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A B S T R A C T 

Single angle struts are used as compression members for many structures including 
roof trusses and transmission towers. The exact analysis and design of such members 

is challenging due to various uncertainties such as the end fixity or eccentricity of the 

applied loads. The design standards provide guidelines that have been found inaccu-

rate towards the conservative side. Artificial Neural Networks (ANN) have been ob-

served to perform better than the design standards, when trained with experimental 

data and this has been reported literature. However, practical implementation of 
ANN poses problem as the trained network as well as the knowhow regarding the 

application should be accessible to practitioners. In another data-driven tool, the De-

cision Trees (DT), the practical application is easier as decision based rules are gen-

erated, which are readily comprehended and implemented by designers. Hence, in 

this paper, DT was explored for the evaluation of capacity of eccentrically loaded sin-

gle angle struts and was found to be robust and yielded comparable accuracy as ANN, 

and better than design code (AISC). This has enormous potential for easy and straight-

forward implementation by practicing engineers through the logic based decision 

rules, which would be easily programmable on computer. For this application, use of 

dimensionless ratios as inputs for the development of DT was found to yield better 

results when compared to the approach of using the original variables as inputs. 
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1. Introduction 

In construction of steel structures, use of single angle 
struts is quite common and often their connections lead 
to eccentricity of loading in both the axes. This had been 
attributed to factors like eccentricity of applied load, 
mismatch of the axis of the frame and the angle, and 
some degree of fixity occurring at the connections (Sakla, 
2004). The complexity of behaviour of these struts aris-
ing out of the factors mentioned above, make accurate 
estimation of their load carrying capacity quite challeng-
ing. The possible modes of failure might include com-
pression, flexural buckling, and torsional-flexural buck-
ling. The exact analysis as enumerated in design codes 
(AISC, 2000) becomes difficult due to all these complex-
ities and uncertainties. The design recommendations 
(Fisher, 2000; Page, 2005) for these members which 
were based on analytical models and some experimental 

results had been reported in literature to be on the con-
servative side (Sakla, 2004; Liu and Hui, 2008). 

There were various experimental investigations re-
ported in literature wherein compressive capacity of sin-
gle angle struts were determined for different eccentri-
cities and slenderness ratios. Analytical, empirical and 
numerical investigations had been carried out by re-
searchers for improving the understanding of the behav-
iour of single angle struts and estimation of their ulti-
mate compressive capacity under eccentricities. Waka-
bayashi and Nonaka (1965) compared the experimental 
results from 57 tests with the buckling theories. 
Woolcock and Kitipornchai (1986) presented a design 
approach based on experimental results for single an-
gle struts connected with a single leg. Elgaaly et al. 
(1991) evaluated AISC design recommendations with 
test results of single angle struts with low slenderness 
ratios. 
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Bathon et al. (1993) examined the test results of ulti-
mate load capacity of single angle struts along with the 
AISC design guidelines. Adluri and Madugela (1996) pre-
sented the results from tests on single angle sections for 
concentric compressive loads failing in flexural buckling. 
Rao et al. (2003) explored the design issues of such 
struts with numerical investigation accounting for the 
material and geometric nonlinearities and proposed a 
design approach. Sakla (2004) explored the neural net-
work approach for estimation of the compressive capac-
ity on the basis of published experimental data. Liu and 
Hui (2008) compared the experimental results with the 
AISC design and concluded that the AISC gave conserva-
tive results, especially for struts subjected to eccentricity 
about the major principal axis. In a subsequent study, Liu 
and Hui (2010) confirmed the earlier finding with nu-
merical modelling based on finite element techniques. 

In their study, Liu and Chantel (2011) examined the 
responses of single angle struts for eccentric compres-
sive loads and concluded that the effect of eccentricity on 
the ultimate load decreased with increasing slenderness 
ratio. Bashar and Amanat (2014) investigated the ulti-
mate axial capacity of eccentrically loaded angles with 
numerical technique accounting for the geometric and 
material nonlinearities. Barszcz (2014) developed ana-
lytical formulation for simulating the force-deflection 
behaviour of single angle struts and validated the model 
with experimental results. 

For the practicing designers, simulating the behav-
iour of single angle struts and the end conditions in the 
actual frame or truss was a big challenge. Most of the de-
sign codes have guidelines that were empirical in nature, 
with their own limitations. The numerical approach with 
intricate finite element model of each strut for evalua-
tion of the stresses and deflections was very demanding 
on resources to be useful for practical design. Simpler 
methods of estimation of the ultimate compressive load 
capacity of single angle struts had been proposed based 
on artificial neural network (ANN) by Sakla (2004). 
However, implementation of ANN for practical design 
poses challenge that is yet to be resolved. 

Decision Tree (DT), concurrently known as Model Tree 
(MT) or Regression Tree (RT), had been utilized in some 
civil engineering applications including hydrology, ge-
otechnical applications, and concrete technology in the 
past. Garg et al. (2008) discussed an application of Model 
Tree (MT or DT) for prediction of currents (in future: out-
put) in tide-dominated areas like gulfs and creeks from 
past current records (inputs) and concluded that the MT 
was faster by orders of magnitude compared to ANN and 
Genetic Programming (GP) models while producing com-
parable forecasts. Tiraki (2008) employed multivariate 
statistics, ANN and regression tree (or DT) for predicting 
uniaxial compressive strength (output) and static modulus 
of elasticity (output) from other rock properties (inputs) 
and concluded that the DT were best for development of 
such predictive models. Kim and Pachepsky (2010) used 
regression tree (or DT) in conjunction with ANN for recon-
structing the missing data (output) in daily precipitation 
records from adjacent precipitation data (inputs). 

Using experimental data from literature, Ayaz et al. 
(2015) employed DT for predicting the compressive 

strength (output) and ultrasonic pulse velocity (output) 
for HPC from ingredients (inputs) with 97% and 87% 
success respectively. Behnood et al. (2015) predicted the 
modulus of elasticity (output) of recycled aggregate con-
crete from the ingredients (inputs) using DT with 80% 
accuracy. Gharaei-Manesh et al. (2016) employed ANN 
and DT for estimating the snow depth (output) from ter-
rain parameters (inputs) in the Sakhvid Basin in Iran and 
concluded that DT had superiority over ANN for that ap-
plication. Dauji (2016) utilized the DT for prediction of 
compressive strength of concrete (output) from its in-
gredients (inputs) and concluded that performance of 
DT was superior to that of ANN reported in literature. 
Furthermore, it was noted that for certain applications, 
DT had been reported to give faster and superior perfor-
mance as compared to other data driven tools like ANN. 

In this article it is proposed to explore application of 
another data-driven tool, the DT for this particular appli-
cation and compare its accuracy with that of the ANN. 
ANN had been reported to be quite accurate in estima-
tion of compressive capacity of eccentrically loaded sin-
gle angle struts. If DT model has similar accuracy as ANN, 
it would hold comparative advantage over ANN in imple-
mentation by practising designers, as it gives a set of 
rules for estimation of the target variable. In this paper, 
the data-driven tool Decision Tree (DT) was employed 
for predicting the capacity of eccentrically loaded single 
angles under compressive loads. 
 

2. Data and Methodology 

This study was based on the published experimental 
data obtained from literature (Wakabayashi and No-
naka, 1965; Ishida, 1968; Mueller and Erzurumlu, 1983; 
Bathon et al., 1993; Adluri and Madugula, 1996; Liu and 
Hui, 2008). The accumulated data was filtered so as to 
arrive at a collection of ultimate compressive strength of 
single angle struts under various eccentricities, with the 
end conditions being hinged at both ends. The resulting 
database contained 153 sets of data which were then 
used for development and evaluation of the DT. The data 
was taken from the experimental studies reported by: 
(a) Wakabayashi and Nonaka (1965); (b) Ishida (1968) 
(c) Mueller and Erzurumlu (1983); (d) Bathon et al. 
(1993); (e) Adluri and Madugula (1996); (f) Liu and Hui 
(2008). The test setup and other details of the experi-
ments can be found in aforementioned literature. 

The regression tree (RT) alternately known as DT mod-
elling had been described as an exploratory technique 
based on uncovering structure in data (Clarke, 1991).The 
popularity of DT is increasing for their simplicity and in-
terpretability, their low computational cost and for the 
possibility of being graphically represented (Rodriguez-
Galiano et al., 2015). In the model space (Fig. 1a), the de-
cision tree process the information from the root node 
(decision box) to other nodes (decision boxes) or leaves 
(representing the models or expressions) based on the de-
cision output: 'yes' or 'no' (Fig. 1b). In this way, the model 
space is progressively subdivided into smaller spaces (Fig. 
1a) such that one decision rule prevails in each sub-space. 
The division of the model space into sub-spaces or domain 
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splitting is conducted by some algorithm, such as, mini-
mum entropy in sub-domain, or collecting as many sam-
ples as possible in the class, or any other. In the popular 
M5 algorithm of DT, this task is performed by minimizing 
the standard deviation of the class value reaching a node 
(Breiman et al., 1984; Quinlan, 1993; Jekabsons G, 2016) 
and this approach has been adopted in this study.  

Accordingly, Fig. 1a shows the domain splitting for 
two variables (x1 & x2) and the decision tree structure is 
depicted in Fig. 1b, where the diamonds represent the 
decision boxes and the rectangles represent the decision 
rules. The ability of a root node to maximise the reduc-
tion in standard deviation is taken as the attribute for its 
selection. Many possible subdivisions of inputs are ex-
plored during the model development and the one that 

results in the maximum reduction in standard deviation 
is selected to build linear models within each sub-do-
main. There are many methods reported in literature, 
which may be employed for avoiding too many domain 
splits or large discontinuities between neighbouring mod-
els (Witten and Frank, 2000; Rokach and Maimon, 2015; 
Jekabsons, 2016). For a dataset, the model tree enables 
subdivision of the data hyperspace and definition of lin-
ear models in each sub-domain by the adopted objective 
function (maximum reduction of standard deviation in M5 
algorithm) and the linear decision rules together would 
describe the relationship between the input and output 
variables. Further details for the development of decision 
trees may be obtained from standard text books (Witten 
and Frank, 2000; Rokach and Maimon, 2015).

 
Fig. 1. Decision tree: (a) Domain sub-division; (b) Tree structure.

The DT modelling results in distinct step-wise linear 
rules to represent the model domain, and hence can be 
easily implemented by simple programming for new 
data points within the model domain even without the 
knowledge of DT development. The modelling by ANN 
involves establishing the relationship between the in-
put/s (in input layer) and the output/s (in output layer) 
through the hidden layer/s of neurons, which ensure the 
desired degree of non-linearity in the relationship. In 
general, each neuron of a layer is connected with all the 
neurons in the next layer and the strength of the connec-
tion is denoted by weights, which, along with the bias 
terms of each neuron are ascertained during the process 
of training process by back propagation of errors. Differ-
ent algorithms may be applied for the back-propagation 
of errors such as steepest descent, conjugate gradient, 
resilient propagation, Levenberg-Marquardt, etc. and for 
further details regarding development of ANN models, 
textbooks may be referred (Wasserman, 1993; Bose and 
Liang, 1993). In case of ANN, the practitioner needs to be 
acquainted with the concept of modelling in ANN as well 
as access to the trained ANN & modelling software for 
implementation of the ANN model for new data points in 
the model space. When compared with the DT, this is a 
particular drawback for the ANN models for application 
by designers. This motivated the present study in which 
DT is applied for estimation of the capacity of eccentrically 

loaded single angle struts, for which successful ANN ap-
plication has already been reported in literature (Sakla, 
2004). 

For the development of the DT in this study, two ap-
proaches were adopted. In the first, the length of the an-
gle leg (b), the thickness of the angle leg (t), the slender-
ness ratio (l/r), the yield strength of steel (fy), the two 
eccentricities (e1, e2) were the input variables (total six) 
and the ultimate load (P) was the target variable. In the 
second approach, the dimensionless ratios were used as 
inputs, namely, ratio of the length to the thickness of the 
angle leg (b/t), slenderness ratio (l/r), the yield strength 
of steel (fy), the two relative eccentricities (e1/b, e2/b) 
were the input variables (total five) and the ratio of the 
ultimate load to the yield capacity of the angle (P/Afy) 
was the target variable. The DT were developed with 
random assignment of 80% of the data for modelling 
(123 nos.) and remaining 20% of the data for evaluation 
of the developed models (30 nos.). Multiple such runs 
were taken to demonstrate the robustness of the ap-
proach. The results of three such runs in either approach 
are presented and discussed in the subsequent sections. 

In this paper, the performance of the DT developed 
was evaluated with measures like Root Mean Square Rel-
ative Error (RMSRE), Mean Absolute Relative Error 
(MARE), and correlation coefficient (R). RMSRE is a rela-
tive error index which is sensitive to the extreme values. 

(a) (b) 
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MARE gives an estimate of the relative accuracy of predic-
tion in the absolute scale. The correlation coefficient indi-
cates the degree of linear association between the estima-
tion and the observation and while being sensitive to out-
liers it is insensitive to proportional or additive differ-
ences. The scatter plots of the measured and predicted 
compressive capacity of struts helped visual evaluation of 
the accuracy of the models. The ratio of the capacity esti-
mated by the DT and the yield capacity of the angle were 
evaluated as a measure of the relative accuracy of the DT. 

 

3. Results and Discussion 

In the DT-s developed with the actual variables are in-
dicated by 'DTX' and the DT-s developed with ratios as 
inputs and target are indicated by 'DTRX' in the follow-
ing sections where 'X' indicates the serial number of the 
run presented.  

The box plots shown in Fig. 2 present the comparison 
of the various percentiles (mean: small box, median: hor-
izontal in box, 25, 75: extents of box, 1, 99: cross mark, 
and maximum & minimum: horizontal outside box) for 
the various random assignment of the data in different 
runs. It can be noticed that the median is always less than 
the mean indicating that the tail is longer towards the 
higher values. For DT cases, it is observed that all the 
evaluation sets (Eval.) have less spread and standard de-
viation as compared to the development set (Dev.). How-
ever, the range of the first evaluation set is more towards 
the lower values as compared to the development set. 
This indicates that the model performance of the first DT 
case might be affected. 

In case of the DTR cases, the spread and the standard 
deviation are more than, almost equal and less than the 
respective development sets for the second, third and 
first cases. This indicates that the model performance of 
the second DTR case might be affected.

  

Fig. 2. Data characteristics for the development set (Dev.) and the evaluation (Eval.) set for two approaches:  
(a) Actual variables; (b) Ratios.

The performance metrics, namely, correlation, 
RMSRE and MARE, for the different runs are presented 
in Figs. 3(a-c), respectively. For the DT models, the cor-
relation is around 0.98 while for the DTR models, it rises 
to 0.99. In general, the RMSRE and the MARE are higher 
in DT models (between 0.16 – 0.25 and 0.13 – 0.16 re-
spectively) as compared to the DTR models (between 

0.14 – 0.16 and 0.10 – 0.13 respectively). This clearly in-
dicates that the use of dimensionless ratios in develop-
ment of the models have been very beneficial in improv-
ing the accuracy of the estimation in the evaluation sets. 
Among the DT models, the first one is the better and the 
third DTR model is better one. Overall, the third DTR 
model appears to be the best amongst all.

   

Fig. 3. Performance of the evaluation runs for the two approaches: (a) Correlation; (b) RMRSE; (c) MARE.    

(a) (b) 

(a) (b) (c) 
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The ratio of the estimated ultimate strength and the 
experimental value has been evaluated for each esti-
mation in the individual runs. The statistics of this rel-
ative accuracy is presented as box plots (mean: small 
box, median: horizontal in box, 25, 75: extents of box, 
1, 99: cross mark, and maximum & minimum: horizon-
tal outside box) in Fig. 4. Here it is evident that all the 
DTR cases are better balanced on either side of unity 
as compared to the DT cases. The second DTR case has 

the highest spread and standard deviation among all 
cases. This could be due to the higher spread and 
standard deviation of the evaluation set than the de-
velopment set. 

Visual appreciation of the estimation accuracy is pos-
sible in the scatter plots shown in Fig. 5 for the DT cases 
and Fig. 6 for the DTR cases. As indicated earlier, the first 
DT model appears better and the third DTR model ap-
pears better than the rest.

 

Fig. 4. Data characteristics for the relative accuracy of the different runs in two approaches.

    

Fig. 5. Scatter plot for the evaluation cases for DT models: (a) Run 1; (b) Run 2; (c) Run 3. 

    

Fig. 6. Scatter plot for the evaluation cases for DTR models: (a) Run 1; (b) Run 2; (c) Run 3.

The data statistics for the experimental and the esti-
mated values of the ultimate compressive capacity in 
the evaluation sets are shown in the Fig. 7 for both the 
approaches. Here again it is noted that the best match  
 

between the experimental and the estimated happened 
for the first DT case and the third DTR case. Overall, the 
statistics of the third DTR matches most closely with 
those of the experimental evaluation set. 

 

(a) (b) (c) 

(a) (b) (c) 
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Fig. 7. Data statistics for the experimental and estimated ultimate compressive capacity in evaluation sets (kN):  
(a) DT models; (b) DTR models.

From the aforementioned discussion, it is concluded 
that the third DTR model is the best model among all. 
The structure of the decision tree for the third DTR case 
is presented in Fig. 8. The rules for the hierarchical split-
ting are shown at all the intermediate nodes of the deci-
sion tree, the numbers in brackets indicate the number 
of cases passing through the respective nodes. The num-
ber of cases passing to the terminal nodes vary between 
2 and 11. The explicit models for 'M1' to 'M17' obtained 

from the DTR3 are presented in Appendix. Read to-
gether, the Fig. 8 and the appendix yields a clear-cut eval-
uation scheme for the ultimate compressive capacity of 
single angle struts. It may be noted in Table 1 from the 
performance comparison of DT developed in this study 
and the ANN (from literature: Sakla, 2004) that the accu-
racy achieved by the DTR3 is comparable to that re-
ported for ANN and better than the AISC formulations re-
ported in literature (Sakla, 2004).

 

Fig. 8. Structure for the best Decision Tree (DTR3). 

Table 1. Comparison of performance of DT (this study) with ANN (Sakla, 2004) and AISC (Sakla, 2004). 

Performance Measure ANN (Sakla, 2004) AISC (Sakla, 2004) DT (This study) 

Mean Absolute Percentage Error 5.8 12.8 10 

Average Ratio of Predicted and Actual Capacity 1.026 0.885 1.02 
 

(a) (b) 
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4. Conclusions 

Single angle struts are used in many structures like 
the roof trusses and transmission towers. The exact 
analysis and design of single angle struts become diffi-
cult owing to uncertainties in evaluation of the eccen-
tricity of the applied load and the fend conditions. In this 
study, experimental data for ultimate compressive ca-
pacity of single angle struts for different eccentricity of 
loads had been collected from various published articles 
and using them, attempt had been made to develop an 
accurate model with DT. 

From this study, the following conclusions are drawn: 
 The ANN models developed by Sakla (2004) had been 

demonstrated to be much superior to available AISC 
formulations. The accuracy of the DT model devel-
oped in this study for estimation of the ultimate com-
pressive capacity of single angle struts are compara-
ble to that of ANN models (Sakla, 2004) developed for 
the same purpose. 

 The use of dimensionless ratios in place of actual var-
iables improve the performance of the DT (correla-
tion 0.98, RMSRE 0.16 - 0.25, MARE 0.13 – 0.16 for ac-
tual variables; correlation 0.99, RMSRE 0.14 - 0.16, 
MARE 0.10 – 0.13 for ratio variables). 

 For the best DT model developed, correlation of 0.99, 
RMSRE of 0.14 and MARE of 0.10 could be achieved 
which indicates very good performance. 

 Like other data driven tools, the DT is poor in extrap-
olation as was seen in the case of DTR2. 

 The model DTR3 as presented in Fig. 8 and the appen-
dix may be used by practicing engineers for estima-
tion of the ultimate capacity of single angle struts 
without any sophisticated analysis like intricate nu-
merical modelling or ANN approach, and thus could 
be very handy and useful. 
Similar performance of the three sets of models in either 

approach indicates the robustness of the DT approach. 
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Appendix 

The input variables: 
x1:  Ratio of the length to the thickness of the angle 
leg (b/t),  
x2 : Slenderness ratio (l/r),  
x3 : Yield strength of steel (fy),  
x4,  x5 : two relative eccentricities (e1/b, e2/b). 
 
The target variable:  
Y : ratio of the ultimate load to the yield capacity 
of the angle (P/Afy). 
 
Number of rules: 17 
 
Number of original input variables used: 5 (x1, x2, x3, x4, x5) 

The Rules: 
if x2 <= 118.2 
 if x4 <= 0.0034091 
  if x4 <= -0.014474 
   y = 0.66957 -0.0031293*x2 +0.38258*x4 (25) 
  else 
   if x2 <= 92.75 
    if x5 <= 0.096667 
     if x2 <= 87.45 
      if x3 <= 307.5 
       if x2 <= 49.75 
        y = 0.91844 (2) 
       else 
        y = 0.89938 (2) 
      else 
       y = 0.81902 (5) 
     else 
      y = 0.70902 (4) 
    else 
     y = 0.60708 -0.0015359*x2 (4) 
   else 
    if x5 <= 0.26137 
     if x3 <= 307.5 
      y = 0.64014 (2) 
     else 
      y = 0.47126 (10) 
    else 
     y = 0.15279 (3) 
 else 
  y = 0.92135 -0.031689*x1 -0.0016546*x2 -0.4013*x4 (28) 
else 
 if x2 <= 154.35 
  if x1 <= 12.366 
   y = 0.59979 -0.0021783*x2 -0.078047*x4 (7) 
  else 
   if x4 <= 0.098333 
    y = 0.31092 +0.64838*x4 (11) 
   else 
    y = 0.19385 (3) 
 else 
  if x5 <= 0.31339 
   if x1 <= 9.9219 
    if x2 <= 155.6 
     y = 0.16353 (3) 
    else 
     y = 0.18237 (6) 
   else 
    y = 0.37906 -0.00068514*x3 (5) 
  else 
   y = 0.10157 (3) 

 
The Models (refer Fig. 8): 
M1 = 0.66957 -0.0031293*x2 +0.38258*x4 
M2 = 0.91844 
M3 = 0.89938 
M4 = 0.81902 
M5 = 0.70902 
M6 = 0.60708 -0.0015359*x2 
M7 = 0.64014 
M8 = 0.47126 
M9 = 0.15279 
M10 = 0.92135 -0.031689*x1 -0.0016546*x2 -0.4013*x4 
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M11 = 0.59979 -0.0021783*x2 -0.078047*x4 
M12 = 0.31092 +0.64838*x4 
M13 = 0.19385 
M14 = 0.16353 
M15 = 0.18237 
M16 = 0.37906 -0.00068514*x3 
M17 = 0.10157 
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