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A B S T R A C T 

This study focuses on developing a parallel solution framework for the linear dy-
namic analysis of large structural models on homogeneous PC clusters. The frame-

work consists of two separate stages where the former is preparing data for the par-

allel solution that involves partitioning. The latter is a fully parallel finite element 

analysis that utilizes substructure based solution approach with direct solvers to per-

form implicit integration. The linear dynamic analysis of a large scale model was per-

formed on a homogeneous PC cluster and the number of computers was varied in 
order to demonstrate the performance and the efficiency of the overall solution 

framework. The performance of the implemented framework was also compared 

with the widely acknowledged parallel direct solver, MUMPS. 
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1. Introduction 

Parallel computing techniques have been imple-
mented in many finite element codes in consequence of 
parallel computers becoming more available and afford-
able. Over the last thirty years, extensive research on 
parallel solution algorithms has been performed. For the 
time being, there are numerous parallel solution meth-
ods based on different strategies with iterative or direct 
solvers (Sotelino, 1993) but their performance may be 
limited depending on the type of the analysis, the parallel 
environment, and the structural properties of the system. 

In many structural engineering design offices, the 
most readily available computer system for parallel 
computing is the network of PC’s (PC cluster). Thus, the 
civil engineering industry will benefit significantly from 
a parallel solution framework that utilizes the existing 
computer system at these offices. This way, not only the 
time spent during the analysis will decrease but also the 
existing computer system will be utilized more efficiently 
without the need of purchasing any additional hardware. 

This study focuses on developing an efficient parallel so-
lution framework for the linear dynamic solution of large 
structural models on homogeneous PC clusters. Homogene-
ous PC clusters are composed of identical computers having 
the same computational characteristics. The parallel solution 

is performed by a substructure based solution method (Kurç, 
2008) where the substructures are condensed by a mul-
tifrontal solver and the interface equations are solved with a 
block-cyclic parallel dense solver (Blackford et al., 1997). 

 

2. Method 

2.1. Overview of the framework 

The solution framework is composed of two main steps: 
data preparation and parallel solution. The aim of the data 
preparation step is to equalize the nodes at each substruc-
ture to balance the distribution of data among computers 
for the improvement of the performance of the parallel so-
lution. Two main tasks at this stage is preparing the graph 
representation of the structure and then partitioning it into 
substructures. After the preparation of the substructures, 
the parallel solution is performed by a fully parallel finite 
element program which is capable of performing element 
stiffness, mass and damping matrix computations, assem-
bly, solution, and element force computations in parallel. 
When the program completes the solution, it prepares the 
output for post-processing. All programs were developed 
with C++ programming language and utilized MPICH2, mes-
sage passing library (MPICH2, 2010) for parallelization. 
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2.2. Data preparation 

In order to divide the structure into substructures, 
graph partitioning algorithms are utilized. The objective 
of many existing partitioning algorithms (Hendrickson 
and Kolda, 2000) is to minimize the communication vol-
ume while keeping the number of nodes balanced in 
each substructure. The imbalances in local assembly and 
condensation times (local solution) can significantly de-
crease the efficiency of the parallel solution because the 
interface solution can not initiate until all local solutions 
are finalized. Thus, the time spent during the local solu-
tion step is governed by the substructure with the slow-
est assembly and condensation time. By partitioning the 
substructures with equal nodes in each substructure, it 
was expected that the imbalance among the local solu-
tion times would decrease and as a result the time spent 
during the parallel solution decreased. 

 The data preparation algorithm first partitions the 
structure into ‘p’ substructures where ‘p’ is equal to the 
number of available computers after preparing the nodal 
graph representation of the structural model. Partition-
ing is performed by recursive partitioning algorithm of 
METIS (Karypis and Kumar, 1998), a multilevel graph par-
titioning library. The data is prepared for the parallel so-
lution. The node and element definitions of the substruc-
tures are created using the structural and the selected 
partitioning information. During that process, the inter-
face elements, whose nodes are on two or more substruc-
tures, are assigned to one of their adjacent substructure.  

Then, each computer orders the equations of their 
substructures utilizing MSMD ordering algorithm (Liu, 
1989) to optimize the solution. MSMD algorithm num-
bers the vertices by stages, in other words, the vertices 
belonging to stage i are numbered before the vertices be-
longing stage i+1. Thus, during numbering, the internal 
and interface vertices are assigned to stages 0 and 1, re-
spectively. 

2.3. Parallel solution 

2.3.1. Overview 

 
Implicit Newmark method (Newmark, 1959) is a nu-

merical integration method presented by Newmark for 
the solution of dynamic structural problems. The equa-
tion of motion that represents a dynamic structural sys-
tem can be written as  

[𝑀]{�̈�}
𝑛

+ [𝐶]{�̇�}
𝑛
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where for linear systems,  

{𝑅𝑖𝑛𝑡}𝑛 = [𝐾]{𝑈}𝑛 . (2) 

Implicit Newmark method is implicit as the solution 
of {𝑈}𝑛+1 depends on variables both at time n+1 and n 
whereas in explicit methods solution of {𝑈}𝑛+1 depends 
on only variables at time t. The general formulation of 
Implicit Newmark method (Wilson, 1962) can be written 
as  
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where  
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[𝑀] +  

𝛾
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[𝐶] + [𝐾] . (4) 

As [𝐾] involves the stiffness matrix it cannot be a di-
agonal matrix. Thus full factorization of [𝐾] is needed to 
solve Eq. (3). For linear systems [𝐾] matrix can be factor-
ized once and then repeatedly solved for each time step. 
It can be shown (Hughes, 1983) that Implicit Newmark 
method is unconditionally stable when  2𝛽 ≥ 𝛾 ≥ 1/2. In 
this study γ=1/2 and β=1/4 values are used.  

2.3.2. Implementation 

 
The parallel solution initiates by creating separate 

data structures at each computer from the input file pre-
pared by the data preparation program. Then, each com-
puter assigns degrees of freedom to its nodes. The nodes 
of each substructure were written into the input file ac-
cording to their optimized order. Hence, during the as-
signment process, each node is visited one by one and 
the nodes’ active degrees of freedom are numbered con-
secutively. After that, stiffness and force vectors are as-
sembled. 

Besides the global stiffness matrix and load vector, 
mass and damping matrices shall be assembled prior to 
the initialization of repetitive solution by the implicit 
Newmark integration algorithm. These matrices are as-
sembled at the element level to minimize the in-core 
memory consumption. Stiffness and mass matrices of 
every finite element of the structural model are com-
puted and assembled to global matrices. Elemental mass 
matrices can be either lumped or consistent according to 
the model needs. The damping matrix is computed as a 
linear combination of the elemental stiffness and ele-
mental mass matrices according to the Rayleigh damp-
ing method (Rayleigh, 1894).  

Due to the nature of linear dynamic solution, the [𝐾] 
matrix is factorized once and then this system is solved 
repeatedly at each time step. Factorization of [𝐾] matrix 
consists of two steps as; condensation and interface sys-
tem factorization. The first step of the factorization is 
static condensation of each substructure which means 
that contributions from internal nodes are reflected to 
the interface nodes. The condensations are performed 
by using a parallel direct solver, MUMPS (Amestoy et al., 
2000) which performs LDLT factorization of positive def-
inite symmetric matrices. Up to this point, neither com-
munication nor synchronization among computers is re-
quired. 

As a second step; the interface stiffness matrix is as-
sembled, where each computer sends and receives some 
portion of the interface stiffness matrix. In order to uti-
lize the parallel dense matrix solver of ScaLAPACK li-
brary (Blackford et al., 1997), the interface matrix is dis-
tributed as 2D rectangular blocks in a cyclic manner. 
First each computer prepares a data distribution scheme 
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and data buffers that involves the parts of the matrix that 
will be sent to a particular computer. Then, the data 
transfer initiates in such a way that none of the comput-
ers stays idle. As the distribution of the interface stiffness 
matrix is finalized, it is factorized by utilizing parallel 
LDLT factorization method. 

Similarly, right hand side of the Eq. (3) is computed in 
substructure level, condensed to interface nodes and 
then it is re-assembled to form interface system load vec-
tor. At each time step interface system load vector is 
computed and then it is solved with the factorized inter-
face system matrix and the displacements at interface 
level are obtained. By recovering the interface displace-
ments back to substructure level, right hand side vector 
can be computed for the next time step. In this manner, 
algorithm continues until the last time step reached. In 
addition to the nodal displacements, at each time step, 
the forces and the stresses for each element in a sub-
structure can be computed. 

 

3. Results and Discussions 

The efficiency of the presented framework was tested 
on the homogeneous PC cluster composed of eight com-
puters with identical hardware. The cluster is composed 
of eight Intel Core2Quad Q9300@2.5 GHz processors 
and 3.23 GB RAMs. Intel Core2Quad family processors 
involve four processors that are working at 2.5 GHz and 
are able to share the memory. However, this feature of 
this cluster is not utilized during these tests. All comput-
ers were running Windows XP and were connected with 
an ordinary 1 GBit network switch. 

2D square mesh is a mathematical model having 
40000 quadrilateral shell elements (Fig. 1) with 40401 
nodes and ~130000 equations. Dynamic loading is ap-
plied to the system at certain time steps and behaviour 
is monitored for 20 seconds with 0.02 seconds intervals. 

  

Fig. 1. 2D square mesh model with a sample partition-
ing among computers. 

Fig. 2 presents the substructure assembly, dynamic 
system matrix factorization and back substitution tim-
ings for the dynamic solution of the test model by utiliz-
ing 1, 2, 4, 6 and 8 computers for FEMLib solver and 
MUMPS solver, respectively.  

For both solution methods, substructure assembly 
timings are decreasing almost in the same order of the 
increase in number of computers utilized. For example, 
while assembly timing for a single computer was 94.6 
seconds, this timing dropped to 46.1 seconds and 24.3 
seconds for the solution with FEMLib by two and four 
computers, respectively. This is certainly expected due 
to the fact that the number of elements for each sub-
structure is decreasing almost in the same order. 

  

Fig. 2. Timings of main stages for FEMLib (a) and 
MUMPS (b) solvers. 

Factorization stage, although it was one of the most 
time consuming stage for a static solution, was not a gov-
erning factor in dynamic solution, because it was com-
puted only once compared to the forward and back sub-
stitutions for a thousand time-steps. Fig. 2, verifies this 
fact and also reveals a mild decrease in factorization 
stage with the increasing number of computers. When 
the timings of FEMLib and MUMPS solvers are com-
pared, obviously the forward and back substitution 
stages were faster in the latter one. For solution by eight 
computers, back substitution for thousand iterations 
was computed by FEMLib in 20.1 seconds. However, the 
same computation was done by MUMPS in 10.8 seconds. 

Fig. 3 illustrates the timings of different steps of dy-
namic system matrix factorization and those of dynamic 
system solution with FEMLib solver, respectively, for the 
various numbers of computers. For both, obviously con-
densation is decreasing as the number of computers uti-
lized increase. On the contrary, interface assembly, inter-
face factorization, load assembly and interface solution 
timings are gradually increasing. This behaviour is ex-
pected because the number of interface nodes is increas-
ing with the increase in the number of substructures. 
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Fig. 3. Timings of factorization (a) and forward - back 
substitution (b) for FEMLib. 

Assembly of the interface matrix and load vector in-
crease as the number of computers increase because 
more communication is required among the computers 
to assemble a bigger system. These detailed timings are 
conclude the fact that by increasing the substructure size 
one can gain from condensation timings, but should lose 
from assembly and factorization because of the increas-
ing interface system size. 

Fig. 4 presents the total dynamic solution timings of 
the test model (a) and the speed-up values obtained (b) 
by utilizing 2, 4, 6 and 8 computers for FEMLib solver 
and MUMPS solver, respectively. 

The dynamic solution by utilizing single computer 
completed in 123.1 seconds and 112.8 seconds for FEM-
Lib and MUMPS solvers, respectively. From the previous 
figures it was revealed that this difference is mainly be-
cause the difference during the back substitution stage. 
By utilizing two, four and eight computers in parallel, the 
dynamic solution timings reduced to 71.0 seconds, 43.6 
seconds and 35.9 seconds, respectively. Speed-up value 
which is the fraction of parallel solution timings to single 
computer solution timings are also given in Fig. 4(b). For 
the solution with two, four, six and eight computers, 
speed-up values 1.74, 3.06, 2.90 and 3.48 were obtained. 
Thus, although the speed-up values for two and four 
computers are close to theoretical values of 2.0 and 4.0, 
speed-up values for the six and eight computers are half 
of the theoretical values of 6.0 and 8.0. Because when the 
number of substructures is increased, interface system 
size is increasing. 

 

  

Fig. 4. Total Timings (a) and Speed-ups (b) for FEMLib 
and MUMPS solvers. 

4. Conclusions 

This study presented a parallel solution framework 
for the linear dynamic analysis of large structures on ho-
mogeneous PC clusters. For the example problem con-
sidered, the presented method achieved almost compar-
ative results to widely acknowledged parallel direct 
solver, MUMPS. Furthermore, the total solution time de-
creased as the number of computers increased. Thus, 
this framework is very efficient and can be utilized to 
solve large problems on cheap and ordinary PC clusters 
of homogeneous type. 
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