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A B S T R A C T 

Plates are structural elements commonly used in the building industry. A plate is con-
sidered to be a thin plate if the ratio of the plate thickness to the smaller span length 

is less than 1/20; it is considered to be a thick plate if this ratio is larger than 1/20. 

The purpose of this paper is to study shear locking-free analysis of thick plates using 

Mindlin’s theory and to determine the effects of the thickness/span ratio, the aspect 

ratio and the boundary conditions on the linear responses of thick plates subjected 

to earthquake excitations. Finite element formulation of the equations of the thick 

plate theory is derived by using second order displacement shape functions. A com-

puter program using finite element method is coded in C++ to analyze the plates 

clamped or simply supported along all four edges. In the analysis, 17-noded finite 
element is used. Graphs and tables are presented that should help engineers in the 

design of thick plates subjected to earthquake excitations. 
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1. Introduction 

In the past 30 years, using of the plate bending ele-
ments based on the Mindlin (1951), and Reissner (1947) 
theory (the first-order shear deformation theory) have 
interested many researchers. Numerous methods have 
been proposed by earlier researchers for solving plate 
bending problem. In Mindlin-Reissner plate theory for-
mulation’s the deflection w and rotations βx, βy are gen-
erally considered to be independent function therefore 
only C0-continuity is required. The most encountered 
phenomenon is shear locking which acts as the plate be-
comes incrementally thinner. 

In order to avoid this problem, the method of reduced 
and selective reduced integration (Zienkiewicz et al., 
1971; Hughes et al., 1977; Ozkul and Ture, 2004) are 
chosen instead of the full integration, the substitute 
shear strain method proposed by Hinton et al, (1986), 
free formulation method proposed by Bergan et al. 
(1984). The same problem can also be prevented by us-
ing higher order displacement shape function (Özdemir 
et al., 2007). This paper that improved element is used 
for the vibration analysis of the plate. 

The aim of this paper is to study forced vibration anal-
ysis of thick plates using Mindlin’s theory and to deter-
mine the effects of the thickness/span ratio, the aspect 
ratio and the boundary conditions on the linear re-
sponses of thick plates subjected to earthquake excita-
tions.  

A computer program using finite element method is 
coded in C++ to analyze the plates clamped or simply 
supported along all four edges. In the program, the finite 
element method is used for spatial integration and the 
Newmark-β method is used for time integration. In the 
analysis, 17-noded finite elements are used to construct 
the stiffness and mass matrices. 

 

2. Finite Element Modeling 

The governing equation for a flexural plate subjected 
to an earthquake excitation without damping can be 
given as  

[𝑀]{𝑤̈} + [𝐾]{𝑤} = [𝐹] = −[𝑀]{𝑢̈𝑔} , (1) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Challenge Journal Publications (TULPAR Academic Publishing)

https://core.ac.uk/display/234102846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
tel:+90-212-3835213
fax:+90-212-3835213
http://dx.doi.org/10.20528/cjsmec.2015.03.002
http://cjsmec.challengejournal.com/


10 Özdemir et al. / Challenge Journal of Structural Mechanics 1 (1) (2015) 9–12  

 

where [K] and [M] are the stiffness matrix and the mass 
matrix of the plate, respectively, ᴡ and ẅ are the lateral 
displacement and the second derivative of the lateral 
displacement of the plate with respect to time, respec-
tively; and üg is the earthquake acceleration. 

In order to do forced vibration analysis of a plate, the 
stiffness, [K], mass matrices, [M], and equivalent nodal 
loads vector, [F], of the plate should be constructed. The 
evaluation of these matrices is given in the following sec-
tions. 

2.1. Evaluation of the stiffness matrix 

In this study, 17-noded quadrilateral serendipity ele-
ment (MT17) (Fig. 1) is used. The stiffness matrix for this 
element can be obtained by the following equation (Cook 
et al., 1989; Özdemir et al., 2007),  

𝐾 = ∫ [𝐵]𝑇[𝐷][𝐵]𝑑𝐴
𝐴

= ∫ ∫ 𝐵𝑇𝐷𝐵
1

−1
|𝐽|𝑑𝑟𝑑𝑠

1

−1
 , (2) 

which must be evaluated numerically (Weaver and Jah-
ston, 1984).  

 
As seen from Eq. (2), in order to obtain the stiffness 

matrix, the strain–displacement matrix, [B], and the flex-
ural rigidity matrix, [D], of the element need to be con-
structed and can be seen Özdemir and Ayvaz (2007). 

 

Fig. 1. 17-noded quadrilateral finite element used in 
this study. 

2.2. Evaluation of the mass matrix 

The formula for the consistent mass matrix of the 
plate may be written as  

𝑀 = ∫ 𝐻𝑖
𝑇𝜇𝐻𝑖 𝑑𝛺

𝛺
 . (3) 

In this equation, μ is the mass density matrix of the 
plate (Özdemir et al., 2007) and Hi can be written as fol-
lows,  

𝐻𝑖 = [𝑑ℎ𝑖/𝑑𝑥   𝑑ℎ𝑖/𝑑𝑦   ℎ𝑖]     𝑖 = 1, … ,17 . (4) 

It should be noted that the rotation inertia terms are 
not taken into account. By assembling the element mass 
matrices obtained, the system mass matrix is obtained.  

2.3. Evaluation of equivalent nodal loads vector 

Equivalent nodal loads, [F], can be obtained by the fol-
lowing equation.  

[𝐹] = ∫ 𝐻𝑖
𝑇𝑞̅𝑑𝛺 . (5) 

In this equation, Hi can be obtained by Eq. (4), and 𝑞̅ 
denotes; 

𝑞̅ = −[𝑀]{𝑢̈𝑔} . (6) 

It should be noted that, the Newmark-β method is 
used for the time integration of Eq. (1) by using the av-
erage acceleration method.  

 

3. Numerical Examples 

3.1. Data for numerical examples 

In the light of the results given in references (Özdemir 
and Ayvaz, 2007), the aspect ratios, b/a, of the plate are 
taken to be 1, 1.5, 2.0, and 3.0. The thickness/span ratios, 
t/a are taken as 0.05, 0.1, 0.2, and 0.3 for each aspect ra-
tio. The shorter span length of the plate is kept constant 
to be 3 m. The mass density, Poisson’s ratio, and the 
modulus of elasticity of the plate are taken to be 2.5 
kN/m2, 0.2, and 2.8x107 kN/m2 for both analysis. In or-
der to obtain the response of each plate in the analysis, 
the first 8 s of the East-West component of the March 13, 
1992 Erzincan earthquake in Turkey is used since the 
peak value of the record occurred in this range. 

For the sake of accuracy in the results, rather than 
starting with a set of a finite element mesh size and time 
increment, the mesh size and time increment required to 
obtain the desired accuracy were determined before 
presenting any results. This analysis was performed sep-
arately for the mesh size and time increment. It was con-
cluded that the results have acceptable error when 
equally spaced 4x4 mesh sizes are used for a 3 m x 3 m 
plate, if the 0.01 s time increment is used. Length of the 
elements in the x and y directions are kept constant for 
different aspect ratios as in the case of square plate.  

3.2. Results 

The absolute maximum values of displacements and 
bending moments of the plates modeled using MT17 el-
ement for different aspect ratios are presented in this 
study. The absolute maximum displacements of the 
plates for different aspect ratios, and thickness/span ra-
tios are given in Fig. 2.  

The absolute maximum bending moments Mx and My 
at the center of the plates simply supported and clamped 
plates along all four edges for different aspect ratios, and 
thickness/span ratios are given in Figs. 3 and 4, respec-
tively.  
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Fig. 2. Absolute maximum displacement of the simply 
supported and clamped plates for different aspect ra-

tios and thickness/span ratios. 

 

Fig. 3. Absolute maximum bending moment Mx at the 
center of the simply supported and clamped plates for 

different aspect ratios and thickness/span ratios. 

 

Fig. 4. Absolute maximum bending moment My at the 
center of the simply supported and clamped plates for 

different aspect ratios and thickness/span ratios. 

As seen from Fig. 3, the absolute maximum bending 
moments Mx at the center of simply supported and 
clamped plates increase with increasing aspect ratio and 
thickness/span ratio. The increase in the maximum 
bending moment Mx decreases with increasing aspect ra-
tio, and increases with increasing thickness/span ratio. 

In general, the effects of the changes in the aspect ratios 
on the absolute maximum bending moment, Mx, are 
larger than the changes in the thickness/span ratios.  

As seen from Fig. 4, the absolute maximum bending 
moments My at the center of simply supported and 
clamped plates decreases with increasing aspect ratio 
and thickness/span ratio. The decrease in the maximum 
bending moment My increases with increasing aspect ra-
tio, and decreases with decreasing thickness/span ratio. 
In general, the effects of the changes in the thick-
ness/span ratios on the absolute maximum bending mo-
ment, My, are larger than the changes in the aspect ratios. 

In this study, the absolute maximum bending mo-
ments Mx at the center of the edge in the y direction and 
the maximum bending moment My at the center of the 
edge in the x direction are not presented for the thick 
plates clamped along all four edges. It should be noted 
that the variations of these moments are similar to the 
absolute maximum bending moments Mx at the center of 
the thick clamped plates. 

The effectiveness of the aspect and thickness/span ra-
tios on the maximum responses considered in this study 
depends on the values of them. But, in general, the thick-
ness/span ratio is more effective on the maximum re-
sponses than the aspect ratio.  

 

4. Conclusions 

The purpose of this paper was to study shear locking-
free analysis of thick plates using Mindlin’s theory by us-
ing 17-noded finite elements and to determine the ef-
fects of the thickness/span ratio, the aspect ratio and the 
boundary conditions on the maximum displacements 
and bending moments of thick plates subjected to earth-
quake excitations. It is concluded that the coded pro-
gram can effectively be used in the earthquake analysis 
of the thick plates by using 17-noded finite element. The 
following conclusions can also be drawn from the results 
obtained in this study. 

The absolute maximum displacements of the thick 
plates increase with increasing aspect ratio for a con-
stant t/a ratio. The same displacements decrease with 
increasing t/a ratio for a constant b/a ratio. The effects 
of the changes in the thickness/span ratios on the abso-
lute maximum displacement are generally larger than 
the changes in the aspect ratios. 

The absolute maximum bending moment, Mx, at the 
center of the thick simply supported and clamped plates 
increases with increasing aspect ratio and thick-
ness/span ratio. The effects of the changes in the aspect 
ratios on the absolute maximum bending moment, Mx, of 
the thick simply supported and clamped plates are gen-
erally larger than the changes in the thickness/span ra-
tios. 

The absolute maximum bending moment, My, at the 
center of the thick simply supported and clamped plates 
decreases with increasing aspect ratio and increases 
with increasing thickness/span ratio. The effects of the 
changes in the thickness/span ratios on the absolute 
maximum bending moment, My, of the thick simply sup-
ported and clamped plates are generally larger than the 
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changes in the aspect ratios. The effectiveness of the as-
pect and thickness/span ratios on the maximum re-
sponses considered in this study depends on the values 
of them. 

In general, degrees of decreases and increases depend 
on the changes in the aspect and thickness/span ratios, 
and the changes in the thickness/span ratio are more ef-
fective on the maximum responses considered in this 
study than the changes in the aspect ratio. 
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