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Непараметрический метод вычисления 
величины условной напряженности при 
наличии риска
Рассматривается оценка рисковой стоимости в условиях напря-
женности. На практике напряженная величина риска обычно 
рассчитывается с использованием набора данных, включающего 
напряженный период. Это говорит о том, насколько возрастает 
риск, если мы используем данные в условиях напряженности. 
В данной работе мы рассматриваем величину риска (VaR) при 
напряженных сценариях. Технически это можно сделать, полу-
чив распределение прибыли или убытка, обусловленное величиной 
факторов риска. Мы используем два метода: один, который 

использует линейную модель, и другой, который использует 
распределение по Эрмиту, рассмотренный Марумо и Вольфом 
(2013, 2016). Численные примеры показывают, что метод 
распределения по Эрмету способен фиксировать нелинейные 
эффекты, такие как корреляционный коллапс и кластеризация 
волатильности, которые часто наблюдаются на рынках. 

Ключевые слова: условное распределение, распределение по 
Эрмету; линейная модель, нелинейный эффект.

We consider the Value at Risk (VaR) of a portfolio under stressed 
conditions. In practice, the stressed VaR (sVaR) is commonly calcu-
lated using the data set that includes the stressed period. It tells us 
how much the risk amount increases if we use the stressed data set. 
In this paper, we consider the VaR under stress scenarios. Techni-
cally, this can be done by deriving the distribution of profit or loss 
conditioned on the value of risk factors. We use two methods; the 
one that uses the linear model and the one that uses the Hermite 

expansion discussed by Marumo and Wolff (2013, 2016). Numeri-
cal examples shows that the method using the Hermite expansion 
is capable of capturing the non-linear effects such as correlation 
collapse and volatility clustering, which are often observed in the 
markets.

Keywords: Conditional distribution; Hermite expansion; Linear 
model; Non-linear effect.

A Non-parametric Method for Calculating
Conditional Stressed Value at Risk

1. Introduction 

Value at Risk (VaR) and stress test are common 
tools for measuring risk of a portfolio and are used 
as the benchmark for the capital requirement in fi-
nancial institutions. In addition to these two, a risk 
measure called the stressed Value at Risk (sVaR) 
is often discussed (Hong, 2017; Basel Committee 
on Banking Supervision, 2013; European Banking 
Authority, 2012). 

The sVaR considers the VaR under the stressed 
market conditions. In practice, this is particularly 
done by using the market data from the period that 
includes September to November 2008 financial cri-
sis (Gibart, 2012). This implies that the only dif-
ference between the VaR and sVaR is that we use 
the data set with the larger volatility for calculation. 
Further, we usually use around two years’ histori-
cal data for VaR calculations, while many financial 
crises lasts only a few months. This means that the 
data set as a whole may not represent the stressed 
market conditions. 

In this paper, we consider the VaR under stress 
scenarios on risk factors. This can be compared 
to the stress tests, which considers the loss under 
stress scenarios. Technically, the VaR under a sce-
nario can be calculated from the distribution of 

profit or loss conditioned on the risk factor’s value. 
A naїve way of deriving this conditional distribu-
tion is to use the linear model. This method essen-
tially uses only first and second moments, and is 
not capable of capturing non-linear effects such as 
correlation collapse and volatility clustering, which 
are often observed in the markets. We consider the 
application of the Hermite expansion discussed by 
Marumo and Wolff (2013, 2016) to the calculation 
of conditional VaR. The Hermite expansion ap-
proximates the target density function by the Nor-
mal density multiplied by the linear combination of 
the Hermite polynomials. It is capable of express-
ing the higher order moments, and hence we sup-
pose that it captures non-linear effects. 

Compared to the VaR under stress scenarios, the 
stressed VaR can be considered as the uncondition-
al VaR, calculated using the data that includes the 
stressed period. We expect that the VaR under stress 
scenarios which takes the non-linear effects into ac-
counts can be more informative and contribute to 
a better understanding on the risk of our portfolios 
under stressed market conditions. 

In the remainder of this paper, we review the 
theoretical background of the methods used in the 
paper in Section 2, and show the numerical exam-
ples in Section 3. Section 4 concludes. 
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2. Methodology 

In this section we review theoretical background 
of the method used in this paper. 
2.1. VaR and sVaR 

As we review later, the VaR is calculated directly 
from the profit or loss distribution of the portfolio. 
On the other hand, the sVaR is supposed to be the 
hypothetical VaR calculated for the stressed mar-
ket conditions. According to Gibart (2012), this is 
usually done by estimating the profit or loss distri-
butions using the data that include financial crisis 
periods, typically September to November 2008. In 
this sense, the VaR calculated using a data set that 
includes these two months is the sVaR. 

In this paper, we use the data with crisis pe-
riod, and we further try to capture the risk under the 
stress by using the scenarios on risk factors. 

2.2. VaR under scenario 
Let R be the random variable which denotes the 

return on the portfolio, and X = (X1, ..., Xp)' be a 
random vector of the risk factors, such as the stock 
index return or the interest rate change. 

Let f(r, x), r ∈ , x ∈ p be the joint density of R 
and X, and fX(x) be the marginal density of X. Then, 
the density of R under the scenario X = x, where 
x ∈ p, is given as the conditional density; 
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Hence, the lower α-quantile under the scenario 
is given as rα which satisfies 
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Then the 100α%-VaR of the portfolio is calculat-
ed as − S0(e

rα − 1)  −S0rα, where S0 is the present 
value of the portfolio. 

2.3 Methods for deriving conditional density 
In the procedure outlined above, the key step is 

the derivation of the conditional density. Here, we 
consider the following two methods; the use of lin-
ear model and the use of Hermite expansion. 

The use of linear model is one of the simplest 
way. It essentially takes only first and second mo-
ments into accounts, while the Hermite expansion 
uses the higher order moments and is capable of 
capturing non-linear structures such as the corre-
lation collapse and volatility clustering which are 
often observed in the markets under stress. 

Use of linear model 
We assume a linear relation between r and X of 

the form: 
R = β0 + X'β + ε, 

where β0 and β = (β1, ..., βp)' are the parameters 
which can be estimated, for instance, by the OLS, 
and ε is a random variable which is uncorrelated 

with . It is often assumed that ε has the Normal 
distribution with mean 0 and constant variance σ2. 

Under this setting, the conditional distribution 
of R is simply the normal distribution with mean 
β0 + x'β and variance σ2. Thus, there is no technical 
challenge in calculating VaR under scenarios. 

Use of Hermite expansion 
We consider the application of the method intro-

duced by Marumo and Wolff (2013, 2016). 
Let us consider smoothing the empirical dis-

tribution function given the historical observations 
(R(i), X'(i))' , i = 1, ..., N, where i is the time step. 
We are aware of the possible existence of the se-
rial dependence structures; however, here we work 
on the unconditional distribution. This can be justi-
fied by the popularity of the historical simulation 
(HS) method, which uses the unconditional empiri-
cal distribution, among the large majority of com-
mercial banks (Prignon and Smith, 2010). We deal 
with the serial dependence structure later in the nu-
merical examples. 

According to Marumo and Wolff (2013, 2016), 
the joint density function can be estimated by 
smoothing the empirical distribution function using 
the Hermite expansion as
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where 0 < s ≤ ∞ is the parameter for smoothness and 
n ≥ 0 is the degree of expansion. If ĉkr

, k1, ..., kp = 0 
then ckr

, k1, ..., kp can be defined as 0. See Appendix 
for conversion properties. 

In practice, we can standardise the variables so 
that the sample means equal to 0, sample variances 
to 1, and sample correlation coefficients to 0, be-
fore applying the Hermite expansion, in order to 
obtain better approximation quality. See Marumo 
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and Wolff (2013, 2016). It has also been shown by 
Marumo and Wolff (2016) that the density in Equa-
tion (1) is convergent for s ≠ 0, and that the conver-
gence is slower with smaller s. 

The marginal density f̂X(x) can be estimated 
similarly, and hence the density under the scenario  
X = x is given by 

( ) ( )
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2.4 Case with scenario on one risk factor 
For illustration, we discuss the case with scenario on 

one risk factor. This is the simplest case where we deal 
with the joint distribution of (R, X1) and consider the 
conditional distribution of R under the scenario X1 = x1. 

For simplicity, we hereafter denote the risk fac-
tor by X instead of X1. 

Use of linear model 
The portfolio return under the scenario X = x 

can be expressed as 

R = β0 + β1x + ε, 

a simple regression model. We can estimate β0, β1 
and σ2 = V(ε), for instance, by the OLS.

The distribution of R is given by  ( )210N σββ ˆ,ˆˆ x+ ,
where the symbols with ˆ are the estimators. Here, 
the information added to the unconditional VaR is 
the linear correlation coefficient between the port-
folio return and risk factor.

Use of Hermite expansion 
Suppose that the historical observations {R(i)} 

and {X(i)}, are standardised so that the sample 
means and variances are 0 and 1, respectively. Let ρ̂ 
be the sample correlation coefficient between {R(i)} 
and {X(i)}. Then 
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are uncorrelated with {X(i)}.
By applying the Hermite expansion, we can esti-
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for ĉk,l ≠ 0, and ck,l = 0, otherwise.

The joint density of (R, X) is given by 
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The lower α-quantile under the condition X = x can 
be found by solving   FR(r |X = x)=1 − α for r. 

3. Numerical Examples 

3.1 Data and parameters 
As an example, we consider measuring the risk of 

the US Sovereign Bond Portfolio, one of the Japa-
nese investment trusts managed by Shinkin Asset 
Management Co., Ltd., and use its daily reference 
price series. This fund invests in the US sovereign 
bonds, and is yen-denominated. We thus expect 
that it is affected by the US financial markets as 
well as foreign exchange markets (See http://www.
skam.co.jp/fund/detail/id=327 for the detailed de-
scription and source data. Since the investment trust 
is dynamically managed, investing in this trust is not 
equivalent to investing in the US sovereign bond 
markets directly. ). 

The observation period is from 1 August 2008 
to 30 July 2010, which includes the financial crisis 
in September to November 2008. In this sense, 
the VaR calculated using the data from this ob-
servation period can be considered as sVaR (see 
Section 2.1). The total number of observations is 
N = 484. 
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As for the risk factors, we consider the interest 
rate (log-difference of the US ten years treasury 
constant maturity rate), foreign exchange rate 
(logdifference of the USD/JPY exchange rate), 
and stock index (log-return on S&P 500). See 
Table 1. 

We consider the scenarios under which the risk 
factor takes the value in the range ± three times 
the volatility (standard deviation of the log-differ-
ence), and observe how the conditional quantiles 
are changed. 

We use the smoothness parameter s = .4, which 
is large enough for the approximation to be stable 
within the set of scenarios. As for the degree of ex-
pansion, we set n = 100. 

Mean 
(×10−4)

Std. Dev. 
(×10−2)

Skewness 
(×10−1) Kurtosis Cor. 

Coef.

Portfolio Return -2.953 0.777 4.011 7.366 (1.000)

10Y TB -9.895 2.860 -5.900 6.791 0.084

USD/JPY -5.121 0.895 -7.640 7.360 0.543

SP500 -7.150 2.112 -4.596 7.113 0.391

Table 1: Summary statistics of the portfolio return and 
log-differences of the risk factors. The Cor. Coef. 
column shows the sample correlation coefficient be-
tween the portfolio return and the log-difference of 
the risk factor.

3.2 Conditional VaR 
As reviewed in Section 2.2, VaR can be approxi-

mated by −S0rα, where rα is the α-quantile of the 
portfolio return. In this Section, we exhibit the re-
sults in terms of quantiles scaled by the volatility; 
that is, we have 

VaR per currency unit of portfolio = −scaled 
quantile × 0.777 × 10−2, where 0.777 × 10−2 is the 
volatility of the of the portfolio (see Table 1). 

VaR under scenario on risk factor 
Tables 2 to 4 and Figures 1 to 3 show the con-

ditional quantiles of the portfolio return for the sce-
narios. 

From these Tables and Figures, we find that 
the conditional quantiles by the Hermite expan-
sion and the those by linear model agree within ± 
one volatility change in the risk factor, while the 
quantiles by the Hermite expansion are more con-
servative in the tail around two to three times the 
volatility. This is consistent with the rule of thumb 
which claims that the correlation can collapse in 
the tail events. 

We also observe that the conditional quantiles 
are more conservative than unconditional ones at 
around minus three times the volatility in all three 
cases. This suggests that the unconditional VaR may 
not be conservative enough in the stressed market 
conditions. 

X -3 -2 -1 0 1 2 3
Lower 99%tile
Hermite -2.893 -2.628 -2.452 -2.304 -2.238 -2.549 -2.724
Linear -2.573 -2.489 -2.405 -2.321 -2.237 -2.152 -2.068
Uncond. (HS) -2.725
Uncond. (Gaussian) -2.326

Lower 97.5%tile
Hermite -2.446 -2.207 -2.048 -1.912 -1.858 -2.037 -2.363
Linear -2.207 -2.123 -2.039 -1.955 -1.871 -1.787 -1.703
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 2: Scenarios on the change in the US ten years 
treasury constant maturity rate and conditional quan-
tiles of the portfolio. X corresponds to the value of the 
risk factor, scaled by the standard deviation. For in-
stance, the column with X = −3 corresponds to the 
quantile of the portfolio return under the condition that 
the risk factor is dropped by three times its volatility 
(the standard deviation shown in Table 1). The uncon-
ditional quantiles calculated by the HS method and by 
Gaussian approximation are also shown. See Figure 1.

Figure 1: Change in the US ten years treasury con-
stant maturity rate and the portfolio return. The 
axes are scaled by the corresponding volatilities. The 
horizontal axis corresponds to the scenario on the 
risk factor. 

X -3 -2 -1 0 1 2 3
Lower 99%tile
Hermite -3.736 -3.536 -2.347 -2.023 -1.389 -1.521 -1.175
Linear -3.584 -3.042 -2.499 -1.956 -1.413 -0.870 -0.327
Uncond. (HS) -2.725
Uncond. (Gaussian) -2.326

Lower 97.5%tile
Hermite -3.586 -2.972 -2.076 -1.691 -1.045 -0.758 -0.902
Linear -3.276 -2.733 -2.191 -1.648 -1.105 -0.562 -0.019
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 3: Scenarios on the change in USD/JPY ex-
change rate and conditional quantiles of the portfolio. 
X corresponds to the value of the risk factor, scaled 
by the standard deviation. For instance, the column 
with X = −3 corresponds to the quantile of the port-
folio return under the condition that the risk factor 
is dropped by three times its volatility (the standard 
deviation shown in Table 1). The unconditional quan-
tiles calculated by the HS method and by Gaussian 
approximation are also shown. See Figure 2. 
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Figure 2: Change in the USD/JPY exchange rate 
and the portfolio return. The axes are scaled by the 
corresponding volatilities. The horizontal axis cor-
responds to the scenario on the risk factor. 

X -3 -2 -1 0 1 2 3
Lower 99%tile
Hermite -3.387 -3.075 -2.614 -2.126 -1.737 -1.721 -1.520
Linear -3.316 -2.925 -2.534 -2.144 -1.753 -1.362 -0.971
Uncond. (HS) -2.725
Uncond. (Gaussian) -2.326

Lower 97.5%tile
Hermite -3.164 -2.693 -2.231 -1.770 -1.374 -1.256 -1.197
Linear -2.978 -2.588 -2.197 -1.806 -1.415 -1.024 -0.634
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 4: Scenarios on the return on S&P 500 Index 
and conditional quantiles of the portfolio. X corre-
sponds to the value of the risk factor, scaled by the 
standard deviation. For instance, the column with 
X = −3 corresponds to the quantile of the portfo-
lio return under the condition that the risk factor is 
dropped by three times its volatility (the standard de-
viation shown in Table 1). The unconditional quan-
tiles calculated by the HS method and by Gaussian 
approximation are also shown. See Figure 3. 

Figure 3: Return on S&P 500 Index and the portfo-
lio return. The axes are scaled by the corresponding 
volatilities. The horizontal axis corresponds to the 
scenario on the risk factor. 

Scenario on previous day change 
Volatility clustering is frequently observed in the 

financial markets. Loosely speaking, volatility clus-
tering claims that large changes are likely to be fol-
lowed by large changes, regardless of the directions. 
Thus, we expect that the conditioning on the previ-
ous day return can alter the distribution of next day 

return. We investigate such non-linear dependence 
structure using the same data. The auto-covariance 
for the observed period is −0.1370. 

Table 5 and Figure 4 show the quantiles con-
ditioned on the previous day return. We observe 
that the quantiles calculated by the Hermite expan-
sion are more conservative than those by the linear 
model. This is consistent with volatility clustering 
frequently observed in the markets. 

X -3 -2 -1 0 1 2 3
Lower 99%tile
Hermite -2.140 -2.416 -2.326 -2.268 -2.348 -2.636 -2.833
Linear -1.896 -2.033 -2.170 -2.307 -2.444 -2.581 -2.718
Uncond. (HS) -2.725
Uncond. (Gaussian) -2.326

Lower 97.5%tile
Hermite -1.891 -2.002 -1.894 -1.885 -1.977 -2.281 -2.542
Linear -1.532 -1.669 -1.807 -1.944 -2.081 -2.218 -2.355
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 5: Scenarios on the previous day’s return and 
conditional quantiles of the portfolio. X corresponds 
to the value of the risk factor, scaled by the standard 
deviation. For instance, the column with X = −3 
corresponds to the quantile of the portfolio return 
under the condition that the risk factor is dropped 
by three times its volatility (the standard deviation 
shown in Table 1). The unconditional quantiles 
calculated by the HS method and by Gaussian ap-
proximation are also shown. See Figure 4. 

 
Figure 4: Previous day change and the portfolio 
return. The axes are scaled by the corresponding 
volatilities. The horizontal axis corresponds to the 
scenario on the previous day return. 

4. Conclusion 

We considered the application of the Hermite 
expansion to the calculation of the conditional 
VaRs, or equivalently for this case, conditional 
sVaRs, and compared it with those by the linear 
model. The numerical examples demonstrated 
that the sVaRs by two methods agreed with each 
other at the body of the distribution, while the 
sVaR by the Hermite expansion was more con-
servative than that by the linear model in the 
tails. This suggests that the Hermite expansion 
is capable of capturing the correlation collapse, 
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which is often observed under the stressed mar-
ket conditions. 

We also applied the methods to the sVaR 
with conditions on the previous day return of the 
portfolio, and investigated how these methods 
capture the serial dependence structure. It was 
observed that the sVaR by the Hermite expansion 
was more conservative than that by the linear 
model. This suggests that the Hermite expansion 
is capable of capturing the volatility clustering 
which refers to the phenomenon observed in the 
market that large changes are likely to be fol-
lowed by large changes. 

The sVaRs by the Hermite expansion under the 
condition that the risk factor is around three times 

its volatility were more conservative than uncon-
ditional ones. This suggests that the unconditional 
sVaR may not be conservative enough under the 
stressed conditions. 

By construction, the sVaR by the Hermite ex-
pansion depends on the parameters, the smoothness 
weight s in Equation (2), and the degree of expan-
sion n in Equation (1). The convergence property 
has been discussed in Marumo and Wolff (2016), 
and it has been shown that the density function is 
uniformly convergent for s ≠ 0 as n → ∞ (see Ap-
pendix). Hence, we might choose reasonably large 
number. With regard to the smoothness weight, 
however, the criteria for choosing an appropriate 
value has not been proposed. This is our future work. 
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A Convergence of Hermite expansion 

We outline the proof of the convergence of the 
Hermite expansion in Equation (1). Although we 
use the bivariate case here, the general multivariate 
case can be shown similarly. 

A.1. Hermite expansion of unit step function 
It has been shown by Marumo and Wolff (2016) 

that the unit step function has the convergent Her-
mite expansion of the form 
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Since the bivariate unit step function is the product 
of two univariate ones, 

1{X ≤ x, Y ≤ y} = 1{X ≤ x}1{Y ≤ y}, 

it has the convergent Hermite expansion of the form 
1{X ≤ x, Y ≤ y} = Φ(x)Φ(y) 
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A.2. Hermite expansion of empirical distribution 
function 

Given the data set {(X(1),Y(1)),..., (X(N),Y 
(N))}, the (joint) empirical distribution function can 
be written as

 ( ) ( ) ( ){ }.,ˆ
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Using the result from the previous Section, the 
Hermite expansion of F̂ can be expressed as 

F̂(x, y) = Φ(x)Φ(y) 
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where 
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This can be written as 
F̂(x, y) = Φ(x) ̂FY(y) + F̂X(x)Φ(y) – Φ(x)Φ(y)

 ( ) ( ) ( ) ( ) ,,,
ˆ , yxyx
kl

c
yx lk
k l

lk e.a.HeHe 11
1 1

−−

∞

=

∞

=
∑∑+ φφ

where  ̂FX and  ̂FY are the empirical marginal distribu-
tion functions of X and Y, respectively. Thus, we have 
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We show that the integral in the left hand side is 
bounded. Let a be a large enough constant. Split the 

integral by all combinations of x ≤ −a, −a < x ≤ a, 
a < x, and y ≤ −a, −a < y ≤ a, a < y. For x ≤ −a, 
we have  ̂F(x, y) = F̂X(x) = 0, so the integral is 
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Since Φ(x) − ϕ(x) is decreasing for x ≤  −1 with 
limx→−∞{Phi(x) − ϕ(x)} = 0, we have 0 < Φ(x) < ϕ(x) 
for x ≤ −1. Therefore
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Now, split the integral with respect to y. For y ≤ −a, 
similarly to the case with x ≤ −a, we have
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is bounded. By symmetry the integral for a < y is 
also bounded. It is trivial to show that the integral 
for −a < y ≤ a is bounded. Hence, I1 is bounded. 
By symmetry, the integral for a < x is also bounded. 
The case with −a < x ≤ a can be shown similarly. 

Thus, it has been shown that
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is bounded. 

A.3. Convergence of Hermite expansion 
As discussed in Marumo and Wolff (2013), the 

smoothed joint density function is given by the form 
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From the fact that (cS
k,l)

2 < ĉ2
k,l /(kl) for large k and 

l, and the result from the previous Section, we have 
that
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is bounded, which implies that the infinite sum on 
the right hand side is convergent.

As for the expansion used in this paper, the coef-
ficient is 
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which is smaller than S
lkcN

N
,1−
 This suggests that

the Hermite expansion used in this paper is also 
convergent. 


