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ABSTRACT 

 

CHARACTERIZATION OF STREPTOMYCES COELICOLOR PARH  

IN DEVELOPMENT-ASSOCIATED CHROMOSOME SEGREGATION  

 

 

 

By 

Metis Hasipek 

May 2016 

 

Dissertation supervised by Joseph R. McCormick 

 S. coelicolor uses an active chromosome partitioning system for  

developmentally-regulated genome segregation, which is associated with spore 

formation. There are four known trans-acting segregation proteins (ParA, ParB, ParJ and 

Scy) and cis-acting centromere-like sites (parS).  parA encodes a Walker-type ATPase 

that is required for efficient DNA segregation and proper placement of the ParB-parS 

nucleoprotein complexes. A paralogue of ParA is encoded by the S. coelicolor genome, 

SCO1772 (named ParH), that has 45% identical residues to ParA. In S. coelicolor aerial 

hyphae, a ∆parH mutant produces 5% of anucleate spores. In this study, ParH was 

identified as a novel interaction partner of S. coelicolor ParB. However, a Walker A 

motif K99E substitution in ParH and removal an N-terminal extension in ParH impaired 

interaction between ParH and ParB, as judged by bacterial two-hybrid analyses. ParH-
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EGFP localization resembles the evenly-spaced localization pattern of ParH-EGFP in 

aerial hyphae, which might suggest that ParH colocalizes with ParB. A parH-null mutant 

appears to be unable to properly organize the oriC regions within a subset of prespores, 

as judged by ParB-EGFP foci. In this study, through a random chromosomal library 

screening, a novel protein that interacts with ParA and ParH was also identified. HaaA 

(ParH and ParA Associated protein A) is required for proper chromosome segregation 

and is one of the 24 signature proteins of the Actinomycetes that are not found in other 

bacterial lineages. A bacterial two-hybrid analysis showed that HaaA interacts with itself 

and interaction between ParH and ParA was through the C-terminal unstructured region. 

Interaction between HaaA and ParA and ParA-like proteins was conserved in other 

Actinomycetes, such as S. venezuelae, C. glutamicum and M. smegmatis. There was no 

evidence for interaction with other tested segregation proteins. In addition, a haaA 

insertion-deletion mutant strain revealed that loss of HaaA affected chromosome 

segregation (6% anucleate spores) and HaaA-EGFP localizes within spores of the mature 

spore chains. Together these data revealed new information to further understand 

chromosome segregation in S. coelicolor.  
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CHAPTER 1: LITERATURE REVIEW 

Bacterial Chromosome and Low-Copy-Number Plasmid Segregation and 

Partitioning Proteins 

 The proper distribution of chromosomes into daughter cells during cell division is 

an important part of the bacterial cell cycle. Chromosome organization and segregation 

after DNA replication and before cell division is mediated by an active partitioning 

mechanism, which is still quite elusive. This literature review mainly focuses on what is 

known about partitioning proteins in low-copy-number plasmids and the chromosome of 

model organisms, such as Escherichia coli, Bacillus subtilis, Caulobacter crescentus, 

Corynebacterium glutamicum, and Streptomyces coelicolor.  

 The first model for chromosome partitioning, the ‘replicon model’, was proposed 

for E. coli by Jacob and Brenner (1963). According to this model, both chromosomes 

attach to specific positions in the cell membrane and the chromosomes passively separate 

with cell growth from insertion of new cell envelope material between these attachment 

points.  

Studies on low-copy-number plasmid partitioning brought insight into alternative 

mechanisms to this topic. While high copy number plasmids randomly distribute into 

daughter cells, low-copy-number plasmids must need active partitioning in a dividing cell 

to secure their presence in daughter cells (Bignell and Thomas, 2001). Studies in E. coli 

on plasmid F and prophage P1 led to the discovery of active partitioning proteins, 

ParA/SopA and ParB/SopB (Abeles et al., 1986; Mori et al., 1986). This literature review 

mainly concentrates on the homologs of these partitioning proteins and their partners in 

low-copy-number plasmids and the chromosome of model bacterial species. Also, it 
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includes discussion of additional proteins that are implicated in chromosome segregation, 

such as FtsK and SMC in these model organisms. Table 1.1 and Table 1.2 summarize the 

main systems and proteins in plasmid and bacterial chromosome segregation, which are 

discussed in this chapter. 

Segregation systems in plasmids 

Plasmid-encoded partition loci have been a useful model to study the mechanism 

of bacterial chromosome segregation. There are three major classes of segregation 

systems in low-copy-number plasmids (Gerdes et al., 2010). Each system has three 

common components that include a putative nucleotide-driven motor protein, 

centromere-like cis-acting DNA region, and a small centromere DNA-binding adaptor. 

There are three important steps in plasmid partitioning: formation of a partition complex 

by binding of multiple centromere binding proteins (CBPs) to the centromere repeats, 

recruitment of the nucleotide triphosphatase (NTPase) to these partition complexes, and 

separation of plasmids toward opposite bacterial poles mediated by polymers of the 

NTPase (Gerdes et al., 2000). These three classes of segregation systems are defined by 

the type of nucleotide-driven motor protein (Figure 1.1) (Salje et al., 2010).  

A Type I par system includes a ParA-like protein that is a deviant Walker A-type  

protein. Deviant Walker A proteins belong to the superfamily of ATPases, which are 

characterized by the A type motif (Walker box) that consists of a hydrophobic beta-strand 

and P loop. In a deviant Walker A box, the A motif is modified from glycine rich 

residues (GXXGXGK[ST]) to lysine rich residues (KGGXXK[ST]) (Walker et al., 1982; 

Koonin, 1993). A Type II par system includes a ParM family protein that is an ATPase 

protein that assembles into dynamic actin-like filaments (Salje et al., 2010). Finally, a 
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Type III par system contains a TubZ family protein that assembles into dynamic 

filaments and have a tubulin–like GTPase fold at the monomer level (Ni et al., 2010). 

Table 1.1 summarizes the main systems in plasmid partitioning discussed in this chapter. 

Type I par segregation system 

Type I par is the most common type of plasmid segregation system that encodes 

ParA NTPases with deviant Walker-A box and ParB centromere binding proteins 

(Koonin, 1993; Schumacher 2012). Depending on the size and sequences of ATPase 

protein and the centromere binding protein (CPB), the Type I par system can be sub-

divided into Type Ia and Ib (Gerdes et al., 2000).  

Type Ia CBPs are different than Type Ib and consists of three domains: an 

NTPase binding domain, a helix-turn-helix (HTH) domain, and a dimer domain, which 

are required for interacting with the partition ATPase, binding to par sites, and for 

oligomerization with itself, respectively (Ah-Seng et al., 2009; Delbruck et al., 2002; 

Khare et al., 2004; Radnedge et al., 1998; Ravin et al., 2003; Schumacher and Funnell, 

2005; Schumacher et al., 2010; Surtees and Funnell, 1999). The main-studied Type Ia 

CBPs are E. coli P1 ParB, E. coli RP4 KorB, E. coli F plasmid SopB, and S. enterica 

TP228 ParG (Abeles et al., 1985; Delbruck et al., 2002).  

Even though sequence homology among various Type Ib CBPs is sparse, their 

structures show a ribbon-helix-helix (RHH) DNA binding motif (Golovanov et al., 2003; 

Huang et al., 2011; Murayama et al., 2001). The N-terminal region of the Type Ib CBPs 

contains an arginine finger that functions in ParA binding and stimulates ATP hydrolysis 

by ParA (Barilla et al., 2007).  
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The major difference between Type Ia and Ib segregation systems is that ParA is 

not only involved in segregation, but ParA also serves as a transcriptional repressor by 

binding to the par promoter and autoregulating parAB transcription. ParA switches its 

functional role by binding to different types of nucleotides. ADP binding promotes its 

transcription factor role and ParA binds to par promoter and ATP binding activates 

partitioning function to separate replicated plasmids (Davey and Funnell, 1994,1997; 

Davis et al., 1992).  

Type I par systems use a pulling mechanism by de-polymerization of the motor 

protein filament to separate plasmids to the quarter-cell positions before cell division 

(Figure 1.1, A) (Gerdes et al. 2010). First, a CBP complex pairs two sister plasmids 

together by binding to par sites and spreading on naked DNA surrounding par sites 

(Pillet et al., 2011; Rodionov and Yarmolinsky, 2004). ParA binds and nucleates on 

CBP-DNA complexes, which also promotes ParA polymerization (Bouet et al., 2007). 

ParA filament extension is followed by ATP hydrolysis of ParA, which is stimulated by 

CBP-DNA complexes (Ah-Seng et al., 2009). ATP hydrolysis causes filaments to de-

polymerize and de-polymerization pulls the plasmids apart in opposite directions. 

Type II par segregation system 

E. coli plasmid R1 represents the characteristic model of the Type II par 

segregation family. R1 Type II partitioning contains a centromeric element (parC), a 

CBP (ParR) (Kunst et al., 1997), and an actin-like ATPase (ParM) (Jensen and Gerdes, 

1997; Jensen et al., 1998). The region upstream of the parRM promoter is flanked by a 

160 base pair parC site, which contains an array of ten 11 bp direct repeats (Dam and 

Gerdes, 1994). Even though the sequence similarity is low, ParM is structurally and 
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biochemically similar to actin in eukaryotes and represents one example of a prokaryotic 

cytoskeletal element (van den Ent et al., 2002).  ParR binds to parC sequences as a dimer 

and binding bends the DNA (Figure 1.1, B) (Popp et al., 2008). ParM forms filaments in 

the ATP-bound state and its ATPase activity is stimulated by the oligomerization 

(Million-Weaver and Camps, 2014). ParM polymerization occurs in the presence of ATP 

(or GTP) and is dynamically unstable. Filaments are stable in the ATP-bound 

conformation and association between ParR bound to parC stabilizes the ends of ParM 

filaments (Galkin et al., 2009; Moller-Jensen et al., 2003). ParM filament extension 

occurs at both ends of this anti-parallel assembly and this bi-directional elongation pushes 

plasmids to opposite poles of the cell. ParM filaments disassemble by ATP hydrolysis 

with plasmids segregated to opposite sites. Therefore, the Type II plasmids are pushed to 

opposite poles of the cells instead of pulled as in the Type I par system (See Figure 1.1, 

B) (Million-Weaver and Camps, 2014).  

Type III (Tubulin-like) partition system 

The first protein in this relatively newly identified partitioning system was 

discovered for the virulence plasmid pXO1 of B. anthracis (Tinsley and Khan, 2006). 

RepX is a tubulin-like GTPase protein, which is necessary for replication and segregation 

of pXO1 plasmid. A similar gene and function was also discovered for B. thuringiensis 

pBtoxis plasmid, which encodes an NTPase called TubZ and CBP called TubR (Larsen et 

al., 2007). The partitioning process in Type III, called treadmilling, is different than 

either of the pushing or pulling mechanisms for Type I and II, respectively. TubR is a 

HTH protein, which autoregulates the expression of the tubRZ genes (Berry et al., 2002; 

Larsen et al., 2007). The crystal structure of TubR shows that dimerized TubR 
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oligomerizes on tubC centromeric DNA of pBtoxis (Aylett and Lowe, 2012; Ni et al., 

2010). TubR structure includes an intertwined dimer with a winged HTH motif and forms 

a protein/DNA complex by recognizing the major groove of tubC centromeric site by the 

N-terminal of HTH, which then recruits the TubZ polymer. TubZ is a GTPase that forms 

dynamic polarized protofilaments with plus and minus ends in the presence of GTP 

(Aylett and Lowe, 2012; Larsen et al., 2007). GTP hydrolysis of TubZ polymer elongates 

at the plus end and disassembles from the minus end by a mechanism called treadmilling. 

Upon plasmids migrating to the cell poles, the TubZ filament encounters the cell pole, 

bends and releases the TubR-bound plasmid (See Figure 1.1, C) (Aylett and Lowe, 2012; 

Larsen et al., 2007; Ni et al., 2010).   

Bacterial Chromosome Segregation 

DNA segregation mechanisms and proteins are typically conserved among the 

unicellular bacteria. Most of the unicellular bacteria that have been studied so far have 

homologs of known DNA segregation proteins. However, the function of these proteins 

may be diverse in different organisms. 

Chromosome segregation in Escherichia coli 

E. coli is a Gram-negative gamma-proteobacterium model for the study of 

chromosome segregation. In newly born E. coli cells, the origin of replication (ori) and 

terminus (ter) region of the chromosome localize at the midcell (Nielsen et al., 2006, 

Wang et al., 2006). After replication, daughter ori regions segregate to the pre-divisional 

cell quarter positions, but the ter regions remain at the center until late in the cell cycle. 

The ter region contains a 50 kb segment that links the two replicated nucleoid edges (Liu 

et al., 2010, Wiggins et al., 2010). The final step of chromosome segregation includes 
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removal of catenation links by Topo IV topoisomerase and resolution of chromosome 

dimers by the XerCD/dif site-specific recombination system (Espeli et al., 2004; Lesterlin 

et al., 2004).  

The ter region is also involved in chromosome segregation by interacting with the 

FtsK DNA translocase (Bigot et al., 2007). FtsK plays an important role in actively 

segregating sister chromosomes (Stouf et al., 2013). FtsK belongs to the family of 

FtsK/SpoIIIE/Tra ATPase DNA motor proteins. E. coli FtsK associates with the division 

septum through the N-terminal region of the protein (FtsKN), which includes membrane-

spanning segments and is essential for growth and cell division (Yu et al., 1998; Wang et 

al., 1998). The central region of the linker domain of FtsK (FtsKL) is involved in 

interacting with other cell division proteins (Bigot et al., 2004; Grenga et al., 2008; 

Dubarry and Barre et al., 2010; Dubarry et al., 2010). The C-terminal domain of FtsK 

(FtsKC) includes a Walker-type ATPase motif and forms a hexameric motor, which is 

responsible for translocating dsDNA (Aussel et al., 2002; Massey et al., 2006), 

interacting with Topo IV, and activating Topo IV decatenation activity in vitro (Espeli et 

al., 2003; Bigot et al., 2010). Based on structure, sequence, and function, FtsKC has three 

subdomains α, β, and γ (Massey et al., 2006; Sivanathan et al., 2006). FtsKα and FtsKβ 

form the translocation motor and FtsKγ is responsible for controlling the translocation 

activity (Yates et al., 2003). FtsKγ incudes a winged-helix DNA-binding domain that 

recognizes FtsK orienting polar sequences (KOPS) within the DNA (Sivanathan et al., 

2006; Ptacin et al., 2006; Lowe et al., 2008; Graham et al., 2010). FtsKγ also interacts 

with XerD of the XerCD/dif recombination machinery to resolve circular chromosome 

dimers (Yates et al., 2006; Nolivos et al., 2010; Grainge et al., 2011). Interacting with the 
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KOPS motif (GGGNAGGG) causes the assembly of the FtsKC hexameric motor 

(Graham et al., 2010) and orients translocation along the entire chromosome towards the 

dif site (Bigot et al., 2005).  

 In addition to the role of FtsK, MukBEF is another key player in chromosome 

segregation in E. coli. In E. coli, MukB is the structural analog of SMC (structural 

maintenance of chromosome) and MukEF are the structural analog of ScpAB (non-SMC 

segregation and condensation proteins A and B) protein complexes, which are present in 

all three domains of life and play various roles in chromosome organization, segregation 

and processing (Reyes-Lamothe et al., 2012).  

In bacteria, the quaternary structure of the SMC-ScpAB (MukBEF) complex 

includes 5 subunits: two SMC proteins, a single ScpA subunit and a dimer of ScpB 

protein. SMC has an ABC-type ATPase head domain and a hinge homodimerization 

domain, which are connected with a long antiparallel coiled-coil domain (Hirano et al., 

2001). ScpA belongs to the family of kleisin proteins, which interacts with the head and 

coiled-coil region of SMC through its C-terminal winged-helix domain and N-terminal 

helical domain, respectively, (Burmann et al., 2013) and ScpB binds to the central region 

of ScpA as a dimer (Burmann et al., 2013; Kamada et al., 2013).  

MukBEF is associated with oriC and the loss of mukBEF causes mispositioning 

of ori to the outer nucleoid edge from the midcell in E. coli cells, temperature sensitivity 

and defects in chromosome segregation (Niki et al., 1991). Although MukBEF associates 

with oriC, the initiation of DNA replication is independent from MukBEF, but the 

condensin is required to generate and maintain wild-type chromosome positioning in 

E. coli cells (Petrushenko et al., 2006; Badrinarayanan et al., 2012; Yamazoe et al., 
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1999). Even though the exact in vivo mechanism of MukBEF function remains elusive, 

biochemical studies revealed that MukB interacts with MukEF and binds to DNA and 

produces ATP-controlled macromolecular clamps that are required for efficient 

intramolecular DNA bridging (Cui et al., 2008).  

In addition to the roles of FtsK and MukBEF in chromosome segregation, 

ParAB/parS system is another key player contributing to chromosome partitioning. The 

Par systems described for plasmid segregation are involved in the partitioning of some 

low-copy-number plasmids and chromosomes for many bacteria (Gerdes et al., 2010; 

Ringgaard et al. 2009). However, E. coli lacks a chromosomal Par segregation system. 

The deviant Walker A-type ATPase MinD is the closest homolog of ParA in E. coli and 

migS is the centromere-like element.  However, there is no evidence that MinD interacts 

with migS. migS plays an undefined role in bipolar positioning (localization near the cell 

quarters) of oriC, but is not required for proper chromosome segregation in dividing cells 

(Yamaichi and Niki, 2004; Fekete and Chattoraj, 2005). migS consists of 25 bp long 

sequence, which is also located close to oriC region like parS sequences (Yamaichi and 

Niki, 2004).  

Even though E. coli lacks a chromosomal Par segregation system, it has other 

systems that help coordinate chromosome segregation. Although no single system is 

necessary or sufficient for chromosome segregation, some systems are related to other 

cellular processes, such as the Min system in controlling cell division. The Min system 

includes three proteins: MinC, MinD, and MinE. ParA-like MinD inhibits cell division at 

sites away from the mid-cell (Lutkenhaus 2007, 2012). MinD-ATP binds to the 

cytoplasmic membrane and polymerizes by interacting with other membrane-associated 
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MinD-ATP molecules at the cell poles (Rothfield et al., 2005). The Min and Par systems 

are very similar to each other, such as both MinD and ParA are deviant Walker A P loop 

ATPases that form dynamic patterns on the cell membrane and nucleoid, respectively 

(Ebersbach and Gerdes, 2001; Hu et al., 2002; Raskin and de Boer, 1999; Shih et al., 

2003). The ATP-bound dimers of ParA and MinD form cytoskeletal-like filaments on 

DNA and membranes, respectively (Hu et al., 2002; Leonard et al., 2005). Even though 

there is no homology between MinE and ParB, they both stimulate the ATPase activity of 

MinD and ParA, respectively, (Leonard et al., 2005; Ma et al., 2004). At the same time, 

MinD also binds to DNA in a non-sequence specific manner. This MinD-DNA 

association creates a dynamic gradient of DNA binding sites near the membrane, which 

gradually moves from midcell to cell poles in the process of MinD oscillation (Di 

Ventura et al., 2013). MinD recruits MinC and MinE to the cell poles. MinC is a cell 

division inhibitor that binds to FtsZ protofilaments and leads to disassembly of FtsZ 

polymers, thus preventing FtsZ ring formation from the cell poles and restricts formation 

at the mid-cell. MinD associates with MinC and oscillates in spiral-shaped structures 

between the poles of the cells. MinE is the topological regulator factor that stimulates the 

ATPase activity of MinD, thus oscillation of MinCD complex (de Boer et al., 1989; 

Lutkenhaus, 2007). This MinCDE recruitment extends from the pole towards the midcell, 

where MinE molecules form the E-ring. MinE activates MinD ATPase, which causes 

MinD-ADP to release from the membrane due to its lower affinity for the bilayer, and 

polar zone disassembly. Release of MinC, MinD, and MinE molecules forms the zone of 

division inhibition. Upon MinD release from the membrane, MinD-ADP undergoes 

nucleotide exchange to be converted into MinD-ATP in the cytoplasm and its 
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concentration starts to increase at the other cell pole to repeat the process of forming the 

new polar zone inhibition (Figure 1.2, A) (Di Ventura et al., 2013; Pinho et al., 2013; 

Rothfield et al., 2005).  

In addition to the Min system, E. coli also evolved a nucleoid occlusion (NO) 

system to prevent inaccurate placement of the Z-ring, therefore avoiding cells lacking 

chromosomal DNA, or guillotined chromosomes (Hussain et al., 1987; Mulder and 

Woldringh, 1989; Woldringh et al., 1990; Wu and Errington, 2011). SlmA (synthetic 

lethal with a defective Min system) has been identified as a nucleoid occlusion effector 

protein (Bernhardt and de Boer, 2005). SlmA binds to specific DNA sequences 

containing a 12-bp palindromic site with the consensus, GTGAGTACTCAC, which are 

distributed over the chromosome with an exception of the ter region of the chromosome 

(Wu et al., 2009; Cho et al., 2011; Tonthat et al., 2011). Before the initiation of DNA 

replication, mid-cell region of the cell is occupied by the oriC region of the chromosome, 

therefore it is protected by SlmA mediated NO system. As replication advances, oriC 

region migrates towards the cell quarters and away from the midcell, thus a SlmA/NO 

free zone is formed at the mid-cell, which allows FtsZ polymerization and cell division.  

All the systems described above (FtsK, MukBEF, MinDEC, NO) have been 

implicated directly or indirectly in bacterial chromosome segregation. Unfortunately, no 

single system is necessary or sufficient for chromosome segregation. However, 

understanding the complexities and interplay of each system would help to understand 

the coordination with other cellular processes.  

Chromosome segregation in Bacillus subtilis  

 The specific organization of the bacterial chromosome within the cell was first 
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discovered by the genetic studies in B. subtilis (Wu and Errington, 1994). B. subtilis is a 

low GC, Gram-positive, endospore forming bacterium. In newborn vegetative cells of B. 

subtilis, oriC region of the chromosome is localized to one pole and the ter region is 

located at the opposite cell pole (Webb et al., 1997).  However, in sporulating cells, oriC 

regions of sister chromosomes are anchored to each cell pole through RacA and DivIVA. 

RacA is a DNA-binding protein, which is conserved only in related spore-forming 

bacteria (such as B. halodurans and Clostridium acetobutylicum) (Wu and Errington, 

2003). RacA is required for chromosome segregation during spore formation in B. 

subtilis (Wu and Errington, 2003; Ben-Yehuda et al., 2003). RacA binds to sites in the 

oriC region of the chromosome and interacts with the curvature-sensitive membrane 

binding protein DivIVA (Wu and Errington, 2003; Ben-Yehuda et al., 2003; Lenarcic et 

al., 2009). Homologs of DivIVA are known to recruit proteins that are involved in 

chromosome segregation, cell division and cell wall synthesis to the poles in various 

bacteria (van Baarle et al., 2013).  

 SpoIIIE, the FtsK homolog of B. subtilis, is another protein that is involved in 

chromosome segregation. During sporulation SpoIIIE travels to the asymmetrically 

positioned division septum and helps translocate one copy of the chromosome from the 

mother cell to the prespore compartment (Wu and Errington, 1997; Bath et al., 2000; 

Chary and Piggot, 2003; Liu et al., 2006). SpoIIIE is an essential protein for efficient 

B. subtilis sporulation (Wu and Errington, 1997). Similar to FtsK in E. coli, SpoIIIE 

utilizes SpoIIIE recognition sequences (SRS) [GAG(C/A)AGGG] and orients DNA 

translocation (Ptacin et al., 2008). 

 The ParAB-like proteins of B. subtilis are among the most thoroughly studied 



 13 

chromosomal partitioning proteins. B. subtilis has soj (parA homolog) and spo0J (parB 

homolog) genes that are located in an operon with close proximity to oriC region of the 

chromosome (Gerard et al.,1998; Ogasawara and Yoshikawa, 1992). soj was first 

identified as a suppressor of the spo0J mutants in which the sporulation defect caused by 

spo0J was suppressed by a mutation in soj (which stands for suppressor of spo0J) (Ireton 

et al., 1994). Soj is also a transcription initiation inhibitor that blocks transcription of 

some early sporulation genes (Cervin et al., 1998; Quisel and Grossman, 2000).  

 A soj deletion mutant has no effect on vegetative chromosome segregation whereas 

spo0J deletion mutant produces 1-2% of anucleate cells (Ireton et al., 1994). Even though 

a soj spo0J double mutant has no defect in origin movement, it has a bigger defect in 

partitioning during sporulation such that 70% of the prespores lose their DNA content 

(Sharpe and Errington, 1996).  

 Spo0J has specific DNA binding sites (parS sites) as its counterparts in plasmid 

partitioning systems (Lin and Grossman, 1998). B. subtilis genome has 10 parS sites that 

consist of 16 bp consensus sequences (Kunst et al., 1997). Spo0J binds to these multiple 

parS sites positioned around the oriC region of the chromosome, therefore ParB/parS 

localization indirectly shows the localization of origin of replication. As for its homologs 

in plasmids, Spo0J alters the DNA conformation and binds co-operatively to non-parS 

sequences to form protein-DNA complexes that cover 20% of the oriC region of the 

chromosome (Lewis and Errington, 1997; Lin and Grossman, 1998; Marston and 

Errington, 1999). During cell division these assembled Spo0J proteins move along with 

the origin of replication (Lewis and Errington, 1997; Lin et al., 1997; Webb et al., 1997). 

Localization of Spo0J/oriC in vegetative cells is different from that in sporulating cells. 
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In vegetative cells, origins are located in different positions but preferentially towards 

one of the cell poles. The two chromosomal copies appear as a single nucleoid with two 

Spo0J/origin foci near the cell poles of newly born vegetative cells in B. subtilis. These 

foci remain separated during cell elongation. When initiation of the DNA replication 

commences, Spo0J/origin foci duplicate and segregate from each other, which is 

followed by cell growth, separation of nucleoids, and FtsZ ring formation at the center 

(Lin et al., 1997). Thus, it has been suggested that initiation of replication and nucleoid 

separation are relatively synchronous in B. subtilis (Sharpe and Errington, 1998). In 

sporulating cells, two Spo0J foci move to the extreme poles of the cell (Glaser et al., 

1997; Lin et al., 1997; Webb et al., 1997). With the formation of the asymmetrically 

positioned septum, the remainder of the chromosomes are separated from each other and 

one is translocated into the prespore prior to mother cell engulfment of the prespore 

(Webb et al., 1997).  

 Soj has two big roles in chromosome segregation. First, it assembles on the 

nucleoid and helps Spo0J proteins to condense into their centromere-like complexes. 

Second, it controls the nucleoid structure by assembling and disassembling into large 

nucleoid-associated structures by oscillating from one end of the cell to the other 

(Marston and Errington, 1999; Quisel et al., 1999). It has been shown that conserved 

surface arginine residues are involved in mediating in vivo and in vitro nonspecific Soj-

DNA interaction (Hester and Lutkenhaus, 2007). The increase in the Spo0J concentration 

on DNA stimulates the disassembly of Soj from the nucleoid and reassembles on another 

nucleoid. Thus, Spo0J is essential for the dynamic dissociation of Soj from the nucleoid. 

This dynamic localization of Soj is probably caused by the nucleotide binding and/or 
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hydrolysis behavior of the protein (Marston and Errington, 1999). Even though loss of 

Soj has little effect on chromosome segregation, it is required in conjunction with 

Spo0J/parS site for proper artificial plasmid partitioning in a heterologous in vivo assay 

(Hester and Lutkenhaus, 2007; Yamaichi and Niki, 2000).   

 Spo0J also plays a crucial role in recruiting SMC-ScpAB to the region around oriC 

(Gruber and Errington, 2009; Sullivan et al., 2009; Minnen et al., 2011). An smc-null 

mutant fails to condense nucleoids and forms approximately 28% anucleate vegetative 

cells in B. subtilis (Britton et al., 1998). Segregation of sister oriC regions is also affected 

by the inactivation of SMC-ScpAB protein complex in B. subtilis under nutrient rich 

growth conditions and causes lethal defects in chromosome segregation. Therefore, the 

SMC-ScpAB complex presumably organizes newly replicated sister chromosomes by 

condensing them and preparing their segregation to opposite poles of the cell (Gruber et 

al., 2014; Wang et al., 2014). Wilhelm et al. (2015) showed that spo0J mutants are not 

only defective to form nucleoprotein complexes and spread from the parS sites, but also 

unable to load the SMC-ScpAB complex on the chromosome at the origin.  

Chromosome segregation in Caulobacter crescentus  

The chromosome within C. crescentus is highly organized in a fashion that is 

similar to the chromosome within B. subtilis. C. crescentus is a Gram-negative alpha-

proteobacterium, which has a unique assymetric cell division that always produces two 

types of daughter cells, a motile stalk cell and an immobile swarmer cell (Goley et al., 

2011). C. crescentus oriC region is located at one pole and ter region is located at the 

opposite pole of the cell. oriC region is attached to the flagellated pole by PopZ and 

ParB/parS. (See below for detailed descriptions of the functions of these elements.)  
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In C. crescentus, SMC is one of the key players of chromosome segregation. 

Unlike the single focus of B. subtilis SMC, C. crescentus SMC accumulates in multiple 

foci throughout the cell and a bright focus has been seen to localized near a cell pole in 

30-40% of predivisional cells (Jensen and Shapiro, 2003). An smc-null mutation causes a 

conditional lethal temperature sensitive phenotype (Jensen and Shapiro, 1999; Britton et 

al., 1998; Niki et al. 1991), and mislocalization of oriC and ter regions of the 

chromosome in 10-15% of the cells at the nonpermissive temperature (Jensen and 

Shapiro, 1999). Even though the roles of ScpA and ScpB in chromosome segregation still 

remain elusive, Shwartz and Shapiro (2011) showed that SMC co-immunoprecipitates in 

complex with ScpA and ScpB and proper chromosome segregation requires the ATPase 

activity of SMC to bind to chromosomal DNA.  

 In contrast to E. coli and B. subtilis, chromosome segregation and cell division 

are dependent of each other in C. crescentus (Du and Lutkenhaus, 2012). Even though 

there are no homologs of Min and NO systems in C. crescentus, it has genes encoding 

ParA and ParB homologs in the oriC region of the chromosome and these are essential 

for the bacterium (Mohl and Gober, 1997). There are two parS sites in C. crescentus 

(Livny et al., 2007). ParB binds to these parS sequences downstream of parAB operon 

and is also capable of binding weakly to sequences with high AT nucleotide content. 

Over-expression of ParA produces elongated cells and localization defects of ParB 

whereas over-expression of ParB causes filamentous cells and multiple ParB foci that are 

mislocalised and scattered throughout the cell. When both proteins were over-expressed, 

an increased rate of production of anucleate cells and small defects on cell division and 

mislocalised/scattered ParB foci were observed (Bignell and Thomas, 2001; Mohl and 
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Gober, 1997). Thanbichler and Shapiro (2006) identified a bipolar gradient of the FtsZ 

inhibitor MipZ as an important factor for coupling cell division and chromosome 

segregation. MipZ is a member of ParA/MinD family of deviant Walker A type ATPases. 

An in vivo assay in E. coli showed that a MipZ gradient is stimulated by nonspecific 

DNA binding and the ATPase activity of the protein (Kiekebusch et al., 2012).  

C. crescentus has a polarly located protein, PopZ, which is essential for tethering 

the ParB/origin complexes to the cell poles. PopZ does not contain any known motif or 

domain, but according to bioinformatic analysis, PopZ homologs exists broadly in  

α-proteobacterial genomes (Ebersbach et al., 2008). Prior to S phase of DNA replication, 

a ParB focus bound to parS centromere sites is tethered to the old pole by interaction with 

PopZ, whereas FtsZ is restricted at the opposite pole of the cell and ParA is spread over 

the nucleoid (Bowman et al., 2008; Mohl and Gober, 1997). ParB stimulates dimerization 

of ATP-bound MipZ by binding MipZ monomers and increases its concentration at the 

cell poles (Kiekebusch et al., 2012; Thanbichler and Shapiro, 2006). Thus, ParB 

promotes non-specific DNA binding of MipZ. At the beginning of the cell cycle, a single 

ParB focus replicates and one of the ParB/origin complexes moves along with some 

MipZ to the opposite pole by the help of its interaction with ParA (Bowman et al., 2008). 

ParB interaction with nucleoid-bound ParA causes its release from the nucleoid as 

monomers due to ATP hydrolysis, which is responsible for the segregation of the 

ParB/origin complex by a burnt bridge Brownian ratchet mechanism, which means that 

ParB/oriC disassembles ParA protofilaments and ratchets along a receding ParA structure 

and leaves the disassembled ParA dimers behind (Antal and Krapivsky, 2005; Ptacin et 

al., 2010; Schofield et al., 2010; Shebelut et al., 2010). Ptacin et al. (2010) identified a 
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pole-specific protein, TipN, as a new component of the Par system in C. crescentus. TipN 

interacts with ParA in vitro and is essential for proper ParA localization and ParA-

mediated ParB/parS segregation (Ptacin et al., 2010). TipN might help to increase the 

local concentration of ParA by providing a binding site for ParA at the new pole (Ptacin 

et al., 2010). Once the MipZ/ParB/origin complex reaches the new pole, the ParB focus 

binds to a new patch of PopZ and accompanying MipZ stimulates the release of FtsZ 

from the cell pole towards the midcell, which leads to midcell FtsZ ring formation where 

the bipolar MipZ gradient is the lowest (Figure 1.2, B) (Thanbichler and Shapiro, 2006).  

Similar to B. subtilis and E. coli, FtsK is another key player in proper 

chromosome segregation in C. crescentus. FtsK was found to be localized at the division 

plane just before the cell division and after cell division it remained localized at the new 

cell pole of each progeny cell (Wang et al., 2006). The C-terminal portion of the FtsK 

(FtsKC) is essential for the viability of the cells and 15-20% cells show segregation 

defects in cells depleted in FtsKC, whereas N-terminal region of the protein is important 

for localization of FtsK to the division plane, which is required for assembling or 

maintaining the FtsZ rings (Wang et al., 2006). As mentioned above, C. crescentus 

chromosome segregation and cell division are dependent on each other in C. crescentus 

(Du and Lutkenhaus, 2012) and FtsK is one of the proteins that mediates an 

interdependence between chromosome segregation and cell division in C. crescentus 

(Wang et al., 2006). 

Chromosome segregation in Corynebacterium glutamicum 

C. glutamicum is a unicellular high GC Gram-positive Actinobacterium that is 

known for its importance in biotechnology and as a model organism for mycolic acid 
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containing pathogens (Donovan and Bramkamp, 2014). However, the chromosome 

segregation aspect of this bacterium had not been studied in detail until recent years 

(Donovan et al., 2010).  

As in B. subtilis and C. crescentus, C. glutamicum has a chromosomal Par 

segregation system. It has a parAB operon, which is located close to the oriC region.  

There are three parS centromere-like sites that are located around the oriC region of the 

C. glutamicum chromosome (Donovan et al., 2010; Livny et al., 2007). In vitro assays 

have shown that ParB binds to parS sites and ParB-EGFP can be used to show the 

localization of origin of replication within the cell (Donovan et al., 2010). Mutations in 

both parA and parB causes variable cell lengths, growth defects, multinucleoid cells, as 

well as anucleate cells (16% for ΔparA and 11% for ΔparB).  

Typically, organisms contain a single parA gene. However, C. glutamicum, like 

other Actinobacteria, has a second parA-like gene, pldP (ParA-like division protein), 

which is located on the opposite side of the chromosome without a neighboring parB-like 

gene. Even though there is 56% sequence similarity between products of pldP and parA, 

the mutants have different phenotypes. A pldP deletion mutation has no significant effect 

on chromosome segregation, but its loss causes various types of cell lengths from 

significantly longer to small and anucleate minicells, which suggests PldP has a role in 

cell division and it has been suggested that it acts as a division site selection protein 

(Donovan et al., 2010). ParA localizes mostly close to the cell poles and colocalizes with 

the nucleoid in large patches, whereas PldP foci localize at the midcell (Donovan et al., 

2010). Similar to Mycobacterium smegmatis and C. crescentus, ParB foci localization is 

found to be close to the cell poles in non-dividing C. glutamicum cells (Bowman et al., 
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2008; Donovan et al., 2010; Maloney et al., 2009; Mohl and Gober, 1997). Midcell 

localization of PldP in dividing cells suggested its potential direct interaction with FtsZ, 

which has also been confirmed by bacterial two-hybrid analysis (Donovan et al., 2010). 

Even though PldP interacts with ParB in bacterial two-hybrid analysis, loss of PldP has 

no effect on ParB localization. However, ParA is necessary for polar localization of ParB, 

which suggests that ParA is required for the ParB/origin complex segregation to opposite 

poles of the cell (Donovan et al., 2010).  

A summary of the proposed model for chromosome segregation in C. glutamicum 

is given here. Prior to initiation of replication, ParB-origin nucleoprotein complex is 

localized to one cell pole by a ParB-DivIVA interaction. With the help of ParA, a 

duplicated new origin moves from the old origin towards the opposite cell pole after the 

initiation of replication and tethers to DivIVA. Tethering to DivIVA stimulates cell 

growth and helps the process of remaining DNA to segregate and condense to the 

opposite cell pole. After the DNA free zone in the midcell is created, polymerization of 

cell division protein FtsZ is initiated and Z ring formation occurs (Donovan et al., 2012).  

The proteins that are involved in chromosome segregation, such as the DNA 

translocase FtsK homolog and SMC-ScpAB protein complex in C. glutamicum have not 

been studied.  

Chromosome segregation in Streptomyces coelicolor 

Due to its large linear genome and complex life cycle, chromosome segregation in  

S. coelicolor may be more complex than unicellular bacteria dividing by binary fission 

(Bentley et al., 2002). S. coelicolor is an advantageous organism for studying DNA 
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segregation since all of the tested segregation gene mutants are viable unlike other 

organisms (Dedrick et al., 2009; Kois et al., 2009).  

This unique filamentous Gram-positive, sporulating soil bacterium has a large 

linear genome (8.67 Mbp) (Bentley et al., 2002). It has one linear (SCP1) and one 

circular plasmid (SCP2) (Bentley et al., 2004; Haug et al., 2003). Compared to other 

prokaryotes it has an unusual life cycle. Branching filamentous hyphae grow from a 

germinating spore. Syncytial compartments are generated by widely-spaced cross-walls, 

which form in the vegetative mycelium where DNA is not condensed and septation is 

infrequent and not essential (McCormick et al., 1994). Mature vegetative mycelium 

produces new aerial hyphae. Tip extension of the hyphae is provided by the polarity 

determinant DivIVA, the long coiled-coil protein Scy, and the filamentous FilP (Bagchi 

et al., 2008; Flardh, 2010; Hempel et al., 2008; Walshaw et al., 2010). These three 

proteins form the tip-organizing center (TIPOC) that are believed to be responsible for 

the hyphal shape and/or tip extension and branching (Flardh et al., 2012; Holmes et al., 

2013). At the end of aerial growth, these syncytial multigenomic aerial filaments 

synchronously divide and segregate chromosomes into a chain of uniformly-sized 

unicellular compartments (McCormick, 2009; McCormick and Flardh, 2012).  

S. coelicolor has a chromosomal ParAB/parS segregation system. Streptomyces 

ParB binds to 24 parS sites near the origin of replication (oriC) (Jakimowicz et al., 2002). 

In vegetative filaments and nascent aerial hyphae, ParB-EGFP localizes as a bright focus 

close to the tip with other foci being smaller and irregularly spaced through the length of 

the hyphae (Jakimowicz et al., 2005). But during sporulation, evenly-spaced ParB-EGFP 

complexes assemble along the length of aerial hyphae, presumably organizing evenly-
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spaced copies of the genome (Figure 1.3). The ParB-parS nucleoprotein complexes form 

before observable DNA condensation and septation and disassemble after these processes 

(Jakimowicz et al., 2005). Even though the deletion of parB, or parAB operon, or 

elimination of the ParB DNA-binding motif are dispensable on colony growth and 

sporulation, these mutations resulted in anucleate spores about 15% in parB and 24% in 

parA mutants when compared to wild type cells (Jakimowicz et al., 2002; Jakimowicz et 

al., 2005). In nascent aerial hyphae, ParA accumulates first at the tips and then goes on to 

form helical filaments that spread along the aerial hyphae. ParA provides the assembly of 

ParB-parS nucleoprotein complexes in vivo and in vitro and both proteins play an 

important role in the accurate distribution of the chromosomes in the aerial hyphae. ParB 

enhances the ATPase activity of ParA and ATP binding is required for the dimerization 

of the protein but not the localization of the helical filaments in aerial hyphae 

(Jakimowicz et al., 2007). 

In addition to being part of the segregation complex and interacting with ParB, 

ParA has been shown to interact with two other proteins, Scy and ParJ (Ditkowski et al., 

2013; Ditkowski et al., 2010). Scy, an intermediate filament-like protein, recruits ParA to 

hyphal tips and inhibits ParA polymerization, which also supports the idea that the 

TIPOC plays a role in developmental switch from aerial hyphal extension to sporulation. 

ParJ is one of the unique signature proteins that are widespread among Actinobacteria 

and are not found in any other bacteria (Gao et al., 2009). Prior to septation during 

sporulation, ParJ controls ParA polymerization and causes the disassembly of the ParA 

polymers in vitro (Ditkowski et al., 2010). 

In addition to the partitioning proteins, SMC and FtsK proteins also play a role in 
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developmentally-associated chromosome segregation in S. coelicolor. Even though a 

smc-null mutation does not overtly affect DNA condensation, growth or morphology, it 

causes a slight defect in chromosome partitioning that resulted in 7-8% anucleate spores, 

whereas scpAB-null mutants showed bilobed nucleoids in spore compartments, which 

suggests they participate in the condensation of the DNA (Dedrick et al., 2009, Kois et 

al., 2009). As for homologs of B. subtilis and C. crescentus, ScpA interacts with ScpB 

and SMC in vitro (Kois et al., 2009). A smc scpAB triple mutant produces 3% anucleate 

spores and 17% bilobed nucleoids in S. coelicolor, suggesting that SMC-ScpAB protein 

complex is not essential for chromosome condensation alone and might have another role 

in S. coelicolor. Double deletion mutants for smc parA and smc parB have also been 

tested and the additive phenotypes have been found (Dedrick et al., 2009; Kois et al., 

2009).  Interestingly, ParB-EGFP localization in a smc-null mutant appears to be smaller 

and less intensely fluorescent when compared to wild type ParB-EGFP foci in aerial 

filaments, which suggests that SMC may directly or indirectly help the formation of 

ParB/parS nucleoprotein complexes.    

Unlike SMC, FtsK has a specific localization in S. coelicolor aerial filaments. 

FtsK localizes at the sporulation septa (Wang et al., 2007; Ausmees et al., 2007; Dedrick 

et al., 2009). An ftsK-null mutant can cause large deletions in the chromosome and this 

probably causes the heterogeneity in colony formation when compared to the wild type 

strain (Wang et al., 2007; Ausmees et al., 2007; Dedrick et al., 2009). Since there is no 

known NO system in S. coelicolor, ftsK deletion might cause the guillotine of the 

chromosome at the sporulation septa (Flardh, 2003). Even though the ftsK-null mutant 

has the same percentage of anucleate cells as for the in wild type strain, large 
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chromosome deletions during sporulation suggests a role for FtsK in developmentally-

associated chromosome segregation (Wang et al., 2007; Ausmees et al., 2007; Dedrick et 

al., 2009). 

Even though Par proteins, FtsK, and SMC are all key players of the 

developmentally-associated chromosome segregation in S. coelicolor, the molecular 

machinery that underlies the chromosome partitioning has not been fully elucidated. 

Since a triple parB smc ftsK mutant results in only 10% anucleate spores, there must be 

other proteins that are involved in the chromosome partitioning system of S. coelicolor. 

Like other Actinobacteria, Streptomyces genome sequences reveal that in addition to 

parA, it has a second parA-like gene, called parH. Recent studies show that two other 

Actinobacteria [Aggregatibacter actinomycetemcomitants (tadZ) and C. glutamicum 

(pldP)] also have a second parA-like gene (Donovan et al., 2010; Perez-Cheeks et al., 

2012). TadZ and PldP are found associated with biofilm formation on periodontal 

diseases and division site-selection, respectively (Donovan et al., 2010; Perez-Cheeks et 

al., 2012). Even though all the proteins that are described before (FtsK, SMC-ScpAB, 

ParAB) are associated with proper chromosome segregation, no single system is 

sufficient for efficient chromosome segregation.  

My goal in this dissertation was to find additional proteins that participate in 

Streptomyces chromosome segregation. Specifically, my work continued Dedrick’s 

preliminary study of the second ParA-like protein in the S. coelicolor genome (called 

ParH) (Dedrick, 2009), suggesting that ParH might be directly or indirectly involved in 

chromosome segregation. My study further describes and characterizes the role of ParH 

in chromosome segregation in S. coelicolor. In addition to the analysis of ParH, I 
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identified a novel protein (called HaaA) that interacts with both ParA and ParH. HaaA is 

also a unique signature protein in Actinobacteria. The role of HaaA in chromosome 

partitioning is partially characterized and will also be explained in this study.  
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Table 1.1. Elements that are found in Type I, II, and III plasmid partition systems. 

Plasmids NTPase* 

 

 

CBP# 

 

Centromere site 

P1 (Type I) ParA ParB parS  

RP4 (Type I) KorA KorB OB 

F1 (Type I) SopA SopB sopC 

R1 (TypeII) ParM ParR parC 

pXO1 (Type III) 

pBtoxis (Type III) 

TubZ TubR tubC 

*NTPase- Nucleotide triphosphatase; #CBP-Centromere binding protein 
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Table 1.2. Elements that are found in bacterial chromosome segregation systems. 

 Segregation 

and 

condensation 

proteins 

 

(SMC/ScpAB) 

DNA translocase 

 

(FtsK/SpoIIIE/Tra 

Family) 

Par proteins 

 

(ParA/ParB/parS) 

Other proteins or 

systems that are 

involved in 

chromosome 

segregation 

E. coli MukB/MukEF FtsK 

 

_ MinCDE  

NO system 

B. subtilis SMC/ScpAB SpoIIIE SoJ/SpoOJ/ 

parS 

RacA 

DivIVA 

C. crescentus SMC/ScpAB FtsK 

 

ParA/ParB/ 

parS 

PopZ  

MipZ  

TipN  

C. glutamicum Not studied Not studied ParA/parB/ 

parS 

PldP  

DivIVA  

S. coelicolor SMC/ScpAB FtsK ParA/ParB/ 

parS 

ParJ 

 Scy 

DivIVA 

ParH 
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Figure 1.1. Partitioning systems in plasmids. Filamentation mechanisms of Type I, II, 

and III plasmid partitioning are illustrated in the figure and sample elements that are 

involved in each group are shown at the top of the panels. A) In a Type I Par system, 

centromere binding protein (CBP) ParB/SopB binds to parS/sopC centromere sites and 

brings the two plasmids together (I). CBP binding extends on the DNA and ParA ATPase 

binds to CBP in areas where CBP is not in a complex with centromeric DNA (II-III). 

ATPase protein polymerizes and filaments extend outwards in both directions until they 

meet a CBP/DNA nucleoprotein complex (arrows), which stimulates the ATPase activity 

(IV). ATP hydrolysis causes filaments to disassemble and disassembly pulls the plasmids 

apart in opposite directions (V-VI). B) In a Type II par system, when two plasmids 

meet in the cell, CBP binds to centromere sites and plasmids become tethered (I-II). The 

formation of nucleoprotein complex stabilizes the ends of ParM filaments. Monomers of 

the filament bind and nucleate on CBP ParR, then polymerizes at both ends of the 

extending ParM filament (III-IV). The extension of the filaments push sister plasmids 

apart (V-VI). C) In a Type III par system, CBP (TubR) binds to centromere sites and 

contacts the TubZ (GTPase protein). TubZ forms dynamic filaments, which grow at the 

plus (+) end by addition of TubZ-GTP and shrink from the minus (-) end by removal or 

loss of TubZ-GDP. TubR binds to the minus end of the TubZ (C-terminal end of a 

monomer at the end of the TubZ filament). TubR/DNA complexes are pulled along by 

the plus end until reaching the cell pole, where it dissociates from the TubZ filament 

when the filament bends after contact with the cell membrane at the pole. (Adapted from 

Baxter and Funnell, 2014 and Ni L. et al, 2010, and Weaver and Camps, 2014.) 
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Figure 1.2. Chromosome segregation models for E. coli, C. crescentus, and 

C. glutamicum. A) In E. coli, MinD-ATP binds to membrane and recruits MinC. FtsZ 

ring formation is inhibited by MinC, therefore a zone is formed at the poles of the cell 

that Z-ring can not be built. MinE forms a ring like structure and causes MinD to 

hydrolyze the ATP and release from the membrane that also causes MinC to release from 

the membrane. In the cytoplasm, MinD re-generates MinD-ATP and binds to the opposite 

pole. This process repeats itself and forms the MinCDE inhibition zone and helps 

chromosome segregates properly to each daughter cell. B) In C. crescentus, at the 

beginning of the cell cycle ParB/oriC is tethered to the old pole with the help of PopZ. 

ParB complexes are duplicated and along with MipZ, they migrate to the opposite pole 

by the help of ParA. When it reaches the opposite pole, ParB tethers to PopZ, which 

causes FtsZ to release from the pole and assemble in the midcell where the MipZ gradient 

is the lowest. C) In C. glutamicum, ParB/oriC binds to the pole through a DivIVA 

interaction. After replication, ParB binds to parS sites near the new oriC region where 

ParA binds and travels to the opposite pole. FtsZ starts to form a Z-ring and PldP 

regulates cell division by localizing at the cell division site. The new ParB/oriC is 
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tethered to the opposite cell pole by DivIVA, which stimulates the polar cell growth at 

the ends and would aid chromosomes to segregate. (Adapted from Pinho et al., 2013, Du 

et al., 2012, and Donovan et al., 2014) 
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Figure 1.3. Chromosome segregation model for S. coelicolor. In nascent aerial hyphae, 

ParA accumulates first at the tips and then goes on to form helical filaments that spread 

along the aerial hyphae. ParA has been shown to interact with Scy and Scy has been 

shown to interact with polarity determinant protein DivIVA. Scy recruits ParA to hyphal 

tips and inhibits ParA polymerization. ParA provides the assembly of ParB-parS 

nucleoprotein complexes in vivo and in vitro and both proteins play an important role in 

the accurate distribution of the chromosomes in the aerial hyphae. ParB binds to parS 

sites near the origin of replication (oriC). Evenly-spaced ParB-parS complexes assemble 

along the length of aerial hyphae, presumably organizing evenly-spaced copies of the 

genome. The ParB-parS nucleoprotein complexes form before observable DNA 

condensation and septation and disassemble after these processes. 
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CHAPTER 2: CHARACTERIZATION OF STREPTOMYCES COELICOLOR 

PARH IN DEVELOPMENTAL-ASSOCIATED CHROMOSOME 

SEGREGATION 

 

ABSTRACT  

For Streptomyces coelicolor, there are five known components of developmental 

chromosome segregation: the cis-acting centromere-like sites (parS) and four 

characterized trans-acting proteins. ParA and ParB are conserved among other species, 

while the Actinobacterial signature protein ParJ (unique to Actinobacteria) and 

intermediate filament protein Scy are unique for Streptomyces. parA encodes a Walker-

type ATPase that is required for efficient DNA segregation and proper placement of the 

ParB-parS nucleoprotein complexes. A paralogue of ParA, SCO1772 (named ParH) is 

encoded by the S. coelicolor genome. parH encodes a ParA-like ATPase protein that has 

45% identical residues to ParA. Compared to ParA, ParH contains an N-terminal 

extension with an unusual amino acid composition. In this study I have identified ParH as 

a novel interaction partner of S. coelicolor ParB. The Walker A motif K99E substitution 

in ParH and removal of the N-terminal extension in ParH impaired interaction between 

them as judged by bacterial two-hybrid analyses. Also, no evidence was found that 

paralogs ParA and ParH can form a heterodimer. ParH-EGFP forms evenly-spaced 

localization patterns in aerial hyphae, which might suggest that ParH colocalizes with 

ParB in the aerial filaments of S. coelicolor. In aerial hyphae of the ∆parH mutant, 5% of 

spores are anucleate compared to 1% of spores in wild type. The loss of ParH appears to 

result in abnormal positioning of a fraction of ParB-EGFP foci in aerial hyphae. The 
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parH mutant appears to be unable to properly organize the oriC regions within a subset 

of prespores, as judged by ParB-EGFP foci. I conclude that ParH is part of the 

partitioning system in S. coelicolor and appears to play a role in proper nucleoprotein 

complex positioning.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 60 

INTRODUCTION 

 Bacterial chromosome segregation is an essential and tightly regulated process 

during the cell cycle of unicellular bacteria and is of central importance in microbial cell 

and molecular biology. An active partitioning system helps provide the proper 

segregation of chromosomes and low-copy plasmids into daughter cells in bacteria 

(Gerdes et al., 2010). Most of the known information has come from the study of rod-

shaped bacteria dividing by binary fusion. After replication, chromosomal origin regions 

(oriC) migrate towards the cell poles by an active partitioning system (Errington, 2001; 

Jensen et al., 2001; Lemon et al., 2001; Sherratt, 2003)  

 Plasmid-encoded partition (par) loci of low-copy-number episomes have been a 

useful model to study the mechanisms of bacterial DNA segregation. Most bacterial 

chromosomes and low-copy-number plasmids have three main components of the 

partitioning system: one or more cis-acting centromere-like sites (parS), and two trans-

acting proteins (ParA and ParB). parB encodes a protein that binds to the centromere-like 

regions and parA encodes a Walker-type ATPase that is essential for DNA segregation 

and required for the proper placement of the ParB-parS nucleoprotein complex within the 

cell (Hayes and Barilla, 2006; Leonard et al., 2005; Schumacher, 2007). 

 Homologs of ParAB are encoded by most of the bacterial genomes with a few 

notable exceptions, such as E. coli and Haemophilus influenza (Mierzejewska and 

Jagura-Burdzy, 2012). In B. subtilis, Spo0J and Soj are the homologs of ParB and ParA, 

respectively. During vegetative growth, null mutations in spo0J (parB) resulted in 100-

fold increase in the frequency of anucleate cells, but deletion of soj (parA) had no 

detectable effect on vegetative chromosome segregation (Ireton et al., 1994). 



 61 

 Even though ParA and ParB appear to act together, they have multiple functions 

during chromosome segregation and cell division in B. subtilis (Gruber and Errington, 

2009; Sullivan et al., 2009). Spo0J (ParB) plays a role in recruiting the condensin SMC 

(structural maintenance of chromosomes) to origin of replication and Soj (ParA) is 

important in regulating the initiation of DNA replication by interacting with DnaA 

(Murray and Errington, 2008). In C. crescentus, individual deletion mutations in parA 

and parB are lethal and the gene products are involved in cell cycle progression and 

division (Thanbichler and Shapiro, 2006).  

 S. coelicolor is an advantageous organism for studying chromosome segregation 

since all of the tested segregation gene mutants are viable and double or triple mutants 

are not synthetic lethal or synthetic sick (Dedrick et al., 2009). After replication and 

before developmentally- associated septation, ParAB proteins are essential for accurate 

distribution of the tens of chromosomes in syncytial aerial hyphae. There are a total of 24 

parS sites near the origin of replication (Bentley et al., 2002) on which ParB binds and 

forms nucleoprotein complexes (Jakimowicz et al., 2002). In nascent aerial hyphae, ParA 

accumulates first at the distal tips and then goes on to form what appears to be helical 

filaments that spread along the aerial hyphae (Jakimowicz et al., 2007). During 

sporulation, ParB-parS nucleoprotein complexes are evenly assembled along the aerial 

hyphae by the help of ParA (Jakimowicz et al., 2005). ParB enhances the ATPase activity 

of ParA and ATP binding is required for the dimerization of ParA and ParB binding but 

not the localization of the helical filaments in aerial hyphae (Jakimowicz et al., 2007). 

Even though these proteins are dispensable, deletion mutations in these genes resulted in 

anucleate spores about 15% in parB and 24% in parA mutants when compared to wild 
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type (Jakimowicz et al., 2002; Jakimowicz et al., 2005). 

S. coelicolor is an unusual bacterium not only for its importance in biotechnology 

but also its complex life cycle and how it executes synchronous cell division and 

chromosome segregation during exospore formation. However, the molecular machinery 

that underlies the developmental chromosome segregation during morphological 

differentiation in S. coelicolor has not been fully elucidated. Studying the chromosome 

partitioning system of this organism might enlighten chromosome dynamics and its co-

ordination with other cell cycle processes. 

The goal of this study was to analyze the function of a ParA-like ATPase protein 

(ParH) and investigate protein-protein interactions between ParH with known segregation 

and condensation proteins to better understand its role in development-associated 

chromosome segregation in S. coelicolor. Bioinformatic analysis of ParA amino acid 

sequence revealed that a ParA-like ATPase was encoded in the S. coelicolor genome 

(Dedrick, 2009). Preliminary genetic data from Dedrick’s dissertation (2009) suggested 

that a ParH plays a role in the proper localization of ParB-EGFP foci in the aerial 

filaments of S. coelicolor. Here, I confirmed these results and showed that loss of ParH 

affects chromosome segregation. Similar to some other ParA-like proteins in unicellular 

bacteria, ParH appears to bind to DNA in a heterologous in vivo assay. A bacterial two-

hybrid system was used to screen protein-protein interactions and I identified a novel 

interaction between ParH and ParB for S. coelicolor. ParH forms homodimers according 

to a bacterial two-hybrid assay. A functional ATPase active site appears to be required 

for this interaction as in homologs of this type of Walker ATPase (Jakimowicz et al., 

2007). Possible interactions between other known segregation and condensation proteins 
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and ParH were also tested, but no evidence was found. However, I discovered novel 

interactions between ScpB (segregation and condensation protein B) and ParA, ScpB 

with SlzA (small leucine zipper type coiled-coil protein), and ParH with SlzA  that might 

need further analysis to understand fully the link between chromosome segregation and 

condensation in S. coelicolor.  
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MATERIALS AND METHODS 

Bacterial strains, media, and growth conditions 

E. coli and S. coelicolor strains used in this study are listed in Table 2.1 and Table 

2.2, respectively. E. coli strains were grown in either LB, SOB, or SOC media (Sambrook 

et al., 1989) and were supplemented with final concentrations of ampicillin (100 μg ml-1), 

apramycin (50 μg ml-1), carbenicillin (100 μg ml-1), chloramphenicol (25 μg ml-1), 

kanamycin (50 μg ml-1), or spectinomycin (50 μg ml-1) when appropriate. TG1 and 

TOP10 were used for basic plasmid propagation. E. coli strains were grown at 37°C, 

except BW25113/pIJ790, which was grown at 30°C to ensure propagation of a 

temperature sensitive plasmid. S. coelicolor strains were grown at 30°C in ISP2 (yeast 

and malt extract medium) or YEME liquid medium or on minimal medium (MM), with 

either 0.5% glucose or 1% mannitol as the carbon source, R2YE, or soy flour mannitol 

agar (SFM) (Hopwood et al., 1985; Kieser et al., 2000) and were supplemented with the 

final concentrations of the following antibiotics when appropriate: apramycin (25 μg  

ml-1), kanamycin (50 μg ml-1), nalidixic acid (20 μg ml-1), or spectinomycin (50 μg ml-1).  

Plasmids and general DNA techniques 

Cosmids and plasmids used in this study are listed in Table 2.3. Wizard Genomic 

DNA Purification Kit (Promega) was used for S. coelicolor total DNA preparations. 

QuikChange II Site-Directed Mutagenesis Kit (Stratagene) was used for creating point 

mutations. Redirect technology (Gust et al., 2004) was used for λ RED-mediated 

recombination using mutagenic linear DNA cassettes in E. coli. Standard techniques were 

used for plasmid purification, creation of electrocompetent cells, and transformation 

(Sambrook et al., 1989). DNA restriction enzymes (New England Biolabs), Taq DNA 
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Polymerase (New England Biolabs) and Pfx DNA polymerase (Invitrogen), plasmid 

purification and DNA cleanup kits (Qiagen and Zymo Research Corporation) were used 

according to the manufacturers’ instructions.  

Isolation of parH-null strains  

 An insertion-deletion mutation for parH (SCO1772) was created by using in vivo 

E. coli λ Red-mediated recombination (Dedrick, 2009). Oligonucleotides parA2Fwd and 

parA2Rev were used to amplify and add parH (parA2) homology to an aac(3)IV 

disruption cassette isolated from pIJ733. The mutagenic PCR product was transformed 

into the E. coli strain BW25113/pIJ790/SCI51 to create cosmid pRMD12 (Dedrick, 

2009). This cosmid derivative pRMD12 lacking parH (ΔparH::aac(3)IV) was introduced 

into the chromosome of S. coelicolor strain M145, J3306, and J3310 via homologous 

recombination after conjugation, selecting for apramycin resistance and screening for 

kanamycin sensitivity, resulting in MH5 and MH6 (this study), and RMD29 strains 

(Dedrick, 2009), respectively, and PCR was used to verify the candidates. Strains J3306 

(parA-null, unmarked) and J3310 (parB-egfp, unmarked) were a gift from D. Jakimowicz 

(Jakimowicz et al., 2005). 

Creation of the ParH-EGFP expressing strain 

The ParH-EGFP expressing strain (RMD30) was constructed by using in vivo 

E. coli λ Red-mediated recombination (Dedrick, 2009; Gust et al., 2004). 

Oligonucleotides parA2egfpFwd and parA2egfpRev were used to amplify and add parH 

(parA2) homology to the egfp-aac(3)IV-oriT cassette of the cosmid H24-ParB-EGFP 

(Jakimowicz et al., 2005). The mutagenic PCR product was transformed into the E. coli 

strain BW25113/pIJ790/SCI51 to create cosmid I51parA2-egfp. This cosmid was 
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introduced into the chromosome of S. coelicolor strain M145 via homologous 

recombination after conjugation, selecting for apramycin resistance and screening for 

kanamycin sensitivity and strain was named RMD30. 

Creation of the ParB-mCherry and ParH-EGFP expressing strain 

 In an attempt to determine the co-localization of ParB-mCherry and ParH-EGFP, 

cosmid I51parA2-egfp was introduced into the chromosome of S. coelicolor strain J3316 

(parB-mCherry, unmarked) via homologous recombination after conjugation, selecting 

for apramycin resistance and screening for kanamycin sensitivity. S. coelicolor strain 

J3316 was a gift from Dr. Dagmara Jakimowicz (University of Wroclaw, Poland). PCR 

was used to verify the candidate and named MH4.  

Creation of parH genes expressing K99E, R273E, and Δ20-80 variants of ParH 

Genes expressing K99E and R273E variants of ParH contain a point mutation for 

a codon in the ATPase active site and a codon for a conserved putative DNA-binding 

arginine residue in parH, respectively. Plasmid pRJ1, which has the coding sequence as a 

source of parH, was used to make point mutations by using Stratagene Quickchange site-

directed mutagenesis kit. Briefly, by following the manufacturer’s protocol (Stratagene), 

the primers K99E Fwd and K99E Rev, R273E Fwd and R273E Rev were used to make 

point mutations in the ATPase active site (K99E) and in a surface arginine residue 

(R273E), respectively, to change these positively charged residues (lysine or arginine) 

into negatively charged glutamic acid. These plasmids were named as pRJ3 and pTR1, 

respectively. (pRJ3 was created by pre-doctoral rotation student Rachel Monagahan.) 

pRMD16 was used as a vector plasmid, which has the entire parH gene with promoter, 

an origin of transfer for conjugation, and int and attP of ΦC31. This integration vector 
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was used to create the parH variants from pRJ3 and pTR1 by using MluI and AscI 

restriction enzyme digestion and ligation to substitute a 897 kb fragment containing the 

independent mutations. Since there are two MluI sites in pRMD16, construction had to be 

completed in two steps. The first step was the ligation of the altered parH as a 897 kb 

MluI-AscI fragment from pRJ3 and pTR1 with the 4,845 kb MluI-AscI fragment of the 

vector plasmid pRMD16 creating pRJ4 and pTR2. The second step was to ligate the 

3,347 kb MluI fragment isolated from pRDM16 in the correct orientation into pRJ4 and 

pTR2, respectively. The final plasmids, pRJ5 [parH (K99E)] and pTR3 [parH (R273E)] 

were used to introduce the parH variants into RMD29 (∆parH::acc(3)IV parB-egfp) by 

conjugation and site specific recombination into the ΦC31 attB site.  

A Δ20-80 variant of ParH, which includes an in-frame deletion of the parH 

codons for 60 amino acids of the 61 amino acid N-terminal extension of ParH 

(GAPRNLNDHGPAK), was constructed by using oligonucleotides ParH60Fdel and 

ParH240Rdel to amplify and add parH homology to an aac(3)IV disruption cassette 

pIJ733. In addition, SwaI recognition sites were included in the primers and were inserted 

flanking the apramycin resistance gene. The mutagenic PCR product was transformed in 

to the E. coli strain BW25113/pIJ790/SCI51, resulting plasmid pMH39. Then, pMH39 

was digested with SwaI restriction enzyme and ligated to remove the disruption cassette 

and was named pMH40. A SwaI cut site is left in place of 60 codons of parH. The K99E 

(AAG to GAG) and R273E (CGC to GAG) point mutations and in-frame deletion of 

codons 20-80 (GGCGCGCCCCGCAACttaaatGATCACGGCCCCGCCAA) were 

verified by sequence analysis.  
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Analysis of in vivo DNA binding ability of ParH by GFP-ParH localization in E. coli 

For analysis of the in vivo localization of GFP-ParH in a heterologous system, 

pSEB181 (Plac-gfp) was obtained from Dr. Joe Lutkenhaus (University of Kansas). This 

plasmid was previously used to make genes expressing various GFP-Soj (B. subtilis 

ParA) fusions (Zhou et al., 2004). Oligomers XbaI-ParHFwd and HindIII-ParHRev were 

designed to add XbaI and HindIII restriction enzyme recognition sites to parH and its 

mutants (K99E, R273E, and Δ20-80) and cloned into TOPO vector pCR2.1 creating 

pTR4, pTR5, pTR6, respectively. These plasmids and pSEB181 were digested and used 

to make gfp-parH fusions and were called pMH1 (WT), pMH2 (K99E), pMH3 (R273E), 

and pMH109 (Δ20-80), respectively.  

For analysis of the expression of GFP-ParH and variants, cultures of TG1 bearing 

pMH1 [Plac-gfp-parH], pMH2 [Plac-gfp-parH(K99E)], pMH3 [Plac-gfp-parH(R273E)], 

pMH109 [Plac-gfp-parH(Δ20-80)], as well as controls pSEB181 [Plac-gfp] and pSEB200 

[Plac-gfp-soj]  were grown overnight at 37C in LB-spec. Samples were diluted 1:100 into 

20 ml LB-spec and grown to an OD540 of greater than 0.1. GFP-fusion expression was 

induced by the addition of 1 mM IPTG, and the cultures were allowed to grow for 45 

minutes. One ml from each sample was immediately fixed for microscopy. Cells were 

harvested by centrifuging for 5 mins at 4C. The pellet was resuspended in l ml of ice-

cold lysis buffer (0.1 M Tris, pH8, 60 mM NaCl, 14 mM MgCl2) containing 10 l of Halt 

proteinase inhibitor cocktail (Thermo Fisher Scientific. Springfield, NJ) to prevent 

protein degradation. Sonication was performed on ice with 10 second bursts at 10 Watts 

and 20 second cooling for a total of 6 times for 3 minutes using a Sonic Dismembranator 

(Fisher Scientific. Springfield, NJ). The cell extracts were centrifuged at 4C at 12,000Xg 
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for 10 minutes to remove unbroken cells, cell debris, and DNA. The supernatant was 

collected containing the soluble whole cell extract.  Whole cell extracts were fractioned 

on 12% SDS-PAGE gels and GFP fluorescence was visualized by Li-cor Oddsey Fc 

imaging system.  

Fluorescence microscopy to analyze the localization of GFP-ParH and derivatives 

was performed with an aliquot of the IPTG-induced E. coli strains isolated at the same 

time as the expression analysis above. Details of the fluorescence microscopy are given 

in the fluorescence microscopy section later in this chapter.   

Creation of plasmids expressing fusions to ParH, ParH-variants, SMC, ScpA and 

ScpB for use in a bacterial two-hybrid assay 

 Plasmids were created according to the previously described bacterial two-hybrid 

protocol (Karimova et al., 2000). Briefly, primers listed on Table 2.4 for the genes of 

interest were used to amplify and add flanking KpnI restriction sites to parH, parH-

variants, smc, scpA, and scpB using pRJ1, pRJ5, pTR3, pTR4, St7A1, or Stl51 as a 

template.  

 The PCR products were cloned into TOPO vector pCR2.1 and completely 

sequenced to verify the integrity of the inserts. Each verified plasmid was separately 

digested with KpnI and ligated into KpnI-digested and dephosphorylated bacterial-two 

hybrid vectors pUT18, pUT18C, pKT25, and pKNT25. Diagnostic restriction enzyme 

digestion and sequence analysis were used to verify the orientation and reading frame of 

each two-hybrid construct before pairs to be tested were co-transformed into the E. coli 

strain BTH101. The visualization of possible protein-protein interaction was performed 

following the manufacturer’s protocol with the following modifications. Co-



 70 

transformants were grown on LB agar containing ampicillin (100 μg ml-1), and 

kanamycin (50 μg ml-1) and incubated overnight at 37°C. Individual colonies from these 

plates were picked and patched on MacConkey agar containing 1% maltose, 0.5 mM 

IPTG, ampicillin (100 μg ml-1), and kanamycin (50 μg ml-1) and incubated overnight at 

30°C before visual observations. The strains containing positive interacting clones were 

confirmed if they contained the correct genes by PCR. 

 Beta-galactosidase assays in single determinations were performed by following 

manufacturer’s recommendations on overnight cultures of three independent isolates of 

each strain (Euromedex). The activity units were averaged from the 3 determinations. 

Fluorescence Microscopy  

 S. coelicolor strains were prepared for confocal microscopy using cover slips that 

were embedded at a 45° angle in the agar medium and incubated for the indicated lengths 

of time and either fixed with 4.375% glutaraldehyde and 0.028% paraformaldehyde or 

100% methanol or unfixed, and analyzed using a TCS SP2 Spectral Confocal Microscope 

System (Leica), confocal microscope (Nikon A1+), or epi-fluorescence wide-field 

microscope (Nikon Eclipse Ni-U) with a 100X oil or 63X immersion lenses and 488- and 

543-nm lasers. A standardized amount of spores and three independent inoculations on 

cover slips were used for characterization of all strains used in this study. Volocity Demo 

program (Perkin Elmer Inc, Version 6.1.1) was used to crop images, optimize contrast, 

and add scale bars. 

 E. coli strains prepared for confocal microscopy were fixed at room temperature by 

adding 1% formaldehyde (final concentration) for 10 min to a sample of a culture 

growing exponentially in LB (Hester et al., 2007). The coverslips were washed three 
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times with PBS, allowed to air dry, and mounted in 50% glycerol containing 10 μg/mL 

wheat germ agglutinin, Alexa Fluor 633 conjugate (Invitrogen) and analyzed using a TCS 

SP2 Spectral Confocal Microscope System (Leica) with a 100X oil lens and 488 nm and 

633 nm lasers. Images were processed to adjust the brightness and contrast using 

Volocity Demo (Perkin Elmer Inc, Version 6.1.1) program. 
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RESULTS 

S. coelicolor possesses a gene to express a second ParA-like ATPase  

A previous study in our laboratory revealed a potential parA-like gene upon 

BLAST analysis of the ParA amino acid sequence (Dedrick, 2009). The amino acid 

sequence encoded by sco1772 was found to be homologous to the ParA-family of 

proteins that has a conserved ATPase domain, such as the MinD family of ATPases. 

sco1772 is 1,023 bp and is predicted to encode a 340 amino-acid protein. SCO1772 has 

44.8% (111/248) identical residues and 63.3% (157/248) similarity to ParA of S. 

coelicolor (Figure 2.1). Due to its homology to ParA, it will be referred to as ParH (ParA 

homolog) from this point on. Relative to its paralog ParA, ParH has a 61 amino acid 

extension inserted near the N-terminus and ParA has 22 amino acid extension at the C-

terminus. The composition of this additional N-terminal sequence in ParH is unusual with 

8 aromatic (3F and 5Y) and 11 proline residues and highly conserved (Figure 2.1 and 

Figure 2.2), whereas the composition of the additional sequence in ParA is more variable 

amongst other Streptomyces (Figure 2.3). 

parH is located one gene upstream of the operon encoding SMC-associated 

proteins called ScpA and ScpB (Figure 2.4) (Dedrick et al., 2009), which help compact 

and organize the chromosome in a complex with SMC (structural maintenance of 

chromosomes) proteins and is important for chromosome segregation (Dedrick et al., 

2009; Kois et al., 2009; Lindow et al., 2002; Soppa et al., 2002). The proximity of parH 

to scpAB may indicate that it might also have a role in chromosome segregation. In 

contrast to ScpAB, a BLAST search of the protein encoded downstream of parH, 

SCO1771, revealed that it has no known conserved domains, however homologs are 
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highly conserved amongst Streptomyces species (data not shown). Interestingly, the open 

reading frame of parH overlaps with sco1771, which may indicate that these two genes 

are transcribed as a bicistronic operon (Figure 2.4). On the other hand, the upstream gene 

sco1773 encodes L-alanine dehydrogenase, which is required for maturation of spores 

and under the regulation of the developmental gene whiH (Salerno et al., 2013). 

Interestingly, the parH homolog in S. venezuelae (sven1405) is a direct WhiA target and 

its expression depends on whiA, which is involved in the regulation of key steps in aerial 

growth, initiation of cell division, and chromosome segregation (Bush et al., 2013).   

The genome sequences of all 7 Streptomyces species that are presented on the 

Streptomyces genome database and 2 other Actinobacteria reveal that all have a parA and 

parA-like gene (http://strepdb.streptomyces.org.uk). Recent studies also showed that 

besides Streptomyces species, C. glutamicum and Aggregatibacter 

actinomycetemcomitants have a parA-like gene, pldP and tadZ, respectively (Donovan et 

al., 2010; Perez-Cheeks et al., 2012). PldP plays a role in division-site selection and 

TadZ is important in the biofilm formation in periodontal diseases.   

 An alignment of a total of 27 ParA, ParA-like and other deviant Walker A 

ATPase (KGGVGK nucleotide-binding motif) proteins (MinD/MipZ) shows that these 

proteins are homologs. Cell division site MinD proteins form a separate family according 

to their sequence similarity and their functions (spatial regulation of cell division) in the 

cell (Lutkenhaus and Sundaramoorthy, 2003). The 27 aligned sequences show higher 

identity towards the C-terminus. This may suggest that the C-terminal portion of these 

proteins has a specific and conserved function. The aligned amino acid sequences of 

these proteins were used to construct a phylogenic tree by Clustal W2 alignment 
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phylogeny program and a phylogenetic neighbor-joining tree, MEGA 5.2.1 phylogeny 

program (Figure 2.5). The phylogenetic tree reveals an obvious evolutionary relation 

between ParA and ParA-like proteins.  

Deletion of ParH affects chromosome segregation  

To analyze the function of the putative partitioning protein ParH of S. coelicolor, 

a deletion-insertion mutant was created using a PCR-directed mutagenesis. Previously, 

Dedrick constructed the strain (RMD25) and found 3% (3% of 1633 total spores 

compared to 1% of wild type spores) anucleate spores for the parH-null strain (Dedrick, 

2009). Unfortunately, the strain was lost from the collection and was re-isolated here 

(MH5). As with the previous isolate, phase-contrast microscopy revealed that the mutant 

strain was able to sporulate and the spores were similar to wildtype strain M145 in 

regards to shape and size. Propidium iodine stain was used to visualize DNA segregation 

in the ΔparH strain (MH5) and a frequency of 5% anucleate spores (5% of 3090 total 

spores compared to 1.7% of 3006 total spores for wild type) was found (Figure 2.6 C). In 

addition to this slight chromosome segregation defect, the parH-null mutation (MH5) 

also caused infrequent branching spore chains in the aerial filaments of S. coelicolor 

(Figure 2.6 C). To further analyze the role of ParH in chromosome segregation, an 

unmarked parA deletion strain (Jakimowicz, 2007) was used to create a double deletion-

insertion mutant for parA and parH by introducing the parH-null mutation into the parA 

deletion strain. The parA parH double null mutant (MH6) has 17% anucleate spores 

(17% of 3102 total spores) as compared to 20% of parA (20% of 2967 total spores) 

mutant strain, which showed that the segregation phenotypes were not additive (Figure 

2.6 D). 
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Localization of ParB-EGFP is slightly disrupted in parH deletion mutant 

 The Streptomyces ParB binds parS sites near the origin of replication (oriC) 

(Jakimowicz et al., 2002). In vegetative filaments and nascent aerial hyphae, ParB-EGFP 

localizes as a bright focus close to the hyphal tip and other foci being smaller and 

irregularly spaced through the length of the hyphae (Jakimowicz et al., 2005). But, during 

sporulation, large evenly-spaced ParB-EGFP foci assemble along the length of aerial 

hyphae, presumably uniformly organizing the copies of the genome along the length of 

the hyphae. The ParB-parS nucleoprotein complexes form before observable DNA 

condensation and septation, and disassemble after these processes (Jakimowicz et al., 

2005).  

 To further analyze the role of ParH in chromosome partitioning, a parH mutant 

strain RMD29 (∆parH::acc(3)IV parB-egfp) was constructed by introducing the ∆parH 

mutation into J3310 (parB-egfp) strain (Dedrick, 2009). This mutant strain appeared to be 

similar to the wild type as it produced a gray pigment associated with mature spore 

formation and the spores were similar to wildtype strain M145 in regards to shape and 

size (Dedrick, 2009). Preliminary, confocal fluorescence microscopy results revealed that 

centromere-binding protein ParB-EGFP localized normally throughout the life cycle of S. 

coelicolor until the maturation of spores (Dedrick, 2009). I repeated the fluorescence 

microscopy analysis and found that as certain prespores mature, the organization of the 

ParB-EGFP foci was disrupted in some spores. To quantitate the phenotype of the 

disrupted ParB-EGFP localization, the distances between ParB-EGFP foci were measured 

in wild type and parH null mutant strains (Figure 2.7). For this analysis a ParB-EGFP 

interfocal distance of less than 0.4 μm was considered as a disrupted ParB-EGFP 
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localization. To provide a quantitative evidence for the ParB-EGFP foci localization 

disruption, samples from different time points of development (24, 40, 48, and 56 hours 

growth on plates) were prepared and the subtle phenotype was observed mainly between 

48 and 56 hour time points. The average ParB-EGFP interfocal distance in a wild type 

strain was found to be approximately 1 μm coinciding with the approximate length of a 

spore compartment. However, in strain RMD29, the interfocal distance of ParB-EGFP 

was either laterally or vertically close to each other in 6% prespores. The total percentage 

of disrupted ParB-EGFP in parH null strain was found to be approximately 6% compared 

to 1% of the wild type strain (p=0.0052, chi-square test) (Table 2.5). These data and 

together with the observation of evenly-spaced ParH-EGFP localization, suggested that 

ParH might play a direct or indirect role in positioning of ParB foci.  

To further analyze the function of ParH, site-directed mutagenesis was used to 

change the codon for a conserved lysine residue in the ATPase Walker A box of ParH to 

glutamic acid (opposite charge substitution). This lysine residue is required for ATPase 

function and dimer formation in other similar ATPase proteins because the ATPase site is 

formed at the dimer interface (Jakimowicz et al., 2007, Lutkenhaus et al., 2003). In 

addition to the lysine mutation, I analyzed a second mutation, which was created by using 

site-directed mutagenesis by a previous rotation student R. Monagahan. The mutation 

altered a surface arginine residue (R273E), which is conserved among other 

chromosomal parA-like gene homologs and is involved in non-specific DNA binding for 

B. subtilis Soj (Hester and Lutkenhaus, 2007). These variants under the control of the 

native parH promoter were introduced by site-specific recombination into the C31 att 

site into an S. coelicolor strain containing parH, making the genes with the point 
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mutation the only source of parH into the strain expressing ParB-EGFP to see if there 

was an effect on segregation and localization of ParB-EGFP foci. The preliminary 

microscopy results showed the aberration of ParB-EGFP foci in parH(K99E), but not in 

parH(R273E) strains (data is not shown). Although interfocal distance in these strains 

was not measured as accurately as in parH-null strain, I concluded that the Walker-type 

ATPase activity of ParH is needed for ParH to directly or indirectly influence proper 

ParB-EGFP foci localization.  

ParH-EGFP localizes at evenly spaced intervals within aerial filaments 

To determine the in vivo localization pattern of ParH, a ParH-EGFP translational 

fusion strain was created using a PCR-directed mutagenesis. parH-egfp was integrated at 

the native location in the chromosome, expressed as the only source of ParH, and 

analyzed by fluorescence microscopy (Dedrick, 2009). ParH-EGFP protein appeared to 

be fully functional; the strain was able to sporulate and the spores were similar to 

wildtype strain M145 in regards to shape and size.  

Previously, using confocal microscopy in a preliminary analysis to show the 

localization of ParH-EGFP, Dedrick treated the samples with anti-gfp antibody to 

enhance the EGFP signal probably due to low expression levels of the ParH. Dedrick 

showed that ParH-EGFP localization has no distinct pattern in vegetative filaments 

(Dedrick, 2009). But, in infrequent predivisional aerial filaments, some of the aerial 

hyphae revealed a bright band or several evenly-spaced bands in the apical compartment 

and some of them showed increased ParH fluorescence toward the tip of these filaments 

(Dedrick, 2009). With the observation of several localization patterns, Dedrick concluded 

that ParH-EGFP localization might be dynamic. However, despite numerous attempts 
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without enhancing with anti-gfp antibody, I have not been able to observe the same 

results.  

Recently, I observed the same strain with epi-fluorescence wide-field microscope 

(Nikon Eclipse Ni-U) and a new confocal microscope (Nikon A1+). Epi-fluorescence and 

confocal microscopy results showed that ParH-EGFP localized in evenly spaced intervals 

within predivisional aerial filaments (Figure 2.7). ParH-EGFP fluorescence was not 

observed in vegetative filaments or mature aerial filaments with spore compartments. 

Epi-fluorescence and a new confocal microscopes appeared to be better to observe the 

localization of ParH-EGFP and provided better-quality imaging. Probably the ParH 

expression is very low and newer equipment was necessary to visualize ParH-EGFP 

localization. This data suggested that ParH might co-localize with evenly-spaced ParB-

parS complexes.  

To investigate potential co-localization of ParH with ParB-EGFP foci, I 

constructed a strain expressing a translational ParH-mCherry fusion. In order to construct 

a gene to express a ParH-mCherry fusion, an in vivo recombination system was used to 

create the fusion in one step in E. coli (Datsenko and Wanner, 2000; Gust et al., 2004). 

Then, parH-mCherry, as the only source of parH, was introduced by conjugation into a 

S. coelicolor strain with a parH-null mutation strain expressing ParB-EGFP and verified 

by PCR using S. coelicolor chromosomal DNA as template. This strain expressing ParH-

mCherry and ParB-EGFP was analyzed by scanning laser confocal microscopy. 

Unfortunately, the ParH-mCherry fluorescence was too weak to be able to clearly see 

ParH-mCherry localization (data not shown). Since ParB has a brighter signal than ParH 

in the aerial hyphae, as judged by EGFP fusion signals, a strain expressing ParB-mCherry 
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and ParH-EGFP (MH4) was constructed with the same method and analyzed by the 

scanning laser confocal microscopy (Figure 2.9). A ParB-mCherry expressing strain was 

obtained from Dr. Dagmara Jakimowicz (University of Wroclaw, Poland). Both mCherry 

and EGFP signals were not very strong. ParH-EGFP and ParB-mCherry did not appear to 

co-localize in the aerial filaments of S. coelicolor, as judged by the scanning laser 

confocal pictures. However, due to the weakness of the fluorescence signal I cannot 

definitively say that these two proteins do not co-localize.  

Recently, I checked the same strain, MH4 with an epi-fluorescence wide-field 

microscope. Preliminary analysis showed that I was able to observe the co-localization, 

but unfortunately was unable to capture the image due to quick bleaching of the samples. 

These preliminary results would need to be confirmed by further analysis in the future.  

ParH binds to nucleoid in a heterologous in vivo assay 

Even though the DNA binding property of S. coelicolor ParA has not been 

studied, most chromosomally encoded ParA and ParA-like proteins can bind to DNA in a 

nonspecific manner, such as ParA of C. crescentus, Soj (ParA) from Thermus 

thermophilus, and Soj of B. subtilis (Easter and Gober, 2002; Hester and Lutkenhaus, 

2007; Leonard et al., 2005), as well as the ParA-like PomZ from Myxococcus xanthus 

(Treuner-Lange et al., 2012).  

For B. subtilis, a GFP-Soj (ParA) fusion expressed in E. coli was used as an in 

vivo assay to see the localization of the protein with the nucleoid as one way to show its 

ability to bind DNA (Hester and Lutkenhaus, 2007). In their model, polymerization of 

Soj occurs by non-specific binding on a DNA scaffold. A conserved surface arginine to 

glutamic acid (opposite charge substitution) mutant fails to localize to nucleoid. The 
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same assay was used to investigate in vivo DNA binding ability of ParH. pSEB181 (Plac-

gfp) (Zhou and Lutkenhaus, 2004) was used to make fusion genes expressing GFP-ParH, 

GFP-ParH(K99E), GFP-ParH(R273E), and ParH(Δ20-80). For analysis of the 

localization of GFP-ParH and its variants, images were taken by a scanning laser 

confocal microscope (Figure 2.10). Cell envelopes were counter abeled with WGA Alexa 

Fluor 633 conjugate, which binds to peptidoglycan. It showed that the positive control 

GFP-Soj localizes in foci on the nucleoid as it was published (Hester and Lutkenhaus, 

2007). Similar to the GFP-Soj control, GFP-ParH+ appears to localize on the nucleoid of 

the cells in E. coli. Localization of GFP-ParH+ is affected in GFP-ParH(K99E), GFP-

ParH(R273E), and GFP-ParH(Δ20-80). Both GFP-ParH(K99E) and GFP-ParH(Δ20-80) 

appear to localize at the poles and GFP-ParH(R273E) appear to either localize at the 

poles or diffuse in the cytoplasm of the cells in E. coli (Figure 2.10). Localization 

patterns are specific for the ParH proteins. GFP control shows that the fluorescent protein 

is located throughout the cytoplasm.  

Whole cell protein extracts of the fusion-containing strains were fractioned on a 

SDS-PAGE gel and GFP fluorescence was visualized by Fuji FLA-5100 2-dimensional 

scanner (Figure 2.11). GFP-ParH+ and GFP-ParH(R273E) were stable as in the GFP-Soj 

control. However, the GFP-ParH(K99E) and GFP-ParH(Δ20-80) protein were not as 

stable as the wild type and appeared to be partially degraded due to possible misfolding 

in E. coli (Figure 2.11 lanes K99E and Δ20-80). 
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S. coelicolor ParA-like protein ParH interacts with centromere-binding protein 

ParB in a bacterial two-hybrid assay 

Until recently, ParB was the only identified interacting partner of ParA in 

S. coelicolor (Jakimowicz et al., 2007). ParJ and Scy were found to be involved in the 

partitioning system as a ParA-interacting protein of S. coelicolor in a screen of a random 

library by using a bacterial two-hybrid system (BTH) (Ditkowski et al., 2010; Ditkowski 

et al., 2013). Scy has been proposed to recruit ParA to the aerial hyphae tips. ParA 

polymerization is regulated by both Scy and ParJ, which affect DNA segregation and cell 

division during sporulation (Ditkowski et al., 2013; Ditkowski et al., 2010). Since ParA 

binds to ParB/parS nucleoprotein complexes and there is 45% identity between ParA and 

ParH, and some disruption of ParB-EGFP localization in parH-null mutant rendered 

ParH a candidate to investigate interactions between known segregation proteins, such as 

ParA, ParB and ParJ.  

Donovan et al., (2010) also showed that in a closely related unicellular 

Actinomycete bacterium C. glutamicum PldP (a ParH-like protein) interacts in a bacterial 

two-hybrid system with itself, ParA and ParB. In addition, ParB-parS complexes interact 

directly with polar-growth protein DivIVA at the cell poles (Donovan et al., 2012). 

However, PldP localizes within C. glutamicum with FtsZ rings at the site of cell division 

(Donovan et al., 2010). Since, PldP is closely related to ParH, putative dynamic 

localization of ParH could be affected by interaction with ParB or FtsZ in S. coelicolor. 

A bacterial two-hybrid system was used to attempt to find which, if any, known 

segregation proteins interact with ParH. This system is an in vivo screening and selection 

method for identification of interacting proteins in a heterologous analysis. This system 
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requires the co-expression of the fusion proteins of interest to either T25 or T18 

subdomains of Bordetella pertussis adenylate cyclase in an E. coli cya mutant (Karimova, 

et al., 2000). Plasmids carrying parA, parB, and parJ genes fused with either sequence 

expressing T25 or T18 subdomain in reporter strains were obtained from Dr. Dagmara 

Jakimowicz (University of Wroclaw, Poland). These plasmids were co-transformed with 

the plasmids that encode parH fusions into an E. coli cya screening strain followed by 

plating on MacConkey indicator plates. When pairs of ParH, ParA, ParB, ParJ fusions 

were coexpressed and screened for an interaction, ParH was found to be able to interact 

with ParB (Figure 2.12). ParH also interacted with itself in this assay (see next section for 

detailed information). Interestingly, ParH did not interact with ParA, which shows that 

these proteins, despite the close sequence identity, do not appear to form hetero-dimers in 

this assay (Figure 2.12).  

Since the data showed an interaction between ParH and ParB, the same bacterial 

two-hybrid system was used to test three parH mutants to find if a functional ATPase 

active site, conserved surface arginine residue, or N-terminal 20-80 might be involved 

in ParB interaction. Previously constructed parH gene variants were cloned into the 

reporter plasmids in bacterial two-hybrid system. The ATPase deficient K99E and N-

terminal in-frame variants of ParH impaired interaction with ParB, but a surface arginine 

substitution did not have any affect on ParH-ParB interaction (Figure 2.13). These 2 

results showing no interaction potentially could be explained due to inability to form a 

dimer and unstable protein (Figure 2.11 Lanes K99E and 20-80) for the mutation in 

ATPase active site, which could be required for forming homodimers and improper 

folding of the protein, respectively. Since ParB-EGFP foci disruption in parH (K99E) 
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(ATPase active site) variant have been observed, the data are consistent with an 

interpretation that ATPase activity is required for the proper localization of ParB-EGFP 

foci in the midcell and it may also involved in the interaction of ParH and ParB.  

ParH forms homodimers as do homologs of this type of Walker ATPases 

Similar to ParA, ParB, and ParJ in S. coelicolor, ParH also interacts with itself, as 

do homologs of this type of deviant Walker ATPases, such as MinD and Soj (Ditkowski 

et al., 2010, Hu et al., 2002, Jakimowicz et al., 2007, Leonard et al., 2005, Suefuji et al., 

2002). Previously, it has been shown that the intact Walker A motif was required for the 

formation of the ParA dimers which was also detected by the bacterial two-hybrid 

analysis (Jakimowicz et al., 2007). parH gene variants that encode R273E, K99E, and 

20-80 mutations were used in this system to see if these mutations affect the formation 

of ParH dimers. Both the ATPase deficient and N-terminal in-frame variants (20-80) 

impaired the interaction of ParH with itself (Figure 2.13). R273E variant was used as a 

positive control and did not affect the dimerization of ParH. The result for parH gene 

variant that encodes K99E was consisted with the ATPase active site required for 

dimerization of the protein and N-terminal in-frame variant (20-80) might affect the 

stability and proper folding of the protein, thus dimerization of the protein.  

ParH does not appear to interact with proteins that make up the bacterial condensin 

SMC, ScpA, and ScpB complexes 

 parH is located one gene upstream of the operon encoding SMC-associated 

proteins called ScpA and ScpB, which help compact and organize the chromosome in a 

complex with SMC (structural maintenance of chromosomes) proteins (Lindow et al., 

2002; Soppa et al., 2002). SMC is involved in development-specific DNA segregation 
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and 8% of the spores are anucleate in an smc null mutant (Dedrick et al., 2009). The 

similarity of ParH to ParA and proximity of parH to scpAB is what originally suggested a 

potential role of ParH in chromosome segregation. To see if ParH interacts with 

condensation proteins SMC, ScpA and/or ScpB, the smc, scpA or scpB genes were cloned 

into reporter plasmids. No interaction was found between ParH and these individual 

condensation proteins (Figure 2.14, B). I also tested other partitioning proteins with 

SMC, ScpA, and ScpB to see if they interact in the bacterial two-hybrid assay. I only 

found evidence to support that ParA interacts with ScpB. A summary of interactions 

determined in this study is given in Figure 2.14, A. This data suggests that ParA may help 

coordinate the activity of condensins as well as influencing the evenly-spaced 

localization of ParB nucleoprotein complexes in pre-divisional S. coelicolor aerial 

hyphae. Results may be analogous to the fact that Spo0J (ParB) recruits SMC to the 

region of oriC in B. subtilis (Gruber and Errington, 2009; Sullivan et al., 2009; Minnen et 

al., 2011). 

Small leucine zipper (slzA) interacts with ScpB and ParH 

 SlzA is a small leucine zipper type coiled-coil protein (SCO5576a) that encodes a 

69 amino acid protein product (C. Guerrero and J. R. McCormick, unpublished data; 

Kotun, 2013). It was discovered in this laboratory and is highly conserved among 

Streptomyces species as well as other Actinobacteria. slzA is located 300 bp upstream of 

the DNA segregation and condensation gene smc. The proximity of slzA to smc suggested 

that SlzA may have a function in chromosome condensation and segregation. 

Unfortunately, no obvious condensation or segregation phenotype was observed in slzA 

null mutant (Kotun, 2013). Consistent with a potential role in developmental segregation, 
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in S. venezuelae, SlzA (SVEN5271) is one of many targets of WhiA, a transcriptional 

regulator whose expression is highly upregulated during sporulation (Bush et al., 2013). I 

used plasmids carrying slzA fusion genes (Kotun, 2013) in bacterial two-hybrid system to 

see if SlzA interacts with partitioning and/or segregation and condensation proteins. 

Interestingly, my results have shown that SlzA interacted with both ParH and ScpB 

(Figure 2.14, B). This may suggest that SlzA plays a role in segregation and/or 

condensation in S. coelicolor, where either ParH and/or ScpB uses SlzA as a linker, while 

ParA is capable of direct interaction with ScpB during development in the aerial hyphae.  
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DISCUSSION 

The bacterial ParAB proteins are essential for accurate distribution of the 

chromosomes into daughter cells. One demonstrated role of ParA in S. coelicolor is to 

assemble into long helical filaments in pre-developmental aerial hyphae. The ParA 

filaments are believed to be responsible, at least in part, for proper positioning of ParB-

parS complexes (Jakimowicz et al., 2007). The phenotypes of parA and parB mutants are 

24% and 15% of anucleate spores, respectively. Even though these proteins are not 

essential for the survival of the bacterium under laboratory conditions, the phenotypes 

point out the central roles of the proteins in proper developmental genome segregation. 

The purpose of this study was to consider additional key elements of chromosome 

segregation and identify additional proteins that may interact with ParA or ParB in S. 

coelicolor.  

 Prior to this present study, Dedrick discovered an additional ParA-encoding gene 

(sco1772, named ParH) through BLAST analysis using the ParA amino acid sequence. 

ParH has 45% identical residues to ParA of S. coelicolor, and it has a 61 amino acid 

extension inserted near the N-terminus and ParA has a 22 amino acid extension at the C-

terminus (Figures 2.1 and 2.3). Interestingly, the composition of this additional sequence 

at the N-terminus of ParH is unusual and rich in aromatic residues (3F and 5Y). 

Statistical studies have shown that, a small group of aromatic residues are important in 

protein-protein interactions and phenylalanine and tyrosine are among this small subset 

of aromatic amino acids (Bogan and Thorn, 1998; Wells, 1991). Therefore, in addition to 

its homology to ParA, having this aromatic residue rich N-terminal extension makes 

ParH potentially more interesting protein to analyze its function and role in chromosome 
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segregation in S. coelicolor. Although a strain expressing a Δ20-80 variant of parH in 

S. coelicolor was constructed, the phenotype of the strain has not been analyzed yet. 

Perhaps as for a FtsK C-terminal truncation mutant (Dedrick et al., 2009), the phenotype 

of this N-terminal in-frame deletion variant may produce more anucleate spores than in 

the parH-null mutant strain.  

 One of the common properties of ParA as well as other ParA-like proteins is they 

have a conserved deviant Walker A (KGGVGK) nucleotide-binding motif (Lutkenhaus 

and Sundaramoorthy, 2003). According to the crystal structure of Soj, this family of 

proteins forms a dimer and the nucleotide-binding sites are between the dimer interface 

of each monomer and nucleotide binding is required for dimer formation (Leonard et al., 

2005). Although the very N-terminal sequences of these proteins are not as higly 

conserved, the deviant Walker A nucleotide-binding motif is within the N-terminal region 

and these proteins show higher identity towards their C-terminal domain, which may 

suggest that these proteins have an evolutionary conserved function.  

 Due to its homology to ParA, loss of ParH was expected to have a defect in 

chromosome segregation in S. coelicolor. Microscopic analysis of a parH deletion strain 

revealed a frequency of 5% anucleate spores. Even though it seems as a subtle phenotype, 

compared to the phenotypes of some mutants for other segregation/condensation genes 

(∆smc is 8%, ∆smc ∆scpAB is 3%, ∆ftsK is 0.8%), parH deletion mutant has higher 

frequency of anucleate spores than scpAB and ftsK deletion mutants. Therefore, I 

concluded that ParH has a direct or indirect role in the chromosome segregation of S. 

coelicolor. In addition to the slight chromosome segregation defect, I also observed 

infrequent branching in spore chains of aerial filaments of parH deletion strain. Since 
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other ParH-like proteins in other organisms, such as C. glutamicum plays a role in cell 

division (Donovan et al., 2010), this branching phenotype in parH deletion strain 

suggests the possible role of ParH in cell division.  

Previous preliminary analysis of the in vivo localization pattern of ParH revealed 

that ParH-EGFP showed no distinct pattern in vegetative filaments. Interestingly, several 

potential localization patterns in predivisional aerial filaments were observed (Dedrick, 

2009). In this analysis, some small subset of the aerial filaments showed a bright band or 

several evenly-spaced bands and some of them showed diffused fluorescence at the tip of 

the filaments (Dedrick, 2009). The weak signal was enhanced by immunofluorescence 

microscopy using a FITC labeled GFP antibody. Based on the observed bands and 

increased fluorescence at the tips, I thought ParH might colocalize with FtsZ or over 

ParB foci or polymerize into helical filaments like ParA forms in predivisional aerial 

filaments. My recent preliminary epi-fluorescent (Nikon Eclipse Ni-U) and confocal 

(Nikon A1+) microscopy results, without enhancing the signal by immunofluorescence, 

instead showed that ParH-EGFP localized as evenly spaced foci intervals within 

predivisional aerial filaments similar to the pattern of ParB-EGFP of S. coelicolor (Figure 

2.6). ParH-EGFP fluorescence was not observed in vegetative filaments or mature aerial 

filaments with spore compartments. The results were convincing since three different 

inoculations were used for sample preparation and the same localization pattern were 

observed in all samples. Probably the older confocal (Leica) microscope imaging was not 

sensitive enough to detect the low expression of ParH and samples were bleaching 

quickly. Epi-fluorescence microscope and a newer confocal microscope might be a better 

way to observe the localization of ParH-EGFP and provides improved results. The 
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observation of evenly-spaced ParH was reminiscent of the pattern observed for ParB and 

suggested that ParH might be colocalizing with ParB/parS complexes in aerial filaments 

and assist ParA directly or indirectly for proper localization of ParB/parS complexes. 

Unfortunately, I failed to see the colocalization of ParH-EGFP and ParB-mCherry in the 

aerial filaments due to weakness of the fluorescence signals. It is also possible that this 

event may happen for a very short period of time and observation time points failed to 

catch those events. Although, recently I analyzed the same strain with the epi-

fluorescence wide-field microscope and was able to observe the co-localization, but 

unfortunately unable to capture the image due to quick bleaching of the samples. The 

prelimnary evidence may suggest that ParH and ParB do colocalize in predivisional aerial 

hyphae.   

Even though ParH and ParB may or may not colocalize in aerial filaments of 

S. coelicolor, I observed a mildly disrupted pattern of ParB-EGFP foci localization in a 

parH-null strain. Instead of typical evenly-spaced localization in each predivisional 

hyphae with the average ParB-EGFP interfocal distance 1 μm apart, the distance between 

the two ParB-EGFP foci were either laterally or vertically closer to each other in a subset 

of hyphae. The total percentage of disrupted ParB-EGFP in a parH-null strain was 

approximately 6% compared to 1% of the wild type strain. This suggested that the 

deletion of parH was directly or indirectly playing a role in the proper localization of 

ParB-oriC regions in the aerial filaments of S. coelicolor.  

 Since loss of ParH mildly affects the localization of ParB-oriC, ParH might help 

ParB-oriC to stay evenly distributed along the aerial hyphae until septation begins. In 

addition, ParA and ParA-like proteins in other organisms are known for their non-specific 
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DNA-binding properties, as in ParA of C. crescentus and Soj in Thermus thermophilus 

and B. subtilis (Easter and Gober, 2002; Hester and Lutkenhaus, 2007; Leonard et al., 

2005). Even though it is still not known if ParA binds to DNA in S. coelicolor, I wanted 

to know whether ParH binds to DNA in a non-specific manner and help the localization 

of ParB-oriC localization. I used GFP-ParH fusions expressed in E. coli cells as an in 

vivo assay to see the localization of the protein with the nucleoid as one way to show its 

ability to bind DNA. My analysis showed that GFP-ParH localizes over the nucleoid of 

the cells in E. coli. Interestingly, a mutation at the ATPase active site affected the 

localization of ParH in E. coli. Although, this might have been caused by a partially 

degraded or unstable protein, it is also possible that ATPase activity might be important 

for DNA-binding of the protein. Even if the mutation at the ATPase active site causes 

instability and makes the results seem unreliable, it does not affect the purpose of this 

assay. The purpose of this assay was to show the DNA-binding ability of ParH. I used 

GFP-Soj as a positive control and it localized over the nucleoid same as in GFP-ParH.  

One of the purposes of this study was to investigate interactions between ParH 

and known segregation and condensation proteins. I used a bacterial two-hybrid system 

to identify protein-protein interactions. Even though I failed to show the colocalization of 

ParH and ParB in S. coelicolor, I found that these two proteins were interacting partners 

in a bacterial two-hybrid system. This result was not surprising, since ParH has 45% 

identical amino acid sequence to ParA in S. coelicolor and ParA interacts with ParB in a 

bacterial two-hybrid system. In addition, C. glutamicum both ParA and PldP (a ParH-like 

protein) interacts with ParB in a bacterial two-hybrid system as well (Donovan et al., 

2010). Interestingly, ATPase active site and N-terminal extension of ParH was found to 
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be required for dimerization of the protein since these two mutations impaired ParH-ParB 

interaction, as judged by the two-hybrid system. These outcomes could have been the 

results of an unstable or improper folding of the protein. False-negative or false-positive 

outcomes of the bacterial two-hybrid system should also be taken into consideration. An 

independent assay, such as co-immunoprecitation assay can be used to re-test ParA and 

ParH interaction and confirm ParB-ParH interaction.  

Interactions between ParH and other known segregation/condensation (ParA, 

ParJ, SMC, ScpA, ScpB, FtsK) and division protein FtsZ were also tested, but I did not 

observe any interactions between them. These conclusions should not discard the false-

negative outcomes of the bacterial two-hybrid system. Interestingly, I found interactions 

between ScpB-ParA, ScpB-SlzA, and SlzA-ParH. Interaction between ScpB and ParA 

was noteworthy since I tried to find the link between condensation and segregation of the 

chromosomes and ParA might help coordinate the activity of condensins. On the other 

hand, even though SlzA has no obvious segregation and condensation defects, its close 

proximity to smc and interaction with ScpB and ParH makes SlzA a possible 

segregation/condensation protein and a link between partitioning and condensation in S. 

coelicolor. 
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Table 2.1: E. coli strains used in this study 

Strain Genotype Reference/Source 

BTH101 F- cya-99 araD139 galE15 galK16 rpsL1 hsdR2 mcrA1 mcrB1 Euromedex 

BW25113 F- Δ(araD-araB)567 ΔlacZ4787 (::rrnB-3) λ- rph-1 

Δ(rhaD-rhaB)568 hsdR514 

Datsenko and 

Wanner 2000 

ET12567 F- dam-13::Tn9 dcm-6 hsdM hsdR recF143 zjj-201::Tn10 galK2 

galT22 ara-14 lacY1 xyl-5 leuB6 thi-1 tonA31 rpsL136 hisG4 

tsx-78 mtl-1 glnV44 

MacNeil et al., 1992 

TG1 supE thi-1 Δ(lac-proAB) Δ(mcrB-hsdSM)5 (rK
-mK

-)/ F ́ traD36 

proAB lacIqZΔM15 

Sambrook et al., 1989 

TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15ΔlacX74 deoR 

recA1 araD139 Δ(araA-leu)697 galU galK 

Invitrogen 

 

 

 

 

 

 

 

 

 

 

 

 

 



 100 

Table 2.2: S. coelicolor A3(2) strains used in this study 

Strain Genotype Reference/Source 

M145 prototroph SCP1- SCP2- Hopwood et al., 1985 

MH1 parH C31 att::parH(K99E) aadA parB-egfp This study 

MH2 parH C31 att::parH(R273E) aadA parB-egfp This study 

MH3 parH(Δ20-80) acc(3)IV  This study 

MH4 parH-egfp parB-mCherry acc(3)IV This study 

MH5 ∆parH::acc(3)IV This study 

MH6 ∆parA ∆parH::acc(3)IV This study 

J3306 ∆parA Jakimowicz et al., 2005 

J3310 parB-egfp Jakimowicz et al., 2005 

J3316 parB-mCherry Jakimowicz Lab  

RMD29 ∆parH::acc(3)IV parB-egfp  Dedrick, PhD 

Dissertation, 2009 

RMD30 parH-egfp acc(3)IV Dedrick, PhD 

Dissertation, 2009 

# all strains were derived from M145  
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Table 2.3: Cosmids and plasmids used in this study 

Cosmid/Plasmid 

 

Description Reference/Source 

H24parB-egfp egfp inserted in-frame at 3' of parB in cosmid SCH24, 

acc(3)IV aphII 

Jakimowicz et al., 

2005 

I51parA2-egfp egfp inserted in-frame at 3' of parH (parA2) in cosmid 

SCI51, acc(3)IV aphII 

Dedrick, PhD 

Dissertation, 2009 

pAK67 ftsZ flanked by Acc65I sites cloned into pKT25 Kotun, PhD 

dissertation, 2013 

pAK68 ftsZ flanked by Acc65I sites cloned into pUT18C Kotun dissertation 

pAK78 slzA flanked by Acc65I sites cloned into pKNT25 Kotun dissertation 

pAK79 slzA flanked by Acc65I sites cloned into pUT18 Kotun dissertation 

pAK80 slzA flanked by Acc65I sites cloned into pUT18C Kotun dissertation 

pAK88 slzA flanked by Acc65I sites cloned into pKT25 Kotun dissertation 

ParAT18C parA flanked by XbaI and KpnI cloned into pUT18C Jakimowicz et al., 

2007 

ParAT25 parA flanked by XbaI and KpnI cloned into pKT25 Jakimowicz et al., 

2007 

ParBT18C parB flanked by XbaI and KpnI cloned into pUT18C Jakimowicz et al., 

2007 

ParBT25 parB flanked by XbaI and KpnI cloned into pKT25 Jakimowicz et al., 

2007 

ParJT18C parJ flanked by XbaI and KpnI cloned into pUT18C Jakimowicz et al., 

2010 

ParJT25 parB flanked by XbaI and KpnI cloned into pKT25 Jakimowicz et al., 

2010 

pCR2.1 TA cloning vector Invitrogen 
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pIJ773 pBluescript II SK(+) derivative containing aac(3)IV-oriT 

disruption cassette flanked by frt sites 

 

Gust et al., 2003 

pIJ790 λ-RED (gam, bet, exo) araC rep101ts Gust et al., 2003 

pKNT25 Bacterial two-hybrid vector used to create a fusion to the N-

terminus of the CyaA T25 polypeptide 

Euromedex 

pKT25 Bacterial two-hybrid vector used to create a fusion to the C-

terminus of the CyaA T25 polypeptide 

Euromedex 

pMH1 Plac-gfp-parH This study 

pMH2 Plac-gfp-parH(K99E) This study 

pMH3 Plac-gfp-parH(R273E) This study 

pMH4 parH flanked by KpnI sites cloned into pCR2.1  This study 

pMH5 parH flanked by KpnI sites cloned into pUT18 This study 

pMH6 parH flanked by KpnI sites cloned into pUT18C This study 

pMH7 parH flanked by KpnI sites cloned into pKT25 This study 

pMH8 parH flanked by KpnI sites cloned into pKNT25 This study 

pMH9 parH(K99E) flanked by KpnI sites cloned into pCR2.1  This study 

pMH10 parH(K99E) flanked by KpnI sites cloned into pUT18 This study 

pMH11 parH(K99E) flanked by KpnI sites cloned into pUT18C This study 

pMH12 parH(K99E) flanked by KpnI sites cloned into pKT25 This study 

pMH13 parH(K99E) flanked by KpnI sites cloned into pKNT25 This study 
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pMH14 parH(Δ20-80) flanked by KpnI sites cloned into pCR2.1 TA 

cloning vector 

This study 

pMH15 parH(Δ20-80) flanked by KpnI sites cloned into pUT18 This study 

pMH16 parH(Δ20-80) flanked by KpnI sites cloned into pUT18C This study 

pMH17 parH(Δ20-80) flanked by KpnI sites cloned into pKT25 This study 

pMH18 parH(Δ20-80) flanked by KpnI sites cloned into pKNT25 This study 

pMH19 parH(R273E) flanked by KpnI sites cloned into pCR2.1  This study 

pMH20 parH(R273E) flanked by KpnI sites cloned into pUT18 This study 

pMH21 parH(R273E)flanked by KpnI sites cloned into pUT18C This study 

pMH22 parH(R273E) flanked by KpnI sites cloned into pKT25 This study 

pMH23 parH(R273E) flanked by KpnI sites cloned into pKNT25 This study 

pMH24 smc flanked by KpnI sites cloned into pCR2.1  This study 

pMH25 smc flanked by KpnI sites cloned into pUT18 This study 

pMH26 smc flanked by KpnI sites cloned into pUT18C This study 

pMH27 smc flanked by KpnI sites cloned into pKT25 This study 

pMH28 smc flanked by KpnI sites cloned into pKNT25 This study 

pMH29 scpA flanked by KpnI sites cloned into pCR2.1  This study 

pMH30 scpA flanked by KpnI sites cloned into pUT18 This study 
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pMH31 scpA flanked by KpnI sites cloned into pUT18C This study 

pMH32 scpA flanked by KpnI sites cloned into pKT25 This study 

pMH33 scpA flanked by KpnI sites cloned into pKNT25 This study 

pMH34 scpB flanked by KpnI sites cloned into pCR2.1  This study 

pMH35 scpB flanked by KpnI sites cloned into pUT18 This study 

pMH36 scpB flanked by KpnI sites cloned into pUT18C This study 

pMH37 scpB flanked by KpnI sites cloned into pKT25 This study 

pMH38 scpB flanked by KpnI sites cloned into pKNT25 This study 

pMH39  Δ20-80 in-frame deletion of parH in SCI51 This study  

pRJ1 parH flanked by KpnI sites cloned into bacterial two-hybrid 

vector pT18 

McCormick Lab  

pRJ3 K99E mutation (AAG to GAG) in pRJ1 This study  

pRJ4 897 kb MluI-AscI frragment from pRJ3 was ligated to 3.347 

kb MluI fragment isolated from pRMD16 

This study 

pRJ5 K99E mutation (AAG to GAG) in pRMD16 This study  

pRMD16 3.6 kb BglII fragment of SCI51, contains parH gene, an 

origin of transfer, and int and attP of ΦC31, cloned into 

BamHI digested pSpc152 

Dedrick, PhD 

Dissertation, 2009 

pSEB181 Plac-gfp Zhou and 

Lutkenhaus, 2004 

pSEB200 Plac-gfp-soj Hester et al., 2007 

pTR1 R273E mutation (CGC to GAG) in pRJ1 This study  
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pTR2 897 kb MluI-AscI frragment from pTR1 was ligated to 3.347 

kb MluI fragment isolated from pRMD16 

This study  

pTR3 R273E mutation in pRDM16 This study  

pTR4 XbaI and HindIII recognition sites flanking parH  cloned 

into pCR2.1 

This study  

pTR5 XbaI and HindIII recognition sites flanking K99E variant of 

parH cloned into pCR2.1 

This study  

pTR6 XbaI and HindIII recognition sites flanking R273E variant of 

parH cloned into pCR2.1 

This study  

pUT18 Bacterial two-hybrid vector used to create a fusion to the N-

terminus of the CyaA T18 polypeptide 

Euromedex 

pUT18C Bacterial two-hybrid vector used to create a fusion to the C-

terminus of the CyaA T18 polypeptide 

Euromedex 

SCI51 cosmid source of parH(SCO1772) Redenbach et al., 

1996 
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Table 2.4: Oligonucleotides used in this study 

Oligonucleotide Sequence Application 

ParA2KpnIFwd GGTACCTATGAGTATGGATGGCCAACACGTGA

ACGCC 

Cloning parH into 

bacterial two-hybrid 

plasmids 

ParA2KpnIRev GGTACCTCGGCGTGACACCGGGCGA Cloning parH into 

bacterial two-hybrid 

plasmids 

SMCKpnIFwd GGTACCTGTGCACCTGAAGGCCCTGACCCTCC

GCGGG 

Cloning smc into bacterial 

two-hybrid plasmids 

SMCKpnIrev GGTACCGGGCTGACGCAACCGCTGGC Cloning smc into bacterial 

two-hybrid plasmids 

ScpAKpnIFwd GGTACCTGTGCGGCTCGCCAACTTCGAGGGGC

CGTTC 

Cloning scpA into bacterial 

two-hybrid plasmids 

ScpAKpnIRev GGTACCCGCCTTCCGCCTCCTCCTTCG Cloning scpA into bacterial 

two-hybrid plasmids 

ScpBKpnIFwd GGTACCTGTGAGTGAGCGGATCACGGAGGCCG

AGGAG 

Cloning scpB into bacterial 

two-hybrid plasmids 

ScpBKpnIRev GGTACCAAATTCCGTCTTGTCGTCT Cloning scpB into bacterial 

two-hybrid plasmids 

parA2Fwd AGCACACATGAGTATGGATGGCCAACACGTGA

ACGCCATG ATTCCGGGGATCCGTCGACC 

Construction of ∆parH 

parA2Rev CTCACTCGGCGTGACACCGGGCGAGCACCTCC

CTGGCGAG TGTAGGCTGGAGCTGCTTC 

Construction of ∆parH 

parA2egfpFwd CCAGCTCGCCAGGGAGGTGCTCGCCCGGTGTC

ACGCCGAG CTGCCGGGCCCGGAGCTG 

Construction of ParH-

EGFP 

parA2egfpRev CCTGTCGTACGGAAGAGTTCGTCGGCCCCCGG

CAGACTCA CATATGTAGGCTGGAGCTGC 

Construction of ParH-

EGFP 

K99EFwd CAGAAGGGCGGCGTGGGCGAGACCACGTCGA

CCATCAAC 

Construction of K99E 

mutation in ParH 

K99ERev GTTGATGGTCGACGTGGTCTCGCCCACGCCGC

CCTTCTG 

Construction of K99E 

mutation in ParH 

R273EFwd CTCGCCACGATGTACGACTCGGAGACCGTGCA

CAGCCGTGAG 

Construction of R273E 

mutation in ParH 
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R273ERev CTCACGGCTGTGCACGGTCTCCGAGTCGTACA

TCGTGGCGAG 

Construction of R273E 

mutation in ParH 

ParH60Fdel GTGAACGCCATGGCCGGCGACGGAAGTGGCGC

GCCCCGCAATTTAAATTCCGGGGATCCGTCGA

CC 

 

Construction of 

in-frame deletion in ParH 

ParH240Rdel CTTCTGGTTGCACATCGCGATGATCTTGGCGGG

GCCGTGATCATTTAAATTGTAGGCTGGAGCTG

CTTC 

Construction of  

in-frame deletion in ParH 

XbaI-ParH fwd CTTGTCTAGAAGTATGGATGGCCAACACGT Construction of GFP-ParH 

fusions 

HindII-ParH rev TTGAAGCTTTCACTCGGCGTGACACCGGG Construction of GFP-ParH 

fusions 
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ParA            MDDTPIGRAAQLAVEALGRAGEGLPR---------------------------------- 26  

ParH            ------MSMDGQHVNAMAGDGSGAPRNHFADYDELPEGHFYDPDAEYEPDPEYAATLAPD 54                                                

                             * *:.  *.* ** 

 

ParA            ---------------------------PEQTRVMVVANQKGGVGKTTTTVNLAASLALHG 59   

ParH            AARQRRERIGPTGRPLPYFPIPGPLTDHGPAKIIAMCNQKGGVGKTTSTINLGAALAEYG 114 

                                              ::::.:.**********:*:**.*:** :* 

 

ParA            ARVLVVDLDPQGNASTALGIDHHADVPSIYDVLVESRPLSEVVQPVPDVEGLFCAPATID 119 

ParH            RRVLLVDFDPQGALSVGLGVNPMELDLTVYNLLMERGMAADEVLLKTAVPNMDLLPSNID 174 

                 ***:**:****  *..**::      ::*::*:*    :: *   . * .:   *:.** 

 

ParA            LAGAEIELVSLVARESRLQRAITAYEQPLDYILIDCPPSLGLLTVNALVAGQEVLIPIQC 179 

ParH            LSAAEVQLVSEVARESTLQRALKPLMDDYDYIVIDCQPSLGLLTVNALTAAHKVIVPLEC 234 

                *:.**::*** ***** ****:..  :  ***:*** ***********.*.::*::*::* 

 

ParA            EYYALEGLGQLLRNVDLVRGHLNPTLHVSTILLTMYDGRTRLASQVADEVRSHFGEEVLR 239 

ParH            EFFALRGVALLTETIEKVQERLNPDLELDGILATMYDSRTVHSREVLARVVEAFDDHVYH 294 

                *::**.*:. * ..:: *: :*** *.:. ** ****.**  : :*  .* . *.:.* : 

 

ParA            TSIPRSVRISEAPSYGQTVLTYDPGSSGALSYLEAAREIALKGVGVTYDATHAHLGAQND 299 

ParH            TVIGRTVRFPETTVAGEPITTYASNSVGAAAYRQLAREVLAR--------CHAE------ 340 

                * * *:**:.*:.  *:.: ** ..* ** :* : ***:  :         **.       

 

ParA            PSMVEGTQ 307 

ParH            -------- 

Figure 2.1. Sequence alignment of ParA and ParH for S. coelicolor. Amino acid 

sequences were aligned using ClustalW2. ParH has 44.8% (111/248) identical residues 

and 63.3% (157/248) similarity to ParA. In addition, ParH has 61 additional amino acids 

inserted in the N-terminus (bold and underlined) and ParA has a slight extension at the C-

terminus. The ParH residues eliminated for a 5’ in-frame deletion in parH are underlined. 

Deviant Walker A box (amino acid change in K99E mutant is shown in bold and 

underlined) and conserved arginine residue are highlighted in grey. An asterisk (*) 

indicates a conserved residue, colon (:) indicates conservation between groups of strongly 

similar properties, period (.) indicates conservation between groups of weakly similar 
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properties. 

SGR        -MMDGLHVNATAGNESSRDTDRFADFAEVPEGHFYDPDAEYEPDPEYAATLAPDAARQRR  

SCLAV      -MMDGLHVNATAGNESGRESTHFAAYEELPEGHFYDPDAEYEPDPEYAATLAPDAARQRR  

SVEN       --MDGLHVNATAGNEMGRESTHFAAYDEVPEGHFYDPDAEYEPDPEYAATLAPDAARQRR  

SAV        --MDGHHVNAMAGNGSGENRTHFADYDELPEGHFYDPDAEYEPDPEYAATLAPDAARQRR  

SCO        MSMDGQHVNAMAGDGSGAPRNHFADYDELPEGHFYDPDAEYEPDPEYAATLAPDAARQRR  

SCAB       --MDGQHVNAMAGDGSGGVHNHFADYDELPDGHFYDPDAEYEPDPEYAATLAPDAARQRR  

             *** **** **:  .    :** : *:*:*****************************  

  

SGR        ERIGPTGRPLPYFPIPGPLTDHGPAKIIAMCNQKGGVGKTTSTINLGAALAEYGRRVLLV  

SCLAV      ERIGPTGRPLPYFPIPGPLTDHGPAKIIAMCNQKGGVGKTTSTINLGAALAEYGRRVLLV  

SVEN       ERIGPTGRPLPYFPIPGPLTDHGPAKIIAMCNQKGGVGKTTSTINLGAALAEYGRRVLLV  

SAV        ERVGPTGRPLPYFPIPGPLTDHGPAKIIAMCNQKGGVGKTTSTINLGAALAEYGRRVLLV  

SCO        ERIGPTGRPLPYFPIPGPLTDHGPAKIIAMCNQKGGVGKTTSTINLGAALAEYGRRVLLV  

SCAB       ERIGPTGRPLPYFPIPGPLTDHGPAKIIAMCNQKGGVGKTTSTINLGAALAEYGRRVLLV 

           **:********************************************************* 

   

SGR        DFDPQGALSVGLGVNPMELDLTVYNLLMERGMAADDVLLKTAVPNMDLLPSNIDLSAAEV  

SCLAV      DFDPQGALSVGLGVNPMELDLTVYNLLMERGMSADEVLLKTAVPNMDLLPSNIDLSAAEV  

SVEN       DFDPQGALSVGLGVNPMELDLTVYNLLMERGMSADEVLLKTAVPNMDLLPSNIDLSAAEV  

SAV        DFDPQGALSVGLGVNPMELDLTVYNLLMERGMAADEVLLKTAVPNMDLLPSNIDLSAAEV  

SCO        DFDPQGALSVGLGVNPMELDLTVYNLLMERGMAADEVLLKTAVPNMDLLPSNIDLSAAEV  

SCAB       DFDPQGALSVGLGVNPMELDLTVYNLLMERGMSADEVLLKTAVPNMDLLPSNIDLSAAEV 

           ********************************:**:************************ 

   

SGR        QLVSEVARESTLQRALKPLMADYDYIVIDCQPSLGLLTVNALTAAHKVIVPLECEFFALR  

SCLAV      QLVSEVARESTLQRALKPLMSDYDYIVIDCQPSLGLLTVNALTAAHKVIVPLECEFFALR  

SVEN       QLVSEVARESTLQRALKPLMNDYDYIVIDCQPSLGLLTVNALTAAHKVIVPLECEFFALR  

SAV        QLVSEVARESTLQRALKPLMADYDYIVIDCQPSLGLLTVNALTAAHKVIVPLECEFFALR  

SCO        QLVSEVARESTLQRALKPLMDDYDYIVIDCQPSLGLLTVNALTAAHKVIVPLECEFFALR  

SCAB       QLVSEVARESTLQRALKPLMADYDYIVIDCQPSLGLLTVNALTAAHKVIVPLECEFFALR  

           ******************** ***************************************  

  

SGR        GVALLTETIEKVQERLNPELELDGILATMYDSRTVHSREVLARVVEAFDEHVYHTVIGRT  

SCLAV      GVALLTETIEKVQERLNPELELDGILATMYDSRTVHSREVLARVVEAFGDHVYHTVIGRT  

SVEN       GVALLTETIEKVQERLNPELELDGILATMYDSRTVHSREVLARVVEAFDDHVYHTVIGRT  

SAV        GVALLTETIEKVQERLNPELELDGILATMYDSRTVHSREVLARVVEAFDDHVYHTVIGRT  

SCO        GVALLTETIEKVQERLNPDLELDGILATMYDSRTVHSREVLARVVEAFDDHVYHTVIGRT  

SCAB       GVALLTETIEKVQERLNPDLELDGILATMYDSRTVHSREVLARVVEAFDEHVYHTVIGRT 

           ******************:***************************** :**********  

  

SGR        VRFPETTVAGEPITTYASNSVGAAAYRQLAREVLARCHAE  

SCLAV      VRFPETTVAGEPITTYASNSVGAAAYRQLAREVLARCHAE  

SVEN       VRFPETTVAGEPITTYASNSVGAAAYRQLAREVLARCHAE  

SAV        VRFPETTVAGEPITTYASNSVGAAAYRQLAREVLARCHAE  

SCO        VRFPETTVAGEPITTYASNSVGAAAYRQLAREVLARCHAE  

SCAB       VRFPETTVAGEPITTYASNSVGAAAYRQLAREVLARCHAE  

           **************************************** 

 

Figure 2.2. Multiple sequence alignment of ParH homologs among different 

Streptomyces species. Amino acid sequences of Streptomyces homologs were aligned 

using ClustalW2. ParH homology have 61 additional amino acids (bold) inserted in the 

N-terminus when compared to ParA (Figure 2.1.) The sequence of this 61 amino acid 
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region, including every aromatic residue, is highly conserved as is majority of the protein 

sequence. An asterisk (*) indicates a conserved residue, colon (:) indicates conservation 

between groups of strongly similar properties, period (.) indicates conservation between 

groups of weakly similar properties. Species abbreviations: SGR, S. griseus; SCLAV, S. 

clavuligerus; SVEN, S. venezuelae; SAV, S. avermitilis; SCO,  

S. coelicolor; SCAB, S. scabies. 
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ParASTR        MDDTPIAHTAHLGVHALGRAGEGLPRPEQTRVMVVANQKGGVGKTTTTVNLAASLALHGN 

ParASCAB       MDDTPIGRAAQLAVEALGRAGEGLPRPEQTRVMVVANQKGGVGKTTTTVNLAASLALHGA 

ParASCO        MDDTPIGRAAQLAVEALGRAGEGLPRPEQTRVMVVANQKGGVGKTTTTVNLAASLALHGA 

ParASAV        MDDTPIGRAAQLAVEALGRAGEGLPRPEQTRVMVVANQKGGVGKTTTTVNLAASLALHGG 

ParASGR        MDDTPIGRAAQLAVEALGRAGEGLPRPDRTRVMVVANQKGGVGKTTTTVNLAASLALHGA 

ParASCLAV      MDDTPIGRAAQMAMEAMGRSGTRLPRPVQKRVMVVANQKGGVGKTTTTVNLAASLALHGA 

ParASVEN       MDDTPIGRAAQLAVEALGRAGEGLPRPAQTRVMVVANQKGGVGKTTTTVNLAASLALHGA  

               ******.::*::.:.*:**:*  **** :.*****************************  

  

ParASTR        RVLVIDLDPQGNASTALGIDHHAEVPSIYDVLVDSRPLSEVVQPVPDVEGLFCAPATIDL 

ParASCAB       RVLVIDLDPQGNASTALGIDHHAEVPSIYDVLIDSKPLAEVVKPVADVEGLFCAPATIDL 

ParASCO        RVLVVDLDPQGNASTALGIDHHADVPSIYDVLVESRPLSEVVQPVPDVEGLFCAPATIDL 

ParASAV        RVLVIDLDPQGNASTALGIDHHAEVPSIYDVLIDSKPLSEVVQPVPDVEGLFCAPATIDL 

ParASGR        RVLVVDLDPQGNASTALGIDHHADVPSIYDVLVESRPLSEVVQPVPDVEGLFCAPATIDL 

ParASCLAV      RVLVIDLDPQGNASTALGIDHHAEVPSIYDVLVESKPLAEVVQPVPDVEGLFCAPATIDL 

ParASVEN       RVLVIDLDPQGNASTALGIDHHAEVPSIYDVLVDSKPLSEVVQPVTDVEGLFCAPATIDL  

               ****:******************:********::*:**:***:** **************  

 

ParASTR        AGAEIELVSLVARESRLERAIKSYEQPLDYVLIDCPPSLGLLTVNALVAGAEVLIPIQCE 

ParASCAB       AGAEIELVSLVARESRLQRAIQAYEQPLDYILIDCPPSLGLLTVNAMVAGQEVLIPIQCE 

ParASCO        AGAEIELVSLVARESRLQRAITAYEQPLDYILIDCPPSLGLLTVNALVAGQEVLIPIQCE 

ParASAV        AGAEIELVSLVARESRLERAIQAYEQPLDYILIDCPPSLGLLTVNALVAGAEVLIPIQCE 

ParASGR        AGAEIELVSLVARESRLQRAIQAYEQPLDYILIDCPPSLGLLTVNALVAGAEVLIPIQCE 

ParASCLAV      AGAEIELVSLVARESRLQRAIQAYEQPLDYILIDCPPSLGLLTVNAMVAGAEVLIPIQCE 

ParASVEN       AGAEIELVSLVARESRLQRAIQAYEQPLDYILIDCPPSLGLLTVNAMVAGAEVLIPIQCE 

               *****************:*** :*******:***************:*** ********* 

  

ParASTR        YYALEGLGQLLRNVELVRGHLNPALHVSTILLTMYDGRTRLASQVAEEVRSHFGKEVLRT 

ParASCAB       YYALEGLGQLLRNVDLVRGHLNPILHVSTILLTMYDGRTRLASQVADEVRTHFGEEVLRT 

ParASCO        YYALEGLGQLLRNVDLVRGHLNPTLHVSTILLTMYDGRTRLASQVADEVRSHFGEEVLRT 

ParASAV        YYALEGLGQLLRNVDLVRGHLNPDLHVSTILLTMYDGRTRLASQVADEVRSHFGEEVLRT 

ParASGR        YYALEGLGQLLRNVDLVRGHLNPDLHVSTILLTMYDGRTRLASQVAEEVRTHFGKEVLRT 

ParASCLAV      YYALEGLGQLLRNVDLVRGHLNPTLHVSTILLTMYDGRTRLASQVAEEVRSHFGEEVLRT 

ParASVEN       YYALEGLGQLLRNVDLVRGHLNPALHVSTILLTMYDGRTRLASQVADEVRTHFAEEVLRT 

               **************:******** **********************:***:**.:*****  

  

ParASTR        SIPRSVRISEAPSYGQTVLTYDPGSSGALSYFEAAREIALRGVGIHYEAHQHQLAAPHEQ 

ParASCAB       SIPRSVRISEAPSYGQTVLTYDPGSSGALSYLEAAREIALKGVGVGYDPTQAHIGAQNNP 

ParASCO        SIPRSVRISEAPSYGQTVLTYDPGSSGALSYLEAAREIALKGVGVTYDATHAHLGAQNDP 

ParASAV        SIPRSVRISEAPSYGQTVLTYDPGSSGALSYLEAAREIALRGVGVAYDAQHAHLGAENEQ 

ParASGR        SIPRSVRISEAPSYGQTVLTYDPGSSGSLSYLEAAREIALRGVGVHYEAQHAHTSSQNSQ 

ParASCLAV      SIPRSVRISEAPSYGQTVLTYDPGSSGALSYLEAAREIALRGVGVHYDPQHAHMGHQNSQ 

ParASVEN       SIPRSVRISEAPSYGQTVLTYDPGSSGALSYLEAAREIALRGVAVHYDPQHAHVGQQNNQ 

               ***************************:***:********:**.: *:  : : .  ..   

  

ParASTR        QNMAEGMQ  

ParASCAB       S-VVEGVQ  

ParASCO        S-MVEGTQ  

ParASAV        S-MVEGIQ  

ParASGR        QNVSEGMQ  

ParASCLAV      RNISEGIQ  

ParASVEN       RNMSEGIQ                   

               : ** ** 

 

Figure 2.3. Multiple sequence alignment of ParA homologs among different 
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Streptomyces species. Amino acid sequences of Streptomyces ParA homologs were 

aligned using ClustalW2. ParA has a 22 amino acid extension at the very end of C-

terminus compared to ParH. The composition of the additional sequence in ParA is 

variable amongst other Streptomyces, which are shown in bold characters for  

S. coelicolor. An asterisk (*) indicates a conserved residue, colon (:) indicates 

conservation between groups of strongly similar properties, period (.) indicates 

conservation between groups of weakly similar properties. Species abbreviations: SGR, 

S. griseus; SCLAV, S. clavuligerus; SVEN, S. venezuelae; SAV, S. avermitilis; SCO, S. 

coelicolor; SCAB, S. scabies; STR, S. triostinicus. 
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Figure 2.4. Diagram of the gene organization at the parH region of S. coelicolor 

chromosome. sco1772 (parH) encodes a parA-like protein. For mutagenic plasmid 

pRMD12, the region of parH deleted and replaced with an apramycin-resistance gene is 

shown (dashed arrow). Complementation plasmid pRMD16 is shown in bracketed line. 

sco1771 encodes a hypothetical protein, which is conserved in location and sequence 

among other Streptomyces. scpA and scpB (segregation and condensation proteins) gene 

products associate with the segregation protein SMC. sco1768 encodes putative 

pseudouridine synthase. sco1773 encodes a developmentally expressed L-alanine 

dehydrogenase.  
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Figure 2.5. Phylogenetic analysis of ParA and ParA-like protein sequences.  

A phylogenic neighbor-joining tree based on the ClustalW2 alignment was created using 

MEGA 5.2.1 phylogeny program for 27 ParA and ParA-like proteins. S. coelicolor 

proteins are denoted as blue circles. MinD proteins (relative deviant Walker A proteins 

required for cell division) form a separate family according to their sequence similarity 

and their functions (spatial regulation of cell division) in the cell. Phylogenic tree reveals 

a connection between two groups of ParA and ParA-like proteins. The Actinobacteria 



 115 

have two ParA proteins. Strain abbreviations: SCO, S. coelicolor; SAV, S. avermitilis; 

SGR, S. griseus; SCAB, S. scabies; SCLAV, S. clavuligerus; STRS4, S. triostinicus; 

SVEN, S. venezuelae; Cglu, C. glutamicum; Aactino, A. actinomycetemcomitans; Bsub,  

B. subtilis; Cperf, Clostridium perfringens; Ccres, Caulobacter crescentus; E. coli, 

Escherichia coli; Lmono, Listeria monocytogenes; Mtuber, Mycobacterium tuberculosis.  
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Figure 2.6. Developmental segregation phenotypes of a WT, parA, parH, or parA 

parH mutants. Coverslips, inoculated and hyphae grown for 3-4 days at 30°C on MS 

agar, were fixed and stained with propidium iodide before image acquisition by confocal 

microscopy. Left panels are fluorescence, middle panels are DIC, and right panels are 

merged images. Strains: WT (M145), J3310 (ΔparA), MH5 (ΔparH), MH6 (ΔparA 
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ΔparH) are shown from top to bottom. Arrows point out anucleate cells. Branching spore 

chain is occasionaly seen in parH-null mutant (arrow head). Scale bars are 5 μm. 

 

Figure 2.7. ParH-EGFP localization in predivisonal aerial filaments. Coverslips were 

inoculated with strain RMD30 (parH-egfp) and grown for 3-4 days on MS agar. Images 

were taken with Nikon Eclipse Ni-U Epi-fluorescent microscope. ParH-EGFP and DIC 

images are shown in left and right panels, respectively. ParH-EGFP localizes as evenly 

spaced intervals in predivisional aerial filaments. Scale bar is 5μm. 
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Figure 2.8. Localization of wildtype ParB-EGFP and parH-null strains. Coverslips 

were inoculated with strain ParB-EGFP (J3310) or ∆parH::acc(3)IV parB-egfp (RMD29) 

and grown for 3-4 days on MS agar, fixed with 100% methanol and mounted for confocal 

microscopy. Arrows indicate the disrupted ParB-EGFP localization. The areas indicated 

with dashed lines in panel B are showing the enlarged part of that aerial filament that has 

the disrupted ParB-EGFP localization. In each pair, left panels are the fluorescence 

images, mid panels are DIC picture, and right panels are merged images of the aerial 

filaments. (A) Images of parB-egfp (J3310) showing evenly distributed ParB-EGFP 

localization. (B-C) Images of ΔparH parB-egfp (RMD30) showing distrupted ParB-

EGFP localization. Scale bar is 5μm. 
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Table 2.5. Analysis of ParB-EGFP localization in wild type and parH null mutant 

strains. The average ParB-EGFP interfocal distance was found to be approximately 1 μm 

apart in the wild type strain (J3310) coinciding with the appropriate length of a spore 

compartment. The total percentage of disrupted ParB-EGFP in parH null strain (RMD29) 

was found to be approximately 6% compared to 1% of the wild type strain (p=0.0052, 

chi-square test).  
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Figure 2.9. Localization of ParB-mCherry and ParH-EGFP fusion proteins in aerial 

hyphae. Coverslips were inoculated with a strain expressing both ParB-mCherry and 

ParH-EGFP (MH4) and hyphae grown for 3-4 days on MS agar, fixed with 100% 

methanol and observed by confocal microscopy. Two fields are shown (A and B). In 

panels A and B from left to right: ParH-EGFP, ParB-mCherry, DIC and merged images 

of the aerial filaments. Scale bar is 5 μm.  
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Figure 2.10. Scanning laser confocal microscope images of E. coli strains expressing 

Soj and ParH fusion proteins. Expressing GFP fusions after 45 mins of induction with 

IPTG at 37°C and stained cell wall with WGA Alexa Fluor 647. Derivatives of E. coli 

strain pSEB181 containing plasmids expressing from top to bottom: GFP, GFP-SoJ (B. 

subtilis control), GFP-ParH+, GFP-ParH(K99E), GFP-ParH(R273E), and GFP-

ParH(Δ20-80). Panels from left ro right are GFP, WGA, merge, and DIC images. 

Punctuate localization of GFP-Soj and GFP-ParH occurs over the nucleoid. Scale bar is 3 

μm.  
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Figure 2.11. SDS-PAGE analysis of GFP-Soj and GFP-ParH fusion expression in  

E. coli. Plasmids containing derivatives of E. coli strain pSEB181 expressing GFP, GFP-

Soj (B. subtilis control), GFP-ParH+, GFP-ParH(K99E), GFP-ParH(R273E), and GFP-

ParH(Δ20-80) were induced with IPTG for 45 minutes. Whole cell protein extracts were 

fractioned by 12% SDS-PAGE and GFP fluorescence was visualized by Li-cor Odyssey 

Fc imaging system. Lane 1 (UI), 2 (I) GFP; lane 3 (UI), 4 (I) GFP-Soj; Lane 5 (UI), 6 (I) 

GFP-ParH+; lane 7 (UI), 8 (I) GFP-ParH(K99E); Lane 9 (UI), 10 (I) GFP-ParH(R273E); 

Lane 11(UI), 12(I) GFP-ParH(Δ20-80). Labelled arrows point to full length proteins (*). 

(UI: Uninduced, I: Induced). 
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Figure 2.12. Bacterial two-hybrid analysis of interaction between ParH and known 

segregation proteins. Stationary phase E. coli cultures containing pairs of two-hybrid 

vectors were spotted (5 μl) on MacConkey maltose or LB-X Gal agar supplemented with 

0.5 mM IPTG, ampicillin, and kanamycin and incubated overnight at 30°C. The 

phenotypes of representative growth spots are pictured. The red/pink (MacConkey) and 

blue pigment (LB-X Gal) of the spots indicates a positive protein-protein interaction and 

pale spots indicates no interaction. 
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Figure 2.13. Bacterial two-hybrid analysis of ParH and ParH variants with ParB.  

Stationary phase E. coli cultures containing pairs of two-hybrid vectors were spotted (5 

μl) on MacConkey maltose or LB-X Gal agar supplemented with 0.5 mM IPTG, 

ampicillin, and kanamycin and incubated overnight at 30°C. The phenotypes of 

representative growth spots are pictured. The red/pink (MacConkey) and blue pigment 

(LB-X Gal) of the spots indicates a positive protein-protein interaction and pale spots 

indicates no interaction. 
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A 

 

B 

 

Figure 2.14 Summary of bacterial two hybrid protein-protein interactions identified 

for S. coelicolor genome segregation proteins. A) Graph shows the quantitation of beta-

galactosidase enzymatic activity for selected positive interactions. Strains were grown in 

LB liquid with 0.5 mM IPTG. Each bar represents the average of the three different 

independent liquid culture samples analyzed individually with experimental errors 

indicated. B) Blue arrows indicate the interactions that are found using a bacterial-two 

hybrid system that were determined in this study. Green arrows indicate interactions that 

were previously published (Ditkowski et al., 2010; Jakimowicz et al., 2007). Red dashed 

lines indicate no evidence for interactions as determined in this study. 
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CHAPTER 3: STREPTOMYCES COELICOLOR HAAA INTERACTS WITH 

PARA AND PARH AND IS A NOVEL SEGREGATION COMPONENT  

 

ABSTRACT 

 Proper localization and synchronous segregation of the chromosomes during 

simultaneous cell division within aerial hyphae is a prerequisite for the survival of the 

next generation in S. coelicolor. In this study, I identified a novel partitioning protein that 

interacts with ParA and ParH. HaaA (ParH and ParA Associated protein A) is required 

for proper chromosome segregation. As in many other bacterial species, S. coelicolor has 

an active partitioning system. There are four known trans-acting proteins (ParA, ParB, 

ParJ and Scy) and cis-acting centromere-like sites (parS). In Chapter 2, I showed that 

ParH, a ParA-like protein and novel interaction partner of ParB, is also part of the 

partitioning system and appears to play a role in ParB-parS nucleoprotein complex 

positioning. A random chromosomal library was constructed in a bacterial two-hybrid 

plasmid and screening using ParH as bait revealed a novel interaction partner HaaA. 

Surprisingly, HaaA is one of the 24 signature proteins of the Actinomycetes that are not 

found in other bacterial lineages. A bacterial two-hybrid system was used to investigate 

HaaA protein interactions with known partitioning proteins. I found that HaaA interacts 

with itself and interaction between ParH and ParA was through the C-terminal 

unstructured region. Interaction between HaaA and ParA and ParA-like proteins was 

conserved in other Actinomycetes, such as S. venezuelae, C. glutamicum (PldP) and 

M. smegmatis. There was no evidence for interaction with other segregation proteins. In 

addition, a haaA insertion-deletion mutant strain revealed that loss of HaaA affected 
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chromosome segregation and HaaA-EGFP localizes within spores of the mature spore 

chains. 
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INTRODUCTION 

 The proper distribution of chromosomes into daughter cells during cell division is 

an important part of the bacterial cell cycle. Chromosome organization and segregation 

after DNA replication and before cell division is mediated by an active partitioning 

mechanism, which is still quite elusive. S. coelicolor is an advantageous organism for 

studying chromosome segregation since all of the tested segregation mutants are viable 

and double or triple mutants are not synthetic lethal or synthetic sick (Dedrick et al., 

2009).  

 As in many other bacterial species, S. coelicolor has an active partitioning system. 

There are 5 known components of developmental chromosome segregation: the cis-acting 

centromere-like sites (parS) and 4 characterized trans-acting proteins. ParA and ParB are 

conserved among other species, and Actinobacterial signature protein ParJ and 

intermediate filament protein Scy are unique for Streptomyces. parA encodes a Walker-

type ATPase that is required for efficient DNA segregation and proper placement of the 

ParB-parS nucleoprotein complexes. A paralog of ParA is encoded by the  

S. coelicolor genome, SCO1772 (named ParH). parH encodes a ParA-like ATPase 

protein that has 45% identical residues to ParA. Compared to ParA, ParH contains an N-

terminal extension with unusual amino acid composition. In Chapter 2, I identified ParH 

as a novel interaction partner of S. coelicolor ParB. However, the Walker A motif K99E 

substituion in ParH and N-terminal extension deletion in ParH impaired interaction 

between them, as judged by the bacterial two-hybrid analyses. Also, no evidence has 

been found that ParA and ParH can form a heterodimer. Coinciding with the localization 

of ParB, ParH localizes as evenly-spaced foci in the aerial filaments of S. coelicolor. In 
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aerial hyphae of the ∆parH mutant, anucleate spores are approximately 4% more than in 

wild type. In addition, the parH mutant appears to be unable to properly organize the 

oriC regions, because the loss of ParH appears to result in abnormal positioning of a 

fraction of ParB-EGFP foci in aerial hyphae.  

The goal of this study was to search for novel ParH interacting proteins and to 

better understand how the partitioning system works in development-associated 

chromosome segregation in a filamentous bacterium. Here, by screening a bacterial two-

hybrid library, I identified HaaA (ParH and ParA Associated protein A) as a novel 

interaction partner of both ParH and ParA. Remarkably, HaaA is one of the 24 signature 

proteins of the Actinomycetes, whose members include many species of medical and 

biotechnological importance (Gao et al., 2009). In addition, a bacterial two-hybrid system 

was used to investigate HaaA protein-protein interactions with known segregation and 

condensation proteins. No other interactions were identified for tested proteins. However, 

I found that HaaA interaction between ParA and ParA-like paralogs was conserved in 

other Actinomycetes: S. venezuelae, C. glutamicum and M. smegmatis. In addition, a 

haaA insertion-deletion mutation mildly affected chromosome segregation (6% anucleate 

spores) and showed delayed aerial mycelium formation and HaaA-EGFP translational 

fusion localizes within the spores of the mature spore chains. 
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MATERIALS AND METHODS 

Bacterial strains, media, and growth conditions 

E. coli and S. coelicolor strains used in this study are listed in Table 3.1 and Table 

3.2, respectively. E. coli strains were grown in either LB, SOB, or SOC media (Sambrook 

et al., 1989) and were supplemented with final concentrations of ampicillin (100 μg ml-1), 

apramycin (50 μg ml-1), carbenicillin (100 μg ml-1), chloramphenicol (25 μg ml-1), or 

kanamycin (50 μg ml-1), when appropriate. TG1 and TOP10 were used for basic plasmid 

propagation. E. coli strains were grown at 37°C, except BW25113/pIJ790, which were 

grown at 30°C to ensure propagation of the temperature sensitive plasmid. 

S. coelicolor strains were grown at 30°C in ISP2 or YEME liquid medium or on glucose 

(1%) minimal medium (MM), mannitol (0.5%) minimal medium (MM), R2YE, or soy 

flour mannitol (SFM) agar  (Hopwood et al., 1985; Kieser et al., 2000) and were 

supplemented with the final concentration of the following antibiotics when appropriate: 

apramycin (25 μg ml-1), kanamycin (50 μg ml-1), nalidixic acid (20 μg ml-1), or 

spectinomycin (50 μg ml-1).  

Plasmids and general DNA techniques 

Cosmids and plasmids used in this study are listed in Table 3.3. Wizard Genomic 

DNA Purification Kit (Promega) was used for S. coelicolor total DNA preparations. 

Redirect technology (Gust et al., 2004) was used for λ RED-mediated recombination 

using mutagenic linear DNA cassettes in E. coli. Standard techniques were used for 

plasmid purification, creation of electrocompetent cells, and transformation (Sambrook et 

al., 1989). DNA restriction and modification enzymes (New England Biolabs); Taq (New 

England Biolabs) and Pfx (Invitrogen) DNA polymerases; plasmid purification and DNA 
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cleanup kits (Qiagen and Zymo Research Corporation) were used according to the 

manufacturers’ instructions.  

Creating plasmids containing haaA, parA, parB, and parH for use in a bacterial two-

hybrid assay 

 Plasmids were created according to the previously described protocol (Karimova et 

al., 2000). Primers listed in Table 3.4 for the genes of interest were used to amplify and 

add flanking KpnI restriction sites to the complete coding regions of haaA, parH, parA, 

and parB of S. coelicolor and S. venezuelae. Cosmid St9B10 was used as a template to 

amplify S. coelicolor haaA (http://strepdb.streptomyces.org.uk). Cosmids Sv-3-B02, P12-

H20, and 2H19 were used as templates to amplify S. venezuelae haaA, parA, parB, and 

parH, respectively (http://strepdb.streptomyces.org.uk).  Genomic DNA of M. smegmatis 

and C. glutamicum was kindly provided from Dr. D. Jakimovicz (University of Wroclaw, 

Wroclaw, Poland) and Dr. M. Brahmkamp (Ludwig-Maximilians University, Munich, 

Germany) and used as template for amplifying and adding KpnI restriction sites to haaA, 

parH, and parA.  

 The PCR products were cloned into vector pCR2.1 (Invitrogen), sequenced to 

verify integrity of the gene, digested with KpnI and ligated into KpnI-digested and 

dephosphorylated bacterial-two hybrid vectors pUT18, pUT18C, pKT25, and pKNT25. 

Restriction enzyme digestion and sequence analysis were used to verify the insert, 

orientation, and the reading frame of each construct before co-transforming test pairs into 

the E. coli strain BTH101. The visualization of possible protein-protein interactions was 

performed following manufacturer’s protocol with the following modifications. Co-

transformants were grown on LB agar containing ampicillin (100 μg ml-1), and 
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kanamycin (50 μg ml-1) and incubated overnight at 37°C. Individual colonies from these 

plates were picked and patched on MacConkey agar containing 1% maltose, 0.5 mM 

IPTG, ampicillin (100 μg ml-1), and kanamycin (50 μg ml-1) and incubated overnight at 

30°C.  

 a-galactosidase assays were averaged from single determinations of three 

independent isolates of each strain (Euromedex).  

Constructing a genomic library of M145 

 To construct a genomic library of M145 chromosome, total DNA was processed 

according to the protocol of Nybo et al. (2010). Eight μl of genomic DNA (150 ng/μl) 

was partially digested with 2 μl of 1:200 dilution of 4 u/μl of BfuCI for 35-40 minutes at 

37°C and 2.5 to 3.5 kb fragments were size-selected from a 0.9% agarose gel. In the gene 

fusion library, if the genomic DNA fragment is in the right orientation, there are 3 

possible reading frames. To improve chances to find interacting partners of ParH, pKT25 

was modified to make both  +1 and -1 frameshifts. Using XbaI and DNA PolI, or PstI and 

T4 DNA Pol treated and ligated DNA were called pMH97 (TCTAGCTAGA) and 

pMH98 (GGGCGGGT), respectively. For the library construction, 2 μl of 2.5 to 3.5 kb 

size-selected DNA fragments (40 ng/μl) and 4 μl from the mixture of equal amounts of (2 

ng/μl from each) pKT25 and each modified pKT25 were used for ligation in a 20 μl 

reaction volume. Ligations were transformed into NEB chemically competent cells by 

using the high efficiency transformation protocol and plated into LB-Kan plates. Total 

colony number from the transformation was approximately 29,000. Three ml of LB liquid 

medium was added into each plate and all colonies were pooled into a 15 ml screw top 

tube. Cells were harvested and resusped in 7 ml 50% glycerol and stored at -80°C until 
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needed. A plasmid expressing either ParH-T18 (pMH5) or ParH-T18C (pMH6) was used 

as a bait (50 ng/μl of each) and library DNA (50 ng/μl) was used as a prey to screen for 

novel interacting proteins. Approximately 70,000 colonies were screened on LB X-Gal 

plates and 1,400 suspected colonies were rescreened on McConkey plates to identify 3 

positive clones (pMH106, pMH107, pMH108).  

Isolation of haaA-null strain  

An insertion-deletion mutation for haaA (sco5855) of S. coelicolor was created in 

cosmid St9B10 resulting in pMH101 by using in vivo E. coli λ Red-mediated 

recombination (Gust et al., 2004). Oligonucleotides haaAdelFwd and haaAdelRev were 

used to amplify and add haaA homology to an aac(3)IV disruption cassette isolated from 

pIJ733. The mutagenic PCR product was transformed into the E. coli strain 

BW25113/pIJ790/St9B10 to create pMH101. Then pMH101 was introduced into the 

chromosome of S. coelicolor strain M145 via homologous recombination after 

conjugation from E. coli, selecting for apramycin and screening for kanamycin 

sensitivity. One representative strain was named as MH7 (ΔhaaA::acc(3)IV). 

Creation of a haaA in-frame deletion expressing a Δ338-345 variant of HaaA 

A 24 nucleotide in-frame deletion in haaA (nucleotide sequence: 

AGCTGGGACGAGATCGTCTTCGGC), for the codons of 8 amino acids (SWDEIVFG) 

near the very C-terminus of the HaaA, was constructed [HaaA(Δ338-345)]. Oligos 

HaaAinframedelFwd and HaaAinframedelRev were used to amplify and add haaA 

homology to an aac(3)IV disruption cassette isolated from pIJ733. In addition, XbaII and 

SpeI recognition sites were included in the primers and inserted flanking the apramycin 

cassette. The mutagenic PCR product was transformed into the E. coli strain 
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BW25113/pIJ790/St9B10, creating cosmid pMH102. Then, pMH102 was digested with 

SpeI and partially digested with XbaI (because there are two XbaI restriction cut sites in 

the backbone of the cosmid) restriction enzymes to remove the disruption cassette and 

ligated to generate pMH103 containing haaA(Δ338-345) with a 6 base scar sequence 

from ligating SpeI to XbaI (ACTAGA) restriction sites. Then, pMH103 was transformed 

into TG1 electro competent cells and screened for kanamycin resistant and apramycin 

sensitive candidates. PCR and sequencing were used to verify the candidate. The amino 

acid sequence encoded at the deletion junction is RRAAVP|TRRKKQ. 

Creation of the HaaA-EGFP expressing strain 

A haaA-egfp fusion was constructed by using in vivo E. coli λ Red-mediated 

recombination (Gust et al., 2004). Oligonucleotides haaAegfpFwd and haaAegfpRev 

were used to amplify and add haaA homology to the egfp-aac(3)IV-oriT cassette of the 

cosmid H24-ParB-EGFP (Jakimowicz et al., 2005). The mutagenic PCR product was 

transformed into the E. coli strain BW25113/pIJ790/St9B10 to create, pMH104 

(9B10haaA-egfp) and fusion junction was verified by sequencing. Cosmid pMH104 was 

introduced into the native location of the chromosome of S. coelicolor strain M145 via 

homologous recombination after conjugation, selecting for apramycin resistance and 

screening for kanamycin sensitivity and one representative strain was named as MH8. 

haaA-egfp was verified by PCR and is the only source of HaaA in strain MH8.  

Construction of a haaA genetic complementation plasmid  

 To facilitate genetic complementation, the complete intergenic region upstream of 

haaA and haaA was amplified as a ~2.5 kb by oligonucleotides HaaAcompPvuIIFwd and 

HaaAcompPvuIIRev and cloned into site-specific integrating plasmid pMS82. The 
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resulting plasmid, pMH105, was confirmed with both restriction enzyme digestion and 

sequencing. pMH105 allowed haaA and the complete intergenic region of haaA to be 

delivered to attBΦBT1 for complementation of haaA null mutant. E. coli donor containing 

pMH105 was mated with MH7 (ΔhaaA::aac(3)IV) selecting for hygromycin resistance 

and one representative strain was named MH9.  

Fluorescence Microscopy 

 S. coelicolor strains were prepared for microscopy using cover slips that were 

embedded at a 45° angle in the agar medium and incubated for the indicated lengths of 

time and fixed with 100% methanol, mounted in 50% glycerol or 50% glycerol 

containing 0.01% propidium iodide and analyzed using a TCS SP2 Spectral Confocal 

Microscope System (Leica) with 63X immersion lens and 488- and 543-nm lasers. 

Volocity Demo program (Perkin Elmer Inc, Version 6.1.1) was used to crop images, 

optimize contrast, and add scale bars. 
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RESULTS 

ParH and ParA interacts with a highly conserved signature protein for 

Actinomycetes 

Characterization of S. coelicolor ParH, a ParA homolog, was described in Chapter 

2. An identified protein-protein interaction between ParH and ParB, evenly-spaced 

localization of ParH-EGFP in predivisional aerial filaments and slight segregation defect 

of a parH mutant suggested that ParH was a component of the segregation apparatus. 

These facts prompted me to search for novel ParH-interacting partners by using a 

bacterial two-hybrid system to possibly identify a new protein(s) that might be involved 

in chromosome segregation. Previously, a random library screening was used to identify 

two novel ParA-interacting proteins, ParJ and Scy (Ditkowski et al., 2013; Ditkowski et 

al., 2010). To find novel ParH interacting proteins, I followed a protocol by Nybo et al. 

(2010) to construct a genomic library of M145 DNA. Genomic DNA was partially 

digested with BfuCI (GATC) and 2.5 to 3.5 kb fragments were size-selected (see 

Materials and Methods). In the library, if a genomic DNA fragment is in the right 

orientation, there are 3 possible reading frames. To improve chances to find interacting 

partners of ParH, pKT25 was modified and derivatives were made with +1 and -1 

frameshifts (pMH97 and pMH98, respectively). For the library construction, 2.5 to 3.5 kb 

size-selected DNA fragments were ligated with equal amounts of BamHI-digested 

pKT25, pMH97, and pMH98. ParH-T18 (pMH5) and ParH-T18C were used as a bait and 

library DNA was used as a prey to screen for interacting proteins. Approximately 70,000 

colonies were screened for blue colonies on LB X-Gal plates. Because the X-Gal plates 

had high background, 1,400 suspected colonies were rescreened by patching on 
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McConkey maltose plates. Two candidates were found potentially expressing T25 

fusions interacting with ParH-T18. The plasmids were isolated, retransformed, and 

rescreened (Figure 3.1). One of the candidates for a potential ParH interacting protein 

was named pMH106. It contained the entire gene for sco4928 (adenylate cyclase) cloned 

in reverse orientation relative to T25 coding region. sco4928 was not fused to T25 and 

must be complementing the cya mutation in E. coli.  However, 2 isolated plasmids, 

pMH107 and pMH108, contained the 3’ end of sco5855 (an ~3.2 kb insert containing 237 

bp of the 3’ end of sco5855 at the fusion junction) had the same restriction patterns, fused 

at the same point and were possible siblings (Figure 3.1). Subsequently, the complete 

gene of the sco5855 was amplified and cloned into pKT25 and it was independently 

confirmed that SCO5855 interacts with ParH, as judged by bacterial two-hybrid system 

(Figure 3.5).  

 SCO5855 is a putative DNA binding protein of 352 amino acids and is one of the 

24 signature proteins of actinobacterial species (high G+C Gram+ lineage) that are not 

found in other bacteria (Gao and Gupta, 2012). Its function is unknown for S. coelicolor 

and its homologs are potential DNA-binding proteins in Mycobacterium leprae and 

Mycobacterium tuberculosis and the homolog is listed as an essential gene in 

M. tuberculosis (Rv0883c; http://tuberculist.epfl.ch). Although the amino acid sequence 

is not as highly conserved among divergent Actinomycetes, HaaA amino acid sequence is 

highly conserved among Streptomyces species (Figure 3.2 and 3.3, respectively).  

After finding an interaction between ParH and SCO5855, other partitioning proteins 

(ParA, ParB, and ParJ) were tested for interaction with SCO5855 in a bacterial two-

hybrid system. Interestingly, ParA was found to be another interacting partner of 
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SCO5855. Since SCO5855 interacted with both ParA and ParH, it was named HaaA 

(ParH and ParA Associated Protein A). ParA and ParH are paralogs that presumably 

interact with HaaA by conserved residues. The results showed that HaaA interacts 

strongly with ParH and ParA, as well as with itself, showing that HaaA forms 

homodimers in the bacterial two-hybrid system. Possible interactions between HaaA and 

other known segregation and condensation (ParB, ParJ, SMC, ScpA, ScpB, FtsK) and 

division proteins (FtsZ) were also tested, but no evidence was found (data not shown).  

 HaaA is annotated as a putative DNA-binding protein, which has a conserved N-

terminal domain (1-169; DUF3071) that encodes a weakly predicted HTH motif 

(PSIPRED protein structure prediction server) and a disordered C-terminal domain (169-

352) (Figure 3.4). Interestingly, the homolog of haaA in S. venezuelae, Sven5529, was 

identified as a highly significant WhiA (Bush et al., 2013) and WhiB target gene (M. 

Bush and M. Buttner, personal communication), which are involved in the regulation of 

key steps in aerial growth, initiation of cell division, and chromosome segregation (Bush 

et al., 2013). This developmental control would be consistent with the possible role of 

HaaA in developmentally-regulated chromosome segregation in S. coelicolor.  

While the entire amino acid sequence is not highly conserved among the 

homologs of other Actinomycetes, HaaA homologs have a short highly conserved 8 

amino acid sequence near the very end of the disordered C-terminal domain (Figure 3.2). 

In addition, the original clone from the library screening included only the final 273 

nucleotides of the 3’ end of the haaA gene, which identified this coding sequence as a 

potential site for protein-protein interaction. To investigate the importance of these 8 

conserved residues, recombineering was used to make a haaA in-frame deletion that was 
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expressing Δ338-345 variant of HaaA (shown in bold and underlined in Figure 3.2) and 

cloned into the bacterial two hybrid plasmids (Gust et al., 2004). Even though 

HaaA(Δ338-345) still interacted with both ParH and ParA in E. coli, the intensity of the 

interactions was reduced significantly compared to wild type HaaA, as judged by the 

beta-galactosidase activity assays (Figure 3.5). This may suggest that these residues are 

not the only ParA/ParH interacting region in HaaA. Alternatively, these amino acid 

residues could be important for HaaA protein stability and formation of HaaA 

homodimers in E. coli.  

HaaA interactions with ParA and ParA-like proteins are also conserved in other 

Actinomycetes 

Streptomyces, Corynebacterium, and Mycobacterium represent divergent but well 

known species of the Actinobacteria for their importance in biotechnology and model 

organisms for pathogenic bacteria. They share similar chromosome segregation systems 

and most of the partitioning proteins have homologs in these species (Donovan et al., 

2010; Ginda et al., 2013; Maloney et al., 2009; Thanbichler and Shapiro, 2006). HaaA is 

one of the conserved proteins (a signature protein in Actinomycetes) that has homologs in 

these organisms. The positive interaction between S. coelicolor HaaA with ParH and 

ParA in bacterial two-hybrid system prompted me to investigate if the interactions 

between these proteins are also conserved in other Actinomycetes, such as S. venezuelae, 

C. glutamicum, and M. smegmatis. 

Homologs for HaaA, ParH, ParA, and ParB protein interactions were tested in an 

independent Streptomycete, S. venezuelae, which showed similar results with 

S. coelicolor. HaaA interacts with ParA and ParH but interaction between ParA with 
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ParB was weaker than S. coelicolor (Figure 3.6, A). M. smegmatis and C. glutamicum 

were tested for HaaA, ParA, and ParH (PldP in C. glutamicum) interactions, which also 

showed similar results with S. coelicolor. HaaA interacts with ParA and ParH in both 

M. smegmatis and C. glutamicum (Figure 3.6 B-C). In addition to HaaA being an 

essential protein in M. tuberculosis, conserved protein-protein interactions in bacterial 

two-hybrid system also indicated the conserved potential participation of HaaA in the 

Actinomycetes genome partitioning mechanism. 

Deletion of haaA affects the formation of aerial hyphae formation and chromosome 

segregation into spores 

 To analyze the function of the putative partitioning protein HaaA in S. coelicolor, a 

deletion-insertion mutation of haaA was isolated for S. coelicolor. A representative haaA-

null strain grew normally but had a slight white developmental phenotype on SFM agar 

as judged by the macroscopic analyses (Figure 3.7). Phase-contrast microscopy revealed 

that the mutant strain was able to sporulate and there was no signifant difference in spore 

size or shape compared to wild type strain when grown on SFM agar (average spore 

lengths of 1.03 μm and 1.02 μm, respectively; n=500). However, the haaA mutant did not 

form a robust aerial mycelium when grown on rich solid medium R2YE, which generally 

slows development and showed delayed aerial mycelium formation on minimal medium 

containing mannitol as the carbon source (Figure 3.7). 

 Even though no obvious developmental phenotype was observed with respect to 

spore size and length, in the white pigmented aerial mycelium on SFM agar, when the 

nucleic acid was stained with propidium iodide to visualize DNA segregation, the haaA 

mutant revealed a slight segregation defect with a frequency of approximately 6% of 
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anucleate spores (n=1911). Infrequent branched spore chains were observed as well 

(Figure 3.8). For comparison, 1.5% anucleate spores (n=1304) and 1.7% anucleate spores 

(n=1593) were observed for wild type and haaA complementation strain (MH9), and no 

branched spore chains were observed.  

HaaA-EGFP is located in spore chains, but not in vegetative hyphae 

To determine the in vivo localization pattern of HaaA, a HaaA-EGFP translational 

fusion was created and expressed by replacing haaA with haaA-egfp at the native location 

in the chromosome of the wild type strain as the only source of HaaA. The HaaA-EGFP 

fusion protein appears to be fully functional; the fusion strain was able to sporulate and 

the spores were similar to wildtype strain M145 in regards to shape and size. Although 

HaaA interacts with ParA and ParH in bacterial two-hybrid system, the localization 

pattern of HaaA resembled neither helical filaments as in ParA (Jakimowicz et al., 2007) 

nor evely-spaced foci as in ParH (Figure 2.7). Localization of HaaA-EGFP signal was 

observed notably in mature spores but not in vegetative hyphae or undifferentiated aerial 

filaments (Figure 3.9). This may indicate that the expression of HaaA-EGFP is 

developmentally regulated and is consisted with its expression being dependent on WhiA 

and WhiB.  
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DISCUSSION 

 The proper distribution of chromosomes into daughter cells before cell septation is 

mediated by an active partitioning mechanism. While recent studies on partitioning 

proteins and their roles in chromosome segregation provide considerable information, the 

whole segregation mechanism is still quite elusive. In our previous studies (Chapter 2 and 

Dedrick, 2009), interaction between ParH and ParB, evenly-spaced localization in 

predivisional aerial filaments, and slight segregation defects of ParH have encouraged me 

to think that ParH might have a role in the chromosome segregation of S. coelicolor. In 

this study, I identified a completely novel ParA and ParH interaction partner, SCO5855, 

which was named HaaA (ParH and ParA Associated Protein A) that is required for 

efficient sporulation and chromosome segregation in S. coelicolor.  

  Upon screening a random genomic library prepared from wild type strain M145, I 

found that ParH interacted strongly with the C-terminal end of HaaA, which is one of the 

24 signature proteins of actinobacterial species that are not found in other bacteria. Full 

length HaaA was also screened for possible interactions with other known segregation 

proteins. Interestingly, bacterial two-hybrid results revealed another novel interaction 

between HaaA and ParA. Since HaaA interacted strongly with ParH and ParA of 

S. coelicolor in a bacterial two-hybrid system, proteins of several other Actinobacteria 

were also tested in this system. S. venezuelae was tested for HaaA, ParH, ParA, and ParB 

interactions and showed similar results with S. coelicolor. HaaA interacted with ParA and 

ParH in S. venezuelae. Other more distantly related Actinomycete species were also 

tested. Results were the same for M. smegmatis and C. glutamicum as in the two tested 

Streptomyces species. In addition, the HaaA homolog in M. tuberculosis is annotated as 
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being essential, which is also another indicator of the importance of this protein for a 

major pathogen.  

 It is quite remarkable that HaaA is one of the 24 signature proteins of 

Actinobacterial species that are not found in other bacterial divisions. Even though HaaA 

is annotated as a putative DNA-binding protein in Streptomyces genome web site, the 

predicted HTH motif in the conserved N-terminal domain is a weak prediction. On the 

other hand, HaaA has a predicted disordered C-terminal domain. This disordered domain 

is also a feature of several cell division proteins such as membrane protein ZipA of E. 

coli, which anchors FtsZ to the cytoplasmic membrane (Pazos et al., 2013). Even though 

HaaA is unstructured, it is possible that it may transition into a more ordered state or fold 

into a secondary or tertiary structure when it binds to its targets. In this disordered C-

terminus, there are only 8 conserved amino acid residues that are highly conserved 

among Actinomycetes. A 3’ in-frame deletion mutation removing codons for these 8 

residues was constructed in S. coelicolor to investigate if they were important in ParA 

and ParH protein-protein interactions. As judged by the bacterial two-hybrid system and 

β-galactosidase assays, HaaA(Δ338-345) still formed dimers and interacted with ParA 

and ParH, but the intensity of their interaction was significantly reduced. These results 

indicated that these residues might play a role in other protein-protein interactions or 

protein folding and stability.  

 haaA-null mutant phenotypic results revealed that it produces 6% anucleate 

spores (similar to 7% anucleate cells in smc-null mutant, Dedrick et al., 2009), and has a 

slight white macroscopic phenotype on SFM agar. However, it does not form a robust 

aerial hyphae when grown on rich medium R2YE and shows delayed sporulation on soy 
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flour mannitol and minimal medium. To see the localization pattern of HaaA during 

development, haaA was replaced by haaA-egfp in the native location on the chromosome 

of the wild type strain. Interestingly, the localization of HaaA-EGFP was observed in 

mature spores and not in vegetative hyphae or prespore compartments. It was suprising 

that HaaA-EGFP localization resembled neither filamentous localization of ParA nor 

evely-spaced foci ParH-EGFP foci. Remarkably, the homolog of HaaA in  

S. venezuelae, Sven5529, was identified as a highly significant WhiA (Bush et al., 2013) 

and WhiB target (Bush and Buttner, personal communication) which are involved in the 

regulation of key steps in aerial growth, initiation of cell division, and chromosome 

segregation (Bush et al., 2013). My results are consistent and suggest that the expression 

of HaaA-EGFP is developmentally regulated. 

 To understand the role of HaaA in chromosome segregation, the localization of 

ParA and/or ParB foci in a haaA-null strain in the aerial filaments could help to 

understand the role of HaaA of S. coelicolor. In addition, constructing double or triple 

mutants with ParA and ParH could reveal whether the phenotypes are additive. 

Investigation of when HaaA is expressed in the cells and when it interacts with ParA and 

ParH could also help to identify its role in chromosome segregation in S. coelicolor. It is 

also worthy to investigate if HaaA binds to DNA by a direct assay. To do this, HaaA 

could easily be tested in a DNA binding assay in E. coli (see Chapter 2 materials and 

methods). If it is not a non-specific DNA-binding protein, it would also be worthy to 

investigate the sequence of the HTH motif to see if it is important for HaaA protein-

protein interactions.  
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Table 3.1: E. coli strains used in this study 

Strain Genotype Reference/Source 

BTH101 F- cya-99 araD139 galE15 galK16 rpsL1 hsdR2 mcrA1 mcrB1 Euromedex 

BW25113 F- Δ(araD-araB)567 Δlac Z4787 (::rrnB-3) rph-1 

Δ(rhaD-rhaB)568 hsdR514 

Datsenko and 

Wanner, 2000 

ET12567 F- dam-13::Tn9 dcm-6 hsdM hsdR recF143 zjj-201::Tn10 galK2 

galT22 ara-14 lacY1 xyl-5 leuB6 thi-1 tonA31 rpsL136 hisG4 tsx-

78 mtl-1 glnV44 

MacNeil et al., 1992 

TG1 supE thi-1 Δ(lac-proAB) Δ(mcrB-hsdSM)5 (rK-mK) / F ́ traD36 

proAB lacIqZΔM15 

Sambrook et al., 

1989 

TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15/ΔlacX74 deoR 

recA1 araD139 Δ(araA-leu)697 galU galK 

Invitrogen 
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Table 3.2: S. coelicolor strains used in this study 

Strain Genotype Reference/Source 

M145 prototroph SCP1- SCP2- Hopwood et al., 1985 

MH7 ΔhaaA::aac(3)IV This study 

MH8 haaA-egfp aac(3)IV This study 

MH9 ΔhaaA::aac(3)IV/ attPΦBT1::haaA+hyg (MH8/pMH105) This study 
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Table 3.3: Cosmids and plasmids used in this study 

Strain Description Reference/Source 

St9B10 cosmid source of haaA (sco5855) http://strepdb.streptomyces.org.uk 

Sv-3-B02 cosmid source of haaA (sven5529) http://strepdb.streptomyces.org.uk 

P12-H20 cosmid source of parAB (sven3662) http://strepdb.streptomyces.org.uk 

2H19 cosmid source of parH (sven1406) http://strepdb.streptomyces.org.uk  

ParAT18C parA flanked by XbaI and KpnI cloned into pUT18C Jakimowicz et al., 2007 

ParAT25 parA flanked by XbaI and KpnI cloned into pKT25 Jakimowicz et al., 2007 

ParBT18C parB flanked by XbaI and KpnI cloned into pUT18C Jakimowicz et al., 2007 

ParBT25 parB flanked by XbaI and KpnI cloned into pKT25 Jakimowicz et al., 2007 

ParJT18C parJ flanked by XbaI and KpnI cloned into pUT18C Jakimowicz et al., 2010 

ParJT25 parB flanked by XbaI and KpnI cloned into pKT25 Jakimowicz et al., 2010 

pKNT25 Bacterial two-hybrid vector used to create a fusion to 

the N-terminus of the CyaA T25 polypeptide 

Euromedex 

pKT25 Bacterial two-hybrid vector used to create a fusion to 

the C-terminus of the CyaA T25 polypeptide 

Euromedex 

pMH40 S. coelicolor haaA flanked by KpnI sites cloned into 

pKT25 

This study 

pMH41 S. coelicolor haaA flanked by KpnI sites cloned into 

pKNT25 

This study 

pMH42 S. coelicolor haaA(Δ338-345) flanked by KpnI sites 

cloned into pCR2.1 TA cloning vector 

This study 
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pMH43 S. coelicolor haaA(Δ338-345) flanked by KpnI sites 

cloned into pUT18 

This study 

pMH44 S. coelicolor haaA(Δ338-345) flanked by KpnI sites 

cloned into pUT18C 

This study 

pMH45 S. coelicolor haaA(Δ338-345) flanked by KpnI sites 

cloned into pKT25 

This study 

pMH46 S. coelicolor haaA(Δ338-345) flanked by KpnI sites 

cloned into pKNT25 

This study 

pMH47 C. glutamicum haaA flanked by KpnI sites cloned into 

pCR2.1 TA cloning vector 

This study 

pMH48 C. glutamicum haaA flanked by KpnI sites cloned into 

pUT18 

This study 

pMH49 C. glutamicum haaA flanked by KpnI sites cloned into 

pUT18C 

This study 

pMH50 C. glutamicum haaA flanked by KpnI sites cloned into 

pKT25 

This study 

pMH51 C. glutamicum haaA flanked by KpnI sites cloned into 

pKNT25 

This study 

pMH52 C. glutamicum parA flanked by KpnI sites cloned into 

pCR2.1 TA cloning vector 

This study 

pMH53 C. glutamicum parA flanked by KpnI sites cloned into 

pUT18 

This study 

pMH54 C. glutamicum parA flanked by KpnI sites cloned into 

pUT18C 

This study 

pMH55 C. glutamicum parA flanked by KpnI sites cloned into 

pKT25 

This study 

pMH56 C. glutamicum parA flanked by KpnI sites cloned into 

pKNT25 

This study 

pMH57 C. glutamicum parH flanked by KpnI sites cloned into 

pCR2.1 TA cloning vector 

This study 

pMH58 C. glutamicum parH flanked by KpnI sites cloned into 

pUT18 

This study 

pMH59 C. glutamicum parH flanked by KpnI sites cloned into 

pUT18C 

This study 
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pMH60 C. glutamicum parH flanked by KpnI sites cloned into 

pKT25 

This study 

pMH61 C. glutamicum parH flanked by KpnI sites cloned into 

pKNT25 

This study 

pMH62 M. smegmatis haaA flanked by KpnI sites cloned into 

pCR2.1 TA cloning vector 

This study 

pMH63 M. smegmatis haaA flanked by KpnI sites cloned into 

pUT18 

This study 

pMH64 M. smegmatis haaA flanked by KpnI sites cloned into 

pUT18C 

This study 

pMH65 M. smegmatis haaA flanked by KpnI sites cloned into 

pKT25 

This study 

pMH66 M. smegmatis haaA flanked by KpnI sites cloned into 

pKNT25 

This study 

pMH67 M. smegmatis parA flanked by KpnI sites cloned into 

pCR2.1 TA cloning vector 

This study 

pMH68 M. smegmatis parA flanked by KpnI sites cloned into 

pUT18 

This study 

pMH69 M. smegmatis parA flanked by KpnI sites cloned into 

pUT18C 

This study 

pMH70 M. smegmatis parA flanked by KpnI sites cloned into 

pKT25 

This study 

pMH71 M. smegmatis parA flanked by KpnI sites cloned into 

pKNT25 

This study 

pMH72 M. smegmatis parH flanked by KpnI sites cloned into 

pCR2.1 TA cloning vector 

This study 

pMH73 M. smegmatis parH flanked by KpnI sites cloned into 

pUT18 

This study 

pMH74 M. smegmatis parH flanked by KpnI sites cloned into 

pUT18C 

This study 

pMH75 M. smegmatis parH flanked by KpnI sites cloned into 

pKT25 

This study 

pMH76 M. smegmatis parH flanked by KpnI sites cloned into 

pKNT25 

This study 
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pMH77 S. venezuelae haaA flanked by KpnI sites cloned into 

pCR2.1 TA cloning vector 

This study 

pMH78 S. venezuelae haaA flanked by KpnI sites cloned into 

pUT18 

This study 

pMH79 S. venezuelae haaA flanked by KpnI sites cloned into 

pUT18C 

This study 

pMH80 S. venezuelae haaA flanked by KpnI sites cloned into 

pKT25 

This study 

pMH81 S. venezuelae haaA flanked by KpnI sites cloned into 

pKNT25 

This study 

pMH82 S. venezuelae parA flanked by KpnI sites cloned into 

pCR2.1 TA cloning vector 

This study 

pMH83 S. venezuelae parA flanked by KpnI sites cloned into 

pUT18 

This study 

pMH84 S. venezuelae parA flanked by KpnI sites cloned into 

pUT18C 

This study 

pMH85 S. venezuelae parA flanked by KpnI sites cloned into 

pKT25 

This study 

pMH86 S. venezuelae parA flanked by KpnI sites cloned into 

pKNT25 

This study 

pMH87 S. venezuelae parB flanked by KpnI sites cloned into 

pCR2.1 TA cloning vector 

This study 

pMH88 S. venezuelae parB flanked by KpnI sites cloned into 

pUT18 

This study 

pMH89 S. venezuelae parB flanked by KpnI sites cloned into 

pUT18C 

This study 

pMH90 S. venezuelae parB flanked by KpnI sites cloned into 

pKT25 

This study 

pMH91 S. venezuelae parB flanked by KpnI sites cloned into 

pKNT25 

This study 

pMH92 S. venezuelae parH flanked by KpnI sites cloned into 

pCR2.1 TA cloning vector 

This study 

pMH93 S. venezuelae parH flanked by KpnI sites cloned into 

pUT18 

This study 
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pMH94 S. venezuelae parH flanked by KpnI sites cloned into 

pUT18C 

This study 

pMH95 S. venezuelae parH flanked by KpnI sites cloned into 

pKT25 

This study 

pMH96 S. venezuelae parH flanked by KpnI sites cloned into 

pKNT25 

This study 

pMH97 pKT25+1 in-frame shift, XbaI digestion and DNA Pol 

I were used to create +1frame shift in pKT25 

This study 

pMH98 pKT25-1 in-frame shift PstI digestion and T4 DNA 

Pol I were used to create -1frame shift in pKT25 

This study 

pMH101 St9B10 haaA ΔhaaA::aac(3)IV This study 

pMH102 St9B10 haaA(Δ338-345) This study 

pMH103 

  

XbaII and SpeI digested and ligated St9B10 

haaA(Δ338-345) 

This study 

pMH104 9B10 haaA-egfp This study 

pMH105 haaA/haaA+ (2339 bp fragment of complete intergenic 

region of haaA and haaA was cloned into PvuII site of 

pMS82) 

This study 

pMH106 cyaA gene sco4928  cloned into pKT25 in reverse 

orientation 

This study 

pMH107 original clone from library screening (candidate 2), 

partial sco5855 (encodes last 66 amino acids of 

HaaA) cloned into pKT25  

This study 

pMH108 original clone from library screening (candidate 3), 

partial sco5855 (encodes last 66 amino acids of 

HaaA) cloned into pKT25 

This study 

pMS82 Integrative vector for Streptomyces; oriTRK2int 

attPΦBT1; hyg 

Gregory et al., 2003 

pUT18 Bacterial two-hybrid vector used to create a fusion to 

the N-terminus of the CyaA T18 polypeptide 

Euromedex 

pUT18C Bacterial two-hybrid vector used to create a fusion to 

the C-terminus of the CyaA T18 polypeptide 

Euromedex 
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3.4: Oligonucleotides used in this study 

Oligonucleotide Sequence Application 

Sven HaaA KpnI Fwd 

 

GGT ACC TAT GCC CGA ACT GCG 

TGT CGT GGC CGT CTC CAA CG 

Cloning S. venezuelae haaA 

into bacterial two-hybrid 

plasmids 

Sven HaaA KpnI Rev GGT ACC GTC CTG CTT CTT CCG 

CCG CGT GCC GAA GAC G 

Cloning S. venezuelae haaA 

into bacterial two-hybrid 

plasmids 

Sven ParA KpnI Fwd 

 

GGT ACC TGT GGG CAA GAC GAC 

CAC GAC GGT CAA CCT TG 

Cloning S. venezuelae parA 

into bacterial two-hybrid 

plasmids 

Sven ParA KpnI Rev GGT ACC CTG GAT CCC CTC CGA 

CAT GTT GCG CTG G 

Cloning S. venezuelae parA 

into bacterial two-hybrid 

plasmids 

Sven ParB KpnI Fwd GGT ACC TAT GGC CCC GGA TCG 

GGG AGT GGC TG 

Cloning S. venezuelae parB 

into bacterial two-hybrid 

plasmids 

Sven ParB KpnI Rev 

 

GGT ACC GCC CTC GGC GTC CTC 

GGC GTT CTC GTT GG 

Cloning S. venezuelae parB 

into bacterial two-hybrid 

plasmids 

Sven ParH KpnI Fwd 

 

GGT ACC TGT GAA TGA GTC GAC 

AAT TAC TCC CGG GAG CGG 

Cloning S. venezuelae parH 

into bacterial two-hybrid 

plasmids 

Sven ParH KpnI Rev 

 

GGT ACC CTC GGC GTG ACA CCG 

GGC GAG CAC CTC CCT GG 

Cloning S. venezuelae parH 

into bacterial two-hybrid 

plasmids 

Msme HaaA KpnI Fwd 

 

GGT ACC TAT GCG AGA ACT CAG 

GGT CGT CGG ACT G 

Cloning M. smegmatis haaA 

into bacterial two-hybrid 

plasmids 

Msme HaaA KpnI Rev GGT ACC GCG CTG CGT ACC CGA 

CGA GCG CAC GCC CAG 

Cloning M. smegmatis haaA 

into bacterial two-hybrid 

plasmids 

Msme ParA KpnI Fwd GGT ACC TAT GGG TTC GGG TCA 

GAA CAA AGG ACA G 

Cloning M. smegmatis parA 

into bacterial two-hybrid 

plasmids 

Msme ParA KpnI Rev GGT ACC CTG CTG GCG CGG CGG 

CGC CCC ACG CTC GGC G 

Cloning M. smegmatis parA 

into bacterial two-hybrid 

plasmids 

Msme ParH KpnI Fwd GGT ACC TGT GGG CCT GAC GGG 

CCG GCC TCC CCG CGA G 

Cloning M. smegmatis parH 

into bacterial two-hybrid 

plasmids 

Msme ParH KpnI Rev GGT ACC CAC GCC GAA CCG GTG 

GAT GAC TTC CCG 

Cloning M. smegmatis parH 

into bacterial two-hybrid 

plasmids 

Cglu HaaA KpnI Fwd GGT ACC TAT GCG GGA AAT ATT 

CCT GAT CAG CGG 

Cloning C. glutamicum haaA 

into bacterial two-hybrid 

plasmids 

Cglu HaaA KpnI Rev GGT ACC TTT CTT CGG GCG CTT 

TGT GTT TGC G 

Cloning C. glutamicum haaA 

into bacterial two-hybrid 

plasmids 

Cglu ParA KpnI Fwd GGT ACC TAT GGA AGA CAC TAC 

TTG GGA AGA CAC AC 

Cloning C. glutamicum parA 

into bacterial two-hybrid 

plasmids 

Cglu ParA KpnI Rev GGT ACC TTT CGC AGG TTT TAG Cloning C. glutamicum parA 
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GCC GAT CGG AC into bacterial two-hybrid 

plasmids 

Cglu PldP KpnI Fwd GGT ACC TGT GAG TGA TGC AGG 

GAA GAA GGA CTC 

Cloning C. glutamicum pldP 

into bacterial two-hybrid 

plasmids 

Cglu PldP KpnI Rev 

 

GGT ACC GTC GTT GAC GCG GCT 

GAT AAC TTC ACG 

Cloning C. glutamicum pldP 

into bacterial two-hybrid 

plasmids 

HaaA C-ter in-frame del 

Fwd 

GGC CGA CGG CGT CCG GCC GGG 

TCG CCG CGC GGC GGT GCC GAC 

TAG TAT TCC GGG GAT CCG TCG 

ACC 

Creating (Δ338-345) in 

S. coelicolor HaaA 

HaaA C-ter in-frame del 

Rev 

ACG TCA TCC GGC GAA GAC CGG 

ACT ACT CCT GCT TCT TGC GTC 

TAG ATG TAG GCT GGA GCT GCT 

TC 

Creating (Δ338-345) in  

S. coelicolor HaaA 

haaAegfpFwd ATGCCCGAACTGCGTGTCGTGGCC

GTCTCGAATGACGGCACTGCCGG

GCCCGGAGCTG 

Creating HaaA-EGFP in  

S. coelicolor 

haaAegfpRev GCCCCGACCTCGGTCACGTCATCC

GGCGAAGACCGGACTACATATGT

AGGCTGGAGCTGC 

Creating HaaA-EGFP in  

S. coelicolor 

haaAdelFwd GCACGTGACGTCGGCAGGCACCA

CCCGGGAGGTCCCC ATG ATT CCG 

GGG ATC CGT CGA CC 

Creating haaA null mutant in  

S. coelicolor 

haaAdelRev GCCCCGACCTCGGTCACGTCATCC

GGCGAAGACCGGACTA TGT AGG 

CTG GAG CTG CTT C 

Creating haaA null mutant in     

S. coelicolor 

haaAKpnIFwd GGT ACC TAT GCC CGA ACT GCG 

TGT CGT GGC CG 

Cloning S. coelicolor haaA into 

BTH plasmids 

haaAKpnIRev GGT AC CTC CTG CTT CTT GCG 

CCG CGT GC 

Cloning S. coelicolor haaA into 

BTH plasmids 

HaaAcompPvuIIFwd ACTGCAGCTGCCGAGGCGTCCGG

GTCGGGGGCTCCG 

Creating haaA 

complementation strain  

HaaAcompPvuIIRev GTCCAGCTGCTACTCCTGCTTCTT

GCGCCGCGTGCCG 

Creating haaA 

complementation strain 
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Figure 3.1. Representation of genomic library screening for ParH interacting 

proteins. Plasmids expressing ParH-T18 or ParHT18C were used as bait and library 

DNA was used as a prey to screen for novel interacting proteins. Approximately 70,000 

colonies were screened on LB X-Gal plates and 1,400 suspected colonies were 

rescreened on McConkey plates. The phenotypes of the final 3 candidates with the most 

intense phenotypes are shown spotted on McConkey maltose and X-gal IPTG plates  One 

of the candidates (C1) for a potential ParH interacting protein contained the entire gene 

for SCO4928 (adenylate cyclase) cloned in reverse orientation. However, 2 candidates 

(C2 and C3) contained plasmids with the 3’ end of sco5855 fused at the same point and 

were possible siblings. The negative control was strain BTH101 expressing pKT25 and 

pT18C, and the positive control with strain BTH101 expressing pT25-zip and pT18-zip. 
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RHA1_ro04984      MRELRVIGLEPDGSHVVCADAST--GEKFRLPADDKLRAASRGDIAR------------- 45 

nfa6540           MRELRVIGLTPDSTHIVCVDTES--GQKFRLPADDKLRAAARGDLAR------------- 45 

SACE_0629         MRALRVVGLDEDGETVICEDPEN--GDRFSVPADERLRAAARGDLTR------------- 45 

Rv0883c           MRELKVVGLDADGKNIICQGAIP--SEQFKLPVDDRLRAALRDDSVQP------------ 46 

NCgl0793          MREIFLISGDSTESSLVFKTSEEDGAEEFFIAVTDELHAILAGHSEIKSAPEPEEHKEVP 60 

SCO5855           MPELRVVAVSNDGTRLVLKAADS---TEYTLPIDERLRAAVRGDR--------------- 42 

SVEN_5529         MPELRVVAVSNDGTRLVLKAADS---TEYTLPIDERLRAAVRNDR--------------- 42 

KSE_54260         MPELRVVAVSNDGTRLVLKAADS---TEYTLPIDERLRAAVRGDR--------------- 42 

Tfu_1947          MQELRLVAVSEDGTYLVLASAGRG--TRFMLPVDDRLRAAVRGQF--------------- 43 

Micau_0513        MRPVRFVALSEDGQALVLADEVG---RLLALPIDERIASALHAEPGAPP----------- 46 

                  *  : .:.       ::             :.  :.: :    .                 

 

RHA1_ro04984      -----------------LGQIEIEMDSQLRPREIQARIRAGASVEQVADEAGIPLAKVER 88 

nfa6540           -----------------FGQIEIETEASMRPRDIQARIRAGASVEQVTAESGMPAARVER 88 

SACE_0629         -----------------LGQVQIEMEAQMRPREIQARIRGGASVEQVAEAAGIPEQRVER 88 

Rv0883c           ----------------EQAQLDIEVTNVLSPKEIQARIRAGASVEQVAAASGSDIARIRR 90 

NCgl0793          PPVLEPVAAVEEPREEKEIDPRISAPLTMSPREIQIRVRSGATIEELAEEIGVTEARVEP 120 

SCO5855           ---------------PRLGQIEIEVESHLRPRDIQARIRAGATAEEVAQMAGIPVDRVRR 87 

SVEN_5529         ---------------ARLGQIEIEVESHLRPRDIQARIRAGASAEEVAQMAGIPVDRVRR 87 

KSE_54260         ---------------PRLGQIEIEVESHLRPRDIQARIRAGASAEEVAQAAGISVERVRR 87 

Tfu_1947          ---------------SRLGQYEIEVENPLRPKEIQARIRAGETAESIAQAAGIPVERVRW 88 

Micau_0513        ---------------LAVVPSATDPTPSLSPRDIQARIRSGESAEDVARIAGVPVDRVLR 91 

                                         .    : *::** *:*.* : *.::   *    ::   

 

RHA1_ro04984      FAYPVLLERSRAAEMAQGGHPVRDNGPA-VPTLAEIVTQAFRARGHNIDDATWDAWRDED 147 

nfa6540           FAYPVLLERARAAELAQKAHPVRADGPA-VETLIEVVTAAFTERGHTLENAEWDAWKDEK 147 

SACE_0629         YAYPVLLERAQVAEMAQRAHPVREDGPD-VQTLGEVVAHTFGMRGHDYNETSWDAWRGED 147 

Rv0883c           FAHPVLLERSRAAELATAAHPVLADGPA-VLTMQETVAAALVARGLNPDSLTWDAWRNED 149 

NCgl0793          YAHPVLLERARIADLAKQSHPIRENGPA-KLTLWEILATAFATRGHDLTTARWDAYKDAT 179 

SCO5855           FEGPVLAERAFMAERARKTPVRRPGENS-GPPLGEAVQERLLLRGADKDTVQWDSWRRDD 146 

SVEN_5529         FEGPVLAERAFMAERARKTPVRRPGENS-GPQLGEAVQERLLLRGAEKDTVQWDSWRRDD 146 

KSE_54260         FEGPVLAERAFMAERARKTAIRRHGEST-GPQLGEAVAERLALRGAEKDSERWDSWRRDD 146 

Tfu_1947          FESPVLQEREYMARQAQLALVRRPGETAPGPTLGDLVAERIGVAQLESGEATWDSWKRED 148 

Micau_0513        YAGPVLQERAMLAQHARRTRLKGAEKPT---PLAEVVNGRLAQHGIDTEKISWDAYRRDD 148 

                  :  *** **   *  *                : : :   :           **:::    

 

RHA1_ro04984      NHWVAQLQWQAGRTTNAAHWRYQPDAHGG-TIVALDDTAFDLIDPDFG------------ 194 

nfa6540           GFWIAQLQWQNGRSEIAAHWRYQPDAHGG-TVAPLDDPAADLIDPDFG------------ 194 

SACE_0629         GKWVVELQWNAGRSENAAHWVFHPGAHGG-TVAALDDHAADLLDPSPN------------ 194 

Rv0883c           SRWTVQLAWKAGRSDNLAHFRFTPGAHGG-TATAIDDTAHELINPTFN------------ 196 

NCgl0793          NQWIVRVDWKAGLSDNYAEWTLNLHNTSNPTADPRTPVAADLIDPEFI------------ 227 

SCO5855           GTWEVLLVYLVAGEPHSASWTYDP---PRRLVQAVDAEARALIGESDD--LAAPEPSFPF 201 

SVEN_5529         GTWEVLLVYRVAGEVHTASWTYDP---PRRLVQAVDDEARALIGETDDTIAAAPEPSFPF 203 

KSE_54260         GTWEVVLWYRAEGEHRRAGWSYDP---PRRLVQPNDDEARALIGENVE---REEDSVFPF 200 

Tfu_1947          NTWQVKLSFRVMGEEHVAHWIYEP---RRRSVTPYDEEAVRLLSADDR------EVSVPP 199 

Micau_0513        GTWRIIATWPSGKATAQAVWDLDK---TRQNVAPHDDMAQYLCAERPTPILGQEPAPERG 205 

                  . *     :        * :             .    *  *                   

 

 

RHA1_ro04984      ----------RPLRGLAPVASDEPEQ-----LELAEFPTEVEVPTIEPEEIIEADVTEE- 238 

nfa6540           ----------RALRGLATILPTEPEPEPAGPAEPVVEPRESAAAPVRPAQPVVEEYFEKR 244 

SACE_0629         ----------RPLRTVRPVTELAREA-----LELDQQSGAERAEPAPPHRAEPSASVPPL 239 

Rv0883c           ----------RPLRPLAPVAHLDFDE----------------PEPAQPT----------- 219 

NCgl0793          ----------QPVRTLTSVNSTQEQYD----DETDVFDTVPSPDDAPDSESDAVAEITN- 272 

SCO5855           VPRIARLPRDRPLDRTLDREQRERPSLPPPPSEPADDTAATASAER-ERDSLTSLLEAVP 260 

SVEN_5529         VPRIARLPRDRPLDRALDRQLDHR---------QLERASAPAEPEE-ERDSLTSLLEAVP 253 

KSE_54260         IPRIARLPHDRPARPMIERPSADRIMQVREAREATAAAASAATAAVPERDSLTSLLDVVP 260 

Tfu_1947          AP------PEATVTPFTPRRSPAR--------EAAPPPQAPAATPQ-ETDASTTPRSPIT 244 

Micau_0513        GHALPGPSRGEPSRGGHGLPAASEHARPGRDPIRAGRDALLASLDRPLGGTSGRGLDTRS 265 

                             .                                                 

 

RHA1_ro04984      -------------------------PED---------EPAPSEEPAAPKIAPHQTNN--- 261 

nfa6540           AVAAGGGAAA--------------IPAAPVAGSAGAVEPAASADAAAKAPAADATPEPAE 290 

SACE_0629         DLDGAAPAAK--------------APEAPAAAEPDDEPEAPADDAEPGEAPAEAATAEDE 285 

Rv0883c           -------------------------------------LTVPSAQPVS------------- 229 

NCgl0793          -------------------------------------DNEPEVDAEGP------------ 283 

SCO5855           SFRGDLVVPERAPDPVEEPVEEPE-VEEPPAPAASAGS--AYADVLMPRSVASHRDRLTG 317 
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SVEN_5529         SFRGDMVVPE-QPD--SEPAEEAE-AEEPPAPAASAGAGAAYADVLMPRAVSGHRDRLTG 309 

KSE_54260         SYRGDLTPVG--PSVETTIAEEPEEVEETAAPAASVGAGSAYADILMPRSVAPHRDRLVG 318 

Tfu_1947          T---ELVRPTTEDTVFTATVPERH---HRPGPAPTPGPGSPTQRGASPQRASRPEASVPA 298 

Micau_0513        PAALAGQEAPRQRAVAGGAAALLGGGQGSAFDDDSDAPKEIPAVPSLAVLRPRRTGPAAA 325 

                                                                               

 

RHA1_ro04984      ----------KDKRGKPALPSWDDVLLGVRSSGR---- 285 

nfa6540           KEQKAPAKPARAKRGKAPMPSWEDVLLGVRSSGH---- 324 

SACE_0629         AGQRKAEPQRRGRKNHPIVPSWEDVLLGVRSHR----- 318 

Rv0883c           -----------NRRGKPAIPAWEDVLLGVRSGGRR--- 253 

NCgl0793          ----------RNRRRKAVTPHWEDVLLGVRANTKRPKK 311 

SCO5855           STDRQAEADGVRPGRRAAVPSWDEIVFGTRRKKQE--- 352 

SVEN_5529         TTDRQAEADGVRPGRRAAVPSWDEIVFGTRRKKQD--- 344 

KSE_54260         TTDRQAEADGVRPGRRATVPSWDEIVFGSRRKKPE--- 353 

Tfu_1947          ATGASQQPRRKR-GRRTSVPSWDEIMFGSKRSD----- 330 

Micau_0513        TGGAAAESTDAGGKPRKRLPSWDDVLFGTGPAARESS- 362 

                                 :   * *:::::*           

 

Figure 3.2 ClustalW2 alignment of HaaA homologs from several divergent 

Actinomycetes species. HaaA homologs from diverse Actinomycetes were aligned using 

ClustalW2. Network Protein Sequence Analysis (https://npsa-prabi.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa_hth.html) suggests that HaaA contains a helix-

turn-helix motif with an approximately 50% probability at the position which is shown in 

bold and highlighted in grey. The amino acids removed by a 3'  

in-frame deletion constructed for this study is shown in bold and underlined. An asterisk 

(*) indicates a conserved residue, colon (:) indicates conservation between groups of 

strongly similar properties, period (.) indicates conservation between groups of weakly 

similar properties. Strain abbreviations: RHA1_ro04984, Rhodococcus jostii; nfa6540, 

Nocardia farcinica; SACE_0629, Saccharopolyspora erythraea; Rv0883c, 

Mycobacterium tuberculosis; NCgl0793, Corynebacterium glutamicum; SCO5855, S. 

coelicolor; SVEN_5529, S. venezuelae;  KSE_54260, Kitasatospora setae; Tfu_1947, 

Thermobifida fusca; Micau_0513, Micromonospora aurantiaca.  
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STRS4_03849      MPELRVVAVSNDGTRLVLKAADSTEYTLPIDERLRAAVRGDRPRLGQIEIEVESHLRPRD 60 

SVEN_5529        MPELRVVAVSNDGTRLVLKAADSTEYTLPIDERLRAAVRNDRARLGQIEIEVESHLRPRD 60 

SGR_1677         MPELRVVAVSNDGTRLVLKAADSTEYTLPIDERLRAAVRNDRARLGQIEIEVESHLRPRD 60 

SCAB24141        MPELRVVAVSNDGTRLVLKAADSTEYTLPIDERLRAAVRGDRPRLGQIEIEVESHLRPRD 60 

SCO5855          MPELRVVAVSNDGTRLVLKAADSTEYTLPIDERLRAAVRGDRPRLGQIEIEVESHLRPRD 60 

SLI_6127         MPELRVVAVSNDGTRLVLKAADSTEYTLPIDERLRAAVRGDRPRLGQIEIEVESHLRPRD 60 

SAV_2411         MPELRVVAVSNDGTRLVLKAADSTEYTLPIDERLRAAVRGDRPRLGQIEIEVESHLRPRD 60 

                 *************************************** ** ***************** 

 

STRS4_03849      IQARIRAGASAEEVASLAGIPVDRVRRFEGPVLAERAFMAERARKTPVRRPGEN-TGPQL 119 

SVEN_5529        IQARIRAGASAEEVAQMAGIPVDRVRRFEGPVLAERAFMAERARKTPVRRPGEN-SGPQL 119 

SGR_1677         IQARIRAGASAEEVAQFAGIPVDRVRRFEGPVLAERAFMAERARKTPVRRPGEN-TGPQL 119 

SCAB24141        IQARIRAGATAEEVAQLAGIPVDRVRRFEGPVLAERAFMAERARKTPVRRPGENAAGPQL 120 

SCO5855          IQARIRAGATAEEVAQMAGIPVDRVRRFEGPVLAERAFMAERARKTPVRRPGEN-SGPPL 119 

SLI_6127         IQARIRAGATAEEVAQMAGIPVDRVRRFEGPVLAERAFMAERARKTPVRRPGEN-SGPPL 119 

SAV_2411         IQARIRAGASAEEVAQLAGIPVDRVRRFEGPVLAERAFMAERARKTPVRRPGEN-AGPQL 119 

                 *********:*****.:************************************* :** * 

 

STRS4_03849      GEAVRERLLLRGADRDTVQWDSWRRDDGTWEVLLVYGVAGERHSASWSYDPPRRLVQAVD 179 

SVEN_5529        GEAVQERLLLRGAEKDTVQWDSWRRDDGTWEVLLVYRVAGEVHTASWTYDPPRRLVQAVD 179 

SGR_1677         GEAVQERLLMRGADKETVQWDSWRRDDGTWEVLLVYRVAGEPHSASWTYDPPRRLVQAVD 179 

SCAB24141        GEAVQERLLLRGAEKDTVQWDSWRRDDGTWEVLLVYCVAGEPHSASWTYDPPRRLVQAVD 180 

SCO5855          GEAVQERLLLRGADKDTVQWDSWRRDDGTWEVLLVYLVAGEPHSASWTYDPPRRLVQAVD 179 

SLI_6127         GEAVQERLLLRGADKDTVQWDSWRRDDGTWEVLLVYLVAGEPHSASWTYDPPRRLVQAVD 179 

SAV_2411         GEAVQERLLLRGADKDTVQWDSWRRDDGTWEVLLVYLVAGEPHSASWTYDPPRRLVQAVD 179 

                 ****:****:***:::******************** **** *:***:************ 

 

STRS4_03849      DEARSLIGESDDV--SAPEPSFPFVPRIARLPRERPERPERGPHA----------VE--- 224 

SVEN_5529        DEARALIGETDDTIAAAPEPSFPFVPRIARLPRDRPLDRALDRQLDHRQL---------E 230 

SGR_1677         DEARSLIGETDDV--AAPEPSFPFVPRIARLPRDRPLDRSLDRQIDRDRPLDRALDRQIE 237 

SCAB24141        DEARSLIGESDDL--GTPEPSFPFVPRIARLPRDRPLDRQA-----DRPALPGPPPES-- 231 

SCO5855          AEARALIGESDDL--AAPEPSFPFVPRIARLPRDRPLDRTLDREQRERPSLPPPPSEP-- 235 

SLI_6127         AEARALIGESDDL--AAPEPSFPFVPRIARLPRDRPLDRTLDREQRERPSLPPPPSEP-- 235 

SAV_2411         DEARSLIGESDDL--AAPEPSFPFVPRIARLPRDRPLDRALDRQT-ERPALPSQAPEP-- 234 

                  ***:****:**   .:****************:**                         

 

STRS4_03849      -----PETEE-LPATAEQGGRDSLTSLLEAVPSFRGDMVVPERPAAER-PLEEPEQEQEA 277 

SVEN_5529        RA-SAP--------AEPEEERDSLTSLLEAVPSFRGDMVVPEQPD------SEPAEEAEA 275 

SGR_1677         RPAPAAAEPEEYVSSASAGERDSLTSLLEAVPSFRGDMVVPERPSQPEPPALEPAEEAEA 297 

SCAB24141        -------DED------LVSERDSLTSILEAVPSYRGDLVVPELPSLEPQEESASVEEVAE 278 

SCO5855          -------ADDTAATASAERERDSLTSLLEAVPSFRGDLVVPERA---PDPVEEPVEEPEV 285 

SLI_6127         -------ADDTAATASAERERDSLTSLLEAVPSFRGDLVVPERA---PDPVEEPVEEPEV 285 

SAV_2411         -------AEE------STAERDSLTSLLEAVPSFRGDMVVPERPAEIPAGQDEPAPEPEA 281 

                                     ******:******:***:****              *    

 

STRS4_03849      EEPPAPAAS--AGSAYADVLMPRAVAAHRDRLIGSTDRQAEADGVRPGRRAAVPSWDEIV 335 

SVEN_5529        EEPPAPAASAGAGAAYADVLMPRAVSGHRDRLTGTTDRQAEADGVRPGRRAAVPSWDEIV 335 

SGR_1677         DEPPA-AASAGAGSAYADVLMPRAVAGHRDRLTGTTDRQAEADGVRPGRRAAVPSWDEIV 356 

SCAB24141        EESAAPAAS--AGSAYADVLMPRSVNGHRDRLIGATDRQAEADGVRPGRRAAVPSWDEIV 336 

SCO5855          EEPPAPAAS--AGSAYADVLMPRSVASHRDRLTGSTDRQAEADGVRPGRRAAVPSWDEIV 343 

SLI_6127         EEPPAPAAS--AGSAYADVLMPRSVASHRDRLTGSTDRQAEADGVRPGRRAAVPSWDEIV 343 

SAV_2411         EEPPAASAS--AGSAYADVLMPRSVGSHRDRLVGATDRQAEADGVRPGRRAAVPSWDEIV 339 

                 :*  * :**  **:*********:* .***** *:************************* 

 

STRS4_03849      FGTRRKNKE 344 

SVEN_5529        FGTRRKKQD 344 

SGR_1677         FGTRRKKQD 365 

SCAB24141        FGTRRKKQE 345 

SCO5855          FGTRRKKQE 352 

SLI_6127         FGTRRKKQE 352 

SAV_2411         FGTRRKKQE 348 

                 ******::: 

 

Figure 3.3 ClustalW2 multiple sequence alignment of HaaA from different 
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Streptomyces species. HaaA homologs from different Streptomycetes were aligned by 

ClustalW2. HaaA amino acid sequence is highly conserved among Streptomyces species. 

An asterisk (*) indicates a conserved residue, colon (:) indicates conservation between 

groups of strongly similar properties, period (.) indicates conservation between groups of 

weakly similar properties. Species abbreviations: SGR, S. griseus; SCLAV, S. 

clavuligerus; SVEN, S. venezuelae; SAV, S. avermitilis; SCO, S. coelicolor; SCAB, S. 

scabies; STR, S. triostinicus; SLI, S. lividans. 
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Figure 3.4 Diagram of the gene organization at the haaA region of S. coelicolor 

chromosome and predicted structure of HaaA. (Top) sco5855 (haaA) encodes a 

putative DNA binding protein of 352 amino acids. sco5856 encodes an unknown 

ATP/GTP binding protein. sco5854 encodes a possible thiosulfate sulfurtransferase (also 

conserved in other Streptomyces species) and sco5853 encodes a conserved hypothetical 

protein with unknown function. (Bottom) A predicted HTH motif in the N terminal 

region of HaaA is shown in blue color. A predicted disordered C terminal domain is 

shown in light beige color and 8 aminoacids conserved among Actinomycetes is shown 

in red color.  
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Figure 3.5 Quantification of beta-galactosidase activity for selected positive 

interactions for plasmids expressing S. coelicolor fusion proteins. Strains were grown 

in LB liquid with 0.5 mM IPTG. HaaA* is HaaA(Δ338-345). (a) ParA-HaaA and ParA-

HaaA*, (b) ParH-HaaA and ParH-HaaA*, (c) HaaA-HaaA and HaaA-HaaA*. Each bar 

represents the average of the three different independent liquid culture samples analyzed 

individually with experimental errors indicated.. T25.zip/T18 zip was the positive control 

with strain BTH101 expressing pT25-zip and pT18-zip.  
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Figure 3.6 Quantification of beta-galactosidase activity for HaaA, ParA, ParB, and 

ParH interactions in other Actinomycetes. All strains were grown in LB liquid with 

0.5 mM IPTG. Each bar represents the average of the three different independent liquid 

culture samples analyzed individually with experimental errors indicated. 

A- Quantification of beta-galactosidase activity for S. venezuelae HaaA, ParA, ParB, and 

ParH interactions. B-Quantification of beta-galactosidase activity for M. smegmatis 

HaaA, ParA, and ParH interactions. Interactions with ParB were not tested. C-

Quantification of beta-galactosidase activity for C. glutamicum HaaA, ParA, and PldP 

(labeled as ParH in the figure for consistency) interactions. Interactions with ParB were 

not tested. T25.zip/T18 zip was the positive control with strain BTH101 expressing 

pT25-zip and pT18-zip. T18C/T25 was the negative control with strain expressing 

pKT25 and pUT18C.         
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Figure 3.7 Macroscopic phenotype of haaA. Macroscopic phenotypes of the wildtype 

strain (M145), ΔhaaA strain (MH7), ΔhaaA/haaA+ complementation strain (MH9; 

MH7/pMH105) are shown in R2YE, MM and SFM media. Strains were grown at 30°C 

for 5 days. Little and delayed aerial filament formation occured for MH7 on R2YE and 

minimal medium (MM) with mannitol, respectively. Slight white developmental 

phenotype in aerial filaments of mutant MH7 was observed on SFM agar.  
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Figure 3.8 Developmental segregation phenotype of    a haaA null mutant. Coverslips 

were inoculated and hyphae grown for 4 days on MS agar, fixed and stained with 

propidum iodide. Left panel shows a propidium iodide image, mid panel shows a DIC 

image, and right panel shows a merged image of a single aerial hypha. Strains WT 

(M145), MH7 (ΔhaaA),  and MH9 (ΔhaaA/ ΔhaaA+) are shown from top to bottom. 

Arrows show occasional branched spore chains and white arrows show anucleate cells in 

the spore chain. Scale bar is 5 μm. 
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Figure 3.9 Localization of HaaA-EGFP fusion protein in aerial hyphae. HaaA-EGFP 

appears to localize in mature spore chains. Coverslips were inoculated and hyphae grown 

for 4 days on MS agar. Left panel shows fluorescence images, mid panel shows DIC 

images, and left panel shows merged images. Scale bar is 5 μm. 
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CHAPTER 4: SUMMARY AND FUTURE DIRECTIONS 

Characterization of ParH, a new partitioning protein 

For S. coelicolor chromosome segregation, ParAB proteins are mainly responsible 

for organizing the proper even distribution of ParB-oriC complexes along the aerial 

hyphae (Jakimowicz et al., 2007). My study revealed that a ParA-like protein, ParH, is an 

additional part of the partitioning system in S. coelicolor and appears to play a role in 

proper nucleoprotein complex positioning.  

Similar to the other segregation/condensation gene mutants in S. coelicolor, a 

parH deletion mutant has also a slight chromosome segregation defect (5% anucleate 

spores) as well as infrequent branching spore chains. This defect is comparable to that for 

smc (8% anucleate), ftsK (0.8% anucleate), and parJ (8% anucleate) mutants (Dedrick et 

al., 2009; Ditkowski et al., 2010). Furthermore, a parA parH double null mutant has 17% 

anucleate spores as compared to 20% for parA mutant strain in the aerial filaments of 

S. coelicolor, which suggests that the genes function in the same pathway and are not 

additive (Chapter 2, Figure 2.6). In addition, the average ParB-EGFP interfocal distance 

in a wild type strain was found to be altered in a parH null strain (approximately 6% of 

the foci). These results suggested that ParH might play a direct or indirect role in 

positioning of ParB foci and, therefore, a direct or indirect role of ParH in the 

chromosome segregation of S. coelicolor. 

WhiA and WhiB are involved in the regulation of key steps in aerial growth, 

initiation of cell division, and chromosome segregation in S. coelicolor and S. venezuelae 

(Ainsa et al., 2000; Bush et al., 2013).  In S. coelicolor, parAB is a target of WhiA and 

WhiB and the parH homolog in S. venezuelae (sven1405) is a direct WhiA target and its 
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expression depends on whiA (Jakimowicz et al., 2006, Bush et al., 2013). It is not known 

if ParH is a target of WhiA and/or WhiB target in S. coelicolor. whiA and whiB-null 

mutants could be used in an S1 nuclease protection assay to investigate whether ParH is 

under the control of WhiA and/or WhiB. The ParH localization pattern could also be 

observed in whiA and whiB-null mutants to show if these two regulatory proteins affect 

the ParH expression and evenly-distributed ParH-EGFP foci. 

Interestingly, ParH-EGFP localizes as evenly-spaced focal intervals within 

predivisional aerial filaments, reminiscent of the pattern observed for ParB-EGFP of 

S. coelicolor. This data suggested that ParH might co-localize with the evenly-spaced 

ParB-parS complexes in aerial filaments. ParH might assist ParA directly or indirectly for 

proper localization of ParB/parS complexes and help ParB-oriC to stay evenly distributed 

along the aerial hyphae until septation begins. To further explore chromosome 

segregation in S. coelicolor in the future, it would also be important to investigate the 

localization or behavior of ParH-EGFP in a strain unable to produce ParB. If the loss of 

ParH disrupts ParB-EGFP localization, and given the fact that ParH and ParB interact 

(Chapter 2, Figure 2.12), it is also possible that ParB might also have an effect on ParH-

EGFP positioning. Isolating and characterizing double (parH parB) or triple (parH parB 

parA) mutants could also help to further elucidate the roles of these genes in chromosome 

segregation in S. coelicolor. Since, expression of ParH-EGFP is not as strong as ParB-

EGFP in the aerial filaments, immunostaining of ParH could be worthwhile to try to 

visualize co-localization of ParH and ParB as in immunostaining of ParA with ParB-

EGFP colocalization (Jakimowicz et al., 2007).  
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Most chromosomally encoded ParA and ParA-like proteins bind to DNA in a 

nonspecific manner, as for ParA of C. crescentus, and Soj of Thermus thermophilus and 

B. subtilis (Easter and Gober, 2002; Hester and Lutkenhaus, 2007; Leonard et al., 2005), 

and ParA-like PomZ from Myxococcus xanthus (Treuner-Lange et al., 2012). Similar to 

GFP-Soj (Hester and Lutkenhaus, 2007), GFP-ParH localizes over the nucleoid of the 

cells in E. coli in a heterologous in vivo assay (Chapter 2, Figure 2.10). In addition, 

localization of GFP-ParH was affected for its variants (K99E, R273E, and Δ20-80), 

which either localized at the poles or diffused in the cytoplasm, as in the strain expressing 

only GFP (Figure 2.10). Alteration in localization of the variant due to the impaired DNA 

association of GFP-ParH variant R273E was expected due to the importance of this 

surface residue in DNA-binding in B. subtilis (Hester et al., 2007). For variants K99E and 

Δ20-80, this alteration in localization might have been caused by a partially degraded or 

unstable protein (Figure 2.11), it is also possible that the ATPase activity might be 

important for DNA-binding of the protein. To further investigate the ability of 

dimerization for ParH and its ATPase mutant derivative in more detail, surface plasmon 

resonance (SPR), size exclusion chromatography, or native polyacrylamide gel 

electrophoresis analyses could be useful to confirm that ParH dimerizes and ATPase 

activity is required for dimerization. It is possible that, depending on nucleotide binding 

and hydrolysis, ParH might function as a molecular switch that cycles between an ATP-

bound and ADP-bound state. By doing so, ParH might help ParB-oriC to stay evenly 

distributed along the aerial hyphae until septation begins. It is also possible that ParB 

might stimulate ParH binding to DNA in aerial filaments and could be investigated by 

DNA electrophoretic mobility shift assay (EMSA). Exploring the DNA-binding property 
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of ParA would also be helpful to understand the segregation mechanism of S. coelicolor, 

as this has not been investigated.  

Similar to ParB-EGFP, ParH has an evenly-spaced localization pattern, which 

suggests possible colocalization and/or protein interaction between ParH and ParB. In 

support of potential direct interaction in the native situation, these two proteins were 

found to be interacting partners in a heterologous bacterial two-hybrid system. 

Interestingly, the ATPase active site and N-terminal extension of ParH were not only 

found to be required for ParH-ParH dimerization since these two variants impaired ParH-

ParH interaction, and also impaired ParH-ParB interaction, as judged by the bacterial 

two-hybrid system. These outcomes could have been the result of an unstable or improper 

folding of the protein as in the heterologous in vivo E. coli DNA binding assay. An 

independent assay, such as co-immunoprecitation could be used to retest these 

interactions by epitope tagging or isolating polyclonal antibody.  

Interactions between ParH and other known segregation/condensation proteins 

(i.e., ParA, ParJ, SMC, ScpA, ScpB, and FtsK) and division protein FtsZ were also tested 

and no evidence for interaction was found. Again these results should not be discarded 

because of the potential false-negative outcomes of the cya bacterial two-hybrid system.  

An organization model summarizing interactions of segregation and condensation 

proteins during development-associated genome segregation is shown in Figure 4.1. 

Evidence for new interactions was found between ScpB-ParA, ScpB-SlzA, and SlzA-

ParH protein pairs (Chapter 2, Figures 2.12 and 2.14). Interaction between ScpB and 

ParA is important since it suggests a link between the SMC condensation complex and 

segregation of the chromosomes in S. coelicolor. This interaction may be analogous to 
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the fact that Spo0J/ParB recruites SMC to oriC regions and promotes chromosome 

segregation in B. subtilis and S. pneumoniae (Minnen et al., 2011, Gruber and Errington, 

2009). ParA, on the other hand, might help coordinate the activity rather than the 

localization of condensins. Therefore, ParA might have a role in addition to the proper 

localization of ParB-EGFP in the aerial filaments of S. coelicolor. Since scpAB and scpA-

null mutants produce bilobed nucleoids within spores and 26% and 15% anucleate cells, 

respectively (Dedrick et al., 2009), making double and triple mutants with parA, parB, 

and scpAB might reveal more information about the possible additional roles of ParA and 

ParB in nucleoid condensation. On the other hand, even though slzA has no obvious 

segregation and condensation defects, close proximity of slzA to smc, interaction of the 

gene product with ScpB and ParH, and slzA being a direct target of WhiA in S. 

venezuelae make SlzA a possible segregation/condensation protein and a link between 

chromosome partitioning and condensation in S. coelicolor.  

In conclusion, this summary model for segregation protein interactions, which is 

represented in Figure 4.1, does not suggest that these proteins interact synchronously 

during development-associated genome segregation in S. coelicolor. To be able to make a 

proper temporal and spatial model, expression profiles of these proteins need to be 

investigated. Unfortunately, only the developmental regulation of ParAB is known 

(Jakimowicz et al., 2006), but the expression profiles of other proteins, which are 

represented in the model, are still not identified. In addition, ParB and ParH are the only 

proteins in the model in Figure 4.1 that are known for their DNA-binding properties 

(Jakimowicz et al., 2002). Since all of these proteins are involved in chromosome 
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segregation, it might also necessary to investigate their association of at least ParA with 

DNA to be able to complete a proper proposed model.   

Identification of a novel ParA and ParH interacting protein 

 In a search for novel ParH interacting proteins by screening a random bacterial two-

hybrid library, a novel interaction partner of ParH and ParA was identified. Remarkably, 

HaaA (ParH ParA Associated protein A) is one of the 24 signature proteins of 

Actinomycetes (Gao et al., 2009). Interestingly, ParJ was also discovered by screening a 

random bacterial two-hybrid library (Ditkowski et al., 2010). As for HaaA, ParJ and ParJ 

paralog (SCO1997) are both signature proteins for the Actinobacteria phylum. ParJ is an 

interaction partner of S. coelicolor ParA and it is believed to regulate ParA 

depolymerization in vitro (Ditkowski et al., 2010). The parJ-null mutant also has a slight 

segregation phenotype of 8% anucleate cells which is similar to haaA-null mutant 

(Ditkowski et al., 2010). Similarly, the phenotype for a haaA-null mutant was 6% 

anucleate spores and colonies had a slight white macroscopic phenotype on SFM agar. 

This segregation phenotype was similar to 5% anucleate cells in parH (Figure 2.6) and 

8% anucleate cells in smc mutants (Dedrick et al., 2009 and Kois et al., 2009), which 

showed that the loss of one component resulted in a similar phenotype. The delayed 

aerial mycelium phenotype of a haaA mutant suggests that HaaA might have another role 

earlier in development, in addition to chromosome segregation defect in aerial hyphae. 

Inconsistent with expectation, the localization of HaaA-EGFP was observed later in 

mature spores and not in vegetative hyphae or prespore compartments. Surprisingly, that 

HaaA-EGFP localization resembled neither filamentous localization of ParA nor evenly-

spaced foci ParH-EGFP foci, which also suggests the inconsistency in macroscopic and 
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microscopic results for HaaA. Unexpected localization of HaaA-EGFP might imply that 

the fusion is not functional. The homolog of haaA in S. venezuelae, sven5529, was 

identified as a highly significant WhiA (Bush et al., 2013) and WhiB target (Bush and 

Buttner, personal communication), which are involved in the regulation of key steps in 

aerial growth, initiation of cell division, and chromosome segregation (Bush et al., 2013). 

The fusion results reported here are consistent and suggest that the expression of HaaA is 

developmentally regulated. One of the ways to show that HaaA is also under the 

regulation of WhiA or WhiB in S. coelicolor is to investigate HaaA-EGFP localization in 

a whiA or whiB-null mutant. If the HaaA-EGFP localization in the mature spores is 

affected in whiA or whiB-null mutants, then it shows that HaaA is a WhiA and/or WhiB 

target in S. coelicolor as in S. venezuelae.   

 Several other Actinobacteria (S. venezuelae, C. glutamicum, M. smegmatis) were 

also investigated to see if interaction between HaaA and ParA and ParH homologs was 

conserved. Homologs of ParA and ParH interacted with the cognate homolog of HaaA in 

the bacterial two-hybrid assay for each tested bacterium. Conservation of the interaction 

results with S. coelicolor were interpreted as an indicator of the importance of this novel 

protein.  

 There are only eight amino acid residues in the predicted disordered C-terminus 

region of HaaA that are highly conserved among the homologs of widely divergent 

Actinomycetes. A variant protein lacking these eight amino acid residues (Figure 3.2), 

HaaA(Δ338-345) still formed dimers and interacted with ParA and ParH as judged by the 

bacterial two-hybrid system. However, the intensity of their interaction was significantly 

reduced. These results indicated that these residues might play a role in other protein-
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protein interactions or protein folding and stability.   

 It will be necessary to investigate the expression time points of HaaA to be able to 

understand the role of HaaA in chromosome segregation as well as to propose a more 

accurate model that represents the segregation protein interactions during  

development-associated genome segregation in S. coelicolor. S1 nuclease protection 

assay, RT-PCR, northern blot are some of the assays that could be done to investigate 

HaaA expression for the future studies.  

 Even though recent studies on partitioning proteins provided considerable 

information, a complete understanding of the whole segregation mechanism is still 

elusive. Identification of a novel interaction partner of ParA and ParH also confirmed that 

there are still additional unknown proteins that are involved in chromosome segregation 

of S. coelicolor. 
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Figure 4.1. Putative model for segregation protein interactions during development-

associated genome segregation of aerial hyphae in S. coelicolor. Chromosomal DNA 

is not shown on the left part of the figure, but ParB organizes the oriC region of the 

copies of the chromosome. Left side of the figure shows previously known information, 

which is the evenly distributed ParB-EGFP foci and helical filaments of ParA in the 

aerial filaments of S. coelicolor (Jakimowicz et al., 2007). Right side of the figure shows 

the model of segregation proteins with the contribution of this study as determined by 

bacterial two-hybrid assays. ParH interacts with ParB and SlzA, ScpB interacts with SlzA 

and ParA, and HaaA interacts with ParH and ParA in a bacterial two-hybrid assay.  
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