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A B S T R A C T 

Cells of Voronoï are used as particles in the Discrete Element code CeaMka3D. This 
type of meshing does not leave geometrical space like that can be the case with spher-

ical particles. This method has already been used successfully to simulate the propa-

gation of seismic waves in a linear elastic medium in 2D or in 3D. In this paper, a 

specific axisymmetric formulation is presented. In a first part, the calculation of the 

volumetric deformation of a particle and the forces between particles are described. 

In a second part, the specific forces for the axisymmetric formulation are described. 

At last, this formulation is tested for the Girkmann problem. This axisymmetric 

benchmark has been presented in January 2008 by the International Association of 

Computational Mechanics (IACM) in order to test the singularity at the junction be-
tween shell and beam. The accuracy of the axisymmetric formulation for this Discrete 

Element Method is evaluated by this benchmark. The results of this Discrete Element 

Method are compared with others numerical methods. 
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1. Introduction 

Particle methods are meshless simulation techniques 
in which a continuum medium is approximated through 
the dynamics of a set of interacting solids. These include 
the Discrete Element Methods (DEM) first developed by 
Hoover and al. (1974) in models for crystalline materi-
als. They were applied to geotechnical problems by 
Cundall and Strack (1979).  

A Discrete Element code CeaMka3D has been devel-
oped by Mariotti and Monasse (2012). This method has 
been used successfully to simulate, for example, the 
propagation of seismic waves in a linear elastic medium 
by Mariotti (2007). This code has also been coupled with 
a finite element code by Mariotti et al. (2015) and a new 
symplectic leapfrog scheme has been developed in order 
to integrate 3D rigid-body rotation with external torque 
by Mariotti (2015).  

After a determination of the volumetric strain in 3D, 
the axisymmetric forces are described in order to re-
cover Hooke’s law. In the last part, the simulation with 
CeaMka3D of the Girkmann problem is presented. This 
problem has been described by Girkmann (1956) and 

studied by Timoshenko and Woinowsky-Krieger (1959). 
This axisymmetric benchmark has been presented in 
January 2008 by the International Associadtion of Com-
putational Mechanics (IACM) in order to test the singu-
larity at the junction between shell and beam. It has been 
studied as a benchmark problem by Pitkäranta et al. 
(2008) and Devloo et al. (2013). 

 

2. The Volumetric Strain in 3D 

The initial choice was to take a Voronoï mesh which 
allows, from a field of points, to bound polyhedrons. This 
type of meshing does not leave geometrical space like 
that can be the case with spherical particles. By geomet-
rical construction, the plan of contact between two par-
ticles is perpendicular to the line connecting the centers 
of particles. 

For example; let n be the normal direction between 
particles A and B as shown in Fig. 1. 

𝑛 =
𝐴𝐵

‖𝐴𝐵‖
 . (1) 
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Fig. 1. Initial contact between two particles. 

The initial distance between particles A and B at time 
t=0 is defined by: 

𝐷𝐴𝐵
𝑒𝑞

= ‖𝐴𝐵‖𝑡=0 . (2) 

The relative movement of both particles A and B ac-
cording to the normal is defined by:  

𝐷𝐴𝐵
𝑛 =𝐷𝐴𝐵

𝑒𝑞
− ‖𝐴𝐵‖ . (3) 

It is necessary to choose the method of calculation of 
the elastic volumetric strain of a particle A surrounded 
by other particles B during their movements. 

A particle A has only a part of its surface in touch with 
the other particles B. A volume of contact is defined by 
the following relation: 

𝑉𝐴
𝑐 =

1

3
∑

1

2𝑙𝑖𝑛𝑘𝑠 𝐵 𝐷𝐴𝐵
𝑒𝑞

𝑆𝐴𝐵  , (4) 

where SAB is the contact area between particles A and B. 
The variation of this volume of contact is given by the 

following equation: 

∆𝑉𝐴
𝑐 = ∑

1

2𝑙𝑖𝑛𝑘𝑠 𝐵 𝐷𝐴𝐵
𝑛 𝑆𝐴𝐵  . (5) 

To transform this variation of elastic volume of con-
tact to the elastic volumetric strain, it is necessary to in-
tegrate free surfaces of the particle which can also have 
an elastic strain. 

The complementary volume, called free volume, is 
then defined by: 

𝑉𝐴
𝐹 = 𝑉𝐴 − 𝑉𝐴

𝑐  . (6) 

The variation of elastic volume of the particle A is 
given by the relation: 

𝜀𝐴
𝑉 = 𝜀𝐴

𝑉𝐶 + 𝜀𝐴
𝑉𝐹 =

∆𝑉𝐴
𝐶+∆𝑉𝐴

𝐹

𝑉𝐴
 . (7) 

To define the variation of free volume, it is necessary 
to return to the Hooke’s law. On the free surface and ac-
cording to the normal for this free surface, the normal 
constraint is nil, so: 

𝜀𝐴
𝑛𝑛 =

−𝜗

1−2𝜗
𝜀𝐴

𝑉  (8) 

where 𝜗  is Poisson’s ratio. 
On the other hand, the normal elastic strain of the free 

surface is connected with the variation of the free vol-
ume  

𝜀𝐴
𝑛𝑛 =

1

3

∆𝑉𝐴
𝐹

𝑉𝐴
𝐹  . (9) 

So: 

𝜀𝐴
𝑉𝐹 =

∆𝑉𝐴
𝐹

𝑉𝐴
= −3

𝜗

1−2𝜗
(

𝑉𝐴
𝐹

𝑉𝐴
) 𝜀𝐴

𝑉 = −3
𝜗

1−2𝜗
(1 −

𝑉𝐴
𝐶

𝑉𝐴
) 𝜀𝐴

𝑉  , (10) 

and 

𝜀𝐴
𝑉𝐶 =

∆𝑉𝐴
𝐶

𝑉𝐴
 . (11) 

So: 

𝜀𝐴
𝑉 = 𝜀𝐴

𝑉𝐶 + 𝜀𝐴
𝑉𝐹 =

∆𝑉𝐴
𝐶

𝑉𝐴

− 3
𝜗

1 − 2𝜗
(1 −

𝑉𝐴
𝐶

𝑉𝐴

) 𝜀𝐴
𝑉  

=
∆𝑉𝐴

𝐶

𝑉𝐴

1

1+3
𝜗

1−2𝜗
(1−

𝑉𝐴
𝐶

𝑉𝐴
)

 . (12) 

At the end, 

𝜀𝐴
𝑉 =

1

𝑉𝐴

1

1+3
𝜗

1−2𝜗
(1−

𝑉𝐴
𝐶

𝑉𝐴
)

∑
1

2
𝑆𝐴𝐵𝐷𝐴𝐵

𝑛
𝑙𝑖𝑛𝑘𝑠 𝐵  . (13) 

An expression for the calculation of the elastic volu-
metric strain of a particle A has been determined. In the 
expression of the normal force between particles A and 
B, the following volumetric strain will be used. 

𝜀𝐴𝐵
𝑉 =

1

2
(𝜀𝐴

𝑉 + 𝜀𝐵
𝑉) . (14) 

The normal force between both particles A and B is 
then given by: 

𝐹𝐴𝐵
𝑛 = (𝐾𝑠

𝐷𝐴𝐵
𝑛

𝐷𝐴𝐵
𝑒𝑞 + 𝐾𝑉𝜀𝐴𝐵

𝑉 ) 𝑆𝐴𝐵  , (15) 

with 

𝐾𝑆 =
𝐸

1+𝜗
 , (16) 

𝐾𝑉 =
𝐸𝜗

(1+𝜗)(1−2𝜗)
 , (17) 

where E and 𝜗  are respectively Young’s modulus and 
Poisson’s ratio. 

The axisymmetric formulation is examined in the next 
part. 
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3. 2D Axisymmetric Formulation 

In a cylindrical coordinate system (r, , z), some prob-
lems are independent with respect to coordinate . This 
symmetry enables reduction to a 2D axisymmetric prob-
lem. The expression of Hooke’s law gives: 

𝜎𝑟𝑟 =
𝐸

1+𝜗

𝜕𝑢𝑟

𝜕𝑟
+ 𝐸𝜗

(1+𝜗)(1−2𝜗)
 (

𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝑟

𝑟
+ 𝜕𝑢𝑧

𝜕𝑧
) ,  

𝜎𝜃𝜃 =
𝐸

1+𝜗

𝑢𝑟

𝑟
+ 𝐸𝜗

(1+𝜗)(1−2𝜗)
 (𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝑟

𝑟
+ 𝜕𝑢𝑧

𝜕𝑧
) ,  

𝜎𝑧𝑧 =
𝐸

1+𝜗

𝜕𝑢𝑧

𝜕𝑧
+ 𝐸𝜗

(1+𝜗)(1−2𝜗)
 (

𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝑟

𝑟
+ 𝜕𝑢𝑧

𝜕𝑧
) ,  

𝜎𝑟𝑧 =
𝐸

2(1+𝜗)
(

𝜕𝑢𝑟

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑟
) ,  

𝜎𝑟𝜃 = 0 , 

𝜎𝑧𝜃 = 0 . (18) 

The kinematic of the particles is reduced to three de-
grees of freedom(𝑢𝑟 , 𝑢𝑧 , 𝜃). The geometry of the particle 
A is defined by a thickness equal to the value of its coor-
dinate r at the initial time 𝑟𝐴

0. The particle is defined by 
an angle portion of 1 radian. The volumetric strain of a 
particle can be separated into two terms. The first term 
corresponds to the volumetric strain in plane (r,   z), which 
is used to define a volume change 𝜀𝐴𝐵

𝑉  of particle A with 
its neighbours B in plane (r, z) like in the previous part. 
The second term in 𝑢𝑟 𝑟⁄  corresponds to the displace-
ment of a particle A along the radial direction r. 

The stress term 𝜎𝜃𝜃  introduces an additional force 
along axis r. This force is calculated assuming that parti-
cle A has two neighbouring particles in the orthoradial 
direction . Stress 𝜎𝜃𝜃 can be rewritten in the form be-
low:  

𝜎𝜃𝜃 =
𝐸(1−𝜗)

(1+𝜗)(1−2𝜗)

𝑢𝑟

𝑟
+

𝐸𝜗

(1+𝜗)(1−2𝜗)
 (𝜕𝑢𝑟

𝜕𝑟
+ 𝜕𝑢𝑧

𝜕𝑧
) . (19) 

The corresponding force 𝐹𝜃𝜃
𝐴  is orientated along the 

radial direction r of the plane, surface 𝑆𝐴  corresponds to 
the surface of particle A in plane (r, z), the equilibrium 
distance with the two orthoradial virtual particles corre-
sponds to the initial value 𝑟𝐴

0 of r for particle A, and the 
volumetric strain of particle A with its neighbours, 𝜀𝐴𝐵

𝑉 , is 
calculated in plane (r, z) only.  

𝐹𝜃𝜃
𝐴 =

𝐸(1−𝜗)𝑆𝐴

(1+𝜗)(1−2𝜗)

𝑟𝐴
0−𝑟

𝐴

𝑟𝐴
0 +

𝐸𝜗𝑆𝐴
(1+𝜗)(1−2𝜗)

 𝜀𝐴𝐵
𝑉  . (20) 

This formulation has already been verified for various 
value of the Poisson’s ratio by Mariotti and Monasse 
(2012), but this formulation for the Girkmann problem 
was verified in this study. 

 

4. Girkmann Problem 

The Girkmann problem is a benchmark for an axisym-
metric shell supported on a stiffening ring. The junction 
between the shell and the beam is a singularity which 
may output some deficiencies for a numerical method. 
This test was first described by Girkmann (1956) and 
later by Timoshenko and Woinowsky-Krieger (1959). A 
Benchmark was proposed in January 2008 by the Inter-
national Association of Computation Mechanics (IACM). 

This benchmark has been described in a paper from 
Szabo et al. (2010) and a paper from Devloo et al. (2013). 
A spherical shell of thickness h = 0.06 m and crown ra-
dius Rc = 15 m is connected to a stiffening ring at the me-
ridional angle  = 40°. The middle radius of the spherical 
shell is Rm = Rc/sin. The dimension of the section of the 
ring are horizontally a = 0.6 m and vertically b = 0.5 m 
(Fig. 2). 

 

Fig. 2. Geometry of the Girkmann problem (Shell in yellow, Ring in green).

The shell is elastic with a Young modulus E = 20.59 
109 Pa and a Poisson’s ratio 𝜗 = 0. The density of the ma-
terial is 3,269 kg/m3. A gravity force of 10 m/s2 is applied 
on the shell only and not on the ring. A uniform vertical 
pressure is acting on the base of the stiffening ring in or-
der to equilibrate the gravity force. The values expected 
in this benchmark are the shearing force Q in N/m and 
the bending moment M in Nm/m acting at the junction 
between the spherical shell and the stiffening ring.  

Classical continuous Finite Element Method may en-
counter difficulties at the singularity between the beam 
and the shell. For example, several results of axisymmet-
ric Finite Element Method are presented in the paper of 
Szabo et al. (2010), the values of Q are varying between 
940.9 N/m and 989.1 N/m and the values of M are vary-
ing between -36.62 and -89.11 Nm/m.  

According to Devloo et al. (2013), the Discontinuous 
Galerkin method has been shown more accurate in 
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solving this type of singularity.  So, the values of Q and M 
given by Devloo et al. (2013) for the high order DG for-
mulation are taken as reference results for this bench-
mark (Table 1).  

In this simulation with the Discrete Element Method, 
the shell and the ring are meshed with particles of about 
0.005 m as shown in Fig. 3. The CeaMka3D simulation 
gives comparable results with the results of Devloo et al. 
(2013) (Table 1), the relative error is less than 0.35 %. 
So, the Discrete Element Method gives accurate results 
for this benchmark.  

Table 1. Results for the Girkmann problem. 

Numerical Method Q (N/m) M (Nm/m) 

Pitkäranta  
Classical  M-B-R model 

942.5 -37.45 

Devloo  
DG-FEM 

943.65 -36.79 

CeaMka3D 
DEM 

946.4 -36.66 

 

Fig. 3. Zoom of the mesh at the junction between the shell and the stiffening ring for CeaMka3D  
(Shell in yellow, Ring in green).

5. Conclusions 

In the first part, the calculation of the volumetric de-
formation of a particle and the definition of forces and 
torques between particles has been described. 

In the second part, an axisymmetric formulation for 
the Discrete Element code CeaMka3D has been pre-
sented. This formulation is applied to verify the robust-
ness of the Discrete Element Method to the singularity of 
the Girkmann problem. This benchmark has been chosen 
because it may be quite difficult for classical continuous 
Finite Element Method.  

The results given by the Discrete Element Method are 
closed to the reference results given by a High Order Dis-
continuous Galerkin Method. So this Discrete Element 
Method seems accurate for this kind of benchmark with 
a strong gradient. The axisymmetric formulation for this 
Discrete Element Method is also verified by this bench-
mark. It is an encouraging result for the development of 
this kind of method. 

The Voronoï mesh has been chosen initially because 
this type of meshing does not leave geometrical space 
like that can be the case with spherical particles and the 
normal direction is linked directly to the positions of 

particles. In fact, the volume of contact of each particle is 
very important in order to define the volumetric strain. 

But at present, one limitation of this Discrete Element 
formulation is the Voronoï mesh. In fact, a special treat-
ment is necessary to create a Voronoï mesh along inter-
faces. It has been necessary to create a specific mesh gen-
erator in 2D and 3D in order to respect some geometrical 
interfaces with Voronoï mesh. In the future, it will be eas-
ier to use classical mesh generator with triangles parti-
cles in 2D or tetrahedrons particles in 3D.  So, one direc-
tion for the development of this Discrete Element 
Method will be to define the forces and torques for two 
triangles or two tetrahedrons in contact. 
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