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A B S T R A C T 

In structural engineering, the design of reinforced concrete (RC) structures needs an 
initial de-sign for cross sectional dimensions. After these dimensions are defined, the 

design constraints and the required reinforcement bars are calculated. But the re-

quired reinforcement area is not exactly provided since the size of rebars are fixed. 

At the end of the design, the security measures are provided, but the designer has no 

idea for the optimization of the design in mean of economy. For that reason, a pow-

erful search methodology can be programed by using metaheuristic algorithms. In 
this study, optimum design of reinforced concrete columns was investigated by using 

an education based metaheuristic algorithm called teaching-learning based optimi-

zation (TLBO). In the methodology, the slenderness of the columns is also taken into 

consideration by using a simple approach given in the ACI 318 design code. In this 

approach, the factored design flexural moments are defined according to the buckling 

load and axial load of columns. The design variables of the problem include cross 

section dimension of the column and the detailed reinforcement design and the opti-

mization objective is the minimization the maximum material cost of the column. Dif-

ferently from the other metaheuristic algorithms, the decision of the optimization 

type (global or local search) is not defined by using a probability parameter in TLBO. 

In optimization, two phases of TLBO; teacher (global search) and learner (local 

search) phases are consequently applied in search of best design variables. The pro-
posed approach is effective for the structural optimization problem. 
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1. Introduction 

In the design of reinforced concrete (RC) members, a 
design engineer decides several initial element dimen-
sions and these dimensions are used in the detailed de-
sign of the reinforcements. The experience of engineer 
effects the economic design of RC member. The only way 
is to find a better design is to try several member sizes if 
a design software is used. These trials may be several 
times, but it cannot be thousand times. For that reason, 
optimization is needed to carry out iterations. Thus, an 
optimum design ensuring all design constraints can be 
found. The optimum design methods are proposed for 
several RC members such as frames (Balling and Yao, 
1997; Guerra and Kiousis, 2006), beams (Barros et al., 

2005; Barros et al., 2012; Ferreira et al., 2003), pre-
stressed concrete bridges (Sirca and Adeli, 2005), col-
umns (Gil-Martin et al., 2010) and slabs (Ahmadkhanlou 
and Adeli, 2005). 

By using mathematical methods, it is only possible to 
find optimum results with some assumptions. In order to 
carry out a practical optimization, metaheuristic meth-
ods are suitable. The one of the metaheuristic methods 
used in the optimum design of RC members is genetic al-
gorithm (GA). GA is used in the design of beams (Coello et 
al., 1997; Govindaraj and Ramasamy, 2005; Fedghouche 
and Tiliouine, 2012), columns (Rafiq and Southcombe, 
1998), frames (Rajeev and Krishnamoorthy, 1998; Camp 
et al., 2003; Lee and Ahn, 2003; Govindaraj and Rama-
samy, 2007). In order to provide effective optimum 
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results, several algorithms can be combined in a single 
method. Rath et al. (1999) combined GA with sequential 
quadratic programming (SQP) for optimum design of RC 
members. Similarly, simulated annealing (SA) and Hook-
Jeeves method are used with GA by Leps and Sejnoha, 
(2003) and Sahab et al. (2005), respectively.  

In several studies (Paya et al., 2008; Paya-Zaforteza et 
al., 2009; Ceranic et al., 2001; Yepes et al., 2008), SA is 
employed in the optimization of RC members. Perea et 
al. (2008) optimized RC frames of bridges by using a 
methodology employing SA, the threshold accepting, 
random walk and the descent local search. Fiber-rein-
forced composite plates are optimized by Rama Mohan 
Rao and Shyju, (2010). SA and tabu search (TS) are com-
bined in the method. 

Another metaheuristic algorithm used in the opti-
mum design of RC members is big bang big crunch algo-
rithm (Camp and Akin, 2012; Camp and Farah Huq, 
2013; Kaveh and Sabzi, 2012). The music inspired har-
mony search (HS) algorithm developed by Geem et al. 
(2001) is used in the optimization of RC retaining walls 
(Kaveh and Abadi, 2011), RC continuous beams (Akin 
and Saka, 2010), RC frames (Akin and Saka, 2012) and 
RC beams (Bekdaş and Nigdeli, 2012) and columns 
(Bekdaş and Nigdeli, 2014; Nigdeli et al., 2015). Also, bat 
algorithm (BA) is employed for optimum design of RC 
columns (Bekdaş and Nigdeli, 2016).  

In this paper, teaching-learning based optimization 
developed by Rao et al. (2011) is employed for the de-
tailed optimum design of RC columns and results are 
compared with the results obtained by employing HS 
(Bekdaş and Nigdeli, 2014) and BA (Bekdaş and Nigdeli, 

2016). In the methodology, the slenderness effect is con-
sidered by using moment magnification factor and the 
design of RC column is carried out according to ACI318 
regulation. The methodology is coded in Matlab and the 
result is obtained for different heights of the column in 
order to see the effect of the slenderest. 

 

2. Methodology 

The teaching and learning process of a class is the in-
spiration of teaching-learning based optimization (TLBO) 
method. In a class, two phases of education are used. 
These phases are teacher and learner phases which are 
consequently applied.  

As all numerical optimization algorithms, the problem 
must be defined. The problem data contain possible 
ranges of design variables, design constraints and algo-
rithm parameters. The design variables of the RC column 
optimization are breadth (bw), height (h), number and 
size of bars in face (web or essential reinforcement), size 
of shear reinforcements and distance of shear reinforce-
ments. 

The design constants are shown in Table 1 with the 
values used in numerical example. TLBO is lucky in algo-
rithm parameters because the population of class is only 
defined by a user. Since two phases of the algorithm are 
consequently applied, a probability to choose the type of 
the optimization is not needed. In generation of new de-
sign variables, a teaching factor (TF) is used but it is not 
a user defined value. TF is randomly assigned and may 
be 1 or 2.

Table 1. Design constant and ranges of design variables. 

Definition Value  

Range of web width, bw 250 mm-400 mm 

Range of height, h 300 mm-600mm 

Longitudinal reinforcement (ϕ) 16 mm-30 mm  

Shear reinforcement (ϕv)  8 mm-14 mm 

Effective length factor in buckling, k 1.2 

Clear cover, cc 30mm 

Max. aggregate diameter, Dmax 16 mm 

Yield strength of steel, fy 420 MPa 

Comp. strength of  concrete, f'c 25 MPa 

Elasticity modulus of steel, Es 200000 MPa 

Specific gravity of steel, γs 7.86 t/m3 

Specific gravity of concrete (γc)  2.5 t/m3 

Cost of the concrete per m3 40 $ 

Cost of the steel per ton 400$ 

After the required values are defined, an initial solu-
tion matrix is generated. These matrix contains vectors 
assigned with randomly generated design variables and 
the number of these vectors are equal to population 
number of the class.  

Also, the objective functions of all possible designs in 
the vectors are calculated by controlling ACI 318 re-
quirements and if a constraint violation is observed, the 
objective function defined as Eq. (1) is penalized with a 
huge cost. 
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𝑚𝑖𝑛 𝑓(𝑥) = 𝐶𝑐 𝑉𝑐 + 𝐶𝑠𝑊𝑠 , (1) 

In the objective function, the cost of the column is cal-
culated and Cc, Cs, Vc and Ws are cost of concrete per m3, 
cost of the steel per ton, total concrete volume and total 
weight of steel, respectively.  

After generation of the initial solution matrix, the best 
solution (Xteacher) (solution with minimum objective func-
tion) is chosen as a teacher. Thus, a new solution (Xnew,i) 
is found according to Eq. (2) in teacher phase by modify-
ing old solution (Xold,i) of the ith vector in the class. 
rnd(0,1) is a random number between 0 and 1 while 
Xmean is the mean of the class. 

𝑋𝑛𝑒𝑤,𝑖 = 𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑎𝑛𝑑(0,1) ∙ (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹 ∙ 𝑋𝑚𝑒𝑎𝑛) . (2) 

Then, student phase starts and Eq. (3) is used in gen-
eration. 

𝑋𝑛𝑒𝑤,𝑖 = {
𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑(0,1) ∙ (𝑋𝑖 − 𝑋𝑗);  𝑓(𝑋𝑖) > 𝑓(𝑋𝑗)

𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑(0,1) ∙ (𝑋𝑗 − 𝑋𝑖);  𝑓(𝑋𝑖) < 𝑓(𝑋𝑗)
 . (3) 

In this generation, jth and kth solutions are the existing 
solution matrix and these vectors are randomly chosen. 
The phases are consequently applied for a defined itera-
tion number. The results are updated if the solution of 
the objective function is lower than the existing one. 
Thus, the convergence of the optimum results is pro-
vided. 

3. Numerical Example 

In the study, RC columns with different length are op-
timized. The external loads are taken as 2000 kN, 50 
kNm and 50 kN for axial force, flexural moment and 
shear force, respectively. The optimum results are given 
in Table 2. Table 2 also contains the results of HS (Bekdaş 
and Nigdeli, 2014) and BA (Bekdaş and Nigdeli, 2016). 

 

4. Conclusions 

The optimum values of RC column are investigated for 
different length of RC columns. Thus, the slenderness ef-
fect can be seen from the optimum results. In all length 
cases, the external forces are taken as the same but the 
increase of the total cost does not show a linear increase 
for long columns. The difference of cost is resulting from 
the increase of the dimensions and quality of reinforce-
ments. By the increase of the cross-sectional dimensions, 
a possible reduction of quantity of shear reinforcements 
can be also seen from the results.  

The employed metaheuristic algorithm called TLBO is 
effective to find the same optimum results with BA. 
TLBO method has no user defined parameters. The only 
user defined parameters is the population of the class. 
The effectiveness of BA is depended to the algorithm pa-
rameters. In that case, TLBO is a suitable algorithm in use 
of methodologies for RC design.

Table 2. Design constant and range. 

    HS BA TLBO 

Length of the  

column (l) 
3m 4m 5m 3m 4m 5m 3m 4m 5m 

Breadth of the 

column (bw) (mm) 
400 300 300 400 300 300 400 300 300 

Height of the  

column (h) (mm) 
400 550 600 400 550 600 400 550 600 

Bars in each face 1Φ20+1Φ18 2Φ16 2Φ16 3Φ16 2Φ16 2Φ16 3Φ16 2Φ16 2Φ16 

Web reinforcement  

in each face 
1Φ18 1Φ16+1Φ18 2Φ18 1Φ16 1Φ16+1Φ18 2Φ18 1Φ16 1Φ16+1Φ18 2Φ18 

Shear reinforcement 

diameter (mm) 
Φ8 Φ8 Φ8 Φ8 Φ8 Φ8 Φ8 Φ8 Φ8 

Shear reinforcement 

distance (mm) 
170 240 270 170 240 270 170 240 270 

Optimum cost ($) 38.58 52.27 69.97 38.22 52.27 69.97 38.22 52.27 69.97 
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