

CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 1 (4) (2015) 156–160

* Corresponding author. Tel.: +90-312-2102447 ; E-mail address: kurc@metu.edu.tr (Ö. Kurç)

ISSN: 2149-8024 / DOI: http://dx.doi.org/10.20528/cjsmec.2015.07.021

A substructure based parallel dynamic solution of large systems on

homogeneous PC clusters

Semih Özmen, Tunç Bahçecioğlu, Özgür Kurç *

Department of Civil Engineering, Middle East Technical University, 06531 Ankara, Turkey

A B S T R A C T

This study focuses on developing a parallel solution framework for the linear dy-
namic analysis of large structural models on homogeneous PC clusters. The frame-

work consists of two separate stages where the former is preparing data for the par-

allel solution that involves partitioning. The latter is a fully parallel finite element

analysis that utilizes substructure based solution approach with direct solvers to per-

form implicit integration. The linear dynamic analysis of a large scale model was per-

formed on a homogeneous PC cluster and the number of computers was varied in
order to demonstrate the performance and the efficiency of the overall solution

framework. The performance of the implemented framework was also compared

with the widely acknowledged parallel direct solver, MUMPS.

A R T I C L E I N F O

Article history:

Received 13 May 2015

Accepted 8 July 2015

Keywords:

Dynamic analysis

Parallel solution

Substructure

Workload balancing

PC clusters

1. Introduction

Parallel computing techniques have been imple-
mented in many finite element codes in consequence of
parallel computers becoming more available and afford-
able. Over the last thirty years, extensive research on
parallel solution algorithms has been performed. For the
time being, there are numerous parallel solution meth-
ods based on different strategies with iterative or direct
solvers (Sotelino, 1993) but their performance may be
limited depending on the type of the analysis, the parallel
environment, and the structural properties of the system.

In many structural engineering design offices, the
most readily available computer system for parallel
computing is the network of PC’s (PC cluster). Thus, the
civil engineering industry will benefit significantly from
a parallel solution framework that utilizes the existing
computer system at these offices. This way, not only the
time spent during the analysis will decrease but also the
existing computer system will be utilized more efficiently
without the need of purchasing any additional hardware.

This study focuses on developing an efficient parallel so-
lution framework for the linear dynamic solution of large
structural models on homogeneous PC clusters. Homogene-
ous PC clusters are composed of identical computers having
the same computational characteristics. The parallel solution

is performed by a substructure based solution method (Kurç,
2008) where the substructures are condensed by a mul-
tifrontal solver and the interface equations are solved with a
block-cyclic parallel dense solver (Blackford et al., 1997).

2. Method

2.1. Overview of the framework

The solution framework is composed of two main steps:
data preparation and parallel solution. The aim of the data
preparation step is to equalize the nodes at each substruc-
ture to balance the distribution of data among computers
for the improvement of the performance of the parallel so-
lution. Two main tasks at this stage is preparing the graph
representation of the structure and then partitioning it into
substructures. After the preparation of the substructures,
the parallel solution is performed by a fully parallel finite
element program which is capable of performing element
stiffness, mass and damping matrix computations, assem-
bly, solution, and element force computations in parallel.
When the program completes the solution, it prepares the
output for post-processing. All programs were developed
with C++ programming language and utilized MPICH2, mes-
sage passing library (MPICH2, 2010) for parallelization.

tel:+90-312-2102447
mailto:kurc@metu.edu.tr
http://dx.doi.org/10.20528/cjsmec.2015.07.021
http://cjsmec.challengejournal.com/

 Özmen et al. / Challenge Journal of Structural Mechanics 1 (4) (2015) 156–160 157

2.2. Data preparation

In order to divide the structure into substructures,
graph partitioning algorithms are utilized. The objective
of many existing partitioning algorithms (Hendrickson
and Kolda, 2000) is to minimize the communication vol-
ume while keeping the number of nodes balanced in
each substructure. The imbalances in local assembly and
condensation times (local solution) can significantly de-
crease the efficiency of the parallel solution because the
interface solution can not initiate until all local solutions
are finalized. Thus, the time spent during the local solu-
tion step is governed by the substructure with the slow-
est assembly and condensation time. By partitioning the
substructures with equal nodes in each substructure, it
was expected that the imbalance among the local solu-
tion times would decrease and as a result the time spent
during the parallel solution decreased.

 The data preparation algorithm first partitions the
structure into ‘p’ substructures where ‘p’ is equal to the
number of available computers after preparing the nodal
graph representation of the structural model. Partition-
ing is performed by recursive partitioning algorithm of
METIS (Karypis and Kumar, 1998), a multilevel graph par-
titioning library. The data is prepared for the parallel so-
lution. The node and element definitions of the substruc-
tures are created using the structural and the selected
partitioning information. During that process, the inter-
face elements, whose nodes are on two or more substruc-
tures, are assigned to one of their adjacent substructure.

Then, each computer orders the equations of their
substructures utilizing MSMD ordering algorithm (Liu,
1989) to optimize the solution. MSMD algorithm num-
bers the vertices by stages, in other words, the vertices
belonging to stage i are numbered before the vertices be-
longing stage i+1. Thus, during numbering, the internal
and interface vertices are assigned to stages 0 and 1, re-
spectively.

2.3. Parallel solution

2.3.1. Overview

Implicit Newmark method (Newmark, 1959) is a nu-

merical integration method presented by Newmark for
the solution of dynamic structural problems. The equa-
tion of motion that represents a dynamic structural sys-
tem can be written as

[𝑀]{�̈�}
𝑛

+ [𝐶]{�̇�}
𝑛

+ {𝑅𝑖𝑛𝑡}𝑛 = {𝑅𝑒𝑥𝑡}𝑛 , (1)

where for linear systems,

{𝑅𝑖𝑛𝑡}𝑛 = [𝐾]{𝑈}𝑛 . (2)

Implicit Newmark method is implicit as the solution
of {𝑈}𝑛+1 depends on variables both at time n+1 and n
whereas in explicit methods solution of {𝑈}𝑛+1 depends
on only variables at time t. The general formulation of
Implicit Newmark method (Wilson, 1962) can be written
as

[𝐾]{𝑈}𝑛+1 = {𝑅𝑒𝑥𝑡}𝑛+1 + [𝑀] {
1

𝛽∆𝑡2
{𝑈}𝑛 +

1

𝛽∆𝑡
{�̇�}

𝑛
+ (

1

2𝛽
−

1) {�̈�}
𝑛

} + [𝐶] {
𝛾

𝛽∆𝑡
{𝑈}𝑛 + (

𝛾

𝛽
− 1) {�̇�}

𝑛
+ (

𝛾

2𝛽
− 1) {�̈�}

𝑛
} , (3)

where

[𝐾] =
1

𝛽∆𝑡2
[𝑀] +

𝛾

𝛽∆𝑡
[𝐶] + [𝐾] . (4)

As [𝐾] involves the stiffness matrix it cannot be a di-
agonal matrix. Thus full factorization of [𝐾] is needed to
solve Eq. (3). For linear systems [𝐾] matrix can be factor-
ized once and then repeatedly solved for each time step.
It can be shown (Hughes, 1983) that Implicit Newmark
method is unconditionally stable when 2𝛽 ≥ 𝛾 ≥ 1/2. In
this study γ=1/2 and β=1/4 values are used.

2.3.2. Implementation

The parallel solution initiates by creating separate

data structures at each computer from the input file pre-
pared by the data preparation program. Then, each com-
puter assigns degrees of freedom to its nodes. The nodes
of each substructure were written into the input file ac-
cording to their optimized order. Hence, during the as-
signment process, each node is visited one by one and
the nodes’ active degrees of freedom are numbered con-
secutively. After that, stiffness and force vectors are as-
sembled.

Besides the global stiffness matrix and load vector,
mass and damping matrices shall be assembled prior to
the initialization of repetitive solution by the implicit
Newmark integration algorithm. These matrices are as-
sembled at the element level to minimize the in-core
memory consumption. Stiffness and mass matrices of
every finite element of the structural model are com-
puted and assembled to global matrices. Elemental mass
matrices can be either lumped or consistent according to
the model needs. The damping matrix is computed as a
linear combination of the elemental stiffness and ele-
mental mass matrices according to the Rayleigh damp-
ing method (Rayleigh, 1894).

Due to the nature of linear dynamic solution, the [𝐾]
matrix is factorized once and then this system is solved
repeatedly at each time step. Factorization of [𝐾] matrix
consists of two steps as; condensation and interface sys-
tem factorization. The first step of the factorization is
static condensation of each substructure which means
that contributions from internal nodes are reflected to
the interface nodes. The condensations are performed
by using a parallel direct solver, MUMPS (Amestoy et al.,
2000) which performs LDLT factorization of positive def-
inite symmetric matrices. Up to this point, neither com-
munication nor synchronization among computers is re-
quired.

As a second step; the interface stiffness matrix is as-
sembled, where each computer sends and receives some
portion of the interface stiffness matrix. In order to uti-
lize the parallel dense matrix solver of ScaLAPACK li-
brary (Blackford et al., 1997), the interface matrix is dis-
tributed as 2D rectangular blocks in a cyclic manner.
First each computer prepares a data distribution scheme

158 Özmen et al. / Challenge Journal of Structural Mechanics 1 (4) (2015) 156–160

and data buffers that involves the parts of the matrix that
will be sent to a particular computer. Then, the data
transfer initiates in such a way that none of the comput-
ers stays idle. As the distribution of the interface stiffness
matrix is finalized, it is factorized by utilizing parallel
LDLT factorization method.

Similarly, right hand side of the Eq. (3) is computed in
substructure level, condensed to interface nodes and
then it is re-assembled to form interface system load vec-
tor. At each time step interface system load vector is
computed and then it is solved with the factorized inter-
face system matrix and the displacements at interface
level are obtained. By recovering the interface displace-
ments back to substructure level, right hand side vector
can be computed for the next time step. In this manner,
algorithm continues until the last time step reached. In
addition to the nodal displacements, at each time step,
the forces and the stresses for each element in a sub-
structure can be computed.

3. Results and Discussions

The efficiency of the presented framework was tested
on the homogeneous PC cluster composed of eight com-
puters with identical hardware. The cluster is composed
of eight Intel Core2Quad Q9300@2.5 GHz processors
and 3.23 GB RAMs. Intel Core2Quad family processors
involve four processors that are working at 2.5 GHz and
are able to share the memory. However, this feature of
this cluster is not utilized during these tests. All comput-
ers were running Windows XP and were connected with
an ordinary 1 GBit network switch.

2D square mesh is a mathematical model having
40000 quadrilateral shell elements (Fig. 1) with 40401
nodes and ~130000 equations. Dynamic loading is ap-
plied to the system at certain time steps and behaviour
is monitored for 20 seconds with 0.02 seconds intervals.

Fig. 1. 2D square mesh model with a sample partition-
ing among computers.

Fig. 2 presents the substructure assembly, dynamic
system matrix factorization and back substitution tim-
ings for the dynamic solution of the test model by utiliz-
ing 1, 2, 4, 6 and 8 computers for FEMLib solver and
MUMPS solver, respectively.

For both solution methods, substructure assembly
timings are decreasing almost in the same order of the
increase in number of computers utilized. For example,
while assembly timing for a single computer was 94.6
seconds, this timing dropped to 46.1 seconds and 24.3
seconds for the solution with FEMLib by two and four
computers, respectively. This is certainly expected due
to the fact that the number of elements for each sub-
structure is decreasing almost in the same order.

Fig. 2. Timings of main stages for FEMLib (a) and
MUMPS (b) solvers.

Factorization stage, although it was one of the most
time consuming stage for a static solution, was not a gov-
erning factor in dynamic solution, because it was com-
puted only once compared to the forward and back sub-
stitutions for a thousand time-steps. Fig. 2, verifies this
fact and also reveals a mild decrease in factorization
stage with the increasing number of computers. When
the timings of FEMLib and MUMPS solvers are com-
pared, obviously the forward and back substitution
stages were faster in the latter one. For solution by eight
computers, back substitution for thousand iterations
was computed by FEMLib in 20.1 seconds. However, the
same computation was done by MUMPS in 10.8 seconds.

Fig. 3 illustrates the timings of different steps of dy-
namic system matrix factorization and those of dynamic
system solution with FEMLib solver, respectively, for the
various numbers of computers. For both, obviously con-
densation is decreasing as the number of computers uti-
lized increase. On the contrary, interface assembly, inter-
face factorization, load assembly and interface solution
timings are gradually increasing. This behaviour is ex-
pected because the number of interface nodes is increas-
ing with the increase in the number of substructures.

 Özmen et al. / Challenge Journal of Structural Mechanics 1 (4) (2015) 156–160 159

Fig. 3. Timings of factorization (a) and forward - back
substitution (b) for FEMLib.

Assembly of the interface matrix and load vector in-
crease as the number of computers increase because
more communication is required among the computers
to assemble a bigger system. These detailed timings are
conclude the fact that by increasing the substructure size
one can gain from condensation timings, but should lose
from assembly and factorization because of the increas-
ing interface system size.

Fig. 4 presents the total dynamic solution timings of
the test model (a) and the speed-up values obtained (b)
by utilizing 2, 4, 6 and 8 computers for FEMLib solver
and MUMPS solver, respectively.

The dynamic solution by utilizing single computer
completed in 123.1 seconds and 112.8 seconds for FEM-
Lib and MUMPS solvers, respectively. From the previous
figures it was revealed that this difference is mainly be-
cause the difference during the back substitution stage.
By utilizing two, four and eight computers in parallel, the
dynamic solution timings reduced to 71.0 seconds, 43.6
seconds and 35.9 seconds, respectively. Speed-up value
which is the fraction of parallel solution timings to single
computer solution timings are also given in Fig. 4(b). For
the solution with two, four, six and eight computers,
speed-up values 1.74, 3.06, 2.90 and 3.48 were obtained.
Thus, although the speed-up values for two and four
computers are close to theoretical values of 2.0 and 4.0,
speed-up values for the six and eight computers are half
of the theoretical values of 6.0 and 8.0. Because when the
number of substructures is increased, interface system
size is increasing.

Fig. 4. Total Timings (a) and Speed-ups (b) for FEMLib
and MUMPS solvers.

4. Conclusions

This study presented a parallel solution framework
for the linear dynamic analysis of large structures on ho-
mogeneous PC clusters. For the example problem con-
sidered, the presented method achieved almost compar-
ative results to widely acknowledged parallel direct
solver, MUMPS. Furthermore, the total solution time de-
creased as the number of computers increased. Thus,
this framework is very efficient and can be utilized to
solve large problems on cheap and ordinary PC clusters
of homogeneous type.

Acknowledgements

Funding provided by TÜBİTAK under grant number
108M586 is gratefully acknowledged.

REFERENCES

Amestoy PR, Du IS, Koster J (2000). MUMPS: A general purpose distrib-
uted memory sparse solver. In Proceedings of PARA2000, 5th Inter-

national Workshop on Applied Parallel Computing, 122-131.

Blackford LS, Choi J, Cleary A, D'Azeuedo E, Demmel J, Dhillon I, Ham-
marling S, Henry G, Petitet A, Stanley K, Walker D, Whaley RC

(1997). ScaLAPACK User's Guide, Society for Industrial and Applied

Mathematics, USA.
Hendrickson B, Kolda TG (2000). Graph partitioning models for paral-

lel computing. Parallel Computing, 26, 1519-1534.

160 Özmen et al. / Challenge Journal of Structural Mechanics 1 (4) (2015) 156–160

Hughes TJR (1983). Analysis of transient algorithms with particular

reference to stability behaviour. Computational Methods for Transi-

ent Analysis, T. Belytschko and T.J.R. Hughes, eds., pp. 67-155.
Karypis G, Kumar V (1998). METIS: A software package for partitioning

unstructured graphs, partitioning meshes, and computing fill-re-

ducing orderings of sparse matrices, version 4.0.
Kurc O (2008). Parallel Computing in Structural Engineering. VDM Ver-

lag, Germany.

Liu JWH (1989). On the minimum degree ordering with constraints.
SIAM Journal on Scientific Computing, 10, 1136-1145.

MPICH2 Library (2010). Message Passing Interface Standard v2.0 re-

trieved from http://www-unix.mcs.anl.gov/mpi.

Newmark NM (1959). A method of computation for structural dynam-

ics. ASCE Journal of the Engineering Mechanics Division , 85, No.

EM3.
Rayleigh JWS (1894). The theory of sound. 2nd ed. (reprinted by Dover

Publications, New York, 1945), vol. I, pp. 102, vol. II, pp. 312.

Sotelino ED (2003). Parallel processing techniques in structural engi-
neering applications. ASCE Journal of Structural Engineering,

29(12), 1698-1706.

Wilson E (1962). Dynamic response by step-by-step matrix analysis.
Proceedings, Symposium on the Use of Computers in Civil Engineering,

Labortotio Nacional de Engenharia Civil, Lisbon, Portugal.

http://www-unix.mcs.anl.gov/mpi/

