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A B S T R A C T 

Corrosion, as the spontaneous process of material degradation produced by the en-
vironment, affects the reliability and safety of structures, both by reducing the sec-

tion of the components, due to material loss and by diminution of the materials me-

chanical strength. The authors have found a mathematical relation between discon-

tinuities in beams and changes of its natural frequencies and developed a method to 

identify these discontinuities. The present paper considers the more complex case of 

damage determined by corrosion, where beam thinning is accompanied by mass de-
crease. These impose considering natural frequency changes in both directions: de-

crease due damage and increase because of mass loss. FEM simulations and analyti-

cal investigations were carried out, in order to find the relation between mass change 

in different positions along the beam and the frequency increase. The results were 

correlated with the “classical” relation describing frequency decrease because of dis-

continuities. Finally, the authors developed a new relation, proper to be used for dam-

age produced by severe corrosion, which was validated by laboratory experiments. 
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1. Introduction 

Corrosion is a consequence of the interaction be-
tween a material and its environment, which determines 
changes in the materials properties and often leads to 
impairment of the metals function, the environment or 
the technical system of which these form a part (ISO 
8044-1986). The damage process is irreversible and 
leads to degradation of the material, accompanied by di-
minished performances of the technical system to which 
it belongs. The corrosion processes always trigger from 
the components surface, but sometimes penetrate deep 
inside the materials. 

Several criteria are used to classify the different cor-
rosion types. Regarding the corrosions mechanism, one 
can distinguish between: (a) chemical (dry) corrosion, as 
the heterogeneous corrosion process between a solid 
metallic phase and a gaseous phase (air, industrial 
gases); (b) electrochemical (wet) corrosion, which ap-
pears when metallic materials are in contact with an ag-
gressive, liquid and conducting medium; when it occurs 

under the conditions of simultaneous mechanical load, 
result stress corrosion, fatigue corrosion or fretting cor-
rosion and (c) biochemical corrosion, where the destruc-
tion of metal is caused by bacteria, fungi or other micro-
biological organisms under specific environmental con-
ditions (DeGiorgi, 1992). 

Another traditional classification (Landolfo et al., 
2010) characterizes corrosion phenomena according to 
the appearance of the corroded area. Regarding this cri-
terion, the basic forms of corrosion are: (i) continuous 
(generalized) corrosion, which can be both uniform, 
where the metal surface is affected at the same rate on 
large areas and nonuniform corrosion, characterized by 
different corrosion rates in different zones of the sur-
face; (ii) localized corrosion, which is restricted to re-
duced areas and takes the form of pits, crevices or cavi-
ties. 

From structural point of view, the loss of thickness of 
the cross section due to corrosion attack leads to a 
smaller bearing area, producing a decrease in the struc-
tural performance in terms of strength, stiffness and 
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ductility, thus shortening the designed life expectancy 
(Bazant, 1979; Apostolopoulos and Michalopoulos, 
2007). In case of cyclic loads, the corrosion phenomenon 
can produce a significant reduction in the fatigue 
strength, mainly in zones with high stress concentration 
(Albrecht and Hall, 2003; Landolfo et al., 2005; Kline-
smith, 2007). Especially in case of uniform corrosion the 
loss of material mass is significant, bringing up difficul-
ties when dynamic methods are used for corrosion as-
sessments. While corrosion is a major problem, it con-
cerned the attention of researchers, but only recently 
they gave attention to the joined effects of stiffness and 
mass loss. 

Our previous researches considered the influence of 
local, transversal damages without loss of mass upon dy-
namic behavior of beams and established a simple, relia-
ble method to asses these damages. Recent investiga-
tions considering the influence of local corrosion on the 
dynamic behavior of beams were performed, with focus 
both on stiffness changes and loss of mass. This paper 

presents the results obtained and considerations how 
these can be used to improve damage detection methods. 

 

2. Analytical Investigations 

For this paper we have chosen to present the cantile-
ver beam, which due to its asymmetry is more complex, 
but uniquely defines the damage/corrosion location. For 
demonstration we used a steel cantilever beam with rec-
tangular cross section (Fig. 1) having the following ge-
ometry: length L = 600 mm; width B = 50 mm and height 
H = 5 mm. Consequently, for the undamaged state, the 
beam has the cross-section A = 250-106 m2 and the mo-
ment of inertia I = 520.833-10-12 m4. The mechanical pa-
rameters of the specimens’ material are: mass density  
ρ = 7850 kg/m3; Young’s modulus E = 2.0-1011 N/m2 and 
Poisson’s ratio m = 0.3. The earth gravity is considered  
g = 9.806 m/s2 and the mass of the beam is m = 1.1775 
kg. On the cantilever beam acts only its own mass. 

  

Fig. 1. Cantilever beam with damage.

The natural frequencies Eq. (1) for the cantilever 
beam is presented below:  

𝑓𝑛 =
𝑎𝑛

2

2𝜋
√

𝐸𝐼

𝑚𝐿3 , (1) 

where, the wave numbers an of Euler-Bernoulli model 
are the solution of Eq. (2) for n vibration modes:  

𝑐𝑜𝑠 𝑎 + 𝑐𝑜𝑠 ℎ + 1 = 0 . (2) 

At distance x from clamped end (Fig. 1) it is consid-
ered a damage/corrosion area of 2 mm wide during the 
whole width of the beam with a small depth of 8% from 
beam height, respectively 0.4 mm depth. 

Taking in consideration that for the cantilever beam 
the deflection v at the free end is:   

𝑣 =
𝑝𝑔𝐴𝐿4

8𝐸𝐼
=

𝑚𝐿3

8𝐸𝐼
 , (3) 

for the damaged beam the deflection vD can be written:   

𝑣𝐷 =
𝑚(𝑥,𝛿)𝐿3

8𝐸𝐼(𝑥,𝛿)
 , (4) 

and consequently, the natural frequencies equation for 
the damaged beam fDn becomes:   

𝑓𝐷𝑛 =
𝑎𝑛

2
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√

𝐸𝐼(𝑥,𝛿)

𝑚(𝑥,𝛿)𝐿3 . (5) 

According to relation (5), the natural frequencies for 
the damaged/corroded beam depends of moment of in-
ertia I(x,δ) and mass m(x,δ). In the corroded area on the 
beam, when mass loss is significant compared to reduc-
ing the moment of inertia we can consider that I(x,δ)~I. 
The natural frequencies for the corroded beam depends 
only the terms m(x,δ). 

In this case, the relative frequency shift (Gillich 
and Praisach, 2012; Gillich et al., 2012a) can be writ-
ten:   

∆𝑓 =
𝑓−𝑓𝐷

𝑓
= 1 −

𝑓𝐷

𝑓
 , (6) 

but the relative frequency shift for the corroded 
beam ΔfC is,   

∆𝑓𝐶 = 1 −
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𝑓
= 1 −

𝑎𝑛
2

2𝜋
√

𝐸𝐼

𝑚(𝑥,𝛿)𝐿3

𝑎𝑛
2

2𝜋
√

𝐸𝐼

𝑚𝐿3

= 1 −
√𝑚

√𝑚(𝑥,𝛿)
=

√𝑚(𝑥,𝛿)−√𝑚

√𝑚(𝑥,𝛿)
 , (7) 

and taking in consideration the relation of natural 
frequency for the damaged beam (Gillich and Prais-
ach, 2012), the natural frequency for the corroded 
beam becomes:   

𝑓𝐶𝑛 = 𝑓𝑛 (1 −
√𝑚(𝑥,𝛿)−√𝑚

√𝑚(𝑥,𝛿)
(�̅�(𝑥))2)  

       = 𝑓𝑛 (1 +
√𝑚−√𝑚(𝑥,𝛿)
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(�̅�(𝑥))2) , (8) 
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where �̅�(𝑥) is the normalized mode shape curvature 
of the cantilever beam. 

In the damaged beam the reducing of moment of 
inertia and loss mass is significant. Taking in con-
sideration only the reducing of moment of inertia 
m(x,δ)~m and relations (3) and (4) the relative fre-
quency shift ΔfD is:   

∆𝑓𝐷 = 1 −
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and the natural frequency for the damaged beam (Gillich 
et al., 2012b) without taking in consideration the mass 
loss:   

𝑓𝐷𝑛 = 𝑓𝑛 (1 − √𝑣𝐷−√𝑣

√𝑣𝐷
) (
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Taking in consideration the mass loss (8) and reduc-
ing the moment of inertia (10), the natural frequency for 
the damaged beam can be written:   
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The damage location index (12) can be obtained from 
fracture mechanics by using the following formula:   
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where (Ostachowicz and Krawczuk, 1991)   
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3. Numerical Investigations 

Investigations using the finite element method were 
performed on a cantilever beam, first case for the un-
damaged beam, second case for a cantilever beam with 
damage and mass loss (Fig. 1) and third case a geomet-
rical undamaged beam where in the presumed damaged 
area of wide c = 2 mm the original material was replaced 
with a new one (Fig. 2), having the mass density reduced 
in order to assure the same total beam mass like that of 
the damaged beam. 

The 3D beam with the geometrical characteristics and 
material parameters presented in chapter 2, was 
meshed by 0.5 mm elements in all cases. In order to com-
pare analytical investigations with numerical results, 
were considered 197 locations of the damage on the 
beam length, both for damaged beam with mass loss 
(case two) presented in Fig. 1 and theoretical undam-
aged beam (case three) presented in Fig. 2. For all the 
cases were determined the maximum deflection and the 
first ten natural frequencies of the weak-axes bending vi-
bration modes, used to highlight the frequency changes 
in a graphical way.

  

Fig. 2. Undamaged cantilever beam.

Fig. 3 presents the natural frequencies for the dam-
aged beam with mass loss for the first, second, third and 
fourth vibration mode. The dashed line represents the 
natural frequencies obtained by numerical analysis and 
the continuous line represents the natural frequencies 
obtained analytic with relation (10). 

Fig. 4 presents the natural frequencies for the geo-
metrical undamaged beam but with loss of mass, for the 
first, second, third and fourth vibration mode. The 
dashed line represents the natural frequencies obtained 
by numerical analysis and the continuous line repre-
sents the natural frequencies obtained analytic with re-
lation (8). 

Fig. 5 presents the natural frequencies for the dam-
aged beam without mass loss, for the first, second, third 

and fourth vibration mode. The dashed line represents 
the natural frequencies obtained by numerical analysis 
for damaged beam and undamaged beam with reduced 
mass and the continuous line represents the natural fre-
quencies obtained analytic with relation (10). 

For Figs. 3 to 5 the dash-dotted line represents the 
natural frequency of the undamaged beam. 

The dashed lines presented in Fig. 5 are obtained as 
difference between numerical results of natural frequen-
cies for the damaged beam with mass loss (Fig. 3) and 
numerical results of natural frequencies for the undam-
aged beam with reduced mass (Fig. 4). It can be observes 
the good concordance of the corrected results obtained 
by numerical analysis and that obtained by means of 
fracture mechanics.
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Fig. 3. Natural frequencies for the damaged beam with mass loss (first, second, third and fourth vibration modes). 

         

        

Fig. 4. Natural frequencies for the undamaged beam with reduced mass (first, second, third and fourth vibration modes). 
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Fig. 5. Natural frequencies for the damaged beam (first, second, third and fourth vibration modes).

4. Laboratory Experiments 

We conducted experiments on the cantilever beam to 
find the first ten natural frequencies of the undamaged 
and damaged beam. During the tests, the beams where 
fixed in a milling machine and the excitation of the struc-
ture was realized by hitting with a hammer. The meas-
urement system was composed by a laptop, a NI cDAQ-
9172 compact chassis with NI 9234 four-channel dy-
namic signal acquisition modules and a Kistler 8772 ac-
celerometer mounted near the free end of the beam. Us-
ing virtual instruments created in LabVIEW we acquired 
the acceleration time history and identified the first ten 
weak-axis bending vibration modes. For the damaged 

case, the effect of corrosion was simulated by saw cuts, 
of around 2 mm wide and 0.5 mm depth. The damage is 
located at x/L = 0.595. 

The natural frequencies for the first ten vibration 
mode, for the undamaged and damaged beam obtained 
analytically (10), numerically by finite element method 
and measured are presented in Table 1. 

To compare the obtained results presented in Table 1 
is useful to represents the normalized frequency shift 
versus vibration mode (Fig. 5). The normalized fre-
quency shift (Table 2) is the relative frequency shift di-
vided by maximum of the relative frequency shift (high-
lighted with bold characters in Table 1) of the ten vibra-
tion modes.

Table 1. Natural frequencies for the undamaged (fU) and damaged (fD) beam with damage located at x/L = 0.595. 

Vibration 

mode 

n 

Natural frequencies 

Analytic Euler-Bernoulli Numerical Measured 

fU_A [Hz] fD_A [Hz] fU_FEM [Hz] fD_FEM [Hz] fU_M [Hz] fD_M [Hz] 

1 11.3247 11.3237 11.3840 11.3834 11.3564 11.3552 

2 70.9709 70.8803 71.3084 71.2263 71.0215 70.9302 

3 198.7205 198.5839 199.6549 199.5339 199.0212 198.8811 

4 389.4129 389.2844 391.3266 391.2133 389.5088 389.3814 

5 643.7275 642.9087 647.1184 646.4253 648.027 647.1995 

6 961.6174 961.611 967.0326 967.0125 966.0025 965.9832 

7 1343.0854 1341.5112 1350.994 1349.6439 1345.3657 1343.7714 

8 1788.1315 1787.2082 1798.7638 1797.9662 1792.2048 1791.1582 

9 2296.7556 2295.7555 2309.9327 2309.0230 2306.3294 2305.4299 

10 2868.9577 2865.4446 2883.9323 2880.9621 2878.4419 2874.9624 
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Table 2. Relative frequency shift (Δf) and normalized frequency shift (NΔf) for damaged beam with damage at x/L = 0.595. 

Vibration 

mode 

n 

Relative frequency shift & Normalized frequency shift 

Analytic Euler-Bernoulli Numerical Measured 

ΔfA [%] NΔfA ΔfFEM [%] NΔfFEM ΔfM [%] NΔfM 

1 0.0088 0.068912 0.0053 0.042535 0.0102 0.079377 

2 0.1277 1.000000 0.1152 1.000000 0.1285 1.000000 

3 0.0688 0.538763 0.0606 0.526042 0.0704 0.547860 

4 0.0330 0.258418 0.0290 0.251736 0.0327 0.254475 

5 0.1272 0.996085 0.1071 0.929688 0.1277 0.993774 

6 0.0007 0.005482 0.0021 0.018229 0.0020 0.015564 

7 0.1172 0.917776 0.1000 0.868056 0.1185 0.922179 

8 0.0516 0.404072 0.0443 0.384549 0.0584 0.454475 

9 0.0435 0.340642 0.0394 0.342014 0.0390 0.303502 

10 0.1224 0.958496 0.1030 0.894097 0.1209 0.940700 

It can be observed a very good correlation between 
analytic method, numerical analysis and measured re-
sults for a damaged beam. The normalized frequency 
shift in respect to the vibration mode presented in Fig. 6 

uniquely characterizes the frequency changes for an 
asymmetrical beam. Thus, the damage location indexes 
can be used to precisely identify the location of a crack, 
without caring about its depth.

  

Fig. 6. Normalized frequency shift versus vibration mode.

5. Conclusions 

Corrosion, as degeneration of materials, affects the re-
liability and safety of structures by producing loss of ma-
terial together with thinning of components and conse-
quently reduction of mechanical strength and stiffness. 
These two aspects are rarely considered together, since 
the phenomenon is complex and solutions in this case re-
quire intensive time and resources consumption. 

This paper consider the case of damage due corrosion, 
where beam thinning is accompanied by mass loss. The 
relation prior contrived between deflection and fre-
quency changes is used, completed with one found be-
tween mass loss in a given location and the resulting fre-
quency increase. This fact reveals that for damages with 
mass loss, the natural frequency of the undamaged struc-
ture as a reference value is inadequate, being necessary 
to adjust it with a term dependent on the loss of mass 
and the value of the mode shape at the damage location. 
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