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Abstract 
 

In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) strengthened 
Reinforced Concrete (RC) slab using Focused Feed-forward Time Delay Neural Network (FFTDNN) is 
investigated. Six reinforced concrete slabs having dimension 1800×400×120 mm with similar steel bar 
of 2T10 and strengthened using different length and width of CFRP were tested and compared with 
similar samples without CFRP. The experimental load-deflection results were uploaded, normalized, 
and converted to a time sequence parameter in MATLAB software. Loading, time, and the effect of the 
different CFRP strip lengths on the slab moment of inertia were as neurons in input layer and mid-span 
deflection was as neuron in output layer. The network was generated using feed-forward network and a 
tapped delay line at the input layer to memorize the input data while training process. From 122 
load-deflection data, 111 data utilized for network generation and 11 data for the network testing. The 
results of model on the testing stage showed that the generated FFTDNN predicted the load-deflection 
analysis of the slabs in acceptable technique with a correlation of determination of 0.98. The ratio 
between predicted deflection by FFTDNN and experimental output was in the range of 0.92 to 1.23. 
 
KEYWORD: FFTDNN, RC, CFRP. 

1. Introduction 

Traditional Load-deflection analysis used for reinforced concrete slabs can be grouped 

into empirical and rational model. It is observed that the different available calculation methods 

produce different deflection results (Wium and Eigeaar, 2010). In addition, these models 

require solving several numerical equations on determining the deflection of RC slabs and 

beams. Artificial Neural Networks (ANNs) capture the numerical relationship between its 

nodes and no formal formula utilize within the model. ANNs are trained based on guidelines 

and relationships between data. They are able to identify relationships between data even when 

the data are unclear, changeable and insufficient (Dutta and Shekar, 1993).  
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The goal of ANNs is to emulate the human brain’s ability to adapt to changing 

circumstances based on past experiences and the knowledge acquired there from. This depends 

entirely on the ability to learn, remember, and evaluate multipart data relationships (Medsker 

and Jain, 2001). The network connections are divided in static and dynamic network 

connection. In static or feed-forward connection, the information moves in only forward 

direction from input to output.  In dynamic or feedback connection, the signal moves in both 

directions, forward and backward. The network with feedback connection, namely Dynamic 

Neural Network (DNN), is very powerful and can get extremely complicated. 

The network output in DNN belongs to the present input data and present or previous 

inputs, outputs, or status of the network. Generally, dynamics can be communicated by using 

an external, internal dynamics, and tapped-delay line (Nelles, 2001). External dynamics 

method applies the historical information of output to demonstrate dynamics and makes 

autoregressive type neural network. The internal dynamics type takes in a nonlinear condition 

space model without any information regarding the true process state (Ishak, 2003; Yasdi, 

1999). Tapped-delay line method employs a sequence of delay to state dynamics space within 

network generation (Lingras, 2001; Yun et al, 1998).       

The workflow generation of dynamic neural networks is similar to feed-forward neural 

networks. The major differentiation between dynamic neural network and static feed-forward 

neural network happen in the design development because of the defined input in dynamic 

networks as time sequences. In the other word, dynamic neural networks have memory and can 

be generated to learn time-varying or sequential prototypes.  

There are really little researches on dynamic neural network using in civil engineering as 

presented in Table 1.  

The limited uses of dynamic neural network in structural engineering are presented as follows:  

          In a research, the traditional neural network (TNN) and time delay neural network 

(TDNN) has been employed to detect damage in bridge structures (Barari and Pandey, 1996).  

A multilayer perceptron with the back-propagation learning algorithm has been implemented 

to train TDNNs and TNNs. The architecture for TDNN and TNN was 345-(21-21)-21 and 

69-(21-21)-21 with two hidden layers and 21 nodes in each hidden layer. It is found that the 

results of generated TDNN are more effective than TNN to detect damage in the bridge 

structure.  
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Table 1: Application of dynamic neural network in Civil Engineering. 
No. References Network Type Application 

1 (Pan et al, 2007) Recurrent 
To explain the transition of the rainfall–

runoff processes 

2 (Yun et al, 1998) Time-delay Traffic volume forecasting. 

3 (Li et al, 1999) 
Time series 

simulation(TSS) 

Prediction of amplitude damping in 

buildings 

4 (Chen et al, 1995) TSS Identify structural dynamic model 

5 (EI-Shafie et al, 2008) Recurrent 
Predicting creep deformation in 

masonry structures 

 

Abed et al.  (2010) applied Focused Feed-forward Time Delay Neural Network 

(FFTDNN) to consider the time dependency of creep in masonry structures. The architecture of 

the generated network was 4-8-4-1. It means, the produced network consisted of an input layer 

with four neurons, two hidden layers with eight, four neurons respectively and an output layer 

with one neuron. They compared the capability of the created network for creep prediction with 

the other model which is employed Recurrent Neural Networks (RNNs) by El-Shafie et al. 

(2008). They presented that the crated model in FFTDNN has a comparatively small prediction 

error compared to the RNN model and other theoretical model. In this research, FTDNN and 

RNN are applied for load-deflection and crack width prediction of RC slab strengthened by 

CFRP. 

 Graf et al. (2010) studied on numerical prediction for future structural responses in 

dependency of uncertain load processes and environmental influences using ANN. The used 

ANN was based on RNN trained by time-dependent measurement results. The approach shows 

a capability for prediction of the long-term structural behavior of a reinforced concrete plate 

strengthened by a textile reinforced concrete layer.   

Freitag et al. (2011) showed a model for prediction of time-dependent structural 

behavior using RNN. The time-dependent data for the generated RNN was obtained from 

measurements or numerical analysis. The new approach by RNN was verified by a fuzzy 

fractional rheological material model to predict the long-term behavior of a textile 

strengthened reinforced concrete structure. 

The main objective of this research is to train FFTDNN to predict load-deflection of 
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CFRP strengthened RC slab using tapped-delay line to memorize the testing time as sequential 

or time-varying patterns while in training process. It involves the prediction of load deflection 

7 CFRP strengthened RC one-way slabs under four point line loads. The results of 

experimental works were compared with finite element analysis  

              

2. Methodology 

      The following five inputs layers are the time dependent parameters utilized for the 

focused feed-forward time-delay neural network (FFTDNN) generation: 

• Layer 1- Loading 

• Layer 2- The testing time of each loading 

• Layer 3, Layer 4, Layer 5 - The effect of the different CFRP strip lengths  on the slab 

moment of inertia in region a, b, and c  respectively (Fig. 1). Loading results in cracks 

that change the depth of the natural line for the slab and this consequently changes the 

slab’s moment of inertia. The presence of CFRP improves the position of the slab 

natural line at each loading. The regions a, b and c were selected based on the CFRP 

length and cross sectional area.  

 

Figure 1: The purposed a, b, & c sections to calculate the effect of CFRP on slabs moment of 
inertia due to applied loading 

 
The data is uploaded, normalized, and converted to a time sequence parameter in 

MATLAB software. The relationship between load and testing time for the samples are shown 

in Fig. 2.  
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Figure 2: Relationship between applied loading and time for the samples. 

The properties of selected network during generation are shown in Table 2. 

Table 2: The applied FFTDNN properties 
The Number of Data 122 

Input Layer Loading, Time, *Ix(a), Ix(b), & Ix(c) 
Time Delay Testing Time between loading step 

The number of Neurons in Hidden Layer 12-7-1 
Output Layer Slab Deflection 

Net Architecture  (5-12-7-1-1) 
Network Type Feed-Forward 
Net Algorithm Back-Propagation 

Training Function Trainlm 
Learning Function LEARNGDM 

Output Transfer Function PURELIN 
Hidden Transfer Function Tansig-Logsig-Purelin 

Performance Function MSE 

                    *Moment of Inertia because of CFRP on sections a, b, & c               

Where: 

                                 A= CFRP cross section area 

                                 d = Distance between natural axis and CFRP level 

FTDNN consisted of a static feed-forward network with a tapped delay line at the input 

layer. The process and development details of the FFTDNN modeling is similar to FBNN 

modeling with a tapped delay line that involves the most recent inputs.  In this method, the 

tapped delay line appears only at the input without any back-propagation to compute the 

network gradient.  The FFTDNN architecture for the CFRP strengthened RC one-way slab is 

shown in Fig. 3.  
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Figure 3: The FFTDNN architecture for the CFRP strengthened RC one-way slab. 
 

 

The loading, CFRP length and width as input layers (X1, X2, and X3) are multiplied by 

an adjustable connection weight (W(Xi)j) and then the weighted input signals are summed and 

a bios (b) is added.  

This combined input (Ij) is then passed through the following LOGSIG and TANSIG 

transfer function in first and second hidden layer, respectively, to produce the output of the 

hidden layer.  

LOGSIG in first hidden layer: 
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TANSIG in second hidden layer: 

 
Then, each hidden layer sums all the weighted signals from input and applies the 

PURLIN to calculate the output signals on output layer. The output layer calculates the error by 

comparing the target patterns and the response of the training pattern in case of supervised 

training. The back-propagation algorithm revises the weights in each input-output set by 

propagation the error back to the network using a widely used learning mechanism to change 

the weights and biases. The effect of back-propagation algorithm starts at the input layer where 

the input data are presented. The network adjusts its weights on the 87 training data and uses 

the LEARNGDM as learning rule to find a set of weights that will produce the input/output 

mapping with maximum accuracy in training. The performance of the generated network has to 

be validated using testing data. 

3. Results and Discussion 

3.1 Experimental study 

In this part of the experimental work, six reinforced concrete slabs having dimension 

1800×400×120 mm with similar steel bar of 2T10 and strengthened using different length and 

width of CFRP were tested and compared with similar samples without CFRP (Table 3 and Fig. 

4). All the slabs were designed as under- reinforced section based on rectangular stress block of 

ISIS (Intelligent Sensing for Innovative Structures) Canada Research Network (2001).   

Table 3: The characteristics of samples for the CFRP strengthened RC one-way slab under four 
point loads. 

No. Slab 
CFRP Width 

(mm) 

CFRP Length 

(mm) 

1 S512-700 50 700 
2 S512-1100 50 1100 
3 S512-1500 50 1500 
4 S812-700 80 700 
5 S812-1100 80 1100 
6 S812-1500 80 1500 
7 WCFRP* - - 

                      *Without CFRP 
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Figure 4: RC one-way slab strengthened by different lengths and width of CFRP. 

The slabs were simply supported and were loaded under four point bending load with line 

load.   In the failure mode of the slabs, the yielding of the steel took place before the failure of 

concrete in the compression zone. Debonding of the CFRP plate was occurred at the 

CFRP/concrete interface before the yielding of the steel reinforcement (Fig. 5). The structural 

behavior of the CFRP strengthened RC slabs were compared with similar slab without CFRP.   

 

Figure 5: CFRP debonding at the CFRP/concrete interface under line load. 

The load-deflection curve of the CFRP strengthened slabs obtained from the 

experimental work is validated with the corresponding finite element analysis using LUSAS 

software.   

Table 4 gives the mid-span deflection at the first crack and ultimate load for each slab. The 

mid-span deflection of CFRP strengthened slab at failure load ranged between 20.3 mm and 45 

mm, corresponding to a deflection-to-clear span ratio of 1/2674 and 1/1086, respectively. 
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Table 4: Experimental deflection at the first crack and ultimate load for the CFRP strengthened 
RC one-way slabs. 

Slab  

Exp. 

First 

Crack 

Load 

(kN) 

Exp. 

Deflection 

at First 

Crack (mm) 

Predicted 

Deflection 

(mm) 

ISIS 

Span 

/ 

Def 

Exp. 

Ultimate 

Load 

(kN) 

Exp. 

Deflection 

near 

Ultimate 

Load   

(mm) 

S512-700 7.5 0.62 1.11 2674 37 20.3 
S512-1100 10 1.22 1.11 1352 42 21.89 
S512-1500 10 1.25 1.11 1320 45.5 29.9 
S812-700 9.5 1.05 1.14 1571 37 17 
S812-1100 10.3 1.19 1.14 1387 45 31 
S812-1500 10.5 1.52 1.14 1086 54 45 
WCFRP 7 1.17 1.15 1404 33.3 12.14 

 

In Fig. 6, the load-deflection of the one-way RC slab strengthened by CFRP S512 with 

lengths 700, 1100, and 1500 mm have been compared with the non-strengthened one-way RC 

slab. The non-strengthened one-way slab failed at load 33kN. After the strengthening using 

CFRP, the one-way RC showed an increased failure load of 37 kN, 42 kN, 45.5 kN for 

S512-700, S512-1100 and S512-1500 respectively. These results indicated that using CFRP for 

strengthening improves the failure load. It also shows that by increasing the lengths of CFRP, 

the failure load increases by 10.8%, 21.5% and 27.5% for the 512-700, S512-1100, and 

S512-1500 respectively.  

Also noted on Fig. 7 is that the experimental results of load-deflections analysis are in 

agreement with the results of the LUSAS finite element analysis. This is therefore, an 

acceptable finding. The comparison between the results of the experimental work on the 

strengthened one-way RC slab using CFRP-S812 with CFRP lengths 700 mm, 1100 mm and 

1500 mm and the non-strengthened one-way RC slab are presented in Fig. 5. By increasing the 

lengths of the CFRP, the loading capacity improved by 13.2%, 26.7% and 40% for S812-700, 

S812-1100 and S812-1500 respectively 
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Figure 6: Comparison of load-deflection analysis between CFRP strengthened one-way RC 
slab with different lengths of CFRP-S512 and non-strengthened slab. 

 

 

Figure 7: Comparison of load-deflection analysis between CFRP strengthened one-way RC 
slab with different lengths of CFRP-S812 and non-strengthened slab. 

 

The experimental results of load-deflection analysis of the CFRP strengthened RC slab were 

applied for FFTDNN generation. 

3.2 FFTDNN results 

      In this part, FFTDNN is applied to predict mid-span deflection of CFRP strengthened RC 

one-way slab. Totally 122 input data were uploaded, normalized, and converted to a time 
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sequence parameter in MATLAB software. Loading, testing time, and the effect of the different 

CFRP strip lengths on the slab moment of inertia were input layer and mid-span deflection was 

output layer. The back-propagation algorithm was trained by TRAINLM training function and 

validated by MSE performance function. The generated network gave MSE of 0.000432 in 

training stage (Fig. 8).  

The network response after training was compared with the training input (Fig. 9). The 

generated load-deflection analysis by network shows good harmony with the experimental 

results (Fig. 10).  

The correlation coefficient in training phase was 0.987. After training and validation, 11 

load-deflection data of samples S812-1100 were utilized for network testing. The network 

output after training was compared with the input data for testing stage. The testing error and 

MSE for the eleven neurons in testing stage is shown in Table 5. The MSE between the target 

and predicted outputs after the testing process was 0.0011. The correlation coefficient of 0.979 

is an acceptable relationship between target and created outputs in the testing process (Fig. 11). 

A comparison between real load-deflection curve and predicted by FFTDNN is shown in Fig. 

12. 

 

Figure 8: FFTDNN Training process for load-deflection curve prediction on strengthened slab. 
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Figure 9: A comparison between net output and experimental results for deflection on the 
strengthened slab after FFTDNN training. 

 

 

Figure 10: An evaluation between predicted and experimental load-deflection analysis in 
training phase. 
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Table 5: MSE calculation for eleven neurons in testing phase of FFTDNN used in prediction of 
mid-span deflection of S812-1100. 

Neurons 

(n) 

Exp. Deflection  

∆Exp (mm) 

Network Deflection 

∆Net(mm) 

∆Net 

/ 

∆Exp 

E= 

∆Exp-∆Net 
E2 

Real Normalized Real Normalized 

1 0 0.1 0.02 0.001 - 0.0099 9.8×10-5 
2 1.32 0.12 1.42 0.08 1.07 0.04 0.0016 
3 1.83 0.13 2.25 0.12 1.23 0.01 0.0001 
4 3 0.15 3.51 0.18 1.17 -0.03 0.0009 
5 4.2 0.17 5.11 0.26 1.22 -0.09 0.0018 
6 5.8 0.19 7 0.22 1.21 -0.0204 0.0004 
7 9.1 0.25 9.67 0.26 1.06 -0.0097 9.4×10-5 
8 15.1 0.36 13.91 0.37 0.92 0.01 0.0001 
9 20.3 0.44 18.9 0.5 0.93 0.0579 0.0033 
10 31 0.63 29.2 0.59 0.94 0.0311 0.00096 
11 35 0.69 38.45 0.75 1.10 -0.0587 0.0034 

MSE=∑ E2/n 0.0011 

 

 

 

Figure 11: Evaluation between target and predicted deflection after FFTDNN testing stage 
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Figure 12: A comparison between target and predicted load-deflection curve after FFTDNN 
testing process. 

 

4. CONCLUSION 

Traditional analysis models for RC structures are reliable and the load-deflection 

analysis of CFRP strengthened RC slab can be successfully determined by solving several 

numerical equations. ANN is another alternative analytical modeling method, which capture 

the numerical equations between its nodes and no formal formula is observable within the 

network generation. A DNN model using FFRDNN has been developed to predict mid-span 

deflection of the slabs. The model capability for load-deflection analysis is illustrated by the 

coefficient of determination of 0.987 and performance function of 0.000432 in network 

training. The ratio between predicted deflection by FFTDNN and experimental output in 

network testing on the sample S812-1100 was varied in the range of 0.92 to 1.23. 
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