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A B S T R A C T 

An approach is presented for optimum design of cantilever reinforced concrete (RC) 
retaining wall via teaching-learning based optimization (TLBO) algorithm. The objec-

tive function of the optimization is to minimize total material cost including concrete 

and reinforcing steel bars of the cantilever retaining wall by considering overturning, 

sliding and bearing stabilities, bending moment and shear capacities and require-

ments for design and construction of reinforced concrete structures (TS 500/2000). 

TLBO algorithm is a simple algorithm without any special algorithm parameters. This 
innovative approach is providing an advantage to TLBO in terms of easily applying 

to the problem. The proposed method has been performed on numerical examples 

and the results are compared with previous approaches. Results show that, the meth-

odology is feasible for obtaining the optimum design of RC cantilever retaining walls. 
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1. Introduction 

The design process of the reinforced concrete (RC) 
structures involves some decisions, i.e. dimensions of 
the structural members, material properties (compres-
sive strength of concrete, yield strength of steel), diame-
ter and spacing of bars, etc. done by designer. The secu-
rity and total cost of the design are closely related with 
these decisions. Thus, the experience of the designer has 
an important role in the economy and structural safety. 
But, it may not enough to find the best design in mean of 
total cost considering the whole design process of the RC 
structures containing many design variables and using 
two materials with extremely different mechanical be-
havior and unit material cost. For that reason, it must be 
used or developed methods that are independent of the 
user experiences in order to ensure best (or optimum) 
design.  

Until recently, the optimum design methods are de-
veloped for frames (Balling and Yao, 1997; Guerra and 
Kiousis, 2006), beams (Barros et al., 2005; Barros et al., 
2012; Ferreira et al., 2003), pre-stressed concrete 
bridges (Sirca and Adeli, 2005), columns (Gil-Martin et 
al., 2010) and slabs (Ahmadkhanlou and Adeli, 2005).              

Despite having successfully applied under specific 
conditions, the mathematical methods may not present 
a general methodology for engineering design problems 
due to the complex (or nonlinear) relationship between 
design variables. For example, geometry dimension and 
shape of the cross section of the structural member ef-
fects internal forces, displacements and amount (size 
and spacing) of the bars. Thus, it is not easy to determine 
whole this relationship with a suitable formulation in or-
der to apply a conventional method and to find optimum 
results. For that reason, the metaheuristic algorithms are 
widely used for optimum design of such problems. In the 
documented methods, the most popular algorithms in 
the optimum design of RC member are genetic algorithm 
(Coello et al., 1997; Govindaraj and Ramasamy, 2005; 
Fedghouche and Tiliouine, 2012; Rafiq and Southcombe, 
1998; Rajeev and Krishnamoorthy, 1998; Camp et al., 
2003; Lee and Ahn, 2003; Govindaraj and Ramasamy, 
2007) and simulated annealing (Paya et al., 2008; Paya-
Zaforteza et al., 2009; Ceranic et al., 2001; Yepes et al., 
2008; Perea et al., 2008; Rama Mohan Rao and Shyju, 
2010). In these studies, several structural members in-
cluding beams, columns, frames, bridges and plates are 
handled as design problems.  
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In addition to these algorithms, particle swarm opti-
mization (Ahmadi-Nedushan and Varaee, 2009) big bang 
big crunch algorithm (Camp and Akin, 2012; Camp and 
Huq, 2013; Kaveh and Sabzi, 2012), harmony search al-
gorithm (Kaveh and Abadi, 2011; Akin and Saka, 2010; 
Akin and Saka, 2012; Bekdaş and Nigdeli, 2012; 2014;  
Nigdeli et al., 2015), bat algorithm (Bekdaş and Nigdeli, 
2016) and teaching-learning based optimization algo-
rithm (Temür and Bekdaş, 2016) are also employed for 
optimum design of RC members.   

In this paper, a methodology employing teaching-
learning based optimization developed by Rao et al. 
(2011) is presented for optimum design of cantilever re-
taining RC walls. Turkish Standard Requirements for de-
sign and construction of reinforced concrete structures 
(TS500/2000) regulation are considered in RC design. In 
order to see the efficiency of the proposed method, the 
analyses results are compared with the state-of-art algo-
rithms like particle swarm optimization (PSO) and big 
bang big crunch (BB-BC). 

 

2. Methodology 

In 2011, Rao et al. proposed a metaheuristic algorithm 
called teaching-learning based optimization (TLBO) 
from the inspiration of teaching and learning process in 
a classroom. Compared with other metaheuristics, one of 
the innovative parts of the TLBO algorithm is to not use 
specific algorithm parameters. The optimization process 
of TLBO algorithm can be summarized in four steps.   

Step I: In the first step, population number (pn), ranges 
of the design variables and stopping criterion (maximum 
iteration number) are defined.  
 
Step II: Then, the initial solution matrix is constructed by 
using pn number of the solution vectors. Each solution 
vector contains vn number of randomly generated de-
sign variables (Xi) which are shown in Fig. 1 and Table 1. 

 

Fig. 1. Design variables for cantilever retaining wall.

Table 1. Design variables. 

 Description 
Design 

variable 

Variables related to 

Cross-section  

dimension 

Heel projection X1 

Toe projection  X2 

Stem thickness at the top of the wall X3 

Stem thickness at the bottom of the wall X4 

Base slab thickness X5 

Variables related to  

RC design 

Diameter of reinforcing bars of stem, ϕs X6 

Distance between reinforcing bars of stem, Ss X7 

Diameter of reinforcing bars of the toe, ϕt X8 

Distance between reinforcing bars of the toe, St X9 

Diameter of reinforcing bars of the heel, ϕh X10 

Distance between reinforcing bars of the heel, Sh X11 

These variables (possible design solutions) are ran-
domized (Eq. (1)) within a defined range using upper 
(𝑋𝑖

𝑚𝑎𝑥) and lower limits (𝑋𝑖
𝑚𝑖𝑛).  

𝑋𝑖
𝑚𝑖𝑛 ≤ 𝑋𝑖 ≤ 𝑋𝑖

𝑚𝑎𝑥  . (1) 

By positioning each solution vector to a row, general 
form of the solution matrix can written as  

𝐶𝐿 =

[
 
 
 
 
 

𝑋1,1 𝑋1,2 ⋯ 𝑋1,𝑣𝑛

𝑋2,1 𝑋2,2 ⋯ 𝑋2,𝑣𝑛
∙
∙

𝑋𝑝𝑛−1,1

𝑋𝑝𝑛,1

∙
∙

𝑋𝑝𝑛−1,2

𝑋𝑝𝑛,2

⋯

∙
∙

𝑋𝑝𝑛−1,𝑣𝑛

𝑋𝑝𝑛,𝑣𝑛 ]
 
 
 
 
 

 . (2)
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Then, strength capacity and safety for stability of each 
retaining walls are checked by using constrains given in 
Table 2. The requirements of TS500/2000 regulation are 
considered for calculation strength capacity of sections 
and extremum limits. 

Before the next step, the objective functions (total 
costs) for each retaining walls are calculated (Eq. 3) and 
stored in a vector for future comparisons.  

𝑚𝑖𝑛 𝑓( 𝑋) =  𝐶𝐶 ∙ 𝑉𝑐 + 𝐶𝑠 ∙ 𝑊𝑠 . (3) 

In Eq. (3), Cc is unit cost of concrete Cs unit cost of steel, 
Vc is volume of concrete and Ws is weight of steel per unit 
length.  
 
Step III: According to TLBO rules, in the third step, 
teacher and learner phases are respectively applied in 
order to improve solutions. Mathematically, teacher (tp) 
and learner (lp) phases can be written as 

𝑋𝑛𝑒𝑤,𝑖
𝑖𝑝

= 𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑 ( 0,1 ) ∙ ( 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹 ∙ 𝑋𝑚𝑒𝑎𝑛) , (4) 

𝑋𝑛𝑒𝑤,𝑖
𝑙𝑝

= {
𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑 ∙ (𝑋𝑖 − 𝑋𝑗);  𝑓(𝑋𝑖) > 𝑓(𝑋𝑗)

𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑 ∙ (𝑋𝑗 − 𝑋𝑖);  𝑓(𝑋𝑖) < 𝑓(𝑋𝑗)
 , (5) 

respectively. In the Eqs. (3) and (4), Xteacher is the vector 
with best (minimum total cost) objective function in the 
solution matrix and it is defined as 

𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 = 𝑥𝑚𝑖𝑛𝑓(𝑋) . (6) 

Xmean is the mean value of the design variables formu-
lated as 

𝑋𝑚𝑒𝑎𝑛 =
∑ 𝑋𝑖

𝑝𝑛
𝑖=1

𝑝𝑛
 . (7) 

TF is an integer number called teaching factor written as 

𝑇𝐹 = 𝑟𝑜𝑢𝑛𝑑 [1 + 𝑟𝑛𝑑(0.1)] → {1 − 2} , (8) 

and it can be 1 or 2 according to the rnd (random reel 
number between 0 and 1) value. Xold,i and Xnew,i represent 
old and new values of the variables, respectively. After 
updating the design variables at each phase, the objec-
tive function of the new vector is calculated and com-
pared with the values of the old vector. 

     
Step IV: In this step, the stopping criterion is checked. 
The iterative process continue from the Step III, until the 
stopping criterion is satisfied.  

Table 2. Constraints on strength and dimensions of wall. 

Description Constraints 

Safety for overturning stability g1(X): SFO,design ≥ SFO 

Safety for sliding stability  g2(X): SFS,design ≥ SFS 

Safety for bearing capacity g3(X): SFB,design ≥ SFB 

Minimum bearing stress, qmin  g4(X): qmin ≥ 0 

Flexural strength capacities of critical sections, Md  g5-7(X): Md ≥ Mu 

Shear strength capacities of critical sections, Vd g8-10(X): Vd ≥ Vu 

Minimum reinforcement areas of critical sections, Asmin g11-13(X): As ≥ Asmin  

Maximum reinforcement areas of critical sections, Asmax g14-16(X): As ≤ Asmax  

Maximum steel bars spacing of critical sections, Smax g17-19(X): S ≤ Smax 

Minimum steel bars spacing of critical sections, Smin g20-22(X): S ≥ Smin 

Minimum concrete cover, cc g23(X): cc ≥ 70 mm 

Sectional limits 

g24(X): (X2 + X3) ≥ X1 

g25(X): (X6 + X7) ≥ X1 

Reinforcement development lengths, ldb 

and hook lengths, ldh 

g26(X): ldb,stem≥(X5-cc) or ldh,stem≥(X5-cc) 

g27(X): ldb,toe≥(X1-X2-cc) or 12db,toe≥(X5-cc) 

g28(X):ldb,heel≥ (X2+X3-cc) or 12db,heel≥(X5-cc) 

g29(X): ldb,key≥(X5-cc) or ldh,key≥(X5-cc) 
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3. Numerical Example 

The proposed methodology is applied to a cantilever 
retaining wall benchmark problem that described in 
Saribaş and Erbatur (1996). Design constraints and 
ranges of design variables for the problem can be seen in 
Table 3. The optimum costs were investigated under 
three different cases related with backfill slope angle, 
surcharge load and compressive strength of concrete. In 
order to compare the effectiveness of the presented ap-
proach, two other metaheuristic methods; PSO (Ahmadi-
Nedushan and Varaee, 2009) and BBBC (Camp and Akin, 
2012) were also adapted to the numerical example. 

The convergence to the optimum cost value of the 
methods can be seen in Fig. 1. As seen from the plot, alt-
hough all methods are achieved to find the optimum re-
sult, the TLBO is better than the other methods. As a re-
sult, the TLBO is the best method in point of computa-
tional effort (for obtaining the optimum results more 
quickly).  

In order to investigate statistical treatment of results 
in comparisons, averages and standard deviations of 
methods were calculated for different values of backfill 
slope angle. For each value of the backfill slope angle 100 
independent runs were performed. The averages and 
standard deviations can be seen in Figs. 2 and 3.

Table 3. Design constants and ranges of design variables. 

Definition Symbol Unit Value 

Height of stem H m 3.0 

Yield strength of steel fy MPa 420 

Compressive strength of concrete f΄c MPa 30 

Concrete cover cc mm 70 

Max. aggregate diameter Dmax mm 16 

Elasticity modulus of steel Es GPa 200 

Specific gravity of steel γs t/m3 7.85 

Specific gravity of concrete γc kN/m3 23.5 

Cost of concrete per m3 Cc ₺ 119 

Cost of steel per ton Cs ₺ 1751 

Design load factor  LF 1.7 

Surcharge load q kPa 20 

Backfill slope angle β ° 10 

Internal friction angle of retained soil ϕR ° 30 

Internal friction angle of base soil ϕB ° 0 

Unit weight of retained soil γR kN/m3 17.5 

Unit weight of base soil γB kN/m3 18.5 

Cohesion of retained soil cR kPa 0 

Cohesion of base soil cB kPa 125 

Depth of the soil in front of wall D m 0.5 

Safety for overturning stability SFO,design - 1.5 

Safety for sliding stability SFS,design - 1.5 

Safety for bearing capacity SFB,design - 3.0 

Range of stem thickness at top hstemt m 0.2-3 

Range of heel projection hbasew m 0.2-10 

Range of toe projection htoepro m 0.2-10 

Range of stem thickness at the bottom of wall hstemb m 0.2-3 

Range of base slab thickness hbaseslab m 0.2-3 

Range of diameter of reinforcing bars of stem ϕs mm 16-50 

Range of diameter of reinforcing bars of toe, ϕt mm 16-50 

Range of diameter of reinforcing bars of heel ϕh mm 16-50 
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Fig. 1. Convergence to optimum results of methods. 

      

Fig. 2. Average cost values of the methods for different values of backfill slope angle. 

 

Fig. 3. Standard deviation values of 100 independent runs for different values of backfill slope angle.

100 independent runs were also conducted with dif-
ferent random numbers for investigation of the optimum 
results sensitivity of the methods. As seen from the Fig. 
4, although the optimum results are obtained approxi-
mately 3 times bigger than true optimum value for some 
analyses of PSO and BBBC approaches, true optimums 
in all cases of TLBO method are found. According to the 
results, the algorithms can be sorted as TLBO, BBBC and 
PSO from the best to worst one. 

In Figs. 5 and 6, effects of surcharge load and com-
pressive strength of concrete to optimum cost can be 
seen. Minimum cost value is changed between 145₺-
170₺ and 270₺-310₺ for different surcharge loads and 
compressive strengths respectively. Also, an approxi-
mate linear relationship is observed for both cases. 
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Fig. 4. Optimum cost distribution plot for 100 independent designs: (a) A more detailed graph of the  
285.4₺-286.2₺ cost range; (b) A more detailed graph of the 280₺-350₺ cost range; (c) All solutions. 

 

Fig. 5. Minimum cost vs. surcharge load plot. 
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Fig. 6. Minimum cost vs. strength of concrete plot.

4. Conclusions 

The optimum cost for cantilever retaining RC walls 
were investigated for different conditions such as, back-
fill slope angle, surcharge loads and compressive 
strength of concrete. In addition to proposed method 
with TLBO metaheuristic approach, optimization pro-
cess were also conducted PSO and BBBS algorithms to 
show effectiveness of the presented approach. By con-
ducting 100 independent run, statistical treatment of re-
sults were observed for all algorithms. According to the 
analyses results, all algorithms are successful in finding 
optimum design of the wall for all cases. But, the best 
computational time for optimum results is obtained for 
TLBO algorithm. Additionally, sensitivity of the TLBO is 
better than PSO and BBBC algorithm. As conclusion, 
TLBO is effective and suitable approach for optimum de-
sign of cantilever retaining RC walls considering TS 
500/2000 regulation. 
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