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A B S T R A C T 

Minimum potential energy principle is the basis of the most of the well-known tradi-
tional techniques used in the structural analysis. This principle determines the equi-

librium conditions of systems with reference to minimization of the sum of the total 

potential energy of the structure. In traditional applications, this methodology is for-

mulized by using matrix operations. A methodology has been proposed in the last 

decades for structural analyses based on the idea of using metaheuristic algorithms 
to obtain minimum potential energy of the structural system instead of following this 

classical approach. This new method, called “Total Potential Optimization using Me-

taheuristic Algorithms (TPO/MA)”, has been applied in this paper to truss structures 

considering linear and nonlinear behavior of the structural material. The metaheu-

ristic method used in this process is teaching-learning based optimization (TLBO) 

algorithm. The proposed technique is applied on numerical examples and results are 

compared with other techniques in order to test the efficiency of the proposed 

method. According to results obtained, TPO/MA method with TLBO algorithm is a 

feasible technique for the investigated problem. 
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1. Introduction 

According to minimum potential energy principle, a 
structural system is in equilibrium if the total potential 
(TP) of the system is minimum. Classical methods do ap-
ply this principle in its pure form only in solving some 
demonstrative problems. The usual practice starts by 
writing down the TP in matrix form, as  𝑇𝑃 = 𝑥𝑇𝐴𝑥 − 𝑃𝑥 
where x is the vector of displacements, P is the vector of 
acting loads, and A is the flexibility matrix of the system. 
This is then followed by taking the derivative of TP with 
respect to x, and equating it to zero in the form 𝐴𝑥 = 𝑃. 
This latter step is actually the application of the mini-
mum energy principle which aims at finding x making TP 
stationary. Then the matrix equation 𝐴𝑥 = 𝑃 is solved by 
using anyone of the well-established methods of matrix 
inversion or solving systems of linear equations. The 
method described here is valid for linear systems. For non-
linear systems there does not exist a common technique. 

The solutions for such systems vary according to type of 
nonlinearity (material nonlinearity, large deflections, 
nonlinear supports, under-constrained structures, miss-
ing or failing members, unstable structures, etc.) and a 
technique applicable for one type of nonlinearity is not 
applicable for another type except in some very special 
cases. 

The method described in this paper, on the other 
hand, is valid for all types of linear and nonlinear struc-
tures, whatever the type of nonlinearity is. This tech-
nique, called “Total Potential Optimization using Me-
taheuristic Algorithms (TPO/MA)” is made possible 
thanks to advances in computer technology as to speed 
and also to emergence of and advances in metaheuristic 
algorithms for optimization problems. In this method, 
metaheuristic algorithms are employed for finding the 
displacements in a structure that makes the TP of the 
system a minimum. TP of the system is written as the 
sum of exact TP’s of parts of the system. In this way the 
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formulation does not necessitate use of matrices so that 
no big computer memory capacities become needed. Un-
til recently the TPO/MA has been applied to a wide vari-
ety of problems such as truss, cables and tensegrity 
structures (Toklu 2004; Toklu et al., 2013; Temür et al., 
2014; Toklu et al., 2015; Toklu and Uzun, 2016) using 
different types of metaheuristic algorithms. 

In this paper, TPO/MA method is employed for struc-
tural analyses of trusses with nonlinear material proper-
ties. The metaheuristic algorithm used is a recently de-
veloped one, namely the teaching-learning based optimi-
zation (TLBO) algorithm. In order to evaluate the perfor-
mance of TLBO algorithm, results are compared with 
those mentioned in the existing literature. 

 

2. Methodology 

Metaheuristic algorithms are developed from mathe-
matical identification of natural phenomena. For exam-
ple, Genetic algorithm (GA) mimics the process of natu-
ral selection (Holland, 1975 and Goldberg, 1989), parti-
cle   swarm optimization (PSO) is inspired from the social 
behavior of animals (Kennedy and Eberhart, 1995), ant 
colony optimization (ACO) imitates the behavior of ants 
seeking a path between their colony and a source of food 
(Dorigo et al., 1996), harmony search (HS) is conceptu-
alized on musician performance for seeking a harmony 
to admire the people (Geem et al., 2001). 

The teaching-learning based optimization (TLBO) 
(Rao et al., 2011) is developed based on inspiration of 
teaching and learning procedure in a classroom. The 
method is not based on specific parameters and this is 
the most remarkable part of it. This property makes 
TLBO easily applicable and versatile among other me-
taheuristic algorithms. 

The optimization process of the TLBO algorithm can 
be explained under two titles, namely First calculations 
and Iteration. 
 
First Calculations: In the first calculations step, data of 
the structural system are defined. This data contains in-
formation about supports, start and end points of struc-
tural members, cross sectional areas of members, pa-
rameters about material properties of members, etc. In 
addition to the data, the upper and lower limits of the de-
sign variables, population number and maximum itera-
tion number (as stopping criterion) are also defined in 
this section. Coordinates of the joints of the deformed 
system are the design variables of the problem. 

Then, by randomizing the design variables between 
their defined limits, a group of the structures is obtained. 
This group is defined as initial solution matrix and num-
ber of structures (or solution vectors) in the group is 
equal to population size (pn). At the end of this step, the 
strain energy (Eq. (1)), work done by external loads (Eq. 
(2)) and total potential energy (Eq. (3)) for each gener-
ated system (or objective function) are calculated for fu-
ture comparisons.  

𝑈 =
1

2
∫ 𝜀𝑇 

𝑉𝑂𝐿𝑈𝑀𝐸
𝜎𝑑𝑉 , (1) 

𝑊 = ∫ (𝑇𝑥𝑢 + 𝑇𝑦𝑢 + 𝑇𝑧𝑢)𝑑𝑆
 

𝑆1
 , (2) 

𝛱 = 𝑈 − 𝑊 =
1

2
∫ 𝜀𝑇 

𝑉𝑂𝐿𝑈𝑀𝐸
𝜎𝑑𝑉 − ∫ (𝑇𝑥𝑢 + 𝑇𝑦𝑢 + 𝑇𝑧𝑢)𝑑𝑆

 

𝑆1
.(3) 

In Eqs. (1-3), εT is the strain vector, σ is the stress vec-
tor and V is the volume of the body, u, v, and w are dis-
placements in the x, y, and z directions, and Tx, Ty and Tz 
are the components of external forces in x, y, and z direc-
tions. The objective function of the problem is to mini-
mize the total potential energy of the system (Eq. (3)). 

 
Iterations: This process contains two phases: teacher 
(tp) and learner (lp) phases. In the teacher phase, new 
solution vectors are generated according to the best so-
lution vector (Xteacher) which is the vector currently hav-
ing the minimum value for TP of the system. Formulation 
of the generation of new values can be written as 

𝑋𝑛𝑒𝑤,𝑖
𝑖𝑝

= 𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑(0,1) ∙ (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹 ∙ 𝑋𝑚𝑒𝑎𝑛) , (4) 

where Xold,i is previous values of the design variables, 
Xmean is the mean value of the design variables, rnd is a 
uniformly distributed random numbers within the range 
of [0, 1] and TF is an integer number that takes a value 1 
or 2 (Eq. (5)). 

𝑇𝐹 = 𝑟𝑜𝑢𝑛𝑑[1 + 𝑟𝑛𝑑(0.1)] → {1 − 2} . (5) 

In the learner phase, the value of new solution are 
generated from the two existing vectors that are ran-
domly chosen from the solution matrix. The expression 
of the learner phase is defined as 

𝑋𝑛𝑒𝑤,𝑖
𝐼𝑝

= {
𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑 ∙ (𝑋𝑖 − 𝑋𝑗);      𝑓(𝑋𝑖) > 𝑓(𝑋𝑗)

𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑 ∙ (𝑋𝑗 − 𝑋𝑖);      𝑓(𝑋𝑖) < 𝑓(𝑋𝑗)
 , (6) 

in which f(Xi) and f(Xj) are objectives of selected vectors. 
After application of both phases, the objective functions 
of new vectors are calculated and if it is better than the 
old one, it is replaced with the old one. Iteration process 
is repeated until the maximum iteration number is satis-
fied. The optimization process is summarized in the 
pseudo code given in Fig. 1. 
 

3. Numerical Examples 

Numerical examples are presented in this section con-
sidering a 6-bar plane truss (Fig. 2) (Toklu, 2004) and 
three type of materials. In order to show the efficiency of 
the proposed method the results are compared with HS 
algorithm. The cross sectional areas of members 2-4 are 
100 mm2 and cross-sectional areas of other members are 
200 mm2. A concentrated load with 150 kN density is ap-
plied to system at joint 4. The first material considered 
(MAT 1) is a linear one with elasticity modulus of 2∙105 
N/mm2. The second material (MAT 2) is a bilinear one, 
the third one (MAT 3) represents a highly nonlinear ma-
terial. Stress-strain diagrams for all these materials are 
presented in Fig. 2(b). 
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Randomly generate the initial students 

Calculate objective function 

While stopping criteria 

(Teacher Phase) 

Calculate the mean of each design variable 

Identify the best student as teacher 

For i=1:Nvariable 

Calculate teaching factor Eq. (5) 

Create a new solution based on teacher Eq. (4) 

Calculate objective functions for the new solutions Eq. (3) 

If Xnew is better than Xold 

Xold = Xnew 

End If 

End For 

(Learner Phase) 

For i=1:Nvariable 

Select any two solution randomly [i, j] 

Create a new solution based on selected solutions Eq. (6)  

Calculate objective function for the new solution 

If Xnew is better than Xold 

Xold = Xnew 

End If 

End For 

End While 

Fig. 1. Pseudo code of optimization process with TLBO. 

 

 

Fig. 2. (a) 6-bar plane system;  
(b) Material properties of problem. 

In Figs. 3-5, for all these three materials, plots about 
the convergence to optimum result of TLBO and HS is 
given where the population number is equal to 10. On 
the TLBO approach, optimum results are found after 
about 100, 400 and 800 cycles for MAT 1, MAT 2 and 
MAT 3, respectively. For the HS based analyses, these 
numbers are about 2500, 500000 and 500000, respec-
tively. It can be concluded here that convergence for lin-
ear material is much better than other materials and, for 
all cases, convergence performance of TLBO is better 
than HS approach. 

 
Fig. 3. Convergence to optimum results for MAT 1. 

 
Fig. 4. Convergence to optimum results for MAT 2. 

 
Fig. 5. Convergence to optimum results for MAT 3. 

In order to investigate the effect of population num-
ber when applying TLBO on number of cycles, compu-
tations are repeated for seven different population 
numbers (Fig. 6). According to results, for all cases, 

(b) 

(a) 
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analyses numbers needed for obtaining optimum re-
sults increase almost linearly as the population number 
increases. Statistical treatment of results for different 
population number is summarized in Table 1. Accord-
ing to these tests, results are all acceptable except for 

population number as 5. For case where population 
number is 10 or greater, the difference between the up-
per and lower bounds obtained for minimum potential 
energy is negligible so that the standard deviations are 
very small.

Table 1. Optimum result for different population number. 

  5V 10V 15V 20V 25V 30V 35V 40V 

MAT1 

Min -1059735 -1059735 -1059735 -1059735 -1059735 -1059735 -1059735 -1059735 

Max -1035346 -1059735 -1059735 -1059735 -1059735 -1059735 -1059735 -1059735 

St Dev 3192.258 0.024875 1.86x10-9 1.86x10-9 1.86x10-9 1.86x10-9 1.86x10-9 1.86x10-9 

MAT2 

Min -3.68x107 -3.68x107 -3.68x107 -3.68x107 -3.68x107 -3.68x107 -3.68x107 -3.68x107 

Max -3.62x107 -3.68x107 -3.68x107 -3.68x107 -3.68x107 -3.68x107 -3.68x107 -3.68x107 

St Dev 55387.39 0.011541 8.2x10-8 8.2x10-8 8.2x10-8 8.2x10-8 8.2x10-8 8.2x10-8 

MAT3 

Min -5.21x107 -5.21x107 -5.21x107 -5.21x107 -5.21x107 -5.21x107 -5.21x107 -5.21x107 

Max -5.02x107 -5.21x107 -5.21x107 -5.21x107 -5.21x107 -5.21x107 -5.21x107 -5.21x107 

St Dev 186907.6 0.001228 7.45x10-9 7.45x10-9 7.45x10-9 7.45x10-9 7.45x10-9 7.45x10-9 

 
Fig. 6. Analysis number vs. population number plot. 

In Figs. 7-9, total potential energy values for increased 
loading from 0 kN to 150 kN are given. The effects of ma-
terial properties on total energy values can be clearly 
seen on the figures. The energy graph is quite monotonic 
for linear MAT 1 material, but sudden changes become 
observed for the other nonlinear materials MAT 2 and 
MAT 3. 

 
Fig. 7. Potential energy value of increasing loading for 

MAT1 material. 

 
Fig. 8. Potential energy value of increasing loading for 

MAT2 material. 

 
Fig. 9. Potential energy value of increasing loading for 

MAT3 material. 

4. Conclusions 

The analyses of truss systems are investigated by us-
ing TPO/MA method for different material properties 
such as linear, bilinear and nonlinear. The efficiency of 
the proposed TLBO method is checked by comparing 
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with results obtained by HS approach. According to re-
sults, both TLBO and HS algorithms gave the same mini-
mum potential energy for all material cases. Comparing 
the computational times (analyses numbers for opti-
mum results) of the methods, the TLBO approach is 20% 
to 80% shorter than HS algorithm. According to obser-
vation of the effect of population numbers on analyses 
number, if the population number of TLBO is equal to or 
more than 10, the minimum energy value can be success-
fully found. But comparing the statistical suitability and 
analyses number, using a population number defined as 
10 can be the best selection. 
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