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Abstract

Background: We tested the hypothesis that 5-Hydroxydecanoic acid (5HD), a putative mitoKATP channel blocker, will reverse
sepsis-induced cardiodynamic and adult rat ventricular myocyte (ARVM) contractile dysfunction, restore mitochondrial
membrane permeability alterations and improve survival.

Methodology/Principal Findings: Male Sprague-Dawley rats (350–400 g) were made septic using 400 mg/kg cecal
inoculum, ip. Sham animals received 5% dextrose water, ip. The Voltage Dependent Anion Channels (VDAC1), Bax and
cytochrome C levels were determined in isolated single ARVMs obtained from sham and septic rat heart. Mitochondria and
cytosolic fractions were isolated from ARVMs treated with norepinephrine (NE, 10 mmoles) in the presence/absence of 5HD
(100 mmoles). A continuous infusion of 5HD using an Alzet pump reversed sepsis-induced mortality when administered at
the time of induction of sepsis (240%) and at 6 hr post-sepsis (220%). Electrocardiography revealed that 5HD reversed
sepsis-induced decrease in the average ejection fraction, Simpsons+m Mode (53.562.5 in sepsis and 69.261.2 at 24 hr in
sepsis+5HD vs. 79.961.5 basal group) and cardiac output (63.361.2 mL/min sepsis and 79.363.9 mL/min at 24 hr in
sepsis+5HD vs. 85.861.5 mL/min basal group). The treatment of ARVMs with 5HD also reversed sepsis-induced depressed
contractility in both the vehicle and NE-treated groups. Sepsis produced a significant downregulation of VDAC1, and
upregulation of Bax levels, along with mitochondrial membrane potential collapse in ARVMs. Pretreatment of septic ARVMs
with 5HD blocked a NE-induced decrease in the VDAC1 and release of cytochrome C.

Conclusion: The data suggest that Bax activation is an upstream event that may precede the opening of the mitoKATP

channels in sepsis. We concluded that mitoKATP channel inhibition via decreased mitochondrial membrane potential and
reduced release of cytochrome C provided protection against sepsis-induced ARVM and myocardial contractile dysfunction.
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Introduction

Despite advances in critical care medicine research, death due

to sepsis and associated pathologies has increased by alarming

proportions in the last two decades. It is well recognized that

severe sepsis is associated with cardiac failure and high mortality

rates ranging from 30–60% [1]. Alterations in sepsis, septic shock

and related pathologies involving mitochondrial ultrastructural

changes and oxidative mechanisms have received major attention

in the last few years. In a model of endotoxemia, Crouser et al.

demonstrated that endotoxin-induced mitochondrial damage was

related to an imbalance in mitochondrial respiration [2]. The

severity of sepsis has been shown to correlate with mitochondrial

damage and bioenergetic dysfunction in both human and

experimental models [2,3,4,5]. In another model of bacterial

challenge, the oxidation of myocardial mitochondrial protein and

lipid was observed at 4 and 24 hr, suggesting outer mitochondria

membrane (OMM) damage [6,7].

For several years, our laboratory has produced evidence of

molecular apoptotic mechanisms in sepsis-induced myocardial and

ARVM dysfunction [8,9]. Our data also demonstrated the role of

mitochondrial-mediated intrinsic apoptosis cascade and stress-

mediated mitogen-activated protein kinases in the regulation of

sepsis-induced adult rat ventricular myocyte (ARVM) dysfunction

[9,10,11,12]. In experimental endotoxemia, mitochondrial dys-

function has been characterized by mitochondrial membrane

potential collapse and transitional changes in mitochondrial

membrane permeability, along with the release of cytochrome C

[8,13,14,15]. Earlier, we reported that a progressive decline in

myocardial performance at 3 and 7 days in a hyperdynamic model

of sepsis is associated with increased levels of proapototic caspase-

3, increased B-cell leukemia (Bcl2)-associated protein6(Bax)/Bcl2
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ratio and release of cytochrome C [8]. Mitochondrial outer

membrane permeabilization (MOMP) is controlled by the

translocation of Bax on OMM [16]. Disturbance of OMM leads

to MOMP and release of a large number of intramitochondrial

proteins, including cytochrome C, via the formation of permea-

bilization pores primarily composed of Voltage Dependent Anion

Channels (VDACs) [17]. Besides VDACs, including VDAC1,

which are present on OMM, the inner mitochondrial membrane

(IMM) bilayer also possess mitochondrial KATP (mitoKATP)

channels [18]. The Kir subunits of mitoKATP channels are closely

associated with sulphonylurea protein SUR2A, which is a

regulatory protein for the passage of pharmacological agents

through these channels [19]. Several researchers have shown that

mitoKATP channels are directly activated by diazoxide and

blocked by 5-hydroxydecanoate (5HD) [18]. Even though both

diazoxide and 5HD have been shown to be only partially specific

to the mitoKATP channels [20], 5HD apparently remains the most

selective antagonist of the mitoKATP channels available.

NE is a positive inotrope used in the current therapy of sepsis to

maintain hemodynamic support for the ICU patients but has been

shown to produce cardiodynamic dysfunction in septic animals

[21]. Our previous findings have demonstrated that NE produces

blunted contractile response to ARVMs along with up regulation

of mitochondrial-driven apoptotic cascade [22]. In the present

study we speculated that OMM damage during sepsis could be

accompanied by the opening of mitoKATP channels that play a

critical role in the transport of ATP across mitochondrial

membranes. We hypothesized that 5HD, a putative mitoKATP

channel blocker, will ameliorate sepsis-induced cardiodynamic and

ARVM contractile dysfunction, restore mitochondrial membrane

permeability alterations and improve the survival rate. Therefore,

we determined the effect of mitoKATP inhibition on sepsis-induced

mortality, myocardial and ARVM contractile dysfunction by using

5HD. The effect of 5HD was examined in presence and absence of

NE on ARVM contractility and release of cytochrome C, and

levels of Bax and VDAC1. In addition, we determined whether

modulation of the mitoKATP channels affected the IMM events

leading to the release of cytochrome C in the myocardium in a

severe septic rat model.

Results

Effect of 5HD on sepsis-induced hypotension,
hypothermia and mortality

Unlike the sham rats, the septic animals displayed all the

behavioral signs of sepsis including piloerection, periocular

discharge, severe diarrhea and lethargy. Upon postmortem

analysis, the peritoneal cavity revealed the presence of ascites,

which are pus-filled lesions on various organs (stomach wall, liver

and kidneys) indicative of peritoneal infection (personal observa-

tions; Chopra and Sharma, 2007).

The septic animals exhibited significant hypothermia (Fig. 1A)

and hypotension (Fig. 1C) during 6–12 hr post-sepsis compared to

the sham group. The septic animals displayed 30% survival (70%

mortality) up to 24 hr post-sepsis (Fig. 1B). The 5HD induced

increase in survival was found statistically significant compared to

the sepsis group (P,0.05). The 5HD treatment at the time of the

induction of sepsis dramatically increased the survival of the septic

animals (Fig. 1A) and improved the overall animal movement in

the cage. Importantly, 5HD treatment also reversed the sepsis-

induced hypothermia (Fig. 1B) and hypotension (Fig. 1C) within

6–24 hr.

The percent mortality in the 5HD treated (at 6 hr post-sepsis)

septic animals was 50% compared to 70% mortality (30% survival)

in the sepsis group (untreated animals) at 24 hr post-sepsis

(Fig. 2A). The septic animals treated with saline at 6-hr post-

sepsis underwent a significant decrease in the mean arterial

pressure (MAP) at 6, 12 and 24 hr post-Alzet pump placement

compared to the sham group (Fig. 2B). The MAP in the septic

animals that survived .24 h post sepsis was found to be similar to

that in the sham group (however, only the data from two animals

in the sepsis group were available at this time point). The 5HD

treatment at 6 hr post sepsis produced a significant increase in

MAP at 6-, 12- and 24-hr post-Alzet pump placement compared

to the saline-treated sepsis group (Fig. 2B).

Effect of 5HD on cardiodynamics and the concentration
of TNF-a

Cardiodynamic parameters such as cardiac output (CO),

ejection fraction (EF) and fractional shortening (FS) were

measured to determine the in vivo effect of 5HD treatment in the

Figure 1. Effect of 5HD, administered at the time of sham/
sepsis induction, on hemodynamics and survival in the rat. The
effect of 5HD on the, (A) rectal temperature, (B) survival and (C) Mean
Arterial Pressure, MAP of the septic rats. Sham (N = 10), sepsis (N = 10);
sepsis+5HD (N = 7). The values in the sepsis group at 48 and 72 hr
include only two surviving animals.*P#0.05 compared to the sham
group and # P#0.05 compared to the sepsis group at respective time
points.
doi:10.1371/journal.pone.0021285.g001

5HD Increases Survival of Septic Rats
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septic rats (Fig. 3). The saline-infused septic animals exhibited a

significant reduction in CO (7163 ml/min, p#0.05) compared to

the basal levels (9364 ml/min, p#0.05) at 6 hr. This reduction

continued for 24 hr (6361.32 ml/min, p#0.05) compared to the

basal levels (9364 ml/min, p#0.05) (Fig. 3A). The 5HD

treatment of the septic animals (at the time of induction of sepsis)

significantly increased the previously decreased CO (p#0.05) in

the animals at 24 hr (Fig. 3A). The ejection fraction, a measure of

the efficacy of the heart, was found to be significantly decreased

(5364%, p#0.05) compared to the basal levels (8062%, p#0.05)

in the septic rats at 24 hr (Fig. 3B). Interestingly, the 5HD

treatment of the septic animals dramatically increased the EF

(6262%, p#0.05) compared to its respective sepsis group

(5364%, p#0.05), an indicator of improved cardiac performance

(Fig. 3B). The representative m-mode echocardiography for the

calculation of Simpson’s ejection fraction in the rat was performed,

which corroborated and supported the above-mentioned EF

results (Fig. 3D). Fractional shortening, an index of left ventricle

(LV) contractility, was found to be significantly decreased at 24 hr

(p#0.05) in the septic rats compared to the basal levels (4962%,

p#0.05) (Fig. 3C). No significant difference was observed at any

time point in any group.

To determine whether 5HD treatment affects the local

inflammatory response in the septic rat heart, we determined the

concentration of TNF-a in the supernatant of the harvested heart

samples in the sham and sepsis groups (Fig. 3E). This result

suggests that the upregulation of TNF-a is an early event in the

extrinsic apoptotic cascade and is independent of the alterations

due to 5HD treatment in the septic ARVMs.

Effect of 5HD on sepsis-induced depressed contractility
in ARVMs

Sepsis produced a significant decrease in the percentage peak

shortening (% PS) of ARVMs compared to the sham group (Fig. 4).

In addition, NE produced a significant (P,0.05) increase in the % PS

in the sham and septic ARVMs compared to their respective vehicle

treatment groups. However, the effect of NE in the septic ARVMs

was significantly lower compared to the sham NE group (P,0.05,

Fig. 4). Interestingly, the 5HD-treated septic ARVMs produced a

positive inotropic response shown by a significant increase in the %

PS compared to its vehicle and sham-treated groups. Further, the

addition of NE in the 5HD-treated septic ARVMs accentuated the %

PS response significantly (P,0.05) compared to its respective vehicle,

sham and NE-treated groups alone (Fig. 4).

Effect of 5HD on sepsis-induced mitochondrial DYm
collapse in ARVMs

A fluorescent cationic dye, JC-1, was employed to determine the

alterations in the mitochondrial membrane DYm in the ARVMs

(Fig. 5). The sham ARVMs exhibited red fluorescence as the JC-1

dye accumulated in the mitochondria, indicative of the healthy or

normal cells (upper panel; Fig. 5). However, the septic ARVMs

exhibited green fluorescence as the JC-1 dye remained in the

monomeric form, typical of mitochondrial membrane potential

collapse and an early sign of apoptosis (middle panel; Fig. 5).

However, the addition of 5HD in the septic ARVMs reduced the

green fluorescence and exhibited more red fluorescent aggregates

in the mitochondria, suggesting a restorative effort of 5HD on the

mitochondrial membrane DYm (lower panel; Fig. 5).

Effect of 5HD, in vivo, on VDAC1 and sepsis-induced
increased release of Cytochrome C in ARVMs

The mitochondrial fractions obtained from the vehicle and NE-

treated septic ARVMs produced a significant decrease in the

VDAC 1 protein levels compared to its respective sham treatment

groups (Fig. 6A). However, mitochondrial fractions from the 5HD-

treated septic ARVMs exhibited a significant increase in the

VDAC 1 protein levels. Further, the addition of NE to the 5HD-

treated groups produced a significant increase in the VDAC 1

protein levels compared to the respective NE- and vehicle treated

sham and sepsis groups, suggesting that 5HD blocked the sepsis-

induced downregulation of mitochondrial VDAC 1. The presence

of mitochondrial fractions and equal loading of the samples was

confirmed by HSP60 (Fig. 6A).

The NE-treated septic ARVMs produced a significant increase

in the cytochrome C protein levels compared to the sham

treatment group (Fig. 6B). However, 5HD treatment in the

presence and absence of NE in the septic ARVMs resulted in a

significant reduction in the cytochrome C levels compared to the

vehicle-treated group, suggesting that inner mitochondrial mem-

brane integrity was maintained. The cytoplasmic fractions, as well

as equal loading of the samples, were confirmed by b-tubulin.

Figure 2. Effect of 5HD, administered at 6 hr post-sham/sepsis
induction, on hemodynamics and survival in the rat. The effect
of 5HD on (A) % survival at 48 hr and (B) MAP at 0, 6, 12, 24 and 48 hr
post-Alzet pump (containing 5HD or saline) placement. *P#0.05
compared to the 0 hr values and # P#0.05 compared to the sepsis
group at respective time points (N = 10 in each group).
doi:10.1371/journal.pone.0021285.g002

5HD Increases Survival of Septic Rats
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The mitochondrial fractions obtained from septic ARVMs

produced a significant increase in the Bax protein levels compared

to the respective sham-treated group (Fig. 6C). NE-treatment

significantly increased Bax proteins in the sham ARVMs

compared to the vehicle–treated sham group but was not different

than NE-treated sepsis group. Treatment of ARVMs with 5HD in

sepsis groups produced a significant increase in Bax compared to

the respective sham group. Treatment with 5HD+NE displayed a

significant increase in the Bax levels in sepsis group compared to

the respective vehicle-treated sham group (Fig. 6C). These data

indicate that Bax regulation during sepsis could be an event prior

to the release of cytochrome C from the mitochondria.

Sepsis downregulates colocalization of ANT with VDAC1
in isolated purified mitochondrial preparation (PMPs)
obtained from septic ARVMs

The co-immunoprecipitation technique was performed to

determine the interaction between VDAC 1, ANT and SUR 2

during sepsis.

As shown in Fig. 7A, cellular protein, SUR2 was co-

immunoprecipitated with ANT protein in both sham and septic

ARVMs. By gel electrophoretic analysis, the top band corre-

sponding ,207 kDa protein was identified as SUR2-ANT

complex. The bottom band corresponding ,174 kDa was

identified as SUR2. We confirmed that SUR 2 protein level was

elevated in sham PMPs compared to sepsis group. Similarly, in

Figs. 7B and 7C; ANT protein expression, a bottom band

corresponding ,33 kDa and VDAC1 protein expression, a

bottom band corresponding ,32 kDa were elevated in sham

PMPs compared to septic group. Interestingly, it was observed that

VDAC1-ANT complex expression was faint in the septic PMPs

compared to the sham group (Fig. 7C).

The purified mitochondrial preparations (PMPs) obtained from

sham ARVMs exhibited a brilliant yellow fluorescence (colocaliza-

tion) of ANT and VDAC1 under a fluorescent microscope

(Fig. 7D). However, the PMPs obtained from septic ARVMs

exhibited dispersed VDAC 1 (red fluorescence, 555 nm) and ANT

(green fluorescence, 488 nm), suggesting that sepsis hinders the

Figure 3. Effect of 5HD, administered at the time of sham/sepsis induction, on cardiodynamics and TNF-a levels in the rat. The effect
of 5HD (100 mg/100 mL) on the cardiac output, CO (A); average ejection fraction, EF (B); fractional shortening, FS (C) measured using Vivid I at
baseline (basal), 6 and 24 hr post-treatment by Alzet pump (D); the representative m-mode echocardiography recorded to calculate Simpson’s
ejection fraction in the rat. (E) the effect of 5HD on the concentration of TNF-a in the myocardial supernatant obtained from the heart collected at
24 hr post-sepsis in the rat. *P#0.05 compared to the basal values and # P#0.05 compared to the sepsis group at respective time points. (N = 6 in
each group).
doi:10.1371/journal.pone.0021285.g003

5HD Increases Survival of Septic Rats
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formation of VDAC 1 and ANT complex in the mitochondria

(Fig. 7D).

Effect of 5HD on sepsis-induced mitochondrial cristae
deformation

The ultrastructural morphological features in the LV tissues

obtained from the sham and septic hearts were observed using a

100 kV transmission electron microscope (Fig. 8). The image

representing upper and lower panels display mitochondrial

arrangements at 406 and 1006magnifications, respectively. The

sham mitochondria exhibited well-defined double membranes with

normal cristae arrangements. In contrast, the mitochondria from

septic LV tissues had severe morphological deformations at 6 hr

post-sepsis especially in the cristae with balloon-like expansions,

which may be indicative of pore formation (Fig. 8). However,

mitochondria from the 5HD-treated septic LV tissues exhibited

morphological improvements in the cristae arrangements (Fig. 8).

Discussion

In the present study, we demonstrated that a putative

mitochondrial ATP channel blocker, 5HD, decreased sepsis-

induced hypothermia, hypotension and mortality when adminis-

tered at the time of sepsis induction. The results provide evidence

that Bax activation is an upstream event that may precede the

opening of the mitoKATP, channels in sepsis. We demonstrated

that 5HD reversed the sepsis-induced increased mitochondrial

permeability, release of cytochrome C and ARVM contractility.

These data suggest a protective effect of 5HD in sepsis-induced

myocardial morbidity and mortality.

For the last several years, our laboratory demonstrated sepsis-

induced myocardial contractile dysfunction in both in vivo and in

vitro paradigms of polymicrobial sepsis [8,11,12,22–27]. Sepsis-

induced myocardial contractile dysfunction was found to be

associated with the induction of intrinsic apoptosis cascade

[8,10,11,22,23]. In the present study, we observed that the

induction of sepsis in the rat was associated with a decline in body

temperature (hypothermia) and mean arterial pressure with 70%

mortality. The treatment of septic animals with 5HD at the time of

sepsis induction not only reversed sepsis-induced hypothermia and

hypotension but also decreased the mortality (20%) of septic

animals. Further, reversal of sepsis-induced hypotension and

decrease in mortality was seen when 5HD was administered using

an Alzet pump in hypothermic (less than 89uF) septic animals. The

echocardiographic analyses revealed that 5HD could partially

reverse sepsis-induced decreased cardiac output, ejections fraction

and fractional shortening but did not affect systemic inflammatory

response (TNF-alpha levels). These data demonstrate that a

putative mitoKATP blocker (when administered at the time of

induction of sepsis and at 6 hr post sepsis induction) can

potentially delay sepsis-induced cardiodynamic alterations and

mortality in the septic rat model. Similar to the in vivo data, 5HD

reversed sepsis-induced ARVM contractile dysfunction. As

reported earlier [22], the present study also found that NE

produced a blunted contractile response in the ARVMs, which

was reversed by 5HD in the septic ARVMs. We observed that the

percent peak shortening in both septic and sham ARVMs

following NE+5HD treatment was similar in both sham and

septic animals, implying protective effect of 5HD on ARVMs

against sepsis-induced depressed contractile dysfunction. These

results and those in our earlier reports, together, indicate that

deficient contractility of NE in septic ARVMs could be due to the

induction of a mitochondrial-related intrinsic apoptosis cascade.

Electron microscopy analyses of both myocardial tissues and

purified mitochondrial preparations show strong evidence of

cristae deformation on OMM in the septic ARVMs. We observed

that OMM derangements in the septic myocardium include the

presence of balloon-like expansions indicative of pore formation.

Most interestingly, the 5HD-treated septic LV tissues exhibited

significant gains with respect to the recovery of mitochondrial

membrane and cristae morphology. These results correlate well

with the loss of the mitochondrial membrane DYm in the septic

ARVMs, an effect reversed by 5HD. Hence, the data suggest that

Figure 4. Effect of 5HD on ARVM contractility. The effect of 5HD
on percent peak shortening in sham and septic ARVMs at 12 hr post-
incubation in the culture medium (N = at least 50 ARVMs isolated from 5
rat hearts in each treatment group). The data are expressed as mean 6
SEM. *p#0.05 compared to the respective vehicle treatment group; and
# p#0.05 compared to the respective vehicle treatment group; $
p#0.05 compared to the respective NE-treated sham/sepsis groups.
doi:10.1371/journal.pone.0021285.g004

Figure 5. Effect of 5HD on mitochondrial membrane potential
(DYm) in ARVMs. Mitochondrial DYm was examined in sham and
septic ARVMs and visualized using a fluorescent microscope. Repre-
sentative photomicrographs (magnification 406; scale bar, 75 mm) of
sham and septic ARVMs treated in the presence and absence of 5HD are
stained with JC-1 reagent. Lane 1 exhibits the ARVMs studied under a
light microscope. The red (JC-1 aggregates in the mitochondria; lane 2)
and green (JC-1 monomers in cytoplasm; lane 3) fluorescence was
recorded and merged using an image software (lane 4). The white
arrowheads depict the location of mitochondria in the ARVMs (which
were zoomed 10 times and shown in the boxedsquare).
doi:10.1371/journal.pone.0021285.g005

5HD Increases Survival of Septic Rats
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5HD effectively reversed a sepsis-induced loss of mitochondrial

membrane DYm and OMM damage.

Our earlier studies demonstrated that, in addition to elevated

caspase-3 and Bax, the intrinsic apoptosis marker cytochrome C

was elevated in the cytosolic fraction of heart tissue fractions

during late sepsis [8]. Similar increases in the active caspase-3 and

leakage of cytochrome C in septic ARVMs have also been

observed [9,22]. Elevated Bax protein translocation to the OMM

has been found to be associated with mitochondrial damage and

induction of apoptosis [28,29,30]. In the current study, we also

observed that elevated cytosolic Bax correlated with mitochondrial

membrane DYm collapse in the septic ARVMs. Although the

sepsis-induced deterioration of mitochondrial membrane DYm

was reversed by the 5HD treated ARVMs, the Bax protein was

still elevated in the septic ARVMs. We speculate that this increase

could be due to the cytosolic regulation of Bax activation, an

upstream regulator for OMM damage, while 5HD primarily

provides protection against OMM damage and blocks mitoKATP

channel opening. In addition, we also observed that 5HD

treatment increased sepsis-induced depressed VDAC-1, suggesting

that 5HD blocked sepsis-induced downregulation of mitochondrial

VDAC 1. OMM VDAC1 protein is an integral part of

permeability transition pore (PTP) and is a candidate for the

regulation of mitochondrial permeability alterations. We observed

a close association between the loss of VDAC1 and the loss of

mitochondrial membrane DYm in the septic ARVMs, implying

that 5HD provided protection against sepsis-induced OMM

damage. However, an uncompensated opening of the mitoKATP

channels caused significant depolarization and rupture of the

OMM, as well as loss of cytochrome C [31,32].

The data from the present study support our speculation that

during sepsis, early activation of Bax caused mitochondrial

membrane ruptures that correlated with increased cytochrome C

release from the outer mitochondrial membrane. It appears that

Bax-mediated OMM damage could be responsible for opening the

mitoKATP channels located in the inner mitochondrial membrane

(IMM) leading to an uncompensated increase of cytochrome c

release. We speculate that 5HD treatment acts as a patch on the

damaged outer mitochondrial membrane and thus may block the

release of cytochrome C and produce a stabilizing effect on OMM.

PTP in OMM have been identified as VDAC that form

multicomponent complexes with adenine nucleotide translocase

(ANT) and cyclophilin D located in the inner mitochondrial

membrane (IMM) [33,34]. VDACs are present in its most abundant

isoform, VDAC1 in the OMM [35,36]. Under physiological

conditions, VDAC1 exists in a low-conductance state, allowing the

exchange of cytochrome C and ATP between the mitochondria and

cytosol [37,38]. On the other hand, the mitoKATP channels, a distinct

type of channel, are primarily located in the IMM [39,40]. MitoKATP

channels have been found to consist of Kir6.1 or Kir6.2, which are

associated with sulfonylurea protein SUR 2A; this protein has a

regulatory role in the sensitivity of these channels to pharmacological

agents [19,41]. Co-immunoprecipitation image analyses revealed a

brilliant yellow fluorescence due to the co-localization of ANT and

VDAC1 in the sham ARVMs. However, the PMPs obtained from

septic ARVMs exhibited dispersed VDAC 1 (red fluorescence) and

ANT (green fluorescence), suggesting that sepsis hinders the

formation of VDAC 1 and the ANT complex in the mitochondria.

Analyses of immunoblot data revealed that sepsis produced decreased

levels of ANT and its complex with both SUR2 and VDAC1.

Therefore, we speculate that sepsis may either trigger the loss of

ANT, which could be responsible for a decrease in the PTP activity of

controlling the release of cytochrome C in the OMM. However,

further studies are needed to explore these mechanisms in detail.

In summary, this study provides evidence for the first time of

the protective nature of 5HD due to the stabilizing effect on the

OMM and the decreased release of cytochrome C on myocardial

morbidity and mortality in a polymicrobial septic rat model. The

data presented in the current manuscript, where 5HD (when

administered at the time of induction of sepsis) reversed sepsis

induced mortality suggest that 5HD infusion has potential to be

part of infusion therapy in septic patients. In addition, 5HD can

also has therapeutic implications to increase the survival in sepsis

and related pathologies. However, more clinical studies may be

required to explore this stipulation. We concluded that mitoKATP

channel inhibitors (such as 5HD) can be a novel class of agents

with the potential to delay sepsis-induced morbidity and

mortality.

Materials and Methods

Drugs and Interventions
5-hydroxydecanoic acid (5HD, putative mitoKATP channel

antagonist) and Diazoxide (putative mitoKATP agonist) were

purchased from Sigma Aldrich, St. Louis, MO. 5HD (100 mmo-

lesNkg21Nd21/100 mL saline) was used in an Alzet pump in vivo,

while 5HD (100 mmoles) was used for in vitro studies. NE

(10 mmoles, GrensiaSicor Pharmaceuticals, CA) was used in the

in vitro studies [22,23].

Preparation of animals
Male Sprague-Dawley rats (Harlan, IN, USA) weighing 300–

350 g were used in the study. The rats were acclimatized to the

laboratory conditions for at least 7 days following their arrival. All

experiments were conducted in compliance with the humane

animal care standards outlined in the NIH Guide for the Care and Use

of Experimental Animals and were approved by the Institutional

Animal Care and Use Committee of Baylor College of Dentistry,

Texas A&M Health Science Center (Standard Operating

Procedure 02-15-2007 and ARU 06-20).

General surgical preparation and induction of
polymicrobial sepsis in the rat

The rats were randomized into septic and non-septic groups at

the time of surgery. Each rat was anesthetized using pentobarbital

sodium (Abbott; 50 mg/kg, i.p.). Sepsis was induced in the animals

using an i.p. injection of cecal inoculum as described previously

[8,9,22,26]. Briefly, a 0.25 cm vertical midline abdominal incision

was made and rats in the sepsis group received an i.p. injection of

cecal inoculum (400 mg cecal material/kg/5 mL of sterile

dextrose water, D5W). The cecal inoculum was prepared by

mixing cecal contents obtained from donor rats (euthanized with

i.p. pentobarbital; 100 mg/kg) with 5% D5W to yield a

concentration of 400 mg cecal material in 5 ml. Fresh inoculum

was prepared each day, and the material from one donor rat was

used within two hr for 3–5 experimental animals. The sham-septic

Figure 6. Effect of 5HD on VDAC1, release of cytochrome C and Bax. The effect of 5HD on the expression of mitochondrial VDAC1 (A),
cytosolic Cytochome C (B) and Bax (C) in the sham and septic ARVMs (N = 4 in each treatment group). *P,0.05 compared to the respective vehicle-
treated sham and sepsis groups; #P,0.05 compared to the respective sham treatment groups. $P,0.05 compared to the respective sham/sepsis NE
group.
doi:10.1371/journal.pone.0021285.g006
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rats received sterile D5W (5 ml/kg, i.p.) only. All incisions were

closed with interrupted silk sutures, and the abdomen gently

massaged to distribute the injectate.

In vivo schedule for 5HD treatment
To determine the effect of 5HD on sepsis-induced hypothermia

and hypotension, two separate groups based on the time schedule

were tested in the present study. For the first group of sham and

septic animals (n = 10 in each group), the Alzet pump containing

5HD (100 mmoles in 100 mL saline) or 100 mL saline was placed

intradermally in the peritoneal skin of the sham and septic

animals at the time of induction of sepsis/sham. For the second

group of sham and septic animals, the 5HD (100 mmoles in

100 mL saline) was administered at 6 h post-sepsis induction, to

simulate post-SIRS clinical sepsis. In both groups, the survival

rate, rectal temperature and mean arterial pressure (MAP) were

measured at 6, 12, 18, 24, 48 and 72 hr post Alzet pump

placement.

Echocardiography was also performed on the first group of

animals (N = 6 in each group); however, cardiodynamics was

assessed at 6 and 12 hr post-treatment to avoid effect of anesthesia

in these animals.

Measurement of mean arterial pressure and rectal
temperature

The rectal temperature was recorded at each time point using a

rectal probe before measuring MAP (using the noninvasive tail cuff

method;CODA, Kent Scientific) at each time point.

Echocardiography
Under controlled anesthesia (40 mg/kg ketamine+10 mg/kg

xylazine cocktail), using phased array, two-dimensional color

imaging (Vivid I, GE Healthcare; with a 12 MHz probe or GE

vivid I with 10 mHz probe) with EKG monitoring, the

transthoracic echocardiographic parameters were recorded, which

simulate the American Society of Echocardiography guidelines

[42].

Briefly, in the first of animals (N = 6) measurements were made

online with optimal digital images selected from at least 10 cardiac

cycles. The left atrial and aortic diameters were obtained in the

parasternal long-axis orientation, whereas the thickness of the

interventricular septum, the posterior wall and left ventricular (LV)

dimensions were determined in the parasternal long-short axis at

the tips of the papillary muscle. Transmitral Doppler flows (E and

A velocities and their ratio were measured in the apical 4-chamber

or apical long axis views with the sample volume placed at the tips

of the mitral leaflet. Pulmonary vein inflow was measured using

pulse-Doppler in parasternal long-axis orientation after color flow

localization. The LV end-systolic and end-diastolic areas were

traced in single plane apical 4-chamber view. The apical 4-

chamber view was used for recording tissue Doppler signals from

the lateral mitral valve annulus. Standard formulas were used for

echocardiographic calculations. Since an established regression

formula relating LV mass to heart weights for rats remains to be

established, the following formula for humans was applied because

it is in agreement with published necropsy rat heart weights: LV

mass = 1.04[(LVD+PW+VS)32LVD3]60.8+0.6. LVD is LV di-

ameter at end diastole (onset of R wave), PW is posterior wall

Figure 7. Binding of ANT with SUR/VDAC1. Co-immunoprecipitation assay was performed to determine binding of ANT with SUR 2 (A), VDAC 1
(VDAC) (B), and VDAC1 with ANT (C) using the Dynabeads Protein G method (Invitrogen). The experiments were conducted in the PMPs obtained
from the sham and sepsis ARVMs (N = 3 in each treatment group). D. Colocalization of ANT with VDAC1 was performed using a fluorescent
microscope in the purified mitochondrial fraction obtained from the sham and septic ARVMs. Representative photomicrographs (Magnification, 106;
Scale bar = 100 mm) were treated with anti-rabbit VDAC1 and anti-goat ANT antibodies to observe their co-localization in the mitochondrial fractions.
The co-localized expression of VDAC1 (555 nm, red fluorescence, left panel), and ANT (488 nm, green fluorescence, middle panel) was observed in
yellowish-orange fluorescence (right panel).
doi:10.1371/journal.pone.0021285.g007

Figure 8. Ultrastructural changes in the mitochondrial membrane in LV tissue. A. Ultrastructural changes in the mitochondrial cristae
(using TEM) in the left ventricular tissue section (N = 5 in each treatment group) obtained from sham and septic rat hearts(6 and 12 hr post-sepsis).
The mitochondrial cristae deformation was seen in the purified mitochondrial preparation from the septic rat left ventricular tissue (6 hr post-sepsis).
B. The lower panel represents the magnified image of selected mitochondria in the purified mitochondrial preparation (red box, upper panel). Arrows
points to the mitochondrial cristae deformation (RED) with balloon expansion (YELLOW). Magnification, 40 k6; Scale bar = 0.1 mm.
doi:10.1371/journal.pone.0021285.g008
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thickness, VS is ventricular septum thickness and 1.04 is the

estimated specific gravity of the myocardium; the remaining

constants are correction factors.

Measurement of ARVM contractility
We used a well established model in our laboratory to determine

the effect of 5HD on sepsis-induced ARVM contractile dysfunction,

In addition, we determined the effect of 5HD on norepinephrine

(NE)-induced exaggerated contractile dysfunction in sepsis [22,23].

The mechanical properties of the ARVMs were assessed using a

video-based edge detection system (IonOptix Corporation, Milton,

MA) [9,22,25]. In brief, the ARVMs were placed in a Warner

chamber mounted on the stage of an inverted microscope

(Olympus, X-70) and superfused with a buffer containing (in

mM): 131 NaCl, 4 KCl, 1 CaCl2, 1 MgCl2, 10 glucose, and 10

HEPES at pH 7.4. The ARVMs were isolated from sham and

septic rat hearts (N = 5, atleast 50 ARVMs isolated from 5 rat hearts

in each treatment group) harvested at 12 hr post sham/sepsis

induction. The isolated single ARVMs were divided into four plates,

which were subsequently treated with vehicle, NE, 5HD and

NE+5HD. In the combination treatment group, the ARVMs were

treated with 5HD 30 min prior to NE treatment administration.

The mechanical properties of the ARVMs were examined at a

stimulation frequency of 0.5 Hz for 20 msec using a pair of

platinum wires placed on the opposite sides of the chamber

connected to a FHC stimulator (Brunswick, NE). The polarity of the

stimulatory electrodes was reversed frequently to avoid a possible

build-up of electrolyte by-products. The ARVMs being studied

were displayed on the computer monitor using an IonOptix

MyoCam camera, which rapidly scanned the image area every

8.3 ms so that the amplitude and velocity of shortening/

relengthening were recorded with good fidelity. Soft-edge Detection

software (IonOptix) was used to capture the changes in cell length

during shortening and relengthening in real time. The contractility

parameter such as peak shortening (PS) was calculated using

transient analysis software as described earlier [25].

Immunoblot (Western blot) analysis
In brief, the ARVM extracts (N = 4 in each treatment group) in

lysis buffer containing pepstatin (2 mg/mL, aprotinin (0.1 mg/mL),

leupeptin (2 mg/mL), benzamidine (16 mg/mL) and bacitracin (0.5%)

in Tris/glycine buffer were centrifuged. Following the technique of

enzyme preparation, the samples were separated on 7.5%

denaturing sodium dodecyl sulfate (SDS) polyacrylamide gels.

The proteins were blotted onto polyvinylidene Fluoride (PVDF)

membrane by electroblotting for one hour at 150 volts. The blots

were blocked overnight at 4uC with 5% nonfat dry milk in tris saline

buffer containing (0.2%) tween 20 and incubated with their selective

primary antibody (polyclonal IgG reactive to rat proteins) for one

hour at room temperature [9,22,23,24]. The blots were then

washed and incubated with an appropriate secondary antibody for

one hour at room temperature. The specific proteins were detected

by using chemiluminescence (ECL detection reagent, Amersham

Pharmacia Biotech). The expression of the VDAC 1, cytochrome C,

and Bax proteins was examined and normalized to b-actin/b-

tubuline/HSP 60 as needed for the validation of cytosolic and

mitochondrial fractions, respectively [8].

Purified mitochondrial preparations (PMP) from ARVMs
To determine the mitochondrial-specific effects of 5HD and

diazoxide, we isolated PMP from the ARVMs. Previously,

ARVMs (16106 ARVMs/treatment group) were isolated from

the sham and septic rat hearts harvested at 12 hr post sham/

sepsis). Briefly, 800 ml of Reagent A solution was added to the

ARVM pellet and incubated for 2 min. Ten ml of Reagent B was

added and incubated on ice for 5 min. Then, 800 ml of

mitochondrial isolation Reagent C was added, and the tubes

were inverted several times to mix the liquids. The tubes were

centrifuged at 7006g for 10 min at 4uC. The pellets (debris) were

discarded and the supernatant centrifuged at 3,0006g for 15 min

at 4uC. The supernatant (cytosolic fraction) was removed from the

mitochondrial pellet and stored for further analysis. After that,

500 ml of wash buffer was added to the mitochondrial pellet and

centrifuged at 12,0006g for 5 min to wash the surface of the

pellet. The purified mitochondrial preparations were stored at

280uC in dry ice for further analysis.

Measurement of mitochondrial membrane potential
(DYm)

To determine the mitochondrial membrane integrity, we

measured the mitochondrial membrane potential using a cationic

JC-1 dye. Briefly, the sham and septic ARVM pellets (16106

ARVMs/treatment group) isolated from the sham and septic rat

hearts harvested at 12 hr post sham/sepsis were prepared

separately and washed two times with PBS at 37uC before

incubating with JC-1 reagent (500 mL). In the healthy cells, the dye

stains mitochondria bright red, indicating an intact mitochondrial

membrane potential. However, in the apoptotic cells, the dye

remains in the cytoplasm and emits green fluorescence, indicating

mitochondrial membrane collapse. A fluorescent microscope with

a dual bend pass filter designed to detect fluorescein and

rhodamine was used. The mitochondrial DYm in the sham and

septic ARVMs was assessed with a fluorescent probe, JC-1

(Molecular Probes, USA). Briefly, the ARVMs incubated with

5 mM of JC-1 for 10 min at 37uC were washed and placed on a

thermostat stage at 37uC. The fluorescent images were visualized

using a Nikon Optical TE2000-S inverted fluorescence micro-

scope with excitation at 490 nm and emission at .520 nm. The

acquired signal was analyzed with image-analysis software (Simple

PCI). A minimum of six fields were selected and average intensity

for each region was quantified. The ratio of J-aggregate to JC-1

monomer intensity for each region was calculated. A decrease in

this ratio was interpreted as the loss of DYm, whereas an increase

in the ratio was interpreted as a gain in DYm.

Co-Immunoprecipitation technique
To determine the interaction of ANT with VDAC 1 or SUR 2,

we performed immunoprecipitation, a technique offering a rapid

and simple means of separating a specific protein from whole cell

lysates or culture supernatants. Co immunoprecipitation of ANT/

VDAC and ANT/SUR2 was performed by the Dynabeads

Protein G method according to manufacturer’s protocol (Invitro-

gen). The procedure was performed in PMPs (N = 3 in each

treatment group) obtained from 16106 ARVMs/treatment group.

Briefly, the PMPs were washed with ,10 ml of PBS in a conical

tube and spun at 4006g for 10 min. Five micrograms of ANT,

VDAC 1 and SUR 2 antibodies were diluted in 200 ml W & B

buffer (0.1 M Na Phosphate, 0.01% Tween 20, pH 8.2) and

added to two different tubes containing Dynabeads Protein G.

The tubes were incubated for 10 min at 25uC and washed twice

with washing buffer (PBS). After washing, the Dynabeads-Ig-

complex was incubated with 10 ml of PMP (sham and/or sepsis)

and incubated for 10 min at 25uC. The Dynabeads-Ig-Antigen

complex was subsequently washed three times in PBS and the

denatured samples (70uC) eluted using a magnet. The SDS-PAGE

gel electrophoreses were performed according to the standard

western blot technique.
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Immunocytochemical (ICC) technique
The VDAC 1 and ANT co-localization was analyzed in the

sham and septic PMP. Briefly, the PMP (specimens) were dried on

glass slides and washed with 16 PBS. The specimens were

incubated with 10% normal blocking serum in PBS for 20 min to

suppress the non-specific binding of IgG. After washing with 16
PBS, the specimens were incubated with the primary antibodies of

VDAC 1 (goat polyclonal) and ANT (rabbit polyclonal) at a

concentration of 1:200 in PBS with 1.5% normal blocking serum

for 60 min at room temperature. After repeated washing with 16
PBS, the specimens were incubated for 45 min with the donkey

anti-rabbit IgG-FITC (1:100) and donkey anti-goat IgG-555

(1:100) in PBS with 1.5–3% normal blocking serum. The

specimens were then washed five times with 16PBS and mounted

on a cover slip using Slow Fade Gold (anti-fade reagent,

Invitrogen) and stored in the dark at 4uC. The specimens were

analyzed using a Leica SP2 confocal microscope. The secondary

antibody conjugated with FITC provided green fluorescence for

ANT and red fluorescence for VDAC 1.

Electron Microscopy
To determine the ultrastructural alteration in the LV and PMPs

mitochondria, we performed electron microscopy as described

below. The LV tissues (N = 5 in each treatment group) were

harvested and fixed in 3% glutaraldehyde from the sham and

septic (6 h and 12 h) animals. In addition, PMPs were obtained,

pelleted and fixed in 2.5% glutaradehyde in PBS (pH 7.4) at 4uC.

The specimens were post-fixed with 2% Osmium tetroxide in

0.1 M phosphate buffer (pH 7.4), dehydrated and embedded in

epoxy resin. Thin sections (,90 nm) were harvested and placed

on 200 mesh copper grid with carbon support, then stained with

2% uranyl acetate and Reynold’s lead citrate. The thin sections

were examined using a JEOL 1200 EX transmission electron

microscope at 60 kV at a specified nominal magnification and

images were captured using a 1 k61 k Gatan CCD camera

(Gatan Inc., Pleasanton, CA).

Statistical Analyses
The hemodynamic, biochemical and protein expression data

were analyzed using a two-way ANOVA repeated or one-way

ANOVA (using SPSS software). After obtaining a significant F-

value, a post hoc multiple range Student-Newman-Keuls test was

performed. The log-rank test (Mantel-Cox) was used to test for

significant differences among survival curves using Prism 5.0

software (GraphPad Software, La Jolla, CA). A probability value of

p#0.05 was considered to be statistically significant.
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