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A B S T R A C T 

The universal size effect law of concrete is a law that describes the dependence of 
nominal strength of specimens or structure on both its size and the crack (or notch) 

length, over the entire of interest, and exhibits the correct small and large size as-

ymptotic properties as required. The main difficulty has been the transition of crack 

length from 0, in which case the size effect mode is Type 1, to deep cracks (or 

notches), in which case the size effect mode is Type 2 and fundamentally different 

from Type 1. The current study is based on recently obtained comprehensive fracture 

test data from three-point bending beams tested under identical conditions. In this 

test, the experimental program consisted of 80 three-point bend beams with 4 differ-

ent depths 40, 93, 215 and 500mm, corresponding to a size range of 1:12.5. Five dif-
ferent relative notch lengths, a/D = 0, 0.02, 0.075, 0.15, 0.30 were cut into the beams. 

A total of 20 different geometries (family of beams) were tested. The present paper 

will use these data to analyze the effects of size, crack length. This paper presents a 

studying to improve the existing universal size effect law, named by Bazant, using the 

experimentally obtained beam strengths for various different specimen sizes and all 

notch depths. The updated universal size effect law is shown to fit the comprehensive 

data quite well. 
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1. Introduction 

The proceeding conference articles and paper (Şener 
at al., 2014a; Çağlar and Şener, 2015; Çağlar and Şener, 
2016; Şener and Şener, 2016) presented an introduction 
to the problem and reported comprehensive test data for 
fracture of concrete specimens. The experimental pro-
gram, also described in (Şener et al., 2014b), consisted of 
80 three-point bend beams with 4 different depths 40, 93, 
215 and 500mm, corresponding to a size range of 1:12.5. 
Five different relative notch lengths, a/D = 0, 0.02, 0.075, 
0.15, 0.30 were cut into the beams. A total of 20 different 
geometries (family of beams) were tested. The present 
paper will use these data to analyze the effects of size, 
crack length. A special case of this law is a formula for 
the effect of notch or crack depth at fixed specimen size, 
which overcomes the limitations of a recently proposed 
empirical formula by Duan et al. (2003, 2006).  

 The Scientific and Technological Research Council of 
Turkey (TUBITAK) provided funding to carry out com-
prehensive fracture tests of beam specimens made from 
the almost the same age and same concrete mix to inves-
tigate the influence of size and notch length on specimen 
strength. 

 

2. Reviews of Size Effect and Crack Length Effect 

The nominal strength of geometrically similar struc-
tures, defined with Eq. (1) is 

𝜎𝑁 = 𝑐𝑁
𝑃𝑢

𝑏𝐷
 , (1) 

independent of structure size D (P = maximum load; b = 
structure width; and cN = dimensionless constant chosen 
for convenience). Size effect is defined as any dependence 
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of σN on D, which is a phenomenon typical in fracture or 
damage mechanics. 

According to linear elastic fracture mechanics (LEFM) 
theory, which applies to homogeneous perfectly brittle 
materials, and for geometrically similar structures with 
similar cracks, σN  D-1/2, which is the strongest possible 
size effect. For quasi-brittle materials such as concrete, 
one can distinguish two simple types of size effect as 
shown in Eq. (2). 

𝜎𝑁 =
𝐵𝑓𝑡

√1+𝐷/𝐷0
 . (2) 

Here B and the transitional structure size D0 are em-
pirical parameters to be identified by data fitting and ft is 
tensile strength of concrete introduced for convenience. 
Eq. (2) was derived (Bazant, 1984) by simple energy re-
lease analysis and later by several different approaches 
such as by asymptotic matching based of the asymptotic 
power scaling laws for very large and very small D (Ba-
zant and Planas, 1998). In the standard size effect plot of 
log σN versus log D, Eq. (2) gives a smooth transition from 
a horizontal asymptote to an inclined asymptote of slope 
-1/2 (Fig. 1). 

 

 

Fig. 1. Dependence of σN on structure size D of beams 
with (a) no notched and (b) deep notch. 

In Eq. (2), 

𝐵𝑓𝑡 = √
𝐸′𝐺𝑓

𝑔0
𝚤𝑐𝑓

 ,   𝐷0 =
𝑐𝑓𝑔0

𝚤

𝑔0
 , (3) 

where g0 = g(α0); g0’ = g’(α0); α = a/D = relative crack 
length; α0 = a0/D = initial value of α; g(α) = k2(α) = dimen-
sionless energy release rate function g(α) of LEFM; k(α) 
= b(DKI/P) where KI = stress intensity factor, P = load; 

g’(α) = dg(α)/dα, E = E = Young’s modulus for plane 
stress and E = E/(1- 2) for plane strain (where  = Pois-
son ratio), Gf=initial fracture energy = area under the in-
itial tangent of the cohesive softening stress-separation 
curve; cf = characteristic length, which represents about 
a half of the Fracture Process Zone (FPZ) length. Eq. (2) 
may be rewritten as shown in Eq. (4). 

𝜎𝑁 = √
𝐸′𝐺𝑓

𝑔0𝐷+𝑔0
𝚤𝑐𝑓

 . (4) 

Because function g(α) or k(α) embodies information 
on the effects of crack length and structure geometry, Eq. 
(4) is actually a size effect law for Type 2 failures.  

The Type 1 size effect, σN approaches, for large D, a 
constant value (a horizontal asymptote in the size effect 
plot), since the Weibull statistical size effect (Weibull, 
1939) is unimportant. For three point bend beams, it is 
indeed unimportant. Because the zone of high stresses is 
rather concentrated, even do not exist along a notch. This 
prevents the critical crack from forming at widely differ-
ent locations of different random local strength (for the 
same reason, the statistical size effect is negligible in 
Type 2 failures also). 

 The large size asymptote for Type 1 size effect is, in 
the log-log plot, a downward inclined straight line of a 
slope –n/m, which is much milder than the slope of -1/2 
for LEFM (Weibull, 1939) (Fig.1); here m = Weibull mod-
ulus and n = number of spatial dimensions of fracture 
scaling (n = 2 for the present tests). The small size as-
ymptote is also a horizontal line and, for medium sizes, 
the size effect is a transition between these two asymp-
totes. In absence of the statistical size effect, Eq. (5) was 
used by Hoover and Bazant (2014). 

𝜎𝑁 = 𝑓𝑟
∞ (1 +

𝑟𝐷𝑏

𝐷+𝑙𝑝
)

1/𝑟

 . (5) 

Here fr
, Db, lp, and r are empirical constants to be de-

termined from tests; fr
=nominal strength for very large 

structures, assuming no statistical size effect (in the spe-
cial case of very large beams, fr

 represents the flexural 
strength, also called the modulus of rupture); and Db = 
depth of the boundary layer of cracking (roughly equal 
to the FPZ size). In all previous works, D = same charac-
teristic structure size as used for the Type 2 size effect 
(Eq. (4)). Furthermore, lp = material characteristic length, 
which is related to the maximum aggregate size da. If the 
structure is larger than 10lp, one can set lp  0, which cor-
responds to the original formulation of the Type I law. 

It was further shown that the Type 1 and 2 Size Effect 
Laws (SELs) satisfy the large-size and small size asymp-
totic properties of the cohesive crack model applied to 
Type 1 and 2 failures. Furthermore, it was experimen-
tally confirmed that, within the range of inevitable ex-
perimental scatter, the SEL of Type 2 gives about the 
same values of fracture energy Gf when applied to 
notched fracture specimens (e.g., compact compression 
test (Abusiaf et al., 1996; Barr et al., 1998), torsional test 
(Abusiaf et al., 1997)).

 
 

(a) 

(b) 
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3. Application of Universal Size Effect Law by 
Fracture Tests 

To calibrate the deterministic Universal Size Effect 
Law (USEL), the mean of data was computed separately 
for each family of identical specimens from comprehen-
sive fracture tests (Şener et al., 2014a; 2014b), Çağlar and 
Şener 2015). The surface of the optimized USEL is plotted 
in Fig. 2. In this Fig. 2 size effect curves were given for 
only αand 0.3. Transition from these curves for 
calibrating USEL is just used with smooth curves. The 
studies on these transition curves are still on going. 

In particular, the fracture parameters Gf and cf should 
not be influenced by the data for beams with no notches 
(Type I data) or shallow notches and 𝑓𝑟

∞ , 𝐷𝑏 , 𝑙𝑝  and 𝑟 
should not be influenced by the data for deep notches. 
Therefore, these parameters were determined first by 
separate fitting of specimens with deep notches (α 
or  and specimens with shallow or no notches (= 
0). Only the nonstatistical USEL (Bazant and Yu, 2009) in 
Eq. (6) was considered. Nonlinear fitting of the Type I, 
SEL (Eq. (5)) to the notchless (α beams gave (Şener 
et al., 2014a, b) values in Eq. (6) with coefficient of vari-
ation of fit 9.4%.

 

Fig. 2. Entire Universal Size Effect law surface.

𝐷𝑏 = 90 𝑚𝑚, 𝑙𝑝 = 50 𝑚𝑚, 𝑓𝑟
∞ = 4 𝑀𝑃𝑎, 𝑟 = 0.52 . (6) 

These values are different from than the studies by 
Hoover and Bazant’s (2014) Db=73.2 mm, lp=126.6 mm, 
𝑓𝑟

∞
 =5.27 MPa. The difference between some of the pa-

rameters was in the order of two for especially lp value. 
The size range 1:12.5 was large enough to identify all the 
fracture parameters in Eq. (5). The USEL can be drawn 
for a fixed α, which gives a size effect plot of log(σN) ver-
sus log D (Fig. 2). 

In Fig. 3, this plot is created and compared with the 
data from Şener et al. (2014a, 2014b). The results ob-
tained from the tests for Type II size effect (Eq. 2) was 
used for deep (α=0.3) and big (α=0.15) notches are 
shown at the Figs. 3(a, b). For the crack initiation speci-
mens were fitted using Eq. (5), and the resulting con-
stants were calculated. The calculated constants are 
given in Table 1 for the shallow notch (Fig. 3(d)) and 
notchless beams (Fig. 3(e)). Type I parameters, which 
are presented in parenthesis in Table 1 were compared 
with Bazant’s (Hoover and Bazant, 2014) results. The pa-
rameters obtained from the results of shallow notch 
specimens were not compared with Bazant’s results, be-
cause of insufficient data in their work for α=0.02. But 
Type I size effect parameters for notchless and shallow 
notch specimens obtained from this study were con-
sistent between the two test programs. 

In Fig. 3, for α=0.3 and 0.15, Type II (Figs. 3(a, b)) size 
effect was used, for unnotched specimen α=0, Type I (Fig. 
3(e, f)) size effect was used. For the medium size notched 
(α=0.075) beams, the failure stress was in between the 
Type I and Type II curves, so these curves are not shown 
in the figure (Fig. 3(c)). 

Table 1. Type I size effect coefficients. 

α Db 
(mm) 

lp 
(mm) 

fr∞ 
(MPa) 

r 

0 90 50 4 0.52 

(0) (73.2) (126.6) (5.27) (0.52)* 

0.02 110 66 3.2 0.52 

*Parameters inside parenthesis are Bazant’s (Hoover and Bazant, 
2014) values. 

 

4. Comparison with Duan-Hu’s Boundary Effect 
Model 

The analysis of the test results were performed using 
Bazant’s Type II size effect formulas and Type I. There 
are many widely accepted and practical size effect eval-
uation approaches such as; multifractal scaling law of 
Carpinteri (Carpinteri et al., 1995), asymptotic analysis 
of size effect of Karihaloo (Karihaloo et al., 2003), and 
boundary effect model of Hu and Duan (Duan et al., 2003, 
2006). The size effect model of Hu and Duan is a bound-
ary effect model, which was recently developed, by scal-
ing of quasi-brittle size effect on strength of finite sized 
specimens. The test results were also analyzed using Hu 
and Duan’s approach for comparison with Type I size ef-
fect of specimens with α=0. The nominal strength (σN) 
formula of Hu and Duan which accounts for size effect in 
concrete is given in Eq. (7) for un-notched specimens.  

𝜎𝑁 = 𝜎𝑜(1 + 𝐵1𝐷)−0.5 , (7) 
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where 0 is the maximum tensile stress in the ligament 
based on a linear stress distribution over the ligament 
based on three-point bend specimens and B1 is a constant. 

0 and B1 can be obtaining from linear regression analy-
sis. Eq. (7) is mathematically similar to the Type II size 
effect formula given in Eq. (2).

   

 

   

Fig. 3. Effect of structure size on the nominal strength of the data from Şener et al. (2014a).

The comparison of size effect plots of Type I and 
Duan’s model are given in Fig. 4 for α=0. The plots indi-
cate that Type I size effect and Duan’s boundary effect 
model differs significantly for members’ smaller depth. 

In the Type I (solid line) Eq. (2) the parameters were 
taken from Table 1 for α=, for Duan’s (broken line) Eq. 
(7) 0= 11.62 MPa, B1= 0.0135 values were used.

 

Fig. 4. Size effect plots of test results overlaid with Type I and Duan’s size effect model for α=0.  

(a) (b) 

(c) 

(d) (d) 
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5. Conclusions 

 The Type 2 size effect in specimens with deep notches 
or cracks does not give a correct transition to of Type 
1 in specimens with no notch or crack. 

 The size effect data from deeply notched specimens 
(α=0.3 and 0.15), and parameters 𝑓𝑟

∞ , Db, lp, and r 
were determined separately by fitting only the size ef-
fect data for unnotched specimens (α=0). 

 USEL fits the measured nominal strength quite well. 
 Both Type I and Type II size effect were observed in 

this study and confirmed the need to be account for 
size effect in design codes. 

 The comparison of Type I and Duan’s boundary effect 
formulas (Type II) exhibit difference for members 
with small depth for α=0 
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