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Koxen Mapymo

YHuBepcutet CanTtama, Cantama, AnoHns

HenapameTtpuyieckmun metoa BbIYUCIIEHUA
BEJIMY4MNHbI YCITOBHOW HanNpshKeHHOCTU Npu

HaJIMinm pUCKa

Paccmampusaemces oyenka puckogoli cmoumocmu 8 ycaogusix Hanpsi-
acennocmu. Ha npakmuke nanpsycennas éeauuuna pucka o0bI4HO
Paccuumvleaemcs ¢ UCNOAb308aHUEM HAOOPA OAHHBIX, BKAIOUAIOUE20
HANPAJICeHHbIL nepuod. Dmo 2060pum o mom, HACKOAbKO 803pacmaem
DUCK, ecau Mbl UCHOAb3YeM OaHHbIe 8 YCAOGUSX HANPSICEHHOCHL.

B dannoii pabome moi paccmampusaem seauvuny pucka (VaR) npu
HanpsoiceHHvix cyerapusx. Texnuuecku 5mo MoJNCHO coeaams, nOAY-
uue pacnpedeneHue npUObLLAU UlU yobimKa, 00yci1081eHHOe 8eAUHUHOL
ghaxkmopoeé pucka. Mbi ucnoav3yem dea memooa: 00uH, KOMOpbLil

UCNOAB3Yem AUHEUHYI0 MOOenb, U Opyeoi, KOMopbill UCHOAb3Yyem
pacnpedenenue no Ipmumy, paccmompennsiii Mapymo u Boawvghom
(2013, 2016). Hucaennvie npumepvl noKazvl@arom, 4mo MmMemoo
pacnpedenerust no Spmemy cnocobex Gukcuposams HeauHelHbvle
appexmol, maKue KaxK KoppeasyuoOHHbLI KOAMANC U KAACMepU3ayusl
601AMUALHOCU, KOMOPble YaCmo HAOA00aomcs Ha PLIHKAX.

Karoueswie caoea: ycirosnoe pacnpedenenue, pacnpedesenue no
Dpmemy; AuneliHas Modens, HeAUuHeUHbll Ihpexm.
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A Non-parametric Method for Calculating
Conditional Stressed Value at Risk

We consider the Value at Risk (VaR) of a portfolio under stressed
conditions. In practice, the stressed VaR (sVaR) is commonly calcu-
lated using the data set that includes the stressed period. It tells us
how much the risk amount increases if we use the stressed data set.
In this paper, we consider the VaR under stress scenarios. Techni-
cally, this can be done by deriving the distribution of profit or loss
conditioned on the value of risk factors. We use two methods; the
one that uses the linear model and the one that uses the Hermite

1. Introduction

Value at Risk (VaR) and stress test are common
tools for measuring risk of a portfolio and are used
as the benchmark for the capital requirement in fi-
nancial institutions. In addition to these two, a risk
measure called the stressed Value at Risk (sVaR)
is often discussed (Hong, 2017; Basel Committee
on Banking Supervision, 2013; European Banking
Authority, 2012).

The sVaR considers the VaR under the stressed
market conditions. In practice, this is particularly
done by using the market data from the period that
includes September to November 2008 financial cri-
sis (Gibart, 2012). This implies that the only dif-
ference between the VaR and sVaR is that we use
the data set with the larger volatility for calculation.
Further, we usually use around two years’ histori-
cal data for VaR calculations, while many financial
crises lasts only a few months. This means that the
data set as a whole may not represent the stressed
market conditions.

In this paper, we consider the VaR under stress
scenarios on risk factors. This can be compared
to the stress tests, which considers the loss under
stress scenarios. Technically, the VaR under a sce-
nario can be calculated from the distribution of

expansion discussed by Marumo and Wolff (2013, 2016). Numeri-
cal examples shows that the method using the Hermite expansion
is capable of capturing the non-linear effects such as correlation
collapse and volatility clustering, which are often observed in the
markets.

Keywords: Conditional distribution; Hermite expansion; Linear
model; Non-linear effect.

profit or loss conditioned on the risk factor’s value.
A naive way of deriving this conditional distribu-
tion is to use the linear model. This method essen-
tially uses only first and second moments, and is
not capable of capturing non-linear effects such as
correlation collapse and volatility clustering, which
are often observed in the markets. We consider the
application of the Hermite expansion discussed by
Marumo and Wolff (2013, 2016) to the calculation
of conditional VaR. The Hermite expansion ap-
proximates the target density function by the Nor-
mal density multiplied by the linear combination of
the Hermite polynomials. It is capable of express-
ing the higher order moments, and hence we sup-
pose that it captures non-linear effects.

Compared to the VaR under stress scenarios, the
stressed VaR can be considered as the uncondition-
al VaR, calculated using the data that includes the
stressed period. We expect that the VaR under stress
scenarios which takes the non-linear effects into ac-
counts can be more informative and contribute to
a better understanding on the risk of our portfolios
under stressed market conditions.

In the remainder of this paper, we review the
theoretical background of the methods used in the
paper in Section 2, and show the numerical exam-
ples in Section 3. Section 4 concludes.
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2. Methodology

In this section we review theoretical background
of the method used in this paper.
2.1. VaR and sVaR

As we review later, the VaR is calculated directly
from the profit or loss distribution of the portfolio.
On the other hand, the sVaR is supposed to be the
hypothetical VaR calculated for the stressed mar-
ket conditions. According to Gibart (2012), this is
usually done by estimating the profit or loss distri-
butions using the data that include financial crisis
periods, typically September to November 2008. In
this sense, the VaR calculated using a data set that
includes these two months is the sVaR.

In this paper, we use the data with crisis pe-
riod, and we further try to capture the risk under the
stress by using the scenarios on risk factors.

2.2. VaR under scenario

Let R be the random variable which denotes the
return on the portfolio, and X = (X}, ..., X,)'be a
random vector of the risk factors, such as the stock
index return or the interest rate change.

Let fir, x), r € R, x € R? be the joint density of R
and X, and f(x) be the marginal density of X. Then,
the density of R under the scenario X = x, where
x € R”, is given as the conditional density;

_ ) flrnx)
fR(r|X = x)— fx(x)'

Hence, the lower a-quantile under the scenario
is given as r, which satisfies

Frlr,|X = x)= " folr|X = x)dr =1-a.

Then the 100a%-VaR of the portfolio is calculat-
ed as — Sy(e™ — 1) = =Syr,, where S is the present
value of the portfolio.

2.3 Methods for deriving conditional density

In the procedure outlined above, the key step is
the derivation of the conditional density. Here, we
consider the following two methods; the use of lin-
ear model and the use of Hermite expansion.

The use of linear model is one of the simplest
way. It essentially takes only first and second mo-
ments into accounts, while the Hermite expansion
uses the higher order moments and is capable of
capturing non-linear structures such as the corre-
lation collapse and volatility clustering which are
often observed in the markets under stress.

Use of linear model
We assume a linear relation between r and X of
the form:

R=py+ XB + ¢,
where g, and g = (B, ..., p,)" are the parameters

which can be estimated, for instance, by the OLS,
and ¢ is a random variable which is uncorrelated

with X. It is often assumed that ¢ has the Normal
distribution with mean 0 and constant variance ¢°.
Under this setting, the conditional distribution
of R is simply the normal distribution with mean
By + xJp and variance ¢*. Thus, there is no technical
challenge in calculating VaR under scenarios.

Use of Hermite expansion

We consider the application of the method intro-
duced by Marumo and Wolff (2013, 2016).

Let us consider smoothing the empirical dis-
tribution function given the historical observations
(R(), X(i)), i =1, ..., N, where i is the time step.
We are aware of the possible existence of the se-
rial dependence structures; however, here we work
on the unconditional distribution. This can be justi-
fied by the popularity of the historical simulation
(HS) method, which uses the unconditional empiri-
cal distribution, among the large majority of com-
mercial banks (Pérignon and Smith, 2010). We deal
with the serial dependence structure later in the nu-
merical examples.

According to Marumo and Wolft (2013, 2016),
the joint density function can be estimated by
smoothing the empirical distribution function using
the Hermite expansion as

Flrox)=glr)plx,)--glx, )
x 2 G Hey (m)Hey, (x;)---Hey, (xp)’ (D

ky+ki+-+k,<n

where ¢(x)=e‘x2/ 2/Al27 is the density function of
the standard Normal distribution,

He, (x)= LLiqj(x)
Vit ¢(x) dx*
are the modified Hermite polynomials, and
¢, ki, ..., k, are the real coefficients given by
r P
~2+
1 Chk, ky...k
- r r (2
okt Vsl (ke + 1)+ 0 (ki + 1) 6 i, @
. 1 X . . .
Chy ky oy = WZ; He, (R(’))Hekl (X, (0)-- 'Hekp (Xp( )l
i
~ 1 X . .
bkz,,kl sk, = WZHei, (R(l ))Heil (Xl (’)) --Heip (Xp (l))»
i=1
Ek,,k,,...,kp = max((Nélz,,k,,,..,kp _513,,k1 k, )/(N—I),O),

where 0 < s < o0 is the parameter for smoothness and
n > 0 is the degree of expansion. If ékr, ki, ... k,=0
then Cr ky, ..., k, can be defined as 0. See Appendix
for conversion properties.

In practice, we can standardise the variables so
that the sample means equal to 0, sample variances
to 1, and sample correlation coefficients to 0, be-
fore applying the Hermite expansion, in order to
obtain better approximation quality. See Marumo
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and Wolff (2013, 2016). It has also been shown by
Marumo and Wolff (2016) that the density in Equa-
tion (1) is convergent for s # 0, and that the conver-
gence is slower with smaller s.

The marginal density fy(x) can be estimated
similarly, and hence the density under the scenario
X = x is given by

S(r.x)
fx(x)

2.4 Case with scenario on one risk factor
For illustration, we discuss the case with scenario on
one risk factor. This is the simplest case where we deal
with the joint distribution of (R, X;) and consider the
conditional distribution of R under the scenario X; = x;
For simplicity, we hereafter denote the risk fac-
tor by X instead of X;.

<r|X x)=

Use of linear model
The portfolio return under the scenario X = x
can be expressed as

R=py+ pix + g

a simple regression model. We can estimate f,, f,
and o> = W), for instance, by the OLS.

The distribution of R is given by N(3,+ A,x, 62),
where the symbols with " are the estimators. Here,
the information added to the unconditional VaR is
the linear correlation coefficient between the port-
folio return and risk factor.

Use of Hermite expansion

Suppose that the historical observations {R(i)}
and {X(i)}, are standardised so that the sample
means and variances are 0 and 1, respectively. Let p
be the sample correlation coefficient between {R(i)}
and {X(i)}. Then

Z(i)=%i§(i), i=1,

N, 3)

are uncorrelated with {X(i)}.
By applying the Hermite expansion, we can esti-
mate the joint density of (Z, X) by

felz.x) = glz)p(x) > ¢ Hey (z)He, (x),

k+l<n

where ¢, ; are given by

for ¢, # 0, and ¢, = 0, otherwise.

The joint density of (R, X) is given by
. X)= 1 A r—px
o
and the marginal density function of X, by

fx<x>=¢<x>§co,,He,(x>.

Hence, the conditional density function of R is
given by

fR(r|X =x)= R

r—px ”Ck o r—px ’
[Jl— 2)% o [\/l—zﬂj
( ):Z;:o ck,lHel(x)

Cr\ X P .
21:0 CO,lHel (x)

where

Using the identity

[ pluHe, (u)du=—

ﬁﬂt)Hek—l (1),
for k=1, 2,..., and

[ pluHe(x)du=[" gu)du=a(),

the conditional distribution function is calculated as
r—px

rpx ey (o
A==l T oo B B )

The lower a-quantile under the condition X = x can
be found by solving Fy(r|X = x)=1 — a for r.

3. Numerical Examples

3.1 Data and parameters

As an example, we consider measuring the risk of
the US Sovereign Bond Portfolio, one of the Japa-
nese investment trusts managed by Shinkin Asset
Management Co., Ltd., and use its daily reference
price series. This fund invests in the US sovereign
bonds, and is yen-denominated. We thus expect
that it is affected by the US financial markets as
well as foreign exchange markets (See http://www.
skam.co.jp/fund/detail/id=327 for the detailed de-
scription and source data. Since the investment trust
is dynamically managed, investing in this trust is not
equivalent to investing in the US sovereign bond
markets directly. ).

The observation period is from 1 August 2008
to 30 July 2010, which includes the financial crisis
in September to November 2008. In this sense,
the VaR calculated using the data from this ob-
servation period can be considered as sVaR (see
Section 2.1). The total number of observations is
N = 484,
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As for the risk factors, we consider the interest
rate (log-difference of the US ten years treasury
constant maturity rate), foreign exchange rate
(logdifference of the USD/JPY exchange rate),
and stock index (log-return on S&P 500). See
Table 1.

We consider the scenarios under which the risk
factor takes the value in the range * three times
the volatility (standard deviation of the log-differ-
ence), and observe how the conditional quantiles
are changed.

We use the smoothness parameter s = .4, which
is large enough for the approximation to be stable
within the set of scenarios. As for the degree of ex-
pansion, we set n = 100.

Meafl Std. ])j:V. Skewrless Kurtosis or.

(X107 (x1072) (x107") Coef.
Portfolio Return -2.953 0.777 4.011  7.366 (1.000)
10Y TB -9.895 2.860  -5.900  6.791 0.084
USD/JPY -5.121 0.895 -7.640  7.360 0.543
SP500 -7.150 2112 -4.59%  7.113 0.391

Table I: Summary statistics of the portfolio return and
log-differences of the risk factors. The Cor. Coef.
column shows the sample correlation coefficient be-
tween the portfolio return and the log-difference of
the risk factor.

3.2 Conditional VaR

As reviewed in Section 2.2, VaR can be approxi-
mated by —Syr,, where r, is the a-quantile of the
portfolio return. In this Section, we exhibit the re-
sults in terms of quantiles scaled by the volatility;
that is, we have

VaR per currency unit of portfolio = —scaled
quantile x 0.777 x 1072, where 0.777 x 1072 is the
volatility of the of the portfolio (see Table 1).

VaR under scenario on risk factor

Tables 2 to 4 and Figures 1 to 3 show the con-
ditional quantiles of the portfolio return for the sce-
narios.

From these Tables and Figures, we find that
the conditional quantiles by the Hermite expan-
sion and the those by linear model agree within *
one volatility change in the risk factor, while the
quantiles by the Hermite expansion are more con-
servative in the tail around two to three times the
volatility. This is consistent with the rule of thumb
which claims that the correlation can collapse in
the tail events.

We also observe that the conditional quantiles
are more conservative than unconditional ones at
around minus three times the volatility in all three
cases. This suggests that the unconditional VaR may
not be conservative enough in the stressed market
conditions.

X -3 -2 -1 0 1 2 3
Lower 99%tile

Hermite  -2.893 -2.628 -2.452 -2.304 -2.238 -2.549 -2.724
Linear -2.573 -2.489 -2.405 -2.321 -2.237 -2.152 -2.068
Uncond. (HS) -2.725

Uncond. (Gaussian) -2.326

Lower 97.5%tile

Hermite  -2.446 -2.207 -2.048 -1.912 -1.858 -2.037 -2.363
Linear -2.207 -2.123 -2.039 -1.955 -1.871 -1.787 -1.703
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 2: Scenarios on the change in the US ten years
treasury constant maturity rate and conditional quan-
tiles of the portfolio. X corresponds to the value of the
risk factor, scaled by the standard deviation. For in-
stance, the column with X = —3 corresponds to the
quantile of the portfolio return under the condition that
the risk factor is dropped by three times its volatility
(the standard deviation shown in Table 1). The uncon-
ditional quantiles calculated by the HS method and by
Gaussian approximation are also shown. See Figure 1.

US Sovereign Bond Portfolio x 10Y Treasury Constant Maturity Rate

O Observed Value
Lower 99%tile (Hermite) C)
H = = — Lower 99%tile (Linear)

Lower 99%tile (Unconditional HS)
Lower 97.5%tile (Hermite)

Lower 97.5%tile (Linear) e
Lower 97.5%tile (L
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- = 2 Chan_g1e in Risk Factor (x Volatility)
Figure I: Change in the US ten years treasury con-
stant maturity rate and the portfolio return. The
axes are scaled by the corresponding volatilities. The
horizontal axis corresponds to the scenario on the
risk factor.

X -3 -2 -1 0 1 2 3
Lower 99%tile

Hermite  -3.736 -3.536 -2.347 -2.023 -1.389 -1.521 -1.175
Linear -3.584 -3.042 -2.499 -1.956 -1.413 -0.870 -0.327
Uncond. (HS) -2.725

Uncond. (Gaussian) -2.326

Lower 97.5%tile

Hermite  -3.586 -2.972 -2.076 -1.691 -1.045 -0.758 -0.902
Linear -3.276 -2.733 -2.191 -1.648 -1.105 -0.562 -0.019
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 3: Scenarios on the change in USD/JPY ex-
change rate and conditional quantiles of the portfolio.
X corresponds to the value of the risk factor, scaled
by the standard deviation. For instance, the column
with X = —3 corresponds to the quantile of the port-
folio return under the condition that the risk factor
is dropped by three times its volatility (the standard
deviation shown in Table 1). The unconditional quan-
tiles calculated by the HS method and by Gaussian
approximation are also shown. See Figure 2.
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US Sovereign Bond Portfolio x USD/JPY Currency Exchange Rate
6

O Observed Value ©
Lower 99%tile (Hermite) © R
4H — — — Lower 99%tile (Linear)
= Lower 99%tile (Unconditional HS) °
= Lower 97.5%tile (Hermite)
2 2H - — — Lower 97.5%tile (Linear)
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Figure 2: Change in the USD/JPY exchange rate
and the portfolio return. The axes are scaled by the
corresponding volatilities. The horizontal axis cor-
responds to the scenario on the risk factor.

X -3 -2 -1 0 1 2 3
Lower 99%tile

Hermite  -3.387 -3.075 -2.614 -2.126 -1.737 -1.721 -1.520
Linear -3.316 -2.925 -2.534 -2.144 -1.753 -1.362 -0.971
Uncond. (HS) -2.725

Uncond. (Gaussian) -2.326

Lower 97.5%tile

Hermite  -3.164 -2.693 -2.231 -1.770 -1.374 -1.256 -1.197
Linear -2.978 -2.588 -2.197 -1.806 -1.415 -1.024 -0.634
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 4: Scenarios on the return on S&P 500 Index
and conditional quantiles of the portfolio. X corre-
sponds to the value of the risk factor, scaled by the
standard deviation. For instance, the column with
X = —3 corresponds to the quantile of the portfo-
lio return under the condition that the risk factor is
dropped by three times its volatility (the standard de-
viation shown in Table 1). The unconditional quan-
tiles calculated by the HS method and by Gaussian
approximation are also shown. See Figure 3.

US Sovereign Bond Portfolio x SP 500

O Observed Value o
Lower 99%tile (Hermite) e
~ — — Lower 99%tile (Linear)
Lower 99%tile (Unconditional HS)
Lower 97.5%tile (Hermite)
Lower 97.5%tile (Linear)
Lower 97.5%tile (L i

o - N w & o o

Portfolio Return (x Violatility)

%5 -4 -3 -2 -1 [ 1 2
Change in Risk Factor (x Volatility)

Figure 3: Return on S&P 500 Index and the portfo-
lio return. The axes are scaled by the corresponding
volatilities. The horizontal axis corresponds to the
scenario on the risk factor.

Scenario on previous day change

Volatility clustering is frequently observed in the
financial markets. Loosely speaking, volatility clus-
tering claims that large changes are likely to be fol-
lowed by large changes, regardless of the directions.
Thus, we expect that the conditioning on the previ-
ous day return can alter the distribution of next day

return. We investigate such non-linear dependence
structure using the same data. The auto-covariance
for the observed period is —0.1370.

Table 5 and Figure 4 show the quantiles con-
ditioned on the previous day return. We observe
that the quantiles calculated by the Hermite expan-
sion are more conservative than those by the linear
model. This is consistent with volatility clustering
frequently observed in the markets.

X -3 -2 -1 0 1 2 3
Lower 99%tile

Hermite  -2.140 -2.416 -2.326 -2.268 -2.348 -2.636 -2.833
Linear -1.896 -2.033 -2.170 -2.307 -2.444 -2.581 -2.718
Uncond. (HS) -2.725

Uncond. (Gaussian) -2.326

Lower 97.5%tile

Hermite  -1.891 -2.002 -1.894 -1.885 -1.977 -2.281 -2.542
Linear -1.532 -1.669 -1.807 -1.944 -2.081 -2.218 -2.355
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 5: Scenarios on the previous day’s return and
conditional quantiles of the portfolio. X corresponds
to the value of the risk factor, scaled by the standard
deviation. For instance, the column with X = —3
corresponds to the quantile of the portfolio return
under the condition that the risk factor is dropped
by three times its volatility (the standard deviation
shown in Table 1). The unconditional quantiles
calculated by the HS method and by Gaussian ap-
proximation are also shown. See Figure 4.

US Sovereign Bond Portfolio x Previous Day Return

o O Observed Value

Lower 99%tile (Hermite)
L ° ~ — — Lower 99%tile (Linear)
Lower 99%tile (Unconditional HS)

Lower 97.5%tile (Hermite)
Lower 97.5%tile (Linear)
Lower 97.5%tile (L i HS|

o

o -~ N w & o o
T

o

Portfolio Return (x Volatility)
\

]
INY

!
w
U

!
n A
T

5 -4 -3 -2 -1 0 1 2 3 4 5 6
Previous Day Return (x Volatilty)

Figure 4: Previous day change and the portfolio
return. The axes are scaled by the corresponding
volatilities. The horizontal axis corresponds to the
scenario on the previous day return.

4. Conclusion

We considered the application of the Hermite
expansion to the calculation of the conditional
VaRs, or equivalently for this case, conditional
sVaRs, and compared it with those by the linear
model. The numerical examples demonstrated
that the sVaRs by two methods agreed with each
other at the body of the distribution, while the
sVaR by the Hermite expansion was more con-
servative than that by the linear model in the
tails. This suggests that the Hermite expansion
is capable of capturing the correlation collapse,
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which is often observed under the stressed mar-
ket conditions.

We also applied the methods to the sVaR
with conditions on the previous day return of the
portfolio, and investigated how these methods
capture the serial dependence structure. It was
observed that the sVaR by the Hermite expansion
was more conservative than that by the linear
model. This suggests that the Hermite expansion
is capable of capturing the volatility clustering
which refers to the phenomenon observed in the
market that large changes are likely to be fol-
lowed by large changes.

The sVaRs by the Hermite expansion under the
condition that the risk factor is around three times
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its volatility were more conservative than uncon-
ditional ones. This suggests that the unconditional
sVaR may not be conservative enough under the
stressed conditions.

By construction, the sVaR by the Hermite ex-
pansion depends on the parameters, the smoothness
weight s in Equation (2), and the degree of expan-
sion n in Equation (1). The convergence property
has been discussed in Marumo and Wolff (2016),
and it has been shown that the density function is
uniformly convergent for s # 0 as n — « (see Ap-
pendix). Hence, we might choose reasonably large
number. With regard to the smoothness weight,
however, the criteria for choosing an appropriate
value has not been proposed. This is our future work.
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A Convergence of Hermite expansion

We outline the proof of the convergence of the
Hermite expansion in Equation (1). Although we
use the bivariate case here, the general multivariate
case can be shown similarly.

A.1. Hermite expansion of unit step function

It has been shown by Marumo and Wolff (2016)
that the unit step function has the convergent Her-
mite expansion of the form

2 He, (X)
()+¢()1 T

Since the bivariate unit step function is the product
of two univariate ones,

Liyey = He, ,(x). a.e. x

Lxcx vy = Lxenliv<y

it has the convergent Hermite expansion of the form
= 0()D(y)

H},‘Y)He,_l )+ dekols)3) HCJ%(X)H

He, (X)He,(¥)
Tﬂe,ﬁl (x)He,;(y) a.e.x,y.

A.2. Hermite expansion of empirical distribution

Jfunction
Given the data set {(X(1),K(1)),..., (X(N),Y

(N))}, the (joint) empirical distribution function can
be written as

( )= Z‘ X()<x Y (i)sy)

Using the result frqm the previous Section, the
Hermite expansion of F can be expressed as

Fx, y) = CD(X)CD(J/)

#4015 )+ 0l

1{X§ x, Y<y}

+a(x)+g(y)y.

=1

WD

k=11=1

e (x)

)3 Sk

k=1

Hek—l (x)

WETEDHS rH L(0)He (v ae.x,y.

k=1/=1
where
n 1 . .
€r = 2He (X (@)He, (Y (7))
i=1
This can be written as

R, y) = 0(0F ) +Fx<x><1>(y> — O(X)D(y)

+p(x)p(y )ZZ\/—Hek 1(x)He, 1 (v). a. e. x,,

k=11=1

where Fy and Fy are the empirical marginal distribu-
tion functions of Xand Y, respectively. Thus, we have

[ [ )0l 0)- Fr o) o) ()}2dxdy

#lx)p(y)

é

HMS

We show that the integral in the left hand side is
bounded. Let a be a large enough constant. Split the

integral by all combinations of x < —a, —a < x < a,
a<x,and y<—a, —a<y<a,a<y Forx<-—a,
we have F(x, y) =Fy(x) = 0, so the integral is

J.,a {— (D(X)ﬁy (y)+ CD(X)(D(J’)}Z

1 dxd
=l AX)) g
e Py e Ho-eo)
A S TR

Since ®(x) — ¢(x) is decreasing for x < —1 with
lim,_,_ {Phi(x) — ¢(x)} = 0, we have 0 < ®(x) < ¢(x)

for x < —1. Therefore

_[_w(—dx J' H(x)dx =D(—-a)<

Hence we have

I, <o(- a)fy:_w
Now, split the integral with respect to y. For y < —a,
similarly to the case with x < —a, we have

[ Ey () -0 19(r)dy

is bounded. By symmetry the integral for a < y is

also bounded. It is trivial to show that the integral

for —a < y < a is bounded. Hence, /; is bounded.

By symmetry, the integral for a < x is also bounded.

The case with —a < x < a can be shown similarly.
Thus, it has been shown that

> > e (k)
k=1/=1
is bounded.

A.3. Convergence of Hermite expansion
As discussed in Marumo and Wolff (2013), the
smoothed joint density function is given by the form

fS<x,y>:¢(x)¢<y)§gci,Hek<x>He,(y>,
where
oS = Cr
S sl (e + 1)+ 1+ 1)

From the fact that (ck 1)2 <¢ /(kl) for large k and
I, and the result from the prev1ous Section, we have
that

is bounded, which implies that the infinite sum on
the right hand side is convergent.
As for the expansion used in this paper, the coef-

ficient is

~2+
1 Crl

L+ s{l+k(k+1)+1(+1)} ¢,

which is smaller than Llc,f ; This suggests that

the Hermite expansion used in this paper is also
convergent.
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