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Abstract 

Analysis of Chlamydia pneumoniae and AD-like Pathology in the Brains of BALB/c 

Mice Following Direct Intracranial Infection with Chlamydia pneumoniae 

Jessica Rachel Barton 

MS in Biomedical Sciences, August 2011 

Department of Pathology, Microbiology, Immunology and Forensic Medicine 
 

Philadelphia College of Osteopathic Medicine, Philadelphia, PA 
 

C. Scott Little, Ph.D. Thesis Advisor 

 Alzheimer’s disease (AD) is an age-related progressive neurodegenerative 

disorder and the most common form of dementia.  The pathology in the central nervous 

system (CNS) impairs memory and cognition, hindering the capabilities and the quality 

of life of the individual.  This project continues studying the role of infection and 

Alzheimer’s disease and contributes to the overall understanding of the possible causes of 

this disease.  In this study, BALB/c mice were infected, via direct intracranial injection, 

with a respiratory isolate (AR-39) of Chlamydia pneumoniae.  Their brains were 

analyzed at 7 and 14 days post-infection, using immunohistochemistry, for the presence 

of C. pneumoniae, amyloid deposits and activated glial cells.  The goal of this project was 

to measure the location and degree of C. pneumoniae burden, amyloid deposition and 

glial cell activation in the CNS following direct intracranial injection and to compare this 

data with results obtained from previous studies in this laboratory.  We hypothesized that 

C. pneumoniae antigen and activated inflammatory cells will be observed in the infected 
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mouse brains following direct intracranial injection and Aβ deposition will be observed in 

areas where inflammation occurs.  C. pneumoniae, amyloid deposits and activated glial 

cells were detected in the brains following direct intracranial infection with C. 

pneumoniae.  At 7 days post-infection the average number of C. pneumoniae-specific 

immunoreactive sites was 68 ± 51.06 for the infected mice and, at 14 days post-infection, 

the average was 60 ± 43.79 for the infected mice.  Within 0.84 mm of Bregma, the 

location of the injection, 166 of 203 total C. pneumoniae-specific immunoreactive sites 

(82%) and 26 of 27 (96%) total amyloid deposits were detected at 7 days post-infection.  

At 14 days post-infection, 126 of 179 total C. pneumoniae-specific immunoreactive sites 

(70%) and 13 of 32 (41%) total amyloid deposits were detected (within 0.84 mm of 

Bregma).  From 7 to 14 days post-infection the C. pneumoniae and amyloid deposits 

located near the injection site spread distally from this location to other regions of the 

brain.  These data confirm that C. pneumoniae is capable of establishing an infection in 

the CNS.  Although deposits were observed, the lack of a substantial amount of amyloid 

deposits suggested that the generation of deposits may require longer than 14 days 

following C. pneumoniae infection.  As early as 7 days post-infection, inflammation is 

observed in response to the presence of C. pneumoniae and/or soluble amyloid in the 

CNS and the contribution of both infection with C. pneumoniae and the presence of 

soluble amyloid elicit the inflammatory response that presumably precedes and 

contributes to amyloid deposition.   
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Introduction 

I. Alzheimer’s Disease 

 

Alzheimer’s disease (AD), the most common form of dementia in elderly 

individuals, is an age-related, progressive neurodegenerative disease that produces 

memory loss and severe cognitive impairment [1-3].  This form of dementia accounts for 

50-60% of all dementia cases, currently affecting more than 15 million people worldwide 

[2]. According to the 2010 annual report from the Alzheimer’s Association, 5.3 million 

people in the United States (U.S.) are suffering from this disease and the U.S. is currently 

spending approximately 172 billion dollars per year on associated costs [4].  This number 

of affected individuals and the associated costs places a clear strain on the healthcare 

system and society as a whole.  Alzheimer’s disease greatly impacts the quality of life of 

the individual, their family members, friends and caregivers.  Throughout the past 

century significant progress in the study of AD has been made, which contributes to our 

understanding of AD and our ability to slow the progression of the disease in patients.  

However, it is important to build upon past research and gather new information so that 

the cause, and ultimately the cure, for AD can be determined.   
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II. Forms of Alzheimer’s Disease and Neuropathology 

 

In 1911, Alois Alzheimer described Alzheimer’s disease as a mental disorder in 

elderly individuals characterized by two lesions in the brain.  His work led to further 

investigations of individuals with this disorder and research that has contributed to our 

observation and understanding of the two forms of AD: familial, early-onset (FAD) and 

sporadic, late-onset AD (LOAD).  Familial AD, which typically occurs prior to age 65, is 

an autosomal dominant disorder [2].  In contrast the onset of LOAD is not primarily due 

to a genetic disorder and instead it increases with age, generally occurring after age 65.  

Late-onset AD is much more prevalent than FAD, accounting for approximately 95% of 

all AD cases [3, 5].   

Neuropathology shared by the two forms of AD presents as two defining 

hallmarks of the disease: neurofibrillary tangles (NFTs) and neuritic (senile) plaques 

(NSPs).  Tangles are paired filaments of the abnormally hyperphosphorylated form of the 

tau protein, which accumulate in the perikaryal cytoplasm of neuronal cells.  Plaques are 

extracellular accumulations of amyloid β (Aβ) peptide [3, 6-8].  The presence of Aβ 

plaques is thought to lead to neuronal dysfunction and death.  The deposition of these 

plaques may promote hyperphosphorylation of tau and elicits a local inflammatory 

response, both of which will also contribute to additional injury and death of neurons [3].   

Although we do not know what the function of amyloid β peptide is after normal 

processing, we do know that the peptide is produced throughout life and is derived from 
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the amyloid precursor protein (APP).  The amyloid precursor protein is a transmembrane 

protein that has cleavage sites for the following enzymes: α-secretase, β-secretase and γ-

secretase [3].  If APP is cleaved by α-secretase and γ-secretase Aβ formation is 

prevented, but if APP is cleaved by β-secretase and γ-secretase then the result is Aβ 

generation (Figure 1).   
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[3] 

 
 
 
Figure 1.  Amyloid Precursor Protein (APP) Proteolytic Cleavage 
 
 
 
A) APP is synthesized in many cells and expressed as a transmembrane protein at the cell 
surface.  When APP is present at the surface of the cell there are three enzymes -  α-, β- 
and γ- secretase – that function to cleave this protein at corresponding cleavage sites on 
APP.  B)  Cleavage by α-secretase releases a soluble portion of APP into the extracellular 
environment and γ-secretase cleaves APP so that a portion remains internalized in the 
cell.  C)  When β- and γ-secretases act on APP, Aβ will be produced and released into the 
extracellular environment where it will readily form fibrils of Aβ peptide [3].  

 

Generation of Aβ produces monomers of Aβ1-40 and Aβ1-42 [9].  Amyloid β1-40 is 

the major form of cellular Aβ in the brain and is fairly soluble compared to Aβ1-42, the 
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longer form of this peptide, which is fairly insoluble [10].  Amyloid β peptides, Aβ1-40 

and Aβ1-42, are found in both normal and AD brains; however the proportions and the 

extent of burden differ.  Plaques are composed of silver-staining neuritic processes that 

surround an extracellular deposit of Aβ, also known as the central amyloid core of the 

plaque [3].  Amyloid β1-42 aggregates more readily to form the central amyloid core in 

NSPs than Aβ1-40 and is considered to be toxic to neurons [9, 10].  As all individuals age, 

Aβ will accumulate in the brain as the rate of Aβ formation increases with age.  This rate 

increase is presumably due to a change in enzymatic activity, which is supported by 

previous observations in FAD cases [3].   

Genetic risks have been linked to both forms of the disease.  Individuals suffering 

from FAD have genetic defects that affect these pathways and cause Aβ to accumulate 

earlier and more rapidly.  Familial AD involves mutations in APP and the transmembrane 

proteins presenilin-1 (PS-1) and presenilin-2 (PS-2) genes, all of which will lead to 

altered processing and thus accumulation of Aβ peptides in the brain [2, 5, 7].    These 

mutations are not responsible for LOAD, however, an association between apolipoprotein 

E (ApoE) ε4 allele and onset of LOAD has been recognized [2, 5, 11, 12].  The presence 

of this allele does not guarantee development of the disease as seen with the direct 

correlations between genetic mutations and onset of familial Alzheimer’s disease.  Two 

additional ApoE alleles, ε2 and ε3, generate the ApoE2 and ApoE3 isoforms, but it is the 

ε4 allele that accounts for the highest genetic risk associated with the development and 

rate of progression of LOAD [2].   

Individuals who have the ε4 allele are at greater risk for developing LOAD and 

their cognitive functioning declines more rapidly than those lacking this allele, however, 
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people who do not have this allele may still get AD [13].  Due to the ability of this 

isoform to bind to Aβ, ApoE4 may contribute to plaque formation and reduction of Aβ 

clearance [14].  Those who have the genotypes ε2/ε4, ε3/ε4 and ε4/ε4 are at increased 

risk for the development of AD [15].  The ε3 allele is the most common of the three 

alleles, accounting for approximately 75% of all alleles and ε2 is the least common 

accounting for only about 10% [12, 14].    Individuals with genotypes ε2/ε2 or ε2/ε3 have 

a decreased risk of developing the disease and the age of onset of AD is typically later 

compared to individuals that possess one or more ε4 alleles [14, 15].  As previously 

mentioned, the presence of the ε4 allele does not guarantee AD development.  The 

presence of this allele increases one’s risk of developing AD which is diagnosed based on 

cognitive function and memory impairment and confirmed at autopsy. 
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III. Diagnosis and Clinical Manifestations 

 

Alzheimer’s disease is diagnosed using cognitive evaluations in living patients 

and is only confirmed at autopsy.  A number of tests for evaluation and diagnosis, such as 

the mini mental status exam (MMSE), test various areas of cognitive function at the time 

the first symptoms are recognized, as well as over time to track the course of cognitive 

decline in the patient [16, 17].   

Advancements in in-vivo technology, including magnetic resonance imaging 

(MRI) and positron emission tomography (PET), aid in the detection of changes of 

pathology in the central nervous system (CNS) and allow for comparison of healthy 

brains with those of individuals diagnosed with the disease.  These imaging systems 

identify atrophy of the hippocampus and entorhinal cortex in human AD brains of living 

patients, which is supported by post-mortem examination upon death [2].  Although 

diagnosis of AD is only confirmed at autopsy, neuronal degeneration and the production 

of the two hallmark pathologies begins much earlier in specific regions of the brain 

leading to observable changes in the mental and physical status of the patient; and thus 

the clinical diagnosis of the disease in a living person [2, 16, 17].   

The clinical manifestations of AD, such as loss of memory and cognitive decline, 

result from the dysfunction and death of neuronal cells, which will disrupt the biological 

processes in the affected regions of the brain, eventually spreading to the entire brain by 

the end-stage of the disease [16, 18].    Pathologic changes begin in the transentorhinal 
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cortex and the olfactory bulb is also thought to be one of the first areas affected [13], 

subsequently extending into the amygdala and hippocampal formation.  Pathology can be 

observed in the frontal, temporal and occipital association areas as well.  Ultimately 

pathology extends into the cerebral cortex, including the isocortex and neocortex [18, 

19].   

In 1991, Braak and Braak defined AD as a series of four stages that illustrates the 

progression of pathology and changes in various brain regions, a system widely utilized 

amongst AD researchers today.  According to their research, the transentorhinal cortex, 

located between the entorhinal cortex and temporal isocortex, contains the first nerve 

cells affected in most cases of Alzheimer’s disease.  Following these observations they 

found pathology in and further involvement of the entorhinal region and the 

hippocampus.  At this point they found that the isocortex still remains mostly unaffected.  

Pathology may also be observed in frontal, temporal and occipital association areas at this 

stage of the disease.  Extensive pathology in the transentorhinal, entorhinal and 

hippocampal regions is expressed and their final stage describes pathology extending into 

the isocortex in addition to the previously mentioned affected regions [18].   

Clinicians find that the clinical symptoms in the patient are consistent with the 

regions of the brain affected by neuronal degeneration and pathology over the course of 

this progressive neurodegenerative disease.  For example, current studies have found 

pathology in the olfactory bulbs very early in the disease, which is consistent with some 

of the first symptoms of AD including lost sense of taste and smell [13].  AD patients 

initially present with extreme impairment of recent memory and decreased cognition, 
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which is consistent with pathology in the limbic system, which includes the entorhinal 

region, hippocampus and amygdala [5, 19, 20].  The hippocampus is an area of the brain 

critical in the formation of new memory, the entorhinal cortex is the primary source of 

afferents to the hippocampus, and the amygdala is involved in the emotion-related 

aspects of memory and learning [19].  Many researchers have contributed to our 

understanding of the pathology observed in and the clinical diagnosis of AD, however, 

the underlying causes of this disease are not as well-defined. 

 

IV.  Possible Causes of Alzheimer’s Disease 

 

The progress that has been made allowing us to understand, diagnose and treat 

Alzheimer’s disease is remarkable.  However, we are still working to discover the cause 

of LOAD so that we may eventually be able to determine a cure for the disease.   A 

number of hypotheses have been proposed to explain the onset of Alzheimer’s disease.  

The hypothesis that has the most data to support it is the amyloid cascade hypothesis 

[21]. 
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a. Amyloid Cascade Hypothesis 

 

The proposal of the amyloid cascade hypothesis plays a major role in AD research 

today as the focus shifts for some laboratories from treating AD to determining the cause 

of this disease.  It was proposed by J. Hardy and G. Higgins, and also supported by D. 

Selko, in the early 1990’s and states that there is an imbalance between production and 

clearance of Aβ ultimately leading to Aβ deposition, promoting neuronal degeneration 

and dysfunction, which is characteristic of both familial and sporadic forms of AD [2, 21, 

22].  This hypothesis has been widely accepted since the finding that mutations in the 

genes for APP and presenilins, which are the substrate and enzyme for Aβ generation, 

have been implicated in FAD [2, 13].  As previously stated, the genetic mutations 

identified in patients with FAD are not responsible for the development of LOAD, but the 

neuropathology observed in both forms of the disease is identical.   

There are many cases of elderly individuals who have extensive Aβ deposition 

identified at autopsy, even though they never presented with the clinical symptoms of AD 

while living [22, 23].  The amyloid cascade hypothesis correlates well with FAD where 

we observe onset of this form of AD as pathology increases.  However, this hypothesis 

does not always fit for late-onset Alzheimer’s disease since the amount of pathology is 

not always associated with the time of onset of the disease.  Therefore, although Aβ may 

be involved in the pathophysiology of LOAD, it is only part of a larger picture.  The 

initiating events leading to the onset of LOAD are not as well understood as those 
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contributing to FAD onset.  Further research is necessary to determine the causative 

factors for the development of the late-onset form of the disease. 

 

b. Infection  

 

Neuropathology in both FAD and LOAD are similar, however, the reason this 

pathology is observed in the brains of individuals with LOAD remains unclear.  Multiple 

possible causes of LOAD, a multifactorial disease, are recognized, including the role of 

infectious organisms.  Researchers working to determine the cause of LOAD have 

observed an association between pathology in the AD brain and the onset of 

neuroinflammatory processes, which locally up-regulate inflammatory mediators when  

damaged neuronal cells, plaques and tangles are present [5-7, 24].  These studies support 

the fact that the brain, similar to other tissues in the body, is susceptible to infection.  

Furthermore, infectious agents can take several routes of entry to the CNS and may cause 

damage by directly injuring cells in the nervous system or through an indirect 

pathway/process that produces adverse effects due to an inflammatory or immune-

mediated response [3, 13, 23].   

In the study of LOAD, several viral and bacterial pathogens have been studied for 

their ability to establish an infection in the CNS that may contribute to neuropathology 

seen in Alzheimer’s disease [13, 25].  Infection with Herpes simplex virus type 1 (HSV-

1) has been identified as a risk factor for the development of AD in certain individuals 

[25].  These are the individuals with at least one of the ε4 alleles for the ApoE gene.  This 
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is the allele that accounts for the highest genetic risk for the development and rate of 

progression of late-onset Alzheimer’s disease [2].   

 

c. Chlamydia pneumoniae 

 

Our laboratory focuses on infection with C. pneumoniae, a bacterial pathogen 

gaining significant attention for its role in numerous chronic diseases, in particular AD 

[7, 23, 26, 27].  Chlamydia pneumoniae is an obligate intracellular bacterial pathogen that 

infects mucosal surfaces of the respiratory tract [28-30].  C. pneumoniae is generally 

transmitted person-to-person through aerosolized droplets to the respiratory tract and can 

disseminate systemically, typically infecting and “hitching a ride” inside monocytic cells, 

although it has been shown to be capable of infecting an array of human cell types [13, 

23, 31, 32].  Like other chlamydial species, C. pneumoniae is characterized by a biphasic 

developmental cycle.  The first phase is defined by the activity of an infectious 

metabolically inactive elementary body (EB) attaching to target cells of the host and 

uptake into a vacuole, and the second phase by a dividing, intracellular, metabolically 

active reticulate body (RB).  The developmental cycle starts with the conversion of EB to 

the growth form, RB, which then divides and usually reverts back to the EB form and is 

released from the host cell to continue propagating the infection [5, 13, 29].  

Chlamydia pneumoniae infection has been associated with the onset and 

progression of several chronic diseases [13, 33].  For example, studies have observed a 

correlation between infection with this organism and coronary artery disease as  
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C. pneumoniae has been identified in plaques associated with atherosclerosis [26, 34].  

Adult populations that have been tested show seroprevalence over 40% worldwide [32, 

33].  This organism is wide-spread in society often producing infections that are 

asymptomatic and in response to the host immune reaction the organism adapts and 

enters a persistent/non-replicative state, which may promote a chronic infection.  It is 

thought that the pathogenesis of this persistent state may be associated with chronic 

disease development [13, 29].   

This lab has developed a mouse model of AD-like pathology in which amyloid 

deposits have been experimentally induced following infection with a human AD-isolate 

of the organism C. pneumoniae [5, 7].  This model is useful for exploring the early events 

that take place in LOAD as well as the role of infection, particularly with the organism C. 

pneumoniae, in the induction of neuroinflammation and AD pathogenesis.  

In recent experiments [7], BALB/c mice were infected, intranasally, with a 

respiratory isolate of C. pneumoniae (AR-39) and their brains were isolated following 

perfusion at 1, 2, 3, or 4 months post-infection (unpublished observations).  Brains of 

experimentally infected or mock-infected age and sex matched mice were analyzed via 

immunohistochemistry using antibodies specific for amyloid or C. pneumoniae antigens.  

The greatest amount of C. pneumoniae was detected at 1 month post infection, and then 

decreased at 2, 3 and 4 months post infection.  The amount of Aβ deposition peaked at 2 

months post-infection, which suggests that C. pneumoniae is capable of establishing a 

CNS infection and promoting amyloid deposition, which may serve as a stimulus for 

inflammation in the brain.  Therefore, the presence of amyloid plaques in the brains of 
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the infected mice was likely a consequence of an inflammatory response to infection 

(unpublished observations). 

 

d. Inflammation 

 

Chronic inflammation is a hallmark of AD, however, whether the inflammatory 

response results from the over expression of Aβ or other stimuli is yet to be determined 

[26].  The accumulation of Aβ in the CNS leads to amyloid β deposits, a key feature of 

the pathogenesis of Alzheimer’s disease.  Amyloid β is known to lead to the dysfunction 

and death of neuronal cells in its presence [3, 9].  The initiating factors of LOAD are still 

unknown, but research in this laboratory suggests that infection may be the initial source 

for inflammation and thus the development of AD-like pathology [7, 13].   

The resident immune and phagocytic cells of the CNS, microglia, are the initial 

sensors of pathogens or changes in the brain environment [35].  Microglia are stimulated 

by the presence of soluble amyloid, the type present prior to forming a deposit, or 

insoluble amyloid, deposits or plaques [9, 17].  Microglia and astrocytes are capable of 

binding both soluble and insoluble amyloid, via specific receptors that are recognized by 

the Aβ peptide, and Aβ aggregates have also been shown to activate microglia and 

astrocytes [24, 35].   Following binding to Aβ, microglia become “activated,” which is 

defined as cells that have an altered shape and size of their cell bodies, lengths of their 

processes, as well as functional changes compared to “resting” microglia.  Once in the 
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active state, the microglia will phagocytize any material they recognize as disrupting the 

homeostasis of the CNS, including amyloid.  Microglia will also respond by secreting 

inflammatory mediators and proteolytic enzymes or neurotrophic factors that influence 

astrocytes, another type of glial cell, and neurons inducing secondary inflammatory 

responses [9, 35].  The glial response will resolve once infection is cleared or damaged 

tissues have been repaired, thus preventing disease in the short term.  However, when the 

presence of the inflammatory stimulus persists or the normal resolution mechanisms fail, 

sustained or chronic inflammation results and this glial response may contribute to the 

progression of disease [35]. 

The role of glia in AD is still not well understood, but astrogliosis and changes in 

microglia morphology that are observed in AD brains provides evidence of an 

inflammatory response in AD [35].  Studies using transgenic mouse models for AD have 

shown that the amount of microglia in the CNS increases with increased levels of 

amyloid plaques, as early as two months of age [36].  Another group [37], working with a 

β-site APP cleavage enzyme (BACE1) [3] transgenic mouse model of AD, has observed 

microglial activation earlier than two months of age and even before observing the 

presence of amyloid deposits in the CNS .  This illustrates the possibility that microglia 

may respond to altered APP processing that can lead to eventual accumulation of amyloid 

in the CNS [37].  The ability of microglia to detect and respond to injury or the presence 

of pathogens in the brain is crucial for maintaining homeostasis and consequently normal 

processing and functioning in the CNS.  However, continuous activation of these immune 

cells may lead to chronic inflammation and thus the progression of disease [9, 38]. 
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Both the high prevalence of infection with C. pneumoniae in the population and 

the presence of inflammation in the CNS, a common observation in both Chlamydia-

induced diseases and the AD brain, led this laboratory to its decision to investigate a 

possible relationship between C. pneumoniae and Alzheimer’s disease in the late 1990’s.  

Several studies in this laboratory have also confirmed the presence of C. pneumoniae in 

areas of the AD brain presenting with neuropathology [7, 13, 26].  Balin et al compared 

postmortem brain samples from patients with and without AD and found that in brain 

areas with typical AD related neuropathology 89% of the AD patients were positive for 

C. pneumoniae and 95% of the non-AD control brains were negative for this organism 

[26].  Another group studying the response of microglia to infection with C. pneumoniae, 

[38], observed an increase in the number of activated microglial cells in the brains of C. 

pneumoniae PCR-positive mice compared to infected PCR-negative and mock infected 

mice.  Based on the data obtained and the correlations observed between C. pneumoniae 

and AD in previous experiments, this lab continues investigating the role of infection 

with this organism and late-onset Alzheimer’s disease.  This laboratory is working to 

confirm that inflammation induced following infection with C. pneumoniae promotes the 

generation and deposition of amyloid β. 

 

 

 

 



17 
 

V. Study Directive and Hypothesis 

 

Previous experiments have illustrated the ability of C. pneumoniae to get into the 

CNS and produce AD-like pathology (Aβ 1-42) [7, 11, 26].  Although Aβ 1-42 deposits 

were detected via immunohistochemistry, it did not co-localize with C. pneumoniae in 

these studies, suggesting the inflammatory response to the presence of C. pneumoniae 

may play a role in Aβ 1-42 formation.   

This laboratory has not previously studied the effects of direct intracranial 

infection with C. pneumoniae in model animals for Alzheimer’s disease.  This project 

aims to expand on the knowledge and data gained from our previous studies, where mice 

were infected intranasally.  We will investigate the presence of C. pneumoniae antigen, 

activated glial cells and Aβ deposition in fixed and embedded mouse brain tissue that was 

previously infected, via direct intracranial injection, with C. pneumoniae.  The goal of the 

proposed research is to measure the location and degree of amyloid deposition, C. 

pneumoniae antigen and glial cell activation in the CNS following direct intracranial 

injection. 

To contribute to our understanding of the role of infection with C. pneumoniae in 

AD this project aims to: 

1) determine the amount of pathogen needed to initiate/produce pathology  

2) determine the mobility of the pathogen in the CNS once present  
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3) determine the presence and location of activated glial cells and compare this to 

regions where C. pneumoniae and/or Aβ is observed 

4) compare these results with previous data in order to further elucidate how this 

may contribute to progressive pathology in other regions of the brain 

 

 

We hypothesize that C. pneumoniae antigen and activated inflammatory cells will be 

observed in the infected mouse brains following direct intracranial injection and Aβ 

deposition will be observed in areas where inflammation occurs. 
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Materials and Methods 

I. Chlamydia pneumoniae 

 

BALB/c mice were infected with 1 x 105 infectious units, of a human respiratory 

isolate of C. pneumoniae, AR-39, obtained from the American type Culture Collection 

(ATCC), and propagated in HEp-2 cells, isolated for these experiments.  Infectious units 

were administered via direct intracranial injection.  Hank’s balanced salt solution (HBSS) 

vehicle alone was given intracranially for age and sex matched uninfected control mice. 

(Table 1) 

 

II. Infection of Mice and Brain Removal 

 

Female BALB/c mice were infected, intracranially, with C. pneumoniae.  The 

injection site is located at approximately Bregma -2.12mm on the anatomical right side of 

the mouse brain (Figure 2).  At 7 or 14 days post-infection the mice were sacrificed and 

perfused with 4% paraformaldehyde.  Their brains were immersion fixed in 4% 

paraformaldehyde for more than 48 hours.  The fixed tissue was embedded in paraffin 

and then sectioned coronally at 7-10 microns thickness. 
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III. Mouse Brain 

 

A total of 50 brain coronal sections were immunolabeled per mouse: 4 sets (1 per 

primary antibody) and 1 set (secondary antibody only) for both the rostral and caudal 

portions of the brains – 5 sections were labeled for each set. The immunolabeled sections 

were 7-10 microns thick and spaced equally at 35-50 micron intervals.  Samples represent 

regions spanning from rostral (bregma + 2.22mm) to caudal (bregma – 5.88mm).  (Figure 

3) 

 

IV. Antibodies 

 

Primary antibodies specific for C. pneumoniae: mouse monoclonal RDI-

PROAC1p used at a working concentration of 1:10 (Research Diagnostics Incorporated, 

Flanders, NJ), mouse monoclonal M6600 also used at a working concentration of 1:10 

(DakoCytomation, Carpinteria CA), and mouse monoclonal 10C-27 used at a working 

concentration of 1:100 (Fitzgerald, Concord MA).  Primary antibodies specific for 

amyloid beta 1-42 antigens: rabbit polyclonal Aβ 1-42 used at a working concentration of 

1:300 (Oncogene Research Products) and mouse monoclonal Aβ 1-42 (6E10) used at a 

working concentration of 1:500 (Covance).  The primary antibody specific for glial 

fibrillary acidic protein (GFAP) was mouse, anti-human monoclonal GFAP used at a 

working concentration of 1:25 (AbD Serotec, Raleigh, NC).  Alkaline phosphatase 

conjugated secondary antibodies were utilized to visualize the respective antigens of 
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interest.  All antibodies were diluted to working concentration in phosphate buffer saline 

– blocking buffer (Table 2). 

 

V. Immunohistochemistry 

 

Coronal sections (see Materials and Methods subsection Mouse Brain) were re-

hydrated by melting the wax for 30 seconds, followed by  xylene – 3 minutes (3x) 

(Thermo Fisher Scientific, Pittsburgh PA), rehydrated in a series of graded alcohol 

solutions – 100% ethanol for 3 minutes (2x), 90% ethanol for 3 minutes (1x) and 70% 

ethanol for 3 minutes (1x) (Electron Microscopy Sciences, Fort Washington PA), 

followed by DI H2O for 3 minutes.  Next, slides were placed in Citra antigen retrieval 

buffer (BioGenex, San Roman CA) and steamed in a 2010 Retreaver (Pick Cell 

Laboratories, Amsterdam Netherlands) for 20 minutes at high pressure (120oC). Slides 

remained in antigen retrieval buffer overnight at room temperature.   

Slides were rinsed with phosphate buffer saline (PBS) pH 7.4 (Sigma-Aldrich, St. 

Louis MO) 3 x 5 minutes.  Endogenous peroxidase activity was quenched utilizing a 3% 

solution of H2O2/PBS (stock 30%, Thermo Fisher Scientific, Pittsburgh PA) for five 

minutes at room temperature.  Sections were rinsed 1 x 5 minutes in PBS and blocked 

three times in 2% heat inactivated fetal bovine serum (FBS)/PBS (Mediatech, Herndon 

VA).  Primary antibodies Aβ1-42, Aβ6E10, mixed “cocktail” of 10C-27, AC1P, M6600, 

or GFAP (Table 2) were applied to tissue sections and placed in a humidified chamber at 

37oC for 90 minutes.  The sections were rinsed 3 x 5 minutes each and then blocked 3 x 

15 minutes each in 2% FBS/PBS, then incubated with appropriate secondary antibodies 



22 
 
in a humidified chamber for 60 minutes at 37oC.  Following incubation, sections were 

rinsed with distilled water 3 x 5 minutes and developed using alkaline phosphatase new 

magenta for fifteen minutes (BioFX, Owings Mills MD).  Next, sections were rinsed in 

distilled water 3 x 5 minutes followed by one PBS rinse for 5 minutes.  Acidified Harris’s 

Hematoxylin (Mercury free) was applied to sections for 1 minute (Thermo Fisher 

Scientific, Pittsburgh PA).  Sections were rinsed thoroughly in distilled water and then 

were contrasted in PBS for 5 minutes.  The sections were rinsed with distilled water 3 x 5 

minutes, air dried, and crystal mounted (BioMeda, Foster City CA) and air-dried 

overnight.  Once dry, the sections were permounted (Fisher Chemicals, Fair Lawn NJ) 

and coverslipped. 

 

VI. Microscopic Analysis 

 

Microscopic examination of tissue was completed using 10x, 20x, 40x and 60x 

objectives.  Digital still images were captured using NIS-Elements F 2.20 Imaging 

System software on a Nikon Eclipse 50i microscope using a Nikon Digital Sight DS-SM 

Camera. 

 

VII. Mapping Immunolabeling on Mouse Coronal Schematics: 

 

Each coronal section viewed was matched to a representative coronal section 

from the Mouse Brain Library (http://www.mbl.org/).  These representative sections were 

used to illustrate immunolabeling seen in the corresponding brain section. 
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Table 1.  Study design 
 

 7 Days Post-Infection 14 Days Post-Infection 
Control (no injection) n=0/5 n=1/5 
Control (vehicle) n=1/1 n=0/1 
Infected n=3/5 n=3/5 

 
 
 

A total of 11 mice were prepared for each time point – 5 control (no injection), 1 
control (vehicle) and 5 infected.  All of the infected mice were infected via direct 
intracranial injection with C. pneumoniae.  The control mice were either injected with 
vehicle only (HBSS) or not injected.  For this project a total of four mice were analyzed 
for the day 7 time point – one vehicle only control mouse and three experimental mice – 
and a total of four mice were analyzed for the day 14 time point – one no injection 
control and three experimental mice.   
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Table 2.  Antibodies 
 

Antibody 
Name Supplier Antigen 

Recognized 
Conc. 

(mg/mL) Species Conjugate 

AC1P  
RDI-

PROAC1p 
(10R-C124a) 

Research Diagnostics 
Incorporated, Flanders 

NJ (Fitzgerald, 
Concord MA) 

Cpn 
lipopoly-

saccharide 
0.05 

Mouse,  
monoclonal 

IgG3 
NA 

M6600 DakoCytomation, 
Carpinteria CA 

Cpn major 
outer 

membrane 
protein 

1:10* 
Mouse,  

monoclonal 
IgG 

NA 

10C-27 Fitzgerald, Concord 
MA Cpn 1.05 

Mouse,  
monoclonal 

IgG 
NA 

Aβ 1-42 Oncogene Research 
Products Aβ 1-42 0.391 

Rabbit,  
polyclonal 

IgG 
NA 

Aβ 1-42 
(6E10) Covance Aβ 1-42 1.0 

Mouse,  
monoclonal 

IgG 
NA 

GFAP AbD Serotec, Raleigh, 
NC 

Glial 
fibrillary 

acidic 
protein 

1:25* 

Mouse,  
anti-human, 
monoclonal 

IgG1 

NA 

AP-Goat  
anti-mouse 

IgG 

Zymed Laboratories, 
San Francisco CA NA 2.0 Goat,  

anti-mouse Alk, Phos. 

AP-Goat  
anti-rabbit 

IgG 

Zymed Laboratories, 
San Francisco CA NA 2.0 Goat,  

anti-rabbit Alk. Phos. 

 
 
 
‘Cpn’ = C. pneumoniae.  * No concentration was provided, only volumes were given by 
manufacturers, along with suggested working dilutions.  
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Figure 2.  Injection Site. 
 
 
 

The boxed area on the image above represents the approximate location of the 
injection site in the mouse brain – Bregma -2.12 mm [39]. 
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Figure 3. Anatomic Locations of Representative Coronal Sections 
 
 
 

The numbers and corresponding lines above are 1 mm apart from one another.  
The regions boxed in red indicate the location of the injection site.  The brains were 
sliced coronally starting, at line 2 above, approximately, and then separated into two 
halves – rostral (BrA) and caudal (BrB).   From this initial slice (at line 2) the two halves 
were serially sectioned, every 35-50 microns and at a thickness of 7-10 microns, in both 
the rostral and caudal directions – see small arrows at the top of the figure [39].  
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Results 

 

For each time point, 7 and 14 days post-infection, a total of 4 mice – 3 infected 

and 1 uninfected – were analyzed for the presence of C. pneumoniae antigen, amyloid 

deposits and activated glial cells. 

 

I.  Identification of C. pneumoniae Antigen in the CNS 

 

Following direct intracranial infection, C. pneumoniae antigens were detected, via 

immunohistochemistry, in the CNS of the mice.  As described earlier (see Materials and 

Methods subsection Mouse Brain), a total of 80 coronal brain sections, 10 per mouse, 

were immunolabeled for C. pneumoniae and analyzed via microscopy.  Both typical 

intracellular C. pneumoniae-specific labeling (Figure 4B and 4C) and some atypical 

extracellular labeling (Figure 4A) was observed. 

The day 7 time point included three mice infected with C. pneumoniae and one 

control mouse injected with vehicle only (HBSS).  C. pneumoniae antigen was detected 

via immunohistochemistry in all mice at this time point (Table 3).  Two of the three 

infected mice displayed 129 and 70 immunoreactive sites, which was greater than the 27 

immunoreactive sites detected in the vehicle injected control, for this time point.  A total 

of 4 immunoreactive sites were detected in the third infected mouse for this time point.  

The average C. pneumoniae antigen burden for the infected mice at this time point was 

68 ± 51.06.  Within 0.84 mm of Bregma (the location of the injection site) in both the 

rostral and caudal directions, 166 of 203 (82%)  C. pneumoniae-specific immunoreactive 
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sites were detected (Table 5).  Chlamydia pneumoniae was observed in regions of interest 

in AD, such as thalamus, hippocampus and entorhinal cortex, as well as areas not 

significantly affected early on in the disease (Figure 7, left column). 

At 14 days post-infection histologic samples from three mice infected with C. 

pneumoniae and one no-injection control mouse were analyzed.  Similar to what was 

observed at the day 7 time point, C. pneumoniae antigen was detected via 

immunohistochemistry in all mice at this time point (Table 3).  Two of the three infected 

mice displayed 111 and 64 immunoreactive sites, greater than the 18 sites observed in the 

uninfected, no-injection, control mouse for this time point.  The third infected mouse in 

this group had 4 immunoreactive sites.  The average C. pneumoniae antigen burden for 

the infected mice at this time point was 60 ± 43.79.  Only 126 of 179 (70%) C. 

pneumoniae-specific immunoreactive sites were detected proximal to the injection site, 

within 0.84 mm of Bregma (Table 5).  Chlamydia pneumoniae was observed in regions 

of interest in AD, such as thalamus, hippocampus and entorhinal cortex, as well as areas 

not significantly affected early on in the disease (Figure 8, left column). 

 

II. Identification of Amyloid Deposits in the CNS 

 

Following direct intracranial infection with C. pneumoniae, a small number of 

amyloid deposits were observed, via immunohistochemistry, in the CNS of the mice.  As 

described earlier (see Materials and Methods subsection Mouse Brain), a total of 160 

coronal brain sections, 20 per mouse, were immunolabeled for amyloid β and analyzed 

via microscopy.  Twice as many slides were analyzed for amyloid, compared to C. 
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pneumoniae.  Two antibodies were used to label for amyloid in the CNS – 10 

slides/antibody/per mouse (see Materials and Methods subsection Antibodies).  The Aβ-

specific immunolabeling observed (Figure 5) was comparable to Aβ-specific 

immunolabeling noted previously [7]. 

At 7 days post-infection histologic samples from three mice injected with C. 

pneumoniae and one control mouse injected with vehicle only (HBSS) were observed.  

Deposits were detected via immunohistochemistry in 3 of 3 infected mice, using the 

polyclonal Aβ-specific antibody and detected in 2 of 3 infected mice, using the 

monoclonal Aβ6E10 antibody.  No deposits were observed in the uninfected mouse with 

either antibody, at this time point (Table 3).  The average number of deposits for the 

infected mice at this time point using the Aβ 1-42 antibody was 4 ± 2.89 and with the 

Aβ6E10 antibody the average number of deposits was 5 ± 4.12.  Within 0.84 mm of 

Bregma (the location of the injection site) in both the rostral and caudal directions, 26 of 

27 (96%) total amyloid deposits were detected (Table 5). 

The day 14 time point included three mice injected with C. pneumoniae and one 

mouse that served as the no-injection control.  Deposits were detected via 

immunohistochemistry in 2 of 3 infected mice, using the polyclonal Aβ-specific 

antibody, and detected in 3 of 3 infected mice, using the monoclonal Aβ6E10 antibody 

(Table 3).  Two deposits were observed in the uninfected mouse labeled with the Aβ 1-42 

antibody.  The average number of deposits for the infected mice at this time point using 

the Aβ 1-42 antibody was 5 ± 3.69 and with the Aβ6E10 antibody the average total 

number of deposits was 6 ± 4.32.  Within 0.84 mm of Bregma (the location of the 
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injection site) in both the rostral and caudal directions, 13 of 32 (41%) total amyloid 

deposits were detected (Table 5). 

 

III. Identification of Activated Glial Cells in the CNS 

 

Activated glial cells were detected in the CNS of the mice, via 

immunohistochemistry, following direct intracranial infection with C. pneumoniae.  As 

described earlier (see Materials and Methods subsection Mouse Brain), a total of 80 

coronal brain sections, 10 per mouse, were immunolabeled with glial fibrillary acidic 

protein (GFAP)-specific antibody and analyzed via microscopy.  For each mouse, the 

slides labeled with GFAP were matched to comparable representative coronal sections 

from the Mouse Brain Library (See Materials and Methods subsection Mapping 

Immunolabeling on Mouse Coronal Schematics).  Activated glial cells were 

immunoreactive with GFAP-specific antibody and associated with a nucleus in the CNS 

(Figure 6, right column, see arrows).  Regions of the brain section that contained a high 

density of activated glial cells were circled on the representative coronal sections (see 

green circles in Figure 6, left column and Figures 7 and 8, right columns).   

At 7 and 14 days post-infection global activation of glia was observed in the CNS 

of infected mice.  The number of regions with activated glial cells was greater in the 

infected mice compared to uninfected controls at both time points (Figure 6).  The 

hippocampus and dentate gyrus, regions of the brain significant in AD, of infected vs. 

uninfected mice were compared. The comparison of tissue from an infected mouse to a 

control, or uninfected mouse, at each time point illustrates a substantial difference in total 
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number of activated glial cells (Figure 6, center column).  Activated glial cells were 

observed in regions of interest in AD, such as thalamus, hippocampus and entorhinal 

cortex, as well as areas not significantly affected early on in the disease (Figures 7 and 8, 

right columns).   

  



32 
 

 
 
 
Figure 4.  C. pneumoniae-specific labeling in the brains of intracranially infected 
mice 
 
 
 

These images represent C. pneumoniae labeling, which includes extracellular and  
intracellular, observed in the brains of experimental mice at both 7 and 14 days post-
infection.  A) Representative image of extracellular labeling of C. pneumoniae. B) 
Representative image of labeling of C. pneumoniae associated with a blood vessel. C) 
Representative image of labeling of intracellular C. pneumoniae. (Size bar = 100 µm) 
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Table 3. Total amount of C. pneumoniae-specific labeling 
 

 7 Days Post-Infection 14 Days Post-Infection 
Control 27 18 
Infected 129 111 
Infected 4 4 
Infected 70 64 
 
 
 

The total amount of C. pneumoniae-specific immunoreactive sites observed at 
both 7 and 14 days post-infection is displayed above.  The mean number of 
immunoreactive sites for the infected mice at day 7 was 68 ± 51.06 and the mean number 
of immunoreactive sites for the infected mice at day 14 was 60 ± 43.79.   
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Figure 5.  Amyloid deposits in the brains of intracranially infected mice 
 
 
 

These images represent amyloid labeling observed for experimental mice at both 
7 and 14 days post-infection.  The top corners of each image are inset with a higher 
magnification image of amyloid deposits as designated by the low magnification arrow.  
A and B) Representative images of amyloid deposits observed using the Aβ 1-42 
antibody are presented here.  C and D) Representative images of amyloid deposits 
observed using the Aβ6E10 antibody are presented.  (Size bar = 100 µm) 
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Table 4. Total number of amyloid deposits 
 

 Total Amount of Aβ 
(7 Days Post-Infection) 

Total Amount of Aβ 
(14 Days Post-Infection) 

 Aβ 1-42 Aβ6E10 Aβ 1-42 Aβ6E10 
Control 0 0 2 0 
Infected 8 4 5 4 
Infected 1 0 9 2 
Infected 4 10 0 12 
 
 
 

The total number of amyloid deposits observed at both 7 and 14 days post-
infection is presented here.  Labeling with two antibodies specific for Aβ 1-42 antigen, 
Aβ 1-42 and Aβ6E10 (see Materials and Methods subsection Antibodies), were used to 
obtain this data. The mean number of deposits for the infected mice at day 7, using the 
polyclonal Aβ-specific antibody, was 4 ± 2.89 and for the infected mice, using the 
monoclonal Aβ6E10 antibody, the mean was 5 ± 4.12.  At 14 days post-infection the 
mean number of deposits for infected mice, using the polyclonal Aβ-specific antibody, 
was 5 ± 3.69 and for the infected mice, using the monoclonal Aβ6E10 antibody, the mean 
was 6 ± 4.32.   
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Table 5.  Distribution of C. pneumoniae and amyloid deposits  
 
 

 Rostral                                                                                                  Bregma                                                          Caudal 

 Section 
Locations (mm) 1.98 1.70 1.32 0.74 0.38 0.00 -0.82 -0.94 -1.28 -1.64 -2.12 -2.75 -2.92 -3.80 -4.20 -4.60 -4.92 

Day 7 

Cpn 
Antigen 

Control 
27 - - - - - - - - 27 - - - - - 0 0 0 

Experimental 
203 - - - - - - - 1 16 35 35 24 56 33 - 2 1 

Amyloid 
Deposits 
Aβ1-42 

(Aβ6E10) 

Control 
0 (0) - - - - - - - - 0 (0) - - - -  0 (0) 0 (0) 0 (-) 

Experimental 
13 (14) - - - - - - - 0 (0) 2 (8) 8 (1) - 0 (5) 2 (0) 0 (-) 1 (0) 0 (0) - 

Day 14 

Cpn 
Antigen 

Control 
18 - - - - - - 1 0 6 - 2 9 - - - - - 

Experimental 
179 1 11 4 5 2 - - - 11 9 - - 106 30 0 - - 

Amyloid 
Deposits 
Aβ1-42 

(Aβ6E10) 

Control 
2 (0) - 0 (0) - 0 (0) 0 (0) 0 (0) - - 0 (0) 0 (0) - - 2 (0) 0 (0) -  - 

Experimental 
14 (18) -(1) 0 (1) 1 (-) 0 (1) 5 (-) 3 (1) - - 0 (3) 0 (7) - - 0 (3) 5 (1) - (0) - - 

 
 

The distribution of C. pneumoniae (Cpn) immunoreactive sites and amyloid deposits in both infected and uninfected, control, mice at 7 and 14 days 
post-infection are displayed above.  The total number of immunoreactive sites or deposits observed are listed beneath the designated group – control or 
experimental.  For each time point there are control groups n=1 and the experimental groups n=3.  Bregma, -2.12 mm, is the anatomical location of the injection 
site for the intracranial injections in the mice.  The red text highlights the data selected as being proximal to the injection site (within 0.84mm of Bregma in both 
the rostral and caudal directions) and the other numbers in the table are considered as data that is distal to the injection site.  The dashes (-) are placed in the table 
to indicate sections we did not have to analyze for this project.  The data from both amyloid antibodies is expressed in the order: number of labels detected using 
Aβ1-42 (number of labels detected using Aβ6E10). 
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Figure 6. Distribution of C. pneumoniae-specific immunoreactive sites, amyloid 
deposits and activated glial cells at 7 days post-infection 
 
 
 

C. pneumoniae immunoreactive sites (red dots), Aβ deposits (blue dots) and 
regions of the brain with glial cell labeling (green circles or red arrows) from individual 
slides in the day 7 group are presented here in areas of the hippocampus and dentate 
gyrus, as well as regions not affected early on in Alzheimer’s disease. 
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Figure 7: Distribution of C. pneumoniae-specific immunoreactive sites, amyloid 
deposits and activated glial cells at 14 days post-infection 
 
 
 

C. pneumoniae immunoreactive sites (red dots), Aβ deposits (blue dots) and 
regions of the brain with glial cell labeling (green circles or red arrows) from individual 
slides in the day 14 group are presented here in areas of the frontal cortex, hippocampus 
and dentate gyrus, as well as regions not affected early on in Alzheimer’s disease. 
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Figure 8.  GFAP-specific immunoreactivity in brain tissue of infected and control 
mice 
 

Regions of the brain – hippocampus and dentate gyrus, which are relevant structures in the AD 
brain – were selected to illustrate the difference in amount of glial cell labeling observed between a control 
and an experimental mouse at each time point.  Substantial glial cell labeling was observed in the infected 
mice and comparable sections in controls were selected for comparison.  The red boxes in the left column 
of images represent the region of the section observed at higher power, which are those located in the 
center column.  The red boxes in the center column of images represent the region of the section observed 
at an additionally increased power, which are those located in the right column.  A) This row represents day 
7 data from an uninfected, vehicle injected control, mouse.  B) This row represents day 7 data from an 
infected mouse. C) This row represents day 14 data from an uninfected, no-injection control, mouse. D) 
This row represents day 14 data from an infected mouse.  (Size bar = 100 µm) 
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Discussion 

 

I. Summary of Results 

 

The brains of 8 BALB/c mice, 3 infected and 1 control for each of the two time 

points, days 7 and 14, were analyzed for this project (Table 1).  The mice were infected, 

via direct intracranial injection, with a respiratory isolate (AR-39) of Chlamydia 

pneumoniae.  The control mice that were analyzed were either injected with vehicle only 

(HBSS), day 7 group, or not injected, day 14 group.  Brain tissue sections from all mice 

were immunolabeled and analyzed for the presence of C. pneumoniae antigen, amyloid 

plaques and activated markers in glial cells. 

At 7 days post-infection the average C. pneumoniae antigen burden for the 3 

infected mice was 68 ± 51.06.  For the 3 infected mice 82% (166 of 203) of the total 

immunoreactive sites were identified within 0.84 mm of Bregma, the location of the 

injection site (Figure 3 and Table 5).  For the vehicle only control mouse, 100% (27 of 

27) of the C. pneumoniae-specific immunoreactive sites were located in this region.  At 

day 14 post-infection, the average C. pneumoniae antigen burden for the 3 infected mice 

was 60 ± 43.79.  For these mice 70% (126 of 179) of the total C. pneumoniae-specific 

immunoreactive sites were detected within 0.84 mm of Bregma (Table 5).  The control 

mouse at this time point had 94% (17 of 18) of the C. pneumoniae-specific 

immunoreactive sites in this region.   
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Amyloid deposits were detected in 3 of 3 infected mice, using polyclonal Aβ-

specific antibodies and detected in 2 of 3 infected mice, using the monoclonal Aβ6E10 

antibody, at 7 days post-infection (Table 4).  No deposits were observed in the uninfected 

mouse with either antibody.  The average number of deposits for the infected mice at 7 

days post-infection, using the Aβ 1-42 antibody, was 4 ± 2.89 and with the Aβ6E10 

antibody the average number of deposits was 5 ± 4.12.  For all amyloid specific 

immunoreactivity, 26 of 27 (96%) total amyloid deposits were detected within 0.84 mm 

of Bregma in the infected mice (Table 5).  At 14 days post-infection, amyloid deposits 

were detected via immunohistochemistry in 2 of 3 infected mice, using the polyclonal 

Aβ-specific antibodies, and detected in 3 of 3 infected mice, using the monoclonal 

Aβ6E10 antibody (Table 4).  Two deposits were observed in the uninfected mouse 

labeled with the Aβ 1-42 antibody.  At 14 days post-infection, the average number of 

deposits for the infected mice at this time point, using the Aβ 1-42 antibody, was 5 ± 3.69 

and with the Aβ6E10 antibody the average total number of deposits was 6 ± 4.32.  For all 

amyloid specific immunoreactivity, 13 of 32 (41%) total amyloid deposits were detected 

within 0.84 mm of Bregma in the infected mice and 2 of 2 deposits were detected in this 

region in the control mouse (Table 5).   

Global activation of glia was observed in the CNS of infected mice at both 7 and 

14 days post-infection.  The number of regions with activated glial cells was greater in 

the infected mice compared to uninfected controls at both time points (Figure 6).  The 

hippocampus and dentate gyrus of an infected mouse was compared to that of a control 

mouse.  At each time point a substantial difference in the total number of activated glial 
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cells was noted between the infected and uninfected mice in these regions with infected 

mice clearly having a greater number of activated glia (Figure 6).   

 

II. Relationship between C. pneumoniae, Inflammation and Amyloid 

 

Although the role of infection in AD is still debated, the concept of an infection 

playing a role in the neuroinflammatory cascade has gained increased recognition [5, 40].  

Many of the laboratories that study infection and AD focus specifically on the role of 

infection with C. pneumoniae in the initiation and progression of late-onset Alzheimer’s 

disease.  The initial study in 1998 by Balin and co-workers compared human non-AD 

control brain tissue to AD brain tissue post-mortem [26].  In this study using RT-PCR 

specific for C. pneumoniae, they detected C. pneumoniae in 17 of 19 AD brains, while 

only 1 of 19 control brains had detectable levels of C. pneumoniae.  In addition, C. 

pneumoniae was found in areas of typical AD neuropathology and the organism was 

confirmed in perivascular macrophages, pericytes and microglia.  In 2000, two additional 

laboratories published their findings on the presence of C. pneumoniae in AD brain tissue 

[41, 42].  Mahony and co-workers found that 18 of 21 AD brains were positive for C. 

pneumoniae. Ossewaarde and co-workers found that 92% of the AD brains they analyzed 

were positive for C. pneumoniae [41, 42].   

Recent studies in this laboratory [7] support previous research that indicates that 

C. pneumoniae is capable of entering the CNS following intranasal inoculation.  Once C. 

pneumoniae has entered the CNS C. pneumoniae stimulates the deposition of amyloid 

[7].  
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To expand our understanding of the role of infection and inflammation in amyloid 

deposition in AD, we compared our data with data obtained from previous work in this 

laboratory [7].  Following intranasal inoculation with C. pneumoniae, the C. pneumoniae 

burden peaks at 1 month post-infection and a subsequent peak in amyloid burden occurs 

at 2 months post-infection.  The C. pneumoniae burden decreased at 2, 3 and 4 months 

post-infection and the number of amyloid deposits decreased after 2 months and at the 3 

and 4 month time points. This suggests that C. pneumoniae infection induces an 

inflammatory response and an up-regulation of Aβ production and subsequent deposition.  

Once the C. pneumoniae antigen or the infection burden decreases, the activated glia 

appear to reverse the process of amyloid deposition and the number of deposits decreases.  

In this project at days 7 and 14 following direct intracranial injection with C. 

pneumoniae, substantial C. pneumoniae antigen was detected, a glial cell response was 

identified, and amyloid beta deposition was initiated in the infected mice.  The greatest C. 

pneumoniae antigen burden was localized to regions near the injection site at day 7, but at 

day 14 C. pneumoniae was identified in more distal regions of the CNS (Table 5).  At 

both days 7 and 14, C. pneumoniae was detected in both hemispheres.  These data 

suggest that C. pneumoniae infection spreads from the site of injection and disseminates 

to more distant regions of the CNS.  Following the intranasal inoculations, the C. 

pneumoniae antigen appears to be detected in the olfactory bulbs and frontal cortical 

regions at early time points and spreads from these areas, which are proximal to the site 

of inoculation, and then to other regions of the CNS more distant to the initial site of 

infection.  Based on the route of inoculation the majority of antigen is proximal to the site 

of injection, and at later time points, it spreads from this location (unpublished 
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observations).  The results obtained in this project confirm that an inflammatory response 

is induced in the CNS following direct intracranial infection with the organism and that 

infection within the CNS with the organism induces amyloid deposition.   

Global glial cell activation was observed in the CNS of infected mice following 

direct intracranial infection.  Glial cell activation was observed in regions where no C. 

pneumoniae antigen was detected.  This may be in response to soluble C. pneumoniae 

antigen or possibly soluble Aβ antigen.  Another group found that increased Aβ activates 

microglia and astrocytes and promotes the release of inflammatory mediators and 

amyloid deposition [9].  Previous research supports the role of soluble Aβ promoting 

glial cell activation and unpublished observations in this laboratory indicate that 

following infection with C. pneumoniae, high antigen burden precedes high Aβ deposits; 

following reduction and clearance of C. pneumoniae antigen, the number of Aβ deposits 

decreases.  This suggests that in this experimental system, C. pneumoniae infection is the 

primary factor that induces and promotes amyloid deposition [7].  Glial cell activation 

appears to contribute to limiting C. pneumoniae replication and ultimately to resolving 

the infection in the CNS [35].   

Previous findings in this laboratory indicate that C. pneumoniae antigen peaks 28 

days post-intracranial infection and then decreases at subsequent time points 

(unpublished observations).  At 56 days post-infection, amyloid deposition peaks and 

then drops at subsequent time points (days 84 and 106 days post infection), but no 

analysis of glial cell activation was performed in the previous studies.  Others who have 

studied the relationship between C. pneumoniae, Aβ and glia have found that this 

organism enhances microglial activation [38].  Glia have been shown to be 
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chemotactically attracted to Aβ [43].  Previous research illustrates that Aβ is 

constitutively produced by normal neuronal cells and microglia and astrocytes appear to 

be involved with normal clearance [44].  C. pneumoniae infection serves as a stimulus for 

inflammation, and glial cell activation plays a role in amyloid deposit (plaque) 

biogenesis.   

Both C. pneumoniae antigen and glial cell activation contribute to amyloid 

deposition in BALB/c mice infected via direct intracranial injection.  At day 7, amyloid 

deposits were localized to regions near the injection site, but at day 14, the deposits were 

located in regions more distal to the injection site (Table 5).  This parallels our 

observations for C. pneumoniae antigen at 7 and 14 days post-infection.  Although 

amyloid deposits were identified in the infected mice, the total number was not as 

substantial as that found in previous studies at the time of peak deposition.  At day 7 and 

14 we observed approximately 4 total amyloid deposits per mouse, whereas in preceding 

studies (unpublished observations), the total number of deposits at the time of peak 

deposition (56 days post-infection) was approximately 36 per mouse.  The amount of 

deposits we observed in this study (approximately 4 per mouse) was comparable to the 

day 84 time point from the previous study (approximately 6 per mouse).  Although few 

amyloid deposits were detected, we observed global glial cell activation, likely a result of 

a high burden of soluble amyloid.  A high burden of organism at 28 and 56 days results in 

accumulation of amyloid deposits [7]. Once C. pneumoniae antigen began to decrease, 

the number of amyloid deposits decreased substantially. 
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Figure 9.  Contributing factors in late-onset Alzheimer’s disease.   

 

Chronic inflammation and amyloid deposition are two hallmarks of Alzheimer’s 

disease.  We hypothesized that we would observe C. pneumoniae antigen and glial cell 

activation in the CNS following direct intracranial infection with C. pneumoniae.  We did 

obtain these results, but we found that C. pneumoniae antigen is not always present in the 

same regions in which we observe glial cell activation (Figure 9).  Furthermore, we found 

substantial amounts of activated glial cells in infected mice compared to uninfected mice 

(Figure 6).  These data suggests that the presence of C. pneumoniae antigen may not be 

the only trigger for glial cell activation in this system and that glia may be responding to 

the presence of soluble amyloid as well as soluble C. pneumoniae antigen such as 

lipopolysaccharide (LPS).  Given that amyloid deposition was observed, we assume that 
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the total amyloid burden, soluble plus deposited amyloid, is high since this is consistent 

with previous findings.  We hypothesized that amyloid deposits would be observed in 

regions where inflammation occurs; however, glial cell activation was not co-localized 

with or concentrated solely around Aβ deposits solely.  This attraction was more of a 

global phenomenon suggesting some soluble stimulus such as C. pneumoniae  antigen or 

Aβ were possible triggers for glial cell activation and inflammation, which would 

contribute to the formation and deposition of β amyloid. 

 

III. Application of AD Mouse Model to AD in the Human Brain 

 

This project supports the role of C. pneumoniae infection as one of the possible 

factors contributing to neuropathology in late-onset Alzheimer’s disease.  The prevalence 

of infection with C. pneumoniae in the population is about 40% and this organism can 

infect the same host multiple times throughout their lifetime [32, 33].  These data 

obtained in this study confirm those of previous studies that have shown that C. 

pneumoniae is capable of establishing an infection and producing AD-like pathology in 

BALB/c mice [7].  This laboratory has also studied the effects of exposing mice to C. 

pneumoniae at multiple times (unpublished observations).  These data suggest that AD-

like pathology increased in a step-wise fashion following multiple exposures.  Thus, re-

exposure may have an additive or progressive effect.   

This project also confirms the ability of this organism to induce an inflammatory 

response in the CNS that appears to contribute to the deposition of amyloid in the brain.  

In addition to the presence of AD-like pathology, several inflammatory mediators have 
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been observed around amyloid deposits.  This suggests that the inflammatory response 

may be contributing to the presence and onset of pathology (unpublished observations).   

As all individuals age, it is important to recognize that their immune systems 

change and they are not as capable of fighting and clearing infections and amyloid 

deposits as would be younger individuals.  Many studies have suggested that as we age, 

we are more susceptible to infections and re-exposure to an organism such as C. 

pneumoniae is a likely probability in our aging populations [45].  Individuals who are 

exposed to this organism may become infected, and once infected they may develop 

chronic inflammation in the CNS.  Infection and chronic inflammation together could 

contribute to cumulative amounts of amyloid deposits that, over time, cannot be cleared 

from the CNS thus contributing to AD pathology and eventual symptomatology.  

Therefore, infection with an organism such as C. pneumoniae may be one factor that 

initiates an inflammatory response that could result in the neuropathology consistent with 

late-onset Alzheimer’s disease. 

 

IV. Future Directions 

 

This study confirms results obtained from preceding studies in this laboratory and 

expands our understanding of the ability of C. pneumoniae to establish an infection in the 

CNS.  Further, this infection appears to elicit an inflammatory response and contribute to 

the production of amyloid deposits.  However, further research is necessary to determine 

the length of time needed, following infection with C. pneumoniae, to induce the 

processes involved in the production of AD-like pathology that may ultimately contribute 
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to AD symptomatology.  This project illustrates the ability of C. pneumoniae to establish 

a CNS infection as early as 7 and 14 days following direct intracranial infection with the 

organism in the brain of a BALB/c mouse.  In addition, we observed an inflammatory 

response as depicted by the presence of activated glial cells as well as the deposition of 

Aβ at both time points in the CNS of a BALB/c mouse.   

Previous studies in this laboratory have found that following intranasal 

inoculation with C. pneumoniae, the highest burden of C. pneumoniae antigen was 

observed 1 month after infection and then the burden decreases at 2, 3 and 4 months post-

infection [7].  In the same experiment they found that amyloid deposition was low at 1 

month post-infection, but increases and peaks at 2 months post-infection, subsequently 

decreasing at 3 and 4 months.  It seems that the greatest amount of amyloid deposition 

occurs after the greatest burden of C. pneumoniae in the CNS, which is supported by the 

observations in this project that found that 14 days post-infection may be too early to 

detect a substantial number of amyloid deposits. 

In this project we saw limited deposits in the brains of BALB/c mice; however we 

did see an inflammatory response in the infected mice even with this minimal deposition, 

which indicates that other triggers for inflammation may be present in this system for 

studying late-onset Alzheimer’s disease.  Future considerations for this project should 

include performing an ELISA to detect the amount of soluble amyloid at each of the 

specified time points.  Detecting the total amyloid burden, soluble plus insoluble 

amyloid, may contribute to our understanding of the role of soluble amyloid in glial 

activation and eventual deposition.  Previous data indicates that in order for amyloid to 

deposit there must be a high total burden of amyloid.  Since we saw deposits in the mice 
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analyzed for this project, we have hypothesized that there is a high burden of total 

amyloid in the CNS of the mice contributing to amyloid deposition.  

One of the major limitations of this project was that there were a small number of 

mice analyzed for data collection.  It is necessary to increase the number of mice 

analyzed for each time point so that statistical significance with greater power can be 

obtained.  Also, it would be ideal to have the same number of control and experimental 

mice analyzed for each of the time points.  For example, in this project only one control 

was analyzed at each time point and of those two controls one was a no injection control 

and the other was a vehicle only control.  Analyzing more coronal sections that represent 

the area of the brain of interest would also be beneficial to obtain a better statistical 

sampling (Table 5).   

As further work is completed for this project, another consideration should 

include increasing the number of mice analyzed at later time points following direct 

intracranial infection with C. pneumoniae. Days 28, 42 and 56 post-infection should be 

evaluated to determine if more amyloid deposits would be detected at greater lengths of 

time after infection.  These time points are significant because we have collected data in 

previous studies at these times following intranasal inoculation [7].  In these previous 

projects, the analysis showed that amyloid deposition peaked following a peak in C. 

pneumoniae burden.  Therefore, we may only have seen limited amyloid deposition 

because a limited number of sections were analyzed for these time points following 

infection that would determine substantial deposition.   
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Figure 10. Relationship between C. pneumoniae-specific immunoreactive sites, 
amyloid deposits and activated glial cells 
 
 
 

The red dots represent C. pneumoniae antigen, the blue dots represent amyloid 
beta deposition (labeled with either Aβ 1-42 or Aβ6E10 antibody – Materials and 
Methods subsection Antibodies) and the green circles and red arrows represent glia 
labeling. 
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