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Abstract 

 
The matrix mixture of concrete can be made to have high compressive strength. In the 
present paper, statistical model was built-up to predict the compressive strength of concrete 
containing different matrix mixtures at fixed age or at different age of 1, 3, 7, 28, 56, 90 and 
180 days. The model examines eight different parameters for the matrix mixture that 
includes: time, water, cement, metakaolin (MK), silica fume (SF), sand (S), aggregate (A) 
and superplasticizer (SP). This research addresses the effect of the matrix mixture of 
concrete on the compressive strength, where this information will help the cement industry 
in producing the required concrete strength. The results from the predicted model have high 
correlation to the experimental results for the concrete compressive strength. 
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1. Introduction 
 

Very few studies have investigated the effect of the matrix mixture and its effect on the 
concrete compressive strength. Most researchers present experimental results for the different 
matrix mixture without providing analytical procedures to determine the effect of the different 
parameters in the studies mixes. Demirboga et al. investigated experimentally the compressive 
strength of concrete made up of mixtures of expanded perlite (EPA) and pumice aggregate (PA) 
along with silica fume (SF) and class C fly ash (FA) on the compressive strength to produce 
lightweight aggregate concrete (LWAC) [1]. Ortiz et al. conducted experiments on different 
concrete mix and the influence of the environmental temperature on the concrete compressive 
strength after 7 and 28 days [2]. Colak provided empirical equation for calculating the 
compressive strength of Portland cement concrete compare to existing experimental data; 
however the equation focused only on the optimum water cement ratio to determine the optimum 
compressive strength [3]. On the other hand, Del Viso et al. investigated the influence of the 
shape and the size of the specimens on the compressive strength. They compared the 
performance of the cylinders and cube concrete prisms under the compressive strength [4]. 
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Bhanja and Sengupta presented a mathematical model developed using statistical methods to 
predict 28-day compressive strength of silica fume concrete with water-to-cementitious material 
(w/cm) ranging from 0.3 to 0.42 and silica fume from 5 to 30% [5]. The cubic equation is simple 
and was with one parameter of (SF) only. Sahin et al. tested the effect of different pumice 
aggregate (PA) ratio with different cement dosage on the compressive strength. The tests results 
leads to decrease in the concrete density, and increase in its compressive strength [6]. Artificial 
neural network (ANN) was successfully used to predict the multiple variables and nonlinear 
behaviour of different parameters in the concrete mixture to obtain the compressive strength 
under different ages [7-11]. The drawback of ANN is that the model does not provide an 
equation to be used by others.  

Other researchers investigated experimentally the strain-hardening of high-performance 
fiber-reinforced cement composites (HPFRCCs), and the strain-softening of fiber-reinforced 
cementitious (FRC) composites. Chao et al. experimentally tested five types of fibers within the 
concrete mix; 1. spiral reinforcement, 2. hooked steel fiber, 3. twisted steel fiber; either square to  
rectangular twisted steel fiber, 4. ultra-high molecular weight polyethylene fiber (UHM-PE), and 
5. polyvinyl alcohol (PVA) fiber (PVA13, and PVA K-II) [12]. The experiment extended to 
obtain the relationship of the compressive strength and the pullout of the reinforced bars. 

This research provides mathematical and mechanical model for the compressive strength of 
concrete (��

�) in connection with experimental data set and the Levenberg-Marquardt (LM) 
method for nonlinear least squares analysis to estimate the initial parameters. The tested concrete 
matrix mixture for this study contains eight parameters; time, water, cement, metakaolin (MK), 
silica fume (SF), sand (S), aggregate (A) and superplasticizer (SP) [13-14].  
2. Prediction Modelling 

2.1. Mathematical model 
 

The proposed linear mathematical model can predict the compressive strength of 
concrete (��

�) at the determined time. The weighted sums of the input components 
∑ ����

�
�=1  are plotted to the water-cement-ratio (w/c) as introduced in Equation (1) to obtain the 

optimum w/c content, where ��: equation parameters, and ��: matrix mixture including 
water, cement, cementitious materials, sand and aggregate). The LM analysis estimated 
the equation parameters to be 38.202, 54.261, 54.238, 128.235, 73.699, and -121.45for �� 
through �� respectively for the experimental data set shown in Table (1). The result 
shows that the coefficient of determinations R2 = 1 showing true goodness of fit analysis. 

 

��
′ = [∑ ����

�
�=1 ]      (1) 

 
TABLE1: RELATIVE COMPOSITION OF MATRIX MIXTURES [12] 

Matrix 
Cement 

Type 
Fly Ash Sand* 

Silica 
fume 

High-range 
water-reducing 

admixture 
Water w/c 

��
�, MPa 
Exp. 

��
� , MPa 
Pred. 

Inputs �� �� �� �� �� ��    
Mixture 1 0.8 0.2 1.0 0.07 0.04 0.26 0.325 76 76 
Mixture 2 1.0 0.15 1.0   0.40 0.240 52 52 
Mixture 3 0.8 0.2 1.0   0.45 0.563 41 41 

*Flint sand ASTM 50-70 
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2.2. Mechanical model 
 

The proposed mechanical model in Equation (2) can predict the compressive 
strength of concrete (��

�) at various ages. This rheological model is illustrated by Kelvin-
Voigt [15] as a combination of spring and dashpot in parallel. The matrix mixture 
represented by the linear model as the spring, the time (T) represented by the viscous (η) 
dashpot, where both have the same strain.  

 

��
′ = �� �

�

�
� +	 ∑ ����

�
�=1 � . �1 − exp �−

�

�
��     (2) 

 
 The spring part in the mechanical model that represent the matrix mixture can be 
rewritten as proposed in Equation (1) or as shown in Equation (2), where k: the constant 
for water-cement-ratio. The accuracy of this model would vary between 80 ~ 90% 
compared to the tested data. The model will overestimate or underestimate the 
compressive strength at earlier ages. 

 
Arrhenius equation [15] gives the dependence of the rate constant which is the 
compressive strength (��

�) in this research case of chemical reactions on the time (T) and 
activation energy which is the matrix mixture (��) in this case. The LM analysis will 
estimate the equation parameters; ��, �� and �� for Equation (3). 
 

��
� = �� +	 ������/���       (3) 

 
 Matrix mixture (��) in Equation (4) is the main proposed part in the Arrhenius equation, 
and to be plugged into Equation (3), where k, �� , and ��: are constant obtained by LM 
analysis, w: is water content, ���: is cement & cemetitious components, and ��: is the 
sand and aggregate components. The LM analysis estimated the equation parameters as 
shown in Table (2). The modified Arrhenius equation would have accuracy above 90% 
compared to the tested data, it also will underestimate or overestimate the compressive 
strength at earlier ages. Both models that depend on time need more data to increase its 
accuracy level. 
 

�� = �
��

∑ �����
�
���

+ ∑ ����
�
��� �       (4) 

 
 Tables (3A and 3B) show 7 different matrix mixtures groups for total of 57 specimens. 

Compressive strength tests performed at different age of specimens (AS) of the 1, 3, 7, 
28, 56, 90 and 180 days. 

 
TABLE 2: LM ESTIMATED PARAMTERS 

 
   AS C MK SF SP W A S 

Parameters �� �� �� �� �� �� �� � �� �� 
Values 35 70.63 42.25 0.016487 8.4E-5 0.02712 0.02087 6.0645 0.002616 0.00534 
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TABLE 3A: COMPRESSIVE STRENGTH DATA SETS AND RESULTS [13] [14] 
AS C MK SF W A S SP ��

�(MPa)  
(days) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (l/m3) Exp. Pred. Variance 

1 475 25 0 135 1050 720 43 35 41.56783 -18.7652 

1 475 0 25 135 1050 725 43 35 41.67337 -19.0668 
1 500 0 0 150 1050 695 19 48 40.01697 16.6313 
1 425 75 0 150 1050 680 19 38 38.32347 -0.85125 

1 425 0 75 150 1050 680 19 38 38.58331 -1.53501 

1 450 50 0 165 1050 690 12 34 37.7708 -11.0906 

1 450 0 50 165 1050 685 12 32 37.92039 -18.5012 
3 475 25 0 135 1050 720 43 67 67 1.76E-06 

3 475 0 25 135 1050 725 43 63 67.1705 -6.61983 
3 500 0 0 150 1050 695 19 63.5 64.25208 -1.18437 
3 425 75 0 150 1050 680 19 60.5 60.5 1.05E-06 

3 425 0 75 150 1050 680 19 57.5 61.14793 -6.34423 

3 450 50 0 165 1050 690 12 59 59 9.78E-07 

3 450 0 50 165 1050 685 12 53 59.42435 -12.1214 
3 475 25 0 150 1087 721 0.6 73 61.84351 15.28287 

3 475 0 25 150 1087 716 0.6 67 62.05385 7.382313 
7 475 25 0 135 1050 720 43 76.5 85.30878 -11.5147 

7 475 0 25 135 1050 725 43 75.5 85.42348 -13.1437 
7 500 0 0 150 1050 695 19 72 83.4097 -15.8468 

7 425 75 0 150 1050 680 19 80 80.64386 -0.80483 

7 425 0 75 150 1050 680 19 74.5 81.13735 -8.90919 
7 450 50 0 165 1050 690 12 74 79.47322 -7.39624 

7 450 0 50 165 1050 685 12 70.5 79.80854 -13.2036 
7 475 25 0 150 1087 721 0.6 88.2 81.6594 7.415644 

7 475 0 25 150 1087 716 0.6 79.3 81.81575 -3.17244 
28 475 25 0 135 1050 720 43 89 99.88906 -12.2349 

28 475 0 25 135 1050 725 43 88.5 99.92602 -12.9108 

28 500 0 0 150 1050 695 19 83.5 99.26783 -18.8836 
28 425 75 0 150 1050 680 19 94.5 98.32952 -4.0524 

28 425 0 75 150 1050 680 19 98.5 98.5 1.38E-07 

28 450 50 0 165 1050 690 12 84.5 97.91949 -15.8811 
28 450 0 50 165 1050 685 12 89.5 98.03776 -9.5394 
28 475 25 0 150 1087 721 0.6 103.6 98.67887 4.750124 

28 475 0 25 150 1087 716 0.6 106.5 98.73215 7.293758 

56 475 25 0 135 1050 720 43 95 102.7006 -8.10594 

56 475 0 25 135 1050 725 43 93 102.7199 -10.4515 
56 500 0 0 150 1050 695 19 84.5 102.3758 -21.1548 

56 425 75 0 150 1050 680 19 96.5 101.8821 -5.57734 
56 425 0 75 150 1050 680 19 101.5 101.9721 -0.46512 
56 450 50 0 165 1050 690 12 87 101.6653 -16.8566 

56 450 0 50 165 1050 685 12 90.5 101.7279 -12.4065 

90 475 25 0 135 1050 720 43 98 103.7942 -5.91247 

90 475 0 25 135 1050 725 43 96.5 103.8064 -7.57141 
90 500 0 0 150 1050 695 19 85.5 103.5886 -21.1563 

90 425 75 0 150 1050 680 19 97.5 103.2755 -5.9236 
90 425 0 75 150 1050 680 19 104 103.3326 0.641692 

90 450 50 0 165 1050 690 12 89 103.1377 -15.885 
90 450 0 50 165 1050 685 12 92 103.1775 -12.1495 

90 475 25 0 150 1087 721 0.6 112.9 103.3925 8.421199 

90 475 0 25 150 1087 716 0.6 110.2 103.4103 6.161286 
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TABLE 3B: COMPRESSIVE STRENGTH DATA SETS AND RESULTS [13] [14] 
AS C MK SF W A S SP ��

�(MPa)  
(days) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (l/m3) Exp. Pred. Variance 

180 475 25 0 135 1050 720 43 99 104.7081 -5.76572 

180 475 0 25 135 1050 725 43 97.5 104.7142 -7.39922 
180 500 0 0 150 1050 695 19 87.5 104.6038 -19.5472 
180 425 75 0 150 1050 680 19 99.5 104.4448 -4.96962 

180 425 0 75 150 1050 680 19 106.5 104.4738 1.902521 

180 450 50 0 165 1050 690 12 92.5 104.3746 -12.8374 

180 450 0 50 165 1050 685 12 93.5 104.3949 -11.6523 

 
 

Fig. (1) shows the values obtained from the predicted model and the experimental testing. 
The values show the coefficient of determination (R2) equals to 90.26% of confidence. 
The proposed model shows its capability of generalizing between input and output 
variables with reasonable good predictions. 

 

 
FIG. 1COMPARISON OF ��

�	EXPERIMENTAL RESULTS WITH PREDICTED RESULTS 
 

3. Results and discussion 
 
In this study, the error arose during the modelling was optimized by the Unbiased Nonlinear 
Least-Squares (UNLS) curve fitting with Microsoft Excel solver which was used in connection 
with the experimental observed data. As a measure of how well the model y = ƒ(x) fits the 
collection of points {(x1, y1), (x2, y2), (x3, y3) … (xn,yn)}, where the squares of the differences 
between the actual y-values and the values given by the model to obtain the sum of the squared 
errors (SSE). 
  

��� = min � [�(��) − ��]��

���
      (5) 

 

y = 0.895x + 3.924
R² = 0.902
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Graphically, SSE can be interpreted as the sum of the squares of the vertical distances between 
the graph of ƒ and the given points in the plane. If the model is perfect, then SSE = 0. However, 
perfection is not feasible, and model can be settled for minimized SSE. 
 
Coefficient of determination R2 (r-squared) is defined as the proportion of the total variation in 
Y “explained” by the regression of Y on X. The coefficient of determination ranges from 0 
(when the estimated regression model explains none of the variation in Y) to 1 (when all points 
lie on the regression line). Also it can be interpreted as the fraction of uncertainty explained by 
the fitted model. Normal R2 is a widely good-of-fit measure; however in sometimes it doesn’t 
have its usual meaning for nonlinear curves. 
 

�� = 1 − 	
���

���
         (6) 

 

��� = 	 � (�� − ỹ)��

���
       (7) 

 

ỹ = 	
�

�
	∑ ��

�
���          (8) 

 
Where SST = the total sum of square; ỹ = the mean of the observed data. 
 
The performance of the mathematical model or the mechanical model to predict the compressive 
strength of concrete using variable inputs in the mixture matrix performed well and confirmed by 
the testing the statistical values with the coefficient of determination (R2). The mathematical 
model resulted in R2 of 100%, showing true goodness of fit analysis, and the mechanical model 
resulted into R2 of 90.26% and considering the effect of time. 
 
4. Conclusion 
 

The proposed mathematical and mechanical models are capable of predicting the effect of the 
mixture matrix to produce the required concrete compressive strength. The models are validated 
with true goodness of fit analysis that can help the cement industry to provide design parameters 
for required compressive strength. 
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