

Calhoun (2007) examined the relationship between both WISC–III and WISC–IV 

performance and academic achievement.  Congruent with previous research, the results 

indicated that, for both the WISC–III and WISC–IV, the score that accounted most for 

the variance in the prediction of academic achievement was the full scale IQ.   

  One argument that proponents of subtest level interpretation often use is that full 

scale IQ decreases in its usefulness and ability to predict achievement as the variability in 

factor and/or subtest scores increases (Flanagan & Kaufman, 2004).  However, 

proponents of full scale IQ interpretation argue the opposite.  Watkins, Glutting, and Lei 
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(2007) found that full scale IQ on both the WISC–III and WISC–IV was a statistically 

significant predictor of academic achievement in the areas of reading and math, whereas 

variability in factor scores was not found to make a statistically significant contribution to 

predicting achievement scores.  In addition, this was true for both learning disabled and 

non-learning-disabled samples.  Similarly, Daniel (2007) used simulation methodology to 

show that high levels of factor score variability are not uncommon among groups of 

individuals and that full scale IQ is an equally valid approximation of general cognitive 

ability for groups with high factor score variability as for groups with relatively uniform 

performance across factors.   

Proponents of factor or subtest level interpretation of cognitive assessment results 

state  that fluctuations in performance on factors or subtests is indicative of exceptionality 

(Watkins, 2003).  However, a review of the literature in this area does not support this.  

Watkins (1999) utilized the WISC–III standardization sample to examine whether subtest 

variability was useful in distinguishing children who were classified as LD from the rest 

of the normative sample.  The results of the study indicated that variability in subtest 

performance was not useful for diagnostic purposes in distinguishing students classified 

as learning disabled (LD) from those who were not LD.  A similar result was found by 

Watkins and Worrell (2000), who used the WISC–III standardization sample to examine 

whether subtest variability, defined by the number of subtests that deviate by ±3 points 

from the mean IQ composite scores, had diagnostic utility in differentiating learning 

disabled from non-learning disabled students.  They concluded that the observed presence 

of subtest variability lacked diagnostic utility for distinguishing students with learning 

disabilities.   
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 A review of the literature also identified studies suggesting that profile 

interpretation is not useful in predicting emotional disturbance.  For example, it was 

hypothesized by many that poor performance on certain combinations of subtests or large 

differences in performances between certain subtests is indicative of a variety of 

emotional difficulties (Watkins, 2003).  One specific study, conducted by Beebe, Pfiffner, 

and McBurnett (2000), examined the contention that poor performance on the 

Comprehension and Picture Arrangement subtests of the WISC–III are related to deficits 

in social functioning.  Results suggested that Picture Arrangement subtest performance 

was not indicative of difficulty in social functioning, and that performance on the 

comprehension subtest had only limited and inconsistent clinical significance in terms of 

its relationship to social functioning.   

 It has been suggested that poor performance on the Coding subtest of the WISC–

III, caused by a decrease in the number of students correctly completing items as the 

subtest nears its time limit, may indicate difficulties in areas of social/emotional 

functioning, such as attention, distractibility, and motivation (Watkins, 2003).  Although 

this may seem to be a plausible explanation for declining performance, Dumont, Farr, 

Willis, and Whelley (1998) found that interpretation of Coding subtest performance in 

isolation is inappropriate.  Specifically, they measured the extent to which coding 

performance decreases as the time limit of the subtest approaches.  They found that a 

decrease in correct item completion was found in most children and that poor coding 

subtest performance was not indicative of any disability, nor was it able to differentiate 

among various disabilities.   
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Some proponents of subtest level analysis have indicated that there are specific 

profiles of performance on subtests that are indicative of disabilities.  For example, 

Kaufman (1994) indicated that children classified with disabilities, including ADHD and 

LD, frequently exhibit poor performance on the WISC–III Symbol Search, Coding, 

Arithmetic, and Digit Span subtests.  This profile of low performance has become known 

as the SCAD profile.  These subtests were thought to measure cognitive abilities, such as 

memory, auditory processing, sequencing, and visual-motor integration, as well as 

behavioral constructs, such as motivation and distractibility (Watkins, Kush, & Glutting, 

1997a).  A review of the literature of the utility of this profile yielded mixed results.  

Prifitera and Dersh (1993) found higher numbers of students with this profile in a sample 

of both learning disabled students and students with ADHD than was in the WISC–III 

standardization sample.  To further explore this, Watkins, Kush, and Glutting (1997a) 

conducted a study that examined both the prevalence and diagnostic utility of this profile 

for a group of children diagnosed with both learning and behavioral/emotional needs.  

The authors found that although children diagnosed with disabilities had elevated SCAD 

profiles than children without disabilities, the profile was not useful in differentiating 

disabled from nondisabled students.  Using the profile for such purposes resulted in 

inaccurate classifications.  An additional finding of the study was that the SCAD profile 

was not significantly predicative of academic achievement.   

 Another subtest profile that has garnered attention in the interpretation of 

cognitive testing results is the ACID profile, which consists of the Arithmetic, Coding, 

Information, and Digit Span subtests of the WISC–III.  As with the SCAD profile, the 

utility of this profile for diagnostic purposes has been contested (Frederickson, 1999).  
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Watkins (2003) noted inconsistent results of studies, with prevalence of the ACID profile 

in students with disabilities ranging from a 1% to 12%.  Prifitera and Dersh (1993) found 

that, as with the SCAD profile, there was a higher rate of the ACID profile in children 

diagnosed with LD and ADHD than in the WISC–III standardization sample.  

Conversely, Watkins, Kush, and Glutting (1997b) found that, although the ACID profile 

is generally more prevalent in children with learning disabilities, it was not useful in 

differentiating disabled from nondisabled students.  This finding is essentially the same 

for the SCAD profile study.   

Thus, it appears that while various subtest profiles are observed more frequently 

in children with disabilities, the profiles do not have utility in differential diagnosis.  It is 

also interesting to note that all of these studies were conducted using the WISC–III; 

further research is needed to determine if the findings extend to the normative and 

theoretical updates provided by the WISC–IV.   

Proponents of analysis at the subtest level have attempted to extend the analysis to 

include recommendations for interventions based on subtest analysis.  Watkins (2003) 

indicates that these interventions based on test score patterns are often referred to as 

aptitude by treatment interactions and involve matching cognitive aptitudes to 

instructional methodology.  A review of the literature in this area indicates that although 

the practice may seem clinically logical, there is little empirical evidence to support it 

(Gresham & Witt, 1997).  The researchers cite numerous studies indicating that aptitude 

by treatment interactions derived from modality matching, cognitive processing styles, 

and neuropsychological models have consistently failed to achieve statistical 

significance.   
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Subtest and factor level analysis: Statistical and methodological considerations.  

As noted above, proponents of exclusive full scale IQ analysis have conducted studies 

showing that the full scale IQ is the most important variable when predicting academic 

achievement and that factor and subtest level analysis contribute little, if any, additional 

information.  However, Hale, Fiorello, Kavanagh, Hoeppner, and Gaither (2001) have 

identified methodological flaws in this research.  They specifically noted that the studies 

supporting the exclusive use of full scale IQ in predicting academic achievement have all 

utilized hierarchical regression analysis.  In this analysis, the variable that is entered first 

into the regression equation will subsume its own variance and the shared variance of 

subsequently entered variables (Hale & Fiorello, 2004).  The result is that the variable 

entered first becomes the variable that is most predictive of the outcome measure.  

Proponents of full scale IQ entered the full scale score in first, followed by the 

factor/index scores.  Thus, when analyzing the results, they concluded that only full scale 

IQ should be interpreted because it explained the majority of the variation in academic 

achievement, while the factors accounted for very little of the variance (Hale & Fiorello, 

2004).  If the factor scores had been entered first then they, and not the full scale IQ, 

would appear to be most predictive of academic achievement performance.  Thus, the 

statistical methodologies are flawed.   

 Hale and Fiorello (2001) advocate the use of regression commonality analysis.  

This differs from traditional regression analysis in that it makes it possible to determine 

the amount of unique variance of a variable and the amount of variance that is common to 

all variables.  According to the authors, this is accomplished by examining both unique 

and common variances, among all variables, separately.  Using regression commonality 
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analysis, the authors found that the WISC–III full scale IQ consisted primarily of unique 

variance, not shared variance.  The authors indicated that for exclusive full scale IQ 

interpretation to be valid, commonality analysis would have to reveal that full scale IQ 

consists mostly of shared variance, but clearly indicated the opposite (Hale & Fiorello, 

2001).  Thus, they posited that cognitive functioning is comprised of at least four factors 

or unique aspects of intelligence, not one overall score.   

 It should be noted, however, that these researchers are not necessarily opposed to 

full scale IQ interpretation.  They note that for children with little variability in 

performance across the factors that comprise the overall score, the full scale IQ may be 

the most parsimonious measure of cognitive functioning (Hale & Fiorello, 2004).  

However, they cited numerous studies that lend support to the concept that full scale IQ 

should never be interpreted when significant factor or subtest scatter is present in the 

profile of a child.  They also note that significant variability in a child’s cognitive profile 

does not necessarily mean that a disability is present.  Rather, variability necessitates the 

interpretation of more specific cognitive capacities when attempting to gain a valid and 

useful conceptualization of individual strengths and weaknesses.   

Factor level interpretation of intelligence test performance. 

As noted above, just as there are those within the field who advocate the exclusive 

use of full scale IQ in interpretation of cognitive assessment results, there are also those 

who believe that the most valid indicators of the cognitive strengths and weaknesses of a 

child are found at the factor level of analysis and that factor level differences are not 

apparent when only interpreting the full scale IQ score. 
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Cross battery approach to assessment.  The cross battery approach to assessment, 

also known as the CHC cross battery approach, offers a perspective of cognitive 

assessment interpretation that emphasizes interpretation at the factor level.  This approach 

combines John Carroll’s hierarchical model of intelligence and Horn and Cattell’s 

multifactor model (Hale & Fiorello, 2004).  This approach emphasizes that intelligence is 

not composed of only a single factor, but rather is composed of multiple clusters of 

cognitive abilities.  Interpretation is focused on the results of assessment measuring both 

broad and narrow cognitive processes, including short term memory, long-term retrieval, 

quantitative knowledge, and correct decision speed (Flanagan & Ortiz, 2001).  It also 

allows for examiners to identify specific cognitive strengths and weaknesses.  This 

approach to assessment requires taking various subtests from different cognitive batteries 

and combining them into factors so that the various broad and narrow cognitive abilities 

may be assessed.  According to Hale and Fiorello (2004), this approach to assessment has 

utility, and school psychologists should incorporate this approach into their daily 

practice.   

Concordance–discordance model.  Another related approach to interpreting 

subtest and factor level cognitive assessment results is the concordance–discordance 

model (Hale & Fiorello, 2004).  This proposed model eschews the use of the traditional 

discrepancy model that looks for a significant difference between measured full scale IQ 

and areas of academic achievement when identifying children with a specific learning 

disability.  Instead, these clinicians advocate three specific steps, involving interpretation 

of cognitive factor/index level scores, in interpretation of test results when determining if 

a student has a specific learning disability.  The first step involves the identification of a 
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concordance between a deficient academic achievement area and the cognitive processes 

theoretically linked to that area.  The second step involves finding discordance between 

the deficient academic achievement area and the cognitive processing area not associated 

with the achievement area.  The last step is to find discordance between the cognitive 

processing strengths and weaknesses (Hale & Fiorello, 2004).  What is apparent in this 

model is the nonuse of full scale IQ in interpretation and the emphasis on factor/index 

scores.  These authors also contend that this model of interpretation would ideally lead to 

more effective intervention development for the child because of the identification of 

specific cognitive strengths and weaknesses via examination of the factor/index scores.  

This is something to which the interpretation from exclusively the full scale IQ level 

would not be sensitive.   

It should also be noted that the authors of this model indicate that concordance– 

discordance interpretation can only be conducted when there are no statistically 

significant differences on the subtests that comprise each factor.  In situations in which 

performance on one subtest is significantly different from performance on another subtest 

within the same factor or index, the authors posit that a different factor score would have 

to be created.  They specifically note that this could be accomplished by combining 

scores from subtests that cluster together both clinically and theoretically.  It should be 

noted, however, that they emphasize the importance of using subtests with good 

psychometric properties and that, although this may not be ideal, it is preferable to using 

an index score that may misrepresent abilities due to variation in subtest performance 

within the index (Hale & Fiorello, 2004).  Thus, this model appears to place great 
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emphasis on factor and subtest level analysis and little, if any, emphasis on analyzing the 

full scale IQ.   

Subtest level interpretation of intelligence test performance. 

Despite the criticisms in the professional literature that were previously cited, the 

value of subtest level interpretation has been acknowledged in a very broad manner by 

the profession of psychology.  In the Standards for Educational and Psychological 

Testing (1999), a publication coauthored by the American Educational Research 

Association, the American Psychological Association, and the National Council on 

Measurement and Evaluation, the following statement appears regarding the importance 

of subtest level interpretation: 

Because each test in a battery examines a different function, ability, skill, or 

combination thereof, the test taker’s performance can be understood best when 

scores are not combined or aggregated, but rather when each score is interpreted 

within the context of all other scores and assessment data.  For example, low 

scores on timed tests alert the examiner to slowed responding as a problem that 

may not be apparent if scores on different kinds of tests are combined (page 123). 

This quote also offers insight into why the professional literature contains so 

many more research studies eschewing the practice of subtest level interpretation rather 

than supporting it.  The Standards for Educational and Psychological Testing note that 

subtest level interpretation needs to occur in the context of all the information gathered 

during an evaluation.  When this occurs, clinicians can make well-informed inferences 

and generate strong hypotheses about variations in cognition and their impact on an 

individual’s functioning in various settings.  The research studies cited here did not 
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evaluate the usefulness of subtest level interpretation in the context of all data gathered, 

but rather limited their investigations to analysis of subtest score patterns independent of 

the other information gathered in evaluations.  Noting that subtest score patterns are not 

as effective as global IQ scores in predicting achievement test scores fails to address the 

real issue, the extent to which subtest level information can help to explain why an 

individual examinee may or may not be achieving at the level predicted by a global IQ 

estimate. 

Process approach to assessment.  Originally proposed by Edith Kaplan (1998), 

one perspective that proponents of subtest and/or factor level analysis embrace is known 

as the process approach to assessment.  This perspective has also been referred to as the 

Boston process approach to neuropsychological assessment.  This approach to 

interpretation posits that global scores based on right or wrong answers are not nearly as 

important as knowledge of the strategies that a student may use to obtain both correct and 

incorrect responses (Kaplan, 1998).  Thus, observation of how a student approaches tasks 

during assessment is crucial.  Similarly, McCloskey and Maerlender (2005) posit that the 

process approach is based on at least five related cognitive assessment principles: 

(a) identifying the specific processes that interact to produce an outcome leads to 

increased cognitive explanations for performance, (b) differences in the input, processing, 

and output demands for cognitive tasks can affect how a student performs on that task, 

(c) direct and systematic observation of how students engage in tasks are important to 

understanding how they perform tasks, (d) the mistakes that a student makes are as 

important as what they did correctly, and (e) direct observation can result in the creation 

of hypotheses about cognitive functioning.   
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A relatively recent development in the field of intelligence test construction was 

the application of the process approach to the WISC–IV, thus creating the WISC–IV 

Integrated (McCloskey & Maerlender, 2005).  This assessment is a compilation of all of 

the subtests, both core and supplemental, of the WISC–IV, with the addition of 12 

subtests specifically designed for the application of the process approach to assessment 

(McCloskey & Maerlender, 2005).  Many of these process approach subtests are 

variations of the original WISC–IV subtests, but with alternative formats to assess how 

students approach a given task.  Examples are multiple choice versions of the 

Similarities, Comprehension, and Block Design subtests.   

In terms of how the process approach fits into the interpretation of cognitive 

assessments, McCloskey and Maerlender (2005) indicate that the process approach posits 

that using only the full scale IQ or the four factor scores in interpreting assessment results 

would miss important differences in performance in more narrow/specific cognitive tasks 

that are measured by subtests.  Taken a step further, they also posit that even subtest level 

analysis may be too broad in some cases and may miss individual variations on the 

specific items that comprise subtests.  Thus, individual item level analysis is also 

proposed by the process approach.  This emphasis on interpretation at both the subtest 

and individual items levels is not surprising, considering the importance of this approach 

for understanding how students perform on specific cognitive tasks that are measured by 

specific subtests and items.   

A review of the literature indicates that the process approach to assessment also 

has obtained support from various clinicians within the field.  Berninger (1992) 

advocated for the use of the developmental neuropsychological perspective when 
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assessing children.  This theoretical perspective is closely related to the process approach 

and stresses the importance of identification of the profile of specific cognitive strengths 

and weaknesses when planning treatments.  In addition, it posits that techniques such as 

subtest profile analysis are among the most appropriate techniques for determining these 

individual differences (Berninger, 1992).  Further support for subtest level analysis is 

found in Berninger’s views on academic functioning in areas such as reading and writing.  

She indicates that the traditional cognitive approach focuses exclusively on one construct, 

such as full scale IQ, that accounts for a majority of the variance in performance in these 

areas, whereas the process approach provides valuable insight into the various cognitive 

systems that interact with one another in completing tasks.   

Similarly, Erickson (1995) lauds the use of the processing approach to assessment 

for a variety of reasons.  He indicates that the traditional psychometric approach is too 

focused on what the individual achieves, and thus is deficient in examining the specific 

strategies used by the examinee in obtaining responses to cognitive tasks.  He also 

contends that the traditional psychometric approach often lacks the error analysis that is 

crucial to the process approach and allows for increased utility for diagnostic and 

treatment considerations.  However, he also offers some cautions for clinicians who have 

chosen to utilize the process approach to assessment, among them that much of the 

information gleaned from this approach is based on clinical rather than scientific or 

empirical evidence (Erickson, 1995).   

Yet another theoretical perspective of the interpretation of cognitive assessment 

results that is similar to the process approach is the nomothetic versus ideographic 

approach explicated by Hale and Fiorello (2004).  Nomothetic interpretation is normative 
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based and focuses on levels of performance.  Conversely, ideographic interpretation is 

individually based and focuses on a single examinee’s pattern of performance.  It is these 

patterns of performance, and how a child individually approaches those tasks, that the 

process approach to assessment relies so heavily upon.   

Cognitive hypothesis testing model of assessment.  Another model of assessment 

that utilizes a subtest and/or index level of interpretation when examining the results of 

cognitive assessment is the cognitive hypothesis testing (CHT) model (Hale & Fiorello, 

2004).  This model utilizes a combination of a traditional problem solving model, the 

assessment and confirmation/refutation of cognitive strengths and weaknesses, and 

developing interventions based on those cognitive strengths and weaknesses.  In terms of 

determining cognitive strengths and weaknesses, the authors suggest the use of demands 

analysis and cite this process as the key to identifying disabilities and to treatment 

development (Hale & Fiorello, 2004).  The authors indicate that conducting demands 

analysis consists of using subtest level analysis of the input, processing, and output 

demands of a task.  In interpreting these demands analyses, they caution that the 

examiner must always remember that demands analysis is different for every child and 

that subtests can measure different things for different children.  In addition, the model 

suggests an attempt to discern patterns of performance on the various cognitive tasks so 

that low performance on one particular processing demand across subtests would be 

identified as a suspected area of weakness and provide valuable information for treatment 

purposes.  This level of interpretation is very different from the exclusive use of full scale 

IQ for interpretive purposes as previously discussed.  It is also interesting to note the 

views of Hale and Fiorello on using fixed rather than flexible testing batteries for 
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assessment purposes.  Although they believe that fixed batteries are acceptable, they 

indicate that they prefer being able to choose and combine various subtests from a variety 

of batteries to measure various cognitive abilities.  This, too, is not something that 

proponents of full scale IQ analysis would support.  Thus, it is evident that the cognitive 

hypothesis testing model heavily relies on subtest level analysis in both determining the 

cognitive strengths and weaknesses of children and developing treatments based on this 

obtained information.   

Reliability and classical test theory. 

 One of the major criticisms of subtest level analysis is that subtests are much less 

reliable than index or global IQ scores and therefore lack the psychometric characteristics 

needed for valid interpretation.  To discuss this criticism, an understanding of the 

traditional psychometric concept of reliability is necessary, as is an understanding of 

alternate theoretical concepts of reliability and how they impact judgments about the 

reliability of subtest level interpretation.   

The concept of reliability stems from classical test theory and, broadly speaking, 

refers to the extent to which variations in test scores reflect true differences in cognitive 

capacity, as opposed to random fluctuations in performance (Furr & Bacharach, 2008).  It 

also has been broadly defined as the degree of consistency of scores obtained by a given 

test subject on repeated administrations of a measure on different occasions (Anastasi & 

Urbina, 1997).  Salvia and Ysseldyke (2010) define reliability as the relative absence of 

random error during measurement.  According to classical test theory, there are three 

properties and assumptions of all tests that form the basis for the theoretical 
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conceptualization of reliability: observed scores, true score, and measurement error (Furr 

& Bacharach, 2008).   

Observed scores, true scores, and measurement error.  Understanding how these 

assumptions/properties are interconnected in classical test theory is essential to correctly 

conceptualizing the concept of reliability.  Observed scores refer to the observed 

measurement value obtained by an individual on a test.  Essentially, these are the scores 

obtained by test subjects and, according to classical test theory, are estimates of the true 

ability of a test subject (Furr & Bacharach, 2008).  In contrast to observed scores, a true 

score is a reflection of the actual or real ability of a test subject.  It should be noted that it 

is impossible to determine a person’s true score; any score that is obtained by a test 

subject is only an estimate of the true score (Salvia & Ysseldyke, 2010).  As noted above, 

the concept of reliability refers to how much variation in observed scores reflects or 

matches variations in true scores.  The discord or inconsistency between observed scores 

and error scores is hypothesized to originate from the aforementioned concept of 

measurement error.  More specifically, these are often unknown factors, such as 

characteristics of the measure itself, test administration variables, and test subject 

variables, that create differences in observed scores (Furr & Bacharach, 2008).  These 

differences can either raise or lower observed score performance relative to the true score 

(Salvia & Ysseldyke, 2010).  Error due to such unknown factors is known as random 

error.  Random error should be differentiated from systematic error/bias, which 

consistently impacts a score in only one direction.  An example of random error is a test 

administration error in which the rate of item presentation to the test subject was either 

faster or slower than indicated by the standardized directions.  Conversely, an example of 
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systematic error/bias is administering a reading comprehension assessment in which the 

content of the reading passages is about baseball, and the test subject has extensive 

background knowledge about the sport.   

The degree of reliability for any given measure is directly dependent on two 

factors: how much of the difference in performance is due to real difference in the 

construct being assessed and how much of the difference in performance is attributable to 

measurement error (Furr & Bacharach, 2008).   

Correlation coefficients.  Anastasi and Urbina (1997) explain that the reliability 

of a measure can be represented by a correlation coefficient because all reliability is a 

measure of the amount of agreement between two test scores from separate 

administrations.  Thus, the correlation coefficient represents the degree of the relationship 

between two scores.  Correlation coefficients range from -1.0 to 1.0, with a correlation 

coefficient of 0.0 indicating no relationship between the variables and correlation 

coefficients of -1.0 and 1.0 indicating perfect negative and positive relationships, 

respectively (Salvia & Ysseldyke, 2010).  Generally speaking, desirable correlation 

coefficients are around .80 or .90 (Anastasi and Urbina, 1997).  Various methods can be 

used to calculate correlation coefficients, such as the Pearson product-moment correlation 

coefficient.  This computation takes into account two main factors: the test subject’s 

performance position in a group and the amount of deviation in performance with respect 

to the mean (Anastasi & Urbina, 1997). 

Calculating reliability coefficients.  In their conceptualization of reliability, there 

are at least four different ways to calculate reliability, based on classical test theory.  An 

important distinction among these four methods is whether they conceive of reliability in 
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terms of score correlations or proportion of variance.  The other distinction is whether 

reliability is viewed as the relationship of observed scores to measurement error or the 

relationship of observed scores to true scores (Furr & Bacharach, 2008).   

 The first method involves conceptualizing reliability as the ratio of observed score 

variance to true score variance and is expressed by the following formula (Furr & 

Bacharach, 2008): 

rxx = S2
T 

           S2
O 

 A second method conceptualizes reliability as a lack of error variance and is 

expressed by the following formula (Furr & Bacharach, 2008): 

rxx =     S2
T     

             1 - S2
O 

 
 A third method involves squaring the correlation between true scores and 

observed scores and is expressed by the following formula (Furr & Bacharach, 2008):  

rxx = r2
OT 

 The last method conceptualizes reliability as a lack of correlation between 

observed scores and error scores and is expressed by the following formula (Furr & 

Bacharach, 2008):  

rxx = 1 - r2
OE 

Types of reliability.  Because it is such a multifaceted concept, it is not 

surprisomg that a review of the literature reveals several different types of reliability, 

including test-retest reliability, alternate form reliability, interrater reliability, internal 

consistency, split-half reliability, Kuder–Richardson reliability, and coefficient alpha 

(Anastasi & Urbina, 1997; Furr & Bacharach, 2008; Salvia & Ysseldyke, 2010).  When 
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attempting to estimate reliability, it should be noted that no single method provides 

complete accuracy (Furr & Bacharach, 2008).   

Test-Retest reliability.  Given the nature of the present study, it seems most 

appropriate to begin the discussion of the various types of reliability with the test-retest 

method.  This method involves comparing a person’s observed performance on a measure 

with observed performance of the same person on the exact same measure after a second 

administration.  The reliability coefficient when using this method is the correlation of 

time 1 and time 2 observed scores, and error variance equates to random performance 

variations from one administration to the other.  The larger the reliability coefficient, the 

less likely it is that subject performance is being impacted by random error (Anastasi & 

Urbina, 1997).   

This conceptualization of reliability includes the assumptions that true scores are 

stable across administrations and that the same amount of error variance is present on 

each testing occasion (Furr & Bacharach, 2008).  The length of time between test 

intervals is a key consideration with this method, with longer time between intervals 

being more likely to change/challenge the necessary assumption of stability of true scores 

across administrations.  Conversely, a short interval between testing might lead to an 

adverse impact on interpretation, due to carryover effects from the initial testing.   

Interrater reliability.  Interrater reliability, also known as examiner reliability or 

scorer reliability, refers to the degree to which behavior ratings from multiple raters are 

free from error variance associated with either the rater or examiner.  Percentage 

agreement is the most common measure of interrater reliability (Sattler, 2001).   
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Alternate forms reliability.  In this method of reliability, two or more forms of the 

same test are utilized in order to provide an estimate of reliability.  With this method, the 

same subject is tested with one form on one occasion and a second form on subsequent 

assessment (Anastasi & Urbina, 1997).  The obtained reliability coefficient represents the 

correlation between the observed scores on the two different versions of the test.  In 

addition, these forms must both measure the same construct to the same extent and be 

standardized on the same population (Salvia & Ysseldyke, 2010).  Similarly, in order to 

provide an appropriate estimate of reliability, the forms must be considered parallel.  That 

is, they must have the same amount of variance, and they must measure the same set of 

true scores (Furr & Bacharach, 2008).   

Internal consistency methods: Split half reliability and coefficient alpha.  Yet 

another method to estimate reliability is known as internal consistency and does not 

require multiple forms of a test (Salvia & Ysseldyke, 2010).  When conceptualizing 

reliability using internal consistency methods, two factors impact reliability estimates: the 

degree of consistency between the parts of the test and the length of the test.  It is 

important to note that when applying this method, longer tests are more likely to have 

greater reliability than shorter tests (Furr and Bacharach, 2008).   

One application of this method is known as the split half method and is 

accomplished by splitting the items of one test into two parallel subtests of equal size, 

calculating a composite score for each of these subtests, and then correlating the two 

composite scores.  The formula for calculating the split-half method is known as the 

Spearman-Brown formula and mathematically represented as follows: 
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                    2rhh    
r = 1 + rhh 

Another type of internal consistency reliability is known as coefficient alpha and 

is calculated by determining the mean split-half correlations based on all possible subtests 

of an assessment (Salvia & Ysseldyke, 2010).  This method is closely related to a 

coefficient alpha method developed by Kuder–Richardson, which is coefficient alpha for 

test items that can only be scored as correct or incorrect (Sattler, 2001).   

Coefficient alpha can be represented in two different ways: raw coefficient alpha 

and standardized coefficient alpha.  Standardized coefficient alpha represents a reliability 

estimate for a test in which all items have been standardized, whereas with raw 

coefficient alpha, also known as Cronbach’s alpha, the items are not standardized (Furr & 

Bacharach, 2008).   

Relationship between reliability and the standard error of measurement.  

Another measurement of test error that is closely intertwined with the concept of 

reliability is known as the standard error of measurement (SEM), and is defined as the 

mean standard deviation of error distributed around the true score of a test subject.  The 

SEM provides information regarding how confident a clinician can be when interpreting 

observed scores (Salvia & Ysseldyke, 2010).  The standard error of measurement also has 

been defined as the average size of the error scores; a larger SEM equates to decreased 

reliability because of the increased average distance/variation between true and observed 

scores (Furr & Bacharach, 2008).  Anastasi and Urbina (1997) noted that the SEM is 

particularly useful when interpreting individual scores and often offers greater clinical 

utility than reliability coefficients.   
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Confidence intervals.  Another concept based on reliability is that of confidence 

intervals.  As noted above, it is not possible to know a person’s true score.  However, 

clinicians are not completely powerless in this regard.  Specifically, confidence intervals 

reflect an estimation that a true score on an assessment is found within a specific range of 

scores (Salvia & Ysseldyke, 2010).  Confidence intervals include both a range of scores 

within which the true score likely falls and the level of confidence with which we can 

estimate that a true score falls in that range.  Generally, larger levels of confidence, 

expressed as percentages, are associated with larger score ranges and vice versa.  For 

example, an FSIQ of 136 on the WISC–IV corresponds to a confidence interval of 130 

to140 at 95%.  This means that there is a 95% chance that the true score for the child falls 

between 130 and 140.   

Factors impacting reliability.  A review of the literature reveals multiple factors 

that impact reliability, such as test subject sample size, variations within testing sessions, 

guessing, variability of scores, test-retest interval length, homogeneity of test items, 

examiner characteristics, examinee characteristics, test length, consistency among parts 

of a test, and heterogeneity of test subjects (Furr & Bacharach, 2008; Sattler, 2001).  The 

following section will discuss these factors. 

Sample size.  Reliability of a measure increases as sample size increases.  This is 

because larger sample sizes yield smaller sampling errors associated with the reliability 

coefficient (Sattler, 2001). 

Variation in the testing session.  This factor indicates that fewer variations are 

associated with greater measurement reliability (Sattler, 2001).  Examples might include 
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a fire drill in the middle of a test session, loud noises from another room that are 

distracting to the examinee, or poor rapport with the examiner.   

Guessing.  According to Sattler (2001), when examinees respond randomly to 

items, it introduces error into the score and lowers reliability.  It should be noted that this 

hold true even when guessing results in correct responses.   

Variability of scores.  Restriction of the range of possible scores has an impact on 

reliability.  A small range of possible scores will result in lower reliability estimates, due 

to restriction of how much score can vary.  A broad range of possible scores will produce 

higher reliability estimates due to the expanded possibilities for score variation (Sattler, 

2001).   

Test-Retest interval.  Shorter intervals between test administrations are more 

likely to yield no change in performance and thus higher reliability estimates (Sattler, 

2001).   

Homogeneity of test items.  This factor implies that more similar test items are 

likely to create more reliable measures (Sattler, 2001).   

Test length.  The greater the number of test items, the greater the likelihood of 

increased reliability for a measure (Furr & Bacharach, 2008).   

Consistency among parts of a test.  Tests with greater internal consistency will 

have greater reliability.  For example, when using the split-half method, greater 

consistency among the two subtests equates with greater internal consistency and thus 

reliability (Furr & Bacharach, 2008).   
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Sample heterogeneity.  The greater the differences of examinee true scores, the 

greater the reliability.  Stated another way, the greater the variability of a sample or 

group, the higher the reliability coefficient will be (Furr & Bacharach, 2008).   

Examinee characteristics.  Sattler (2001) reports numerous subfactors of 

examinee characteristics that can impact test reliability: overall ability level, test taking 

skills, ability to comprehend instructions and task requirements, mastery of specific test 

content, health, fatigue, motivation, affect, problem solving techniques, level of practice 

with test items, fluctuations in attention and memory, anticipation of test items, 

willingness to guess, and response to directions.   

Examiner characteristics.  It has also been noted that examiner characteristics can 

impact reliability estimates, such as errors associated with technique and style, personal 

needs, personal likes and dislikes, values, understanding of examinee, attention to the 

testing environment, ethnicity, administration and scoring errors, theoretical positions, 

recording techniques, bias, and interpretations (Furr & Bacharach, 2008).   

Alternatives to the traditional psychometric theoretical conceptualization of 

reliability.   

A review of the literature indicates several alternatives to the classical 

psychometric conceptualization noted above, such as domain sampling theory.  

According to Furr and Bacharach (2008), this theory is based on the assumption that test 

items are representative of a sample from a large indefinite number of potential test 

items.  Parallel tests would hypothetically be created by selecting a number of items from 

a domain of items on two different tests.  For example, if a new test were created from 

five test items from a domain measuring crystallized knowledge from one test, and a 
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second test by taking five items measuring crystallized knowledge from another test, the 

tests should be parallel.  Further, parallel test scores should correlate with each other.  

According to the authors, reliability is conceptualized as the mean correlation sizes 

among pairs of tests, with a certain number of items selected from the indefinite number 

of potential items, or domain (Furr & Bacharach, 2008).   

Whitaker (2010) discusses two additional alternative approaches to the traditional 

psychometric theoretical conceptualization of reliability: generalization theory or G-

theory (Cronbach, Rajaratnam, & Gleser, 1963) and item response (Rasch, 1960).   

The logic underlying domain sampling theory forms the conceptual basis for G-

theory (Furr & Bacharach, 2008).  According to Roebroeck et al. (1993), in classical test 

theory, measurement error is estimated as a single component, and the traditional 

conceptualization of reliability does not allow the clinician to partition the measurement 

into different sources of error.  They also report that classical test theory does not allow 

for generalization of the measurement error to studies with different designs.  Conversely, 

G-theory is a broader approach to reliability that utilizes analysis of variance (ANOVA) 

to recognize and estimate multiple sources of error (Shavelson, Webb, & Rowley, 1989, 

as cited in Roebroeck et al., 1993) occurring in test-retest situations.  As noted above, the 

locus of cognitive processing changes when the brain is exposed to the same information 

at a later time.  By not taking into account these neuropsychological considerations, G-

theory ignores implications for changes in performance from time 1 to time 2 assessment. 

 As noted above, yet another alternative to traditional psychometric approaches to 

reliability is known as item response theory (Rasch, 1960), in which reliability is based 
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on the estimation of an underlying hypothetical trait theorized to impact test scores via a 

probability-based response model (Suen & Lei, 2007). 

Additional procedures for estimating test reliability.   

Decision consistency models.  To account for some of the various shortcomings of 

the traditional psychometric approach noted above, McCloskey (1990) proposed using 

decision consistency models to obtain reliability estimations for criterion-referenced 

assessments, which are tests that measure subject performance in comparison to a 

specific criterion.  The use of data consistency models has been reported in the literature 

by multiple sources (Subkoviak, 1980; Traub & Rowley, 1980; Van Der Linden, 1980 as 

cited by Whitaker, 2010).  An example of criterion referenced assessment is a test 

measuring multiplication skills in which raw scores of 50 or above would be considered 

passing, and raw scores below the criterion, i.e., 50, would be considered failing. 

Traub and Rowley (1980) note one of the main differences between reliability 

estimates for criterion and norm-referenced assessments lies in the relative importance of 

raw score variability.  In norm-referenced assessments, this variability is given exclusive 

importance, whereas in criterion-referenced assessment, more emphasis is placed on the 

ability of the test across multiple administrations to give similar classifications based on 

the criterion being measured (Whitaker, 2010).  Using the previous example, if students 

passed both trial 1 and trial 2 of the multiplication test with regularity, the instrument 

could be said to be reliable.   

Utilization of a decision-consistency model consists of calculating the percentage 

of agreement for test subjects who receive the same classification per the criterion or cut 

score (McCloskey, 1990; Whitaker, 2010).   
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Use of decision-consistency models with norm-referenced assessments.  Whitaker 

(2010) noted several examples of using decision-consistency models to predict reliability 

with norm referenced assessments.  In one such instance, a decision-consistency model 

was applied to estimate reliability for specific scores obtained from the Kaplan-Baycrest 

Neurocognitive Assessment (KBNA), a measure used to assess various areas of 

neuropsychological functioning, including immediate and delayed memory, reasoning 

and conceptual shifting, spatial processing, verbal fluency, and attention.  Leach, Kaplan, 

Rewilak, Richards, and Proulx (2000) utilized a decision-consistency model to indicate 

the percentage of test subjects whose criterion (qualitative classification range) did not 

change from time 1 to time 2.   

Another example reported by McCloskey (1990) compared interrater reliability 

estimates for two early childhood behavior rating scales using the traditional 

psychometric approach with the correlation method and an agreement grid conceptually 

based on decision-consistency models.  This grid was created using three different 

agreement percentages.  The first, known as an identical ratings percentage, depicted the 

percentage of exact agreement from time 1 to time 2 (rating 1 to 2).  The second, known 

as an increased ratings percentage, depicted percent increase in ratings from the first to 

the second rating.  The last was a decreased ratings percentage that depicted percent 

decrease from time 1 to time 2. 

McCloskey (1990) then compared reliability results using both correlation and the 

agreement grid for the first rating scale.  The correlation method yielded a coefficient of 

.59.  As noted in the above interpretive guidelines, this would indicate only a moderate 

degree of reliability.  Conversely, the percent of agreement calculations found a much 
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higher level of agreement, specifically 81.6% overall for identical ratings between time 1 

and time 2 (McCloskey 1990).  Restricted range of ratings was cited as the primary 

reason for this difference because range restriction adversely impacts correlational 

calculations, but did not impact decision-consistency model agreement percentages.   

On the second rating scale, both the identical ratings percentage (76%) and 

correlation coefficient (.84) were high.  McCloskey (1990) attributed the high percentage 

of increased ratings (21.5%) to either the tendency of responders to report higher ratings 

over time without possible increases in behavior or expectancy effects.  Overall, this 

study indicated various advantages of the agreement grid, and thus decision-consistency 

models, in comparison to traditional correlational procedures.  One such advantage 

involves interpretive considerations.  Specifically, the grid was able to provide 

information about the impact of expectancy effects, as well as the nature of test-retest 

score disagreements (Whitaker, 2010).  Stated another way, the agreement grid is more 

apt to provide information on similarities or dissimilarities between time 1 and time 2 

scores.  Correlational procedures were not able to accomplish this.  The other advantage 

noted by McCloskey (1990) is that regardless of test score distribution, the decision 

consistency model still was able to yield accurate information concerning the degree of 

agreement in test-retest scores. 

Whitaker (2010) concluded that McCloskey’s modified decision-consistency 

model could be applied to the interpretation of WISC–IV scores, specifically by 

examining the degree of consistency or inconsistency at the subtest level for time 1 

versus time 2 performance.  This approach would provide valuable interpretive 

information in comparison to traditional correlation approaches in that it does not obscure 
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patterns of performance in score changes from time 1 to time 2.  This additional 

information can be obtained by comparing hypothesized results based on classical test 

theory such as practice effects and true score estimates, with the modified decision-

consistency model calculations for amounts of positive change, no change, and negative 

change.   

Cognitive capacities measured by the WAIS–III subtests. 

 The WAIS–III (Wechsler, 1997) is designed for use with individuals ages 16 

through 89.  The instrument is comprised of 14 subtests, 11 core and 3 supplemental.  

Exploratory factor analysis of the WAIS–III yielded a four factor model: Verbal 

Comprehension, Perceptual Organization, Working Memory, and Processing Speed 

(Sattler, 2001).  Verbal Comprehension represents verbal-related ability including both 

verbal knowledge and verbal reasoning.  Perceptual Organization refers to performance-

related ability and mental processes such as nonverbal reasoning, attentiveness to detail, 

and visuomotor integration.  Working Memory represents a memory-related ability 

whereby a person holds information in mind so that operations or manipulations can be 

performed.  Lastly, Processing Speed refers to perceptual processing and psychomotor 

speed (Sattler, 2001).  In addition to these indexes, the WAIS–III subtests may be 

organized in the traditional manner into the Verbal Scale and Performance Scale.   

 The Verbal Comprehension Index consists of three core subtests, 

Vocabulary, Similarities, and Information, and one supplemental subtest, 

Comprehension.  The Perceptual Reasoning Index also consists of three core subtests, 

Picture Completion, Block Design, and Matrix Reasoning, and one supplemental subtest, 

Picture Arrangement.  The Working Memory Index includes two core subtests, 
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Arithmetic and Digit Span, and one supplemental subtest, Letter-Number Sequencing.  

The Processing Speed Index is comprised of two core subtests, Coding and Symbol 

Search, and one supplemental subtest, Object Assembly.  Table 1 provides a summary of 

the WAIS–III core and supplemental subtests.  
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Table 1  

Description of WAIS–III Core and Supplemental Subtests 

Subtest Description 

Picture Completion A set of color pictures of common objects and settings, each of which 

is missing an important part that the examinee must identify 

Vocabulary A series of orally and visually presented words that the examinee orally 

defines 

Digit Symbol-Coding A series of numbers, each of which is paired with its own 

corresponding hieroglyphic-like symbol.  Using a key, the examinee 

writes the symbol corresponding to its  number 

Similarities A series of orally presented pairs of words for which the examinee 

explains the similarity of the common objects or concepts they 

represent 

Block Design A set of molded or printed two-dimensional geometric patterns that the 

examinee replicates using two-color cubes 

Arithmetic A series of arithmetic problems that the examinee solves mentally and 

responds to orally 

Matrix Reasoning A series of incomplete gridded patterns that the examinee completes by 

pointing to or saying the number of the correct response from five 

possible choices 

Digit Span A series of orally presented number sequences that the examinee 

repeats verbatim for digits forward and in reverse for digits backward 

Information A series of orally presented questions that access the examinee’s 

knowledge of common events, objects, places, and people 

(continued) 
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Subtest Description 

Picture Arrangement A set of pictures presented in a mixed-up order that the  examinee 

rearranges into a logical story sequence 

Comprehension A series of orally presented questions that require the examinee to 

understand and articulate social rules and concepts or solutions to 

everyday problems 

Symbol Search A series of paired groups, each pair consisting of a target and a search 

group.  The examinee indicates, by marking the appropriate box, 

whether either target symbol appears in the search group 

Letter Number Sequencing A series of orally presented sequences of letters and numbers that the 

examinee simultaneously tracks and orally repeats, with the numbers in 

ascending order and the letters in alphabetical order 

Object Assembly A set of puzzles of common objects, each presented in a standardized 

configuration, that the examinee assembles  to form a meaningful 

whole 

Several authors (McCloskey, 2009; Miller, 2007; Whitaker, 2010, Miller & Hale, 

2008) have identified both primary and secondary cognitive and neuropsychological 

processes likely assessed by the Wechsler subtests.  These authors note that subtests 

measure both the construct, the primary cognitive process, and the secondary cognitive 

processes that, while not necessarily the goal of assessment, nonetheless impact 

performance.  Variations in subtest performance can originate from efficient use of these 

primary and secondary capacities.  These capacities are: executive functions, memory 

functions, auditory perceptions, language functions, reasoning ability, visuomotor 

processing speed, visual perception, and visual processing speed.   
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 Executive functions have been defined as cognitive processes that serve a 

directive role by cueing the use of other mental capacities and coordinating multitasking 

efforts (McCloskey, 2009).  Similarly, Miller (2007) notes that executive functions 

command and control other cognitive processes.  When conceptualizing executive 

functions, it is important to remember that poor subtest performance may not necessarily 

be a result of a deficit in a primary capacity, but rather reflect difficulties with executive 

functioning.  For example, the Vocabulary subtest is primarily a measure of word 

knowledge.  However, executive functions allow subjects to retrieve that knowledge from 

long-term storage.  Viewed this way, poor performance on the subtest could be the result 

of poorly developed word knowledge, deficits in executive functioning, or some 

combination of the two.   

 McCloskey (2009) notes that memory functions encompass a broad spectrum of 

capacities such as initial registration of information, retrieval from long-term storage, 

holding and manipulating information in mind and extending the immediate moment into 

the future.  Miller (2007) presents a five-factor model of memory functions: immediate 

memory, long-term (delayed) memory, associative memory and learning memory, 

working memory, and semantic memory.  Within McCloskey’s (2009) framework, 

auditory and visual perception are basic cognitive processes, narrow-band cognitive 

capacities that organize sensory input, either auditory or visual.  Whitaker (2010) notes 

that auditory input consists of elements such as the perception and discrimination of 

speech sounds, as well as comprehension of grammar and syntax.   

Language processes refers to a group of cognitive abilities that consist of 

phonological processing, receptive language, and expressive language (Miller, 2007).  
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McCloskey (2009) notes that reasoning is an ability that refers to a broad-band cognitive 

capacity that constrains memory and learning and operates on mental representations 

created via information input at the basic processing level.  Processing speed is the speed 

with which one or more basic processes can be coordinated and applied (McCloskey, 

2009).  Visual processing speed then refers to coordinating and applying these basic 

processes when given visual stimuli.  Miller (2007) notes that speed and efficiency of 

cognitive processing is impacts all cognitive capacities.   

Neuropsychological conceptualizations of practice-related changes in 

intelligence test performance. 

Traditional approaches to test reliability posit that scores should be stable from 

time 1 to time 2 and that changes is scores from time 1 to time 2 reflect measurement 

error.  Alternately, however, performance on repeated administrations of a task has been 

examined within the neuropsychological literature.  This has yielded findings that are not 

consistent with the traditional position that change in performance from time 1 to time 2 

results from undesirable measurement error (Whitaker, 2010).  The origin of these 

changes or gains in performance is hypothesized to be a concept known as the practice 

effect, whereby performance gains on repeated measures is thought to be the result of 

increases in cognitive processing efficiency due to factors such as prior exposure to the 

task, learning, or intervention (Sattler, 2001; Whitaker, 2010).  Although classical test 

theory acknowledges the occurrence of practice effects, these effects are viewed as 

undesirable sources of variation that are associated with measurement error rather than 

real differences in changes in brain function that follow predictable patterns.   
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Koziol and Budding (2010) note that the presence of improved performance via 

practice effects illustrates that test subjects have learned, remembered, and applied 

information to subsequent administrations.  This conceptualization is consistent with 

what is known about neuropsychological changes that take place when brains are exposed 

to information.  These authors also differentiate two types of practice effects: content 

practice effects and procedural practice effects.  Content practice effects are gains in 

performance once being exposed to the content or makeup of material and are 

particularly dependent on the medial-temporal lobe memory system.  Conversely, 

procedural practice effects are related to learning a specific cognitive skill required for 

successful completion of a task (Koziol & Budding, 2010).  Whitaker  

(2010) noted that practice effects are likely to be more pronounced for novel tasks 

encountered a second time than for familiar tasks that measure crystallized knowledge.   

 Before exploring current theories about cognitive processing difficulties, it is 

useful to examine a historical perspective.  Goldberg (2009) indicates that although 

hemispheric specialization has long been a tenet of neuropsychological interpretation, 

this is an oversimplistic and often incorrect conceptualization.  For example, the 

traditional notion in linking language to the left cerebral hemisphere and spatial 

processing to the right cerebral hemisphere is only partly correct.   

More recently, instead of trying to localize specific brain areas or hemispheres to 

specific actions, researchers have begun to conceptualize the location of cognitive 

processing by the relative novelty or familiarity of tasks.  The genesis of this relatively 

new conceptualization was a theoretical paper published by Goldberg and Costa (1981), 

which posited that the left hemisphere is more adept at processing familiar information 
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that is routine, whereas the right hemisphere is more adept at processing novel 

information.  This is known as the novelty-routinization hypothesis.   

Goldberg (2009) defined learning as both change and a transition from inefficient 

behavior to more effective behavior.  Further, initial stages of learning are characterized 

by novelty, whereas toward the end of the learning process, stages become much more 

familiar or routine.  Goldberg also hypothesizes that the structural and chemical 

differences observed between the right and left hemispheres are a product of evolution to 

ensure the learning process as information moves from novel to routine. 

Because the right hemisphere is more adept to processing novel information, and 

the left hemisphere more adept at processing routinized information, it is not surprising 

that Goldberg (2009) argues a right-to-left information transfer.  He notes that mental 

representations develop in both hemispheres, but their rates of formation differ, with the 

right hemisphere more responsible for early learning and the left hemisphere more 

responsible during later stages of learning.  This is accomplished by a gradual shifting in 

cognitive control (Goldberg, 2009). 

However, this is not to say that tasks are specific to a particular brain location, but 

that the right and left hemispheres are interconnected, and the relative degree of right 

versus left hemispheric involvement is heavily dependent on the nature of the 

psychological processes involved in completing the task (Hale & Fiorello, 2004).   

The genesis of the novelty-routinization hypothesis by Goldberg and Costa (1981) 

is the earlier writing of Luria (1973).  Luria’s work posits the presence of three functional 

units in the brain.  The reticular activation system, along with its related structures that 

are implicated in motor tone maintenance and activities such as walking, comprises the 
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first functional unit (Hale & Fiorello, 2004).  The posterior occipital, parietal, and 

temporal regions of the brain comprise the basis for Luria’s second functional unit and 

are devoted to receiving, storing, and analyzing information.  Lastly, the frontal lobes 

comprise Luria’s third functional unit and are heavily implicated in cognitive regulation 

(Hale & Fiorello, 2004).  According to Majovski (1997) the internal representation and 

organization of information was the basis upon which Luria posed right-left cerebral 

specialization.  Similarly, Hale and Fiorello (2004) note that hemispheric division of 

labor is based on the specific neuropsychological process required for the task, as 

opposed to the stimulus itself.  For example, Goldberg (2009) reports studies in which, 

regardless of whether stimuli are verbal or visual, novel information was processed in the 

right hemisphere and routinized information in the left.  This runs contrary to the 

traditional notion of the left –verbal, right–visual dichotomy.   

In addition to right-left differences, Luria also noted a gradual shift from anterior 

to posterior regions of the brain when acquiring cognitive skills (Luria, 1973).  

Specifically, the learning of new and novel information is subsumed by the anterior 

regions of the brain, notably the frontal lobes.  Conversely, posterior regions of the 

cerebral cortex are more prominently involved in performing previously learned and 

mastered skills (Goldberg, 2009). 

Recent advances in technology have made possible exponential increases in the 

knowledge of how the brain works and processes information.  Among these advances 

are two neuroimaging techniques known as functional magnetic resonance imaging 

(fMRI) and positron emission tomography (PET).  These techniques are based on the 

premise that neural activity is correlated with cerebral blood flow levels (Posner & 
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Raichle, 1994; Roland, 1993).  As described below, numerous studies have utilized these 

methods to examine neuroanatomical changes to the location of cognitive processing 

when performing various tasks. 

Neuroimaging evidence for a right-to-left hemispheric transition of cognitive 

processing.  Berns, Cohen, and Mintun (1997) utilized PET to examine the brain’s 

response to novelty.  Participants in their study performed a simple reaction-time test for 

two different conditions.  In general, the study found that as examinees became more 

familiar with a task, i.e., trained, cognitive processing shifted from right to left.  The 

study included a learning/training condition, and following this training, increased 

cerebral blood flow was found in the left premotor, left anterior cingulate, and right 

ventral striatum; decreased blood flow was observed in the right dorsolateral prefrontal 

and parietal areas.   

 Newman-Norlund, van Schie, van Zuijlen, and Bekkering (2007) utilized fMRI to 

assess the role of the mirror neurons in complementary actions.  In general, they found 

that engagement in complementary actions that were different, i.e., more novel, was 

associated with greater activation in the right inferior frontal and right inferior parietal 

than in imitative actions, which were more routine. 

 The learning of novel visuomotor tasks was assessed by Staines, Padilla, and 

Knight (2002) by using event-related potentials characterizing neural activity associated 

with sensorimotor processes.  Results of the study noted a two-dimensional shift 

following practice of the task, with cognitive processing moving from the right to left 

hemispheres, but also from the frontal lobes to the parietal lobe.  This right-left and 

anterior-posterior shift is consistent with the literature noted above.   
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 Another two dimensional right-left, front-back shift was noted in a study 

conducted by Kamiya, Umeda, Ozawa, and Manabe (2002, as cited by Goldberg, 2009).  

Using electroencephalogram frequency, these authors found that as familiarity with a task 

increased, there was a right-to-left and anterior-to-posterior change in cognitive 

processing.  During initial exposure to a task, right frontal regions were especially active.  

Halfway through exposure to the task, right frontal involvement shifted to left frontal 

involvement and was accompanied by both right and left posterior activation.  During the 

end of the task, little frontal involvement was noted, but left posterior regions displayed 

greater activation (Goldberg, 2009).   

Raichle et al. (1994, as cited by Whitaker, 2010) examined practice-induced 

performance improvements by using PET to investigate neural activation patterns during 

both naïve and practiced performance of a verbal-response selection task.  The naïve 

condition consisted of participants being asked to name an acceptable verb when visually 

presented with a noun.  Conversely, during the practice condition, a different group of 

subjects were given 15 minutes to rehearse self-generated noun–verb associations learned 

after being asked to identify a verb to match with nouns on a list.   

 The results of the study indicated differential activation patterns based on each 

condition.  Anterior cingulate, left prefrontal, and left posterior temporal cortices and 

right cerebellar cortical activation characterized the naïve condition.  Although this 

pattern was again partially found during the novel condition, it was almost completely 

absent during the practice condition.  An additional finding of the study was a significant 

increase in cerebral activation in the left medial occipital region for the practice condition 

in comparison to both the naïve and novel conditions.   
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Additional neuroimaging studies addressing general changes in cognitive 

processing.  Seger (2006) defines sequence learning as learning a sequence of events 

over time.  Within the area of sequence learning, Koziol, Budding, and Chidekel (2010) 

reviewed multiple studies that implicated activation in regions of the frontal lobe, the 

head of the caudate nucleus, and the anterior putamen.  These authors further noted that 

there are changes found over time in the learning of motor skills.  Poldrack et al. (2005) 

compared both initial and subsequent performance on the sequential reaction time task 

(SRT) and noted that initial performance of the task was associated with striatal, parietal, 

and frontal activation and decreases in activation for the putamen, globus pallidus, and 

supplementary area of the frontal cortex following training and subsequent task 

performance.   

 Beauchamp, Dagher, Aston, and Doyon (2003) used a modified version of the 

Tower of London test (Shallice, 1982) to examine the planning performance of 12 

subjects.  Participants were scanned on four occasions using PET.  During initial 

performance of the task, high levels of activation were noted in the dorsolateral 

prefrontal, orbitofrontal, left parietal cortices, caudate nucleus, cerebellum, and premotor 

cortex.  Conversely, decreases in activation in the medial orbitofrontal and frontopolar 

cortices were noted during later administration, after learning had occurred (Beauchamp 

et al., 2003).  Similarly, Hubert et al. (2007) utilized the similar Tower of Toronto test to 

examine phases of procedural learning.  They noted initial activation in the prefrontal 

cortex, cerebellum, and parietal regions.  During a second condition, activation was noted 

in the occipital lobes, the right thalamus, and the caudate nucleus.  Finally, during a third 

condition, activation was noted in the left thalamus and anterior lobes of the cerebellum 
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(Hubert et al., 2007).  In conclusion, Seger (2006, as cited by Koziol, Budding, & 

Chidekel, 2010) indicates a general pattern in which as procedural learning increases, 

there is a shift in the seat of cognitive processing from executive and visual corticostriatal 

loops to the motor loop.  Poldrack and Willingham (2006) supported this, citing multiple 

studies indicateing the prominence of the role of the prefrontal cortex during initial stages 

of learning, shifting to supplementary motor areas for later skill acquisition.   

Intelligence test-retest practice effects.  Given what has been discussed above 

about hemispheric changes in cognitive processing as information becomes less novel, it 

is not surprising that cognitive assessment is particularly sensitive to the impact of 

practice effects on subsequent administrations.  Also, as noted above, the shorter the test-

retest interval, the greater the hypothesized practice effects.  Meta-analytic study revealed 

that research has repeatedly shown that subjects make gains in test performance across 

repeated administrations (Hausknecht, Day, & Thomas, 2006).  Tuma and Appelbaum 

(1980) utilized the Wechsler Intelligence Scale – Revised (Wechsler, 1974) to examine 

the impact of practice effects over a 6-month period in 45 children ranging in age from 

7.8 to 15.0 years.  Although Verbal IQ stability estimates did not reveal much change, 

Performance IQ and FSIQ displayed significant practice effects, with mean gains of 8 and 

5 points, respectively (Tuma & Appelbaum, 1980).  This study supports the above 

assertion that gains in practice effects are likely to be seen on more novel information, in 

this case the performance subtests.   

Ryan, Glass, and Bartels (2010) utilized the Wechsler Intelligence Scale for 

Children – Fourth Edition (WISC–IV; Wechsler, 2003) to examine test-retest stability in 

43 elementary students tested approximately 11 months apart.  Results from their study 
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indicated that stability coefficients ranged from .26 for Picture Concepts to .84 for 

Vocabulary.  At the composite level coefficients ranged from .54 for Processing Speed to 

.88 for Full Scale IQ.  They further noted that only the Vocabulary subtest and Full Scale 

IQ had levels of stability; for all remaining areas, the standardization sample yielded 

significantly larger coefficients than did the 43 subjects from the study.  Finally, the 

authors concluded that although the average practice effects were not significant, the 

range of gain or loss for some subjects was large (Ryan, Glass, & Bartels, 2010).   

 Watkins and Smith (2013) also utilized the WISC–IV to examine stability of test 

performance.  However, this study was conducted over a longer period (mean interval of 

2.84 years) and with a larger sample (344 students).  The results indicated index level 

reliability estimates ranging from .65 for Processing Speed to .76 for Perceptual 

Reasoning.  Full Scale IQ reliability estimate was .82.  In general, subtest level reliability 

coefficients were lower than composite level measures.  The authors further noted that 

29%, 39%, 37%, and 44% of students had Verbal Comprehension, Perceptual Reasoning, 

Working Memory, and Processing Speed scores, respectively, that varied by 10 or more 

points; 25% of students had FSIQ scores that varied by more than 10 points.  The authors 

therefore concluded that clinicians should not assume long-term stability in scores across 

long test-retest intervals (Watkins & Smith, 2013).   

Kaufman (2003), Lezak, Howieson, and Loring, (2004), and Shatz, (1981) have 

examined the possible impact of variables such as age, time elapsed between assessment 

intervals, motor speed requirements, and the novelty of tasks.  Other researchers 

administered the WAIS (Wechsler, 1955) to college students at intervals ranging from 1 

week to 4 months to examine the concept of practice effects.  Results indicated that the 
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greatest gains in performance at both the composite and full scale IQ level were noted at 

the 1-week interval.  Conversely, the smallest gain in performance was noted at the 4-

month level (Catron and Thompson, 1979).   

The differential impact of practice effects on the Wechsler scales was examined 

by Kaufman (2003).  Test-retest data for the Wechsler Preschool and Primary Scale of 

Intelligence (WPPSI; Wechsler, 1967), Wechsler Preschool and Primary Scale of 

Intelligence – Revised (WPPSI–R; Wechsler, 1989), Wechsler Intelligence Scale for 

Children – Revised (WISC–R; Wechsler, 1974), Wechsler Intelligence Scale for Children 

– Third Edition (WISC–III; Wechsler, 1991), and Wechsler Adult Intelligence Scale – 

Revised (WAIS–R; Wechsler, 1981) revealed the highest median standard score gains for 

the Performance IQ (median gain of 9.0 standard score points), followed by the FSIQ 

(6.8 standard score points), and Verbal IQ (3.2 standard score points) (Kaufman, 2003). 

Whitaker (2010) noted a similar pattern of greatest practice effect gains on novel 

tasks as opposed to crystallized knowledge tasks on other tests of cognitive abilities, such 

as the Kaufman Assessment Battery for Children (KABC; Kaufman & Kaufman, 1983), 

McCarthy Scales of Children’s Abilities (MSCA; McCarthy, 1972), Differential Ability 

Scales (DAS; Elliot, 1990), Stanford-Binet Intelligence Scales – Fourth Edition (SB–IV; 

Thorndike, Hagen & Sattler, 1986), and Kaufman Adolescent and Adult Intelligence Test 

(KAIT; Kaufman & Kaufman, 1993).   

Specifically, Whitaker (2010) discussed the greater increases in novel tasks versus 

crystallized tasks as noted on the KABC, with greater gains on the Simultaneous 

Processing scale than the Achievement scale, greater gains on the Abstract/Visual 



51 
 

Reasoning scale than the Verbal Reasoning scale of the SB–IV, and greater gains on the 

Fluid IQ than the Crystallized IQ on the KAIT.   

Theoretical perspectives on the effects of aging on cognition.  The discussion of 

test-retest practice effects above focused on studies involving children’s performance.  

Because the current study is using data from the WAIS–III, an adult assessment of 

intellectual functioning, it is necessary to review the effects of aging on cognition to 

understand how test-retest results may or may not be different for adults and children.  A 

review of the literature indicates the existence of several classical theories of aging 

(Kaufman & Lichtenberger, 2006).  Botwinick (1977) concluded that as we age, our 

ability to perform timed tasks becomes compromised, while our performance on 

nontimed tasks is left intact and spared.  This theory is relatively consistent with the 

crystallized/fluid theory of cognitive development first posited by Horn and Cattell 

(1966, 1967).  According to Kaufman and Lichtenberger (2006), this theory states that 

fluid intelligence, characterized by novel problem solving and abstract reasoning, has a 

pattern of increasing with age until young adulthood, at which point it starts to decline as 

neurological decay begins to occur.  Conversely, crystallized intelligence, which is 

characterized by codified knowledge gained through formal education and life 

experiences, remains spared as we age and has the potential to increase throughout the 

lifespan as we add to our store of knowledge and experience.   

More recently, yet another theory of cognitive aging has been discussed.  Baltes 

(1997) developed a theory of cognitive development that consists of two distinct 

components: pragmatics and mechanics.  The concept of pragmatics is analogous to the 

concept of crystallized ability noted above and is believed to be spared the effects of 
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cognitive degradation.  Mechanics, conversely, are presumed to be adversely impacted as 

the brain ages and include aspects of cognition such as visual processing, processing 

speed, and aspects of memory (Kaufman & Lichtenberger, 2006).   

 To lend credence to the aforementioned theories of aging, Kaufman and 

Lichtenberger (2006) highlight multiple studies that have been completed.  Cross-

sectional studies found that when the amount of education is controlled, verbal abilities 

(roughly analogous to the aforementioned concept of crystallized ability) on measures 

such as the WAIS, WAIS–R, WAIS–III, KAIT, K–BIT, K–SNAP, and K–FAST had a 

consistent pattern of maintenance throughout the lifespan before a decline was noted as 

subjects reached their mid-70s and 80s.  Conversely, performance abilities (roughly 

analogous to fluid ability) were found to be adversely impacted by age, with peak 

performance noted in the early 20s, followed by subsequent decline (Kaufman & 

Lichtenberger, 2006).  Similarly, longitudinal studies utilizing cohorts from both the 

WAIS and WAIS–R standardization sample, as well as cohorts from the WAIS–R and 

WAIS–III normative sample, had the same patterns of aging as in the cross-sectional 

studies: maintenance of verbal abilities and significant degradation of performance 

abilities (Kaufman & Lichtenberger, 2006).  Taken together, these studies lend support to 

the various theories of aging noted above.   

Physical signs of brain aging: As the brain ages, there are certain physiological 

changes that occur.  Chief among these are a widening of the sulci and enlargement of the 

ventricles (Rettmann, Prince, & Resnick, 2003).  Goldberg (2009) notes that these 

physiological changes are indicative of neural changes taking place within our brains, 

such as atrophy, the loss of the myelin sheath that insulates axons and speeds 



53 
 

transmission, and reduction of dendritic branching.  Further, Goldberg indicates that there 

are two general rules when it comes to the aging brain.  The first is that the prefrontal 

cortex is especially vulnerable to normal age-related decay.  Because the frontal lobes are 

crucial to helping us navigate novel situations, one of the adverse impacts of cognitive 

aging is that elderly individuals often have difficulty when presented with new situations 

and ingrained patterns are disturbed (Goldberg, 2009).  Secondly, rates of age-related 

decay between the right and left hemisphere are not uniform, with the right hemisphere 

displaying loss of functioning due to aging earlier than the left hemisphere.  Goldberg 

goes on to summarize various studies that have lent support to this pattern.  Rettmann, 

Prince, and Resnick (2003) found that the sulci of aging brains became shallower (and 

thus decreased in functionality) in the right occipital and parietal regions than in similar 

cortical structures of the left hemisphere.  Similarly, Grieve, Clark, and Gordon (2003) 

noted age- related vulnerability of the right hemisphere in comparison to the left 

hemisphere.  They specifically found that age-related decay of the insula, a region 

implicated in integration of sensory information, was greater in the right hemisphere than 

in the left.  A study conducted in Japan utilized magnetic resonance imaging (MRI) 

technology to show that age-related decline in brain region size occurs earlier in the right 

hemisphere than it does in the left hemisphere.  The study specifically noted that this loss 

of brain volume begins in the fourth decade of life and intensifies during the fifth decade.  

Conversely, volume loss in the left hemispheric does not begin until the fifth decade 

(Taki et al., 2003).   

It should also be noted that these rates of hemispheric differences in degradation 

are not limited to the cortex (Goldberg, 2009).  Another MRI study found that in a 
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population of elderly individuals with depression, the frontal lobes and right 

hippocampus had a loss of volume whereas the left hippocampus did not have the same 

loss (Ballmaier, Kumar, Elderkin-Thompson, 2003). 

Perhaps most interesting, Goldberg (2009) goes on to assert that age-related 

decline in areas involved in novel problem solving, such as the frontal lobes and right 

hemisphere, and the preservation of the left hemisphere, the storehouse of established 

knowledge, may reflect an increased reliance on codified or crystallized knowledge and a 

decreased need for dealing with novelty as we age.  Although it is beyond the scope of 

this study, these concepts represent important implications in areas such as ongoing 

neuroplasticity and whether humans have the ability to maintain aspects of cognitive 

functioning throughout the lifespan through practice and use.   

Studies examining practice effects related to cognitive aging.  Short-term practice 

effects in an elderly population were examined in a study completed by Krenk, 

Rasmussen, Siersma, and Kehlet (2012).  They examined 161 healthy adults 60 of age or 

older on seven neuropsychological tests measuring aspects of set shifting, declarative 

memory, executive flexibility working memory, visuomotor skills, auditory recall, 

selective attention, interference susceptibility, and processing speed.  Testing was 

performed on three occasions: at baseline, 1 week, and 3 months.  Results indicated a 

statistically significant improvement in test scores in two of seven measures between 

baseline and the second administration and in six of seven measures between baseline 

and the final administration (Krenk et al., 2012).   

 Thorvaldsson, Hofer, Berg, and Johansson (2006) utilized practice effects data 

from a longitudinal study that started in 1971 on two different sets of participants.  Data 
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was obtained from subtest scores from the psychometric battery of Dureman and Salde 

(1959), such as Synonyms, Block Design, Figure Identification, Identical Forms, and 

Digit-Span Forward/Backward.  One group was measured at ages 70, 75, 79, 81, 85, 88, 

90, 92, 95, 97, and 99.  The other group was measured at ages 85, 88, 90, 92, 95, 97, and 

99.  Results indicated a trend toward test effects on two of the five measures: the 

Synonyms and Block Design subtests (Thorvaldsson et al., 2006). 

As noted above, classical test theory has typically eschewed the use of subtest 

level analysis due to poor reliability typically associated with subtests.  However, it is 

apparent that different conceptualizations and calculation methods of reliability not 

entrenched in traditional psychometric theory provide valuable representations of test 

reliability.  Viewed in this light, it is apparent that what traditionally has been viewed as 

error, causing instability of scores from time 1 to time 2, could actually be the result of 

the inadequacies of traditional reliability calculation methods (Whitaker, 2010).  When 

subtests are examined using methods that reveal a greater degree of reliability than 

previously thought, deeper avenues of diagnostic interpretation and intervention planning 

can be gleaned from the subtests.  This increases the overall clinical utility of intelligence 

tests.   

Taking this a step further, Whitaker (2010) notes that the traditional psychometric 

theory approach to reliability is based on the assumption that individual test performance 

should not vary between time 1 and 2 because the cognitive capacities that these 

measures assess are thought to be stable over time.  Further, when performance does 

increase from time 1 to time 2, classical test theory attributes such improvement to 

measurement error, rather than systematic variance from other sources (Whitaker, 2010).   
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Not only are there apparent methodological problems with the traditional 

psychometric calculations and conceptualizations of reliability, there are also 

shortcomings noted when reviewing the neuropsychological literature (Whitaker, 2010).  

It was specifically noted that viewing variations in performance from time 1 to time 2 as 

measurement error is not consistent with neuropsychological research that identifies 

changes in performance as the result of increased cognitive efficiency associated with 

practice effects (Catron & Thompson, 1979; Goldberg, 2009; Kaufman, 2003; Matarazzo 

Carmody, & Jacobs,, 1980).   

Changes in brain functioning that enable once-novel tasks to become more 

routinized, and thus to be performed more effectively when repeated, are hypothesized to 

be the cause of score increases from time 1 to time 2 (Whitaker, 2010).  Thus, what has 

been typically associated with random error is actually the result of physiological brain 

changes.  This makes conceptual, neuropsychological, and common sense.  Perhaps most 

importantly, it leads to increased clinical diagnostic utility of measurements.   

 Decision-consistency models similar to that proposed by McCloskey (1990) can 

provide a starting point for further development of alternative methods of reliability 

estimation that are free of the shortcomings of the traditional psychometric approach, 

while at the same time being more consistent with the neuropsychological literature 

(Whitaker, 2010). 
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Chapter 3 

Method 

This study utilized the archival data set from the WAIS–III standardization 

sample used to calculate the test-retest reliability for this instrument.  As reported in the 

WAIS–III Technical and Interpretative Manual (Psychological Corporation, 1997), the 

participants included 394 adults (52.3% female and 47.7% male) between the ages of 16 

and 89 years selected to be representative of the total WAIS–III standardization sample.  

Each participant was assessed on two occasions (mean test-retest interval, 32 days) using 

all 15 subtests of the WAIS–III.  Other demographic characteristics of the sample are as 

follows: 74.1% Caucasian, 7.8% African American, 11.1% Hispanic, and 7% other 

racial/ethnic origin.  Parent education levels for the participants were: 0-8 years, 4.9%; 9-

11 years, 9.1% ; 12 years, 25.9%; 13-15 years, 36.2%; and 16 years or older, 23.9% 

(Psychological Corporation, 2004). 

Measures. 

The WAIS–III yields standard and scaled scores, base rates, percentile ranks, and 

age equivalents.  Subtests have a mean scaled score of 10 and standard deviation of 3.  

The mean standard score for the four indexes is 100, and the standard deviation is 15.  

The WAIS–III Technical and Interpretative Manual (Psychological Corporation, 1997) 

provides detailed information regarding the instrument’s validity and reliability.  The 

WAIS–III has been shown to have adequate content, criterion-related, and construct 

validities.  As reported in the WAIS–III Integrated Technical and Interpretative Manual 

(Psychological Corporation, 1997), Tables 2 and 3 show the average standard error of the 
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mean, reliability coefficients, and corrected stability coefficients for the subtests, 

composite scales, and process scores for the total sample.   

 

Table 2  

Average Reliability Coefficients, Standard Error of the Mean (SEM), and Corrected 

Stability Coefficients for WAIS–III Subtests for the Total Sample 

Subtest rxx SEM r 

Picture Completion .83 1.25 .82 

Vocabulary .93 0.79 .93 

Digit Symbol-Coding .84 1.19 .82 

Similarities .86 1.12 .84 

Block Design .86 1.14 .89 

Arithmetic .88 1.05 .88 

Matrix Reasoning .90 0.97 .89 

Digit Span .90 0.94 .91 

Information .91 0.91 .92 

Picture Arrangement .74 1.53 .72 

Comprehension .84 1.21 .85 

Symbol Search .77 1.43 .77 

Letter–Number Sequencing .82 1.30 .79 

Object Assembly  .70 1.66 .73 

Note.  rxx = overall average reliability coefficient; r = stability coefficient.  Overall average reliability and stability 

coefficients were calculated using the formula for Fisher’s z transformation recommended by Silver and Dunlap (1987).  

Stability correlations were corrected for variability of the standardization sample using the procedures recommended by 

Allen and Yen (1979) and Magnusson (1967).  Average SEMs were calculated by averaging the sum of the squared 

SEMs for each age group and obtaining the square root of the result. 



59 
 

 

Table 3  

Average Reliability Coefficients, Standard Error of the Mean (SEM), and Corrected 

Stability Coefficients for WAIS–III Composite Scales for the Total Sample 

Process Score rxx SEM ra 

Verbal 

Comprehension  

.96 3.01 .96 

Perceptual 

Organization 

.93 3.95 .94 

Working Memory .94 3.84 .93 

Processing Speed .88 5.13 .87 

Full Scale IQ .98 2.30 .98 

Note.  rxx = overall average reliability coefficient; r = stability coefficient.  Overall average reliability and stability 

coefficients were calculated using the formula for Fisher’s z transformation recommended by Silver and Dunlap  

(1987).  Stability correlations were corrected for variability of the standardization sample using the procedures 

recommended by Allen and Yen (1979) and Magnusson (1967).  Average SEMs were calculated by averaging the sum 

of the squared SEMs for each age group and obtaining the square root of the result.  Internal consistency coefficients 

for the indexes ranged from .88 for the PSI to .97 for the FSIQ.  However, it is important to note that the internal 

reliability estimates for the PSI subtests are actually the test-retest reliability estimates; internal consistency estimates 

are not calculated for processing-speed subtests.  Symbol Search and Cancellation had the lowest internal reliability 

estimates (.79), while Letter-Number Sequencing had the highest (.90).  Internal consistency estimates for the process 

scores range from .70 for Cancellation Random to .84 for Block Design No Time Bonus. 
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The average standard error of the mean (SEM) is lowest for Vocabulary (.79) and 

highest for Object Assemble (1.66).  For the composite scales and process scores, the 

SEM is lowest for FSIQ (2.30) and highest for Perceptual Organization Index (3.95).  

Composite test-retest coefficients for the total sample ranged from .98 for the FSIQ and 

to .88 for the PSI.  Vocabulary had the highest test-retest reliability estimate (.93), and 

Object Assembly had the lowest (.70).   

Research design and statistical procedures. 

 A modified decision-consistency model was used to categorize test-retest results 

by degree of change from time 1 to time 2.  Using the time 1 and time 2 test scores of 394 

cases from the standardization test-retest reliability study, the following procedures were 

conducted: 

1.  For each WAIS–III subtest score, an actual difference score was calculated for each 

case by subtracting the obtained time 1 score from the obtained time 2 score.   

2. For each WAIS–III subtest score, a predicted time 2 score was calculated using the 

following formula: 

x2 = X2 + (x1 – X1) * rx1x2 * (SDx2/SDx1), wherex2 = time 2 score 

x1 = time 1 score 

X1 = mean of time 1 scores (set at 10 for all subtests) 

rx1x2 = the correlation between time 1 and time 2 scores 

SD1 = the standard deviation of time 1 scores (set at 3) 

SD2 = the standard deviation of time 2 scores (set at 3) 

It is important to note that the formula for predicting a time 2 score from a time 1 

score is identical to the formula for estimating the true score because the term 
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(SD2/SD1) is equal to 1; both standard deviations were set at the known population 

value of 3.  It is also important to note that the formula incorporates the concept of 

regression to the mean in that time 1 scores well below the mean of 10 are predicted 

to increase toward the mean, whereas time 1 scores well above the mean of 10 are 

predicted to decrease toward the mean.   

3. For each WAIS–III subtest score, a predicted difference score was calculated for each 

case by subtracting the obtained time 1 score from the predicted time 2 score 

calculated in step 2. 

4. For each WAIS–III subtest, frequency distributions were obtained for the actual 

difference scores and the predicted difference scores and placed together in a table for 

comparison and analysis. 

5. For each WAIS–III subtest, the subtest scores of the sample of 394 cases were 

divided into two groups to test the traditional psychometric conceptualization of 

regression to the mean that was incorporated in the formula for predicted time 2 

score. 

a. The LTE (less than or equal to the mean scaled score of 10) group consisted of all 

cases in which the time 1 score was less than 10.  This group consisted of the 

cases predicted to show no change in score at time 2 or, in extreme cases, to show 

a positive gain in score at time 2 due to regression to the mean.  Also included 

with this group were cases in which the time 1 score was 10 and the time 2 score 

was less than 10 for reasons stated in item c below. 

b. The GTE (greater than or equal to the mean scaled score of 10) group consisted of 

all cases in which the time 1 score was greater than 10.  This group consisted of 



62 
 

the cases predicted to show no change in score at time 2 or, in extreme cases, to 

show a decrease in score at time 2 due to regression to the mean.  Also included in 

this group were cases in which the time 1 score was 10 and the time 2 score was 

greater than 10 for reasons stated in item c below. 

c. Cases scoring at the mean of 10 at time 1 presented a challenge in terms of group 

classification.  Because all of these cases were at the mean at time 1, they were 

predicted to remain at the mean at time 2.  If the predicted difference score of 0 

was not identical to the actual difference score, then these cases would not be 

conforming to the expected pattern of regression to the mean.  Because the 

analysis was attempting to determine the number of cases that did not conform to 

the expected pattern of regression to the mean, it was decided to maintain these 

cases in the analysis by dividing them based on the actual difference score to 

reflect their lack of conformity to the expected pattern.  Cases earning time 1 

scores of 10 that reflected a negative actual difference score (reflecting time 2 

movement away from the mean instead of to the mean) were included in the LTE 

group, and cases earning a time 1 score of 10 that reflected a positive actual 

difference score (reflecting time 2 movement away from the mean instead of to 

the mean) were included in the GTE group.   

Time 1 scores of 10 that corresponded to Time 2 scores of 10 were consistent 

with the traditional psychometric model that would predict that scores at the mean 

would remain at the mean.  These cases were divided evenly between the LTE 

and GTE groups, thereby adding equally to the number of cases in each group that 

conformed to the traditional psychometric model. 
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6. For each WAIS–III subtest, predicted difference scores were assigned to one of three 

score-change categories: negative change (-), no change (0), and positive change (+).   

7. For each WAIS–III subtest, actual difference scores were assigned to one of three 

score-change categories: negative change (-), no change (0), and positive change (+). 

8. For each WAIS–III subtest, a 2 x 5 cross-tabulation table for the cases assigned to the 

LTE group was generated indicating frequency counts of the score-change categories 

crossed with Time 1 scores less than 10 and Time 1 scores equal to 10 for actual 

difference scores and predicted difference scores as shown in Table 4.  The actual 

(observed) and predicted (expected) frequencies in the 2 x 5 table were subjected to a 

chi-square analysis to determine goodness of fit between the actual and the predicted 

difference proportions. 
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Table 4  

Cross-tabulation for cases assigned to the LTE group. 

 Time 1 Score < 10 Time 1 Score = 10 

Actual  

Difference 

Time 2 

Score <  

Time 1 

Score 

Time 2  

Score = 

Time 1  

Score 

Time 2 

Score <  

Time 1 

Score 

Time 2  

Score <  

Time 1  

Score 

Time 2  

Score =  

Time 1  

Score 

(1/2 of cases) 

Predicted 

Difference 

Time 2 

Score <  

Time 1 

Score 

Time 2  

Score = 

Time 1  

Score 

Time 2 

Score <  

Time 1 

Score 

Time 2 Score 

<  

Time 1  

Score 

Time 2  

Score =  

Time 1  

Score 

(1/2 of cases) 

Note. LTE = less than or equal to the mean scaled score of 10. 

 

9. For each WAIS–III subtest, a 2 x 5 cross-tabulation table for the cases assigned to 

the GTE group was generated, indicating frequency counts of the score-change 

categories crossed with time 1 scores less than 10 and time 1 scores equal to 10 for 

actual difference scores and predicted difference scores, as shown in Table 5.  The 

actual (observed) and predicted (expected) frequencies in the 2 x 5 table were 

subjected to a chi-square analysis to determine goodness of fit between the actual 

and the predicted difference proportions. 

 



65 
 

Table 5  

Cross-tabulation for cases assigned to the GTE group. 

 Time 1 Score < 10 Time 1 Score = 10 

Actual  

Difference 

Time 2 

Score <  

Time 1 

Score 

Time 2 Score 

= 

Time 1 Score 

Time 2 

Score <  

Time 1 

Score 

Time 2 

Score <  

Time 1 

Score 

Time 2 Score 

= Time 1 

Score 

(1/2 of the 

cases) 

Predicted 

Difference 

Time 2 

Score <  

Time 1 

Score 

Time 2 Score 

= 

Time 1 Score 

Time 2 

Score <  

Time 1 

Score 

Time 2 

Score <  

Time 1 

Score 

Time 2 Score 

= Time 1 

Score 

(1/2 of the 

cases) 

 

10. In many instances, the frequency counts for predicted difference scores were 0 for 

the negative-change and positive-change categories.  Chi-square analyses require a 

minimum of five cases in each category.  When the score-change category count was 

0 for the predicted difference score, up to five cases were removed from the no 

change predicted category and placed in the category with the 0 count, thereby 

enabling the completion of all chi-square analyses.  This alteration of the data 

represents a bias in favor of a nonsignificant finding in that increasing the category 

frequency for cells with 0 counts made it more likely that the proportions in each 



66 
 

category would be similar and more likely to result in a nonsignificant chi-square 

value.   
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Chapter 4 

Results 

 Cross-tabulation analyses were conducted to determine the frequency of score 

differences between time 2 and time 1 administration for each WAIS–III subtest.  The 

actual difference scores were then compared with the predicted difference scores 

calculated using the regression model described in Chapter 2.   

Actual and predicted score frequency distributions. 

 Table 6 shows the frequency distributions for the actual and predicted differences 

between time 2 and time 1 performance on the WAIS–III Verbal subtests.  For all Verbal 

subtests, with the exception of only one case for the Similarities subtest, the predicted 

difference scores did not exceed -1 or +1.  In terms of the actual differences, across all 

Verbal subtests, a higher frequency of examinees had no change or positive scaled score 

change versus negative scaled score change.  For all subtests, the retest performance of a 

majority of examinees was between -1 and 1, suggesting that this score band may prove 

useful in predicting WAIS–III Verbal retest performance using the alternative reliability 

model presented here.  A fairly large discrepancy between actual and predicted score 

frequencies was evident for all subtests.  In addition, when viewing the results in the 

table, a majority of no change or positive increases rather than decreases is apparent.  

That is, there is a preponderance of actual difference increases that are more consistent 

with a neuropsychologically based performance model, which takes into account brain-

based functioning, rather than with the traditional psychometric model, which attributes 

variations in performance to random error.   
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Table 6  

Frequency Distributions of Actual and Predicted T2-T1 Differences for Each WAIS–III 

Verbal Subtest 

 Difference 

Vocabulary  

(n = 394) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual    3 5 16 74 148 101 35 8 2  1 1 

Predicted        394 1       

Information  

(n = 394) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6  +7-9 

Actual     1 4 42 155 115 56 19 2    

Predicted       9 381 4       

Similarities  

(n =394) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual  1  5 9 24 61 119 76 54 24 12 6  2 

Predicted      1 43 309 41       

Comprehension 

(n = 394) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual   1 5 20 33 79 90 82 40 27 11 2 3 1 

Predicted       48 294 52       
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 The greatest magnitude of frequency of score variability from time 1 to time 2 

was observed in the Similarities subtest, with two examinees having score improvements 

of +7 and 9 and one subject having a decrease of -6 scaled score points.  In contrast to 

Similarities, analysis of Vocabulary and Comprehension subtest results from time 1 to 

time 2 yielded similar test-retest score frequency variability.  Although still revealing the 

increases in performance evident in the other verbal subtests, the range of variability in 

scores from time 1 to time 2 for Information was slightly less, with two examinees having 

scaled score point gains of +4 and one examinee having a decrease in performance of -3 

points.   

Table 7 shows the frequency distributions for the actual and predicted differences 

between time 2 and time 1 performance on the WAIS–III Working Memory subtests.  

With the exception of Letter-Number Sequencing, which yielded one case with a gain of 

2 scaled score points, remaining Working Memory subtest scores did not exceed -1 or +1 

from time 1 to time 2 when utilizing the predicted difference method espoused by the 

traditional psychometric approach.  However, just as with the Verbal subtests, fairly large 

discrepancies between actual and predicted score frequencies were evident for all 

subtests, although these discrepancies were somewhat smaller for the Letter-Number 

Sequencing Subtest.  The increase, rather than the decrease in performance evident in the 

Verbal subtests, was again found here.  That is, a greater number of examinees had no 

change or a positive scaled score change on the Working Memory subtests.  Stated 

another way, performance on all Working Memory subtests was characterized by much 

higher frequencies of actual difference increases than actual difference decreases, a 
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pattern that is more +consistent with a neuropsychologically based performance model 

than with the traditional psychometric model. 

 

Table 7  

Frequency Distributions of Actual and Predicted T2-T1 Differences for Each WAIS–III 

Working Memory Subtest and Process Score 

 Difference 

Digit Span 

(n = 394) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6  +7-9 

Actual  1 2 4 11 31 89 83 74 56 24 11 5 3  

Predicted       9 377 8       

Arithmetic 

(n = 393 ) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual   1 1 12 29 68 109 72 61 31 4 6   

Predicted       34 320 40       

Letter-

Number 

Sequencing 

(n = 374) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual  3 7 7 20 33 57 70 67 49 27 16 12 4 2 

Predicted       75 225 73 1      
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Table 8 shows the frequency distributions for the actual and predicted differences 

between time 2 and time 1 performance on the WAIS–III Perceptual Reasoning subtests.  

For Perceptual Reasoning subtests, the predicted difference frequency scores from time 1 

to time 2 were somewhat more variable.  Predicted difference frequency scores for Block 

Design and Matrix Reasoning did not exceed -1 or +1.  Similarly, predicted difference 

scores on Picture Completion ranged from -2 to +1.  Range of frequencies for predicted 

differences for Picture Arrangement and Object Assembly were slightly higher, with 

predicted difference scores ranging from -3 to +2 and -3 to +3, respectively.  However, 

just as with the Verbal Comprehension and Working Memory subtests, predicted scores 

based on the traditional psychometric model had only limited predictive validity in 

comparison to actual performance differences between time 1 and 2.  Although score 

differences for the Picture Arrangement and Object Assembly Subtests showed greater 

variability for the predicted scores, even the predicted score ranges for these subtests 

were very restricted when compared to the ranges of the actual scores.  As was evident 

for the Verbal Comprehension and Working Memory subtests, a much greater number of 

examinees had no change or positive scaled score changes rather than negative changes 

across all Perceptual Reasoning subtests.  For all subtests, large numbers of examinees 

had no scaled score change between time 1 and time 2.  Block Design, Matrix Reasoning, 

Picture Arrangement, and Object Assembly yielded the largest range of actual score 

variability from time 1 to time 2, with examinee performance ranging from -7 to +9.  

Picture Arrangement, Picture Completion, and Object Assembly had the highest number 

of examinees with score improvements both within the Perceptual Reasoning Index and  
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Table 8 

Frequency Distributions of Actual and Predicted T2-T1 Differences for Each WAIS–III 

Perceptual Reasoning Subtest 

 Difference 

Block Design  

(n = 394) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6  +7-9 

Actual 1   4 13 36 52 91 73 71 37 12 1 2 1 

Predicted       44 306 44       

Matrix 

Reasoning (n 

= 394) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual 1 1 4 9 21 42 58 95 73 40 30 10 7 1 2 

Predicted       14 365 15       

Picture 

Completion 

(n = 394) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual     7 11 23 73 71 62 65 36 22 19 5 

Predicted      1 67 267 59       

 
(continued)
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 Difference 

Picture 

Arrangement 

(n = 394) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual 1 2 4 8 11 27 38 78 59 58 47 20 19 11 11 

Predicted     1 16 61 216 92 8      

Object 

Assembly (n 

= 393) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual 1  1 5 10 16 38 78 66 59 45 27 27 11 11 

Predicted     1 17 82 175 100 18 1     

 

the WAIS–III as a whole, with Picture Completion having the largest number of the three 

subtests.  Overall results indicate that the actual performance increases observed are 

much more consistent with a neuropsychologically based performance model than a 

traditional psychometric model involving regression to the mean.   

Table 9 shows the frequency distributions for the actual and predicted differences 

between time 2 and time 1 performance for the WAIS–III Processing Speed subtests and 

process scores.  The predicted difference score ranges for Digit Symbol-Coding and 

Symbol Search were -1 to +1 and -2 to +2, respectively.  However, most importantly, for 

both subtests there was a large discrepancy between the frequencies predicted by the 

regression model based on a traditional psychometric approach and the actual differences 
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that occurred.  As with the Verbal Comprehension, Working Memory, and Perceptual 

Reasoning subtests, a greater number of examinees had no scaled score change or 

positive scaled score changes, rather than negative scaled score changes, for both 

Processing Speed Subtests.  Thus, as with the subtests in the other domains, performance 

on the Processing Speed subtests was characterized by higher frequencies of actual 

difference increases, rather than decreases that are more consistent with a 

neuropsychologically based performance model.   

 

Table 9 

Frequency Distributions of Actual and Predicted T2-T1 Differences for Each WAIS–III 

Processing Speed Subtest 

Difference 

Digit 

Symbol-

Coding  

(n = 393) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual   1 4 6 13 37 88 113 71 41 10 5 2 2 

Predicted       61 274 59       

Symbol 

Search  

(n = 394) 

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6  +7-9 

Actual 1  2 7 8 31 50 108 90 49 27 13 4 1 3 

Predicted      5 81 223 78 7      
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Comparison of actual and predicted score differences according to time 1 score 

groups. 

Tables 5 through 9 present actual and predicted score frequency data for the total 

sample without indication of the scores obtained at time 1.  To more clearly examine the 

effectiveness of the psychometric model in predicting the time 2 score, it is necessary to 

specify the value of the time 1 score to examine the expected effects of regression to the 

mean.  Per traditional psychometric conceptualizations, the regression model predicts 

time 2 score increases for more extreme time 1 scores below the mean and time 2 score 

decreases for more extreme time 1 scores above the mean. 

 Tables 10 through 13 show the percentages of time 2 to time 1 score differences 

that reflect decreases (T2 < T1), increases (T2 > T1), or no change (T2 = T1) separately 

for examinees divided into two categories: examinees earning scores less than or equal to 

the mean scaled score of 10 (LTE group) and examinees earning scores greater than or 

equal to the mean scaled score of 10 (GTE group).  Also provided are the percentages of 

time 2 to time 1 score differences that the regression model predicts would result in score 

decreases, increases, or no change for the examinees in the LTE and GTE groups.  

Examinees scoring at the mean were divided equally between the LTE and GTE groups, 

as described in Chapter 3.   
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Table 10  

Actual and Predicted Difference Score Percentages by Score Change Category for Each 

WAIS–III Verbal Subtest for the Less Than or Equal to (LTE) and Greater Than or Equal 

to (GTE) Groups 

 

 

T1 Scaled Scores 

LTE Group 

T1 Scaled Scores 

GTE Group 

 T2  < T1 T2 = T1 T2 < T1 T2 < T1 T2 = T1 T2 < T1 

 Vocabulary (n = 190) Vocabulary (n = 204) 

Predicted 0% 99% 1% 0% 100% 0% 

Actual 24% 42% 34% 25% 34% 41% 

 Information (n = 176) Information (n = 218) 

Predicted 0% 98% 2% 4% 96% 0% 

Actual 11% 46% 43% 12% 34% 54% 

 Similarities (n = 181) Similarities (n = 213) 

Predicted 0% 77% 23% 21% 79% 0% 

Actual 19% 36% 45% 31% 25% 44% 

 Comprehension (n = 177) Comprehension (n = 177) 

Predicted 0% 71% 29% 22% 78% 0% 

Actual 29% 24% 47% 40% 22% 38% 

Note.  LTE = time 1 standard score below the mean of 10.  GTE = time 1 standard score above the mean of 10.  Time 1 

scores at the mean were divided evenly between the two groups.   

 

For all but one of the Verbal Comprehension subtests, both the LTE and GTE 

groups had higher percentages of actual score increases than decreases.  The only 
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exception to this pattern was on the Comprehension subtest, which yielded a slightly 

greater percentage of decreases than increases(40% vs. 38%).  Also, all Verbal 

Comprehension subtests had lower percentages of no change than predicted.  Score 

increase percentages for the LTE group in comparison to the GTE group were somewhat 

variable, with higher score increase percentages for the GTE group noted on the 

Vocabulary (41% vs. 34%) and Information (54% vs. 43%) subtests and higher LTE 

progression percentages on the Similarities (45% vs. 44%) and Comprehension (47% vs. 

38%) subtests.  Across all subtests, both groups had higher percentages of actual score 

increases than predicted.  Counter to the expectations of a traditional psychometric 

model, the GTE group had high rates of actual versus predicted score increases for all 

Verbal Comprehension subtests.  Also counter to the traditional psychometric model, the 

LTE group had greater numbers of examinees earning both increased and decreased 

scores.   
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Table 11  

Actual and Predicted Difference Score Percentages by Score Change Category for Each 

WAIS–III Working Memory Subtest and Process Score for the Less Than or Equal to 

(LTE) and Greater Than or Equal to (GTE) Groups 

 

 

T1 Scaled Scores 

LTE Group 

T1 Scaled Scores 

GTE Group 

 T2  < T1 T2 = T1 T2 < T1 T2 < T1 T2 = T1 T2 < T1 

 Digit Span (n = 230) Digit Span (n = 164) 

Predicted 0% 97% 3% 5% 95% 0% 

Actual 35% 20% 45% 35% 23% 42% 

 Arithmetic (n = 186) Arithmetic (n = 208) 

Predicted 0% 78% 22% 16% 84% 0% 

Actual 28% 24% 48% 28% 31% 41% 

 Letter-Number Sequencing (n = 175) Letter-Number Sequencing (n = 199) 

Predicted 0% 58% 42% 38% 62% 0% 

Actual 29% 20% 51% 38% 18% 44% 

Note.  LTE = time 1 standard score below the mean of 10.  GTE = time 1 standard score above the mean of 10.  Time 1 

scores at the mean were divided evenly between the two groups.   

 

For all Working Memory subtests, both the LTE and GTE groups had higher 

percentages of actual score increases versus actual score decreases, as well as lower 

percentages of no change scores than predicted.  The percentages of increased scores in 

the LTE group were higher than in the GTE group.  Across all subtests, both groups had 
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higher percentages of actual score increases than predicted.  The LTE group had higher 

rates of actual versus predicted score decreases for all Working Memory subtests.  The 

GTE group had higher rates of actual versus predicted score decreases for Digit Span, 

Arithmetic, and Letter-Number Sequencing (38% for each).  Actual decreased score rates 

for the LTE and GTE groups were somewhat variable, with the same rate for Arithmetic 

(28% for each) and Digit Span (35% for each) and a higher percentage for the GTE group 

(38%) than the LTE group (29%) for Letter–Number Sequencing.   
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Table 12  

Actual and Predicted Difference Score Percentages by Score Change Category for Each 

WAIS–III Perceptual Reasoning Subtest for the Less Than or Equal to (LTE) and Greater 

Than or Equal to (GTE) Groups 

 T1 Scaled Scores 

LTE Group 

T1 Scaled Scores 

GTE Group 

 T2  < T1 T2 = T1 T2 < T1 T2 < T1 T2 = T1 T2 < T1 

 Block Design (n = 194) Block Design (n = 200) 

Predicted 0% 77% 23% 22% 78% 0% 

Actual 27% 19% 54% 26% 27% 47% 

 Matrix Reasoning (n = 202) Matrix Reasoning (n = 192) 

Predicted 0% 93% 7% 7% 93% 0% 

Actual 30% 27% 43% 39% 21% 40% 

 Picture Completion (n = 171) Picture Completion (n = 223) 

 0% 65% 35% 30% 70% 0% 

 12% 15% 73% 9% 22% 69% 

 Picture Arrangement (n = 187) Picture Arrangement (n = 207) 

 0% 46% 54% 38% 62% 0% 

 19% 20% 61% 26% 20% 54% 

 Object Assembly (n = 186) Object Assembly (n = 207) 

Predicted 0% 36% 64% 48% 52% 0% 

Actual 18% 20% 62% 18% 19% 63% 

Note.  LTE = time 1 standard score below the mean of 10.  GTE = time 1 standard score above the mean of 10.  Time 1 

scores at the mean were divided evenly between the two groups.  
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Both the LTE and GTE groups had higher percentages of actual score increases 

than decreases for all subtests.  Picture Completion showed the highest percentages of 

score increases, with 73% of the LTE group and 69% of the GTE group having higher 

scores at time 2.  In addition, for both groups, the predicted percentages of no score 

change were much higher than the percentages of actual score changes.  For the majority 

of Perceptual Reasoning subtests, the LTE group had higher percentages of actual score 

increases than the GTE group.  The exception was the Object Assembly subtest, in which 

the GTE group had a higher percentage of actual score increases than the LTE group 

(63% vs. 62%).  Comparison of actual decreased score percentages between the LTE and 

GTE groups yielded some variations, depending on the subtest.  Actual increased score 

percentages were greater for the GTE group for the Picture Arrangement and Matrix 

Reasoning subtests.  Conversely, actual decreased score percentages were greater for the 

LTE group for the Picture Completion and Block Design subtests.  The same decreased 

score percentage (18%) was found on the Object Assembly for both groups.  For the 

majority of Perceptual Reasoning subtests across both groups, the predicted percentages 

of score increases were lower than the actual percentages for all subtests for both groups.  

The exception was the LTE group for the Object Assembly subtest, which had a higher 

predicted percentage than the actual percentage (64% vs. 62%).  The LTE group had 

higher percentages of actual than predicted time 1 scaled scores.  Conversely, the GTE 

group had more variation in percentages of actual versus predicted score decrease.  

Specifically, within the GTE group, lower percentages than predicted were found on the 

Object Assembly, Picture Arrangement, and Picture Completion subtests.  Higher than 
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predicted score decrease percentages were identified on the Matrix Reasoning and Block 

Design subtests.   

 
Table 13  

Actual and Predicted Difference Score Percentages by Score Change Category for Each 

WAIS–III Processing Speed Subtest for the Less Than or Equal to (LTE) and Greater 

Than or Equal to (GTE) Groups 

 

 

T1 Scaled Scores 

LTE Group 

T1 Scaled Scores 

GTE Group 

 T2  < T1 T2 = T1 T2 < T1 T2 < T1 T2 = T1 T2 < T1 

 Digit Symbol-Coding (n = 191) Digit Symbol- Coding (n = 203) 

Predicted 0% 69% 31% 30% 70% 0% 

Actual 13% 25% 62% 18% 20% 62% 

 Symbol Search (n = 181) Symbol Search (n = 213) 

Predicted 0% 53% 47% 40% 60% 0% 

Actual 23% 25% 52% 27% 29% 44% 

 
Note.  LTE = time 1 standard score below the mean of 10.  GTE = time 1 standard score above the mean of 10.  Time 1 

scores at the mean were divided evenly between the two groups.   

 

For both Processing Speed subtests, both the LTE and GTE groups had higher 

percentages of actual score increases than actual score decreases and lower percentages 

than predicted of no change.  Actual percentages of increased and decreased scores were 

higher than predicted for the LTE group for both subtests.  For the GTE group, actual 

decreased score percentages were lower than predicted for both Processing Speed 

subtests had, and actual increased score percentages were higher than predicted.  
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Percentages of actual score increases for both groups were the same for Digit Symbol-

Coding (62%) and somewhat higher for the LTE group for Symbol Search.  Percentages 

of actual score decreases were higher for the GTE group than for the LTE group for all 

subtests.   

Chi-Square analyses comparing actual and predicted scores by time 1 score 

groups. Chi-square analyses were conducted to determine the goodness of fit between 

actual and predicted time 2 to time 1 score differences for all subtests scores.  As 

indicated in Table 14, there were statistically significant results (p < .01) for all subtests 

in both the LTE and GTE groups. 

 



84 
 

Table 14  

Chi-Square Analysis of Actual (Observed) and Predicted (Expected) T2-T1 Differences 

for Each WAIS–III Subtest Grouped by Time 1 Standard Score Range Groups 

 

 

T1 Scaled Scores 

LTE Group 

T1 Scaled Scores 

GTE Group 

 Χ2 df Cramer’s 

V 

Χ2 df Cramer’s 

V 

Vocabulary 934.8 4 .55 1147.1 4 .64 

Information 1032.6 4 .55 1708.3 4 .62 

Similarities 181.8 4 .43 798.6 4 .56 

Comprehension 239.5 4 .48 757.4 4 .57 

Block Design 371.5 4 .59 804.0 4 .55 

Matrix Reasoning 757.3 4 .64 910.1 4 .70 

Picture Completion 156.0 4 .52 2983.5 4 .69 

Picture 

Arrangement 

110.2 4 .36 1246.5 4 .58 

Object Assembly 95.5 4 .29 1939.5 4 .64 

Digit Span 1947.4 4 .75 774.8 4 .69 

Arithmetic 464.2 4 .55 802.3 4 .54 

Letter Number 

Sequencing 

207.6 4 .43 794.2 4 .57 

Digit Symbol-

Coding 

153.8 4 .45 1619.1 4 .63 

Symbol Search 152.2 4 .36 835.4 4 .49 

Note. p < .01 
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Chapter 5 

Discussion 

 The first aim of this study was to compare a neuropsychologically based 

performance consistency model with the traditional psychometric model for the purposes 

of representing WAIS–III subtest test-retest data.  The second aim of the study was to 

determine if a neuropsychologically oriented performance consistency method offered 

any advantages over traditional psychometric methods in the type of information 

provided regarding WAIS–III subtest performance patterns. 

WAIS–III subtest data analyses comparing the traditional psychometric 

model with a neuropsychologically based performance consistency model. 

 Results indicated that the traditional psychometric approach typically yielded 

predicted score difference frequencies that did not vary beyond the range of -3 to +3 

points.  Most predicted values were 0, indicating the expectation of no change in 

performance from time 1 to time 2.  However, actual performance results produced a very 

different pattern of score difference frequencies, yielding both larger score band widths 

(-9 to +9) and much larger numbers of examinees distributed across this greater range of 

scores.  Regardless of the score in relation to the mean, most subtests had much greater 

frequencies of positive versus negative score changes beyond the -3 to +3 score band.   

The greatest magnitude of score differences (4 points and greater) favored 

positive scaled score differences.  Taken as a whole, this information suggests that a 

neuropsychologically based performance model yields a progression effect wherein more 

examinees had increases than decreases in performance when exposed to the tasks a 

second time, and the frequency and size of performance gains often were more than 3 
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scaled score points.  Given what is known concerning brain changes with subsequent 

exposure to the same task, these results are concordant with the neuropsychological 

literature.   

The present study also grouped the examinees based on their time 1 scores in 

relation to the mean (aforementioned LTE and GTE groups).  When grouping the data in 

this manner, similar trends in performance were observed for both groups.  Comparing 

the actual and predicted score differences utilizing chi-square analyses indicated a poor 

goodness of fit between what would be predicted by the traditional psychometric model 

and the actual results obtained using the neuropsychological performance model.  These 

findings are inconsistent with a traditional conceptualization of reliability, which would 

predict some degree of regression to the mean for WAIS–III subtest scores both above 

and below the mean.  For the GTE group, the majority of examinees were predicted to 

earn a time 2 score identical to their time 1 score.  Most of the remaining examinees’ 

scores were expected to regress to the mean, with time 2 scores 1 point lower than their 

time 1 score. For the LTE group, the majority of examinees also were predicted to earn a 

time 2 score identical to their time 1 score, and most of the remaining examinees’ scores 

were expected to regress to the mean, with time 2 scores that were 1 point higher than 

their time 1 score.   

 As noted above, for a majority of cases, the psychometric model predicted no 

change in performance from time 1 to time 2.  Any predicted change reflected regression 

to the mean, based on initial subtest performance.  For example, for time 1 scores above 

the mean (GTE group), time 2 scores were predicted to decrease to the mean.  
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Conversely, for time 1 scores below the mean, time 2 scores were predicted to increase to 

the mean (progression in the form of regression to the mean). 

 Analysis of actual score performance for the LTE group revealed that for all 

subtests within all four composites, a much higher percentage of examinees had score 

increases toward the mean.  Traditionally, psychometric theory would consider these 

increases to be due to regression to the mean and identify the variability from time 1 to 

time 2 as the effects of chance or random error.  However, with the exception of Object 

Assembly, a greater percentage of actual score increases than predicted score increases 

also was noted for the GTE group.  This finding is in direct contradiction to the 

traditional psychometric theory explanation of score changes, in that traditional theory 

predicts that scores above the mean at time 1 will produce scores closer to the mean at 

time 2.  This finding for the GTE group suggests that what has traditionally been 

conceptualized as regression to the mean for the LTE group is actually progression 

beyond expected performance levels based on changes in brain function.  For both the 

GTE and the LTE groups and for all subtests of the WAIS–III, there was a higher 

percentage of actual score progression than no change among examinees for whom no 

change was predicted.   

 For examinees scoring above the mean at time 1, either no change or negative 

change was predicted as a result of regression to the mean.  Comparison of time 1 to time 

2 results indicated that the GTE group did have some regression to the mean.  However, 

as was the case with the LTE group, there were greater percentages of actual score 

progression away from the mean than regression to the mean for nearly all subtests.  The 

exception was for the Comprehension Subtest, in which the proportion of cases with 
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regression to the mean was slightly higher than the proportion with progression away 

from the mean (40% vs. 38%).  This suggests that what has traditionally been 

conceptualized as random error in variability at time 2 is more likely to represent real 

systematic changes in brain function, producing learning and resulting in progression 

beyond expected performance levels.  Therefore, support for a neuropsychological 

performance model of interpretation is reflected in the fact that all subtests had both 

greater proportions of actual progression than no change, and greater percentages of 

actual than predicted upward progression.   

 The finding of larger proportions of score increases than score decreases at time 2 

for examinees scoring above the mean at time 1 (GTE group) strongly suggests that some 

portion of the large number of score increases observed for examinees scoring below the 

mean at time 1 (LTE group) was due not to regression to the mean as would be predicted 

by psychometric theory, but rather to changes in brain function, resulting in real learning 

and task improvement.  Although the actual proportion of such real change versus change 

due to random error cannot be ascertained at this time, it is likely that the proportion of 

examinees in the LTE group having increases due to real changes in cognitive 

functioning is not greater than the proportion of examinees in the GTE group having 

progression from the mean at time 2 and is possibly smaller than the GTE proportion 

because examinees in the LTE group are likely to be less efficient learners than 

examinees in the GTE group. 

The data analyses conducted indicate that the performance consistency model 

proposed by McCloskey (1990) provided a more neuropsychologically accurate 

representation of actual WAIS–III subtest test-retest patterns than what would be 
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predicted by the traditional psychometric model, which hypothesized little change from 

time 1 to 2 and that attributes actual change to random error.  It is important to note that 

the performance consistency model provided a more accurate representation regardless of 

whether the data was grouped according to the total sample or in reference to 

performance above or below the mean at time 1 (LTE and GTE groups).  Cross-

tabulation analyses for the total combined sample revealed statistically significant 

differences between the obtained and predicted score difference frequencies for all 

performance levels across all subtests.   

Clinical utility of a decision consistency performance model compared to the 

traditional psychometric model. 

The second aim of the study was to examine the usefulness of the 

neuropsychologically based performance model in terms of WAIS–III subtest interpretive 

information for clinicians in comparison to traditional psychometric conceptualizations of 

reliability.  Whitaker (2010) noted that traditional psychometric theory assumes that 

intelligence is a static trait that does not change over time, especially when the time 

interval is short, and that changes in performance that do occur from time 1 to time 2 are 

due to noninterpretable random error, as opposed to clinically meaningful, interpretable 

changes.   

If these conceptualizations about test-retest performance were clinically accurate, 

one would expect to see little or no difference between time 1 and time 2 performances in 

a group such as the WAIS–III test-retest sample.  However, as shown in the analyses of 

the WAIS–III data, increases in scores from time 1 to time 2 were observed much more 

frequently than score decreases, and these increases often occurred for examinees who 
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would be predicted to have scores with regression to the mean.  Analyses conducted 

using the neuropsychologically based performance consistency model revealed that all 

but one of the subtests had a progression effect that was much more frequent than a 

regression effect.  By inference, based on the performance of examinees who scored 

above the mean at time 1, it can be hypothesized that the time 2 gains made by many of 

the examinees who scored below the mean at time 1 also reflected a progression effect 

rather than a regression effect, especially in cases in which the gains were quite large (3 

or more scaled score points).   

Utilizing the same neuropsychologically based performance consistency model 

applied in this study, Whitaker (2010) found strikingly similar data trends that reflected 

progression (rather than regression) effects for all WISC–IV subtest and processing 

scores.  According to psychometric theory, if random measurement error was the cause 

for variations in performance from time 1 to time 2, then such error should distribute 

randomly.  Such random distribution should theoretically yield equal amounts of score 

regression and progression, depending on the relation of time 1 performance to the mean.  

However, this was not observed in the present study or in Whitaker’s (2010) analysis of 

the WISC–IV data.  When examining actual time 1 and time 2 performance, not only 

were there differences in comparison to predicted results, there also was a very strong 

overall progression effect both for examinees scoring below the mean at time 1 and for 

examinees scoring above the mean at time 1.  These results are counter to the concept of 

random distribution of error that should have seen observed, based on psychometric 

theory.   
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The alternative model used here, first presented by McCloskey (1990) and later 

applied by Whitaker (2010), is a neuropsychologically based performance model that 

attempts to improve upon the traditional psychometric approach.  The performance model 

appears to offer an improvement over the traditional psychometric model in two 

important and interconnected ways: it provides a better fit with what is known about 

brain function from a neuropsychological perspective, and it enables clinicians to derive 

greater clinical utility from their assessments.  Perhaps most importantly, it takes into 

account the realities of brain-based behavior that occurs during engagement in cognitive 

tasks (Whitaker, 2010).   

 Based on a neuropsychological model, variations in test performance from time 1 

to time 2 are not viewed as the result of random error, but rather as the result of real 

changes in brain function due to exposure and the nature of the cognitive task that is 

being performed.  Specifically, the progression effect is hypothesized to result from 

greater efficiency in the expression of already learned skills, as well as the learning that 

occurs after the first exposure to a novel task (Whitaker, 2010).  In a neuropsychological 

model, regression, when it occurs, is not conceptualized as random error, but rather as the 

result of less efficient application of cognitive capacities.  Stated another way, 

progression and regression could be conceptualized as the degree of efficiency in the use 

of executive functions, as these are mental processes that cue the effective use of other 

cognitive capacities (McCloskey, Perkins, & Van Divner, 2009).  Another characteristic 

of this theory is that not only would variations in test-retest performance occur, but these 

variations would not distribute randomly.  That is, the progression effect typically will be 

larger than the regression effect for any group of examinees because the human brain 
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changes when it is exposed to information, and the relative strength of this progression 

effect is a function of the cognitive processing demands of the tasks being performed.   

The progression effects hypothesized based on a neuropsychological model were 

found in both the current study and the study conducted by Whitaker (2010).  Whitaker 

(2010) noted that a review of the neuropsychological and education literature identified 

several cognitively based factors that will impact performance on subsequent 

administrations of a task, including psychomotor speed and the novelty of a given task.  

These factors reflect the cognitive processing demands necessary for successful task 

completion.   

When discussing reliability, the results of test-retest analyses using the traditional 

psychometric model are typically presented in the form of a table listing the correlations 

between time 1 and time 2 performance.  These correlations are interpreted as stability 

coefficients, representing the degree to which performance remains stable from time 1 to 

time 2.  In this model, the variability present in scores at time 1 should remain the same at 

time 2, thereby producing a high correlation between performance at time 1 and time 2.  

The higher the correlation, the more performance at time 2 resembled exactly the 

performance at time 1 and the more stable the subtest performance.  This presence of a 

high degree of stability reflected in a high correlation coefficient value is then interpreted 

as an indication of good reliability.  Conversely, if many, but not all, scores increase from 

time 1 to time 2 and the increases are not consistent for all examinees, then the 

correlation coefficient will be much lower.  The presence of a high degree of instability 

reflected in a low correlation coefficient value is then interpreted as an indication of poor 

reliability. 
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In the neuropsychological model, changes in performance from time 1 to time 2 

that vary in magnitude from one examinee to another are not viewed as undesirable 

consequences of random error factors, but rather as expected outcomes, based on what is 

known about the changes that occur in human brains when these brains are exposed to 

information.  Correlation coefficients based on stability of scores from time 1 to time 2 

therefore are not likely to be the best way to understand or interpret the reliability of what 

is occurring with performance from time 1 to time 2.  Rather, a table (such as Table 14) 

that presents the percentages of the total sample with positive change, negative change, 

and no change in test-retest scaled scores, along with the test-retest reliability coefficients 

derived from analysis of the data, may be a more effective way to help clinicians 

understand what to expect in terms of typical variations in examinee performance from 

time 1 to time 2. 

Table 15 shows that for every subtest, the number of examinees with scaled score 

increases of 1 or more points was greater than the number who earned the same score 

and/or the number with scaled score losses of 1 or more points.  It is equally important to 

note that the number of examinees with score decreases was always smaller than the 

number of examinees whose scores remained the same combined with the number of 

examines whose scores increased.  When viewing the data, it also is clear that although 

more positive than negative change was noted overall, the magnitude of this change 

varied across the subtests.  The key interpretive consideration here is that a 

neuropsychological model posits that progression is impacted by the cognitive demands 

of specific tasks.   
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Table 15 

Summary of Percentage of Cases Within Score-Change Categories and Reliability 

Coefficients for Each WAIS–III Subtest and Selected Process Scores 

Subtest % 

Negative 

Change 

%  

No 

Change 

% 

Positive 

Change 

Positive:Negative 

Change Ratio 

rx1x2 

Vocabulary 25 37 38 1:52 .93 

Information 12 39 49 4:08 .92 

Similarities 25 30 45 1:80 .84 

Comprehension 35 23 42 1:20 .85 

Block Design 27 23 50 1:85 .89 

Matrix Reasoning 35 24 41 1:17 .89 

Picture Completion 10 19 71 7:10 .82 

Picture Arrangement 23 20 57 2:48 .72 

Object Assembly 18 20 62 3:44 .73 

Digit Span 35 21 44 1:26 .91 

Arithmetic 28 28 44 1:57 .88 

Letter-Number 

Sequence 

34 19 47 1:38 .79 

Digit Symbol-Coding 16 22 62 3:88 .82 

Symbol Search 25 27 48 1:92 .77 
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For example, given what has already been stated about how brains become more 

efficient at completing a novel task when exposed to it a second time, it is not surprising 

that the greatest percentages of change were noted with some of the Perceptual 

Reasoning and Processing Speed subtests.  Subtests in these areas are the most novel on 

the WAIS–III and likely represent specific tasks that examinees had never been asked to 

perform.  However, once the brain has been exposed to a particular task, the 

neuropsychological literature indicates that cognitive functioning shifts from right 

anterior sections of the cerebral cortex to left posterior sections as the brain classifies and 

codifies what it has learned and stores strategies for performing such tasks when 

encountered again.  Once a task has been encountered, it is no longer truly novel, and the 

brain develops new and often more efficient strategies for problem solving when exposed 

to the task a second time.  Gains in performance therefore could be conceptualized as the 

brain expressing the development and use of more efficient strategies.   

These patterns in cognitive processing demands can be seen both across and 

within composites.  For example, the data indicates that the most robust gains were made 

with the Picture Arrangement, Picture Completion, Object Assembly, and Digit Symbol-

Coding subtests.  These are the most novel of the subtests on the WAIS–III.  In general, 

these are subtests in which the first exposure could be thought of as a learning trial in 

which the examinee is exposed to a novel task for which he or she must develop problem 

solving or reasoning strategies.  During subsequent exposure to the tasks, the person does 

not completely relearn the task as if it were never seen before, but rather draws on the 

prior experience with the task to complete it in a more efficient manner.  Whitaker (2010) 

described performance of the Picture Completion subtest to illustrate this.  During Picture 
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Completion, the examinee is given 20 seconds to scan a picture and identify what 

essential aspect of the picture is missing.  Progression gains on the second exposure to the 

task likely result from having already been exposed to the task, knowing what to look for 

and noticing details that may have been missed on the initial scan.   

An analogy seems appropriate here.  The first time that a person is driving to a 

new and unknown location would likely be characterized by periods of trial and error as 

he or she attempted to find their way.  When asked to drive again to the same location, 

the person’s performance would likely progress/improve as he or she has developed 

strategies/knowledge for how to find the location in a more efficient manner.  If finding 

the unknown location were a formal test and repeated several times, the psychometric 

theoretical framework would espouse that the person may struggle just as much the next 

time they attempt to find the location, despite now having more knowledge and 

experience with the task and that their attempts would distribute fairly evenly around a 

true score.  What seems more appropriate is that the person would draw on prior 

knowledge and problem solving strategies and become more efficient at reaching the 

destination each time he or she attempted to do so.  Would not brains be expected to act 

in the same manner with subsequent exposure to most cognitive tasks? Does it not make 

more clinical, theoretical, practical sense and, based on the results of this study and that 

conducted by Whitaker (2010), more statistical sense?  

As would be expected, the cognitive processing demands and the impact they 

have on test-retest performance are somewhat different for the Verbal Comprehension 

subtests.  Although an overall progression effect was observed with these tasks, as shown 

in Table 14, subtests in these domains had some of the highest percentages of no change, 
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with Vocabulary and Information having the highest percentages of no change (37% and 

39%, respectively) of all subtests.  Also, as shown in Table 5, the gains in these subtests 

were much smaller for a greater proportion of examinees than for the more novel 

subtests.  Given what we know about the nature of the cognitive processes primarily 

involved in the performance of the Vocabulary and Information subtests (retrieval from 

long-term storage), these results are not surprising.  Information and Vocabulary are 

measures of the ability to retrieve crystallized/acquired/learned knowledge from long-

term storage.  These tasks are not novel to the examinee and thus would not be expected 

within a neuropsychological framework to have large gains between time 1 and 2 because 

of the relatively small chance of an examinee making significant gains in 

crystallized/acquired knowledge in such a brief time.  Minor variations likely result from 

increased or decreased efficiency in the retrieval of information from long-term storage 

(Whitaker, 2010).   

Although many examinees had an improvement in time 2 scores, some negative 

score changes were apparent from time 1 to time 2 for all subtests.  Within the 

neuropsychological framework, variations in performance, both increases and decreases, 

can be conceptualized primarily as variations in cognitive efficiency due to variations in 

the use of executive functions to direct effective performance.  Specifically, instead of 

attributing these variations to random error of unexplainable origin, increases and 

decreases in performance could be conceptualized as the degree of efficiency an 

examinee has in the use of executive functions, as these are mental processes that cue the 

use of the other cognitive capacities to perform a task.  For example, although an 

examinee is not likely to acquire or lose a significant amount of crystallized knowledge 
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within the test-retest time frame, they may indeed demonstrate more or less efficiency in 

retrieving specific information from long-term storage.  This is a subtle yet important 

difference, in that score differences from time 1 to time 2 are not a reflection of changes 

in word knowledge (vocabulary) as much as a reflection of changes in how efficiently an 

examinee is retrieving the knowledge of words from long-term storage.  Retrieval, along 

with other executive functions, such as directing the monitoring of performance for 

accuracy, directing sustained attention to task, and directing set shifting are but a small 

sample of the various executive functions required for directing cognitive capacities to 

achieve successful performance.   

Beyond providing a more neuropsychologically and statistically sound 

representation of variations in test performance from time 1 to time 2, the present model 

also provides clinicians with the ability to derive more meaningful information from their 

assessments to potentially drive the development of more meaningful interventions.  

Variations conceptualized as random error preclude subtest level analysis that could 

provide the highest level of specificity for intervention development.  If clinicians 

interpret by psychometric strength alone, the strongest coefficient would be the full scale 

IQ.  Interpreting only the full scale IQ, even when index scores are relatively consistent 

with one another, obscures potentially significant strengths and weaknesses that could be 

revealed via subtest level analysis/interpretation.  Obscuring this information is 

ultimately a disservice to examinees and has the potential to lead to treatments that could 

at best be termed generic and at worst ineffectual.  The results in Table 14 highlight these 

points.  As Whitaker (2010) similarly found, there appears to be a lack of meaningful 

relationships between score change patterns based on the neuropsychological model and 
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the reliability coefficient.  Further, interpreting only the reliability coefficient obscures 

meaningful differences concerning the nature of score increases and decreases.  For 

example, note the nearly identical correlation coefficients of .84 and .82 obtained for the 

Similarities and Picture Completion subtests, despite the markedly different patterns of 

score change exhibited for these two subtests (changes of 25%, 35%, and 45% for 

Similarities vs. 10%, 19%, and 71% for Picture Completion).  Examining the percentage 

of change for these two subtests, it is difficult to accept the assertion of the psychometric 

model that performance on these two subtests is equal in stability over a 2- to 4-week 

period.  Rather, the change data reveal that examinees were much more likely to have 

score increases and much less likely to have score decreases on Picture Completion than 

for Similarities. 

Conversely, although the change patterns were nearly identical for the Digit 

Symbol-Coding and Object Assembly subtests (16%, 22%, and 62% for the Digit-

Symbol Subtest vs. 18%, 20%, and 62% for the Object Assembly subtest), the correlation 

coefficients of .82 for Digit Symbol-Coding and .72 for Object Assembly suggest that 

Digit Symbol-Coding had a much more stable pattern of performance from time 1 to time 

2 than Object Assembly. 

 As noted above, the current study builds upon the work of Whitaker (2010) in 

applying the neuropsychological performance consistency model first espoused by 

McCloskey (1990) to an adult population.  It is interesting to interpret the results of the 

current study in light of what is known concerning cognitive theories of aging.  In terms 

of the fluid/crystallized theory of cognitive aging (Horn and Cattell, 1966, 1967) one 

would expect to see comparatively fewer gains on fluid tasks than crystallized tasks in an 
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older population (WAIS–III) than a younger population (WISC–IV).  A sampling of the 

percentage of actual score increases on subtests generally believed to access fluid abilities 

did not conform to this hypothesized trend.  The percentage of cases with score increases 

on the Block Design, Matrix Reasoning, and Picture Completion subtests was 59%, 48%, 

and 74%, respectively, for the WISC–IV test-retest sample, and 50%, 41%, and 71%, 

respectively, for the WAIS–III test-retest sample.  Nonetheless, this is a somewhat 

difficult comparison to make methodologically because the populations were not 

stratified by age in the Whitaker study or the current study.  Thus, for both test-retest 

samples, examinees at various ages, and thus at different stages of age-related cognitive 

development, were analyzed together.  It can be conclusively stated, however, that there 

were significantly higher percentages of examinees with score increases on both the 

WISC–IV and WASI–III, and that in many cases, this change reflected a progression 

effect rather than regression effect.   

Limitations and suggestions for future research. 

The present study represents an extension of Whitaker’s (2010) initial attempt to 

reconceptualize reliability and the manner in which intelligence test subtest reliability is 

presented.  Future research is needed to refine the methodology and to extend the results.  

The present study borrows heavily from the research by Whitaker (2010); thus, many of 

the limitations continue to exist.   

 For example, the test-retest interval of 14 to 30 days is relatively short compared 

to test-retest intervals that may be present in nonexperimental settings.  Thus, this may 

adversely impact the extent to which the results of this study can be generalized to the 

clinical setting.  Future research could both increase the test-retest intervals and include 
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multiple repeat administrations.  It would be very interesting to see if third, fourth, and 

fifth administrations would have an overall progression effect noted in both the present 

study and that of Whitaker (2010).  Further, if they did continue to result in the 

progression effect, will there be a point of diminishing returns in increased performance? 

Will there be variations, depending on the particular cognitive demands of the subtest? 

These are questions worthy of further research. 

Future researchers could stratify samples based on age to examine whether test-

retest reliability performance patterns are concordant with expected patterns, based on the 

neuropsychological literature.  It also would be interesting to examine whether the data 

pattern of score progression also occurs in a preschool population, using the early 

childhood version of the Wechsler Scales (WPPSI–III).  This might be particularly 

interesting, given the neuropsychological performance consistency model’s 

conceptualization of score variation being driven the degree of efficiency in using 

executive functions, which are likely at their weakest stage of neural development during 

preschool years.   

Further limitations and suggestions for future research relate to the samples used 

in these test-retest studies.  According to the WAIS–III manual, exclusion criteria 

included, but were not limited to, memory problems, head injuries, and various medical 

and psychiatric conditions that may impact cognition.  It would be interesting to examine 

the test-retest patterns in samples of individuals with impairments to determine whether 

they are concordant with current results.  Due to the importance of executive functions 

within the neuropsychological framework, it may be especially beneficial to have studies 

conducted in populations with executive dysfunction, such as individuals diagnosed with 
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ADHD.  Whitaker (2010) also called for studies to be conducted to determine test-retest 

performance for populations of learning disabled (LD) individuals, and specifically LD 

subtypes.  Hain et al. (2009) developed a framework of learning disability subtypes based 

on cognitive, academic, and behavioral/social-emotional factors that might be especially 

appropriate as a basis for sample selection for such a study.   

The most obvious extension would be to apply the methodology in this study to 

the Wechsler Assessment of Adult Intelligence – Fourth Edition (WAIS–IV, Wechsler, 

2008).  The development of the WAIS–IV represented significant changes in test 

structure and theoretical orientation in comparison to the WAIS–III (Lichtenberger, 

Sotelo-Dynega, & Kaufman, 2009).  Examples of key revisions include updated norms, 

updated theoretical foundations, enhanced clinical utility, enhancement of fluid reasoning 

measurement and strengthening the overall framework of the test via factor analysis.  

Specifically, in terms of theoretical changes, fluid reasoning, working memory, and 

processing speed were given much greater attention than they received in the WISC–III.  

In addition, the WAIS–IV now has a more modern and conceptually clear scale structure, 

with the elimination of the older Verbal and Performance IQs and the adoption of the 

four-scale structure of the WISC–IV: Verbal Comprehension, Perceptual Reasoning, 

Working Memory, and Processing Speed (Lichtenberger et al., 2009).   

During the transition to the WAIS–IV, three new subtests were added in place of 

two that had been deleted from the WAIS–III.  Specifically, Picture Arrangement and 

Object Assembly were deleted and the Visual Puzzles, Figure Weights, and Cancellation 

subtests were added.  Visual Puzzles is part of the Perceptual Reasoning scale and is a 

timed subtest in which the examinee views a completed puzzle and the appropriate 
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response option that reconstructs the puzzle.  Figure Weights is also part of the 

Perceptual Reasoning scale and is a timed assessment in which the subject views a scale 

with missing weights and selects the response that keeps the scale balanced.  Lastly, 

Cancellation is part of the Processing Speed Index and is a timed assessment in which the 

examinee scans and marks target shapes from a stimulus set (Lichtenberger et al., 2009).   

As noted above, the results of this study were very consistent with results 

obtained from the performance consistency model Whitaker (2010) applied to the WISC–

IV.  When applying this same model and methodology to the WAIS–IV, it is predicted 

that results would again be similar.  Regardless of whether the sample is grouped by total 

sample or in reference to subject performance to the mean, an overall progression effect 

rather than regression to the mean would be predicted.  Specifically, regardless of scores 

in relation to the mean, most subtests would have a much greater frequency of positive 

than negative scores compared to what would be predicted, given the traditional 

psychometric model.  Also, when grouping subjects in terms of their relation to the mean, 

a poor goodness of fit obtained via chi-square analysis would be expected between 

traditional psychometric reliability estimates and actual results obtained via the 

performance consistency model.   

The most robust progression gains were generally noted on subtests within the 

Perceptual Reasoning and Processing Speed indices.  These subtests require the most 

novel cognitive processing and, given the results of the current study, it would be 

predicted that the most robust gains would be noted in these subtests.  As noted above, 

during initial exposure to these types of subtests, subjects are likely to develop problem-

solving strategies for how to complete items.  During subsequent exposure to the 
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subtests, the subjects then have preexisting strategies to draw upon that they are able to 

refine and express more efficiently via executive functions that likely lead to performance 

gains.  However, as noted above, subtests that are likely most susceptible to performance 

gains (Picture Arrangement and Object Assembly) have been deleted from the WAIS–IV.  

Although the newly adopted Figure Weights and Visual Puzzles would also be predicted 

to show large performance gains, they would likely not be quite as large as those 

evidenced in Picture Arrangement and Object Assembly on the WAIS–III simply because 

of the peculiarities of the task requirements and subtest design.  During Picture 

Completion, the examinee is given 20 seconds to scan a picture and identify what 

essential aspect of the picture is missing.  Progression gains on the second exposure to the 

task likely result from having already been exposed to the task, knowing what to look for, 

and noticing details that may have been missed on the initial scan.  Although Figure 

Weights and Visual Puzzles are both novel tasks, they likely do not possess the same 

sensitivity to second exposure impact.   

Similarly, the smallest effects in the present study were found on subtests that 

required more crystallized or codified knowledge.  These subtests address more 

routinized information that is less likely to increase from time 1 to time 2 assessment.  

This same pattern of performance would be expected in WAIS–IV subtests, with subtests 

such as Vocabulary and Information, although still having an overall progression effect, 

having some of the lowest percentages of performance change.   

In conclusion, the present study sought to extend the body of research in the field 

of neuropsychologically based performance models and their appropriateness in 
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representing test-retest performance.  Overall, this model was found to be more 

appropriate and useful in interpreting actual test results of examinees.   
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