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A B S T R A C T 

In this study, a four-span, 224m long, post-tensioned concrete box girder bridge sup-
ported on single column piers was subject to a series of controlled vehicle tests. 

Bridge acceleration response datasets were used to study the effect of truck speed 

and a sudden stop, on the modal identification of the bridge structure. Natural fre-

quencies and mode shapes of the bridge were determined using the frequency do-
main decomposition technique for all datasets. The passing of the truck rendered dif-

ficult to identify the first bridge frequency. Conversely, the vehicle tests improved the 

identification of higher vibration modes. This is because the truck preferentially ex-

cites the bridge vertical response, which is associated with higher modes of vibra-

tions, especially when a sudden stop of the vehicle occurs. Thus, carefully conducted 

vehicle-crossing tests provide detailed information about the bridge structure dy-

namics in the vertical direction. However, to identify lower modes, no vehicle on the 

bridge is preferred. 
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1. Introduction 

Bridges in service are subject to a combination of var-
ious external loads, among which traffic loads are con-
stantly imposed on the bridge structure. The dynamic re-
sponse of a highway bridge is a complex phenomenon 
and it is less understood for curved bridges. During the 
past decades, various studies have attempted to study 
the dynamic response of curved bridges under moving 
truck loads. For instance, Billing (1984) presented the 
outcomes from a series of dynamic tests of 27 bridges in 
Ontario, Canada.  

The datasets were obtained from more than 100 truck 
crossings for each bridge. It was pointed out bridge fre-
quencies identified under a single truck load are typi-
cally larger than design estimations. A similar study was 
conducted in Switzerland (Cantieni, 1983). Later, Kim et 
al. (1996) presented the results from truck load tests 
conducted on seven bridges in the city of Detroit, Michi-
gan. It was concluded truck loads on bridges are strongly 

site specific, even within the same geographic area. 
Senthilvasan et al. (2002) conducted a truck load test on 
the Turbot Street Bridge, a curved bridge in Australia, us-
ing a five-axle truck. It was found the deflections and 
strains (due to bending moments), are not amplified by 
the same amount. An important observation they made 
is the dynamic response not always increases with the 
speed of the vehicle, but it depends on the ratio of the 
vibration period to the traverse time. Brady et al. (2006) 
discussed the results from a truck load test on a simply 
supported bridge in Slovenia. More recently, Huang 
(2008) studied the deflection of a curved bridge under 
moving truck loads. 

This paper aims to contribute the body of literature 
for the study of bridge response under traffic loads. The 
paper presents the findings of a series of vehicle-cross-
ing tests conducted on the Fairview Road On-Ramp 
(FRO) bridge, located in Southern California, USA. The ef-
fect of truck speed and a sudden stop on the modal iden-
tification of the bridge structure is investigated. 
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2. Frequency Domain Decomposition (FDD) 
Technique 

The main problem associated with forced vibration 
tests on bridges, buildings, or dams stems from the diffi-
culty in exciting the most significant modes of vibration 
in a low range of frequencies with sufficient energy and 
in a controlled manner. Fortunately, recent technological 
developments in transducers and analog-to-digital 
(A/D) converters have made it possible to accurately 
measure the very low levels of dynamic response in-
duced by ambient excitations like wind or traffic. This 
has stimulated the development of output-only modal 
identification methods. Therefore, the performance of 
output-only modal identification tests became an alter-
native of great importance in the field of civil engineer-
ing. This allows accurate identification of modal proper-
ties of large structures at the commissioning stage or 
during their lifetime without interruption of normal traf-
fic. Ambient excitation usually provides multiple inputs 
and a wide-band frequency content thus stimulating a 
significant number of vibration modes. For simplicity, 
output-only modal identification methods assume that 
the excitation input is a zero-mean Gaussian white noise. 
This means that real excitation can be expressed as the 
output of a suitable filter excited with white noise input. 
Some additional computational poles without physical 
meaning appear as a result of the white noise assump-
tion (Cunha and Caetano, 2006). 

Output-only modal identification of a civil infrastruc-
ture system is associated with the identification of its 
modal parameters. In the analysis the loads subjected to 
the system are unknown and the modal identification 
has to be carried out based on the responses only. Clas-
sically, forced vibration is applied to the structures 
where the applied excitation (input) can be measurable. 
However, it is often to face the case where the input ex-
citation cannot be measured, i.e. ambient/traffic induced 
vibration. In such cases it is impractical, if not impossible 
to measure the excitation forces. Hence, the system iden-
tification techniques applied for the identification of 
modal parameters are separated in two main groups 
known as output-only and input-output techniques 
(Brincker et al., 2000). 

The Frequency Domain Decomposition (FDD) was 
first introduced by Brincker et al. (2000). The FDD tech-
nique takes the singular value decomposition (SVD) of 
the spectral matrix which is decomposed into a set of 
auto spectral density functions, each corresponding to a 
single degree of freedom (SDOF) system. The results of 
the FDD are exact when the input excitation is white 
noise, the structure is lightly damped and when the 
mode shapes of close modes are geometrically orthogo-
nal. If these assumptions are not satisfied the decompo-
sition into SDOF systems is approximate, but still the re-
sults are significantly accurate. 

2.1. Theoretical basis of the FDD technique 

The relationship between the unknown inputs x(t) 
and the measured responses y(t) can be expressed as  

𝐺𝑦𝑦(𝜔) = �̅�(𝜔)𝐺𝑥𝑥𝐻(𝜔)𝑇 , (1) 

where 𝐺𝑥𝑥  is the (rxr) Power Spectral Density (PSD) ma-
trix of the input, r is the number of inputs,  𝐺𝑦𝑦(𝜔) is the 
(mxm) PSD matrix of the responses, m is the number of 
responses, 𝐻(𝜔) is the (mxr) Frequency Response Func-
tion (FRF) matrix and “” and T denote complex conju-
gate and transpose, respectively. The FRF can be written 
in partial fraction, i.e. pole/residue form 

𝐻(𝜔) = ∑
𝑅𝑘

𝜔−𝜆𝑘
+

�̅�𝑘

𝜔−�̅�𝑘

𝑛
𝑘=1  , (2) 

where n is the number of modes, 𝜆𝑘 is the pole and 𝑅𝑘 is 
the residue given by 

𝑅𝑘 = 𝜙𝑘𝛾𝑘
𝑇 , (3) 

where 𝜙𝑘  and 𝛾𝑘  are the mode shape and the modal 
participation vectors, respectively. Usually, during ex-
perimental modal analysis using ambient/traffic vibra-
tion the inputs are unknown. Suppose the input is white 
noise, i.e. a random signals containing equal power 
within a fixed bandwidth at any center frequency, its PSD 
is a constant matrix, i.e. can be written as 𝐺𝑥𝑥 = 𝐶 , then 
Eq. (1) becomes 

 𝐺𝑦𝑦(𝜔) = ∑ ∑ [
𝑅𝑘

𝜔−𝜆𝑘
+

�̅�𝑘

𝜔−�̅�𝑘
]𝑛

𝑠=1
𝑛
𝑘=1 𝐶 [

𝑅𝑠

𝜔−𝜆𝑠
+

�̅�𝑠

𝜔−�̅�𝑠
]

𝐻

, (4) 

where superscript H denotes a complex conjugate and 
transpose. Multiplying the two partial fraction factors 
and making use of the Heaviside partial fraction theo-
rem, after some mathematical manipulations, the output 
PSD can be reduced to a pole/residue form as follows 

 𝐺𝑦𝑦(𝜔) = ∑
𝐴𝑘

𝜔−𝜆𝑘
+

�̅�𝑘

𝜔−�̅�𝑘
+

𝐵𝑘

−𝜔−𝜆𝑘
+

�̅�𝑘

−𝜔−�̅�𝑘

𝑛
𝑘=1  , (5) 

where Ak is the kth residue matrix of the output PSD. As 
for the output PSD itself the residue matrix is an (mxm) 
hermitian matrix and is given by 

 𝐴𝑘 = 𝑅𝑘𝐶 (∑
�̅�𝑠

𝑇

−𝜆𝑘−�̅�𝑠
+

𝑅𝑠
𝑇

−𝜆𝑘−𝜆𝑠

𝑛
𝑠=1 ) . (6) 

The contribution to the residue from the kth mode is 
given by 

 𝐴𝑘 =
𝑅𝑘𝐶�̅�𝑠

𝑇

2𝛼𝑘
 , (7) 

where 𝛼𝑘 is minus the real part of the pole 𝜆𝑘 = −𝛼𝑘 +
𝑗𝜔𝑘. As it appears this term becomes dominating when 
the damping is light, and, thus, is the case of light damp-
ing, the residue becomes proportional to the mode shape 
vector 

𝐴𝑘∞𝑅𝑘𝐶�̅�𝑘
𝑇 = 𝜙𝑘𝛾𝑘

𝑇𝐶𝛾𝑘𝜙𝑘
𝑇 = 𝑑𝑘𝜙𝑘𝜙𝑘

𝑇 , (8) 

where dk is a scalar constant. At a certain frequency 𝜔 only 
a limited number of modes will contribute significantly, 
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typically one or two modes. Let this set of modes be de-
noted by 𝑆𝑢𝑏(𝜔). Thus, in the case of a lightly damped 
structure, the response spectral density can always be 
written 

 𝐺𝑦𝑦(𝜔) = ∑
𝑑𝑘𝜙𝑘𝜙𝑘

𝑇

𝜔−𝜆𝑘
+

�̅�𝑘�̅�𝑘�̅�𝑘
𝑇

𝜔−�̅�𝑘
𝑘∈𝑆𝑢𝑏(𝜔)  . (9) 

This is a modal decomposition of the spectral matrix. 
The expression is similar to the results one would get di-
rectly from Eq. (1) under the assumption of independent 
white noise input, i.e. a diagonal spectral input matrix. 

2.2. FDD identification algorithm 

In the FDD identification, the first step is to estimate 
the PSD matrix. The estimate of the output PSD 𝐺𝑦𝑦(𝜔) 
known at discrete frequencies 𝜔 = 𝜔𝑖  is then decom-
posed by taking the Singular Value Decomposition (SVD) 
of the matrix 

𝐺𝑦𝑦(𝜔) = 𝑈𝑖𝑆𝑖𝑈𝑖
𝐻 , (10) 

where the matrix 𝑈𝑖 = [𝑢𝑖1, 𝑢𝑖2, … , 𝑢𝑖𝑚] is a unitary ma-
trix holding the singular vectors 𝑢𝑖𝑗 , and 𝑆𝑖  is a diagonal 
matrix holding the scalar singular values sij. Near a peak 
corresponding to the kth mode in the spectrum this 
mode, or maybe a possible close mode, will be dominat-
ing. If only the kth mode is dominating there will only be 
one term in Eq. (9). Thus, in this case, the first singular 
vector 𝑢𝑖1 is an estimate of the mode shape 

�̂� = 𝑢𝑖1 , (11) 

and the corresponding singular value is the auto power 
spectral density function of the corresponding single de-
gree of freedom system, refer to Eq. (9). This PSD func-
tion is identified around the peak by comparing the 
mode shape estimate �̂� with the singular vectors for the 
frequency lines around the peak. As long as a singular 
vector is found that has a high modal assurance criterion 
(MAC) value with �̂� , the corresponding singular value 
belongs to the SDOF density function.  

From the piece of the single degree of freedom 
(SDOF) density function obtained around the peak of 
the PSD, the natural frequency and the damping can be 
obtained. The piece of the SDOF PSD was taken back to 
the time domain by an Inverse Fast Fourier transform 
(IFFT), and the frequency and the damping was simply 
estimated from the crossing times and the logarithmic 

decrement of the corresponding SDOF autocorrelation 
function. 

In the case where two modes are dominating, the first 
singular vector will always be a good estimate of the 
mode shape of the strongest mode. However, in the case 
where the two modes are orthogonal, the first two sin-
gular vectors are unbiased estimates of the correspond-
ing mode shape vectors.  

In the case where the two modes are not orthogonal, 
the bias on the mode shape estimate of the dominant 
mode will typically be small, but the bias on the mode 
shape estimate of the weak mode will be strong. Thus, 
one has to estimate the mode shapes for the two close 
modes at two different frequency lines, one line where 
the first mode is dominant and another frequency line 
where the second mode is dominant. 

 

3. Description of Bridge, Monitoring System and 
Vehicle Crossing Tests 

3.1. Description of the Fairview Road On-Ramp (FRO) 
Bridge 

The Fairview Road On-Ramp Overcrossing (FRO) 
Bridge (Figs. 1, 2) is located in the city of Costa Mesa on 
the Interstate 405, one of the busiest routes in Southern 
California. The FRO Bridge is a four-span and one-lane 
continuous concrete box girder bridge. In plan the bridge 
is slightly curved with double curvature and radius of 
curvature of 600m (1,968.5ft). Summary plan and sec-
tion details are shown in Fig. 3. The length of the bridge 
is 224m (735ft) along the “F2” line, in which the lengths 
of spans running from south to north are 52.5, 59.5, 59.5 
and 52.5m (172.2, 195.2, 195.2 and 172.2ft), respec-
tively. The super-structure consists of a three-cell cast-
in-place pre-stressed and post-tensioned box girder 
which is aligned 6% to the horizontal. The deck is sup-
ported on two monolithic columns and sliding bearings 
at opposite abutments. Concrete traffic barriers are ap-
proximately 0.8m (1.75ft) high, attached to the outer 
edges of the road. 

The sub-structure consists of three single column 
bents and two tall-seat type abutments. The main bent 
reinforcement is anchored in solid concrete diaphragms 
filling the girder void at bent locations, providing conti-
nuity between column and box girder. The columns have 
circular cross-sections with 2.14m (7ft) as the diameter. 
The bents are founded on square RC pad footings and the 
abutments are supported on rectangular footings.

 

Fig. 1. A view of the Fairview Road On-Ramp Overcrossing (FRO) Bridge.  
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Fig. 2. A close look of the Fairview Road On-Ramp  
Overcrossing (FRO) Bridge. 

3.2. FRO Bridge monitoring system 

The FRO Bridge is instrumented with a total of 21 ac-
celerometers (Fig. 4). The accelerometers are either uni-, 
bi- or tri-axial force-balance servo-type accelerometers. 
An easy access to the data recorder is possible since it is 
installed on the ground below the deck at the beginning 
of the bridge. More details on the instrumentation can be 
found in Gomez (2011). 

3.3. Description of vehicle crossing tests on FRO 
Bridge 

A water truck with capacity of 2,000 gal, was used in 
the vehicle crossing tests (Fig. 5). At full capacity the 
truck has a gross vehicle weight of 138 kN. This weight 
was distributed as 49 kN at the front axle and 89 kN at 
the rear axle. The distance from the front axle to the rear 
axle is 3.96m. Although this truck is not one of the heav-
iest vehicles that could potentially pass on the FRO 
Bridge, it has a considerable mass to induce an adequate 
bridge response.

 

Fig. 3. Structural details of the Fairview Road On-Ramp Overcrossing (FRO) Bridge:  
(a) elevation; (b) plan view; (c) bent typical section; (d) abutment layout plan view;  

(e) typical abutment section (dimensions in m (ft)). 
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Fig. 4. Sensor layout at FRO Bridge. 

    

Fig. 5. Truck weight and dimensions.

During the vehicle-crossing tests (Fig. 6), after the 
bridge is closed to public traffic, the truck entered the be-
ginning of the bridge (Abutment 1) with a constant 
speed of 8 km/h (5 mph) and made a complete stop at 
the middle of the second span. After one minute, the 
truck started moving again at a speed of approximately 
8 km/h until it arrived at the middle of the third span 
where it made a second complete stop. After one minute, 
the truck resumed the trip and left the bridge at a speed 
of approximately 8 km/h. Afterwards, the truck made a 
U-turn and entered from the end of the bridge (Abut-
ment 5) and made two stops, one minute each, at the 
same locations as going forward (see Fig. 6). Then, the 
test vehicle exits the bridge at speed of 8 km/h and com-
pletes its first round trip. 

Another test consisted in driving the test vehicle at a 
speed of approximately 72-81 km/h (45-50 mph). When 
the vehicle arrived at the middle of the second span, the 
breaks were suddenly applied to generate an impact 
load on the bridge. Then, the truck proceeded at 8 km/h 
and left the bridge. Next, the truck made a U-turn for the 
final trip. In the last trip, the truck entered at the end of 
bridge and accelerated to reach a speed of approxi-
mately 48-56 km/h (30-35 mph). Another sudden break 
was applied at the middle of the third span. The test ve-
hicle resumed the trip at 8 km/h and left the bridge. 

 

4. Results and Discussion 

Fig. 7 shows the acceleration time-history response at 
sensor locations during the vehicle-crossing tests. It was 
found 7 accelerometers (#’s 9, 14, 17-21) were malfunc-
tioning at the time of the tests. Since the accelerometers 

were installed inside the box girder, it was not possible 
to access for a detailed inspection of the sensors and the 
reasons for the malfunctioning were unknown. There-
fore, the remaining 14 accelerometers were used to 
study the bridge response. Despite the malfunctioning 
sensors, it was still possible to attain an accurate identi-
fication of the modal parameters of the bridge. The re-
maining sensors provided the adequate information in 
order to identify the modes of vibration with high confi-
dence. 

In Fig. 7, the bridge response acceleration time-histo-
ries were subdivided into nine groups, identified by col-
ors, according to the level of acceleration. It can be ob-
served the magnitude of the vertical response of the 
bridge was drastically increased (about 200%) for the 
tests where a sudden stop of the test vehicle was applied. 
Afterwards, each group of accelerations was analyzed to 
identify the bridge modal parameters. 

4.1. Bridge modal identification 

The frequency domain decomposition (FDD) was ap-
plied to the acceleration datasets to identify bridge 
modal parameters. The FDD technique was introduced 
by Brincker et al. (2000) as an alternative to other fre-
quency domain system identification techniques. The 
FDD technique has been widely used for system identifi-
cation of bridges in recent years (Kim et al., 2003; Feng 
et al., 2004; Chen et al., 2006; Gomez et al., 2011; Gomez, 
2011). 

The power spectral density functions used by the FDD 
were estimated using Hanning windows with 60% over-
lap. In order to reduce background noise, a butter-worth 
infinite impulse response filter of order 8 was applied to 

89kN 49kN 
3.96m 
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the data with a pass-band defined by a lower frequency 
of 1 Hz and a higher frequency of 10 Hz. The FDD results 
are shown in Fig. 8. The identification of the natural fre-
quencies is presented for the nine groups of bridge re-

sponses separately. The natural frequencies are identi-
fied at approximately 1.465, 2.002, 2.295, 2.881, and 
3.076 Hz. It can be seen that natural frequencies are con-
sistent for each set of data.

 

Fig. 6. Description of vehicle crossing tests (total test duration was approximately 18 minutes).

In addition to bridge natural frequencies, partial 
mode shapes (as the bridge is instrumented at discrete 
locations only) are plotted for the first three modes (see 
Fig. 9). Although the first three modes exhibit some com-
bination of vertical and horizontal motions, it is clear 
that the first mode (f1 = 1.465 Hz) is a lateral rocking 
mode about the longitudinal axis of the bridge with the 
three bents in phase. This mode is clearly identified from 
the time history segment from 610 s to 800 s (cyan color 
in Fig. 7). During this time segment no vehicle was on the 
bridge. It is noted this mode is not always identified (or 
it has a low peak amplitude in the frequency plots) be-
cause in most of the data sets the data contain the re-
sponse of the bridge due to the truck load, which pre-
dominantly excites the vertical modes. This is clearly ob-
served in the next two modes of vibration (f2 = 2.002 Hz 
and f3 = 2.295 Hz), which are a combination of vertical 
bending and torsion of the bridge deck. 

From the results presented above, it can be sensibly 
argued the passing of the truck rendered difficult to 
identify the first bridge frequency. Conversely, the vehi-
cle tests improved the identification of higher vibration 
modes. This is because the truck tends to excite the 
bridge vertical response, which is associated with higher 
modes of vibration, especially when a sudden stop of the 
vehicle occurs (magenta and blue last two segments, 
from 800 s to 1098 s in Fig. 7). 

Another observation from the identification results is 
the natural frequencies are practically the same for dif-
ferent speeds of the truck as different segments in the 
time histories were recorded for different speeds as de-
scribed earlier. Therefore, the modes of vibration were 
not influenced by truck speeds, which ranged from 8 to 
80 km/h. Further studies are recommended to study the 
effect of truck speed on the modal identification by using 
higher vehicle velocities. 
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Fig. 7. Normalized acceleration time-history response at sensors during the vehicle tests.

5. Conclusions 

In this study, the findings of a series of vehicle cross-
ing test on a concrete bridge are presented. Acceleration 
response datasets were recorded during the tests. The 
natural frequencies of the bridge were determined using 
the frequency domain decomposition (FDD) technique 
for all datasets. The identification results show that the 
first frequency is associated with lateral mobilization of 
the deck and bending of the columns whereas higher 
modes are associated with the vertical and torsional mo-
bilization of the deck. 

It was observed that the passing of the truck renders 
difficult to identify the first bridge frequency. This is be-
cause the first bridge frequency is associated with bend-
ing of the columns and lateral mobilization of the deck. 
Conversely, the vehicle tests improved the identification 
of higher vibration modes because these are associated 

with vertical bridge response. This is more apparent for 
the crossing vehicle tests where a sudden stop was ap-
plied inducing a bigger vertical force on the bridge. In 
this case, the magnitude of the vertical response of the 
bridge is drastically increased (about 200%). 

Since no change in the identification results was ob-
served due to an increase in truck speed, it is concluded 
the amplification of the magnitude of the bridge re-
sponse due to an increased vertical load (heavier vehi-
cles or a sudden stop), exceeds any velocity effect. 

It is the authors’ opinion that carefully conducted ve-
hicle-crossing tests provide detailed information about 
the bridge structure dynamics in the vertical direction. 
However, to identify lower modes, no vehicle on the 
bridge is preferred. Moreover, much higher truck veloc-
ities than those attained in this study (a maximum of ap-
proximately 80 km/h) are recommended in order to 
study any effects on bridge response.  
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Fig. 8. Normalized first SV obtained from FDD applied to data recorded during vehicle crossing tests. 
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Fig. 9. Identified partial mode shapes of the FRO Bridge.
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