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METHODOLOGY ARTICLE Open Access

EgoNet: identification of human disease
ego-network modules
Rendong Yang1,2, Yun Bai3, Zhaohui Qin1 and Tianwei Yu1*

Abstract

Background: Mining novel biomarkers from gene expression profiles for accurate disease classification is challenging
due to small sample size and high noise in gene expression measurements. Several studies have proposed integrated
analyses of microarray data and protein-protein interaction (PPI) networks to find diagnostic subnetwork markers.
However, the neighborhood relationship among network member genes has not been fully considered by those
methods, leaving many potential gene markers unidentified. The main idea of this study is to take full advantage of
the biological observation that genes associated with the same or similar diseases commonly reside in the same
neighborhood of molecular networks.

Results: We present EgoNet, a novel method based on egocentric network-analysis techniques, to exhaustively
search and prioritize disease subnetworks and gene markers from a large-scale biological network. When applied to
a triple-negative breast cancer (TNBC) microarray dataset, the top selected modules contain both known gene markers
in TNBC and novel candidates, such as RAD51 and DOK1, which play a central role in their respective ego-networks by
connecting many differentially expressed genes.

Conclusions: Our results suggest that EgoNet, which is based on the ego network concept, allows the identification of
novel biomarkers and provides a deeper understanding of their roles in complex diseases.

Keywords: Gene expression, Network medicine, Machine learning, Cancer biology, Biological networks, Microarray

Background
Complex human diseases, e.g. cancer, diabetes, or autism,
are caused by dysregulations of biological networks.
Genetic analysis approaches focused on individual genetic
determinants are unlikely to characterize the network
architecture of complex diseases comprehensively. Creating
effective therapies for these diseases requires a thorough
understanding of how cells integrate enormous amounts of
genomic, proteomic, and environmental information to
produce specific cellular functions, and furthermore, how
such functions are perturbed in the disease state. Trans-
criptomics, metabolomics, proteomics and other -omics
technologies have the potential to provide insights into
complex disease pathogenesis and heterogeneity, especially
if they are applied within a network biology framework.
“Network medicine” is the rapidly developing field which

applies systems biology and network science methods to
human disease [1-3].
In the past decade, extensive work has been done to

identify differentially expressed genes across different
phenotypes, which can be used as diagnostic markers
for classifying different disease states or predicting
clinical outcomes [4-7]. However, gene markers based
on expression data alone are still not reliable [8]. To meet
this challenge, many have turned to network medicine to
gain a comprehensive understanding of the complex
disease process. In contrast to studying individual genes in
isolation, mapping human disease-associated genes to
interactome data has greatly empowered our understanding
of human disease mechanisms [9]. Network-based
approaches have multiple potential biological and
clinical applications, including a better understanding of
the effects of interconnection of disease genes and disease
pathways, which, in turn, may offer better targets for drug
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development. These advances may also lead to more
reliable biomarkers to monitor the functional integrity of
networks that are perturbed by diseases.
To date, many computational methods have been

developed to integrate gene expression profiles with
protein-protein interaction maps or pathway databases,
with the goal of identifying significant subnetwork
markers for predicting biological or clinical outcomes
[10-18]. More recently, different machine learning and
data mining strategies for feature selection have been
applied to identifying a subset of genes that can maximize
the prediction performance [19]. Dutkowski et al. [20]
proposed Network-Guided Forests (NGF) which inte-
grates the key ideas of Random Forests (RF) into the
selection of disease modules. However, it involves a
random search over subnetworks, leading to possibly
different results from different runs with no guaran-
tee of the optimality of the final result. Zhu et al.
[21] applied network-based Support Vector Machine
(SVM) for classification of microarray samples but the
method only worked for small subnetworks. More
importantly, the above methods are largely heuristic,
and the definition of output subnetworks is ambiguous
without a formal topological feature. Hence, selected
network modules tend to include only significant
genes based on their expression profiles, but exclude
the non-differentially expressed genes despite the fact
that they are functionally linked to many differentially
expressed disease genes.
In this study, we developed a novel method called

EgoNet to identify significant subnetworks that are func-
tionally associated with diseases, as well as accurately
predict clinical outcomes. The type of subnetwork
sought by our method is called ego-network, which is
well-defined in the study of social networks [22]. In
particular, an ego-network is the part of a network that

involves a particular node we are focusing on, which
we call ego. In addition to the ego, the network con-
sists of a neighborhood including all nodes to which
the ego is connected to at a certain path length. The
one-step neighborhood contains the nodes the ego is
directly connected to (referred to as the ego’s alters),
and the links between the ego’s alters. In studying
ego-networks, we are interested in examining how
egos make use of or are influenced by their alters in terms
of associating with disease outcomes. It has been reported
that the ego-network played an important role in the
inference of novel disease genes and supported predictions
in pathogenesis studies [23].
The underlying assumption of our model is that if the

majority of neighbors of a central disease gene are
disease genes, then its other neighbors are likely to be
involved in the disease pathway (Figure 1A). Alternatively,
if most neighbors of the ego node are associated with a
disease, the ego gene itself is considered highly likely to
play a role in the disease (Figure 1B). We intend to find
the hidden genes that show no significance by themselves
but are clustered in a subnetwork module whose genes
collectively are highly predictive of the disease status. The
ego-network model has been used for network module
over-representation analysis in ConsensusPathDB [24].
In this study, we use machine-learning techniques to
assess the association between an ego-network with
the clinical outcome. This approach allows compensatory
effects between the genes in an ego-network, as well
as nonlinear relations between the genes and the clinical
outcome.
We evaluated the performance of EgoNet in human

protein-protein interaction network and a triple nega-
tive breast cancer (TNBC) microarray data set. The
method not only successfully identified known breast
cancer susceptibility genes TP53, BRCA1, BRCA2 from

Figure 1 Two illustrative ego-networks. Red nodes are putative disease genes, white nodes are hidden disease genes either as alter nodes
(A) or ego node (B).
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significant ego-networks, but also detected several novel
targets, like ABL1 and RAD51 as predictive factors for
TNBC patients. We expect that EgoNet can be widely
used to infer novel biomarkers for phenotypic outcome
prediction of many human diseases.

Results and discussion
Overview of EgoNet algorithm
The goal of EgoNet algorithm is to identify significant
ego-networks from gene expression and large-scale
biological network data. As outlined in Figure 2, the
algorithm takes the network and gene expression data

as input. The input biological network can be a gene
regulatory network, a signaling pathway network, or a
protein-protein interaction network. The gene expression
data needs to be associated with a certain biological or
clinical outcome, which can be a categorical, continuous,
or survival outcome.
EgoNet iteratively scans through all genes with two

or more neighbors in the network. With each initial
gene (the ego node), it first finds the score of the
level-one ego-network based on how well the genes
as a collection predicts the clinical outcome. Then it
spreads outward from the ego node progressively to

Figure 2 Workflow of the EgoNet algorithm.
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involve more genes in the predictive model. The
spreading stops when the prediction accuracy drops
(Figure 2; Methods). The above process of growing
ego-network is also known as snowball sampling [25].
After obtaining the score of an ego-network, the signifi-
cance is evaluated by permutation test.

Simulation studies
To evaluate the capability of an ego network to predict
the clinical outcome, a machine-learning method needs
to be chosen. In this study, we selected three widely
used methods: support vector machines (SVM) [26],
K-nearest neighbors (KNN) [27] and random forests (RF)
[28], and compared their performance for subnetwork
identification through a simulation study.
In each simulation, a scale-free network was generated,

and one subnetwork was selected as the ground truth.
The subnetwork was linked to the outcome variable
through linear or nonlinear relationship. We applied the
EgoNet algorithm in conjunction with the three classi-
fiers for subnetwork selection, and inspected if the top
identified ego-netowork (s) recovered the true subnet-
work. In general, SVM performed the best (Table 1).
In both linear and non-linear settings, if we only se-
lected the top ego-netowork in every simulation, SVM
successfully recovered the true subnetwork more than
50% of the time. When we increased the number of
identified ego-networks to top 5, SVM was able to re-
cover the true subnetwork over 80% of the time.
Thus we chose SVM for the subsequent data analysis.
Next we compared the performance of EgoNet with

the method proposed by Chuang et al. [11], which scores
subnetworks using the mutual information between
aggregated gene Z-scores and class labels. We simulated
two scenarios: (1) All genes in an ego-network, including
the ego gene, are associated with the clinical outcome; and
(2) All genes in an ego-network, except the ego gene, are
associated with the clinical outcome. The second scenario
was motivated by our consideration that sometimes a gene
functionally related to a disease may not be differentially
expressed, while it is surrounded by differentially expressed

genes in the network (Figure 1B). In each of the scenarios,
we further simulated both linear and nonlinear associations
between gene expression and clinical outcome.
The methods were compared in two ways. The first is

the accuracy in predicting the clinical outcome, and the
second is the rate of correctly recovering the true ego
network. For prediction accuracy, we employed the
area under the ROC curve (AUC) as the metric to
evaluate performance. Additional file 1: Figure S1A
shows EgoNet outperformed Chuang et al.’s method
in terms of classification accuracy, albeit the difference
is relatively small. For true ego network recovery,
we calculated the rate of the top selected subnetwork
capturing the true ego node. We found EgoNet showed
substantially higher proportions of recovering the true
ego node (Additional file 1: Figure S1B). As expected,
the difference was most pronounced in the scenarios
where the ego node itself was not directly associated
with the clinical outcome.

Gene modules differentiate breast cancer subtypes
We applied EgoNet to analyze human PPI network
with the expression profiles of the two cohorts of
breast cancer patients previously reported by Li et al.
[29], which compared the gene expression of 24
sporadic triple negative breast cancer (TNBC) samples
against 51 primary breast tumor samples representing
all subtypes (NCBI GSE18864). TNBC is characterized
by the lack of expression of estrogen receptor (ER),
progesterone receptor (PgR), and the human epider-
mal growth factor receptor 2 (ERBB2, or HER2) [30].
It largely overlaps with the basal-like subtype of breast
cancer [31].
The PPI network was obtained from HINT database

[32], which collected data from several databases and
filtered both systematically and manually to remove
low-quality/erroneous interactions. The network con-
tained 8292 human proteins and 27493 high-quality
binary physical interactions.
We applied our algorithm to this dataset. We allowed

only nodes with more than one connection to serve as
egos. From every ego node, we progressively grew the
ego-networks by levels, and tested the predictive po-
wer. For every ego network, the procedure stopped
when the predictive power dropped with the growth.
Following this procedure, a total of 5375 ego-networks
were examined, and the average of nodes in an ego-
network is 30. Since ego-networks spread out in levels,
which are the maximum network distance from ego to its
alters, we found ~76% of the generated ego-networks were
level 1 and ~24% of them were level 2 (Additional file 2:
Figure S2). Prediction accuracy for phenotypic outcome
of those ego-networks varied between 0.63 and 0.95.
We identified the top 50 discriminative ego-networks

Table 1 Percentage of top identified ego-networks
successfully matching true subnetworks in simulations
using different classification algorithms*

Top 1 Top 5

Linear (%) Nonlinear (%) Linear (%) Nonlinear (%)

SVM: 68 53 89 83

RF: 50 42 83 69

KNN: 62 46 91 70
*Bold numbers denote the best performing method in each simulation
setting (column).
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by setting the accuracy cutoff at 0.9. All were significant
with p < 0.001 in permutation tests with 1000 permutations.
BRCA1 and BRCA2 are well-known breast cancer

susceptibility genes that belong to tumor suppressor
genes [33]. TP53 is a tumor suppressor gene whose
mutation is associated with a variety of cancers. Distinct
mutation patterns of TP53 was found between the
luminal subtypes of breast cancer and TNBC [31].
We explored the three genes in our identified subnetworks.
Interestingly, we found they were clustered in one ego-
network in which BRCA2 was the ego node (Figure 3A).
This observation is consistent with the local property
of disease networks – proteins involved in the same
disease have an increased tendency to interact with
each other [2]. We conducted single-gene level differ-
ential expression analysis. At the FDR cutoff of 0.05,
none of the three genes showed differential expression

between TNBC and non-TNBC breast cancer patients.
We further evaluated the importance of each gene on
the classification accuracy using a tree-based feature
selection algorithm (Method). We found genes with high
importance scores were mostly differentially expressed.
In the BRCA2 ego-network, breast cancer susceptibi-
lity genes ABL1 and RAD51 [34,35] were under such
scenario.
The ABL1 proto-oncogene encodes a cytoplasmic and

nuclear protein tyrosine kinase that has been implicated
in processes of cell differentiation, cell division, and so
on [36]. ABL1 is activated into an oncogene and
forms a fusion gene with break point cluster (BCR)
gene due to missense mutations within the ABL1 kin-
ase domain. The chimeric oncogene BCR-ABL1 has
been implicated to play a critical role in the develop-
ment of chronic myelogenous leukemia [37]. The

Figure 3 Identified ego-networks in the TNBC breast cancer dataset. Module (A) contains major breast cancer genes BRCA1, BRCA2 and
TP53. Modules (B) and (C) contain ERBB2 and ESR1 respectively. Examples of other top-scoring modules are shown in (D-F). The area of each
node scales with its importance in the classification of the phenotype. Red color indicates differential expression (FDR <0.05 based on a two-tailed
t-test with Benjamini & Hochberg FDR adjustment).
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over-expressed BCR-ABL gene will increase the trans-
membrane plasma protein expression and constitu-
tively activate the downstream signaling molecules
such as Src family kinases [38], including DOK1 and
NCOA2, which we discuss below. Thus it is logical to
believe that ABL1 is a critical factor in breast cancer
development. A detailed examination of the expression
level of ABL1 revealed it was substantially over-expressed
in TNBC, as compared to other primary breast cancer
subtypes (Additional file 3: Figure S3a). Our study sug-
gests ABL1 may be regarded as a predictive factor
for differentiating TNBC from other primary breast
cancer.
RAD51 encodes the major eukaryotic homologous

recombinase [39], which assists in the repair of DNA
double strand breaks. The RAD51 protein has been
demonstrated to interact with the ssDNA-binding
protein BRCA2, a well-known breast cancer suscepti-
bility gene [40]. BRCA2 controls and regulates both
the intracellular localization and DNA–binding ability
of RAD51 [41,42]. There were some reports suggest-
ing that dysfunctional variants of RAD51 is associated
with breast cancer risk. One recent study suggested
the association of RAD51 polymorphis with DNA re-
pair in BRCA1 mutation carriers and sporadic breast
cancer risk [43]. Smolarz et al. reported that there
was a significant positive association between RAD51
polymorphisms and TNBC [44]. In our current study,
RAD51 is significantly under-expressed in the TNBC
samples (Additional file 3: Figure S3b).
TNBC lacks the expression of three receptors, ER,

ERBB2 and PgR [30]. We found two of the cor-
responding genes from our identified subnetworks,
of which ERBB2 was in the DOK1 ego-network
(Figure 3B) and ESR1 in the NCOA2 ego-network
(Figure 3C). DOK1 is known to be a tumor suppres-
sor gene in epithelial ovarian cancer [45] and lung
cancer [46]. It is a substrate of several non-receptor
tyrosine kinases [47,48], including breast tumor kinase
(BRK) [49]. Since most of DOK1’s alters were
differentially expressed, DOK1 may play a role in the
molecular pathways of TNBC. DOK1 itself showed a minor
under-expression in TNBC (Additional file 3: Figure S3c),
though not statistically significant at the FDR level of 0.05.
ERBB2 is a member of the DOK1 ego-network. Because
the receptor itself is not expressed in TNBC, as expected,
the ERBB2 gene was under-expressed in TNBC as
compared with other primary breast cancer subtypes
(Additional file 3: Figure S3d). ESR1 showed a similar
pattern (Additional file 3: Figure S3e).
Our results also suggest NCOA2 could be an important

factor in the TNBC gene regulatory pathways. NCOA2,
the nuclear receptor coactivator 2, which belongs to
the steroid receptor coactivator (SRC) family, has

been reported to be broadly involved in many cancers
[50]. The SRC family comprises three members, SRC-1
(NCOA1), SRC-2 (NCOA2) and SRC-3 (NCOA3), which
are known to be overexpressed in breast cancer and
essentially involved in estrogen mediated cancer cell
proliferation [51]. Currently, most research on the SRC
family has been focused on NCOA1 and NCOA3. Clinical
and preclinical studies have demonstrated that over-
expressed NCOA1 and NCOA3 are linked to resist-
ance to therapies in breast cancers [52]. For example,
overexpression of NCOA3, especially in conjunction
with high levels EGF receptor (EGFR) and HER2
(ERBB2), is associated with poor outcome after tamoxi-
fen treatment [53,54]. In ERBB2–overexpressing breast
cancer cells, overexpression of NCOA3 also contributes
to resistance against the ERBB2 targeting drug transtuzu-
mab [55]. In the current study, NCOA2 is significantly
under-expressed in the TNBC samples as compared
with other subtypes of primary breast cancer (Additional
file 3: Figure S3f). Our results indicate that NCOA2 could
be as important as the other two members and play an
important role in the TNBC gene regulation.
We shall note that the current study is to compare

TNBC with the pool of other subtypes of breast
cancer. Thus the resulting sub-networks have more to
do with the differences between TNBC and other
subtypes, as opposed to directly explaining the clinical
characteristics of TNBC itself. Although EgoNet pointed
to DOK1 and NCOA2 ego-networks as among the
best to separate TNBC from other primary breast
cancers, it is still far from establishing a mechanistic
explanation. This limitation has to be addressed by future
biological studies.
Given an ego-network, a “structural hole” is the ab-

sence of an edge among a pair of nodes in the ego
network. A well-established proposition in social net-
work analysis is that egos with lots of structural holes
are better performers in certain competitive settings
[22]. Among our identified ego-networks, we found
examples containing few structural holes (Figure 3C-D),
and those containing many (Figure 3E-F). The bind-
ing mechanism may imply ego genes such as ERCC8
and GGA1 whose ego-networks include many struc-
tural holes are key factors to distinguish the TNBC
patients.

Network-based ranking of marker genes
Next, we evaluated the importance of individual genes
by considering all the subnetworks together. An im-
portant property of disease genes in a molecular net-
work is that the nodes with much higher degrees of
linkages, so called hubs, should typically be associated
with disease genes [19]. We assume that a putative
disease hub is important, and thus should be included

Yang et al. BMC Genomics 2014, 15:314 Page 6 of 10
http://www.biomedcentral.com/1471-2164/15/314



in more identified disease subnetworks. For each ego-
network, a classification accuracy score is available,
and the relative importance values are calculated for
genes included in the ego-network. We propose a
metric that is the summation of the product of sub-
network score (Si) and node importance (Vij) over all
the considered subnetworks, namely

Mj ¼
XN

i¼1ð ÞSiV ij;

where i is the ego-network index, and Vij is the importance
score of the jth gene in the ith subnetwork which
takes value zero if the gene is not in the subnetwork.
Node importance (Vij) is calculated using tree-based
feature selection method (Methods).
Table 2 shows the top 20 ranked genes based on their

M values. We found the list included both differentially
expressed (DE) genes and non-DE genes. In the DE
group, a notable example of biomarker gene in TNBC,
EGFR [56] is present, which suggests the ranking derived
by our proposed metric is sensible. The non-DE genes
could not have been identified based on the gene
expression data alone. However, by integrating the
network and gene expression profiles, we could identify

these putative biomarker genes that were not differentially
expressed.
For the non-DE genes in Table 2, there have been

literatures reporting TGFBR1 and SMAD1 signaling
pathways to be related to breast cancer [57,58]. Previ-
ous studies also showed MAPK signaling pathway to
be activated in triple-negative breast cancer [59].
Gene Ontology (GO) and KEGG pathway enrichment
analysis for the top 100 genes by their M values was
carried out using the DAVID tool [60]. The identified
genes were highly enriched in cancer processes or
pathways (Additional file 4: Table S1). We further
investigated the network degree distribution for the
100 genes. The results showed that these genes tend
to be higher degree nodes in the large PPI network
(Additional file 5: Figure S4). Our results de-
monstrated that disease-associated genes have sig-
nificantly higher connectivity in the PPI network.
Similar conclusions have also been reported in the
literature [61,62].
EgoNet can be viewed as a feature selection tech-

nique that identifies sets of genes to build a pre-
dictive model. Specifically, the gene sets considered
are an ‘ego’ and its neighboring genes that can be
reached from the ego at a certain path length. We
leveraged the EgoNet method to search for sub-
networks that can distinguish triple negative breast
cancer tumors from other breast cancer subtypes, re-
covering several known breast cancer-related genes.
Importantly, our results revealed a list of novel candi-
date genes that may provide a deeper understanding
in breast cancer studies.

Conclusions
In this study, we proposed EgoNet, an algorithm for
selecting subnetworks whose gene expression is pre-
dictive of a disease phenotype. The key advantage of
EgoNet is its capability to discover potential markers
that are not differentially expressed, but are func-
tionally associated with many differentially expressed
genes. EgoNet is a general framework for ego-network
selection. In this study, we paired EgoNet with SVM
to solve a two-class (case/control) decision problem.
However, when paired with an appropriate machine
learning approach, EgoNet can be readily applied to
datasets with continuous, multi-class, and survival outcome
variables.

Methods
EgoNet algorithm
The EgoNet algorithm is described in the following
quasi-code.

Table 2 The top 20 genes for classifying TNBC patients
based on gene ranking metric

Gene name M value Differentially expressed

ABL1 58.5 YES

GRB2 27.7 NO

FYN 26 YES

CSNK2B 24.3 YES

NCK1 17.6 YES

TRAF2 15.1 YES

TGFBR1 12.3 NO

MDFI 12.2 NO

EGFR 11.9 YES

ATXN1 11.5 NO

SMAD1 11.3 NO

CCDC85B 11.2 NO

UBQLN4 10.9 NO

PRKCA 10.6 YES

CHD3 10 YES

CRK 9.8 NO

FXR2 9.7 YES

PIK3R1 9.7 YES

EP300 9.5 YES

MAPK6 9.5 NO
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Accessing the significance of the identified ego-network
When an ego-network is identified, a test of significance
is performed to obtain the statistical significance. The
null distribution of classification accuracy is derived by
randomly permuting the phenotypic labels B times and
calculating the score from the same ego-network each
time. The actual score of this ego network is then
indexed on the null distribution to obtain a p-value
(Figure 2).

Computation of ego-network node importance
We employ Random Forest to rank the importance of
variables, in this case, the importance of nodes of an
ego-network for making disease outcome predictions.
The relative importance (RI) of a predictor in a
Random Forest model is obtained by the out-of-bag
(OOB) error estimation, which is the increase of
mean squared error (MSE) when the predictor values
are permuted.
For each tree t, let OOBt be the associated sample

and errOOBt be the error of t on this OOBt sample.
Randomly permute the value of predictor Xj in OOBt

to get a perturbed sample denoted by OOBj
t and

compute err ÕOB
j

t . The variable importance score of
predictor Xj is derived by

VI Xj
� �¼ 1

T

X
t
err ÕOBj

t ‐errOOBt

� �

Where T is the number of trees. We used the Python
package “sklearn” to implement this procedure.

The design of simulation study
We simulated each scenario 100 times. In each simula-
tion, we generated a scale-free undirected and no-self-
loop network with 500 nodes. Together with the
network data, a gene expression dataset with 500 genes
and 100 samples was generated by random sampling the
expression values from the standard normal distribution.
An ego-network is selected by first randomly selecting a
node as ego with its network degree between 5 and 20,
and then taking the level 1 ego-network from the
selected ego node. Eighty percent of the nodes in the
ego-network were marked as disease genes, and the
phenotypic outcomes were generated based on the
expression values of those disease genes using linear
and nonlinear models. The linear relationship was
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formulated as Y = ∑ Xi, while the nonlinear relationship
was formulated as Y = ∑Xi

3. Finally, Y was dichotomized
to 0 if Y < 0 or 1 if Y ≥ 0.

Availability
The EgoNet algorithm is implemented by Python scripts
and available at https://github.com/cauyrd/EgoNet.

Additional files

Additional file 1: Figure S1. Classification performance (A) and
proportion of ego node coverage (B) for the proposed EgoNet method
and Chuang et al.’s method in different simulation settings.

Additional file 2: Figure S2. The distribution of ego-network levels of
the identified subnetworks.

Additional file 3: Figure S3. Boxplots of the expression levels of some
important genes.

Additional file 4: Table S1. Enriched GO and KEGG categories for the
top 100 disease-associated genes ranked by M value.

Additional file 5: Figure S4. Network degree distribution of the top
100 identified disease-associated genes ranked by M value (red curve)
and all genes from the human PPI network (blue curve).
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