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Abstract 

Target service life of the structure specified by the codes and standards for RC infrastructures 

has failed to achieve due to uncertainties at the time of construction of structure and at 

exposure to real environment. Moreover, the more resistivity of the cover concrete, the larger 

is the service life and thus higher is the cost incurred by the owner. Therefore, economic 

service life (ESL) has more value than considering engineering service life, where both the 

failure and the cost consider parallel in the prediction of service life. A statistical model to 

determine the time to initiate corrosion due to chloride attack to the RC member and 

subsequent repair considering all costs incorporated is taken into account in this research. 

Cost minimization model is used to calculate economic service life where initial cost, repair 

cost and gain from revenue for the structure are paid attention. Further, a correlation between 

corrosion initiation time (CIT) and economic service life (ESL) is proposed. 
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1. Introduction 

Serviceability limit state design specification includes many criterions to fix the required 

durability of reinforced concrete structure. But still it is very difficult to control the 

performance of real structure in severe aggressive environmental attack. Chloride induced 

steel corrosion is one of the major deterioration problem for steel reinforced concrete caused 

by salty environment.  
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Since 1960’s chloride de-icing salts used on roadways in United States have been 

increased greatly; about 10 million tons of salts are used annually [1]. Thus the cost of 

highway bridge repair in US is increasing greatly. The Ministry of Land, Infrastructure, and 

Transport forecast that in 2025 annual maintenance cost in Japan will reach approximately 9 

trillion yen, which will represent approximately 70 to 80% of total annual construction 

investment forecast for that year [2]. However cost effective maintenance plan and proper 

decision making can efficiently reduce the life cycle cost of infrastructure like bridges. To 

assist the decision makers for initiating better maintenance strategy, it is necessary to predict 

service life correctly. A better service life model would assists planners to estimate the time to 

first repair and subsequent rehabilitation with greater accuracy. 

A statistical based model which accounts for the variability of input variables would 

more accurately predict the time to first repair and subsequent rate of deterioration. A model 

using statistical distributions has been developed for marine bridge substructures [3]. 

Statistical distributions are used for the surface chloride ion concentration, clear concrete 

cover depth and chloride ion coefficient. A discrete value is used for the chloride corrosion 

threshold concentration. Uncertainty of the influence of the chloride corrosion initiation 

concentration is addressed by solving the model using a number of discrete initiation values. 

The cover depth, surface chloride content and chloride diffusion coefficient are considered to 

be normally distributed.  

One common modern statistical technique is called Monte Carlo simulation. Monte 

Carlo is a general class of repeated sampling methods where a desired response is determined 

by repeatedly solving a mathematical model using values randomly sampled from probability 

distributions (often assumed) of the input variables [4]. Within the category of Monte Carlo 

methods, a resampling method called bootstrapping uses the same repetitive sampling 

procedure but uses data to define the parameters for the distributions or samples directly from 

the existing data [5]. Parametric bootstrapping was used in this research. 

Once the time to initiate corrosion is known from service life model, repairing is done 

to improve the health condition of the structure deteriorated and thus a matter of costing 



comes forward to the owner. The owner shall recognize that all structures - regardless of 

building material - will age and deteriorate with time. Hence, he must clarify his needs up 

front regarding design service life. When doing so, his decision has not only impacts on the 

short term cost of creating the structure but just as much on the long term costs for 

maintaining and repairing the structure to comply with his long term performance 

requirements. 

The requirement for a specific service life performance of a structure is closely 

associated with the short and long-term costs of this requirement. The owner must therefore 

acknowledge that he has to take decisions on both the service life and on the associated 

performance requirements, and he must accept both the short and the long-term costs – and 

savings - associated with his decisions. 

A different way of looking at the economic replacement decision was presented in 

Drinkwater and Hastings’ repair limit theory [6]. Repair limit theory is not applied until an 

object has broken. The concept behind repair limit theory is that there exists some amount 

below which it is economically sound to repair the object. If the estimated cost of the repair is 

greater than that limit, the repair should not be undertaken and the object should be discarded 

or replaced. 

However, the study will assists the owner to continue the subsequent repairing until 

economic service life (ESL) reaches for the structure deteriorated by chloride attack. The 

repairing for such deteriorated structure should not be undertaken beyond the limit of 

economic service life (ESL).   

2. Methodology  

Since most observations indicate that the transportation of chlorides in concrete is 

diffusion controlled [7], an apparent diffusion process, based on Fick’s second law, can be 

used to model the time for chloride to reach and initiate corrosion at first repair and 

rehabilitation reinforcing steel depths. When solved for the condition of constant surface 

chloride and a one-dimensional infinite depth, Fick’s second law takes the following form [8]. 
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Where C(x,t) is chloride concentration at depth and time, Co is surface chloride concentration, 

D is apparent diffusion coefficient, t is time for diffusion, x is concrete cover depth and erf is 

statistical error function. When C(x,t) is set equal to the chloride corrosion initiation 

concentration and Eq. 1 is solved for t, the time for the diffusing chloride ions to initiate 

corrosion is achieved.  
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However, for a given concrete structure, the values of C(x,t), Co, D and x are random 

variables. A solution to Eq. 2 will result distribution of corrosion initiation time (CIT) from 

which the mean value is considered as the time for first repairing. It is essential to conduct 

repairing after the structure goes beyond the safety limit. Repairing improves performance of 

the structure to its initial condition. But, again it deteriorates with age and requires repairing. 

The length of service that the structure needs repairing is regarded as economic service life 

(ESL) in this research. 

After this time has expired, there is at least one other alternative (replace, rebuild, etc.) 

which is more economical than keeping the structure in its present state. The models attempt 

to find the optimum length of service by using a variety of techniques based on the science of 

economics.  

There are three basic theories in the field of economics to understanding the repair limit. 

They are: the cost minimization model, the profit maximization model, and the repair limit 

model. Cost minimization and profit maximization theories developed on parallel paths 



beginning in the 1920’s. Repair limit theory is relatively new—it was first published in the 

1960’s. 

Most costs associated with a structure can be placed in one of two categories: ownership 

costs and operating costs. The average cost of ownership for a given structure should decrease 

the longer it is kept. This is because most of the capital costs involved with owning a structure 

is incurred as soon as it is constructed. As time goes on, the initial construction cost is spread 

over a longer time span and thus the average cost decreases. The average cost of operating for 

a given structure should increase the longer it is kept. For example, when the structure is new, 

repair costs should be relatively small and infrequent while the structure is in service, repairs 

become more frequent, and sometimes more costly. Cost minimization strives to find a 

balance point between decreasing ownership costs and increasing operating costs. There are 

three types of costs: average ownership cost, average operating cost, and average total cost as 

listed in the following [9]: 
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Where P0 is initial construction cost, Ep is the repair cost for the period, St is revenue earn, Lt 

is structure age at time t. 
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Average costs are calculated by taking the cumulative costs incurred up to a given point 

in time and dividing these costs by structure age. Average cost curves are developed for 

ownership costs and for operating costs. The sum of these two curves, the average total cost 

curve, slopes downward initially when operating costs are low and the average cost of capital 

is decreasing. The minimum value of average total cost is T*, the point where the slope of the 

curve is zero. The optimum economic life, L*, is that period which ends when the sum of 

owning and operating costs reaches a minimum. 

3. Results and discussions 

3.1 Effect of design parameters on corrosion initiation time 

To predict corrosion initiation time Eq. 2 was modelled in Microsoft excel generating 

random numbers of the input variables. Diffusion coefficient for ordinary Portland cement 

was calculated based on w/c ratio using the following equation [10]. 

 

    5.2/2.7/9.3log
2

10  cwcwD  (7) 

Where D is diffusion coefficient in cm2/yr., w/c is water to cement ratio. Threshold chloride 

content, surface chloride, cover depth, and diffusion coefficient were modelled in the nature 

of normal distribution with coefficient of variation (COV) as 0.1 in Excel using the function 

Fig. 1 Cost minimization model. 



norminv(rand(),mean,sd). The mean value of cover depth was considered as 4, 5, 6, and 7 cm 

and w/c ratio was taken as 0.3, 0.4, 0.5, and 0.6 in the simulation. The mean values for surface 

and threshold chloride were used 4 kg/m3, and 1.8 kg/m3 as reported in the reference [11] for 

the structure situated in atmospheric zone. Sampling was done for 5000 times and corrosion 

initiation time (CIT) was calculated for each of the cases. Fig. 2 is the distribution of 

corrosion initiation time (CIT) for concrete having w/c ratio and cover depth as 0.3, and 5 cm, 

respectively whereas; Fig. 3 is the distribution of corrosion initiation time (CIT) for concrete 

having w/c ratio and cover depth as 0.6, and 5 cm, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Distribution of corrosion initiation time (w/c ratio = 0.3 & cover depth = 5 cm). 

 

Fig. 3 Distribution of corrosion initiation time (w/c ratio = 0.6 & cover depth = 5 cm). 
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To interpret the results of simulation, it is important to understand the sensitivity of the 

various input values on predicted CIT. Fig. 4 presents the relationship between CIT and w/c 

ratio. Separate curves are plotted for values of cover depth equal to 4, 5, 6, and 7 cm. 

similarly Fig. 5 presents the relationship between CIT and cover depth. Separate curves are 

plotted for values of w/c ratio equal to 0.3, 0.4, 0.5, and 0.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Effect of w/c ratio on corrosion initiation time for different cover depths. 

 

Fig. 5 Effect of cover depth on corrosion initiation time for w/c ratio. 



In Fig. 4, CIT decreases rapidly with non-linearity whereas, in Fig. 5 CIT increases 

almost linearly which supports the proposition that corrosion initiation time (CIT) is much 

more sensitive to w/c ratio than that of cover depth. 

3.2 Calculation of ESL from CIT 

It is very important for both the owner and engineer to understand the effect of design 

parameter on the prediction of corrosion initiation time (CIT) and thus the effect of corrosion 

initiation time (CIT) on required total cost of the structure throughout its lifetime as the 

repairing cost depends on the initiation of corrosion. The lifecycle cost of the structure was 

calculated under the following conditions: 

- Repair interval: subsequent repairing will take place same as corrosion initiation time (CIT) 

- Initial cost: same as corrosion initiation time (CIT), the more is the resistivity of the 

concrete, longer is the CIT, and higher is the initial cost 

- Repair cost: 10% of the initial cost 

In this research, repair work is to be repeated at interval same as CIT after the first 

repair work. Strictly speaking, the validity term of repair should change depending on the 

environmental conditions. However, repair design, for example, selection of appropriate 

method corresponding to environmental conditions, improvement done by specific repair 

method, prediction of deteriorated repaired concrete, has not been established at this moment. 

It is therefore difficult to consider the effect of various aspects of repairing in the proposed 

calculation at this moment.   

Example calculations of average costs for two different cases are shown in Fig. 6 and Fig. 7. 

Fig. 6 corresponds to the concrete having w/c ratio 0.3 and cover depth 4 cm and Fig. 7 

corresponds to the concrete having w/c ratio 0.6 and cover depth 4 cm, respectively.  

 

 

 

 



 

897 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In both cases repair is increasing and owning cost is decreasing. Thus, we have a 

minimum of total cost on the scale of service life. The owner will face monetary loss if 

operation of the structure continues after this point of time on service life scale.   

 

 

 

Fig. 6 Average cost curves (w/c ratio = 0.3 & cover depth = 4 cm). 

 

Fig. 7 Average cost curves (w/c ratio = 0.6 & cover depth = 4 cm). 



 

  

Mean Value of the parameters 

Threshold 

Chloride (kg/m3) 

Surface 

Chloride (kg/m3) 

w/c 

Ratio 

Cover 

depth (cm) 

Case 1 1.8 4 0.3 4 

Case 2 1.8 4 0.4 4 

Case 3 1.8 4 0.5 4 

Case 4 1.8 4 0.6 4 

Case 5 1.8 4 0.3 5 

Case 6 1.8 4 0.4 5 

Case 7 1.8 4 0.5 5 

Case 8 1.8 4 0.6 5 

Case 9 1.8 4 0.3 6 

Case 10 1.8 4 0.4 6 

Case 11 1.8 4 0.5 6 

Case 12 1.8 4 0.6 6 

Case 13 1.8 4 0.3 7 

Case 14 1.8 4 0.4 7 

Case 15 1.8 4 0.5 7 

Case 16 1.8 4 0.6 7 

In all cases coefficient of variation (COV) is fixed to 0.1 

A total number of 16 cases, as listed in Table 1, were analysed with w/c ratio varied 

from 0.3 to 0.6 and cover depth from 4 to 7 cm and corrosion initiation time (CIT) were 

calculated for each case in the nature of distribution. All the values in the table represent the 

mean having constant COV as 0.1. Corrosion initiation times (CIT) were put in the cost 

minimization model and economic service life (ESL) were calculated.  

 

 

 

 

 

 

 

Table 1- Simulation variables 

 

Fig. 8 Correlation between corrosion initiation time and economic service life. 
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Fig. 8 shows the relationship between corrosion initiation time (CIT) and economic service 

life (ESL) and a linear dependency is found.  

4. Conclusions 

The following conclusions can be drawn from the analysis of concrete structure subjected to 

reinforcement corrosion caused by chloride damage. 

(1) The time to corrosion initiation is not highly sensitive to cover depth as it is to the 

diffusion coefficient. 

(2) Cost minimization model helps the owner to understand the concept of economic service 

life (ESL) beyond which the structure should not be operated. 

(3) Economic service life increases with the increase of corrosion initiation time and the 

trend is linear. 

(4) A small improvement by repair can raise the structural health condition to its initial level 

if the cover resistant of the structure was initially poor while it was constructed. Small 

improvement by repair costs less and thus a number of times repairing may be conducted. 

Therefore, economic service life (ESL) is 3 to 5 times the corrosion initiation time (CIT) 

for the structure having poor cover resistant. But, for the structure having good cover 

resistant to corrosion, it requires large improvement at the time of first repair to reach to 

its initial level of health condition and thus huge repair cost is necessary. Therefore, 

economic service life (ESL) is found by cost minimization as twice the corrosion 

initiation time (CIT).   
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