
Philadelphia College of Osteopathic Medicine
DigitalCommons@PCOM

PCOM Scholarly Papers

2016

Immune Complex-Induced, Nitric Oxide-
Mediated Vascular Endothelial Cell Death by
Phagocytes Is Prevented with Decoy FcyReceptors
Ramanjaneya V. R. Mula

Deepa Machiah

Lauren Holland

Xinyu Wang
Philadelphia College of Osteopathic Medicine, xinjuwa@pcom.edu

Harish Parihar
Philadelphia College of Osteopathic Medicine, harishpa@pcom.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.pcom.edu/scholarly_papers

Part of the Immunopathology Commons

This Article is brought to you for free and open access by DigitalCommons@PCOM. It has been accepted for inclusion in PCOM Scholarly Papers by
an authorized administrator of DigitalCommons@PCOM. For more information, please contact library@pcom.edu.

Recommended Citation
Mula, Ramanjaneya V. R.; Machiah, Deepa; Holland, Lauren; Wang, Xinyu; Parihar, Harish; Sharma, Avadhesh; Selvaraj, Periasamy;
and Shashidharamurthy, Rangaiah, "Immune Complex-Induced, Nitric Oxide-Mediated Vascular Endothelial Cell Death by
Phagocytes Is Prevented with Decoy FcyReceptors" (2016). PCOM Scholarly Papers. Paper 1680.
http://digitalcommons.pcom.edu/scholarly_papers/1680

http://digitalcommons.pcom.edu?utm_source=digitalcommons.pcom.edu%2Fscholarly_papers%2F1680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pcom.edu/scholarly_papers?utm_source=digitalcommons.pcom.edu%2Fscholarly_papers%2F1680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pcom.edu/scholarly_papers?utm_source=digitalcommons.pcom.edu%2Fscholarly_papers%2F1680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/36?utm_source=digitalcommons.pcom.edu%2Fscholarly_papers%2F1680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.pcom.edu/scholarly_papers/1680?utm_source=digitalcommons.pcom.edu%2Fscholarly_papers%2F1680&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@pcom.edu


Authors
Ramanjaneya V. R. Mula, Deepa Machiah, Lauren Holland, Xinyu Wang, Harish Parihar, Avadhesh Sharma,
Periasamy Selvaraj, and Rangaiah Shashidharamurthy

This article is available at DigitalCommons@PCOM: http://digitalcommons.pcom.edu/scholarly_papers/1680

http://digitalcommons.pcom.edu/scholarly_papers/1680?utm_source=digitalcommons.pcom.edu%2Fscholarly_papers%2F1680&utm_medium=PDF&utm_campaign=PDFCoverPages


RESEARCH ARTICLE

Immune Complex-Induced, Nitric Oxide-
Mediated Vascular Endothelial Cell Death by
Phagocytes Is Prevented with Decoy
FcγReceptors
Ramanjaneya V. R. Mula1, Deepa Machiah3, Lauren Holland1, XinyuWang1,
Harish Parihar2, Avadhesh C. Sharma1, Periasamy Selvaraj4,
Rangaiah Shashidharamurthy1*

1 Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of
Pharmacy, Suwanee, Georgia, United States of America, 2 Department of Pharmacy Practice, Philadelphia
College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America,
3 Department of Molecular Pathology Laboratory, Yerkes National Primate Research Centre, Atlanta,
Georgia, United States of America, 4 Department of Pathology and Laboratory Medicine, Emory University,
Atlanta, Georgia, United States of America

* rangaiahsh@pcom.edu

Abstract
Autoimmune vasculitis is an endothelial inflammatory disease that results from the deposi-

tion of immune-complexes (ICs) in blood vessels. The interaction between Fcgamma recep-

tors (FcγRs) expressed on inflammatory cells with ICs is known to cause blood vessel

damage. Hence, blocking the interaction of ICs and inflammatory cells is essential to pre-

vent the IC-mediated blood vessel damage. Thus we tested if uncoupling the interaction of

FcγRs and ICs prevents endothelium damage. Herein, we demonstrate that dimeric FcγR-

Igs prevented nitric oxide (NO) mediated apoptosis of human umbilical vein endothelial

cells (HUVECs) in an in vitro vasculitis model. Dimeric FcγR-Igs significantly inhibited the

IC-induced upregulation of inducible nitric oxide synthase (iNOS) and nitric oxide (NO)

release by murine monocytic cell line. However, FcγR-Igs did not affect the exogenously

added NO-induced upregulation of pro-apoptotic genes such as Bax (15 fold), Bak (35 fold),

cytochrome-C (11 fold) and caspase-3 (30 fold) in HUVECs. In conclusion, these data sug-

gest that IC-induced NO could be one of the major inflammatory mediator promoting blood

vessel inflammation and endothelial cell death during IC-mediated vasculitis which can be

effectively blocked by dimeric decoy FcγRs.

Introduction
The immune system has evolved to defend our body against invading pathogens, however
under certain conditions it attacks itself, leading to the development of autoimmune diseases.
During the development of autoimmune diseases, autoantibodies bind to the antigens and
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form immune complexes (ICs). During autoimmune vasculitis, circulating ICs deposit in the
vascular endothelial walls leading to an infiltration of inflammatory cells [1, 2] causing weaken-
ing and narrowing of the blood vessels. This vascular inflammation results in vital organ dam-
age including heart failure and neurological conditions such as stroke.

ICs deposited on the vascular endothelial wall cause the inflammation through two different
pathways: activation of inflammatory cells through the binding of FcγRs and by the initiation
of the complement pathway. The requirement of FcγR expressing cells during the pathogenesis
of IC-mediated inflammatory vascular damage has been demonstrated in humans as well as
gene knockout mice models [3, 4]. The interaction of between ICs and the FcγRs expressed on
inflammatory cells is a key event in the development of various IC-mediated diseases including
vasculitis [5–9] and leads to the destruction of tissues/cells with IC-deposits through antibody
dependent cellular cytotoxicity and phagocytosis [6, 10]. Apart from FcγRs interactions, ICs
can also mediate damage through the complement pathway [11, 12]. Activation of complement
pathway by ICs results in tissue/cell damage directly or indirectly by attracting inflammatory
cells. The direct damage to cells through the complement pathway may not be a major mecha-
nism of pathogenesis in many autoimmune inflammatory disorders because of the comple-
ment regulatory mechanism. However, as an indirect mechanism, the chemoattractant nature
of complement peptide C5a can attract inflammatory cells in addition to the upregulation of
FcγRs on macrophages [11, 13]. Once inflammatory cells are attracted by C5a, ICs can then
bind to FcγRs on their surface and trigger effector mechanisms [3, 14]. Thus, the FcγR-expres-
sion on inflammatory cells might be an essential player in IC-mediated tissue/cell damage.
These studies suggest that ligation of FcγRs with ICs results in the activation of inflammatory
cells accumulated at the site of IC deposition in blood vessels. Inflammatory mediators released
by activated cells are responsible for the endothelial cell inflammation, injury and subsequent
vasculitis.

It has been shown that IC-mediated vascular damage is linked to the release of toxic free
radicals by activated inflammatory cells such as neutrophils and macrophages [15–17]. In par-
ticular, nitric oxide (NO), a highly reactive free radical, is implicated in many IC-mediated
inflammatory autoimmune disorders [18]. The critical enzyme involved in the production of
NO is the nitric oxide synthase (NOS) which mediates the conversion of L-arginine to L-citrul-
line and NO. NOS exist as three isoforms nNOS (neuronal) eNOS (endothelial) and iNOS
(inducible). Both, nNOS and eNOS are endogenously expressed and known to be required to
maintain normal physiological functions. Whereas many inflammatory disorders are associ-
ated with upregulated iNOS [19–21] whose progression was arrested by iNOS blockers [22].
These data suggest that NO produced from over expressed iNOS may be responsible for caus-
ing the tissue damage. Interestingly, exogenous NO has both anti- and pro-apoptotic effects on
endothelial cells. This differential function of NO is concentration dependent. At a low concen-
tration (picomolar to nanomolar), NO induces survival signals by upregulating anti-apoptotic
proteins, whereas a high concentration of NO (micromolar) initiates the pro-apoptotic path-
way [23, 24]. These results suggest that the normal physiological levels of NO are protective
during any external or internal endothelial damage but will be cytotoxic at higher concentra-
tion produced during certain inflammatory conditions. In support of this, it has been shown
that murine macrophages produce up to 1mM concentration of NO in an in vivo atherosclero-
sis model suggesting that macrophages might be the major cells to produce high levels of NO
in vivo [25, 26]. Thus, NO works as a double-edged sword protecting normal physiological
functions at a low amount and its higher levels resulting in nitrosative stress induced apoptosis
of cells. IC interactions with macrophages or effector cells trigger iNOS upregulation resulting
in the production of copious amounts of NO leading to tissue injury [15, 17, 23].

Immune Complex-Mediated Endothelial Cell Death
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The current study was designed to test the hypothesis that extracellularly secreted NO by
IC-activated inflammatory cells is a major factor in causing inflammatory vascular endothelial
cell death (vascular damage) during autoimmune vasculitis. Herein we used murine monocytic
cell line as model for in vitro vasculitis studies. Our data demonstrates that blocking IC binding
to FcγRs expressed on inflammatory cells using recombinant dimeric FcγR-Ig molecules is an
effective way to inhibit IC-mediated NO production and subsequent vascular damage.

Materials and Methods

Cell lines and reagents
Human umbilical vein endothelial cells (HUVECs) and murine monocytic cell line RAW264.7
were purchased from ATCC (Manassas, VA). MediumM200, low serum growth supplement
(LSGS), EDTA (0.5% trypsin—0.02% EDTA), penicillin G and streptomycin sulfate, and super
script first strand cDNA synthesis kit were purchased from Life Technologies (Grand Island,
NY). Gene specific primers were from Real Time Primers, LLC (Elkins Park, PA). Caspase-3
enzyme assay kit fromMolecular Probes (Eugene, Oregon). Dimethyl sulfoxide; Escherichia
coli LPS; Endothelial cell growth supplement (ECGS) and 1400W small molecule specific
inhibitor for iNOS and PKH26 red fluorescent cell membrane labelling kit were purchased
from Sigma Aldrich (St. Louis, MO). Ovalbumin, rabbit anti-Ovalbumin IgG antibodies,
S-Nitroso-N-Acetyl-D, L-Penicillamine (SNAP) were procured from Cayman chemicals (Ann
Arbor, Michigan). The CellTiter-Blue Assay kit from Promega (Madison, WI). RIPA lysis
buffer and protease inhibitor cocktail were purchased from Santa-Cruz biotechnology (Dallas,
Texas). SYBR RT-PCR master mix was purchased from Thermo-Fisher Scientific (Waltham,
MA). Fc receptor blocking 2.4G2 monoclonal antibody that react specifically with mouse Fcγ
receptors was procured from Tonbo biosciences (San Diego, CA). RNeasy Mini kits were
bought from Qiagen (Valencia, CA).

Cell culture and IC preparation
HUVECs were cultured as described [27]. Briefly, HUVECs were serially propagated in M200
supplemented with LSGS. Early-passage cultures were used in all the experiments. RAW264.7
cells were cultured in RPMI 1640 medium supplemented with 10% heat inactivated fetal
bovine serum. Both the cell lines were maintained with 100 U/ml penicillin and 100μg/ml
streptomycin and incubated at 37°C in 5% CO2 + 95% humidity. IC was prepared as we previ-
ously described [28, 29]. Briefly, egg ovalbumin and anti-ovalbumin rabbit IgG were mixed in
a ratio of 3:1 (w/w) and incubated overnight at 4°C and the soluble ICs were used for the study.
All the stimulation experiments were carried out in serum-free medium unless stated
otherwise.

Expression and purification of recombinant soluble CD16A-Ig and
CD32A-Ig
The construction and expression of dimeric form of CD16A-Ig and CD32A-Ig by ligating the
extracellular domain of human CD16A or CD32A to Fc domain of the human IgG1 heavy
chain has been reported by our group [28, 30]. The recombinant molecules were purified from
CHO cell transfectants using a protein-G Gamma Bind Plus (Pharmacia Biotech, NJ) Sephar-
ose column as described [28]. The purified CD16A-Ig and CD32A-Ig molecules were analyzed
by 10% SDS-PAGE under reducing and non-reducing conditions and the protein bands were
visualized by silver staining and Western blot. Protein concentration was measured using the
Micro BCA protein assay kit (Pierce, NJ) with BSA as a standard.

Immune Complex-Mediated Endothelial Cell Death

PLOS ONE | DOI:10.1371/journal.pone.0153620 April 21, 2016 3 / 20



In vitro vasculitis assay
HUVECs (1x106 cells/well) were cultured to confluence in 12 well tissue culture plates as
described above. HUVECs secrete fibronectin and the secreted fibronectin binds integrin mole-
cules expressed on HUVECs [31]. We used polyclonal rabbit anti-human fibronectin IgG anti-
bodies to coat the surface of HUVECs. This serves as model for in vitro IC deposited vasculitis
in our studies and referred as antibody-coated HUVECs throughout the text. Briefly, HUVECs
were incubated with rabbit anti-human fibronectin IgG for 2 hr in serum free medium at 4°C.
100μg of dimeric FcγR-Igs (CD16A-Ig and CD32A-Ig) were added to the antibody coated
HUVECs and continued incubation for 1hr at 37°C. RAW264.7 cells membrane was labeled
with PKH26 red fluorescent dye. PKH26-labeled RAW264.7 cells pre-treated with 2.4G2 were
over layered on antibody-coated HUVECs, uncoated HUVECs and uncoated HUVECs over
layered with PKH26-labelled RAW264.7 cells served as specificity control. The cells were incu-
bated for 2hr at 37°C. The plate was taken out and inverted slowly into pre-chilled 1xPBS in an
ice bucket carefully without disturbing the cells. The unbound RAW264.7 cells came off by
gravity and the bound cells were read at 560nm using BioTek (Winooski, VT) plate reader.

Detection of IC-induced NO and iNOS levels
RAW264.7 cells were incubated at 37°C for 12 and 24hr with various concentrations of the ICs
to detect the IC-induced NO production and iNOS upregulation. To study whether FcγR-Ig
molecules block the NO secretion and iNOS upregulation, the experiments were carried out in
the presence or absence of various concentrations of FcγR-Ig molecules (0–300 μg/ml) at dif-
ferent time points (0–24 hr). Antibody-coated HUVECs, uncoated HUVECs, antigen alone,
antibody alone and FcγRs blocking antibody (2.4G2) treated cells were served as specificity
controls. Culture supernatant was collected and stored at -80°C for the estimation of IC-
induced NO production.

The NO present in biological fluids is recovered in nitrite and nitrate form [19]. The colori-
metric Griess reagent system (Promega Corporation, Madison) was used to estimate the con-
centration of nitrite/nitrate in the samples to assess NO production by the cells [19].

Total protein extracts were prepared using the RIPA lysis buffer and stored at -80°C until
used to detect iNOS upregulation by Western blot analysis. The target protein was identified
using primary antibodies specific for iNOS, caspase3, α-Tubulin, GAPDH, and β-actin. LiCOR
Goat anti-rabbit and Goat anti-mouse secondary antibodies (IRDye800/IRDye680) were used
as detection antibodies. The fluorescence in the membranes was scanned using LiCOR Imaging
system. Quantitation of the blots was carried out by densitometric analysis using ImageJ soft-
ware (NIH. Bethesda, MA).

iNOS Inhibition and cell viability assay
iNOS inhibition assay was carried out as described [32]. Briefly, the antibody-coated HUVECs
were co-incubated for 4, 8 and 12 hrs at 37°C with RAW264.7 cells pre-treated with iNOS
inhibitor 1400W (100ng/mL, for 1hr) and continuously present throughout the experiment.
The plates were taken out at specified time points and RAW264.7 cells over layer were washed
carefully without disturbing the HUVECs layer. Cell viability assay was performed using Cell-
Titer-Blue Assay as per manufactures instruction (Promega, Madison, WI) for estimating the
number of viable cells. The fluorescent signal was read at 562 nm using BioTek plate reader
(Winooski, VT).

Immune Complex-Mediated Endothelial Cell Death
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Real-time Polymerase Chain Reaction (RTPCR)
HUVECs treated with different concentrations of SNAP (0-2mM) for 24hr in serum free M200
medium and then washed twice with 1xPBS buffer and total RNA was extracted using RNeasy
mini kit (Qiagen). The total RNA (0.5μg) was used for cDNA synthesis. Specific mRNA tran-
script levels of genes differentially expressing in HUVECs were assessed using an SYBR green-
based quantitative PCR method using Bio-Rad iQ5 system. The gene specific sequences of
primers used were as follows. Bak1: forward 5'-TTTGCAGTTGGACTCTCAGG -3', reverse
5'-GTAGTCTGGGCAAGGAGGAG-3'; Bax: forward 5'-GCTGGACATTGGACTTCCTC-3',
reverse 5'-CTCAGCCCATCTTCTTCCAG-3'; cytochrome-C: forward 5'- GTTGAAAAGG
GAGGCAAGCA-3' reverse 5'- TGTTCTTATTGGCGGCTGTG-3'; caspase-3: forward 5'-
CCCCTGGATCTACCAGCATA-3', reverse 5'-TGTCTCTGCTCAGGCTCAAA-3' and β-actin;
forward 5'-GGACTTCGAAGAGATGG-3', reverse 5'-AGCACTGTGTTGGCGTACAG-3'.
Data analysis has shown that the β-actin transcription levels were not affected under the given
experimental conditions. The results were analyzed as described [33].

Caspase 3 enzyme activity assay
HUVECs were incubated with various concentrations of SNAP (0-2mM) in 2ml of serum free
M200 medium at different time points (4, 8 and 24hr). The cells were harvested and centri-
fuged at 5000 rpm for 5min. The culture supernatant was removed, the cell pellet was lysed
and caspase-3 enzyme assay was carried out (Molecular Probes, Inc. Eugene, Oregon). The cas-
pase-3 enzymatic activity in terms of fluorescence was measured at 485/520nm. Upregulation
of caspase-3 was detected by Western blot analysis using same cell lysate by specific rabbit
anti-caspase-3 as a primary antibody and IRDye800 conjugated goat anti-rabbit antibodies as a
detection antibody.

Statistical evaluation
The statistical analysis was performed using SPSS v22 (IBM corp, Chicago, IL, USA). The data
were analyzed using Student’s t-test and one way analysis of variance (one way ANOVA) fol-
lowed by post-hoc least significant difference (LSD) test for intra- and inter-group statistical
differences. The protein level and gene expression results were expressed as means ± SEM
obtained from three to six independent experiments and p values�0.05 was considered as sta-
tistically significant and�0.005 as highly significant.

Results

Antibody-mediated cellular toxicity in HUVECs was blocked by dimeric
FcγR-Ig molecules
Previously we showed FcγR-Ig molecules (CD16A-Ig, CD32A-Ig) effectively compete with cell
surface FcγRs in vivo and block IC-mediated skin inflammation in a mouse model [28, 30].
Therefore, first we investigated whether aforementioned dimeric FcγR-Ig molecules compete
with cell surface FcγRs expressed on inflammatory cells such as macrophages in vitro and
block their binding to antibody coated endothelial cells, which is the hallmark of IC-mediated
damage to the endothelial cells in an autoimmune vasculitis. To mimic the IC deposited in
endothelial cell wall, the HUVECs were coated with an antibody specific for fibronectin depos-
ited on HUVECs. Both CD16A-Ig and CD32A-Ig significantly (P<0.005) blocked (upto 90%)
the binding of mouse monocytic cell line (RAW264.7) to antibody-coated HUVECs (Fig 1A).
The HUVECs alone and antibody coated HUVECs pretreated with FcγRs blocking antibody
(2.4G2) served as controls. It has been shown that ligation of cell surface FcγRs expressed on
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Fig 1. FcγR-Ig blocks the macrophagemediated antibody-coated endothelial cell death. (A) RAW 264.7 cells were co-cultured with HUVECs coated
with anti-human fibronectin Ab or HUVECs alone in the presence or absence of CD16A-Ig and CD32A-Ig at 37°C. (A) The cells were analyzed after 2hr for
binding of RAW264.7 cells with HUVECs using plate inversion method. (B) After 8hr, the HUVECs viability was analyzed using CellTiter-Blue Assay method.
(C) After 12hr caspase-3 assay was carried out by calorimetric method. Blocking mAbs (2.4G2), CD16A-Ig, and CD32A-Ig were pre-incubated for 1 hr at 4°C
and then continuously present during their incubation at 37°C. In all the experiments RAW 264.7 cells pretreated with 2.4G2mAb, antigen alone, antibody
alone, HUVEC treated with medium alone served as controls. Data shown are the average of three individual experiments; each experiment was carried in
triplicate. P value < 0.05 considered as significant (*) and P< .005 as highly significant (**), NS: non-significant.

doi:10.1371/journal.pone.0153620.g001
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inflammatory or effector cells with ICs induces cell death in target tissue/cells [8, 34]. There-
fore, we investigated whether RAW264.7 cells induce cell death in antibody coated HUVECs
and decoy FcγR-Ig molecules bound to the antibody coated HUVECs rescue them from cell
death. RAW264.7 cells were co-incubated with antibody coated HUVECs for 8hr at 37°C. The
viability of the HUVECs was determined using the Cell Track Dye method. RAW264.7 cells
induced more than 60% of cell death of HUVECs (Fig 1B) and upregulated pro-apoptotic
enzyme caspase-3 activity (Fig 1C). Pre-treating antibody coated HUVECs with dimeric
FcγR-Ig (as low as 100μg/ml) molecules completely rescued HUVEC death and prevented cas-
pase-3 activation (Fig 1C). Taken together, these studies suggest that the blockade of inflamma-
tory cells interactions with ICs deposited or antibody-coated HUVECs through Fc receptors is
a critical factor to prevent endothelial cell death.

Dimeric FcγRs block the release of IC-induced inflammatory mediators
from RAW264.7 cells
Previous experiments demonstrate that the RAW264.7 cells were responsible for inducing apo-
ptosis in HUVECs. It has been shown that the pro-inflammatory cytokine secretion and gener-
ation of toxic superoxide radicals by activated inflammatory cells are responsible for inducing
cell death in target tissue [35, 36]. Therefore, we investigated whether the RAW264.7 cells acti-
vated by ICs via Fc receptors release inflammatory mediators such as proinflammatory cyto-
kines and superoxide radicals includes nitric oxide (NO) and we investigated if release can be
blocked by dimeric FcγR-Ig molecules. RAW264.7 cells were incubated with different concen-
trations of in vitro prepared soluble ICs at 37°C and culture supernatant was collected at differ-
ent time points to analyze the secretion of cytokines and NO. IC-induced the secretion of
many pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and G-CSF in a dose (100 and
200μg/ml) and time (12 and 24hr) dependent fashion (S1 Fig). Interestingly, when co-incuba-
tion of antibody coated HUVECs, RAW 264.7 cells released significantly (P = 0.005) high con-
centration of NO (12 folds) into the culture media (S2 Fig).

To confirm whether the secreted NO is induced by ICs via FcγRs activation in RAW264.7
cells, the cells were incubated with different concentrations of in vitro prepared soluble ICs (0–
300μg/ml) and supernatants were harvested at different time intervals (12 and 24hr). NO
released into the medium by IC-activated RAW264.7 cells reached the saturation within 24 hr
and a minimum of 100μg/ml of IC was enough to induce high level secretion of NO (more
than 60μM) into the media when compared to unstimulated cells (Fig 2A and 2B). Interest-
ingly, as low as 100μg/ml of FcγR-Ig molecules completely blocked (around 90%) the release of
IC-induced NO by RAW264.7 cells (Fig 2C). In addition, the RAW264.7 cells pre-treated with
2.4G2 mAb completely blocked the NO release. Cells treated with medium, anti-ovalbumin
antibody (200μg/ml) and ovalbumin antigen (200μg/ml) alone did not induce NO secretion
and served as specificity controls. Taken together, these results suggest that activation of FcγRs
by ICs is solely responsible for the induction of above mentioned proinflammatory cytokines
and NO in our experimental model and can be effectively blocked by dimeric decoy FcγR-Ig
molecules.

IC-induced iNOS upregulation was inhibited by decoy FcγR-Ig
molecules
Previous experiments demonstrated that IC-induced activation of RAW264.7 cells resulted in
the secretion of significant (p<0.005) concentrations of NO. As previously reported [22], upre-
gulation of iNOS in activated inflammatory cells is responsible for the release of high concen-
trations NO [16]. To further substantiate whether the high levels of NO secreted by RAW264.7
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Fig 2. Immune-complex induced nitric oxide secretion is prevented by dimeric FcγR-Ig molecules. (A) RAW 264.7 cells were cultured with different
concentrations (0–300μg/ml) of soluble ICs in serum free RPMI1640 medium for 12 and 24 hrs. Untreated RAW264.7 cells and cells treated with antigen,
antibody and 2.4G2mAb served as specificity controls. The culture medium was collected at specified time points, and the nitrite concentration was
determined using the Griess reagent. (B) RAW 267.4 cells were cultured with 100 and 200μg/ml of soluble ICs for different time points (0–24 hr). The culture
medium was collected at specified time points, and the nitrite concentration was determined using the Griess reagent. (C) CD16A-Ig and CD32A-Ig blocked
the binding of ICs to RAW 264.7 cells thereby inhibited the NO production. In all the experiments RAW 264.7 cells pretreated with 2.4G2mAb, antigen alone,

Immune Complex-Mediated Endothelial Cell Death
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cells is mediated by iNOS, we incubated the RAW264.7 cells with various concentrations of sol-
uble ICs (0–300μg/ml) and cell pellets were collected after 24hr. iNOS levels upregulated up to
40 fold as the concentration of IC increased (Fig 3A). However, the difference observed
between 200 and 300μg/ml was not statistically significant, suggesting that IC-induced iNOS
levels in RAW264.7 cells is dose dependent and reached saturation by 200μg/ml of ICs. Next,
we observed time dependent upregulation of IC (200μg/ml) induced iNOS (Fig 3B). Its upregu-
lation initiates after 4hr of incubation and reaches the maximum in 12hr suggesting the time
dependent enhanced induction of iNOS by ICs, and the difference observed between 12 and
24hr is not statistically significant (Fig 3B). However, the iNOS upregulation was delayed until
6hr after incubating with 100μg/ml of IC (S3 Fig). The reason for the delayed iNOS upregula-
tion at lower concentration of IC is not clear at this time; however, the concentration of IC may
be a critical factor in regulating the iNOS during IC-mediate inflammatory disorders.

Interestingly, dimeric decoy FcγR-Ig molecules efficiently inhibited (up to 90%) the IC-
induced iNOS upregulation in RAW264.7 cells, which is comparable with the results observed
from 2.4G2 mAb blocking of RAW264.7 cells (Fig 3C). Untreated cells, antigen alone, antibody
alone treated cells served as specificity controls as we did not observe iNOS upregulation (Fig
3C). Cells treated with IC alone or LPS served as positive controls. In support of this, the
amount of nitrite released into the culture medium by IC-activated RAW264.7 cells (S4 Fig) is
highly correlated with iNOS upregulation observed in this experiment (Fig 3B and S3 Fig).
Though the iNOS expression reached saturation by 12hr at 200μg/ml of IC (Fig 3B), the
amount of NO released is 50% less at 12hr time point compared to 24hr (Fig 2B). This could be
due to the cumulative accumulation of nitrates in the culture supernatant over 24hr. These
results suggest that IC-induced iNOS upregulation is through activation of FcγRs and can be
effectively blocked by decoy FcγR-Ig molecule thereby preventing NO-mediated vascular dam-
age during IC-mediated autoimmune vasculitis.

To further demonstrate that the HUVEC death is specifically induced by NO secreted from
macrophages, RAW 276.4 cells were pretreated with inhibitor specific for iNOS (1400W) and
then cell viability was performed as mentioned above. We observed that as low as 8hr interac-
tion between antibody-coated HUVEC and macrophage is enough to induce more than 70%
cell death in HUVEC (Fig 4B), however, there is no significant increase in cell death after 12hr
(Fig 4C). In addition, the macrophages pretreated with 1400W, an iNOS specific inhibitor,
completely rescued the HUVEC cell death at the tested time points (Fig 4A–4C) suggesting
that iNOS mediated NO secreted from mouse monocytic cells may be a major factor responsi-
ble for HUVECs death.

Exogenously administered NO triggers intrinsic apoptotic pathway in
HUVECs, which was not blocked by FcγR-Igs
The above mentioned results suggest that the IC-mediated sustained production of NO
through iNOS by RAW264.7 cells could be a trigger for the induction of apoptosis in antibody-
coated HUVECs. To further substantiate our observations, exogenous NO donor (SNAP) was
used to investigate the role of NO in induction of HUVECs apoptosis. The HUVECs were
treated with different concentrations (0–0.5 mM) of SNAP for 24 hr. The cDNA was then ana-
lyzed for the differential expression of pro-apoptotic genes (Fig 5). It has been shown that, by

antibody alone, cells treated with medium alone served as specificity controls. Data shown are the average of three individual experiments; each experiment
was carried in triplicate. P < 0.05 considered as significant (*) and P< 0.005 as highly significant (**), NS: non-significant.

doi:10.1371/journal.pone.0153620.g002
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Fig 3. Immune-complex induced iNOS upregulation inhibited by decoy FcγR-Igs. (A) RAW 264.7 cells (2×106 cells/ml) were treated with the indicated
concentrations of immune complex (25–300μg/ml) in serum free RPMI 1640 medium for 24 hr. (B) RAW264.7 cells were treated with 200μg/ml of ICs for
different time points (0.5- 24hr). (C) CD16A-Ig and CD32A-Ig prevented iNOS upregulation in RAW264.7 cells. RAW264.7 cells (2×106/ml) in serum free
medium were blocked from binding to ICs (200μg/ml) by incubating in the presence or absence of CD16A-Ig and CD32A-Ig (100μg/ml) for 24hr at 37°C.
Untreated RAW264.7 cells, LPS treated, antigen alone, antibody alone and 2.4G2 mAb treated cells served as specificity controls. Cell lysate was used to
detect the iNOS upregulation byWestern blot analysis GAPDHwas used as internal control. The blots were developed and scanned as described in detail in
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24hr 0.5mM of SNAP produces around 100μM of nitrite in the culture medium [37], which is
very close to the NO secreted by RAW264.7 cells in our experiments (Fig 2). Exogenously
administered NO significantly upregulated the pro-apoptotic genes such as BAK (35fold), BAX
(15 fold), cytochrome-C (12 fold), and caspase-3 (30 fold) when compared to untreated cells
(Fig 5A–5D). The apoptotic initiation gene cytochrome-C and end point gene caspase-3 have
shown a significant (p<0.005) increase in their upregulation in a concentration dependent
manner with respect to the exogenously administered NO (Fig 5C and 5D). Co-incubation of
FcγR-Ig molecules did not alter the induction of abovementioned pro-apoptotic molecules in
antibody-coated HUVECs by exogenous NO administration (Fig 5). These results support that
the apoptosis cascade induced in HUVECs is through exogenous NO, but not by the ligation of
FcγR-Ig molecules on antibody-coated HUVECs.

Irrespective of origin of apoptosis (extrinsic or intrinsic), the end point enzyme (executioner
caspase) that triggers the programmed cell death is caspase-3 [38, 39]. Therefore, we have ana-
lyzed for caspase-3 activity. The HUVECs were treated with different concentrations of SNAP
(NO donor) as described above and harvested after 24hr. Western blot analysis revealed that
caspase-3 upregulated in NO-treated HUVECs in a dose dependent manner (Fig 6A) and is
consistent with its upregulation at transcriptional level (Fig 5D). In addition, we have also
observed the increased enzymatic activity of caspase-3 by colorimetric assay with maximum at
2mM of SNAP after 24 hr of treatment (Fig 6B). Taken together our findings suggest that the
NO released either by exogenous NO by SNAP or by IC-activated RAW264.7 cells initiates the
intrinsic apoptotic pathway in HUVECs.

Discussion
During autoimmune vasculitis, the interaction of ICs with FcγRs expressed on inflammatory
cells is the key event in initiation of IC-mediated vascular damage [8, 9, 40, 41]. In the recent
past, the significance of FcγRs in autoimmune/inflammatory disease conditions has been well-
documented [3–7, 14]. The inflammatory mediators such as cytokines and superoxide radicals
released from the activated inflammatory cells implicated in the IC-mediated endothelium
damage leading to many pathological manifestation including heart failure and stroke [42–46].
However, the mechanisms associated with cellular inflammatory responses and pathways asso-
ciated with apoptosis of endothelial cells during IC-mediated vasculitis are still not well under-
stood. In the present study, we demonstrated that along with pro-inflammatory cytokines,
high levels of NO released from the IC-activated inflammatory cells may directly involve in ini-
tiating the programmed cell death in endothelial cells. Upon interaction of ICs, RAW264.7
cells secreted significantly high levels of proinflammatory cytokines such as IL-1β, TNF-α, IL-
6, and G-CSF (S1 Fig). It has been shown that these cytokines are directly involved in attracting
the inflammatory cells to the site where ICs deposit and also stimulate the endothelial cells to
express the adhesion molecules for maximal interaction of inflammatory cells with endothe-
lium [43–46]. Further, recent reports have shown that the increased NO concentration due to
over expressed iNOS at local inflammatory microenvironment resulted in higher apoptotic
cells in various inflammatory models [47–49]. In addition, Mazaffarian et al., [50] have shown
that J774.16 macrophages resulted in an enhanced NO production through cross-linking of Fc
receptors with ICs. This is further supported by the upregulation of iNOS by activated

Materials and Methods. Protein band intensities were analyzed using ImageJ software (NIH, Bethesda, MA) and the relative band intensities were presented.
Western blot pictures are representative of three individual experiments. Bar graphs are average of three individual experiments. P< 0.05 considered as
significant (*) and < 0.005 as highly significant (**), NS: non-significant.

doi:10.1371/journal.pone.0153620.g003
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Fig 4. Inhibition of iNOS in RAW264.7 cell prevents NO release and HUVEC death. The RAW264.7 cells were pre-treated with 1400W (100ng/ml) 1hr at
37°C. The HUVECs and pre-treated RAW264.7 cells were co-cultured for 4 (A) 8 (B) and 12hrs (C). The viability of the HUVECs was determined using
CellTitre Blue kit method. RAW264.7 cells pre-treated with 2.4G2 were over layered on antibody-coated HUVECs served as specificity control. Uncoated
HUVECs, antibody-coated HUVECs and uncoated HUVECs over layered with 2.4G2 pre-treated RAW264.7 cells were served as additional controls. Data
shown are the average of three individual experiments; each experiment was carried in triplicate. P<0.05 considered as significant (*) and P<0.005 as highly
significant (**), NS: non-significant.

doi:10.1371/journal.pone.0153620.g004
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Fig 5. Exogenous nitric oxide initiates intrinsic apoptotic pathway in HUVECs, which was unaltered by decoy FcγR-Igs. Concentration-dependent
apoptosis was induced by nitric oxide in cultured HUVECs (1x 106 cells) stimulated with different concentrations of S-nitroso-N-acetyl-penicillamine (SNAP)
(0–0.5mM) for 24 hr with or without CD16A-Ig was analyzed at mRNA level. Total RNA extracted from the SNAP treated cells was used to make cDNA.
QRTPCR analysis of apoptosis related genes (A) Bak (B) Bax (C) Cytochrome-C and (D) Caspase-3 were carried out. Data shown are the average of six
individual experiments; each experiment was carried in triplicate. P<0.01 were considered as significant (*) and P<0.005 were as highly significant (**), NS:
non-significant.

doi:10.1371/journal.pone.0153620.g005
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macrophages in brain tissues of patients with multiple sclerosis [51] and elevated NO in cere-
bral cortex and spinal cord during experimental allergic encephalomyelitic conditions [52].

It is well established that physiological levels of NO protect the vasculature from injury
whereas excessive NO may be harmful [53]. However, the negative effects of NO secreted by

Fig 6. Exogenous nitric oxide induces caspase-3 activation and upregulation in HUVECs. (A) Cells treated with different concentrations of S-nitroso-N-
acetyl-penicillamine (SNAP) (0- 2mM) for 24hr. Untreated HUVECs served as specificity control. Cells were lysed and total proteins extracted. Western blot
was carried out using an antibodies specific for caspase-3 and β-actin (internal control). (B) Caspase-3 enzymatic activity was performed using total protein
extracts. Western blot pictures are representative of three individual experiments. Caspase-3 enzyme activity graph s is average of three individual
experiments. P<0.05 considered as significant (*) and P<0.005 as highly significant (**), NS: non-significant.

doi:10.1371/journal.pone.0153620.g006
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activated inflammatory cells at the microenvironment of IC-mediated endothelial cells damage
have not been clearly understood. In the present study, we demonstrated that NO secreted by
RAW264.7 cells is through the activation of FcγRs and may directly influence the programmed
cell death of endothelial cells. This study also provides the first evidence that extracellularly
secreted NO from macrophages could be a possible trigger of pro-apoptotic pathways that
accelerate endothelial cell damage. Interestingly, upregulation of iNOS and the NO production
could be effectively blocked by decoy FcγR-Ig molecules. These results suggest that the interac-
tion of FcγRs expressed on inflammatory cells with ICs deposited in blood capillaries of various
organs results in the initiation of FcγRs activation. The activated FcγRs directly stimulate the
upregulation of iNOS, resulting in high level of NO production. The released NO in the micro-
environment initiates the pro-apoptotic pathway through cellular oxidative stress leading to
target cell/tissue damage.

To further substantiate our findings that NO induces cell death in endothelial cells, we used
the SNAP which spontaneously releases NO into the culture medium. We observed significant
increase in pro-apoptotic molecules triggered by NO in SNAP treated HUVECs. We analyzed
the differential expression of pro-apoptotic genes such as cytochrome-C, caspase-3, BAK and
BAX (Fig 5). The results have shown the upregulation of BAX/BAK and cytochrome-C is the
indication of intrinsic pathway being triggered to drive the endothelial cells to programmed
cell death. Also, the apoptotic end point gene caspase-3 has shown significant changes in its
expression at transcriptional level and activation (Figs 5 and 6). In support of this, it has been
shown that NO induces the upregulation and translocation of pro-apoptotic Bcl-2 family mole-
cules such as BAX/BAK to mitochondria [54]. In contrast, it has also been suggested that NO
can trigger apoptosis by inducing mitochondrial membrane permeabilization with a direct
effect on the permeability transition pore complex (PTPC) and/or indirectly by NO-mediated
inhibition of oxidative phosphorylation. However, these effects on mitochondria are probably
broader and go beyond PTPC opening [55, 56] and this mechanism is excluded because of the
presence of endogenous NO and do not correlate with other responses such as caspase activa-
tion [39]. These finding are further substantiated by the elevation of caspase-3 activity in anti-
body-coated HUVECs when co-cultured with RAW264.7 cells (Fig 1). Our data supports that
the extracellularly secreted NO upregulates the pro-apoptotic molecules such as BAX/BAK in
HUVECs to initiates the intrinsic apoptotic pathway. Possibly the upregulated BAX/BAK facil-
itates the release of cytochrome-C into the cytosol by inducing mitochondrial permeability.
Then, cytochrome-C initiates the series of caspases activation and ultimately caspase-3, which
is the point of no return in the process of programmed cell death. The proposed mechanism of
action of exogenously secreted NO through activated FcγRs by ICs and the subsequent conse-
quences of endothelial cell death mediated by secreted NO, the significances of blockade of ICs
with cell surface FcγRs are depicted in Fig 7.

In conclusion, though the complexity of NO induced cell death signaling exists due to its
differential (dichotomous) cellular activities, it is absolutely toxic for cell survival at sustained
and chronic level of production as possibly occurring in IC-mediated autoimmune vasculitis.
The observations presented here are suggesting the pro-apoptotic function of NO during auto-
immune vasculitis. The decoy FcγR-Ig dimeric molecules inhibit the endothelial cell damage
by blocking the interactions of ICs with cell surface FcγRs, resulting in inhibiting the toxic oxy-
gen products such as NO by inhibiting iNOS upregulation. Therefore, uncoupling the interac-
tion of ICs with cell surface FcγRs expressed on effector cells could be a novel approach to
prevent blood vessel damage during autoimmune vasculitis. Further studies are warranted to
understand the cellular complexity with respect to endothelial cell specific determinants of NO
signaling in deciding the cell survival or death.
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Fig 7. Hypothetical model of inhibition of IC-mediated, NO-induced apoptotic pathway in HUVECs by decoy FcγR-Igs. Circulating ICs deposits in the
blood vessels during IC-mediated inflammatory disorders. Effector cells upon binding to the IC get activated. These cells result in the secretion of pro-
inflammatory factors like cytokines and toxic superoxide radicals such as nitric oxide in copious amounts. Nitric oxide ability to interact with cellular
components in the endothelium results in triggering apoptotic signaling pathway and subsequently cell death and tissue damage. Decoy FcγR-Igs competes
with cell surface FcγRs expressed on effector cells and block the access to the ICs deposits in various organs including blood vessels. This will eventually
inhibit effector cell mediated endothelial inflammation and damage observed in autoimmune vasculitis.

doi:10.1371/journal.pone.0153620.g007
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Supporting Information
S1 Fig. Immune-complex induced upregulation of inflammatory cytokines in RAW264.7
cells.Murine monocytic cells were incubated with different concentrations (100, and 200μg/
ml) of soluble immune complexes in serum free RPMI1640 medium for 24hr at 37°C.
Untreated RAW264.7 cells served as specificity control. The culture medium was collected at
specified time points (12 and 24hr). The inflammatory cytokines released into the culture
medium were analyzed using and mouse cytokine multi-analyte kit. The inflammatory cyto-
kine data presented here depicts (A) TNF-α (B) IL-1β (C) IL-6 and (D) G-CSF. Data are repre-
sentative of two individual experiments.
(TIF)

S2 Fig. RAW264.7 cells secrete high levels of NO upon interaction with antibody-coated
HUVECs.HUVECs coated with fibronectin antibody were co-cultured with RAW64.7 cells for
24 hr. The culture medium was collected at specified time point, and the nitrite concentration
was determined by using the Griess reagent. Untreated HUVECs alone and uncoated HUVECs
co-cultured with RAW264.7 cells, HUVECs coated with anti-fibronectin antibody served as
specificity control. The concentration of nitrite released into the medium at 24 hr time point of
incubation period was determined by measuring absorbance at 540 nM and comparing it
against a standard curve generated using known concentrations of nitrite. Data are average of
three independent experiments. P<0.05 considered as significant (�) and P<0.005 as highly
significant (��), NS: non-significant.
(TIF)

S3 Fig. Immune-complex induced iNOS upregulation inhibited by decoy FcγR-Igs. (A)
RAW 264.7 cells (2×106 cells/ml) were treated with 100μg/ml of immune-complex for different
time points (0–24hr). Cells treated with Lipopolysaccharide and 2.4G2mAb served as specific-
ity controls. iNOS upregulation was analyzed by Western blotting. The membrane was probed
with antibodies directed against the rabbit anti-mouse iNOS antibodies and mouse anti-
GAPDH antibodies. The blot was developed using the IRDye680/800 conjugated goat anti
mouse and goat anti-rabbit secondary antibodies. (B) Protein band intensities were analyzed
using ImageJ software and relative band intensities were expressed. Photographs are represen-
tative of the three individual experiments. Bar graphs are average of three individual experi-
ments.
(TIF)

S4 Fig. Time dependent iNOS expression correlates with NO production in mouse mono-
cytic cells. RAW 267.4 cells were cultured with 100 and 200μg/ml of soluble ICs for different
time points (0–24 hr). The culture supernatant was collected at different time points, and the
nitrite concentration was determined using the Griess reagent. The cells were harvested at the
same time point and lysate was analyzed for iNOS expression (Fig 3 and S3 Fig). Data are aver-
age of three independent experiments. P<0.05 considered as significant (�) and P<0.005 as
highly significant (��), NS: non-significant.
(TIF)
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