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Abstract 

EFFECT OF HEME OXYGENASE-1 ON  

MATRIX METALLOPROTEINASE-3 EXPRESSION IN 

HUMAN FIBROBLASTS 

Theresa A. Stangl 

MS in Biomedical Sciences, July 2014 

Philadelphia College of Osteopathic Medicine 

Ruth C. Borghaei, Thesis Advisor 

 

Heme oxygenase-1(HO-1) is an enzyme that plays a very important role in the 

resolution of inflammation.  HO-1-based therapies are effective in a number of disease 

conditions.  However, HO-1 also increases tumor growth, angiogenesis, metastasis and 

chemoresistance.  Matrix metalloproteinase-3 (MMP-3) is an enzyme involved in 

physiological and pathophysiological tissue remodeling.  Unbalanced expression of MMPs is 

a key feature of connective tissue destruction in chronic inflammatory conditions.  Previously 

shown in this laboratory, the HO-1 inducer, hemin, increased MMP-3 mRNA expression in 

some HGF cultures.  To assess whether HO-1 and/or its products regulate expression of 

MMP-3 in human fibroblasts, the effect of HO-1 on MMP-3 mRNA expression was tested in 

HGF, HFF, and MG-63 cell lines.  Cobalt protoporphyrin IX(CoPP) was used to induce HO-

1 and Tin protoporphyrin IX(SnPP) was used to inhibit HO-1 activity.  MMP-3 mRNA levels 

were quantified using real time PCR and normalized to GAPDH mRNA levels.  Treatment of 

fibroblast cell cultures (HGF, HFF, MG-63) with CoPP did not result in significant changes 
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in basal or IL-1-induced MMP-3 mRNA expression.  Likewise, treatment with SnPP did not 

cause significant changes in MMP-3 expression.  These results imply that HO-1 and its 

products are probably not responsible for most of the increase in MMP-3 expression seen in 

some HGF cell cultures in response to hemin. 
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Introduction 

Chronic Inflammation 

Inflammation is a healthy response to infection or injury.  Failure to reach the 

resolution phase during this response can lead to chronic inflammation, which is a 

complication of many disease states.  Chronic inflammation is characterized by abnormal 

tissue remodeling, resulting in degradation of tissues including the collagenous matrix of 

bone and cartilage (Reynolds, Hembry, & Meikle, 1994).  This is consistent among several 

inflammatory diseases including periodontitis, rheumatoid arthritis, and osteoarthritis 

(Chakraborti et al, 2003).  The tissue destruction seen in chronic inflammation is mainly a 

consequence of an imbalance in pro-inflammatory and anti-inflammatory cytokine activity.  

Pro-inflammatory cytokines, such as IL-1, are upregulated in inflamed tissues, whereas anti-

inflammatory cytokines including IL-4 are downregulated (Reynolds, Hembry & Meikle, 

1994).  These inflammatory molecules participate in cell signaling that alters the expression 

of other proteins and enzymes within the cell, fundamentally regulating the inflammatory 

process.  Activated fibroblasts are a common feature of chronic inflammatory conditions, 

overproducing inflammatory cytokines (Bartold, Marshall & Haynes, 2005).  Increased 

production of inflammatory cytokines can result in an increase of inflammatory mediators 

such as matrix metalloproteinases (MMPs) that are responsible for tissue destruction.   

Oxidation 

Redox reactions refer to any reactions that involve the transfer of electrons resulting 

in changes to the reduction or oxidation state of the cell.  The redox state of a cell reflects the 

homeostatic balance of a number of different components involved in critical cellular 

processes.  Changes to the normal oxidation state of a cell result in oxidative stress, which 
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involves the accumulation of reactive oxygen species (ROS) due to the surplus or deficiency 

of pro-oxidant compounds or anti-oxidant protection.  Oxidative injury is implicated in 

chronic inflammatory diseases, such as periodontitis and rheumatoid arthritis, and other 

disease conditions including cancer (Viswa Chandra et al., 2013). 

Periodontal Disease 

Periodontal disease is an inflammatory disease that damages the supporting structures 

of the teeth (Kuo, Pulson & Kang, 2006).  It is caused primarily by the formation of dental 

biofilms that adhere to the surface of teeth.  These plaques contain communities of microbes 

that release proteolytic enzymes including MMPs that cause connective tissue injury and 

bone damage.  Overproduction of MMPs by activated fibroblasts and immune cells also 

occurs. There are two forms of periodontal disease.  Gingivitis is the milder form, 

characterized by the initial reversible inflammation of the gingival tissue.  If untreated, and 

especially in the presence of certain predisposing host factors, gingivitis can progress to 

periodontitis, a more severe and chronic inflammation of the gingiva that can lead to eventual 

tooth loss.  Periodontitis is the leading cause of tooth loss in the United States (Pihlstrom et 

al., 2005). 

Periodontitis affects not only dental health but systemic health as well.  In 

periodontitis, the proximity of microbes to the bloodstream poses a danger of 

microorganisms and infection spreading throughout the body.  Bacteremia, the spread of 

bacteria to the systemic circulation, increases when oral infection is present.  In addition, 

periodontitis is closely linked to several other systemic diseases and problems including 

cardiovascular disease and diabetes mellitus (Kuo, Pulson & Kang, 2006).  Periodontal 

disease also increases risk of various cancers (Hujoel et al., 2003; Michaud et al., 2007; 
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Michaud et al., 2008; Arora et al., 2009).  Due to the dangers of periodontitis and the 

increased risk of other associated systemic diseases, it is important to understand the 

mechanisms behind progression of this disease.  

Matrix Metalloproteinases 

Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidase 

enzymes that play a role in extracellular matrix degradation (Muhs et al., 2003). They are 

produced in response to cell signaling molecules including inflammatory mediators.  MMP 

activity is important in normal growth and development and often plays a healing role in 

response to tissue injury.  They are a critical protease family, and constant regulation of their 

proteolytic activity is required to maintain homeostasis in the body. 

Despite their role in normal physiological processes, MMPs can increase tissue injury 

in some cases.  They are naturally expressed at relatively low levels; however during tissue 

remodeling MMPs are more actively expressed.  When overexpressed, damage or disease can 

result (Alvarez & Teale, 2008; Mehra et al., 2010; Stewart et al., 2007).  Unbalanced 

expression of MMPs caused by abnormal regulation is a key feature of connective tissue 

destruction seen in inflammatory diseases (Chakraborti et al., 2003; Muhs et al., 2003). 

MMPs also play a role in cancer.  Overexpression of MMPs has been linked to 

cancerous tumor growth and metastasis.  In breast cancer, MMPs including MMP-3 

contribute to spread and development of disease (Rider, Oladimeji, & Diakonova, 2012).  In 

lung adenocarcinoma cells, downregulation of MMPs results in decreased metastasis (Liu et 

al., 2010).  On the contrary, some MMPs play a protective role in cancer.  For example, 

certain MMPs, including MMP-3, produce angiostatin, an angiogenesis inhibitor, from 
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plasminogen resulting in a decrease of tumor growth and expansion (Westermarck & Kahari, 

1999). 

There are 23 distinct MMPs.  They can be classified based on domain organization 

and substrate preferences including collagenases, gelatinases, matrilysins and stromelysins.  

An important matrix metalloproteinase, MMP-3, is involved in normal and pathological 

tissue remodeling.  MMP-3, also called Stromelysin-1, belongs to the stromelysin group.  It 

has broad substrate specificity and activates several other MMPs (Chakraborti et al., 2003).  

In periodontitis and rheumatoid arthritis, MMP-3 is more actively expressed in disease 

afflicted tissues than healthy tissues, and the levels of enzyme correspond to progression of 

the disease (Alpagot et al., 2001). 

MMPs are initially released as latent proenzymes that are later activated.  They 

consist of a propeptide and a catalytic domain containing zinc and calcium ions.  MMP-3 

possesses the domain II structure, which is composed of a signal peptide bound to a 

propeptide, catalytic domain, linkage domain, and lastly a hemopexin-like domain on the C-

terminal end of the molecule (Chakraborti et al., 2003).  Inactive pro-MMP molecules are 

activated by proteolytic removal of the propeptide (Alvarez & Teale, 2008; Goda et al., 2006; 

Muhs et al., 2003). 

Regulation of Matrix Metalloproteinases 

MMP expression is primarily regulated at the transcriptional level.  MMP 

transcription and secretion are increased in response to cytokines, growth factors, and 

hormones (Reynolds, Hembry & Meikle, 1994).  Increased production of inflammatory 

cytokines, such as interleukin-1 (IL-1), causes chronic stimulation of fibroblasts.  This results 
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in an increase in MMPs and other inflammatory mediators that contribute to tissue 

destruction. 

Several transcription factors influence MMP gene expression.  AP-1, ETS, and NF-

κB each regulate MMP-3 expression by interacting with the promoter.  The activity of these 

transcription factors is regulated by MAPK phosphorylation.  Phosphorylated active MAPKs, 

such as ERK, JNK, and p38, induce further activation and binding of the activating 

transcription factors AP-1 and ETS (Chakraborti et al., 2003). 

AP-1 plays a critical role in MMP-3 gene activation.  ETS transcription factors also 

play an important role by acting as co-activators with other transcription factors such as AP-1 

(Sharrocks et al., 1997; Carrere et al., 1998).  NF-κB interacts with the MMP-3 promoter to 

inhibit MMP-3 transcription.  When activated, the NF-κB subunits p50 and p65 dissociate 

from the I-κB inhibitor and move from the cytoplasm to the nucleus.  NF-κB competes with 

the transcription factor Zinc Binding Protein-89 (ZBP-89) to bind to the Stromelysin IL-1 

Responsive Element (SIRE).  The SIRE site is responsible for IL-1 induced binding and also 

contains a 5T/6T polymorphism that affects transcription of MMP-3.  ZBP-89 increases 

transcription of the MMP-3 promoter in transient transfection experiments (Borghaei et al., 

2004; Ye et al., 1999).   

MMPs are also regulated post-translationally by tissue inhibitors of 

metalloproteinases (TIMPs).  TIMPs are endogenous inhibitors that form a complex with 

activated MMP molecules thus obstructing the active site of the protein.  The carboxyl 

terminal (C-terminal) region of the inhibitor interacts with the C-terminal region of the 

enzyme (Willenbrock et al., 1993).  Inhibition of MMPs by TIMPs prevents extracellular 

matrix degradation.  However, in chronically inflamed tissues, expression of MMPs often 
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exceeds levels of TIMPs (Von Lampe et al., 2000; Verstappen & Von den Hoff, 2006; Sun, 

J, 2010). 

 

 

Figure 1:  Representation of the MMP-3 Promoter 

 

 

 

Heme Oxygenase-1 

Heme oxygenase is a stress-inducible enzyme that primarily functions to catalyze the 

degradation of pro-oxidant heme.  There are two different isoforms of heme oxygenase, 

inducible heme oxygenase-1 (HO-1) and non-inducible heme oxygenase-2 (HO-2).  HO-2 is 

constitutively expressed and more highly expressed in the brain and testes (Trakshel et al., 

1986).  HO-1 is a ubiquitously expressed stress responsive protein induced by a variety of 
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stimuli (Otterbein et al., 2003).    Its ubiquitous expression, response to such a wide range of 

stimuli, and the role it plays in disease conditions such as inflammation cause HO-1 to be the 

more widely studied form of the enzyme.  

Heme Oxygenase-1 and Inflammation 

HO-1 plays a particularly important role in response to inflammation.   Increased 

production of the enzyme is seen consistently among inflammatory diseases (Milward et al., 

2007; Clerigues et al., 2011; Chi et al., 2012; Kobayashi et al., 2006).  HO-1 activity has 

various effects, but it is most studied due to its importance as a cytoprotective enzyme 

regulating tissue response to injury (Florczyk, Jozkowicz & Dulak, 2008).  The anti-oxidant, 

anti-inflammatory, and cytoprotective properties of the molecule make HO-1 an ideal target 

of investigation for potential therapeutic options (Otterbein et al., 2003).  The introduction of 

agents that increase HO-1 expression in inflammatory conditions may provide therapeutic 

results and has shown promising effects in a few pathophysiological conditions including 

pancreatitis and irritable bowel syndrome in animal models (Paine et al., 2010, Naito et al., 

2011).  

Heme Oxygenase-1 and Cancer 

Despite the cytoprotective capacity of heme oxygenase, it has also been shown to 

play a role in carcinogenesis (Was et al., 2006).  Just as it protects non-cancerous cells by its 

cytoprotective and anti-apoptotic properties, HO-1 also protects tumor cells.  Promotion of 

angiogenesis by HO-1 activation may be partly responsible for increased tumor growth and 

metastasis (Jockowicz, Was & Dulak, 2007).  For example, overexpression of HO-1 has been 

shown to stimulate angiogenesis, which increases tumor growth and metastasis of pancreatic 

cancer (Sunamura et al., 2003).  Overexpression of HO-1 had the same effect on lung 
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adenocarcinoma as well as melanoma, while also increasing melanoma cell resistance to 

oxidative stress (Tsai et al., 2012; Was et al., 2006).   

Reactive oxygen species (ROS) are decreased in cancer, which contributes to 

decreased apoptosis.  Current cancer therapies increase ROS in order to promote cell death 

(Lee et al., 2012).  Heme oxygenase protects against oxidative stress, which may contribute 

to chemoresistance and the increase in tumor cell growth seen in the presence of HO-1.  

Silencing HO-1 with siRNA or inhibition of its activity by Zinc Protoporphyrin (ZnPP) 

increases the effectiveness of chemotherapy (Lee et al., 2012).  Therefore, inhibition of HO-1 

may be a potential therapeutic option in cancer. 

 

 

Figure 2:  Role of Heme Oxygenase-1 in Tumors * 

 

 

*Reprinted from Antioxidants & Redox Signaling, Volume 9, Issue 12, Jozkowica, Was and Dulak, Heme 

Oxygenase-1 in Tumors: Is It a False Friend? / 2099-2118, Copyright (2007), with permission from Mary Ann 

Liebert, Inc. 
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Heme Oxygenase-1 Products 

The breakdown of heme by HO-1 produces free iron (Fe
2+

), carbon monoxide (CO), 

and biliverdin.  Biliverdin is then reduced by the enzyme biliverdin reductase to the 

antioxidant bilirubin.  The effects of HO-1 appear to be largely mediated by the products of 

its activity, bilirubin and CO (Pae & Chung, 2009). 

 

 

Figure 3:  Reaction Products of Heme Oxygenase * 

 

 

 

*Reprinted from Antioxidants & Redox Signaling, Volume 9, Issue 12, Jozkowica, Was and Dulak, Heme 

Oxygenase-1 in Tumors: Is It a False Friend? / 2099-2118, Copyright (2007), with permission from Mary Ann 

Liebert, Inc. 
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Iron 

Free iron is a prooxidant, however its presence increases iron removal from the cell 

by increasing ferritin expression.  Ferritin regulates the balance of cytotoxic free iron by 

storing iron.  It also possesses ferroxidase potential, the ability to convert ferrous iron (Fe
2+

)  

to ferric iron (Fe
3+

), thus decreasing the amount of oxidant hydroxyl free radicals produced 

by the reaction of ferrous iron with hydrogen peroxide (Balla et al., 2007).  The prooxidant 

effects of free iron are minor in comparison to the protective activity of the other products of 

heme oxygenase (Fan et al., 2011). 

Carbon Monoxide 

Carbon monoxide (CO), though commonly thought of as a harmful pollutant, is also a 

critical cell signaling molecule that plays a role in normal cellular function and cellular 

defense.  In low quantities within the body, CO possesses vasodilatory, anti-apoptotic, and 

anti-inflammatory effects (Kirkby & Adin, 2006).  The cytoprotective activity of carbon 

monoxide is mediated specifically by the p38, JNK, and ERK MAPK pathways (Kyriakis & 

Avruch, 1996).  In response to oxidative stress, it can activate redox sensitive transcription 

factors or stress activated kinases.  In response to inflammation, CO reduces inflammatory 

cytokines and increases anti-inflammatory cytokines via MAPK pathways (Kirkby & Adin, 

2006).  Its anti-inflammatory and anti-apoptotic effects are mainly a result of activation of 

the p38 MAPK pathway (Otterbein et al, 2003; Zhang et al., 2003).   

CO can be delivered to tissue pharmacologically by carbon monoxide releasing 

molecules (CORMs).  These are transitional metal carbonyls that act by releasing 

controllable levels of CO when in solution.  CORMs increase CO levels in body tissues 

without the risk of exposure to carbon monoxide gas.  Small doses of CORMs have been 
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shown to produce anti-inflammatory effects.  In osteoarthritic synovial cells, CORM-2 

decreased synoviocyte activity, the expression of several inflammatory molecules including 

MMP-3, phosphorylation of MAPKs, and the activation of transcription factors, ultimately 

decreasing tissue degradation (Garcia-Arnandis et al., 2011).  CO plays a large role in HO-1 

activity, and may possibly be the main contributor to its anti-inflammatory effects (Ryter & 

Choi, 2010). 

Bilirubin 

Bilirubin is a major physiological cytoprotectant (Stocker et al., 1987).  It serves as a 

scavenger of ROS by transferring hydrogen atoms to peroxyl radicals (Chepelev et al., 2006).  

Bilirubin is also oxidized to biliverdin, which is continuously recycled back to bilirubin by 

biliverdin reductase, making bilirubin a crucial component in reducing oxidative stress 

(Kirkby & Adin, 2006).  Used as a therapeutic agent, bilirubin has protective properties in 

ischemia-reperfusion injury, transplant rejection, and inflammatory bowel disease.  It also 

decreases risk for other diseases including heart disease, and plays a beneficial role in 

immune and inflammatory response (Fan et al., 2011).   

Low levels of bilirubin have a number of positive effects, but larger amounts can be 

harmful.  Hyperbilirubinemia, excessive bilirubin in the bloodstream, causes jaundice.  

Newborns have difficulty eliminating bilirubin and are particularly susceptible to developing 

this condition.  Neonatal jaundice affects approximately 60% of all infants, and is typically 

resolved without treatment (Xie et al., 2012).  In extreme cases, however, hyperbilirubinemia 

can cause bilirubin deposits in the brain resulting in kernicterus and neurological damage (Ip 

et al., 2004). 
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Regulation of Transcription Factor Expression by Heme Oxygenase-1 

HO-1 influences expression of genes in a number of ways, and can have positive and 

negative effects on transcription factors.  The enzyme activity and each of the products affect 

transcription factors via enzyme activity-dependent regulation.  HO-1 also regulates gene 

expression independently of its enzyme activity or products, by means such as protein-

protein interactions.  The transcription factors AP-1 and NF-κB, which are both highly 

involved in the regulation of MMP-3, are also affected by HO-1 in a several different ways.  

In different conditions and various systems HO-1 has numerous effects on gene expression. 

 

Figure 4:  Regulation of Transcription Factor Activity by Heme Oxyenase-1* 

 

* Reprinted from Antioxidants & Redox Signaling, Volume 20, Issue 11, Dulak and Jozkowicz, Novel Faces of 

Heme Oxygenase-1: Mechanisms and Therapeutic Potentials / 1673-1676, Copyright (2014), with permission 

from Mary Ann Liebert, Inc. 
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Regulation of Heme Oxygenase-1 

HO-1 is induced by a number of different stimuli and stressors including oxidative 

stress, cytokines, bacteria, and growth factors.  One of the primary activators of HO-1 is its 

substrate heme.  HO-1 is regulated mainly at the transcriptional level, but post-transcriptional 

regulation also occurs.  HO-1 gene regulation at the transcriptional level involves interactions 

between several transcriptional activators and repressors.  The main transcription factors 

involved are Bach1 and Nrf2.  These are counter-regulatory transcription factors that regulate 

HO-1 promoter activity.   Both Bach1 and Nrf2 belong to the cap’n’collar transcription factor 

family and form heterodimers with Maf proteins that bind to Maf regulatory elements 

(Motohashi et al., 2002).   

Nrf2 induces HO-1 in response to oxidative stress.  It acts by binding to antioxidant 

responsive elements (AREs) within the HO-1 promoter (Liu et al., 2005; Lee et al., 2006).  

Nrf2 is largely controlled by the inhibitor, Kelch-like ECH-associated protein 1 (Keap1).  

Under normal conditions, Keap1 ubiquitinates Nrf2 and targets it for proteasomal 

degradation.  Oxidative stress and other stressors cause separation of Keap1 from Nrf2, 

inactivating the inhibitor and terminating Nrf2 degradation.  The resulting increased stability 

of the Nrf2 transcription factor allows further activation of genes in response to stress 

(Mitsuishi, Motohoshi & Yamamoto, 2012).  The Keap1/Nrf2 pathway is regulated by other 

factors independent of oxidative stress, but the redox-dependent system is fundamental in 

stress induced HO-1 expression (Paine et al., 2010). 

Bach1 counteracts the effects of Nrf2 by down-regulating HO-1.  When normal levels 

of heme exist in cells, Bach1 represses HO-1 promoter activity.  When heme levels increase, 

heme binds directly to Bach1, preventing Bach1 from interacting with the HO-1 promoter.  
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This permits Nrf2 to bind instead, increasing HO-1 activity (Ogawa et al., 2001).  Bach1 also 

responds to other compounds apart from heme that cause oxidative stress to increase HO-1 

expression. 

 

Figure 5:  Representation of the Bach1/Nrf2 System* 

 

 

There are several signal transduction cascades that affect Nrf2 and Bach1 to regulate 

HO-1 expression.  These include extracellular-regulated kinase (ERK), p38α, 

phosphatidylinositol-3 kinase (PI3K), and glycogen synthase kinase-3β (GSK3β).  ERK, 

p38α, and PI3K/Akt activate Nrf2.  GSK3β interacts with both Nrf2 and Bach1 to regulate 

HO-1 expression.  Of the mitogen-activated protein kinases (MAPKs) that play a role in HO-

1 gene expression, p38 is the most prominent.  Inhibition of p38 blocks HO-1 induction in 

response to multiple stimuli (Paine et al., 2010). 

*Reprinted from Biochemical Pharmacology, Volume 80, Issue 12, Paine et al., Signaling to heme oxygenase-1 

and its anti-inflammatory therapeutic potential / 1895-1903, Copyright (2010), with permission from Elsevier. 
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Figure 6:  Signal Cascades Involved in Regulation of HO-1 Expression* 

 

 

Redox-sensitive transcription factors including NF-κB and Activating protein-1 (AP-

1) also play a role in HO-1 expression.  Oxidative stress initiates redox reactions and kinase 

and phosphatase activity.  These reactions initiate signaling cascades that activate various 

transcription factors.  AP-1 induces HO-1 expression in response to cell stress as does NF-

κB, though its role in HO-1 regulation is less certain.  AP-1 and NF-κB are also key 

components of MMP-3 expression. 

 

 

*Reprinted from Biochemical Pharmacology, Volume 80, Issue 12, Paine et al., Signaling to heme oxygenase-1 

and its anti-inflammatory therapeutic potential / 1895-1903, Copyright (2010), with permission from Elsevier. 
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There are a number of AP-1 sites in the HO-1 promoter.  The primary binding site of 

AP-1 (TGATGCA) is contained in AREs in E1 and E2 of the HO-1 promoter.  This is also 

where Nrf2 binds the promoter and AP-1 often interacts with Nrf2, influencing expression of 

the same genes.  AP-1 causes changes to HO-1 gene expression via interaction with the HO-1 

promoter, interaction with Nrf2, and other mechanisms involving various transcription 

factors (Paine et al., 2010). 

Polymorphisms in the HO-1 promoter, such as the (GT)n-repeat also affects binding 

of transcription factors.  The (GT)n microsatellite has been linked with risk for a number of 

diseases (Exner et al., 2004).  Longer (GT)n repeats in the HO-1 gene promoter possess 

lower transcriptional activity resulting in decreased HO-1 induction (Chen et al., 2002).   

HO-1 is affected by various cell signaling molecules.  IL-1 in particular is a 

proinflammatory cytokine that alters the expression of HO-1.  It has been shown to both 

increase and decrease HO-1 in different conditions and cell types (Numata et al., 2009, 

Fernández et al., 2003; Takahashi et al., 1999).  In osteoarthritic chondrocytes, 

proinflammatory cytokines including IL-1 downregulate catabolic genes such as HO-1 

(Guillen et al., 2008).  Previous data from this laboratory showed decreased expression of 

HO-1 mRNA in human gingival fibroblast (HGF) cells in response to IL-1 (Madani, 2011).   

Induction of Heme Oxygenase-1 

Heme oxygenase is regulated by different porphyrins, such as hemin, which contains 

iron. Hemin induces HO-1 by providing the substrate heme which interacts with Bach1 

heme-binding motifs causing nuclear exclusion and inactivation of the repressor (Ogawa et 

al., 2001; Suzuki et al., 2004).  Cobalt protoporphyrin IX (CoPP) is a synthetic non-substrate 

inducer of HO-1.  It upregulates HO-1 by influencing stability of the transcription factors in 
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the Bach1/Nrf2 counter regulatory system.  This results in increased stability of the 

transcriptional activator Nrf2, which interacts with AREs in the HO-1 gene promoter (Johns 

et al., 2009).  Low doses of CoPP (10 µM) decrease MMP-3 as a result of HO-1 induction, 

decreasing tissue destruction in osteoarthritic synoviocytes (Garcia-Arnandis et al., 2010).   

Hemin is likely to have other effects on cells in addition to its direct effects on 

induction of HO-1 transcription.  Hemin is a lipophilic pro-oxidant that increases ROS levels, 

and influences the activity of the redox-regulated transcription factor AP-1 (Kumar & 

Bandyopadhyay, 2005; Palma et al., 1994).  CoPP, in contrast to hemin, does not affect 

transcription from an AP-1 dependent reporter gene (Palma et al., 1994). 

Inhibition of Heme Oxygenase-1 

In contrast to Hemin and CoPP, Tin Protoporphyrin (SnPP) is typically a competitive 

inhibitor of HO-1 that results in a slower rate of heme degradation.  The inhibition of HO-1 

by SnPP is less dramatic compared to the induction of HO-1 by an equivalent dose of CoPP.  

SnPP prevents hyperbilirubinemia in neonatal and adult animals and humans (Kappas & 

Drummond, 1986).  Although most studies demonstrate the inhibitory action of SnPP on HO-

1 activity, some have shown the drug to elicit HO-1 expression.  For example, Ibáñez et al., 

2011 found SnPP (12 mg/kg body weight per day) to induce HO-1 in murine joint tissues.  

The stimulatory effect of SnPP when it occurs, however, is much less potent than the effect 

produced by CoPP. 

Therapeutic Potential of Heme Oxygenase-1 

Metalloporphyrins, such as CoPP, are not likely to be used clinically because the 

cytotoxicity and lack of cell specificity of these compounds contribute to a number of 

adverse side effects in vivo (Schmidt, 2007).  Heme is currently used to treat the metabolic 
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disorder acute intermittent porphyria which affects heme production, but in terms of 

inflammatory diseases, it is not a promising treatment option (Abraham & Kappas, 2008, 

Paine et al, 2010).  Several pharmacological agents that are currently being used clinically or 

in animal models provide anti-inflammatory relief by induction of HO-1.  Increasing HO-1 

when inflammation has already occurred does not have any positive anti-inflammatory 

effects, but it has had protective effects in myeloid and endothelial cells prior to the start of 

inflammation (Paine et al., 2010). 

Goals of the Current Study 

Periodontitis is an ideal system to investigate chronic inflammation at the cellular 

level.  Due to the accessibility of gingival cells and the common features the disease shares 

with other inflammatory diseases, it can be used as a model to investigate the mechanism 

responsible for inflammation in chronic inflammatory diseases in general. 

Previously in this laboratory, we used HGF cells from patients with periodontitis to 

investigate HO-1 mRNA expression in chronically inflamed conditions.  IL-1 caused a 

decrease in HO-1 mRNA in the initial 12 hours of treatment.  Also, treatment of HGF cell 

cultures with hemin increased both HO-1 and MMP-3 mRNA levels (Madani, 2011). 

Further examination of the effects of HO-1 activation on MMP-3 expression using 

CoPP as a HO-1 inducer may help validate these results.  Hemin, though it does induce 

MMP-3 in some HGF lines, may do so indirectly.  Hemin supplies the substrate heme, but it 

also promotes oxidative stress and could effect MMP expression mediated through increased 

activation of redox-dependent transcription factors rather than by the products of HO-1 

activity.  The effects of CoPP at the low doses used in this study are expected to be mediated 
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more directly through HO-1 (Kumar & Bandyopadhyay, 2005; Palma et al., 1994). Thus, any 

changes in MMP-3 expression can be more reliably attributed to activation of HO-1. 

In addition, it would be beneficial to consider the effects of HO-1 on MMP-3 gene 

expression in other human fibroblasts for comparison purposes.  Fibroblasts produce 

extracellular matrix and collagen, are the most common of the connective tissue cells, and are 

active in tissue healing.  This makes fibroblasts an advantageous cell type to investigate the 

effects of HO-1 activity on inflammatory mediators which directly affect extracellular matrix 

protein degradation.  Increasing the understanding of the HO-1 system in gingival fibroblast 

cells and other fibroblasts may assist in determining a therapeutic target for disease 

conditions such as chronic inflammation and cancer. 

Hypothesis 

  Our hypothesis is that activation of HO-1 by CoPP will increase basal and IL-1 

induced expression of MMP-3 mRNA, and that inhibition of HO-1 activity with SnPP will 

decrease MMP-3 expression in human fibroblasts. 
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Materials and Methods 

Cell Culture 

Human foreskin fibroblasts (HFF, CRL 2076) and MG-63 human osteosarcoma cells 

were obtained from American Type Culture Collection (ATCC) and maintained at 37
o
C in a 

saturated atomosphere of 5% CO2 in Dulbecco’s Modified Eagle’s Medium (DMEM; 

Mediatech, Inc., Manassas, VA) supplemented with 10% Fetal Bovine Serum (FBS; 

Mediatech Inc., Manassas, VA) and antibiotic/antimycotic (AB/AM; penicillin, 

streptomycin, amphotericin B; Gibco BRL, Grand Island, NY).  HFF cells from passages 6 to 

18 were used for all experiments. 

Human gingival tissue samples were obtained from patients undergoing periodontal 

surgery at the Maurice H. Kornberg School of Dentistry (Temple University) under the 

supervision of Dr. Kevan S. Green.  Gingival cells were prepared from tissue samples by 

enzymatic treatment.  Fragments of undigested tissue were added to a flask containing 200 µl 

of 2.5% trypsin in Hank’s Balanced Salt Solution (HBSS; Mediatech Inc., Manassas, VA) 

and stirred for one hour at 37ºC.  The supernatant containing trypsin and digested tissue was 

removed and centrifuged at 100 x g (1,000 rpm) for 10 minutes.  The undigested tissue was 

put aside for collagenase digestion.  After the centrifuge was complete, the supernatant was 

discarded and the pellet was resuspended in 5 mL of Eagle’s Minimum Essential Medium 

(EMEM; Mediatech Inc., Manassas, VA) supplemented with 10% FBS, AB/AM and 

Plasmocin (InvivoGen, San Diego, CA).  Five ml of a 1% collagenase solution in HBSS 

containing magnesium and calcium solutes was added to the remaining undigested tissue and 

stirred for one hour at 37ºC.  The supernatant was removed and centrifuged at 100 x g (1,000 

rpm) for 10 minutes.  The pellet was resuspended in 5 mL EMEM with 10% FBS, AB/AM 
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and Plasmocin, combined with the trypsin-treated solution, and added to at T-25 flask at 

37ºC.  The media was changed the following day.  HGF cells were maintained in EMEM 

with 10% FBS, AB/AM and Plasmocin.  Cells were used for experiments between passages 4 

and 7. 

Cells were treated with IL-1 (10 ng/ml) and/or cobalt (III) protoporphyrin IX chloride 

(CoPP) or tin protoporphyrin (SnPP) solutions (Enzo Life Sciences, Farmingdale, NY) at 

various doses for 12 hours.  One mM stock solutions of CoPP and SnPP were prepared using 

Dimethyl sulfoxide (DMSO) solvent (Sigma-Aldrich Co., St. Louis, MO). 

RNA Isolation 

Cells were harvested and RNA was isolated using the RNeasy Plus Micro Kit 

(Qiagen, Valencia, CA) according to the manufacturer’s instructions.  Plates were washed 

with 10 ml Dulbecco’s phosphate-buffered saline (DPBS, Mediatech, Inc., Manassas, VA) 

and cells were lysed directly in the plate by the addition of 350 µl Buffer RLT Plus.  This 

was followed by scraping, and the cells were sheared by passing the cell lysate 8 times 

through a 25 gauge needle (0.5 mm diameter).  The homogenized lysate was transferred to a 

gDNA Eliminator Spin Column placed in a 2 ml collection tube and centrifuged for 1 minute 

at ≥ 8000 x g (10,000 rpm; Eppendorf Centrifuge 5424, Germany) to remove genomic DNA.  

Ethanol (350 µl at 70%) was added to the flow-through.  The sample was mixed by pipetting, 

transferred to an RNeasy MinElute spin column in a 2ml collection tube, and centrifuged for 

1 minute at ≥ 8000 x g (10,000 rpm).  The flow-through was discarded, and 700 µl of Buffer 

RW1 Wash Buffer was added to the RNeasy MinElute spin column and centrifuged for 1 

minute at ≥ 8000 x g (10,000 rpm).  The flow-through was discarded and 500 µl of 80% 

ethanol was added to the spin column and centrifuged for 1 minute at ≥ 8000 x g (10,000 
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rpm).  The flow-through was discarded and the RNeasy MinElute spin column was placed in 

a new 2 ml collection tube.  The lid of the spin column was left open and centrifuged for 5 

minutes at 7,500 rpm.  The flow-through and collection tube were discarded.  The RNeasy 

MinElute spin column was placed in a new 1.5 ml collection tube.  Fourteen µl of RNase-

free water was added directly to the center of the spin column membrane and centrifuged for 

1 minute at ≥ 8000 x g (10,000 rpm) to elute the RNA. 

Spectrophotometer Analysis 

After the isolation of RNA, the amount of RNA and its purity were determined using 

spectrophotometer analysis (Thermo Fisher Scientific, Evolution 600 UV-Vis, Madison, WI).  

Two µl of each sample was mixed with 398 µl deionized water in a quartz cuvette, and the 

absorbance values were measured at 260 nm and 280 nm.  The RNA concentration was 

quantified using Beer’s Law, A = Ɛ c l (where A is absorbance, Ɛ is the RNA extinction 

coefficient, c is the RNA concentration, and l is the path length).  Observing this law, the 

absorbance value at 260 nm was multiplied by 40 µg/ml.  The resulting value represented the 

diluted concentration of sample in the quartz cuvette.  The diluted concentration was then 

multiplied by the dilution factor, 200, to calculate the concentration of RNA in the sample in 

µg/µl.  The purity of the sample was determined by the ratio of absorbance at wavelengths 

260nm/280nm.  Samples with ratios 1.7 to 2 were considered pure enough to continue.  

cDNA Synthesis 

The RNA was converted to single-stranded cDNA by the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Foster City, CA) using a thermal cycler 

(Techne, TC-300).  Each sample of RNA was combined with reagent grade deionized 

distilled water (RGDD) for a total of 20 µl.  RNA (0.5-5 µg) were used for each reverse 
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transcription experiment.  The 20 µl RNA/RGDD solution was then mixed with 80 µl of 

master mix.  The 80 µl of master mix consisted of 51 µl RGDD, 4 µl Deoxyribonucleotide 

Triphosphate (dNTP Mix; a premixed solution containing sodium salts of the four 

deoxyribonucleotides, dATP, dCTP, dGTP, dTTP each at 10 mM in water, which gives a 

total concentration of nucleotides 40 mM), 5 µl MultiScribe™ Reverse Transcriptase, 10 µl 

Buffer, and 10 µl Random Primer.  The cycling conditions were 25 °C for 10 minutes, 37 °C 

for 120 minutes, and 4 °C hold. 

Real-Time Polymerase Chain Reaction 

After cDNA was made, the Real-Time Polymerase Chain Reaction (RT-PCR) 

procedure was performed.  Two µl cDNA, 9.0 µl RNase-free water, 12.5 µl Premix Ex Taq™ 

Master Mix, 0.5 µl ROX Reference Dye (TAKARA, Madison, WI) and 1.0 μl of probe 

(Gyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), Heme Oxygenase-1 (HO-1), 

stromelysin (MMP-3) or interstitial collagenase (MMP-1); Applied Biosystems, Foster City, 

CA) were combined per well.  Master Mix was made for each probe.  A total of 25 μl volume 

was loaded into each well on a MicroAmp optical 96-well reaction plate, and contained with 

MicroAmp optical 8-cap strips (Applied Biosystems, Foster City, CA).  After plating the 

samples, RT-PCR analysis was performed using the Applied Biosystems 7500 detection 

system.  Thermal cycling was carried out for 30 seconds at 95 °C, followed by 40 cycles at 

95 °C for 5 seconds and 60 °C for 37 seconds.  Reactions were done in quadruplicate and 

results were normalized to GAPDH.  Relative gene expression was calculated using the 

ΔΔCT method.  Statistical significance was measured by paired student’s t-test and/or 

analysis of variance (Two-way ANOVA).  P-values < 0.05 were considered statistically 

significant (post-hoc Bonferroni t-test). 
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Results 

Effect of IL-1 on Expression of Heme Oxygenase-1 mRNA in Human Gingival 

Fibroblasts 

In experiments previously performed in this laboratory (Madani, 2011), IL-1 

decreased HO-1 mRNA in the initial 12 hours of treatment.  These results were reproduced in 

a single HGF cell line as seen in Figure 7.  Inhibition of HO-1 mRNA expression occurred at 

3, 6, and 16 hours, with an approximate 90% inhibition at 16 hours. 

 

Figure 7: Effect of IL-1 on Expression of Heme Oxygenase-1.   

An HGF culture derived from gingival tissue of a patient with periodontitis was treated with 

10 ng/ml IL-1 for the indicated times.  Total RNA was isolated at times 0, 3, 6, 16 and 24 

hours.  Heme oxygenase mRNA levels were quantified by real time-PCR and normalized to 

levels of GAPDH mRNA.  The graph represents an average of triplicates +/- SD (n=1). 

 

 

 



25 

 

 

Effects of Heme Oxygenase-1 Induction and Inhibition on MMP-3 mRNA Expression  

To determine the effects of HO-1 induction on MMP-3 expression, cell cultures were 

treated with various doses of the HO-1 activator, Cobalt Protoporphyrin IX (CoPP), for 12 

hours in the presence or absence of IL-1.   MMP-3 mRNA levels were quantified using RT-

PCR and normalized to levels of GAPDH mRNA.   

To determine the effects of HO-1 inhibition on MMP-3 expression, cell cultures were 

treated with various doses of the HO-1 inhibitor, Tin Protoporphyrin IX (SnPP), for 12 hours 

in the presence or absence of IL-1.   MMP-3 mRNA levels were quantified using RT-PCR 

and normalized to levels of GAPDH mRNA. 

Human Gingival Fibroblasts (HGF) 

Effect of CoPP Treatment on MMP-3 mRNA Expression in HGF 

Levels of MMP-3 mRNA fluctuated in the presence of different doses of CoPP, but 

the variation was not dose-dependent and did not reach statistical significance (Figure 8A).  

IL-1 induced expression of MMP-3 increased in response to all doses of CoPP.  The effects 

of CoPP on basal and IL-1-induced MMP-3 expression were not statistically significant, 

which may be the result of high levels of variation between individual cell lines. 

Effect of SnPP Treatment on MMP-3 mRNA Expression in HGF 

 MMP-3 mRNA expression was not changed in the presence of SnPP (Figure 8B).  IL-

1-induced expression of MMP-3 mRNA was slightly increased by 5-50 µM SnPP and 

slightly decreased by 75 µM SnPP.  These changes did not reach statistical significance, 

however. 
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A. 

 

B. 

 

Figure 8: Effect of Heme Oxygenase-1 Induction and Inhibition on Expression of MMP-3 

mRNA in Human Gingival Fibroblasts 

HGF cultures were incubated of with various doses of (A) CoPP (1-30 µM) or (B) SnPP (5-

75 µM) for 12 hours in the absence and presence of IL-1 (10 ng/ml).  Total RNA was 

isolated from control (untreated) and treated cells.  MMP-3 mRNA levels were quantified by 

real time-PCR and normalized to levels of GAPDH mRNA.  (A) represents data expressed as 

mean +/- SEM (n=3).  *p < 0.05 with respect to control. (B) n=2. 
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Human Foreskin Fibroblasts (HFF) 

Effect of CoPP Treatment on MMP-3 mRNA Expression in HFF 

Induction of HO-1 by CoPP did not have a significant effect on IL-1 induced MMP-3 

mRNA expression in HFF cells (Figure 9A).  Although there appeared to be a slight increase 

in levels of MMP-3 mRNA in the presence of 1uM CoPP, this did not reach statistical 

significance.  The highest dose of CoPP (15µM) did produce a minor (~2-fold) increase in 

basal levels of MMP-3 mRNA as compared to the untreated control.  This increase was 

statistically significant by paired T-test but not by ANOVA.   

Effect of SnPP Treatment on MMP-3 mRNA Expression in HFF 

No change was seen in MMP-3 mRNA expression in HFF cells treated with SnPP 

(Figure 9B).  Basal levels of MMP-3 expression remained unchanged when treated with the 

HO-1 inhibitor compared to the untreated control sample.  The IL-1-induced expression of 

MMP-3 mRNA increased significantly compared to the untreated control.  There was a trend 

toward SnPP increasing IL-1 induced MMP-3 expression at all doses, but these changes were 

not significant. 
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A. 

.  

B. 

 

Figure 9: Effect of Heme Oxygenase-1 Induction and Inhibition on Expression of MMP-3 

mRNA in Human Foreskin Fibroblasts 

HFF cultures were incubated of with various doses of (A) CoPP (1-15 µM) or (B) SnPP (5-

75 µM) for 12 hours in the absence and presence of IL-1 (10 ng/ml).  Total RNA was 

isolated from control (untreated) and treated cells.  MMP-3 mRNA levels were quantified by 

real time-PCR and normalized to levels of GAPDH mRNA.  The graphs represent data 

expressed as mean +/- SEM (n=3).  *p < 0.05 with respect to control. 
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Human Osteosarcoma Cells (MG-63) 

Effect of CoPP Treatment on MMP-3 mRNA Expression in MG-63 

Although IL-1 induced MMP-3 expression was significantly different from the 

control, there were no significant effects of CoPP on basal or IL-1 induced expression of 

MMP-3 (Figure 10A).  

Effect of SnPP Treatment on MMP-3 mRNA Expression in MG-63 

Basal expression of MMP-3 remained unchanged when treated with SnPP (Figure 

10B).  In the presence of IL-1 the lowest dose of SnPP (5µM) induced MMP-3 expression by 

approximately 40% compared to IL-1 alone.  The remaining SnPP doses also slightly 

increased IL-1-induced expression of MMP-3 compared to IL-1 alone, however the effect 

was minimal, and the magnitude of the increase did not change between the three highest 

doses, 25µM, 50µM, and 75µM.  Overall, SnPP had no significant effect on the basal 

expression of MMP-3 or on the IL-1-induced MMP-3 expression in MG-63 cells. 
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A. 

 
 

B. 

 

  

Figure 10: Effect of Heme Oxygenase-1 Induction and Inhibition on Expression of MMP-

3 mRNA in Human Osteosarcoma Cells 

MG-63 cultures were incubated of with various doses of (A) CoPP (1-15 µM) or (B) SnPP 

(5-75 µM) for 12 hours in the absence and presence of IL-1 (10 ng/ml).  Total RNA was 

isolated from control (untreated) and treated cells.  MMP-3 mRNA levels were quantified by 

real time-PCR and normalized to levels of GAPDH mRNA.  The graphs represent data 

expressed as mean +/- SEM (n=3).  *p < 0.05 with respect to control. 
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Effect of Drugs on Heme Oxygenase-1 mRNA Expression 

To confirm the effectiveness of the HO-1 activator and inhibitor, HO-1 mRNA 

expression was quantified by real-time PCR.  cDNA was previously synthesized from HGF 

cell cultures treated with various doses of either SnPP or CoPP for 12 hours in the presence 

and absence of IL-1.   HO-1 mRNA levels were measured by RT-PCR in samples previously 

used to measure MMP-3 expression.   

Cobalt Protoporphyrin IX 

 The HO-1 activator, CoPP, induced HO-1 mRNA expression in a dose-dependent 

manner.  The highest dose of CoPP produced close to a 90 percent increase in basal HO-1 

mRNA levels compared to the untreated control (Figure11A) and an approximate 60 percent 

increase in HO-1 expression in the presence of IL-1 compared to IL-1 alone (Figure 11B). 

Tin Protoporphyrin IX 

Inhibition of HO-1 mRNA expression did not occur as expected in the presence of 

SnPP (Figure 11C).  Instead, HO-1 mRNA levels increased with increasing doses of the 

inhibitor.  The highest dose, 75µM SnPP, produced a 2.5 fold increase in basal HO-1 

expression and a 4 fold increase in HO-1 mRNA expression in IL-1-treated samples 

compared to IL-1 alone.  Due to the contradictory effects of this drug, experiments involving 

SnPP treatments in HGF cells were not continued. 
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C. 

 

Figure 11: Effect of Cobalt Protoporphyrin IX and Tin Protoporphyrin IX on Heme 

Oxygenase-1 mRNA Expression in Human Gingival Fibroblasts 

HGF cultures were incubated of with various doses of (A, B) CoPP (1-30 µM) and (C) SnPP 

(5-75 µM) for 12 hours in the absence and presence of IL-1 (10 ng/ml).  Total RNA was 

isolated from control (untreated) and treated cells.  HO-1 mRNA levels were quantified by 

real time-PCR and normalized to levels of GAPDH mRNA (n=1). 
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Discussion 

Chronic inflammation is linked to several inflammatory diseases including 

rheumatoid arthritis, atherosclerosis, periodontitis, and osteoarthritis.  The prevalence of 

periodontitis specifically in the United States is close to 50 percent among adults age 30 and 

above (Eke et al., 2012).  Periodontitis is also closely associated with other serious diseases 

including heart disease and diabetes, which are leading causes of death in the United States.  

Chronic inflammation is even associated with increased tumor growth and metastasis in 

cancer (Sunamura et al., 2003, Was et al., 2006). 

Unbalanced expression of inflammatory mediators is largely responsible for the 

pathological tissue damage that occurs in chronic inflammation.  Interleukins, such as IL-1, 

play a critical role in the development and resolution of inflammation.  HO-1 has been shown 

to improve inflammation through its reaction products and by influencing the expression of 

other proteins.  Understanding the mechanisms behind the anti-inflammatory properties of 

heme oxygenase-1 and its role in healing is needed for the use of the enzyme as therapeutic 

target.  Determination of the effects of the HO-1 system on other pro-inflammatory and anti-

inflammatory agents such as MMPs can provide valuable knowledge concerning chronic 

inflammation.   

Hemin and CoPP induce HO-1; however there are a few differences between the 

drugs aside from their ability to affect HO-1 gene transcription.  CoPP, a non-substrate 

inducer, acts primarily by affecting stability of Bach1 and Nrf2 transcription factors that bind 

upstream of the HO-1 promoter, thus increasing HO-1 gene expression.  Hemin also 

decreases the binding of Bach1 above the HO-1 promoter region, thus increasing HO-1 

activity.  Hemin, molecularly similar to heme despite containing the iron atom in the ferric 
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state, is also a pro-oxidant (Kumar & Bandyopadhyay, 2005).  Hemin differs from CoPP in 

that its pro-oxidant properties increase activity of redox-sensitive transcription factors 

consequently increasing HO-1 activity. 

The increase of HO-1 expression by CoPP did not have a significant effect on MMP-

3 mRNA expression in the HFF, MG-63 or HGF cell lines.  The only significant effect in 

these cell types was the consistent increase in MMP-3 expression in response to IL-1 

induction.   

Activation of HO-1 did not cause a statistically significant change in MMP-3 

expression in human gingival fibroblasts; however it did seem to produce an increasing trend 

in two individual experiments.  The dose response pattern varied between each experiment.  

One of the HGF experiments produced a dose response pattern in which the greater doses 

resulted in a greater induction response.  Another resembled a bell-shaped dose response 

curve.  The most effective dose was mid-range, and the greater doses appeared to become 

less effective.  Due to individual variation between different HGF cultures, it is possible that 

the optimal dose of CoPP for increasing MMP-3 expression differs between individuals.  

Differences between individuals could be due to a variety of genetic or environmental factors 

including polymorphisms in either the HO-1 or MMP-3 promoters, pre-existing medical 

conditions, level of severity of inflammation, medication, or lifestyle differences such as 

smoking or drinking.  There are a number of risk factors for periodontal disease which 

include but are not limited to smoking, diabetes, obesity, osteoporosis, dietary calcium 

deficiency, stress and genetic factors (Genco & Borgnakke, 2000).  Any variation, potentially 

caused by these or other genetic and/or environmental factors related to those individuals, 

could explain different dose-response patterns in HGF cells.  Overall, however, the trend 
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indicated a minimal positive correlation between HO-1 mRNA expression and MMP-3 

mRNA expression. 

The effect of HO-1 on MMP-3 likely depends on cell or tissue type.  In this 

experiment, increased HO-1 correlated with slightly increased MMP-3 expression in HGF 

but not the other two cell types investigated.  In a similar study, in RA synovial fluid, a 

minimal correlation was demonstrated between HO-1 protein levels and MMP-3, and no 

correlation was found in OA synovial fluid (Kitamura et al., 2010).  These differences in 

experimental results between cell types could possibly be explained by different amounts of 

baseline HO-1 protein.  Or HGF, HFF and MG-63 cell types that are not inflamed may 

contain minimal HO-1 to begin with and if so induction of the enzyme via the HO-1 activator 

may not produce a significant effect. 

When comparing the CT values in all three cell lines, however, they were all 

relatively similar.  The average CT value of HO-1 mRNA in the control samples was 23 in 

HGF cells, 25 in HFF, and 23 in MG-63 (compared to an average CT value of 18 for 

GAPDH in all three cell types).  Since the baseline mRNA levels roughly indicated by CT 

were not very different, there is no evidence to support this explanation. 

It is also possible that HO-1 induction had minimal effects on MMP-3 expression 

because HO-1 does not have a direct effect on MMP-3.  Since hemin increased MMP-3 in 

previous studies in this laboratory, but CoPP, a more specific inducer of HO-1, did not, it is 

likely that HO-1 was not responsible for the hemin-induced increase in MMP-3 expression.  

The induction of MMP-3 in response to treatment with hemin may be due to another factor 

such as ROS activation of AP-1 (Palma et al., 1994). 
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  Hemin increases ROS, and ROS are known to increase MMP gene expression and 

regulate MMP activation (Nelson and Melendez, 2004).  Treatment with ROS inhibitors 

decreases MMP expression and production, suggesting that ROS play a definite role in 

MMP-3 expression (Woo et al., 2008).  Therefore the increase in MMP-3 in response to 

hemin, which initially seemed to be caused by HO-1 or its products, is more likely caused by 

ROS.  This is consistent with results of experiments with the HO-1 inhibitor, SnPP. 

SnPP has an inhibitory effect on HO-1 compared to the metalloporphyrin, CoPP, due 

to the metal ion attached to the porphyrin ring.  Several ions including Co and Al have 

inductive properties, whereas ions such as Sn and Zn have the opposite effect.  SnPP 

competitively inhibits HO-1 to decrease enzymatic activity, but also induces HO-1 protein 

synthesis.  In this study, we found that SnPP caused a dose-dependent increase in HO-1 

mRNA expression in HGF cells but did not have any effect on MMP-3 expression in any cell 

type examined.  Therefore, evidence seems to suggest that HO-1 and the products of its 

activity are not responsible for the increased MMP-3 expression seen previously with hemin 

treatment. 

In other studies, SnPP increased HO-1 expression resulting in cytoprotective and anti-

inflammatory effects.  For example, SnPP injections in rat kidney tissues increased HO-1 

mRNA and protein expression 12-24 hours following 20 µmol/kg SnPP injections (Kaizu et 

al., 2003).  There was an overall decrease in enzyme activity; however, the increased 

expression of HO-1 had cytoprotective effects against ischemia/reperfusion despite the 

decrease in HO-1 enzymatic activity.  In another study, SnPP had anti-inflammatory effects 

in collagen-induced arthritic tissue (Ibanez et al., 2011).  Since HO-1 protein expression is 

increased by SnPP, possibly the HO-1 protein itself is responsible for anti-inflammatory 
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effects seen, in addition to the HO-1 products as expected.  If the enzyme’s products, CO, 

bilirubin or biliverdin are not primarily responsible for the cytoprotective effects of HO-1, 

then other mechanisms may exist. 

Limitations 

The presence of mycoplasma contamination in the laboratory was discovered late into 

the experimental process.  These bacteria can exist undetected in cell culture due to their 

small size, and have been known to inflict cellular changes that could alter expression of the 

gene of interest.  Plasmocin, an anti-mycoplasma agent was used in all HGF cultures 

following detection of the mycoplasma.  However, some of the responses in early HFF or 

MG-63 experiments may have been affected by the infection.  Also, in HGF cells 

specifically, variation exists between HGF cultures from different individuals, and the 

sample size was much too low to minimize this variation. 

Future Direction 

HO-1 itself does not seem to strongly correlate with induction of MMP-3 expression.  

In the future it will be necessary to verify that the increase in MMP-3 expression in response 

to treatment with hemin is independent of HO-1 induction.  To do this it may be beneficial to 

examine the level of expression of MMP-3 in fibroblasts treated with hemin in the presence 

of an ROS inhibitor as compared to hemin alone.  This investigation could help to determine 

whether ROS are responsible for the increase in MMP-3 expression in the presence of hemin. 
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Conclusion 

In conclusion, there was no consistent correlation between the magnitude of HO-1 

induction and expression of MMP-3 mRNA in human gingival fibroblasts.  The activation of 

matrix metalloproteinase-3 by HO-1 in HGF cells could not be consistently reproduced, and 

this effect also cannot be applied to the other fibroblasts investigated.  However, the 

induction of MMP-3 by IL-1 and inhibition of HO-1 by IL-1 in human fibroblasts were 

confirmed.   

Although it initially appears that an increase in MMP-3 in response to treatment with 

hemin would be primarily the result of the increase in HO-1, there are other variables that 

play a role.  Hemin increases ROS in addition to causing induction of HO-1 (Kumar & 

Bandyopadhyay, 2005).  It is well known that MMPs are activated by cytokines as well as 

free radicals such as ROS (Nelson & Melendez, 2004).  CoPP may have failed to produce the 

same results previously documented in this laboratory because this specific inducer of HO-1 

does not result in ROS.  Further examination is needed to determine the effects of HO-1 on 

MMP-3 expression. 
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