Avondale College ResearchOnline@Avondale

Nursing and Health Conference Papers

Faculty of Nursing and Health

11-2015

Risk of Organism Acquisition From Prior Room Occupants: A Systematic Review and Meta-Analysis

Brett G. Mitchell Avondale College of Higher Education, brett.mitchell@avondale.edu.au

Stephanie Dancer National Health Service Scotland, Stephanie.Dancer@lanarkshire.scot.nhs.uk

Malcolm Anderson Avondale College, malcolm.anderson@avondale.edu.au

Emily Dehn Avondale College of Higher Education, s11176409@student.avondale.edu.au

Follow this and additional works at: https://research.avondale.edu.au/nh_conferences

Part of the Nursing Commons

Recommended Citation

Mitchell, B. G., Dancer, S., Anderson, M., & Dehn, E. (2015, November). *Risk of organism acquisition from prior room occupants: A systematic review and meta-analysis.* Poster presented at International Australasian College of Infection Prevention and Control (ACIPC) Conference, Hobart, Australia.

This Conference Proceeding is brought to you for free and open access by the Faculty of Nursing and Health at ResearchOnline@Avondale. It has been accepted for inclusion in Nursing and Health Conference Papers by an authorized administrator of ResearchOnline@Avondale. For more information, please contact alicia.starr@avondale.edu.au.

Risk of organism acquisition from prior room occupants: A systematic review and meta-analysis

A/Professor Brett Mitchell ¹⁻² Dr Stephanie Dancer ³ Dr Malcolm Anderson ¹ Emily Dehn ¹

¹ Avondale College; ² Australian Catholic University;
³ Hairmyres Hospital, East Kilbride

Disclosures

- Brett Mitchell Chair of Scientific Committee
- Brett Mitchell Interim Editor-in-Chief of Infection Disease and Health
- Study funded via an Avondale scholarship

Background

- Environment plays a role in facilitating the transmission of important pathogens
- Organisms survive
- Studies have shown that if a patient is admitted to a room where the prior occupant was colonised or infected with a hospital pathogen, there is an increased risk of the next patient acquiring the same organism

Purpose of systematic review

- Determine whether being admitted to a room where the prior occupant was colonized or infected with an organism increases the risk of acquiring that organism.
 - Explore differences in the risk of acquisition between Gram-positive and Gram-negative organisms.

Methods: Search strategy

- Systematic review and meta-analysis
- PROSPERO: CRD42015016273
- Medline/PubMed,Cochrane and CINHAL
- Observational studies, last 30 years
- Must have examined exposure or acquisition in a hospitalized population where the prior room occupant was colonized or infected with a specific organism

Methods

Organisms

- Acinetobacter
- Escherichia coli
- Klebsiella
- Pseudomonas
- Enterobacter
- Citrobacter
- Proteus
- Serratia
- Enterococcus
- C.difficile
- S.aureus & VRE

Exclusions

- Conference abstracts,
- Letters to editors
- Reviews
- Papers written in languages other than English

Methods

 Assessed risk of bias (ROB) and quality using modified version of NOS (Wells et al., 2014)

Random effects model used for meta-analysis

Heterogeneity assessed using I² statistic

Results

Study (lead author)	Year	Study duration	Study setting (country)	Study design	Organisms
Huang	2005	20 months	USA	Cohort	VRE. MRSA
Mitchell	2014	24 months	Australia	Cohort	MRSA
Datta	2011	20 months	USA	Cohort	VRE, MRSA
Ajao	2013	93 months	USA	Cohort	ESBL-producing Gram negative
Drees	2008	14 months	USA	Cohort	VRE
Nseir	2011	12 months	France	Cohort	<i>A.baumanni</i> i, ESBL- producing Gram negative, <i>P. aeruginosa</i>
Shaughnessy	2011	16 months	USA	Cohort	C. difficile

Results

- 4,643 'exposed' patients → 287 (6.2%) acquired the same species of organism.
- 34,886 'unexposed' patients \rightarrow 1,112 (3.2%)
- Pooled acquisition OR for all the organisms included in the six studies was 2.14 (95% CI = 1.65–2.77)
- Pooled acquisition OR for Gram-negative organisms was 2.65(95% CI = 2.02–3.47) and 1.89 (95% CI = 1.62–2.21) for Gram-positive organisms

	Decreased acquisition		Control		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		
Huang (MRSA)	57	1454	248	8697	16.2%	1.39 [1.04, 1.86]		
Nseir (ESBL producing Gram Neg)	8	50	50	461	0.0%	1.57 [0.70, 3.52]		
Huang (VRE)	58	1291	256	9058	16.2%	1.62 [1.21, 2.16]		
Ajao (Klebsiella sp. or Escherichia coli)	32	648	235	8723	14.2%	1.88 [1.29, 2.74]		
Nseir (Pseudomonas)	21	85	61	426	10.4%	1.96 [1.12, 3.45]		
Drees (VRE)	19	138	31	500	9.7%	2.42 [1.32, 4.43]		
Shaughnessy (Clostridium difficile)	10	91	77	1679	8.3%	2.57 [1.28, 5.15]		
Mitchell (MRSA)	74	884	163	5344	16.4%	2.90 [2.18, 3.86]		
Nseir (Acinetobacter)	16	52	41	459	8.6%	4.53 [2.32, 8.86]		
Total (95% CI)		4643		34886	100.0%	2.14 [1.65, 2.77]		
Total events	287		1112					
Heterogeneity: Tau ² = 0.09; Chi ² = 21.32, df = 7 (P = 0.003); I ² = 67%								
Test for overall effect: Z = 5.74 (P < 0.00001)								

	Odds Ratio					
Study or Subgroup		om, 95% Cl				
Huang (MRSA)						
Nseir (ESBL producing Gram Neg)						
Huang (VRE)				_ _		
Ajao (Klebsiella sp. or Escherichia coli)						
Nseir (Pseudomonas)						
Drees (VRE)						
Shaughnessy (Clostridium difficile)						
Mitchell (MRSA)				_		
Nseir (Acinetobacter)						
				-		
Total (95% CI)						
Total events				•		
Heterogeneity: Tau ² = 0.09; Chi ² = 21.32,						
Test for overall effect: Z = 5.74 (P < 0.000 -				<u>↓ ↓ ↓ ↓ ↓</u>		
	0.1	0.2	0.5	1 2 5 10		

Results - sub analysis

- Gram negative organisms, *A. baumannii* had the highest odds ratio (OR 4.53 = 2.32-8.86).
- Further sub-analyses \rightarrow no differences:
 - C.difficile against the MRSA studies;
 - MRSA against the VRE studies;
 - Klebsiella species and E.coli ESBL-producing Gramnegative bacilli with Pseudomonas aeruginosa against Acinetobacter baumannii.
 - In acquisition between ESBL producing organisms and MRSA or VRE.

- Admission to a room previously occupied by a patient infected and/or colonised with a specific pathogen is a risk factor for acquisition.
- Regardless of the organism (species) the risk of acquisition increases
- Greater pooled acquisition rate for Gramnegative organisms

Implications

- ICPs understanding and managing the risks associated with the determination of room placement.
- Knowing the status of the prior room occupant may serve as important information in decisionmaking
- Current cleaning practices fail to reduce the risk of acquisition.
- Supports the need to improve hospital design
- Wider public → our study opens up a discussion about what is deemed acceptable risk.

Limitations

- Constrained by the limitations of the individual studies reviewed
 - inability to conduct meta-regression
 - different approaches to testing the efforts of the participants, potential variations in microbiological testing methods
 - the presumption of acquisition based on epidemiological evidence
 - the inability to account for colonisation pressure

Conclusion

 Prior room occupancy is a risk factor for acquisition

 Renewed interest and emphasis on hospital cleaning, and particularly discharge or terminal cleaning.

(Journal of Hospital Infection, 91(3):211-7)

References

- Ajao AO, Johnson K, Harris AD, et al. Risk of acquiring extended spectrum b-lactamaseproducing Klebsiella species and Escherichia coli from prior room occupants in the intensive care unit. Infect Control Hosp Epidemiol 2013;34:453e458.
- Datta R, Platt R, Yokoe DS, Huang SS. Environmental cleaning intervention and risk of acquiring multidrug-resistant organisms from prior room occupants. Archs Intern Med 2011;171:491e494.
- Drees M, Snydman DR, Schmid CH, et al. Prior environmental contamination increases the risk of acquisition of vancomycinresistant enterococci. Clin Infect Dis 2008;46:678e685.
- Mitchell BG, Digney W, Ferguson JK. Prior room occupancy increases risk of methicillin-resistant Staphylococcus aureus acquisition. Healthcare Infect 2014;19:135e140.
- Nseir S, Blazejewski C, Lubret R, Wallet F, Courcol R, Durocher A. Risk of acquiring multidrugresistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbiol Infect 2011;17:1201e1208.
- Shaughnessy MK, Micielli RL, DePestel DD, et al. Evaluation of hospital room assignment and acquisition of Clostridium difficile infection. Infect Control Hosp Epidemiol 2011;32:201e206.
- Wells G, Shea B, O'Connell D, et al. The NewcastleeOttawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses 2014. Available at: <u>http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp</u>

