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 1 

I.  INTRODUCTION 

 

A.  Statement of the Problem 

 

Ibuprofen is a prototypical nonsteroidal anti-inflammatory (NSAI) agent, used for 

the treatment of rheumatoid arthritis, post-operative pains, pains associated with common 

colds, etc. (1).  The drug has also been shown to attenuate the effects of modulators of 

inflammation which are implicated in the pathogenesis of Alzheimer’ s disease (2,3). 

Ibuprofen is a poorly water-soluble drug with poor flow and compressibility 

properties (4,5).  Poor compressibility and flowability have continued to present 

considerable challenges in pharmaceutical unit processes such as tableting and filling of 

hard gelatin capsules. Flowability problems also result in poor content uniformity.  Co-

processing of ibuprofen with an excipient into ready-to-use microparticulates (spheroids) 

could potentially be useful to improve flowability, friability, compressibility and content 

uniformity of the drug (6,7).  Moreover, co-processing with less number of excipients 

would reduce the problem of bulkiness usually associated with the multicomponent 

commercial formulations.  In addition, spheroids have been shown to possess lower level 

of gastric irritation and fewer dose-dumping accidents (8).   

In the development of spherical microparticulates or spheroids, extrusion 

spheronization has been the method of choice.  However, it involves four major steps, 

and the process is difficult to optimize, reproduce and scale-up (9,10).  In contrast, rotor- 

disk fluid-bed technology is a one-step closed process that utilizes a rotor, which can also 

be used for spheronization, drying, drug layering and coating.  Moreover, the rotor-disk 
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fluid-bed can be automated, which enhances scalability, batch-to-batch reproducibility 

and reduction of process time and cost (6,11,12).  The fluidization of the particles can 

also lead to cost-effective product with desirable content uniformity. 

The fluid-bed operation is a multivariable process and optimization and scale-up 

of the process are difficult to accomplish (13,14). This is due to interplay of the variables 

and their influence on obtaining products with desirable qualities.  Moreover, achieving 

desirable batch size, drug loading and the use of different particle sizes of the same drug 

to obtain good spheroid qualities were reported as major draw backs of the rotor-disk 

spheronization process, thus limiting the utility of the technology (15,16).  Reports on this 

are limited especially on the optimization and scale-up of rotor-disk fluid-bed technology. 

This is possibly due to the fact that many companies could have proprietary information 

that are inaccessible to the general public.  Therefore, optimization of the process through 

statistically designed experiments would lead to understanding of interplay or interaction 

of variables and their effects on formulation and subsequent scale-up.  

In addition, ibuprofen, being a rapidly absorbed drug with high bioavailability 

(>80%) and short biologic half-life (1.5 - 2 hrs; 17), there is high probability for lack of 

patient compliance.  Therefore, a sustained release formulation will alleviate this problem 

through reduction in dosing. 

Ibuprofen is a potent non-specific cycloxygenase and prostaglandin inhibitor 

which makes it amenable to significant adverse effects, including gastrointestinal tract 

irritation, following the large conventional oral delivery (18).  The adverse 

gastrointestinal side effects of ibuprofen could occur both by local or systemic drug 

contact (19,20).  This effect might be eliminated by coating for sustained release delivery 
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as well as encapsulation of the coated and uncoated microparticulates, which will ensure 

that less drug is in contact with the gastric mucosa per unit time (20,21), and also yield 

effective, safe and stable delivery systems for use in humans. 

Several studies have shown the efficacy of sustained release ibuprofen tablets over 

conventional dosage forms (22-25).  Brufen Retard, a sustained release ibuprofen that is 

marketed in Europe has also been shown to be effective as anti-inflammatory and 

analgesic agents at the recommended dose (26).  However, no sustained release ibuprofen 

formulation has been found to exist in the market in the United States.  

Therefore, the specific aims of this research are as follows: 

1)  Development of spheroids using the one pot rotor-disk fluid-bed technology, 

ibuprofen as the model drug, Avicel as the major excipient and spheronization enhancer, 

sodium lauryl sulfate as lubricant and water as binder. 

2)  Optimization of the formulation and process variables using statistically designed 

factorial experiment.  

3)  Evaluation of the effects of drug particle size, different drug loads and scale-up up to 

intermediate production batch size on the the developed and optimized ibuprofen 

spheroids using the rotor-disk fluid-bed technology. 

4)  Polymer coating and encapsulation of coated and uncoated microparticulates using 

hard gelatin capsules for comparative evaluation of controlled and immediate release 

delivery systems. 
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B. Literature Review 

 

1.  Ibuprofen 

 

a.  Therapeutic uses and side effects  

 Ibuprofen (Figure 1) is an acidic drug with a pKa of 4.8 and a molecular weight of 

206.  It is a potent cycloxygenase and prostaglandin inhibitor, an NSAI agent having anti-

inflammatory, antipyretic and analgesic activity in both animals and humans.  It is 

developed in 1960s and has been used for the treatment of rheumatoid arthritis, 

osteoarthritis, post-operative pains, pains associated with common colds, etc. (1).  It has 

recently been implicated in Alzheimer’ s disease (2,3). 

Figure 1:  Structure of ibuprofen (27).  

*: Chiral center constituting the R and S isomers of ibuprofen  

 

As an antinflammatory agent, ibuprofen inhibits cycloxygenase (COX) enzymes, 

thereby inhibiting prostaglandin production (18,19). Two COX enzymes are known to be 

involved in prostaglandin synthesis, COX-1 and COX-2. COX-1 generates prostaglandins 

that maintain normal function in several organ systems, and are involved in the protection 

of gastrointestinal mucosa. COX-2 generates prostaglandins that mediate inflammatory 
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stimulus, and thereby cause inflammation and pain. The adverse gastrointestinal side 

effects of NSAIDs like ibuprofen are therefore related to COX-1 inhibition.  Although the 

therapeutic efficacy of ibuprofen outweighs the severity of its side-effects (28), studies 

have shown an increased tendency of NSAIDs toward gastric irritation at higher doses 

(29). This effect could be regulated by coating and encapsulation of the drug, which will 

minimize the amount of drug that would be in contact with the gastric mucosa per unit 

time (20,21). 

 Ibuprofen has been implicated in the antiinflammatory modulation of Alzheimer’ s 

disease (2,3).  Alzheimer’ s lesion is characterized by the development of -amyloid 

protein deposits and neurofibrillary tangles.  The protein deposits stimulate inflammation 

in the brain, which activates the immune cells and consequently elicit harmful substances.  

These include inflammatory cytokins, proteases and complement proteins that destroy 

nerve cells. Ibuprofen has been shown to interrupt this sequence, and thereby lessen the 

abnormal accumulation of -amyloid (2,3,30). 

Ibuprofen is also used in the prevention of patent ductus arteriosus (PDA; 31).  

The ductus arteriosus is a connection between the aorta and the pulmonary artery.  It is 

part of the fetal pathway that helps to distribute oxygen from the mother to the baby's 

organs.  Thus it facilitates blood flow and by-passes the lungs, which do not require high 

blood flow at this time of the fetal development. At birth, the lungs expand, the baby's 

blood vessels relax to accept more flow, and the ductus arteriosus usually closes on its 

own within the first 15 hours of life. However, sometimes the ductus arteriosus does not 

close on its own; a condition referred to as a patent (open) ductus arteriosus. This 

condition is prevalent in premature babies and can also occur in full term infants.   
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For newborns, NSAID such as indomethacin drug is normally administered which 

helps to constrict the muscle in the wall of the PDA in order to close it. Because of the 

potential side effects of indomethacin that includes a decline in cerebral blood flow and 

cerebral oxygen delivery, surgery is sometimes preferred to tie off the open duct.  Some 

physicians also prefer to use ibuprofen instead of indomethacin, as the former has been 

shown to constrict the duct and also reduce the incidence of PDA in preterm infants, 

without the complications of indomethacin (32,33). 

 

b. Dosage Forms/Dosing 

Ibuprofen is a high dose drug with a short biologic half-life (1.5 - 2 hrs) and is 

therefore administered several times a day orally (34). For the immediate release 

products, the usual prescribed adult dose is 400 - 800 mg three or four times daily, with 

the maximum daily dose not exceeding 3.2 g. For the sustained release formulation, 

Brufen Retard, the recommended once or twice daily dosage (1600 mg) has been shown 

to provide effective control of arthritic symptoms for different patient groups compared to 

baseline, with significant overall improvements in pain and stiffness (34).  Ibuprofen 

pediatric dosage form exist as tablets and suspensions, which range between 5 and 50 

mg/kg daily with the maximum daily dose not exceeding 2.4 g (34).  

 For adults, ibuprofen is available (tablets and caplets) as oral immediate release 

solid dosage form. The most commercially available dosage form is the regular tablets  

(e. g. Motrin®, Advil®), although chewable tablets, liquigel, oral drops and oral 

suspensions exist (35).  Commercially available ibuprofen consist of not less than twelve 

excipients, which often lead to increased bulkiness of the oral dosage form, reduced 
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amount of the active and therefore increased frequency of intake. These factors could 

consequently reduce patient compliance. Intravenous ibuprofen injection also exists but 

as orphan drug (Children’s Motrin®) for the treatment or prevention of patent ductus 

arteriosus (PDA; 31).  

  

b.  Solubility and flowability 

 Ibuprofen powder has a slight characteristic odor and is practically insoluble in 

water.  It also shows poor dissolution and tableting behavior due to its hydrophobic 

structure (5). It is also very cohesive and exhibits poor flow characteristics (36).  The 

physicochemical properties of ibuprofen have been improved by changes in its 

crystallinity and in surface properties (37).  Also drug dissolution has been improved by 

various complexation techniques e.g. with cyclodextrines (38), and by the use of various 

excipients (22), including spray-drying of the drug particles with microcrystalline 

cellulose (MCC; 39).  In the latter study, x-ray diffraction indicated that ibuprofen exists 

as very fine crystals on cellulose particles, which is facilitated by the rapid evaporation of  

the solvent during spray drying.  This restricted crystal growth led to improved  

dissolution (39).  

In a previous study (40), the incorporation of sodium carboxylmethyl cellulose 

(NaCMC) to piroxicam- Avicel® PH-101 formulation (formulation A), or as a co-

processed blend with MCC (Avicel®  CL-611; formulation B) enhanced the release of 

piroxicam at 45 min from 30% (formulation A) to 95% (formulation B).  The use of 

Avicel® RC-581 in a spheronization process has been shown to add plasticity to powder 

blend, thereby facilitating the formation of spherical pellets, and improving the 
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flowability of the formulation (41,42). Therefore, excipients such as MCC or MCC co-

processed with polymers such as NaCMC, have shown good promise in granulation 

processes and could be useful in improving ibuprofen flowability, as well as in the 

development of ibuprofen microparticulates.  

 

2.  Excipients 

 

a. Microcrystalline cellulose/Sodium carboxymethyl cellulose (Avicel®) 

 Microcrystalline cellulose/Sodium carboxymethyl cellulose (Avicel®) products are 

colloidal co-processed mixtures of microcrystalline cellulose (MCC) and sodium 

carboxymethyl cellulose (NaCMC).  They are dispersible in water, and produce 

thixotropic gels at concentrations of >1.2% solids (43,44).  They are also insoluble in 

organic solvents and dilute acids, and partially soluble in both dilute alkali and water. 

They consist of the RC and CL types in which the amount of carboxymethyl cellulose 

present can vary between 8.3 - 18.8% w/w.  The RC-581 grade has lower concentration of 

NaCMC than the CL-611 grade. Both polymers are mostly used in solid dosage forms as 

diluents, lubricants, spheronization enhancers and/or binders (45,46).   

 Several studies (including our previous report in which RC-581 and CL-611 were 

co-processed with ibuprofen; 47) have shown that when used in solid dosage forms, there 

are no significant differences in granule quality obtained from both grades (44).  Major 

differences have nevertheless been observed when used in suspensions due to their end 

product viscosity/gel strength and methods of dispersion required for complete activation, 

and where they exhibit a high degree of thixotropy (43,44).  Additionally, differences 
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have been observed when compared with other Avicel® types (grades that do not contain 

NaCMC), even in solid dosage forms (48). Garcia, et al. showed that in the formulation 

of glipizide microparticulate spheres and tablet dosage forms, the former, containing 

Avicel® PH-101 gave higher drug release than spheres of the same composition but 

prepared with Avicel® RC-581 (48). On the contrary, tableted spherical formulations 

containing Avicel® RC-581 gave higher release rate constants than the formulations of 

the same composition prepared with Avicel® PH-101.  These were attributed to 

differences in porosity of the formulations. Spheres prepared with Avicel® PH-101 had 

more pores than spheres of the same composition prepared with Avicel® RC-581, that 

resulted in swelling of RC-581 and slower drug release.  It is also possible that milling of 

the spheroids required for tableting as well as tablet compression affected the normal 

packing of the polymer in the tablets. This will affect the porosity of the formulations and 

also play a role in determining their amount of water retention, and might have led to 

higher drug release of tablets produced using RC-581. 

 Microcrystalline cellulose (e.g. RC-581) has been used as a processing aid in 

traditional extrusion spheronization.  The MCC acts like a molecular sponge, absorbing 

considerable amount of water and facilitate binding and lubrication of the moistened 

powder mass during extrusion (49-51).  It has also been shown that incorporation of 

surfactants, for example, sodium lauryl sulfate (SLS), to a spheronization system can 

improve particle-particle and particle-liquid interactions, as well as flowability of the 

granules produced (52,53).  These observations justified the continued use of Avicel® and 

SLS in spheronization process. 
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b.  Sodium Lauryl Sulfate 

 Sodium lauryl sulfate is an anionic surfactant that has been extensively used to 

reduce the surface tension of pharmaceutical systems. It has been utilized as anionic 

emulsifier at 0.5 - 2.5%, tablet lubricant and wetting agent at 1 - 2%. It has been used 

widely in traditional extrusion-spheronization as a wetting agent (53,54), and to impart 

plasticity to extrudates (55). Studies have shown that the presence of a liquid binder in the 

formulation is necessary for the formation of pellets by the extrusion/spheronization 

technique (51,56).  The spreading of the liquid can be influenced by viscosity and surface 

tension. The latter affects possible changes in accessibility of the pore structure within the 

powder bed. Both viscosity and surface tension can influence the consistency of the wet 

powder mass, and thereby affect the ability to produce spherical pellets. 

Incorporation of a surfactant to a spheronization system has been shown to reduce 

the contact angle between the solid and ligand, which enhances the interaction between 

the ligand and powder (56).  Also, the addition of surfactants extends the period of 

constant water level slightly, as well as eases the spreading of liquid to a greater extent. 

Larger pellets with narrow size distribution are produced due to particle-particle 

interaction when surfactants are present. The packing of the particles within the pellets is 

also influenced by the presence of surfactants, which results from liquid/solid 

interactions. Although SLS had such commendable influence on water movement, it was 

observed to have less effect on porosity of the granules (56).   

 The effects of three surfactants, namely, sorbitan monolaurate (SML), sorbitan 

monododecanoate (SMD), and sodium lauryl sulfate (SLS) on the physicochemical 

properties of sulfadimidine tablets have been studied (57).  Tablets were compressed 
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from granules processed by the fluid-bed granulation method.  All batches of the 

granulations were compressed to the same weight at constant pressure.  The granulations 

that contained 0.50 SML, 0.20 or 0.50% SMD produced compressed tablets with high 

friability, in contrast to the granulations containing SLS.  With regard to their efficiency 

to improve both tablet disintegration and dissolution, the surfactants were ranked as 

follows: SLS > SML > SMD. 

 In another study using a solution of 0 to 3% polyoxyethylene 20 oleate as a 

granulation liquid, mechanically strong, free flowing pellets were produced with a 

decrease in the amount of fines (58). There was also an increase in the over-sized pellets. 

The shape and the surface characteristics of the pellets were also improved.  For instance, 

the pellets became rounder up to 1% addition of the surfactant, with negligible 

improvement after this concentration. The roughness of the pellet surfaces also decreased 

with an increase in the concentration of the nonionic surfactant.  The results suggest that 

the addition of nonionic surface-active agent improves the wetting and thereby the 

rounding of pellets containing MCC and native maize starch as a co-filler.  

 

3.  Microparticulate Drug Delivery Systems and Spheronization 

 

a. Microparticulate drug delivery systems 

 Microparticulates are drug-loaded small polymeric particles (erodible, non-

erodible or ion-exchange resins) that could be delivered as solids or suspended in a liquid 

carrier medium. They include microspheres, spheroids and/or pellets. Microparticulates 

have been employed in different medical and engineering applications (59-64). In the 
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field of medicine, this delivery system (especially in radiolabeled form) has been used in 

different disorders in form of diagnostic tools for functional imaging of lungs, 

reticuloendothelial system, gastrointestinal system, inflammatory lesions and  

tumors (59).  

Several distinct approaches have been used to formulate drugs as microparticulate 

delivery system for oral, intraocular and topical applications. These include erodible 

microparticulates, swelling mucoadhesive particulates, pH responsive microparticulates, 

nanoparticles/latex systems, ion-exchange resins, etc. (60).  In ophthalmology, ocular 

delivery of microparticulates has been shown to improve bioavailability at the target site, 

and reduce the potential for ocular and systemic side effects (61).  In this regard, the 

delivery system was used topically as controlled drug delivery in vitreoretinal disorders 

(some of the major causes of blindness in the developed world), to reduce frequency of 

intravitreous application (via injection) and optimize intraocular drug levels. This 

minimizes the risk of complications that can occur from frequent intravitreous injection 

(62).  Microparticulates are used therapeutically mostly as spheroids for immediate and 

sustained release drug delivery (59,63,64). 

 Spheroids/pellets are spherical microparticulates of varying diameter depending 

on the application and the goal of the formulator (7). Pellets can be manufactured in 

different ways. These include drug layering (spraying a solution or suspension of a binder 

and a drug onto inert core), hot-melt (hardening of the molten droplets), spray congealing, 

spray-drying a solution or suspension of the drug with subsequent formation of the pellets 

due to the evaporation of the fluid phase, and spraying a binder solution into a whirling 

powder using a fluidized bed (65,66). The most popular method of producing pellets is by 
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extrusion-spheronization technique. This entails the simultaneous control of several 

formulation and process variables.   

 Spheroids/pellets manufactured in the pharmaceutical industry are sized between 

500 and 1500 µm and are commonly filled into hard gelatin capsules (67), but can also be 

compressed in to tablets (68,69). As a drug delivery system, the microparticulates offer 

not only therapeutic advantages such as less irritation of the gastrointestinal tract, but also 

important bulk material processing advantages (8,67,70).  They show better flowability, 

produce less friable dosage form, exhibit biopharmaceutical reproducibility, a narrow 

particle size distribution, low percentage of fines, and are easy to coat and encapsulate 

(6,9).  They are also suitable for dosing as multiple-unit dosage formulations (contrary to 

the single-unit dosage forms) because of their spherical shape, their mechanical properties 

and the ability to readily release their active constituents (71) from hard gelatin capsules, 

tablets, and sprinkles. Additionally, the chance of incomplete absorption of a dose is less. 

For example, if a single-unit tablet fails to disintegrate, the entire dose would be lost, 

however, if few units of the pellets fail to release drug at the desired site, the effect would 

not be altered significantly. 

 The roundness of spheronizedpellets should always be highly considered because 

irregular shapes tend to indicate a process that is out of control. Spheroids with low 

sphericity and agglomerated pellets also have high density and low porosity, which could 

result in poor packaging. Confirmation that the pellets are spherical is obtained using 

some measures of roundness, the shape factor and aspect ratios (72).  
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b.  Spheronization process  

 Granulation is the process in which primary powder particles are made to adhere 

together to form larger, multiparticle entities called granules. Granulation methods are 

normally divided into two parts: wet granulation methods in which liquid is used in the 

process, and dry granulation methods that use no liquid.  The method and conditions of 

granulation affect the intergranular and intragranular pore structure by changing the 

degree of packing within the granules (73). 

Wet granulation involves the massing of a mixture of dry primary powder 

particles using a granulation fluid, the latter being mostly water for economical and 

ecological reasons (73). Wet granulation methods include wet massing and fluidized bed 

processes. The latter could involve the rotor-disk module in which microparticulates are 

manufactured directly from dry powder by spheronization. 

 

    1. Mechanism of pellet formation  

 Spheronization is a form of granulation process used in pellet formation and thus 

shares the basic granulation mechanism. Like all granulation processes, the mechanism of 

pellet formation involves nucleation, coalescence, abrasion, transfer, breakage and 

layering (74).  Several studies have been performed to study the mechanism of pellet 

formation using high shear mixers (Gral 10 and Gral 25; 75,76), and agglomeration by 

nucleation and coalescence has been found to dominate such systems. Limited 

information is available in literature with regard to the mechanism of pellet formation 

using the rotor-disk fluid-bed process. 
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Although the granulation process of the rotor-disk fluid-bed is different from that 

of the high shear mixer, it has been shown that similar process variables influence the 

product formulation and characteristics in both systems (75-78). In fluid-bed granulation, 

the moisture content in the bed and the speed of the rotating disk are the key parameters 

controlling the pellet qualities, especially the particle size and size distribution (9,44,79-

82).  Similarly, in high shear mixers, the binder concentration and impeller speed are the 

most important variables influencing the mean granule size and size distribution (75,76). 

It is therefore possible that the same mechanism of growth will be applicable to both 

processing systems, as discussed in the subsequent paragraphs.   

 The nucleation or growth mechanism of spherical pellets/spheroids has been 

defined in a high shear equipment using torque measurement (75). Vonk et al. (76), also 

studied growth mechanisms during liquid addition stage in high shear mixers (Figure 2).  

They reported that spheroid formation starts with the formation of large primary nuclei 

that follows particle-particle contact and adhesion due to liquid bridges (nucleation).  

This nucleation process was described by the comparison of the theoretical tensile 

strength of the nuclei and the dynamic impact pressure from the measuring system. The 

primary nucleus is classified as loosed agglomerate with high porosity and low tensile 

strength. The nucleation process is followed by the formation of small secondary nuclei 

due to break-up of the primary nuclei. The secondary nuclei are the starting materials for 

exponential growth, which starts when the solid mass is sufficiently wetted, leading to 

their densification. Due to densification, stronger and spherical pellets are formed that 

survive many collisions, and growth proceeds exponentially by coalescence. Additionally, 

liquid is squeezed to the pellet surface, which contributes to the growth by coalescence,  
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Figure 2: The destructive nucleation growth mechanism of high shear pelletisation (76) 

 

as more particles could adhere to the already formed granule. This liquid addition stage is 

followed by the kneading stage (76). 

 During the kneading stage, net growth diminishes because no more liquid is 

applied, and a steady state is observed. Consequently, spheroid break-up becomes 

considerably important, depending on the final moisture content in the powder bed. 

However, at optimal conditions of binder content, the mean pellet size does not change 

during the final stage of the kneading phase (i.e., there is practically no break-up), which 

results in a well-defined, spherical product, with a reduced porosity compared to the 
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primary nuclei (76). It was therefore concluded that deformation and probably 

densification, and not fragmentation, is the dominant compression mechanisms of pellet 

formulation.  The exponential growth and the final pellet size were linearly related to the 

specific liquid addition rate and the impeller speed.  

 Rashid et al. (77), have described the mechanisms of microcrystalline cellulose 

core formation and growth in a centrifugal granulating process as being similar to the 

spheronizing process of pellets.  Different MCC grades were used as starting materials. In 

such a system, the wetting phase (nucleation region) was followed by combination of 

coalescence between the previously formed nuclei and the layering of the smaller fine 

powder over the nuclei.  At a later stage, layering and abrasion became the predominant  

mechanisms.  Majority of the formulations studied produced granules that were relatively 

spherical, smooth, free-flowing and had good mechanical strength, with desirable narrow 

range of particle size distribution.  

 In another study, the wetting and growth profiles of the granules were investigated 

using a tracer in the binder liquid and the authors reported a linear relation between tracer 

mass and granule mass during the agglomeration stage of the process (78).  The result 

showed insufficient wetting and rewetting of the granules during the early kneading 

stages of the process respectively, which resulted in a decline of granule growth rate, and 

consequently to granule attrition. These growth mechanisms are applicable to those in 

extrusion/spheronization process and spheronization via rotor-disk fluid-bed processing, 

which will be discussed further. 
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    2.  Extrusion/spheronization 

 Extrusion/spheronization invented by Nakahara in 1964 has been described as the 

most popular method of producing pellets (6,8,79,80) and the methodology of choice in 

the preparation of spherical particles (71).  This traditional spheronization method 

involves four different steps, namely, granulation (preparation of the wet mass), extrusion 

(shaping the mass into cylindrical form), spheronization (breaking up the extrudate and 

rounding of the particles into spheres) and drying of the pellets, as will be elaborated 

below. 

 i. Granulation  

 Different types of granulators are used to perform the mixing of the powder blend 

and the granulation liquid in order to produce plastic mass. The most commonly used 

granulator is the planetary mixer (81), although the use of high shear mixers has also been 

reported (82).  An important problem encountered during the granulation process is the 

evaporation of the granulating liquid probably due to the large amount of heat introduced 

by most of the mixers. The liquid evaporation influences the extrusion behavior of the 

wet mass, especially as a homogenous distribution of the liquid phase throughout the 

granulated mass is highly demanded. Consequently, it was reported that the binder 

(mostly water) would equilibrate throughout the complete mass when the wet mass was 

left for 12 hr in a sealed polythene bag before the extrusion step (83).  However, this 

measure is very time consuming. 
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 ii. Extrusion 

  During extrusion, the wet plastic mass is shaped into long rods. This process is 

used not only in the pharmaceutical industry but also in the food, ceramic and polymer 

industries. Four classes of extruders exist, namely, screw, sieve and basket, roll, and ram 

extruders (7). The contour and position of the screens as well as method of feeding the 

wet mass to extruder differ in each case. Recent modifications have allowed in-process 

control using extrusion forces as these extrusions could be correlated to the final quality 

of the pellets (84). The power consumption of the motor driving the extruder can also be 

correlated to the pellet qualities (76). 

 

 iii. Spheronization 

 During spheronization, the formed cylinders are collected onto the spinning plate 

of the spheronizer, the friction plate, where the extrudate is broken up into smaller 

cylinders with a length equal to their diameter (78), and become rounded due to frictional 

forces from the plates. Two types of spheronization methods have been identified (7).  In 

the first method, the process starts from a cylinder with rounded edges, to dumbbells and 

elliptical particles and eventually to perfect spheres (Figure 3A; 85).  The second method 

reported by Baert and Remon (83) suggests that a twisting of the cylinders occurs after 

their formation resulting in rounded edges that finally results in the breaking of the 

cylinders into two distinct parts (Figure 3B). Both parts have a round and a flat side.  Due 

to the rotational and the frictional forces involved in the spheronization process, the edges 

of the flat side fold together forming a cavity observed in certain pellets. It has been 

suggested that the speed in combination with the diameter of the friction plate (not the 
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Figure 3: Mechanisms of pellet formation in traditional spheronization methods according 

to: (A) I. Cylinder, II. Cylinder with rounded edges, III. Dumb-bell, IV. Ellipse, 

V. Sphere (85). (B) I. Cylinder, II. Rope, III. Dumb-bell, IV. Sphere with a cavity outside, 

V. sphere (83). 

 

absolute speed), should be used to calculate the plate peripheral velocity. These should be 

considered in order to obtain highly spherical pellets (86). 

 

 iv. Drying 

 This is the final stage in pellet formation. The pellets can be dried at room 

temperature (87,88), or at elevated temperature in an oven (70,89,90) or a fluidized bed 

(86).  The use of microwave oven drying has also been reported as the final stage in the 

production of pellets (90,91). 

 

 Several formulation and process variables influence the final quality of the pellets 

derived from the spheronization process. These include the moisture content of the 

granulated mass, the type of liquid binder, type of extruder, extrusion speed, properties of 

the extrusion screen, etc. (92). It has also been shown that the success or failure of each of 

A 

B 
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these steps affects greatly the quality of the final pellets or spheres (7). Consequently, 

optimization, batch-to-batch reproducibility and especially scaling up to manufacturing 

batch size, that are the ultimate goals of industries in the development of any dosage form 

could be difficult to achieve with this traditional method (7). On the contrary, it has been 

reported that if several variables in a fluid-bed process are fully controlled, good batch-to-

batch reproducibility can be obtained (7,93). 

 

     3. Fluidized bed processes 

 The traditional fluid-bed technology, which was developed over the past 30 years 

for rapid drying, was described for the first time in the pharmaceutical field by Reynolds 

(94) and by Conine and Hedley (68). In the 1990’s, fluidized bed has been extended to 

rotary spheronization process as well as other routine use like agglomeration, air 

suspension coating, powder and solution layering (95).  Nevertheless, the principles of the 

fluid-bed have not changed. 

 

   i. Traditional fluid-bed technology 

 A fluidized bed is essentially a bed of solid particles with a stream of air or gas 

passing through them via a slit created by a plate (inserted into the vessel) and the vessel 

wall. The air-flow is normally strong enough to keep the particles in motion.  

The fluid-bed processing equipment generally consists of the air processing unit, the 

product container, and the expansion chamber for proper fluidization of the powder bed 

(Figure 4; 95,96). It has one or more binary nozzle(s) each comprising of a solution  
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Figure 4: Fluid-bed equipment (97). 

 

delivery system and compressed air to atomize the liquid binder, exhaust filter and 

blower, product temperature probe, filter housing, etc. The latter encloses cartridge filters 

mostly made of polyester or stainless steel materials. These filters retain products in the 

system, which are shaken at pre-determined time intervals to release the retained products 

into the product vessel for spheronization (98).  The conical shape of the expansion 

chamber reduces the velocity of the air in the filter compartment, which helps to keep the 

smaller or fine particles out of the upper filter region.  

 The fluid-bed process has been shown to have several advantages over other 

granulation technologies, especially in the development of extended release products 

(99,100).  In one study, three products were compared in the development of metoprolol 

tartrate extended-release matrix tablet formulations, namely directly compressible, fluid-
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bed or high-shear granulated products (99).  Metropolol tartrate has a tendency to adhere 

to the punch surfaces and has poor flow properties, and all three processes were 

sufficiently sensitive to manufacturing variables.  Despite the various excipients (MCC 

with talc or stearic acid) that were added to address the difficult physico-chemical 

characteristics of the drug, direct compressible materials exhibited poor flow, picking and 

sticking problems during tableting.  High-shear granulation resulted in granules with 

improved granule flow and tableting characteristics but also formed hard granules that 

were difficult to mill. This was attributed to over-massing of the granules by this 

granulation process. On the other hand, the fluid-bed granulation made using various 

binders appeared to be satisfactory in terms of flow and tableting performance.  The fluid-

bed technology was therefore designated as the process of choice for further evaluation of 

critical and non-critical formulation and processing variables.  

 The fluid-bed processes include the top-spray process, the bottom-spray process 

and the tangential-spray process shown in Figure 5 and Table I (96,101). The three fluid-  

bed processes represented offer different advantages and disadvantages. They are 

applicable to both granulation and coating processing, however, the performance  

requirement of the finished product and suitable batch size of the product must be 

considered when selecting them for a particular product.  

The top-spray process is usually used with a conventional granulator-coater, the 

bottom-spray process with a Wurster air-suspension column and the tangential-spray 

technique is used with a rotary fluid-bed granulator (101).  The latter was used for this 

study, and will be elaborately discussed in subsequent sections. 

 



 24 

  

Figure 5: Fluidized bed processes. A. Top-spray method; B. Bottom-spray method;  

C. Tangential-spray method (101). 

 

ii. Rotor-disk fluid-bed 

 1. Equipment and components of the rotor-disk fluid-bed 

 As previously discussed, extrusion/spheronization involves a number of 

successive steps such as moistening, extrusion, spheronization and drying. Rotor-disk 

spheronization, however, reduces the number of processing steps involved in traditional 

spheronization method, and thereby reduces the production time and cost, with good 

batch-to-batch reproducibility and consequently faster market time (11,12,102).   

A B 

C 
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Table I: Characteristics of Fluid-bed Granulation and Coating Processes (96,101). 

 

Processing 

Method 

Advantages Disadvantages Applications 

Top-spray 

coating 

(conventional 

mode) . 

 

 

 

Bottom-spray 

coating 

(Wurster)  

 

 

 

 

 

 

Tangential-

spray coating 

(rotary mode) 

 

Accommodates large 

batch sizes, is simple 

to set up, and allows 

easy access to nozzle. 

 

 

 

Accommodates 

moderate batch sizes, 

produces uniform and 

reproducible film 

characteristics, and 

allows for widest 

application range  

 

 

Simple to set up, 

allows access to the 

nozzle during 

processing, permits 

higher spray rates, 

and is the  

shortest fluid-bed 

machine for coating 

fine particles 

Limited in its 

applications 

 

 

 

 

 

Tedious to set up, 

does not allow 

access to nozzles 

during processing, 

and is the tallest 

fluid-bed machine 

for coating fine 

particles  

 

Puts mechanical 

stress on the 

product 

 

Hotmelt coating and 

aqueous enteric coatings.  

Not recommended for 

sustained release products 

due to inefficient coating 

uniformity. 

 

Sustained-release, enteric- 

release, and layering  

Poor for hotmelt coating 

because difficult to control 

and maintain required 

temperature 

 

 

 

Very good for layering, 

sustained-release, and 

enteric-coated products. 

Hotmelt coating possible.  

Not recommended for 

friable products because 

of potential for strong  

mechanical forces during 

the process. 
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Although rotor-disk fluid-bed comprises of set of processes that depend on each other, 

once optimized, each contributes to the successful transformation of the starting powder 

mixtures into spheroids. 

The components of the fluid-bed processing equipment have been discussed 

previously (Figure 4).  A rotor-disk, which contributes greatly to the spheronization 

process, is inserted in the product container of the rotor-disk fluid-bed. Figure 6 shows 

the product vessel with the rotor-disk insert and the spray gun facing the direction of the 

powder flow.  

 

Figure 6: Rotor-disk fluid-bed product container with rotor-disk insert and spray gun (97). 

 

2. Rotor-disk fluid-bed process Rotor-disk fluid-bed utilizes the tangential-

spray process. This has been described as a method of choice for producing spheroids 

used for immediate release purposes, as well as for producing pellets that could be coated 

for controlled release applications (96,103,104).  The tangential spray process is preferred 
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over the top- or bottom spray methods because spheroids formulated in this equipment 

have a surface morphology (less porous and more spherical) that is more suitable for 

coating than that of spheroids prepared using the other processes.  

 As shown in Figure 7, rotor-disk spheronization is centered around the rotor plate 

insert where disk rotation adds centrifugal force (Fc) to the material on it.  As the powder  

is sprayed tangentially, it is wetted and rolls around the product vessel by the centrifugal 

force into a vertical moving air stream with vertical force (Fv) caused by a gap between 

the vessel wall and the rotor-disk insert.  Because there is no force at the center of the 

plate, the rolling product falls back toward the center of the disk by gravitational force 

(Fg), thereby creating a rope-like motion (95,105). This process has been demonstrated to  

 

Figure 7: Schematic representation of rotor-disk technology using tangential 

spray gun (97). 
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be reproducible at the development and pilot stages, but is difficult to achieve further 

scale-up and optimization steps. 

 

 3. Factors affecting the rotor-disk fluid-bed process and product qualities 

 Several factors affect the characteristics of products produced in the fluid-bed 

spheronization process. These are the formulation, process and equipment variables. 

Formulation variables would include the amount of binder added, moisture content of the 

granulated mass, type of granulation liquid, and physical properties of the starting 

material. Process variables include inlet and outlet air temperatures, binder spray rate, 

spheronization speed, fluidization air velocity and volume. Equipment variables include 

filter shaking, scalability, plate material type and contour, etc. The amount of added 

binder and rotational speed have been identified as the most important variables for 

producing good quality spheroids (44).  

 

  Effect of type and amount of granulation liquid on the spheronization process.  

 In order to initiate the agglomeration and granule growth processes, an optimum 

amount of binder has to be introduced into the granulator (106).  The nature of the 

powder to be agglomerated will influence the selection of binder to be used for the 

granulation process.  Although the amount of binder used in the spheronization process 

has been mostly determined empirically (106), special instrumentation and procedures 

exist for this purpose (107).   

 In the spheronization process, the granulating liquid exerts a lubricant effect, 

which could be affected by the presence of different additives, used in most cases to 
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adjust its properties (108). These include surfactants and polymeric compounds, which 

have been shown to tailor the binder to exhibit specific behavior, thereby allowing fine-

tuning of some binder properties, namely, surface wetting, viscosity, adsorption, and solid 

bridge strength. These directly affect both the spheronization process and the resulting 

product.  

It has been shown that the presence of different additives could change the ease 

and extent with which liquids could be removed (drying) and reabsorbed (wetting) in the 

spheronization process (56).  This was demonstrated using water, a 25% solution of 

glycerol in water, sodium lauryl sulfate below its critical micellar concentration, and 

Pluronic PF68 (a nonionic surfactant at 0.01 and 0.0001%), as granulating liquids. Lower 

levels of saturation were obtained with the glycerol solution and considerably increased 

levels of saturation with the surfactants.  It has also been shown in both traditional 

extrusion/spheronization and rotor-disk processes, that the solubility of materials used 

(both drugs and fillers) plays an important role in the quantity of binder required to form 

satisfactory pellets and on the physical characteristics of pellets (109).  These studies 

emphasize the importance of using minimal number of excipients in dosage formulations, 

as was done in the present study. Additionally, the importance of binder selection for 

specific products in granulation/spheronization processes is implicated. 

 

 Effects of type and amount of granulation liquid on the spheronized products 

 qualities. The spheronizer speed, as well as the initial and final liquid 

contents (at the end of spheronization process) have been shown to exhibit significant 

effects on the qualities of the spheroid (92,110-112).  The qualities mostly affected are 
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sphericity, particle size distribution, and friability. These studies established a correlation 

between the amount of granulating liquid used in the formulation and the shape of pellets. 

For instance, in one of the reports in which traditional spheronization method was used 

(56), pellet shape, a very important spheroid characteristic was demonstrated to be highly 

influenced by the liquid content of the extrudate during spheronization.  In addition, low 

levels of liquid were shown to yield elongated, non-spherical pellets while very wet 

blends produced larger, agglomerated pellets with a wide particle size range and a higher 

porosity.  These were attributed to variations in water content and hence consistency.  

 In another report (113), it was shown that although the mean diameter of the 

granules was influenced by moisture contents at the final stage of spheronization, 

however, the effect of moisture on the granule diameter is cumulative or based on all the 

operational variables in granulation process.  These factors were also considered as 

important scale-up parameters.  

 

 Influence of the spray rate of the granulating liquid on product qualities.  

Liquid distribution by the nozzle influences the pellet growth (78). In addition, the 

spray rate and the mixing of atomization air and binder in the spray zone determine the 

average granule size. There is also a linear relation between the number of droplets that 

comprised a granule and the granule size, especially at the early stage of the process 

(113).  Therefore, there is a requirement for nozzles that produce uniform droplets, which 

allow these droplets to be easily controlled in size independent of liquid- and air-flow of 

the nozzle. Thus, a nucleation ratio factor has been proposed as a useful parameter to 
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describe the binder liquid efficiency (78). This factor depends on the material properties 

of binder liquid and powder particles.  

 

 Effect of plate rotational speed. Spheronization speed affects spheroid 

qualities in both the traditional and rotary fluid-bed processing (14,114,115).  In the 

traditional spheronization, extrudate speed influenced the size and sphericity of the 

pellets, with the best results obtained at intermediate spheronization velocities (116,117).  

In the one-step rotary process, the use of variable speeds of the rotating plate during the 

spheronization run has been investigated in order to achieve optimal spheroid yield (118). 

The study was performed due to the occurrence of material adhesion and formation of 

oversize particles in the product yield that was attributed to the use of a non-optimized 

process speed.   

It was shown that when the plate speed was increased during liquid addition 

(spheronization process), the greater centrifugal forces generated improved liquid 

distribution and the mixing of the moist powder mass, resulting in a decrease in the 

amount of oversize particles formed (118). A "low-high-low" speed variation during 

rotary processing was shown to be necessary to produce spheroids with a narrow size 

distribution and with a minimal amount of oversize particles in the total product yield. 

Based on the mechanism of pellet formation already discussed, and on our practical 

experience, this could be translated as follows:  

 ’Low’ speed at the initial stages of liquid addition when powders are still light in 

weight and could be easily blown into the expansion chambers and filters. This will 

reduce product losses. As more liquid is added to powder bed, the material gets very wet 
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and heavy such that ’High’ speed is needed to improve powder fluidization, and also 

facilitate spheronization. Finally, during the drying period as the powder material bed 

looses its moisture and becomes lighter, ’Low’ speed is needed to avoid attrition and 

losses into the expansion chambers and filter housing. 

 

 Effect of plate contour and plate material type 

 Plate contour.   Rotary fluid-bed spheronization process is centered around a 

rotor-disk insert. The air supplied via a split between the product vessel wall and the disk, 

the disk rotation, and high air pressure of a pneumatic nozzle tangentially mounted on the 

chamber of a conventional fluidized bed granulator impart centrifugal (Fc), vertical (Fv) 

and the gravitational (Fg) forces on the product (Figure 7; 97,119).  These create a 

rotating motion that leads to greater densification and spheronization of the granules than 

with conventional fluidized bed granulation (119,120).  

 The influence of disk surface and its speed on the direct pelletization with rotor 

technology has been previously studied in a series of experiments (98,121).  For each 

experimental set, the process variables were kept constant within specified limits, except 

for the rotational speed of the disk during agglomeration and spheronization steps. Two 

differently textured rotating disks were used, one with smooth and the other with waffle 

surface.  It was shown that both surface textures and rotational speed of the disk have 

influence on shape, surface and size of pellets, with the two textures having opposite 

effects on pellet qualities. 

 In the traditional spheronization process, pellet shape and size have been used to 

describe the influence of different plate geometry on pellet qualities (122).  Under 
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constant spheronization conditions, the extrudates behaved dissimilarly on the two 

spheronizer plates used.  The spheronizer with the rougher surface was shown to apply 

more mechanical energy to the extrudate and wet pellets, which reduced the water content 

necessary for the formation of the desired pellet qualities. Therefore, high differences 

were observed in the quality of the extrudates produced by the two extruders (122). These 

observations could be applicable to using different plate contours in the rotor-disk 

spheronization process (47,121). 

 

 Plate material type. Several authors have demonstrated the use of stainless steel 

disk material in the fluid-bed spheronization and coating processes (123,124).  This plate 

varies in diameter and thickness depending on the size of the fluid-bed, and adds to the 

forces supplied to the fluidizing powder bed. The use of stainless steel disk in fluid-bed 

processes also facilitates product removal and cleanup.  The cleanup step is more feasible 

with smooth textured plates than with the rough/waffle contour plates. The heat 

conduction of the stainless steel material makes it useful for both drying and coating 

processes. It has been shown that heat transfer occurs by a combination of conduction, 

convection and radiation, and is enhanced by vigorous mixing of the powder bed 

(125,126).  The rate of heat transfer to the powder beds during spheronization/coating 

from the stainless steel plate rotor-disk insert is minimized by the addition of cold liquid 

binder or coating solution, which reduces the rate of evaporation of the liquid during 

processing at this stage. This efficient heat transfer would be difficult to be generated 

with other materials such as teflon, which could also be used as rotor-disk insert (47).  
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 Using the stainless steel plate, Balakrishnan et al. (123), reported the coating of 

ascorbic acid with a 10% poly(vinylpyrrolidone) solution in ethanol by a process in which 

a horizontally rotating stainless steel disk was installed in the lower part of a coating 

tower. The latter had a circular horizontal cross-section in which hot air was blown in 

below the disk and was guided upwardly between the coating tower and the periphery of 

the disk.  The flow of air above the disk and the centrifugal force of the disk supplied 

fluidized bed of the particle, enabling it to be efficiently coated.   

 A comparative study on the effects of extrusion/spheronization and rotor direct 

pelletization on pellet quality using a smooth disk shows similarity in physico-

technological characteristics of the produced pellets (127). However, several phenomena 

have been shown to occur successively in the fluid-bed technology and the spheronization 

processes.  Thus, a lot of process parameters should be controlled simultaneously during 

the process (14).   It is therefore important to identify and control the involved process 

and formulation variables and conditions. This can be achieved through experimentally 

designed studies that identify critical and optimum conditions to obtain high quality 

products.  

 

4.  Optimization of Equipment and Process Variables 

 

a.  Factorially designed experiments  

 The effect of multiple factors such as plate contour, binder and surfactant levels 

can be investigated simultaneously using statistical design of experiments (14,128).  

Maximum amounts of information are generated with a minimum number of 
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experiments, which assists to estimate the main effects of each experimental factor of the 

product (129).  Although factorial design has been shown to be effective in predicting the 

properties of granulations prepared at conditions within the limits imposed by the 

equipment or formulation (79), there are limited reported studies on the effects of process 

variables on product quality and characteristics (50). Most of these were confined to 

studying few characteristics (128).  However, none of the studies in both the traditional 

and non-traditional methods has statistically studied the effect of batch-to-batch 

reproducibility on both process variables and spheroid qualities.  Additionally, apart from 

very few studies (9,93) most of them used beads on which drugs were layered, thus 

providing ready-made spheronized cores that initiated the spheronization  

process (129-133).  

Considering the complexities of the spheronization processes, most of the 

processing and formulation variables, especially some critical aspects of granulating 

liquids, scale-up, drug loading, drug particle size, etc. need to be statistically studied and 

validated. This could be achieved using different process and product scales and also 

different aspects of the powder material qualities (129,134).  Optimization studies can be 

based on the results of feasibility studies.  Production and scaling up of spherical pellets 

or microparticulates will then follow (44,135).   

The process variables that could affect scale-up will be discussed in this section, 

while the product variables will be discussed in a separate section. 
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b. Scale-up  

 The scale-up of a process or batch is studied to establish the operating conditions 

applicable to large scale production batches, with the goal of obtaining products of the 

same quality based on previously optimized laboratory scale experiments.  Scale-up of 

processes that involve powder handling is especially difficult because the dynamic 

behaviors of powders are not very well understood (136).  Moreover, when applied to 

granulation, the effects of the operational variables on powder properties and granule 

growth are not clearly known. Although scale-up processes of materials in the solid-state 

have been based on dimensional analysis, mathematical modeling and computer 

simulation, most of the work in this field still depends on trial and error and the principles 

of geometric similarity (137,138).  The latter describes the interrelationships among 

system properties upon scale-up, thus, the ratio of some variables in a small scale 

equipment should be equal to that of similar variables in equivalent large scale  

equipment (101). 

 Scale-up of any chemical process is a complex science.  The scale-up of fluidized 

bed processes is likewise complicated because it involves several scientific techniques 

and problems, including those involved in engineering and pharmaceutical fields 

(13,139).  These include the problems of air-flow changes and rate (gas bypassing) and 

poor contact with bed particles, particle flow patterns, dissolution profiles, drug load and 

the physical nature of solid particles that includes the drug particle size. Although most of 

the work published on rotor-disk spheronization focused on small-scale equipment, fluid-

bed systems are designed to maintain critical scale-up factors as constant as possible from 

one unit to another (13,139).  Nevertheless, these studies emphasized that each fluid-bed 
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should operate at identical bed depths, air velocities and air changes as to simplify scale-

up of products from one unit to the other.  Most of these parameters have been recognized 

and incorporated in fluid-bed machinery. 

 Mehta et al. examined the variables that should be optimized in the scale-up of the 

fluid-bed coating process (101). These include, spray rate, powder bed moisture content 

at the end of the spraying cycle, the atomization air pressure, the inlet air temperature, the 

fluidization air volume, the batch size, and the type of equipment. In this study, the 

interplay of various processing parameters presented a great challenge in optimizing the 

coating process in a fluidized bed process. As such, continuing efforts to investigate and 

understand this interplay were reported as extremely important in order to ensure 

reproducible performance of the products. 

 Computerized techniques are becoming popular for the fluid-bed process control 

(140).  These include fuzzy logic, neural networks, and experimental design models. In 

addition, engineering techniques based on particle size population balance modeling are 

under development for both fluid-bed and high-shear granulation processes (140). 

Recently, mathematical model software which utilizes a combination of classical 

equations for transport phenomena in conjunction with effective algorithms and actual 

laboratory, pilot plant, and production data, has been introduced to resolve problematic 

scale-up issues for the pharmaceutical engineer and formulator (141). Nevertheless, some 

authors have maintained that past experience is very much required in handling the 

numerous problems encountered during scale-up in drug development (142). Most 

process and formulation scale-up processes are however based on the principles of 

geometric similarity (138,143,144).  
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    1. The principles of geometric similarity  

 Scale-up from laboratory to production batches is always problematic for the 

development of pharmaceuticals. Deviations in expected results in scaling-up can often 

be evaluated by the principle of similarity. This attempts to represent a physiological or 

chemical process by an unspecified relation between several dimensionless groups, one of 

which contains the unknown variable (138,140).  If the group containing the known 

variables are made to have the same value on the small and large scales, then the group 

containing the unknown variable will also have the same values.  In this form, the 

principle of similarity pre-supposes that the systems to be compared are geometrically 

similar (136).  

Two methods of deriving similarity criteria are available, dimensional analysis 

and differential equations, the latter being preferred where applicable. Alternatively, 

extrapolation by means of a power law relation permits model and prototype to be 

compared under conditions that are not strictly similar (145).  

 Dimensional analysis is an algebraic treatment of variables affecting a process.  

This technique permits the definition of appropriate composite dimensionless numbers 

whose numeric values are process-specific (138).  Experimental data are hereby fitted to 

an empirical process equation that results in scale-up being achieved more readily. This 

indicates that in the scaling up process, any model material system whose dimensionless 

material function in question is similar to that of the original material system may be 

chosen. Block et al. (141), therefore reported that scale-up may be achieved through the 

application of the principles of similarity, wherein effective process translation is based 

on the use of dimensionless ratios of measurements, forces, or velocities i.e., geometric, 
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mechanical, thermal, and/or chemical ratios of scale. Each of these ratios presupposes the 

attainment of the other similarities.   

 According to the theory of similarity, two processes are similar to one another if 

they take place in a similar geometrical space, and if all the dimensionless numbers 

necessary to describe the process, have the same numerical value (138,146).  A complete 

similarity requires a geometrical, material and process-related similarities. However, 

according to the principles of similarity stipulated by the Center for Drug Evaluation and 

Research (CDER) guidelines which state that, “the equipment used to produce test 

batch(es) is of the same design and operating principles as those for scale-up batches.  

The same standard operating procedures and controls as well as the same formulation and 

manufacturing procedures are used on the test batch(es) and on the full-scale production 

batch(es)” (147).  

 The principle of geometric similarity is therefore the driving force when different 

sizes of the same processing equipment are employed in the laboratory, pilot plant, and 

commercial production facilities. Consequently, this principle was adapted to two 

dimensionless numbers of power, namely, Reynold's and Froude's, employed in the 

present studies. 

 

    2. Reynold’s and Froude’s numbers 

 Scale-up in fixed bowl mixer-granulators has been studied by applying the 

classical dimensionless numbers of power, Reynolds and Froude, and a scaling factor, to 

end-point prediction in a range of geometrically similar machines.  When corrections are 

made, data from 25-, 100- and 600 L machines all fall on the same curve, allowing 
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predictions of optimum granulation end-point conditions to be made for production-scale 

equipment from measurements on laboratory-scale equipment and vice-versa (148,149). 

Reynolds’ and Froude’s numbers are dimensionless numbers derived directly from Navier 

Stoke’s equations. These equations, often used as the starting point for the analysis of 

granular systems, mathematically describe the effect of both inertial and viscous forces on 

the motion of fluid elements (150).  For a rotating system like the rotary fluid-bed, 

Reynolds’ number (Re) is defined as shown in Equation 1: 

1 Eqn.                    
2

Re
µ

ρwri
=  

where ρ and µ are respectively the density and dynamic viscosity of the granular medium, 

w, the angular velocity, and ri the radius to a blade tip. It is generally interpreted as the 

ratio of dynamic to viscous forces. The Froude’s number (Fr) is defined as shown in 

Equation 2: 

2 Eqn.                   
2

g

DN
Fr =  

where N is the number of revolutions per minute, D the diameter or the impeller or the 

rotor plate (as is applicable to our study), and g the gravitational constant. This number is 

interpreted as the ratio of the centrifugal force generated by the equipment to the 

gravitational force, and is used as a criterion for dynamic similarity. The results obtained 

from these numbers using the high shear mixer often show that, for geometrically similar 

machines, it is possible to calculate the power consumption at a predefined granulation 

endpoint, at any given operating condition and at any scale.  
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 In the present study, these numbers have been used to estimate scale-up effects 

and also to determine important scale-up factors for the rotor-disk spheronization process.  

 

    3. Scale-up parameters 

 i. Rate of addition and amount of liquid binder in powder bed 

 In granulation, an optimal amount of binder solution determined in a laboratory 

scale is often different than that in a production scale (111).  As already discussed, the 

binder solution plays an essential role in the formation of granules with desired physical 

properties in the manufacturing process.  This binder role is closely associated with the 

manufacturing scale. For wet granulation in high-shear mixers for instance, specific 

methods based on the liquid saturation and the consistency of the wet mass have been 

described (140,148). These two parameters can be used to quantify the characteristics of 

the wet granules, and they also relate well with the particle size of the end products. In 

practice, the power consumption of the high-shear mixer is used for monitoring of the wet 

granulation process.  It has also been helpful to use the underlying relationship between 

power consumption and saturation level or wet mass consistency for scale-up purposes.  

 In fluid-bed granulation, the rate of binder addition, the moisture content and the 

air volume in the bed are the key parameters to control (140), and can be used as scale-up 

variables. The rate of binder addition and the moisture content in the bed can be 

monitored in-process through the volume or weight of the binder added per unit time 

interval and by near infrared probes respectively. The moisture content can also be 

obtained through monitoring the loss on drying or by Karl Fisher titration studies (139). 
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The Karl Fisher method determines the total moisture content including the residual 

moisture present in the product.   

The scale-up ratio (SUR) involving rate of addition and amount of binder is 

expressed as shown in Equation 3, which could be applied to several other scale-up 

variables. The air volume in the bed has been mostly monitored using air-volume 

indicators on the fluid-bed machine, as will be discussed below. 

3 Eqn.          
equipment small  in thebinder  of 

equipment  large in thebinder  of 

Amount

Amount
SUR =  

 

 ii. Fluidization air volume 

 Besides the rate of spraying and the amount of binder in the powder bed, several 

other variables are involved in the fluid-bed processes.  These must be prioritized during 

the development stages to avoid expending excessive amounts of time during the scale-up 

phase.  The volume of air required to give an adequate fluidization pattern on the specific 

machine is critical to obtain good fluidization pattern necessary to get desired product 

qualities. It is necessary to identify optimum operating air-flow and aeration rates 

accounting for gaseous emissions and bed temperatures (151), as well as for the powder 

bed fluidization. Consequently, air-flow parameter has been used as dimensionless factor 

in scale-up processes (152).  The air-flow rate can be determined in two ways, in relation 

to the spray rate of the binder addition: 

 If both fluid-bed machines, the small scale size (laboratory) from which the 

process is being scaled and the pilot or production sizes have air volume indicators, the 

spray rate multiplier can be determined as the ratio of the two air volumes that are 
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required to give an adequate fluidization pattern in each machine. Alternatively, in cases 

where there are no air volume indicators, an approximation of the spray rate multiplier 

can be made using the ratio of the cross-sectional areas of the product bowl screens or 

plates.  The latter method assumes however that achieving similar fluidization patterns in 

both pieces of equipment will require the same air velocity through the bowl screen. 

Therefore, the former method involving the use of air volume indicators, and which 

relates to the principles of geometric similarity, and is shown in Equation 4, will be 

applied in our scale-up processes. 

 

Where A1 and B1 are the air volume and binder addition rate respectively of the small 

scale while A2 and B2 refer to the same parameters for subsequent scale-up batches.   

 

iii. Rotational speed, centrifugal force and plate radius 

 The Froude’s number defined in Equation 2 entails both a gravitational force and 

diameter variables, with one being inversely related to the other. The centrifugal force 

also relates inversely to the diameter of the impeller/plate. In the rotor-disk module, 

spheronization is achieved by the powder bed rotation caused by both centrifugal and 

gravitational forces during the densification of the powder. It has been reported that for 

high shear mixers, this densification could depend on the impeller rotation speed and also 

on the size of the mixer (140). These relationships have been adapted to the rotor-disk 

module with modifications, to obtain Equations 5 and 6 that formed the bases for scale-up 

in the present studies. 

4  Eqn.                         
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5 Eqn.                              
*

W
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6 Eqn.                            
2*

R
VWFc =  

Where V is the rotational speed, Fc the centrifugal force, R the plate radius and W the 

weight of the powder material.  

 

 In addition to the above process variables involved in scale-up, several product 

variables have been shown to affect both the spheronization and scale-up processes. 

These include the amount of drug present in the system and its mean particle size 

diameter, which also affect the drug release of the products.  

 

5. Product Variables and Drug Release 

 

a.  Product variables 

     1. Drug particle size 

 Drug particle size is an important and challenging factor in the spheronization 

process and therefore needs to be optimized for the success of the process (16).  Studies 

have been performed to describe the effects of interactions observed between powder 

particle size and binder viscosity on the mechanisms involved in agglomerate formation 

and growth using high shear mixers (52,153).  In such systems, agglomeration by 

nucleation and coalescence has been shown to dominate when agglomerating small 

powder particles and binders with a low viscosity. It was also observed that in order to 

produce spherical agglomerates (spheroids), a low viscosity binder has to be chosen when 
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agglomerating a powder with a small particle size, and a high viscosity binder must be 

applied in the agglomeration of powders with large particles. The latter requirement could 

be due to the low agglomerate strength of the large particle sized products that could lead 

to agglomerate breakage. 

 In another report in which three particle sizes of theophylline were used as a 

model drug for fluidized rotor granulation, Sienkiewicz, et al. (16), observed that the two 

finer grades of the drug were substantially more difficult to spheronize than the coarse 

grade of the drug. Only the latter formed the desired spherical product. Additionally, two 

MCC grades with different mean particle sizes were used to demonstrate the effect of 

their particle sizes on the spheronization process and product qualities (115). Although 

both MCC particle sizes gave pellets with good particle size, sphericity, and 

compressibility, under a wide range of spheronization conditions, pellet porosity was 

greater with MCC of larger particle size. It is therefore necessary that a consideration of 

the particle size suitable for the spheronization process should be part of the optimization 

studies performed at the developmental part of a project. 

 

     2. Drug load 

 Drug loading has been shown as a major limitation to the usefulness of the 

spheronization process and the spheronized dosage form, and as a challenging factor in 

the scaling up of fluidized bed processes (16,154).  The influence of type and quantity of 

drugs on spheronization processes has often been studied by varying the quantity of drug 

with respect to the amount of lactose, pure microcrystalline cellulose or different forms of 

Avicel (10,155).  In a previous report using different loads of lactose, the effects of 
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loads applied to agitating powder beds on the particle size distribution was investigated 

(156).  It was shown that at the light load (6.24 g/cm2), smaller particles were produced 

while at the heavy loads (29.2 g/cm2 and 41.9 g/cm2), larger sized particles were 

produced after long mix processing. The latter observation was attributed to a quick 

increase of fine particles and their subsequent agglomeration to form larger particles due 

to the large product load.  Consequently, it was assumed that there was a critical fine 

particle size and critical load quantity under which the physical properties of the powder 

bed change significantly (156). 

 In another study that used theophylline as the model drug, increasing the drug 

loading increased the geometric mean diameter of the microspheres as well as the time 

required to release 50% of theophylline microspheres (T50; 157).   Moreover, the in vitro 

drug release of microparticles with a high drug loading has been shown to be markedly 

faster than those with low drug loading (158).  The latter was partially attributed to a 

more significant initial burst-drug release of the microparticles with a high drug loading. 

Consequently, a proper choice of drug levels could lead to a high degree of control over 

the physical characteristics of products, including their drug release properties. 

 

b. Drug Release  

     1. Immediate Release of drugs 

 Pharmaceutical preparations are formulated to release their actives as immediate 

release (IR) or under modified release (MR) conditions.  For most immediate release 

drugs, including ibuprofen tablet preparations, the United States Pharmacopoeia (USP) 

specifies that the formulation must release at least 75% of its drug content at 30 min 
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(159).  A single time point assessment, called Q20 is also used in which at least 80% of 

the drug is expected to be released within 20 min (160).  Drug release from conventional 

release preparations are often described by Higuchi square root of time relationship 

presented in Equation 7: 

 

where Q is the cumulative amount of drug released per unit surface area at time t and k is 

a constant. 

 

 Drug release is normally intended to be the rate-determining step for absorption of 

the drug substance into the systemic circulation (161).  The release from dosage forms 

and subsequent absorption of the drug are controlled by the physico-chemical properties 

of the drug, the delivery and biologic systems.  The physiological property of the latter is 

also a vital contributive factor.  The essential drug properties for the release process 

include its concentration, aqueous solubility, molecular size, crystal form, protein binding 

and pKa (162).  Consequently, it has been shown that drug release rate could be 

dependent on the equilibrium solubility of the drug, which in turn is dependent on the pH 

of its solution (23,163). 

 The release of drug from a delivery system involves both dissolution and diffusion 

factors.  The release mechanisms can be one of the Higuchi matrix, zero, first or second 

order types, however, most drugs follow either the Higuchi matrix kinetics, the zero or 

7 Eqn.                                               2
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first order release kinetics (164,165).  The release kinetics parameters can be calculated 

using the following semi empirical (Peppas) equations: 

8 Eqn.                                               / nktMMt =  

                                 9 Eqn.                          loglog)/log( tnkMMt +=   

where Mt/M is the fraction of drug released at time t, k is a characteristic constant of the  

drug and n is indicative of release order. Hence, as the k value increases, the release of  

drug should occur faster. The n value of 1 corresponds to zero-order release kinetics, 

0.5<n<1 means a non-Fickian release model and n = 0.5 indicates Fickian diffusion drug 

model (first-order release kinetics). From the plot of log (Mt/M) vs. log t, the kinetic 

parameters, n and k are calculated. 

 Traditionally, delivery systems do not incorporate a means of controlled release of 

their actives, such that with each dose of a noncontrolled-release drug (conventional), the 

concentration of drug available to the body immediately peaks and then declines rapidly 

(Figure 8). At times, the drug concentration is very high, contributing to adverse side  

 

Figure 8. Types of dosage forms (166). 
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effects. At other times, the concentration is too low to provide therapeutic benefit (Figure 

9). It is desirable to release drugs at a constant rate, thereby maintaining drug 

concentration within the therapeutic range and eliminating the need for frequent dosages. 

These and other problems have led to a shift in the drug delivery technology towards the 

modified/controlled release dosage forms. However, there are some characteristics 

associated with drugs used in sustained release formulations, as will be discussed below. 

 

Figure 9. Drug levels in the blood with immediate ( ) and sustained ( ) 

release profiles (167). 

 

     2. Drugs suitable for sustained drug delivery formulations 

 i. Drugs with short half-lives.  

 The extent of fluctuation in drug concentration at steady state is determined by the 

relative magnitude of the elimination half-life and the dosing interval. If a drug is given at  

an interval equal to the elimination half-life, there exists a two-fold difference between 

the maximum and minimum concentrations at steady state, which normally affects its 

Minimum effective level 

Time Dose 

Therapeutic range 

Maximum desired level 

Drug level 

Dose 
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effectiveness (166).  Drugs with short half-lives and with a clear relationship between 

concentration and response, require to be dosed at regular, frequent intervals in order to 

maintain the concentration within the therapeutic range. These drugs are therefore 

suitable for sustained release delivery, as to reduce the number of daily intakes, and also 

maintain a steady state level that is within its therapeutic concentration. The 

pharmacological effects of these drugs are maintained by various mechanisms, few of 

which will be discussed below.  Conversely, drugs with long half-lives can be given at 

less frequent intervals, and there is generally no advantage in formulating these drugs as 

sustained release formulations. 

 

 ii. Drugs with high toxicity and low therapeutic index. 

 As shown in Figure 8, the conventional oral route of drug administration does not 

provide ideal pharmacokinetic profiles. For drugs that display high toxicity and/or narrow 

therapeutic windows, the ideal pharmacokinetic profile will be one wherein the drug 

concentration reached therapeutic levels without exceeding the maximum tolerable dose, 

and maintains these concentrations for extended periods of time till the desired 

therapeutic effect is reached (Figure 9; 168).  This could be achieved with sustained 

release preparations. Several drugs with short half-lives e.g. ibuprofen, must be dosed at 

frequent intervals and in high doses to achieve this aim. Such therapeutic measures may 

result in higher peak concentrations with the possibility of toxicity. In cases where the 

drugs have wide safety margins, this approach may be satisfactory because although very 

large fluctuations will occur within a dosing interval, no difficulty is generally 

encountered in view of the drugs’ low toxicity (168).  However, some side effects might 
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be deleterious to health. For this class of drugs, the use of sustained drug delivery could 

prevent creating unwanted side effects that occur at very high concentrations and periods 

of inefficiency at very low concentrations. 

 A wide range of drugs is now formulated in a variety of different oral extended-

release dosage forms. However, only those that result in a significant reduction in dose 

frequency (as would apply to ibuprofen) and/or a reduction in toxicity resulting from high 

concentrations in the blood or gastrointestinal tract are likely to improve therapeutic 

outcomes. Consequently, extended release of a formulation has been broadly defined as 

the ability to achieve about two times reduction in dosing frequency usually used for 

conventional dosage form (169).  

 It is also worth noting that in switching a patient from an immediate-release to 

sustained release product, the equivalent total daily dose should generally be the same, 

although in most cases, an effective response has been shown to be achievable with a 

lower dose of the sustained release product (168).  Also, in view of the complexity of 

extended-release products and the potential for greater variability, both inter- and intra-

subject, patients should be monitored at the initial stage to ensure that the anticipated 

benefit of switching to such products is actually obtained. 

  

     3. Pellets and sustained drug release 

 Due to the regular spherical shape and the possibility of incorporation of a high 

drug level, pellets are often the first choice when a sustained release formulation is 

required. In addition, pellets offer flexibility for further release modifications (170).  A 

membrane coat is usually used to achieve release control. Drug release by coated pellets 



 52 

has been achieved by dissolution-control and mostly by drug diffusion, the latter, which is 

governed by the intrinsic pore network of the polymeric membrane (171).  The film coat 

was found to be the major factor controlling the drug release, although both drug and 

filler solubility influenced the diffusion of drug through the membrane. In some other 

reports, soluble co-excipients such as calcium phosphate and lactose have been 

demonstrated to enhance release rates of drugs, including ibuprofen by creating osmotic 

forces that may break the membranous barrier, resulting in higher release rates of drugs 

(172,173).  Such unusual results could only be explained if consideration was given to the 

physical characteristics of both powder and pellets (174).    

In another study in which diclofenac sodium pellets were coated with Surelease® 

polymer, release was dependent on the coating level of Surelease® (175).  At low coating 

level, diffusion of drug was facilitated due to the presence of more pores at the surface of 

the coated pellets, indicating that the rate of dissolution of the drug particles was the rate-

limiting step. However, at high coating loads, drug release was mainly diffusion 

controlled.  It has also been shown that Eudragit® NE 30 D was suitable for coating 

diclofenac sodium:alginate (1:1) microspheres (176).  However, apart from the effect of 

increasing polymer level, the release rate of drug was affected by the size and drug load 

of microspheres.  

 

    4. Sustained release of drugs 

 Controlled drug delivery offers an excellent alternative to multiple administrations 

obtained with immediate release preparations. These systems are capable of delivering 

drugs over longer time periods than conventional formulations (175,177).  Drug release is 
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controlled by a number of variables including drug content, polymer composition and its 

molecular weight, device geometry, and manufacturing process. These variables enable 

sustained release formulations to be fitted to the respective drug release model (178).  

Modern drug technologies have facilitated the production of dosage forms that 

exhibit modified time of release, rate of release, or both. While numerous terms exist for 

defining them, the USP recognizes only two types, namely, extended release (also called 

sustained-, prolonged- or controlled release) and delayed release (also called modified 

release; 168). The delayed release system, e.g. enteric-coated products, involves the 

release of discrete amount(s) of drug at some time other than promptly after 

administration, and exhibit a lag time during which little or no absorption occurs. 

However, they are by definition not extended-release products.  

 Although both sustained and controlled drug release are generally classified as 

extended release preparations, some differences exist between them (168).  Controlled 

release formulation implies a predictability and reproducibility in drug release kinetics, 

and is therefore rate-preprogrammed drug delivery systems. Release of drug molecules in 

these systems has been accomplished by system design, which controls the molecular 

diffusion of drug molecules. Additionally, they mostly exhibit zero order plasma release 

profiles (Figure 8), and Fick’s law of diffusion (Equation 10) is followed (179):   

 

where Jb is the bulk diffusion flux, Db is the bulk diffusion coefficient and (c) the 

concentration of the species. 
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 Sustained release products offer several advantages and also some disadvantages.  

The use of extended-release products maintains therapeutic concentrations over 

prolonged periods, thus reducing the frequency of dosing and fluctuations in blood 

concentration (168).  In addition, adverse drug effects related to transiently high 

concentrations are circumvented (180-182) and patient compliance improved (168,183). 

On the contrary sustained release products contain a higher drug load and thus any loss of 

integrity of the release characteristics of the dosage form has potential toxicity problems 

(168).  Moreover, sustained release products should never be crushed or chewed as the 

slow-release characteristics may be lost and toxicity may result. This is particularly 

important in patients unable to swallow whole tablets, a problem commonly affecting the 

elderly or patients with gut motility problems (183).  It is therefore of importance that 

some drug release devices exist to minimize and/or eliminate these possible adverse 

situations, as will be discussed below. 

 

   i. Sustained release delivery systems or devices 

 Several sustained release devices exist and these include diffusion-controlled 

products, dissolution-controlled products, erosion products, osmotic pump systems and 

ion-exchange resins (168,184). Some of these systems will be discussed below. 

 

 1. Dissolution-controlled products  

 These include encapsulated and matrix dissolution products. In these dosage 

forms, the rate of dissolution of the drug (and thereby availability for absorption) is 

controlled by coating the dosage form with slowly dissolving polymers or by 
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microencapsulation. Once the coating is dissolved, the drug becomes available for 

dissolution.  Consequently, by varying the thickness of the coat and its composition, the 

rate of drug release can be controlled (185,186).  In some preparations a fraction of the 

total dose is formed as an immediate-release component to provide a pulse dose soon 

after administration, thus decreasing or preventing the lag time associated with sustained 

release formulations (187).  This is followed by slow release of the remaining part of the 

formulation. 

 

 2. Diffusion-controlled products  

  In these systems, a water-insoluble polymer controls the flow of water and the 

subsequent diffusion of dissolved drug from the dosage form. This mechanism 

encompasses both reservoir and matrix systems (Figure 10; 167).  In the matrix system 

shown in Figure 10A, the drug is homogeneously dispersed throughout a rate-controlling  

    Figure 10.  Delivery of drug from (A) Typical matrix drug delivery system, (B) Typical 

reservoir device (167). Arrows indicate the direction of drug release with time. 

A 

B 
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polymer matrix, and the rate of drug release is controlled by diffusion throughout the 

polymer matrix.  This is described in equation 11:  

 

 

where y is the dimensional distance, D is the diffusion coefficient of the drug in the 

polymer matrix, C is the concentration of the drug at any y position and time (t). 

In the reservoir device (Figure 10B) a core of drug (whether solid drug, dilute 

solution, or highly concentrated drug) is coated with a film or membrane of a rate-

controlling material, the polymer, and the rate of drug release is controlled by its 

permeation through this membrane wall. Thus, because the polymer coating is essentially 

uniform, and also possesses a uniform thickness for a specific thickness level, the 

diffusion rate of the active agent can be kept fairly stable (zero order kinetics) throughout 

the lifetime of the delivery system. This system is described in Equation 12: 

 

 

where F is the flux, D is the diffusivity constant of the drug in the coating membrane, K 

the partition coefficient between the coating membrane and the medium, CS is the drug 

solubility, t is the time taken to diffuse through the surface area and L is the membrane 

thickness through which the drug must diffuse.  This equation is used in mathematical 

modeling of drug release from controlled drug release formulations where F represents 

the cumulative amount of drug released per unit surface area at time, t (188).  A plot of F 

vs. t yields a regression equation with the slope of DKCs/L, a zero order constant (ko).  In 

addition to the mathematical modeling of dissolution profiles, some comparison factors 
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have been officially stipulated to control changes that could occur between the different 

drug release profiles. 

  

 ii. Comparison of dissolution profiles 

 In various guidance documents, the Food and Drug administration (FDA) has 

proposed a comparison of dissolution profiles for similarity when data are available for at 

least three dissolution time profiles (189-192).  The recommendations guiding this 

comparison include number of units (12), limit of variability mean dissolution values at 

different time points (10 - 20%), dissolution test conditions for different dosage forms 

(immediate and modified release), etc.  The comparison is achieved either by model 

dependent (curve-fitting) or model-independent (statistical) methods. The former 

involves linear regression of the percentage dissolved at specific time points while the 

model independent analysis involves statistical moment based comparison, repeated 

measure split-plot, two way ANOVA, etc. (190), most of which could be very 

complicated.  The method mostly adopted by the FDA is a simpler model independent 

mathematical approach proposed by Moore and Flanner (189) using two factors, f1 and f2 

shown in the following equations: 
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where Rt and Tt are the cumulative percentage dissolved at each n time point for the 

reference and test formulations respectively, ∑ is the summation over all time points and 

LOG is logarithm to base 10.   

The factor f1 is directly proportional to the average difference between the two 

profiles, while f2 is inversely proportional to the average squared difference between the 

two profiles, and emphasizes the larger difference among all the time-points. The f1 factor 

measures the difference, while the f2 factor measures the closeness, between the two 

profiles. Because of the nature of measurement, f1 has been described as difference factor, 

whereas f2 is the similarity factor (191). 

Similarity in product performance is a major factor in dissolution studies and 

comparisons.  Thus, regulatory interest lies in knowing the extent of similarity between 

two curves, and in measuring which curve is more sensitive to large differences at any 

particular time point.  Consequently, the f2 comparison has been the focus in Agency 

guidance documents.  When the two profiles are identical, f2 = 50 x log (100) = 100 and 

approaches 0 (50 x log {[1 + 1/nΣ (100)2]-0.5 x 100) as the dissimilarity increases. An 

average difference of 10% at all measured time points results in an f2 value of 50.  FDA 

has therefore set a public standard of f2 value between 50-100 to indicate similarity 

between two dissolution profiles and a point-to-point difference of not more than 10%.  

Although this range is considered wide by some authors, from a public health point of 

view, and as a regulatory consideration, f2 comparison metric with a value of 50 or greater 

is a conservative but reliable estimate to assure product equivalence. Generally, f1 values 

up to 15 (0 – 15) ensure similarity of the two curves being compared. 
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 As already discussed, controlled drug release is mostly achieved using the 

polymeric reservoir and matrix devices.  Cellulose derivatives are commonly used as 

polymeric films in the reservoir systems, while the polymeric matrix material may be 

plastics, e.g. methylacrylate-methyl methacrylate, polyvinyl chloride, cellulose derivatives 

(hydrophilic polymers) or fatty compounds including carnauba wax (a natural wax 

product extracted from the leaves of a Brazilian palm tree, Copernica cerifera (192).  

 

6. Polymeric Membranes and Sustained Drug Release 

  

The use of polymeric film membranes has attracted considerable attention in the 

development of controlled release drug delivery systems in recent years. There has been a 

drastic shift from the originally used solutions of polymeric materials in organic solvents 

to the use of aqueous polymeric dispersions with different commercial names and 

potential applications in sustained release preparations (23). There is also considerable 

shift form the originally coated tablets to the use of sustained release 

multiparticulate/pellet delivery systems (193) using fluid-bed film coating and drying 

equipment. 

 Film coatings are applied to pellet and tablet formulations for several reasons 

including controlled release, taste masking, and improved stability (194).  Pellet qualities, 

especially the shape of pellets, have been shown to influence the deposition of film 

coatings in a fluid-bed process. In a previous report, eight pellet batches were used to 

monitor the pellet shape as a function of the film thickness formed (194). Four of these 

were spherical visually, and the other four batches can be described as ovoids, dumbbells, 
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long dumbbells, and cylinders respectively. The average coat thickness of the pellets 

assessed by cross-sectional measurements did not appear to be influenced by the initial 

shape of the pellets.  

 Among the aqueous polymeric films used in the manufacturing industries, the 

ethylcellulose and polymethacrylic acid based films have been widely employed. This is 

due to their inertness, solubility in relatively non-toxic solvents and availability in resins 

with different properties (195).  Surelease and Eudragit NE 30D are typical examples 

of this class of coating materials. 

 

a. Surelease 

 Surelease is an aqueous polymeric dispersion of ethylcellulose. It is a latex 

coating system of fully plasticized ethylcellulose dispersions with 25% weight/weight 

(w/w) solids content (23). The dispersion contains dibutyl sebacate and oleic acids as 

plasticizers and fumed silica as an anti-adherent, in ammoniated water. Plasticizers 

reduce the minimum film forming temperatures as well as the glass transition 

temperatures, and consequently, increase the flexibility of the film coatings. Surelease 

has been shown to be superior to several other polymers when sustained release (pellet 

and tablet) delivery is required, as well as with the use of the rotor-disk module (175). 

 Although some studies have been reported on controlled release forms of 

ibuprofen tablets (22-25,196) only one such formulation, namely, Brufen Retard, is 

available in the market (26). A study using ibuprofen tablets compressed from ibuprofen 

granulated with different concentrations of Surelease showed that the tablets made from 

polymer-containing granules demonstrated more prolonged release profiles than control 
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tablets that contained no polymer (23). It was also observed that increasing the amount of 

Surelease in the tablets resulted in a reduction in ibuprofen release rate and a 

linearization of the drug release curves.  This was reported to be due to the higher degree 

of imperfection in the formation of the film membrane around ibuprofen by these low 

polymer levels, which might have caused increased diffusion of the drug from the dosage 

forms. In addition, at lower polymer concentrations (1.2 - 3.5%), the release of this acidic 

drug (pKa 4.8) was affected by the pH of the dissolution medium, hence, the release was 

considerably lower at pH 1.2 than at pH 7.5 (Figure 11). The latter results resembled  

 

Figure 11. Release profiles of ibuprofen from tablets granulated with water (control) and 

different levels of Surelease® in pH 1.2 (Upper) and 7.5 (Lower) dissolution media (23). 
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those obtained with both unprocessed pure ibuprofen and processed uncoated drug at both 

pH values used in the study.  These studies indicate that drug release rate from Surelease 

is dependent on the thickness of the coating material, and the equilibrium solubility of the 

drug, which in turn is dependent on the pH of its solution (23).  

 From these and other studies, drug release mechanisms at both pH values were 

reported to be both diffusion and dissolution controlled. However, at the high pH (≥ 7.5), 

the release rates of pellets and tablets coated with higher Surelease levels depended not 

only on the solubility of the drug, but also on the polymer/dissolution medium partition 

coefficient.  

  

b. Poly(ethylacrylate-methylmethacrylate (Eudragit NE 30D) 

 In processing sustained release preparations, usually additional excipients like 

plasticizers and glidants may be required. Modern sustained release dosage forms require 

reliable and minimized number of excipients to ensure a release rate of the active drug 

that is reproducible within a narrow range. Eudragit® polymers fulfill these requirements 

to a very high extent (197), thereby enabling research and development to create tailor-

made solutions. These products are used in the pharmaceutical industry for the 

development of formulations for enteric and controlled-release oral products, as well as 

for providing protective coatings and taste masking for bitter oral dosage forms (194).  

 The Eudragit® RL- and RS-types are based on copolymers of acrylate and 

methacrylates with quaternary ammonium groups as functional groups.  The latter 

determine the permeability and swellability of the films in water.  The Eudragit® RL-

types contain higher amount of the quaternary ammonium groups and therefore form 
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highly permeable films with little delaying action. The RS-types that contain lesser 

amount of the quaternary ammonium functional groups are poorly permeable, swell less 

easily but slow down drug diffusion very noticeably.  The Eudragit® NE-types that 

include the NE 30 grade contain no functional groups but are ethylacrylate 

methylmethacrylate copolymers with a neutral ester group.  They are both permeable and 

swellable in water, and are used for granulation processes and sustained release coatings 

(198).  For the sustained release applications, their usual formulation amounts are 5 - 20% 

calculated on the drug weight, although sufficient release is usually obtained at 14% 

polymer addition (Figure 12). 

  

Figure 12. Coating of potassium chloride crystals with aqueous dispersion of 

Eudragit NE 30 D (199). 

 

Eudragit® NE 30D [poly(ethylacrylat-methylmethacrylat)] is an aqueous 

dispersion of a neutral copolymer based on ethyl acrylate and methyl methacrylate 

polymers, and containing 30% w/w dry polymer substance. Eudragit® NE 30D polymer 

film is water insoluble, permeable, swellable and pH independent (200,201).  The water  
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permeability of the polymer film is critical to drug dissolution profiles; it determines both 

the onset of drug release and the release rates of the drug products. The release profiles 

can be determined by varying mixing ratios and/or film thickness of the product. As  

shown in Figure 12, increasing amounts of polymer has been shown to decrease release 

rate in vitro. 

 Besides ethyl acrylate and methyl methacrylate, the only component in the 

polymer latex dispersion is about 1.5% (on the dry polymer basis) surfactant, nonoxynol 

100 (202).  At higher concentrations, this surfactant has been shown to crystallize out 

from polymer films during storage, and to decrease drug release during aging. Therefore, 

drying of the moistened drug/polymer mixture to a residual water content of <2% is 

necessary to avoid changes on the release profile during storage. 

 For the coating process, Eudragit® NE 30D neither contains nor needs any 

plasticizer, however, stickiness shown by this product can be improved by using glidants 

such as talc or glyceryl monostearate.  It is used in the coating of small particles for 

directly compressed and wet granulated products.  If the coating with this polymer is 

complete, the model represented in Equation 12 (reservoir delivery system) is expected. If 

the coating is not complete (i.e. a more porous membrane exists), a mixed release 

mechanism with both square root of time (Equation 7) and zero order (Equation 12) 

release components, which has recently been proposed (177) could be operating. This is 

represented in Equation 15: 
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 The pellet dosage forms of diffusion- or dissolution-controlled products can be 

encapsulated using hard gelatin capsules, or prepared as a tablet. In most cases where 

gelatin encapsulation were used, the physical characteristics evaluated included bulk and 

tapped densities, Carr’ s compressibility index, and drug release properties (203,204).  The 

release profiles can be assessed as a mean dissolution time (MDT) and its variance (VDT) 

or by comparison using the similarity factor. The mechanism of dissolution could be 

assessed from the value of the relative dispersion (RD) of the mean dissolution time. In 

some cases where the pellets are tableted, the possible relationship between the properties 

of the pellets and those of the tablets is evaluated by canonical analysis followed by 

multiple regression analysis (205).  In the latter studies, it was found that only about 51% 

of the tablet properties could be predicted from the properties of the pellets.  

 One of the advantages of encapsulated pelleted products is that the onset of 

absorption is less sensitive to stomach emptying (206).  Additionally, because of their 

small size the entrance of the pellets into the small intestine (where the majority of drug 

absorption occurs) is expected to be more uniform than with non-disintegrating extended-

release tablet formulations.  

 

7.  Hard Gelatin Encapsulation and Technology  

 

a. Hard Gelatin Encapsulation  

Most capsules are made from gelatin that is also widely used in many food 

products. Gelatin is a mixture of water-soluble proteins derived primarily from collagen, 

the main naturally-occurring protein constituent of connective tissue (207).  Gelatin is 
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defined as a versatile container that can encapsulate powders, pellets, liquids, semi-solid 

formulations, caplets, tablets and even combinations of these (Figure 13).   

  

Figure 13: Capsules as versatile container for different pharmaceutical  

dosage forms (208). 

 

Capsules are made from pharmaceutical grade gelatin that has met the stringent 

requirements of the United States Pharmacopoeia and other international organizations 

that set standards for products used in medicines. In the body, the water-soluble gelatin 

shell dissolves in the stomach, releasing its contents within the first few minutes of 

swallowing.  

 Both tablets and capsules are well-proven and well-accepted dosage forms. 

However, capsules have the added advantages of masking the taste and/or odor of specific 

medicinal compounds, are easy to swallow, have attractive appearance, color, and can 

also be easily filled and processed (209).  The capsule provides a simple way for the 

patient to take medications or supplements, and many pharmaceutical companies use 

capsule-filling machines as a convenient way to package a pharmaceutical product for 

single or multiple doses.  Additionally, capsules require fewer excipients and have been 
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shown to be more suitable for sustained release dosage forms.  Therefore, capsules can 

promote patient compliance (210). 

 

b. Hard Gelatin Capsule Technology 

 A detailed step-by-step description of hard gelatin capsule production has been 

given (211).  These are manufactured from melted gelatin in demineralized water with the 

addition of any needed additives like dyes and opacifants, in feed tanks that gravity-feed 

the mixture into a dipper section. Herein, the capsule cap and body are molded onto their 

respective stainless steel pin bars dipped into the gelatin solution. Once dipped, the pin 

bars rise to the upper deck allowing the cap and body to set. Then, gently moving air that 

is precisely controlled for volume, temperature, and humidity, dries the capsule halves up 

to a stipulated amount of moisture, while precision controls constantly monitor humidity, 

temperature, and gelatin viscosity throughout the production process. Once drying is 

complete, the pin bars are moved to an automatic table section where the capsule halves 

are stripped from the pins. The cap and body lengths are then precisely trimmed to an 

acceptable tolerance, and joined automatically in joiner blocks. The finished capsules are 

pushed onto a conveyer belt, which empties them into a container.  

 Throughout the production process, capsule qualities, size, moisture content, wall 

thickness, and color, are monitored. Capsules are sorted and often visually inspected on 

specially designed inspection stations. Perfect capsules are imprinted with a particular 

logo on high-speed capsule printing machines, and thereafter sterilized and packaged as 

required. 
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 The most commonly used capsule sizes range from 000 to 5, largest to smallest 

size respectively, and have corresponding fill powder volumes and weights (Figure 14). If 

a greater extent of compression is required in order to fill large dose drugs or to use a 

smaller capsule size, the dosator nozzle principle discussed in a later section usually 

works more successfully for granules, but not necessarily for pellets that do not require 

the formation of firm plugs for filling. 

 

Figure 14. Capsules showing approximate sizes and typical fill weight (212). 

 

c. Capsule Filling Machine Instrumentation  

 Capsule-filling machines generally consist of a through-hole for accommodating 

the cap of a capsule and a body transport member having a body pocket for 

accommodating a body of the capsule (213).  It also comprises of a filling system for 

filling the capsule contents. The contents are typically pharmaceutical products (powders, 

pellets, oils) and foods. The filling system includes a force-feeding screw disposed in a 

chamber, and has a lower end opening above the body transport member. Thus, 

powders/pellets supplied into the chamber are compulsorily force-fed into the capsule 

body by the force-feeding screw. Consequently, even if the substances to be filled into a 
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capsule have low bulk density and inferior formability and fluidity, they can be 

compulsorily force-fed into the capsule body by the screw system. By so doing, filled 

capsule in which a predetermined amount of the contents is filled can be produced with 

certainty. The cap transport part includes a plurality of segments that includes the cap 

pocket.  These segments are individually vertically movable with respect to one another 

and also in a vertical direction away from the body transport member.  

 A modern and ideal capsule-filling machine is designed to fill the material which 

could be very low in bulk density and very inferior in fluidity or formability.  These could 

include crushed substance of weeds, grass or tea leaves or silicon dioxide.  Most of these 

are difficult for a conventional filling machine because of the uncertainty of the expected 

fill amount.  The machines typically form the capsule contents (plugs, pellet dose, etc.) 

once and charge them as such into the capsule body.  Alternatively, vibrations are applied 

to the substances that facilitate their flowing into the capsule body.  It is expected that for 

every capsule filling machine, various products of different qualities could be filled well 

into a capsule reproducibly.   

 There are basically two types of automatic capsule filling machines that are 

commonly used in the pharmaceutical field, based on their mechanisms of filling.  These 

are the dosator and the tamping and dosing disk (tamp filling) machines. 

 

d. Types of Automatic Capsule Filling Machines 

    1. Tamp filling machine  

 The dosing disk consists of a rotating steel plate with precisely bored holes that 

form the dosing chamber.  This machine depends on pushing pins through a powder bed 
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so that a unit dose is transferred into a dosing disk cavity. This dose is then ejected into 

the capsule body.  The important process variables of the tamping capsule filling machine 

include the fill weight, the tamping force, the number of tamps, the operational speed, 

powder bed height, and formulation variables such as the presence or absence of 

lubricants and disintegrants.  These variables have been widely studied and their  

requirements at various filling conditions validated (214,215).   It has also been reported 

that substance flowability affects the filling weight adversely. 

 The operational speed is the operating rate of the machine that has been shown to 

relate strongly with the filled capsule characteristics, especially, the average capsule fill 

weight (216).  Variability in the latter is expressed as standard deviation and coefficient 

of fill weight variation. 

 Recent adaptations of the tamp-filling machine for pellet filling include gravity-

feeding of the pellets from a hopper into main pellet housing.  A male and a female gates 

control the amount of pellet that could be filled into the capsules (Figure 21).  In this case, 

the shuttle speed, which regulates the length of time the gates could remain open, is an 

important variable that affects the capsule fill weight (217).  

 The instrumentation of tamp-filling capsule machine is normally described in 

different ways. In some studies, it was described using strain gauges, by moving an 

instrumented piston from one compression station to the next (218). These revealed 

important relationships between compression force, piston setting, and final fill weight, 

with the latter being a complex interaction of all compression stations.  In another report, 

the instrumentation of a Bosch GKF 400S tamp-filling machine was described using a  
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prototype of a pneumatic tamping head equipped with a piezoelectric force 

transducer (219).  

 During continuous capsule filling, feedback control of capsule fill weight can be 

achieved.  Podczeck (219) established this mechanism by replacing the springs of a 

conventional tamping machine situated between tamping pins and the upper part of the 

tamping head with a pneumatic system. He reported that the air pressure inside the 

pneumatic chamber can be regulated through a feedback switch valve, and that the use of 

the pneumatic tamping head is limited to the control of fill weight during tamping. 

Therefore, major adjustments of fill weight at the set-up stage of the machine should be 

made by alteration of the tamping pin and powder bed height settings.  Although the 

principles of capsule fill weight control by continuous monitoring of tamping forces have 

been established, the transfer of the system to full industrial use requires further 

development by every machine manufacturer.  

 A trend has been observed toward slower dissolution rate with increasing number 

of tamps due to increased compactedness, and also depending on the type of filler used 

(220).  The inclusion of a disintegrant tends to nullify the effects of number of tamps or 

tamping force and enhances drug dissolution markedly. Insoluble fillers appear to cause 

some drugs to follow a diffusion mechanism from insoluble matrix model regardless of 

the number of tamps or their intensity. Using drug plugs, mercury intrusion pore size 

distribution data and other studies suggest that for tamp forces 100 or 200 N, only two 

tamps are sufficient for a good powder consolidation. However, the tamp filling machine 

has also been reported to be very suitable for pellets that do not require plug formation in 

order to be properly filled (215). 
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    2. Dosator filling machine 

 The dosator principle is used by numerous intermittent-motion and continuous-

motion capsule-filling machines. Its instrumentation has been likened to that of tablet 

machines because they both rely on compression process (215).  The compressibility is 

related to the tapped density of the materials, thus, it is suitable for powders that require 

high compressibility for encapsulation.  Very flowable powders and consequently pellets 

have been found difficult to densify and fill using this machine leading to greater 

variation in fill weight. 

 The important variables for this system include the type and level of lubricant and 

the ejection force, powder bed height, piston height, and compression force on the 

ejection forces generated during the filling process. It has been observed that the ejection 

force increased with increasing the powder bed height, piston height and compression 

force (219).  In a study using a Zanasi LZ 64 machine with intermittent operation, the 

effect of the excipient- and machine parameters on the filling of the capsule and the 

dissolution rate using caffeine as model substance was determined (221).  Sufficient 

lubrication of the capsule powder mixture measurable by low ejection forces is critical for 

a uniform fill weight.  However, addition of too much lubricant prevented the compact 

from forming and increased the standard deviation of the fill weight (222).  Another 

report also showed that for an effectively lubricated formulation, a lubricant film is 

formed and maintained on the inside of the dosator nozzle during a run, which maintains 

the ejection force of the process (223).  However, for a less effectively lubricated film, 

where the lubricant film is not formed and maintained, the ejection force increases 

slightly as each slug is ejected.  
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    3. Comparison of the tamp and dosator capsule filling machines 

 A comparison of the effectiveness of the above two commonly used capsule-

filling mechanisms have been made by several authors (204,224).  In one of the studies, 

four different granule size fractions of Sorbitol instant® were filled into hard gelatin 

capsules on a tamp filling (Bosch) and a dosator nozzle machine (Zanasi). An acceptable 

filling performance was always observed and was independent of the machine type 

employed. A direct relationship between the angle of internal flow and the coefficient of 

fill weight variation has also been recorded for both systems (224).  However the tamp 

filling machine was found to be slightly better for the coarser granule size fractions, 

because it does not require the formation of a firm plug.  

 It has therefore been concluded that in situations where a low plug density is an 

essential prerequisite for product qualities including drug dissolution and bioavailability, 

the tamp-filling machine is more suitable. The dosator machine is preferred when higher 

compressiblity is required as to fit large drug doses into small capsule sizes. The 

compressibility issue is however not applicable to the filling of pharmaceutical pellets 

that are normally ≥ 400 µm, especially as it has been shown that particles larger than  

40 µm do not efficiently form a plug (215). Additionally, the dosator machine is not 

suitable for the filling of pellets since their inability to form plugs will lead to loss of 

metered doses from the nozzle during its passage from the hopper to the capsule body. 

 In a previous report, a dosator and a tamping capsule filling machines were used 

to study the relation between variation of filling weight and powder flowability in 

connection with filling mechanism (225).  The angle of repose, the minimum orifice 

diameter and the discharge rate through orifices were measured.  The orifice diameter is 
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the length of a straight line which passes through the center of the orifice, and terminates 

at the circumference. The minimum orifice diameter was closely related to the discharge 

rate through orifices. The angle of repose was used as an index of flowability representing 

the mobility of the particles on the surface of a powder bed, while the minimum orifice 

diameter was used as one representing the mobility of the particles in a powder bed under 

dynamic conditions. In both systems, no good correlations were found between the angle 

of repose and the minimum orifices. However, a good correlation was found between the 

variation of filling-weight and the minimum orifice diameter in a dosator system.  In 

tamping system, the variation of filling-weight was closely related to the angle of repose. 

In this system, a minimum point appeared in the plots of the angle of repose versus the 

coefficient of variation of filling-weight.  This indicated that as the angle of repose 

increases, the variation of filling-weight is governed by both the variation of the powder-

bed-height (an increasing factor) and the amount that escapes the filled capsule (a 

decreasing factor). 

Consequently, the tamp filling machine (Figure 15), which has been shown to  

 

Figure 15: Tamp capsule filling machine with color touch-screen control (left; 226). 
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posses the ability of handling a wider range of products than a dosator machine, including 

medicinal herbs, will be used in our study. 

 

e. Stages of Hard Gelatin Encapsulation Process 

 All capsule-filling machines rectify, separate, fill and join empty capsules that are 

thereafter ejected from the system (227).  Modern capsule fillers are designed to offer 

precise dosing, high speed, and easy changeover and cleanup.  

 

     1. Rectification 

 In order to obtain a capsule product as described above, the cap transport portion 

is placed on the body transport member such that the cap and body pockets are aligned 

with each other. This arrangement can accommodate an empty capsule in which the cap 

and the body are temporarily coupled to each other.  

 

     2. Separation 

  The empty capsule is transported in the formed capsule pocket in an erected 

position, with the cap directed upward.  During transportation of the empty capsule, the 

cap and the body are separated from each other inside the capsule pocket, the cap is held 

in the cap pocket while the body is held in the body pocket.  Thereafter, the cap and body 

transport members are separated from each other. 
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     3. Filling 

 The material or medicament is directly force-fed and filled into the body by the 

force- feeding screw.   

 

     4. Joining and ejection 

 Finally, the cap transport member is placed onto the body transport member such 

that they are once more aligned with each other, and then coupled to each other within the 

capsule pocket, to produce a filled capsule product.  

 

f.  Comparison of Hard Gelatin Encapsulation of Various Dosage Forms 

     1. Powder 

 The filling of powders in capsules demands a powder with good 

pharmacotechnological properties for samples to be constant, and to facilitate its transfer 

into the capsule (228).  Thus the powder bulk and tapped densities, its various flow 

angles: repose, internal flow, and friction, as well as some machine variables are of great 

importance (229).  The range of powder combinations that can be filled on the tamp 

filling machine exceeds that applicable to a dosator nozzle system.  However, the latter is 

used very extensively because large doses of highly compressible drugs can be filled into 

smaller capsule sizes. Microcrystalline cellulose (MCC) and silicified microcrystalline 

cellulose (SMCC) powdered formulations are mostly used as fillers in powder capsule 

technology (230), while lactose, Mg stearate, and sodium lauryl sulfate are mostly used as 

lubricants (231,232). 
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 The problems encountered with powder filling are numerous and depend on the 

type of material.  Filling problems due to powder flooding could be solved by increasing 

the powder bed height in the powder bowl.  Inappropriate powder bed height adversely 

affects the capsule fill weight, an effect which increases with decreasing powder flow.  

Tamping pin setting and powder bed height influence capsule fill weight of powders and 

even granulated products having poor flowability.  However, for moderate flowing 

powders and granules, the coefficient of fill weight variation, an attribute of the powder 

distribution into the capsules, appeared to be nearly independent of powder bed height or 

tamping pin setting.  The filling performance of powders with poor flow properties could 

therefore be adjusted by optimizing both machine settings.   

 

     2. Liquids and semi-liquids 

 Liquid and semi-solid formulations in hard gelatin capsules provide alternate 

choice over soft gelatin capsules for improving bioavailability and stabilizing moisture- 

or oxygen-sensitive drugs, processing for low melting point drugs and achieving good 

content uniformity for low-dose drugs. They are also convenient delivery route for 

administering high potency compounds. In addition to high patient acceptability, they can 

also improve product stability (233).  Other advantages of this technology over soft 

gelatin capsules have been demonstrated, especially the flexibility of developing solid 

dispersion and controlled-release formulations. These products include oils, waxes, 

polyethylene glycols, pluronics, surfactants, self-emulsifying system and polyglycolyzed 

glycerides (Gelucire®) with a range of melting point and hydrophilic-lipophilic balance 
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(HLB) values and. Important processing variables include filling temperature, cooling 

rate, and shear rate and should be carefully evaluated (234). 

 

       3. Tablets 

  Tablets are encapsulated for various purposes, including improved stability and 

taste. A fiber-optic probe or an electrochemical device is usually incorporated in the 

system to verify the dosing (226,235).  This is coupled with a reject mechanism that 

rejects capsules with missing tablets. It is recommended that tablet dimensions and 

hardness specifications be maintained within strict tolerance, to assure proper tablet feed. 

Spherical tablets are most suitable for this technology. 

 It has however been shown that in comparison with tablets, pellet encapsulation is 

the technology of choice both for immediate and sustained release formulations. 

Moreover, it is not plausible to compress coated pellets into tablets due to cracking of the 

protective and sustained release coatings. In order to maintain the geometry of pellets, 

coated and uncoated, encapsulation is therefore the preferred method.   

 

       4. Pellets 

 Pellets are very suitable for hard gelatin encapsulation because of their regularity 

of shape, good flowability and other physiological and mechanical qualities. Pellets can 

be filled into hard gelatin capsules using different methods that include feed-frame, 

dosing chamber and vacuum dosator methods. In the feed frame method, most pellet 

formulations are designed with a bulk density to fill the capsule body completely. The 



 79 

vacuum dosator method maintains strictly the dosator mechanism already discussed. The 

dosing chamber method (Figure 16) is widely utilized by many machine types including  

the tamp filling machines, because it allows for partial dosing of the capsule, as well as  

for dosing capsules with two types of pellets or beads.  These pellet formulations must be 

free flowing and free from agglomerations or electrostatic charge that interfere with pellet 

discharge into the capsule body from the dosing chamber. Narrow to uniform particle 

sizes also facilitate accurate dosing.  

   

Figure 16: Tamping pellet filling system (227). 

 

A new automatic ultrasonic control system has been developed for the 

determination of the filling height in pellet encapsulation, and integrated into an 

intermittently operating high output capsule filling machine (236).  Measurement of the 

time required for transmission of several ultrasonic impulses determines the height to 

which each capsule has been filled.  Utilizing this in-line measuring system, it is possible 
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to monitor the fill mass of all capsules without a reduction in throughput.  Furthermore, 

the sporadic occurrence of overfilled or under filled capsules can be detected with a high 

probability and such capsules rejected, contrary to manual in process control methods.  

This new filling monitoring system has been successfully validated and also used   

successfully in routine operation. 

 

 In a previous study (209), film coated and uncoated pellets of different shapes, 

varying from spherical to cylindrical, were filled into hard shell capsules. It was observed 

that when no film coat was applied, the pellets needed not be perfectly spherical in order 

to be filled reproducibly. Thus, an aspect ratio (i.e. the ratio of the maximum and 

minimum dimensions of a particle) of ≤ 1.2 was suitable for encapsulating the pellets into 

hard gelatin capsules, and only very pronounced surface roughness hindered the filling 

process. After coating of the pellets with an ethylcellulose film, none of the batches could 

be filled to an acceptable standard, because electrostatic loading led to a blockage of the 

filling mechanism. The addition of 1% talcum powder was sufficient to remove all 

charges. It is therefore necessary to monitor the surface roughness and pellet shape/aspect 

ratio for efficient encapsulation of coated and uncoated pellets respectively. 

 Pellet encapsulation also leads to reproducible gastrointestinal transit times that 

result in increased efficacy and safety of these dosage forms compared to single unit 

dosage forms or tablets (70). Furthermore, predictable concentration/time profiles can be 

achieved and local mucosa irritations reduced. Using traditional extrusion/spheronization 

process for theophylline, it has been shown that several process steps are necessary to 

obtain the finished encapsulated dosage form.  However, the pharmacokinetic and clinical 
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advantages already mentioned compensated the increased investment necessary for this 

pellet development (70).  The use of the rotor-disk module in both spheronization and 

coating processes will eliminate the several steps involved in the traditional 

spheronization process, thereby leading to a reduction in processing time and cost.  

 To confirm these advantages, two sustained-release (pellets in hard gelatin 

capsules) forms of propranolol have been compared with ordinary sustained release 

propranolol tablets (237).  The bioavailability of the capsules was more acceptable than 

that of the tablets due to improved absorption and efficacy.   

 Despite the several advantages of microparticulate dosage forms and capsules 

over tablets, there are no ibuprofen pellet formulations in the market in both immediate 

and sustained release forms.  Additionally, elaborate studies have not been done to 

elucidate the advantages and drawbacks of the fluid-bed rotor-disk machine. Therefore, 

the specific aims of this research are as follows: 

1)  Development of ibuprofen spheroids from different drug particle sizes and 

different drug loads using the rotor-disk fluid-bed technology and Avicel as the major 

excipient and spheronization enhancer, sodium lauryl sulfate as lubricant and water as the 

granulating liquid. 

2)  Optimization of the developed process and product variables using statistically 

designed factorial experiment.  

3)  Scale-up of process and batch size from development to pilot and eventually to 

semi-production sizes. 
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4)  Polymer coating and encapsulation of coated and uncoated microparticulates 

using hard gelatin capsules for comparative evaluation of controlled and immediate 

release delivery systems. 
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II.  EXPERIMENTAL 

 

A.  Materials and Equipment 

 

 The materials and equipment used in the study are shown in Tables II and III  

respectively. 

 

Table II:  List of Materials 

 

Material 
Lot/Batch 
Number 

Manufacturer/Supplier 

Ibuprofen (20 µ) LPL-4814 Albemarle Corp., Baton Rouge, LA 

Ibuprofen (40 µ) LPL-5810 Albemarle Corp., Baton Rouge, LA 

Avicel RC-581 B106C FMC Biopolymer, Princeton, NJ 

Avicel CL-611 A178N FMC Biopolymer, Princeton, NJ 

Sodium lauryl sulfate S0180 Spectrum Chemicals, Gardena, CA 

HPMC (Methocel) E5LV Dow Chemical Co., Midland, MI 

Talc W47835P09 Spectrum Chemicals, Gardena, CA 

Surelease® E-7-19010 Colorcon, West Point, PA 

Eudragit® NE 30D 1290112016 ROHM Technical Inc., Malden, MA  

Hard gelatin capsules 619067 Capsugel, Greenwood, SC 

Sodium hydroxide S3183 Fisher Scientific, Pittsburgh, PA 

Acetonitrile (HPLC grade) 943286 Fisher Scientific, Pittsburgh, PA 

Glacial acetic acid 903092 Fisher Scientific, Pittsburgh, PA 

Potassium phosphate monobasic 966500 Fisher Scientific, Pittsburgh, PA 

Methanol (HPLC grade) 970703 Fisher Scientific, Pittsburgh, PA 

Triethylamine 920412 Fisher Scientific, Pittsburgh, PA 

Polysorbate 80 A38-500 Fisher Scientific, Pittsburgh, PA 
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Table III: List of Equipment 

Equipment Model Number Manufacturer/supplier 

Fluid-bed Granulator FL-MULTI-1 Vector Corporation, Cranbury, NJ 

Fluid-bed Granulator FL-MULTI-15 Vector Corporation, Cranbury, NJ 

Fluid-bed Granulator FLN-120 Vector Corporation, Cranbury, NJ 

Glatt Fluid-bed WSC-5 Glatt, Binzen, Germany 

Capsule filling machine K150i Romaco/Index, Pompton Plains, NJ 

Liquid Chromatography system LC-10AS Shimadzu Scientific Instruments, 
Columbia, MD 

Auto Injector SIL-10A Shimadzu Scientific Instruments, 
Columbia, MD 

UV-VIS Detector SPD-10A Shimadzu Scientific Instruments, 
Columbia, MD 

System Controller SCL-10A Shimadzu Scientific Instruments, 
Columbia, MD 

Precolumn LUNA 5 C18 Phenomenex, Torrance, CA 

Column IB-SIL 5 C18 Phenomenex, Torrance, CA 

Ezchrom® Software Version 3 Shimadzu Scientific Instruments, 
Columbia, MA 

Vander Kamp Tap Density 
tester 

10705 
Van-Kel Industries, Edison, NJ 

Computrac® Moisture Analyzer Max 200 Arizona Instrument, Las Vegas, NV 
Image analyzer Quantimet 500 Leica Cambridge LTD., Cambridge, UK 
Image analysis software QWIN Leica Cambridge LTD., Cambridge, UK 

Microscope Microstar IV Bordersen Instrument Co., Valencia, PA 

Sieve Shaker 18480 CSC Scientific Co., Inc., Fairfax, VA 

Mettler moisture analyzer Mettler Pm 100 Mettler Toledo Inc., Columbus, OH 
Denver Instruments balance B077193 Denver Instruments Company,  

Arvado, CO 
Dissolution Apparatus VK-600 VanKel Industries, Inc., Edison, NJ 

JMP® software Versions 3.0 & 4.0 SAS Institute, New York, NY 

Scanning electron microscope  Hitachi S510 Hitachi, Tokyo, Japan 

Scanning electron microscope Philips XL 30 FEG Holland, Nederlands 

Cressington Sputter Coater  108 Franklin Electric, Bluffton, IN 

Hummer Sputtering System LO.2 ANATECH Ltd., Alexandria, VA 
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B.  Methodology 

 

The methodology is divided into four phases: 

1.  Feasibility studies in the spheronization and scale-up of ibuprofen microparticulates 

using the fluid-bed rotor-disk technology and also using only Avicel® as spheronization 

enhancer, sodium lauryl sulfate as lubricant and water as binder. 

2.  Optimization of the developed process and product variables using statistically 

designed factorial experiment.  

3. Evaluation of the effects of drug loading, particle size and intermediate size scale-up 

using the fluid-bed rotor-disk technology. 

4.  Coating of spheronized ibuprofen microparticulates and encapsulation of coated and 

uncoated formulations using hard gelatin capsules for sustained and immediate release 

delivery systems. 

 

Phase 1 

Feasibility Studies To Evaluate the Spheronization and Scale-up of Ibuprofen     

Microparticulates 

 

a.  Blending and spheronization 

 

    1. Spheronization of 0.75 kg trial batch 

 Preliminary spheronization was performed in FLM-1 fluid-bed granulator, VPS 

Corporation, Cranbury, NJ (Figure 17) using a teflon plate (9”) and 0.75 kg batch of 
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ibuprofen and Avicel® RC-581 (1:1), with 1% SLS.  Spheroids were successfully made. 

The moisture content of the powder bed was checked at regular intervals using a Mettler 

moisture balance (Mettler Pm100 and LP16, Mettler Toledo Inc., Columbus, OH).  

  

 Figure 17. Components of Vector FL-Multi 1 fluid-bed granulator. (1) Pulse 

valve, (2) Cartridge filters, (3) Sample port, (4) Process air heater, (5) Exhaust blower, (6) 

Air flow station, (7) Inlet air filter, (8) Interchangeable processing inserts, (9) Spray gun,  

(10) Control panel, (11) Solution pump, (12) High Efficiency Particle Arresting  

(HEPA) filters (97). 

 

It was observed that, the amount of water needed to provide appropriate 

consistency was between 50 and 52% of the dry powder blend.  Based on this 

observation, FLM-15 (Figures 4 and 18; 12" plates), together with the conditions stated 

on Table IV were used for initial batches of 1 kg, which were later scaled up to 5 kg and 

10 kg pilot batches using 19" plate. 
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Table IV. Spheronization Conditions and Process Parameters 

 

 Equipment FLM-15 

 Parameters    

Batch size  1 kg 5 kg 10 kg 

Plate size  12” 19” 19” 

Centrifugal force 

(N) 

 41,667 41,667 41,667 

 SS/smooth SS/smooth SS/smooth Plate material  

type/contour  Tef./waffle Tef./waffle Tef./waffle 

Spraying     

 Air volume (cfm) A1  

and A2 values 

50 90 140 

 Plate gap (mm) 0.8 3.5 6 

 Spray rate (g/min)  

B1 and B2 values 

50 90 140 

 Rotor speed (rpm) 500 300 200 

 Inlet air temperature (oC) 25-30 25-30 25-30 

 Product temperature (oC) 18-22 18-22 18-22 

 Atomization air pressure 

(psi) 

45  45  45 

Drying     

 Air volume (cfm) 85 145 220 

  Plate gap (mm) 1.3 5.0 8 

 Rotor speed (rpm) 150 124 124 

 

SS/smooth: Stainless steel smooth; Tef./waffle: Teflon waffle 
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 Figure 18. Components of the Vector FLM-15 equipment. (1) Top exhaust vent  

(2) Filter chamber (3) Filter access doors (4) View windows (5) Temperature probe 

(6) Product container (7) Spray gun ports (8) Sample port (9) Inlet air plenum  

(10) product container cart (11) Support frame (12) Inspection light windows (97). 

 

     2. Spheronization of 1 kg batches 

 Several formulation (Table VA) and process (Table VB) variables resulting in the 

development of eleven different batches were used to determine those parameters that 

will yield spheroids with acceptable characteristics. These preliminary parameters are 

shown in Table VI.  

 Ibuprofen (20 µm) and Avicel RC-581 or CL-611 were sieved through a size 16 

(1,180 µm) mesh sieve. Weighed amounts (1:1) of the sieved ibuprofen and Avicel  

 



 89 

Table VA. Formulation Variables 

 

Variables Batch size 

 1 kg 5 kg 10 kg 

Avicel type RC-581 RC-581 RC-581 

 CL-611   

Binder Water Water Water 

 HPMC   

SLS (1%) Present Present Present 

 Absent   

Talc (3%) Present Absent Absent 

 Absent   

PEG (25%) Present Absent Absent 

 Absent   

 

Table VB. Process Variables 

 

Variables Batch size 

 1 kg 5 kg 10 kg 

Stainless steel/Waffle plate Used Not used Not used 

 Not used   

Stainless steel/Smooth plate Used Used Used 

 Not used   

Teflon/Waffle plate Used Used Used 

 Not used   

500 rpm Used Used Used 

 Not used   

650 rpm Used Not used Not used 

 Not used   
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RC-581 or CL-611 were blended with and without 1% SLS, and spheronized in FLM-15 

using water or HPMC solution as binders. The other formulation and process variables 

are shown in Tables VA and VB. The inlet and exhaust flaps were kept open and a 

frequency drive device was used to adjust the control of the air-flow. Fluidization of 

powder blend was achieved by centrifugal, vertical and gravitational forces, as well as 

heated air drawn through a gap around the rotor-disk and also by the nozzle  

pressure (47,95).  

 The air volume and velocity of air can be adjusted with the gap-adjustment ring 

below the disk.  This aids in air distribution while the rotor-disk is spinning in a 

clockwise direction. The fine powders lifted up by the fluidization air are restricted by 

polyester air filters (in the upper part of the equipment chamber) that are intermittently 

cleaned or cleared by a pulsating jet of air, enabling them to be returned to the batch (98). 

Spheronization end point was visually assessed, based on experience and the fluidization 

pattern that has been observed to correspond to moisture content of 50 - 52%. 

 Drying was performed at gradual inlet temperature increases of 10 °C every 5 min 

up to 60 °C.  This staged drying was done to prevent case hardening of the spheroids. The 

end point for drying was achieved when the product temperature reached 50 °C. The 

moisture content at the end of spheronization and drying periods were measured to 

determine loss on drying (LOD; 139) using the moisture balance at 85 °C and the result 

was recorded when the value became constant. The 85 °C was chosen to achieve optimal 

moisture loss with the product remaining intact.  
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 Table VI. Variables Involved in the Preliminary Trial Batches 

Trials 1 2 3 4 5 6 7 8 9 10 11 

Variables Standard No  

SLS 

Avicel® 

CL-611 

Smooth 

disk  

650/SS 

Smooth 

disk 

HPMC 

(5%) 

500/tef 

Waffle 

disk 

650/tef 

Waffle 

disk 

650/SS 

Waffle 

disk 

PEG 

(25%) 

Talc 

(3%) 

 

*Standard formulation 

1 % SLS: surfactant and wetting agent 

Avicel® RC-581: filler, binder 

Plate material type: stainless steel 

Plate contour: waffle 

500/SS: rotational speed/stainless steel 

Water: granulating liquid 

PEG: Polyethylene glycol.
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Consequent to data analyses of the eleven spheronized batches and the resultant 

product characteristics (yield, particle size, size distribution, sphericity, etc.), eight of 

these 1 kg batches were replicated twice and analyzed further (Table VI, trials 1-8).  Two 

of the replicated formulations (trials 4 and 7) were used to make two batches each of 5 

kg, 10 kg pilot scale-up trials (trials 12 - 15).  

 

     3.  Spheronization of Pilot scale batches (5 kg and 10 kg batches) 

 Scale-up was based on geometric similarity using the plate radius (R) and 

centrifugal force (Fc) as similarity factors, as shown in equations 5 and 6 for rotational 

speed (V) and centrifugal force (Fc) respectively. These equations are modifications of 

the Froude’s number equation as reported by Horsthuis, et al. (137).  

5 Eqn.                              
*

W

RFc
V =  

6 Eqn.                       
2*

R
VWFc =  

Using known values of weight (1 kg), rotational speed (500 rpm) and plate radius 

(6"), the centrifugal force was calculated to be 41,667 Newtons.  Using this value, the 

rotational (rotor) speeds during spheronization phase for 5 kg and 10 kg batches were 

calculated from equation 6 to be 300 and 200 rpm respectively (Table IV).  The Froude’s 

numbers for 1 kg, 5 kg and 10 kg batches were of 72.00, 41.04 and 18.24 respectively. 

 For drying of the scale-up batches, a reduced rotor speed was used.  The two plate 

types and contours used for these two batches are shown in Figure 19. The principle of 

geometric similarity was also applied to other process variables using the results of the  
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1 kg batches as well, and also using the air volume indicator present on the equipment 

(101). The air volume that gave the desirable fluidization for the scale-up batches was 

obtained visually by tuning the frequency drive of the exhaust blower in order to balance 

the air volume and velocity.  This correlated with an increased air volume of 10 cfm for 

each additional kilogram powder (Table IV).  The spray rate multiplier for the scale-up 

batches was determined as the ratio of the two air volumes needed for fluidization of both 

batches, and was calculated from known values using Equation 4. 

 

 

  

 

 

 

       

Figure 19. Rotor-disk plates for fluid-bed machines, stainless steel/smooth (A); 

teflon/waffle (B) (97). 

B 

A 

4  Eqn.                         
*

1

12
2 A

BA
B =
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b. Physical Characteristics of Developed Microparticulates 

 Acceptance criteria were set for the physical qualities of the spheroids based on 

literature (6,9) and FDA guidance for immediate release dosage forms (147). These 

included high product yield: ≥ 85%, adequate sphericity: ≥ 0.85, high drug content:  

≥ 90%, good dissolution profile: Q20 ≥ 80���JRRG�IORZDELOLW\�� �≤ 30o, granule size 

distribution in the range between 250 and 850 µm [(20/60 mesh) chosen as our usable 

fraction]: ≥ 85 % of the total product.  This tight fraction was chosen to achieve 

homogenous surface area, in order to account better for any differences in drug 

dissolution profiles. 

 

    1. Yield of microparticulates 

 The yield of the granules was taken as a percentage of the ratio of the total output 

obtained from batch processing and the initial weight of the powder blend (1 kg).  

 

    2. Particle size distribution 

 The particle size of ibuprofen was determined using an image analyzer 

(Quantimet 500, Leica, USA) interfaced with a microscope (Reichert, Bordersen 

Instrument Co., Inc., Valenca). This is based on transfer of a two-dimensional image of 

the representative pellet sample to a video screen and computation of the area and 

equivalent circle diameter (µm) of the individual particles (78). The ibuprofen powder 

was dispersed in water by gentle vortexing for adequate dispersion and accurate analysis. 

The computed equivalent circle diameter represents the particle size of the mounted 

sample. An average of 30 particles was taken. 
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 Microparticulate size distribution was determined using conventional sieve 

analysis performed once per replicate batches of each formulation.  Spheroids weighing 

100 g were placed on the uppermost of nested sieve with mesh sizes 16, 20, 40, 60, 80, 

and corresponding to mean pore sizes of 1,180, 850, 425, 250, 180 µm, respectively.  The 

sieve-nest was vibrated in a shaker for 5 min and the weight of each sieve was measured 

before and after, to calculate the weight of granules retained on each sieve. The frequency 

is the percentage of granules obtained in the different sieves to the total weight (100 g) of 

the particles used for the analysis. Using the frequency data, the log-normal distribution 

on a probability scale was plotted and the geometric mean diameter dg, and the geometric 

standard deviation δg were calculated.  The results reported are the means of two replicate 

batches and their corresponding geometric standard deviations (Tables XXA and B).   

 The usable fraction (UF) is the percentage of the total fraction of spheroids 

obtained from the 20 - 60 (granules with size ranges between 250 and 850 µm) mesh 

sizes and the initial weight used for particle size analysis (100 g). 

 

    3. Density of the granules  

 7UXH�GHQVLW\�� ��ZDV�GHWHUPLQHG�IURP�WKH�VDPSOH�PDVV�DQG�YROXPH�XVLQJ�D�

Quantachrome multipychnometer® (Vincentown, NJ).  The system and samples of known 

weight were purged of contaminated gas, moisture and vapor for a minimum of 20 min by 

placing the latter in the instrument using helium gas.  Sample volume (Vs) was calculated 

from cell and reference volumes (Vc and Vr respectively) obtained by calibration of a 

reference spherical material, using the manufacturer’ s protocols which includes  

Equation 16: 
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where P1 and P2 are the pressures obtained from the reference and cell volumes 

respectively. 

 

    4. Drug content and HPLC assays 

 i. Sample preparation 

 Standards were prepared in triplicates using a concentration range between 2.5 

and 300 µg/ml of methanol.  The determination of ibuprofen in the granules was 

conducted by extracting the drug twice from known sample weight of the product using  

3 ml methanol.  

 

 ii. HPLC assay 

 Fifty microlitre of standards was directly injected into the HPLC (Shimadzu 

Scientific Instruments, Inc., Columbia, MD), consisting of C18 reverse phase column (100 

x 4.6 mm, 5 µm, Phenomenex, MD).  The HPLC method (238) is a modification of Tsao 

and Savage (239), in which the mobile phase consisted of acetonitrile:water:glacial acetic 

acid:triethylamine (600:400:1:0.2).  The mobile phase was vacuum filtered and degassed 

simultaneously using a Branson 3200 ultrasonicator (Branson cleaning equipment, CT).  

Ibuprofen was monitored by UV detector at 265 nm wavelength, and the results were 

reported as the means of data from nine replicates of standards analyzed on three different 

days.  A calibration curve was set up and the method was validated for both accuracy and 

16 Eqn.                          ]1)[(
2

1 −−= P

P
VVV

rcs
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inter-day reproducibility, namely, coefficient of variation, using Equations 17 and 18. The 

regression equation was linear with a correlation coefficient (R2) of 0.9996. 

 

 The samples were also analyzed as stated for the standards, however, known 

concentrations of ibuprofen standard were injected separately and analyzed 

simultaneously with them.  The results were reported as the means of data from six 

replicates obtained from two different batches. 

 

    5. Dissolution 

 The dissolution of the produced microparticulates was carried out using the USP 

apparatus I at a rotation speed of 100 rpm.  Known amount of sample was weighed into 

3x2-cm diameter stainless steel minibaskets with 40-mesh screens that held each sample 

in the six flasks.  Simulated intestinal fluid (USP) containing 0.02% Tween 80 (enzyme 

grade) at pH 7.4 ± 0.05 was used as the dissolution medium with a temperature of 37 ± 

0.1 °C.  One milliliter sample was collected at specific intervals and filtered immediately 

using a 5 micron hydrophilic nylon filter membrane (B. Braun Medical Inc., PA, USA).  

The removed volume was not replaced in the dissolution vessel, but was factored into the 

calculation during the data analysis. Fifty microlitres of the samples and known standard 

concentrations were analyzed by HPLC with ibuprofen concentration monitored by UV 

17 Eqn.                          100  x 
ionconcentrat Expected

ionconcentrat Measured
    Accuracy  % =

18  Eqn.               100 x 
ionconcentratMean 

deviation  Standard
    (CV)  variationoft coefficienInterday  % =
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detector at 265 nm, as already stated.  The results were reported as the means of data of   

9 - 12 dissolution vessels from replicate batches. 

 

    6. Flowability 

 7KH�DQJOH�RI�UHSRVH�� ��DQG�&DUU
V�FRPSUHVVLELOLW\�LQGH[���40) were used to 

GHWHUPLQH�WKH�IORZDELOLW\�RI�WKH�VSKHURLGV���9DOXHV�RI� �OHVV�WKDQ���o as well as values of 

Carr’s index below 15% were considered good product flowability. 

 

 i.  Angle of repose 

 Weighed amount of granules was gently poured into an 8 oz funnel that was 

mounted on a stand and with the orifice covered.  The covered end was gently opened so 

that the granules flowed freely on a dark surface.  The diameter and height of the granules 

were measured and the angle of repose calculated using the following Equation: 

 

where H and R are the height and radius respectively formed by the granules.  The results 

reported are the means of six replicates of two batches. 

 

 ii. Carr’s index determination 

The bulk and tap densities of the pellets were determined with Vanderkamp Tap 

density tester (Van-Kel Industries Inc., NJ). The Carr’ s compressibility index was 

calculated using the following Equation: 

 

19 Eqn.                    tan)(
1−= R

Hθ
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where C is the compressibility index while DT and DB are tap and bulk densities 

respectively.   

 

    7. Granule friability test 

 The friability tester of tablets was used to test the resistance of the pellets to 

abrasion.  Size fraction of 250-850 µm placed in the Roche friabilator was subjected to a 

falling shock for 15 min at 30 rpm, sieved for 10 min and the weight loss was recorded. 

 

    8. Sphericity and roundness of granules 

 Sphericity and roundness were determined using a Quantimet image analyzer 500 

interfaced with a microscope in which the roundness, perimeter (Pm) and the particle 

projected area (A) were measured (78).  These were used to calculate sphericity (S), a 

reciprocal of the roundness factor, as shown in the equation 21 below (241):  

 

A perfectly spherical particle will have a value of 1.0 while non-spherical particle will 

have a value of 0.1. 

 

 

 

21 Eqn.                          142.34
2Pm

AS ∗=

20 Eqn.                    100*%
T

BT

D
DD

C
−=
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    9. Scanning electron microscopy (SEM) 

 The samples were placed on a sample stub containing double-sided transparent 

adhesive tapes. They were then coated under reduced pressure (~0.8 mbar) with gold for 

2 min using a Cressington Sputter Coater 108 (Franklin Electric, Bluffton, IN) and 

observed under a scanning electron microscope (Hitachi S510, Tokyo, Japan) at 10 kV. 

 

c. Statistical analysis 

 The influence of the independent variables on the pellet characteristics was 

analyzed by standard deviation and relative standard deviation, while the yield variable 

was also analyzed by one-way ANOVA and student’s t-test techniques using the JMP IN 

version 3.2 statistical software. 

 

Phase 2 

Optimization of the Developed Process and Product Variables Using Statistically 

Designed Factorial Experiment. 

 

a.  Experimental Design 

 The results of the feasibility studies showed that two formulation (binder and 

surfactant levels) and one process (plate type-contour) variables were critical to the 

quality of the spheroids prepared in the rotor-disk fluid-bed equipment (47). Based on 

these results, a 2x2x3 full factorial design was generated using a JMP IN based software 

and consisting of two binder levels (X1), two surfactant levels (X2), and a three level 

plate type (X3) in which two-two level factors were collapsed into a single three level 
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factor.  An additional blocking effect was studied in which every experiment in each 

block was randomly replicated, to access the effect of batch replication on the chosen 

product qualities and on the main factors.  This increased the statistical power of our 

design in that the experimental runs were increased from twelve to 24 and the 

randomization ensured that each of the experiments had one over twelve (within each 

block) chances of being run at any given time. This design allows the estimation of 

statistical significance of the effect and interactions of the three product and process 

variables (X1 - X3) on several spheroid qualities in the generated experimental runs.  The 

experimental design matrix is shown in Table VII, and the different levels of the three 

factors shown in Table VIII.  In Table VII, the levels for each of the formulation 

parameters are represented by a (-) sign for the low and a (+) sign for the high levels.   

 In the matrix of the factorial design shown in Table VII, each line identifies the 

experimental condition for each batch (X1 - X3), and each experiment gives a result (Y). 

From these, and applying factorial design mathematical model, one obtains a general 

linear analysis (242,243): 

22    Eqn.                 ijkleklcdjlbdiladldjkbcikackcijabjbiaijklY +++++++++++= µ  

where Yijkl is the response variable, µ is the mean value, ai, bj, ck and dl are the main effect 

coefficients (binder level, surfactant level, plate type and block respectively), while abij, 

acik, bcjk, adil, bdjl, and cdkl are the second level coefficient of interactions, and eijkl the 

error value.  

 Previous studies have shown that higher order interactions are generally not likely 

to exist, and also are uninterpretable even when they are significant (112,244).  
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Table VII: Experimental Design Matrix for Optimization Studies 

 

X1: Binder level; High (1), Low (-1) 

X2: Surfactant level; High (1), Low (-1)  

X3: Plate type; Stainless steel waffle (-1), Stainless steel smooth (0), Teflon waffle (1) 

 

 Consequently, interactions of three or more factors were confounded with       

two-factor interactions and were assumed to be insignificant for the purposes of this 

design.  Moreover, because blocking (dl) had no statistically significant effect on eleven 

out of the twelve response variables (Y), and consequently yielded statistically 

insignificant interactions with the main effects [(ai, bj, ck) results not shown] their  

                 B l o c k  1     
X 1 X 2 X 3
- 1 1 - 1
- 1 - 1 0
1 1 0
1 - 1 1

- 1 1 0
1 1 - 1

- 1 - 1 1
1 - 1 - 1

- 1 1 1
1 1 1
1 - 1 0

- 1 - 1 - 1

                 B l o c k  2     
X 1 X 2 X 3
- 1 - 1 0
- 1 1 - 1
1 1 - 1

- 1 - 1 1
1 - 1 0
1 - 1 1

- 1 1 0
- 1 1 1
- 1 - 1 - 1
1 - 1 - 1
1 1 0
1 1 1
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Table VIII: Experimental Design for Optimization Studies 

Runs Batch name* Binder level Surfactant level Plate type 

1 Formulation 1a 1200 20 SS-Waf 

2 Formulation 2a 1200 10 SS-Sm 

3 Formulation 3a 1350 20 SS-Sm 

4 Formulation 4a 1350 10 Tef-Waf 

5 Formulation 5a 1200 20 SS-Sm 

6 Formulation 6a 1350 20 SS-Waf 

7 Formulation 7a 1200 10 Tef-Waf 

8 Formulation 8a 1350 10 SS-Waf 

9 Formulation 9a 1200 20 Tef-Waf 

10 Formulation 10a 1350 20 Tef-Waf 

11 Formulation 11a 1350 10 SS-Sm 

12 Formulation 12a 1200 10 SS-Waf 

13 Formulation 2b 1200 10 SS-Sm 

14 Formulation 1b 1200 20 SS-Waf 

15 Formulation 6b 1350 20 SS-Waf 

16 Formulation 7b 1200 10 Tef-Waf 

17 Formulation 11b 1350 10 SS-Sm 

18 Formulation 4b 1350 10 Tef-Waf 

19 Formulation 5b 1200 20 SS-Sm 

20 Formulation 9b 1200 20 Tef-Waf 

21 Formulation 12b 1200 10 SS-Waf 

22 Formulation 8b 1350 10 SS-Waf 

23 Formulation 3b 1350 20 SS-Sm 

24 Formulation 10b 1350 20 Tef-Waf 

*: The "a" and corresponding "b" of each number are random replicates of the same 

formulation and give the mean of the dependent variables presented in Table XX below.  
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interaction factors (adil, bdjl, and cdkl) were eliminated while their degrees of freedom 

were added to that of the error factor, thereby increasing the statistical power of the 

design. The new linear equation is represented in Equation 23: 

 

b. Blending and spheronization 

 This was performed as already described above (pp 88 - 92) and also in our 

published report (47), except that both 1 and 2% SLS were used, and spheronization was 

performed using fixed amount (120 or 135% of the starting material) of water as binder 

solution (Table VIII).  Drying was performed till 50 °C product temperature was reached 

and moisture content was used as a measure for loss on drying (LOD).  The granulation 

end-point was obtained at the set binder content values (Table VIII). 

 

c. Physical characterization of spheroids   

 These were performed as already described in the feasibility studies.  The yield of 

the granules was taken as a percentage of the ratio of the final weight obtained after the 

production processes and the initial weight of the powder blend.  Microparticulate size 

distribution was determined using conventional sieve analysis and the geometric mean 

diameter and geometric standard deviations calculated.  Usable products were considered 

as granules with size ranges between 250 and 850 µm (20/60 mesh size), and were used 

in the different analyses to obtain the response variables (Y).  The drug content and the 

dissolution assays were analyzed using the HPLC reversed phase column and ibuprofen 

was monitored by UV detector at 265 nm wavelength. However, the samples were 

23 Eqn.                      ijkleldjkbcikackcijabjbiaijklY ++++++++= µ
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filtered using 0.45 micron hydrophilic wolven nylon filter membrane (B. Braun Medical 

Inc., PA, USA).  The sphericity and roundness of the spheroids were determined using an 

image analyzer (Quantimet 500, Leica, USA) interfaced with a microscope (Reichert, 

Bordersen Instrument Co., Inc., Valenca). Spheroid friability, flowability, Carr’s index, 

tap and bulk densities were performed exactly as described earlier.  

 

     Scanning electron microscopy (SEM) 

 The samples were placed on a sample stub with double-sided carbon tapes, 

evacuated, back-filled with argon under reduced pressure (0.1 torr).  They were then 

coated with palladium using a Hummer Sputtering System LO.2, (ANATECH Ltd., 

Alexandria, VA), and observed under a scanning electron microscope (Philips XL 30 

FEG CDUTM LEAPTM, Holland, Nederlands) at 1 kV. 

 

d. Statistical analysis 

The influence of the independent variables on the characteristics of microparticulates was 

analyzed by the ANOVA method using the JMP software. Pareto charts were used to 

show the scaled estimates of the effects of the studied product and process variables on 

the physical characteristics of spheroids (245). The effect of a factor or an interaction is 

considered significant as long as it is superior to the experimental error (246,247). 
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Phase 3 

Drug Loading, Particle Size Effects. Scale-up to Intermediate Scale Using the 

Fluid-bed Rotor-disk Technology 

  

 The results from the optimization studies indicated that higher binder content 

caused higher yield of the spheroids while stainless steel smooth plate gave more 

consistent product quality especially with respect to yield, drug content, sphericity and 

usable fraction.  Additionally, higher binder content in combination with the lower 

surfactant level yielded more acceptable spheroid characteristics as specified in the set 

acceptance criteria (page 94).  The formulation consisting of high binder level, low 

surfactant level (1%), and made with stainless steel smooth plate was therefore chosen for 

the studies in this section. 

 

a. Effects of drug particle size and drug loading on the characteristics of ibuprofen 

microparticulates 

 

    1. Experimental design 

 Drug particle size and drug load have been shown as among the limitations of the 

rotor-disk fluid-bed technology (15,154).  In order to investigate these observations, a 2x3 

full factorial design was generated using a JMP IN based software and consisting of two 

drug particle sizes (X1) and three drug loads (X2).  The experimental runs were replicated 

to access the effect of batch replication on the chosen product qualities and on the main 

factors. The replication also increased the statistical power of our design by increasing the 
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experimental runs from six to twelve. Additionally, this design allows the estimation of 

statistical significance of the effect and interactions of the two product variables (X1 and 

X2) on several spheroid qualities in the generated experimental runs.  The experimental 

design matrix is shown in Table IX, and the different levels of the two factors shown in 

Table X. In Table IX, the levels for each of the formulation parameters are represented by 

a (-) sign for the low, and a (+) sign for the high levels.   

 

Table IX: Experimental Design Matrix for Drug Particle Size and Drug Load 

Effects on Spheroid Characteristics 

Number of runs Replication X1 X2 

1 -1 -1 -1 

2 1 -1 -1 

3 -1 -1 0 

4 1 -1 0 

5 -1 -1 1 

6 1 -1 1 

7 -1 1 -1 

8 1 1 -1 

9 -1 1 0 

10 1 1 0 

11 -1 1 1 

12 1 1 1 

 

X1: Drug particle size (µm); 20 (-1), 40 (1) 

X2: % drug load; 50 (-1), 65 (0), 80 (1) 
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In the matrix of the factorial plan represented in Table IX, each line identifies the 

experimental condition for each batch of the factors (X1 and X2), and each experiment 

gives a result (Y) that will be applied to a general linear model based on the algorithm of 

Yates, as shown in equation 24: 

24    Eqn.                                         ijkejkbcikackcijabjbiaijkY +++++++= µ  

where Yijk is the response variable, µ is the mean value, ai and bj are the main effect 

coefficients (drug particle size and drug load) respectively, while ck is the replication  

 

Table X: Experimental Design for Drug Particle Size and Drug Load Effects 

on Spheroid Characteristics 

Number of runs Batch name Drug Particle Size (µm) % Drug Load 

1 Ibu 20-50a 20 50 

2 Ibu 20-50b 20 50 

3 Ibu 20-65a 20 65 

4 Ibu 20-65b 20 65 

5 Ibu 20-80a 20 80 

6 Ibu 20-80b 20 80 

7 Ibu 40-50a 40 50 

8 Ibu 40-50b 40 50 

9 Ibu 40-65a 40 65 

10 Ibu 40-65b 40 65 

11 Ibu 40-80a 40 80 

12 Ibu 40-80b 40 80 

*: The "a" and corresponding "b" of each number are replicates of the same formulation 

and give the mean of the dependent variables presented in Table XXV below. 
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effect. The parameters abij, acik, and bcjk are the second level coefficient of interactions, 

and eijk is the error value. 

 As already mentioned, previous studies have shown that higher order interactions 

are generally not likely to exist, and also are uninterpretable even when they are 

significant (93,244). Consequently, interactions of three or more factors were confounded 

with two-factor interactions and were assumed to be insignificant for the purposes of this 

design. Moreover, because replication (ck) had no significant effect on ten out of the 

twelve response variables, and also yielded statistically insignificant interactions with the 

main effects (ai, bj), their interaction factors (acik and bcjk) were eliminated while their 

degrees of freedom were added to that of the error factor, thereby increasing the statistical 

power of the design. The new linear equation is represented in Equation 25: 

25   Eqn.                                  ijkekcijabjbiaijkY +++++= µ  

 

    2. Blending and spheronization 

 This was performed as already described in the feasibility studies (pp 88 - 92) and 

also in our published report (47).  Spheronization end point was visually assessed, based 

on experience and the fluidization pattern that gave the most acceptable product qualities. 

This has been observed to correspond to moisture content of 50 - 55% for the 

drug:Avicel® 50:50 ratios, 45 – 48% for the 65:35 ratios, and 37 – 41% for the 80:20% 

ratios, for both drug particle sizes (Table XI).  These amounts of water did not yield much 

oversized spheroids, and were recorded with regard to both the drug particle size and 

thedrug load.  Drying was performed as previously reported, with the end point achieved 
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Table XI. Binder and Time Conditions During Spheronization and Drying Processes 

 

 20 micron ibuprofen 40 micron ibuprofen 

% ibuprofen 50 65 80 50 65 80 

Binder added during 

spheronization (kg) 

1.525 ± 0.04 1.265 ± 0.08 1.085 ± 0.16 1.394 ± 0.02 1.189 ± 0.02 0.910 ± 0.03 

Total time [(spheronization  

and drying) mins] 

67.5 ± 0.95 54.5 ± 2.12 46.5 ± 2.12 75.0 ± 1.14 66.0 ±  2.83 53.1 ± 0.41 

Moisture content at end of 

spheronization 

50.69 ± 0.27 45.21 ± 0.02 37.27 ± 1.05 55.81 ± 0.56 48.45 ± 0.47 41.44 ± 0.07 
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when the product temperature reached 50 °C.  The plate gap was adjusted from 0.8 –    

1.0 cm and the air volume from 85 - 90 cfm, to ensure proper fluidization of the pellets. 

 

     3. Physical characterization of spheroids   

 These were performed as already described in the feasibility studies (pp 94 - 99).  

The yield of the granules was taken as a percentage of the ratio of the final weight 

obtained after the production processes and the initial weight of the powder blend.  The 

moisture content was measured as a function of time for all the batches, and the values at 

the end of spheronization process are shown in Table XI and Figure 36.  Microparticulate 

size distribution was determined using conventional sieve analysis.  Usable products were 

considered as granules with size ranges between 250 and 850 µm (20/60 mesh size), and 

were used in the different analyses to obtain the response variables.  The drug content and 

the dissolution assays were analyzed using the HPLC reversed phase column with 

ibuprofen monitored by UV detector at 265 nm wavelength.  The samples were filtered 

through 0.45 micron hydrophilic wolven nylon filter membrane (B. Braun Medical Inc., 

PA, USA).  The sphericity and roundness of the spheroids were determined using an 

image analyzer (Quantimet 500, Leica, USA) interfaced with a microscope (Reichert, 

Bordersen Instrument Co., Inc., Valenca). Spheroid friability, flowability, Carr's index, 

tapped and bulk densities were performed exactly as already described.  The scanning 

electron microscope analysis for studying the morphology of the spheroids was performed 

exactly as described in phase 2 (page 105). 
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    4. Statistical analysis 

The influence of the independent variables on the characteristics of 

microparticulates was analyzed by the ANOVA method using the JMP software. Pareto 

and interaction plots were also used as described earlier (245).  

 

b. Effects of Intermediate Size Scale-up on the Characteristics of Ibuprofen 

Microparticulates 

 Results from the drug load and drug particle size effects showed that the three 

drug loads were spheronizable, however, drug loads of 50% and 65% had similar 

characteristics and significantly affected most of the physical characteristics studied.  As 

was previously observed (157), the 80% drug load was more difficult to spheronize and 

also had high standard deviations between most of the obtained replicate values, and was 

therefore difficult to replicate. Additionally, drug particle size of 20 µm had the most 

significant effects on the spheroid qualities studied.  Therefore, 50% and 65% drug loads 

as well as 20 µm sized ibuprofen were used for further studies. 

 

    1. Experimental design 

 In order to study the scalability of the optimized product and process variables to 

semi-production size, a 2x2 full factorial design was generated using a JMP IN based 

software and consisting of two batch sizes (X1) and two drug loads (X2).  The 

experimental runs were replicated for the reasons already mentioned in the previous 

experiments.  The experimental design matrix is shown in Table XII and the different 

levels of the two factors are shown in Table XIII.  The general linear model and the 
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model deduced to increase the statistical power of the experiments are as shown in 

Equations 26 and 27 respectively.  However, ai and bj are the main effect coefficients 

(batch size and drug load) respectively. 

26    Eqn.                                            ijkejkbcikackcijabjbiaijkY +++++++= µ  

27    Eqn.                                                                                 ijkekcijabjbiaijkY +++++= µ  

 

Table XII: Experimental Design Matrix for Intermediate Size Scale-up Effect on the 

Characteristics of Ibuprofen Microparticulates 

 

Number of runs Replication X1 X2 

1 -1 -1 -1 

2 1 -1 -1 

3 -1 -1 1 

4 1 -1 1 

5 -1 1 -1 

6 1 1 -1 

7 -1 1 1 

8 1 1 1 

 

X1: Batch size (kg); 1 (-1), 50 (1) 

X2: Drug load (%); 50 (-1), 65 (1) 
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Table XIII: Experimental Design for Intermediate Size Scale-up Effect on the 

Characteristics of Ibuprofen Microparticulates 

Number of runs Formulation name Batch Size % Drug Load 

1 1kg-50%-a 1 50 

2 1kg-50%-b 1 50 

3 1kg-65%-a 1 65 

4 1kg-65%-b 1 65 

5 50kg-50%-a 50 50 

6 50kg-50%-b 50 50 

7 50kg-65%-a 50 65 

8 50kg-65%-b 50 65 

 

*: The "a" and corresponding "b" of each number are replicates of the same formulation 

and give the means of the dependent variables presented in Table XXVII below. 

 

2. Blending and spheronization 

This was performed as already described in the feasibility studies (pp 92 and 93) 

and also in our published report (47). The FLM-15 was used for the 1 kg batches, while a 

FLN-120 having the same geometric similarities was used for the 50 kg batches. The  

specifications of both equipment are shown in Figures 18 and 20 respectively. For the 

large-scale equipment and process, the principles of dynamic geometric similarity as well 

as trial and error (137,138) were applied to obtain fluidization air volume that efficiently 

fluidized the powder bed throughout the wetting and drying periods (Equations 4 – 6; 

102). The obtained spheronization conditions, compared to those used for the pilot  
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Figure 20. Components of the Vector FLN-120 fluid-bed machine with the numbers 

corresponding with the same equipment parts as were specified in Figure 18 (97). 

 

scale batches are shown in Table XIV. The range of the rotor speed used during the 

spheronization period corresponded to Froude’s numbers of 6.02 -17.28. Spheronization 

end point was also determined as previously reported, based on experience and acceptable 

fluidization pattern, and the results are shown in Table XV.  Drying was performed as 

previously reported, with the end point achieved when the product temperature  

reached 50 °C.   



 116 

Table XIV: Spheronization Conditions of Scale-up Batches 

               Parameters

Batch size 1 kg 5 kg 10 kg 50 kg

Plate size 12" 19" 19" 39.5"

Centrifugal force (N) 41,667 41,667 41,667 41,667

Plate material type/contour SS/smooth SS/smooth SS/smooth SS/smooth

Teflon/waf. Teflon/waf. Teflon/waf. NA

Spraying

Air volume (cfm) A1 and A2 50 90 140 500-1500

Plate gap (mm) 0.8 3.5 6 NA

Spray rate (g/min) B1 and B2 50 90 140 470 - 500

Rotor speed (rpm) 500 300 200 130 - 135

Inlet air temperature (oC) 25 - 30 25 - 30 25 - 30 25 - 30

Product temperature (oC) 18 - 22 18 - 22 18 - 22 18 - 22

Atomization air pressure (psi) 45 45 45 45

Drying

Air volume (cfm) 85 145 220 1100 - 1300

Plate gap (mm) 1.3 5 8 NA

Rotor speed (rpm) 150 124 124 75
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Table XV. Binder and Time Conditions for Spheronization and Drying Processes of 

Intermediate Size Scale-up Ibuprofen Microparticulates 

 

3. Physical characterization of spheroids   

 These were performed as already described in the feasibility studies (pp 94 - 99). 

The yield of the granules was taken as a percentage of the ratio of the final weight 

obtained after the production processes and the initial weight of the powder blend. 

Microparticulate size distribution was determined using conventional sieve analysis.  

Usable products were considered as granules with size ranges between 250 and 850 µm  

(20/60 mesh size), and were used in the different analyses to obtain the response variables 

(Y).  The drug content and the dissolution assays were analyzed using the HPLC reversed 

phase column with ibuprofen monitored by UV detector at 265 nm wavelength. The 

samples were filtered using 0.45 micron hydrophilic wolven nylon filter membrane (B. 

Braun Medical Inc., PA, USA).  The sphericity and roundness of the spheroids were 

determined using an image analyzer (Quantimet 500, Leica, USA) interfaced with a 

microscope (Reichert, Bordersen Instrument Co., Inc., Valenca). Spheroid friability, 

Batch sizes 1 kg 50 kg 

% ibuprofen 50 65 50 65 
Binder added during 
spheronization (kg) 

1.525  

± 0.04 

1.265  

± 0.08 

55.22  

± 1.11 

53.00  

± 1.41 

Total time [(spheronization 
and drying) mins] 

67.50  

± 0.95 

54.50 

 ± 2.12 

246.50 

± 5.66 

198.00 

± 2.83 

Moisture content at end of 
spheronization 

50.69  

± .0.27 

45.21  

± 0.02 

47.55  

± 1.74 

40.59  

± 0.01 
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flowability, Carr’s index, tapped and bulk densities were performed exactly as already 

described.  The scanning electron microscope analysis for studying the morphology of the 

spheroids was also performed exactly as described in phase 2 (page 105).

 

     4. Statistical analysis 

The influence of the independent variables on the characteristics of 

microparticulates was analyzed by the ANOVA method using the JMP software. Pareto 

and interaction plots were also used as described earlier (245).  

 

Phase 4 

Coating and Encapsulation of Spheronized Ibuprofen Microparticulates Using 

Hard Gelatin Capsules 

 

 The results of the scale-up experiments showed that replication did not affect the 

physical characteristics of both spheroid batch sizes and that both the drug loads used and 

the rotor-disk spheronization process are scalable. Therefore, 1 kg batch size with 65% 

drug load (Table XIII, Runs #7 and 8) were pulled and used to study the effect of polymer 

film coating and hard gelatin encapsulation on the qualities of the spheroids. 

 

a. Polymer Film Coating of Spheroids 

     1. Preliminary studies using Glatt fluid-bed 

 To investigate the feasibility of coating the spheroids, the Glatt fluid-bed (Glatt 

WSG-5 Wurster column/Fluid-bed) was first used to coat 6 x 1 kg batches using three 
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coating levels each of Surelease (5, 10 and 15%) and Eudragit (8, 14 and 20%) 

polymers. The fluid-bed conditions used were almost the same for both polymers and are 

as follows: inlet air temperature (26 oC), outlet air temperature (24 - 28 oC), air of 

operation (2 mbar), air of atomization (2 - 4 mbar), flow rate (40 g/min). The batches 

were pre-warmed for 10 min before applying the film coats. Moisture content was 

analyzed before and after the pre-warming, after the polymer application and at the end of 

the process. The products were analyzed for yield, usable fraction and drug release.  

Based on the obtained results (not shown), the coating conditions and the rotor-disk 

conditions from previous studies (47,199), the levels and conditions for our rotor-disk 

fluid-bed coating were selected. These are shown in Tables IX (page 107) and XVI.   

 

     2. Experimental design for rotor-disk fluid-bed coating 

A 2x3 full factorial experimental design was generated using the JMP software, 

consisting of 2 levels of polymer film type (X1) and three coating levels (X2). The 

polymer levels were chosen based on manufacturer’ s technical literature (of the 

polymers).  Consideration of the coating levels that would allow for rotor-disk processing 

in the equipment was also made. The generated design was replicated to study the 

reproducibility of the rotor-disk coating process and also to increase the statistical power 

of the design. The experimental design matrix and the different levels of the two factors 

are shown in Tables IX (where, in this case, X1 is the polymer type and X2 the coating 

level; page 107) and XVI respectively.  A stainless steel plate (12") was used with a batch 

size of 700 g. 
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Table XVI: Experimental Design for the Coating of Spheronized Ibuprofen 

Microparticulates 

 

Number of runs Batch name Polymer type Polymer level (% 

1 SR-7.5a Surelease Low (7.5) 

2 SR-7.5b Surelease® Low (7.5) 

3 SR-10a Surelease® Medium(10) 

4 SR-10b Surelease® Medium(10) 

5 SR-12.5a Surelease® High (12.5) 

6 SR-12.5b Surelease® High (12.5) 

7 EUD-12.5a Eudragit® NE 30D Low (12.5) 

8 EUD-12.5b Eudragit® NE 30D Low (12.5) 

9 EUD-14a Eudragit® NE 30D Medium(14) 

10 EUD-14b Eudragit® NE 30D Medium(14) 

11 EUD-15.5a Eudragit® NE 30D High (15.5) 

12 EUD-15.5b Eudragit® NE 30D High (15.5) 

 

*: The "a" and corresponding "b" of each number are replicates of the same formulation 

and give the mean of the dependent variables presented in Table XXIX below. 

 

     3. Rotor-disk fluid-bed coating 

 i. Coating of spheroids with Surelease polymer 

 The Surelease product containing 25% dry polymer weight was mixed with 

appropriate amount of distilled water to bring it to 15% total solids content (174). The 

spheroids (700 g) were pre-warmed to ~ 30 oC product temperature.  The coating 

conditions and formulations are shown in Tables XVII and XVIII respectively.  The 
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Table XVII. Conditions and Process Parameters Used for the Coating of 700 g Ibuprofen Spheroids 

 

  Surelease Eudragit NE 30D 

 Coating level (%) 7.5 10 12.5 12.5 14 15.5 

Coating  

          Air volume (cfm) 60 - 85 

 Plate gap (mm) 1.0 – 1.5 

 Rotor speed (rpm) 200 -250 

Inlet air temperature (oC) 40 - 50  

Spray rate (g/min) 5.5 -7.5 5.5 -10.0 5.5 – 10.0 5.5 -7.5 5.5 -10.0 5.5 – 10.0 

Drying        

 Air volume (cfm) 80 - 90 80 - 100 80 - 150 80 - 90 80 - 100 80 - 150 

 Plate gap (mm) 1.5 

 Rotor speed (rpm) 250 
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Table XVIII. Formulation of the Aqueous Dispersions Used for the Coating of 700 g Ibuprofen Spheroids 

 

Polymer type Surelease Eudragit NE 30D 

Coating level (%) 7.5 10 12.5 12.5 14 15.5 

       

Formulation       

Surelease polymeric solution (g) 210 280 350 

Surelease polymer (solids; g) 52.5 70 87.5 

Water ad (to dilute to 15% solids; g) 350 466.67 583.33 

 

NA 

    

Eudragit polymeric solution 291.67 326.67 361.67 

Eudragit polymer (solids; g) 87.5 98 108.5 

Talc (20% of dry polymer; g) 17.5 19.6 21.7 

Water ad (to dilute to 25% solids; g) 

 

 

NA 

420 470.4 520.8 

   

Solid content (% w/w) of the 

dispersion 

15 25 
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coating conditions were adjusted to ensure that spraying was performed continuously 

during a greater period of the process. The product temperature was maintained between 

35 and 40 oC. Spraying was intermittently interrupted to ensure proper fluidization of the 

spheroids, avoid agglomeration and minimize attrition problems. The total amount of the 

polymer shown in Table XVIII was used to obtain the theoretical percentage weight gain 

required for each of the batches. 

 

ii. Coating of spheroids with Eudragit NE 30 D polymer 

A known weight of talc (20% w/w of the total dry polymer weight) was dissolved 

in an appropriate amount of distilled water with constant stirring.  The talc solution was 

passed through a 60 mesh sieve (250 µm) to remove any undissolved particles.  Eudragit 

(30% w/w) was diluted in the talc solution to obtain 25% total solid content (Table 

XVIII), which was constantly stirred.  The spheroids (700 g) were pre-warmed to ~ 30 oC 

product temperature in the rotor-disk fluid-bed. The coating conditions are as shown in 

Table XVII, and were adjusted to ensure that spraying was performed continuously during 

a considerable period of the process. The product temperature was maintained at 30 oC. 

Although talc was added in the spraying solution to prevent agglomeration, spraying was 

intermittently interrupted to ensure proper fluidization of the spheroids. The formulation 

contents are as shown in Table XVIII. 

 

     4. Physical characterization of the coated spheroids 

 Particle size analysis was performed by the traditional sieve analysis method and 

the usable fraction was calculated as has been previously described. The geometric mean 
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and standard deviations were also calculated. The yield of the coated products was 

calculated as a percentage of the product output and the total weight of the solid content 

of the starting material [spheroids (700 g), talc, Surelease® and Eudragit®] as applied to 

specific batches (Table XVIII). The true and bulk densities, flowability, friability, 

scanning electron microscope were performed as already explained in the previous 

sections. The compressibility index was also calculated.  However, there was little to no 

volume change after several taps of the spheroids. This conforms with the reports that the 

bulk and not the tapped densities is used as a measure for calculating capsule fill weight 

and size for pellets (227). It also supports the results that compressibility is not required 

for pellet filling, thus the preference for tamp filling machine for these products over the 

dosator machines. Drug content testing was performed as already described and the 

weight of the polymer was accounted for in the calculations. Drug release studies were 

also performed as already reported, however, the time taken for 50% (T50) of the drug to 

be released was used to measure the coating efficiency and duration of release instead of 

the Q20 used for the immediate release preparations (160,248).  

 

 i. Comparison of dissolution profiles 

  Model-independent methods (Equations 13 and 14 previously shown), difference 

and similarity (f1 & f2) factors respectively, were used to compare dissolution profiles for  
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similarity. An f1 value up to 15 (0 – 15) and an f2 value between 50 and 100 showed that 

the two dissolution profiles were similar. 

 

ii. Mathematical modeling of drug release  

 The drug release data from uncoated and coated pellets were analyzed with 

square-root of time equation (Higuchi equation, Equation 7), Peppas equation (Equation 

9), zero-order kinetic (Equation 12), and first-order kinetic (Equation 28). The data were 

also fitted to a recently developed combined mechanistic release kinetics (zero-order and 

square root of time Equation 15; 177).  It was assumed that that release occurred as soon 

as the matrix is placed in contact with fluid and thus predicts an intercept at the origin. 

 

 

9 Eqn.                          loglog)/( log tnkMMt +=  

 

 

 

 

28 Eqn.                                  t         k-Qln   )100( ln 10=− Q  

 

Where k1 is the first order release equation coefficient. 
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    5. Statistical analysis 

 The influence of the independent variables on the characteristics of 

microparticulates was analyzed by the ANOVA method using the JMP software. Pareto 

and interaction plots were also used as described earlier (245).  

 

b. Hard Gelatin Encapsulation of Spheroids 

     1. Experimental design 

 From our statistical analyses and the physical characteristics (bulk density, 

friability, flow properties and T50) of the coated spheroids, the two replicate batches 

coated with 12.5% Surelease® level were pulled for hard gelatin encapsulation. A 2x2x3 

full factorial experiment was designed consisting of two spheroid preparations, uncoated 

and coated (X1), and using two machine variables, (namely, two levels of machine 

operational speeds (X2) each operated at three different shuttle speeds (X3).  Size 0 hard 

gelatin capsules were used. A cross section of the pellet feeder assembly of the Index 

K150i series (Figure 15) used for the pellet encapsulation is shown in Figure 21A, while 

Table XIX shows the experimental matrix /design. 

The shuttle gate controls the length of time the male and female gates could 

remain open (Figures 21A & B).  These gates regulate the amount of pellets that could be 

filled into pellet feeder, which feeds the empty capsules.  It is therefore expected that the 

capsules filled at longer shuttle speed will contain higher amount of pellets since the gates 

will be left open long enough for enough pellets to be collected into the feeder.      

 In the matrix of the factorial plan represented in Table XIX, each line identifies 

the experimental condition for each batch of the factors (X1 – X3), and each experiment 
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gives a result (Y) that will be applied to a general linear model based on the algorithm of 

Yates, as shown in equation 29: 

29    Eqn.                                         ijkejkbcikackcijabjbiaijkY +++++++= µ  

where Yijk is the response variable, µ is the mean value, while ai, bj and ck are the main 

effect coefficients, type of formulation, operational speed and shuttle speed respectively.   

 

Figure 21. Cross-section of pellet feeder assembly (A) 

Inner feed plate assembly (B) (217) 

A 

B 
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Table XIX Experimental Design Matrix for Encapsulation of Coated and 

Uncoated Ibuprofen Microparticulates 

Number of runs X1 X2 X3 

1 1 1 1 

2 1 1 0 

3 1 1 -1 

4 1 -1 1 

5 1 -1 0 

6 1 -1 -1 

7 -1 1 1 

8 -1 1 0 

9 -1 1 -1 

10 -1 -1 1 

11 -1 -1 0 

12 -1 -1 -1 

 

X1: Type of formulation; coated or uncoated; X2: Operational speeds; 1, 2;   

X3: Shuttle speeds; 1 – 3 

 

The parameters abij, acik, and bcjk are the second level coefficient of interactions, 

and eijk is the error value.  The experiments were not replicated due to limitations of 

materials. Consequently, the interaction factors were eliminated from the analyses to  

increase the statistical power of the error. The equation involving only the main effects 

therefore becomes:  

30    Eqn.                                       ijkekcjbiaijkY ++++= µ  
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     2. Pellet encapsulation 

 The theoretical pellet fill weight was calculated based on the drug content and 

release, and also in Equation 31. 

 

The “0”  or “00”  capsule sizes will be required to fill 430 or 600 mg respectively of our 

coated pellets that will contain 300 - 400 mg ibuprofen drug/capsule.  As stated on page 

51, the equivalent total daily dose should generally be the same in switching a patient 

from immediate release to prolonged release product, although in most cases, an effective 

response has been achieved with a lower dose of the sustained release product (168). By 

filling 300 - 400 mg/capsule, it would be easy to study the efficacy of the drug at different 

doses.  However, the available encapsulation machine did not have the capabilities 

required for filling size 00 capsules. Consequently, the highest amount of the pellets that 

could fill the “0”  capsule size was used as our target weight. This enabled extrapolation 

of results obtained to calculate the amount of pellets required to fill the “00”  capsule size, 

using the information provided in Figure 14. 

 The pellets were filled into size 0 hard gelatin capsules on a Romaco K-series 

(Figure 15) automatic tamp filling (gravity filled) machine with a 15 mm dosing disk. The 

operational speeds used were 75 and 85 rpm and the shuttle speeds were 260, 280 and 

300 milliseconds. These variables were chosen based on the flowability of the pellets, as 

well as conditions that will prevent pellet losses, considering the small batch size of the 

31   Eqn.                             
Volume

Weight
  ensity  =D
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coated pellets (~ 1 kg). Approximately 200 capsules were collected from each run and 

were stored in tight polyethylene bags for further studies. 

 

      3. Physical characterization 

 The determination of the geometric mean diameter, friability, flowability, bulk 

and true densities of the pellets have been previously reported (pp 123 and 124).  

 

i. Fill weight and coefficient of fill variation 

 The capsule fill weight and the coefficient of fill variation (CV) of 20 individual 

capsules were determined. Filled capsules were weighed on Denver Instruments balance 

and a set of 20 readings was used for calculating the average, standard deviation and 

percentage of fill weight variation (%CV). The average weight of 20 empty gelatin 

capsules was used as the blank weight.  

 

 ii. Dissolution test 

 Based on the results of the average fill weight, SD and %CV, the dissolution 

studies of the formulations encapsulated at 75 rpm and 280, 300 msecs were performed 

accordingly.  Six randomly selected capsules were used to investigate the ability of the 

capsule contents to be released. The drug release profiles were compared using difference 

and similarity factors.  The data were also fitted to Higuchi, Peppas, zero-order, first-

order, as well as the combined kinetics equations, as already described, in order to 

determine the mechanisms of drug release from the formulations. 
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     4. Statistical analysis 

 The mathematical and statistical analyses were performed with Microsoft Excel 

and JMP software packages, as already described. Studentized residuals test statistic was 

used to check for patterns and outliers while Dubin-Watson test statistic was used to test 

for possible correlations between the pairs of observations. The statistical significance 

was set at p < 0.05. 
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III. RESULTS AND DISCUSSIONS 

 

Phase 1 

Feasibility Studies in the Spheronization and Scale-up of Ibuprofen 

Microparticulates 

 

a. Drying time 

 The time it took for the product made with similar plates to reach 50oC increased 

as percentage yield and batch size increased. For the batches made with stainless steel 

smooth plates, the times were 29 – 40 minutes for the 1 kg batches and 36 – 79 minutes 

for the scale-up batches.  For teflon waffle plate batches, the drying times were 47 – 64 

minutes for the 1 kg batches and 47 – 90 minutes for the scale-up batches.  Not only are 

these results in agreement with previous reports that drying efficiency decreases with 

increased batch size (142,251), but, as mentioned earlier, the data also confirm that the 

heat conductivity of the stainless steel disk added to the overall drying efficiency of the 

process (125) while teflon had insulating effect (47).  Moreover, it has been shown that at 

any given time, the moisture content of the granules depends on wettability and 

evaporation, which in turn are controlled by liquid flow rate and inlet temperatures 

respectively (252).  Equilibrium liquid flow rate has been defined as one at which liquid 

supply is balanced by evaporation, and a critical liquid flow rate as one above which 

fluidization is impossible due to cohesion in the bed (253).  Though the liquid flow rate is 

the same in both plate types used, the insulating nature of the teflon material could hinder 

the attainment of equilibrium during processing, thereby affecting the balance between 
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liquid supply and evaporation, which in turn might have adversely affected the drying 

efficiency of these batches. 

 

b. Physical Characteristics of Developed Microparticulates 

The following physical characteristics apply to all the batch sizes, i.e., 1 kg, 5 kg 

and 10 kg, unless stated otherwise. 

 

     1. Yield of spheroids 

 i. Yield of one kilogram batches 

 The replicated eight 1 kg batches produced using FLM-1 had yield values ranging 

from 58.0% - 91.2%, however, most of the batches yielded granules varying from 74% - 

85% (Table XXA).  This could be considered satisfactory since even with starting 

materials that are “ ideal”  in formulating spheres e.g. 100% Avicel®, the process output 

was approximately 80% (249).  As already stated, the spheroid batches having 50 - 52% 

binder content at the end of the spheronization process had better product characteristics. 

Trials 4 and 7 had desirable qualities that met our set acceptance criteria (������, and 

were selected for further studies.

 

 Effect of SLS and Talc: The batches spheronized without SLS (trial 2) as 

well as that containing SLS and talc (results not shown) had lower yield. The lower yield 

from trial 2 could be due to the lack of SLS that affected wetting of the powders thereby 

enhancing losses to the fluid-bed walls and filters.  The low yield obtained form the batch 

containing SLS and talc could be caused by a possible interaction between the SLS and 
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Table XXA. Physical Characteristics of 1 kg Batches (Means of replicated batches) 

Trials 

1 2 3 4 5 6 7 8 

Parameters 

*Standard No  

SLS 

Avicel®CL-

611 

Smooth disk 650/SS HPMC 500/tef 650/tef 

% Yield 73.75 ± 2.33  58.0 ± 4.24 71.45 ± 3.89 85.40 ± 6.65 70.10 ± 2.55 80.0 ± 10.32 91.2 ± 32.24 79.05 ± 1.34 

% Moisture content 1.75 ± 0.35 6.56 ± 2.34 1.66 ± 0.91 2.71 ± 1.70 2.96 ± 2.20 2.1 ± 0.43 6.85 ± 2.34 8.1 ± 4.10 

% Drug content 93.46 ± 1.17 73.77 ± 3.32 91.69 ± 2.09 94.47 ± 0.65 94.30 ± 3.88 94.3 ± 8.48 91.44 ±1.64 99.95 ± 4.08 

Geometric mean 

diameter (µm) 

438 ± 1.57 577 ± 1.43 445 ± 1.59 455 ± 1.57 363 ± 1.95 403 ± 1.63 417 ± 1.80 415 ± 1.78 

Sphericity 0.90 ± 0.00 0.92 ± 0.01 0.89 ± 0.01 0.88 ± 0.09 0.87 ± 0.04 0.84 ± 0.01 0.91 ± 0.00 0.90 ± 0.01 

Flowability (deg) 21.45 ± 1.05 23.07 ± 0.14 22.09 ± 1.88 23.36 ± 0.75 25.31 ± 1.06 24.84 ± 0.00 22.49 ± 0.83 24.37 ± 0.40 

Carr’ s index (%) 8.56 ± 0.76 6.61 ± 0.40 9.85 ± 0.21 8.92 ± 3.97 9.34 ± 0.05 11.82 ± 1.19 8.92 ± 0.53 10.14 ± 0.25 

True density (g/cm3) 1.29 ± 0.00 1.30 ± 0.00 1.29 ± 0.00 1.30 ± 0.00 1.29 ± 0.01 1.28 ± 0.01 1.31 ± 0.01 1.28 ± 0.00 

Bulk density (g/cm3) 0.67 ± 0.00 0.77 ± 0.02 0.69 ± 0.02 0.64 ± 0.08 0.67 ± 0.05 0.58 ± 0.01 0.66 ± 0.01 0.67 ± 0.00 

Tap density (g/cm3) 0.73 ± 0.00 0.82 ± 0.01 0.76 ± 0.02 0.69 ± 0.06 0.74 ± 0.05 0.65 ± 0.00 0.73 ± 0.02 0.75 ± 0.00 

Q20 (%) 86.74 ± 2.39 74.66 ± 2.92 87.47 ± 4.12 83.27 ± 5.02 90.42 ± 7.64 75.14 ± 1.85 91.75 ± 2.07 85.09 ± 1.71 

Friability (%) 0.34 ± 0.47 0.67 ± 0.48 0.17 ± 0.24 1.5 ± 1.66 1.67 ± 1.41 1.17 ± 0.71 0.33 ± 0.71 1.84 ± 0.71 

LOD: % loss on drying. 

Highlighted batches were used for further studies 



 135 

Table XXB. Physical Characteristics of Scale-up Batches (Means of replicated batches) 
 

 

Plate material/contour Stainless steel/smooth plate Teflon/Waffle plate 

Batch size 1 kg 5 kg 10 kg 1 kg 5 kg 10 kg 

Trials 4 12 13 7 14 15 

Plate size 12”  19”  19”  12”  19”  19”  

% Yield 85.40 ± 6.65 87.16 ± 7.13 83.97 ± 2.33 91.2 ± 32.24 96.35 ± 5.5 87.84 ± 11.7 

% LOD 2.71 ± 1.70 1.85 ± 0.35 2.46  ± 0.64 6.85 ± 2.34 11.21 ± 7.62 10.65 ± 11.10 

% Drug content 94.47 ± 0.65 99.2 ± 4.90 90.52 ± 4.71 91.44 ±1.64 98.23 ± 1.89 98.65 ± 4.37 

Geometric mean diameter  (µm) 455 ± 1.57 483 ± 1.61 545 ± 1.67 417 ± 1.80 553 ± 1.54 603 ± 1.79 

Sphericity 0.88 ± 0.09 0.90 ± 0.01 0.90 ± 0.01 0.91 ± 0.00 0.89 ± 0.01 0.88 ± 0.02 

Flowability (deg) 23.36 ± 0.75 19.54 ± 1.08 24.11 ± 5.39 22.49 ± 0.83 19.29 ± 0.73 25.17 ± 7.59 

Carr's index. (%) 8.92 ± 3.97 6.71 ± 1.23 6.21 ± 4.3 8.92 ± 0.53 5.33 ± 0.19 7.84 ± 2.75 

True density (g/cm3) 1.30 ± 0.00 1.28 ± 0.01 1.28 ± 0.02 1.31 ± 0.01 1.28 ± 0.01 1.27 ± 0.01 

Bulk density (g/cm3) 0.64 ± 0.08 0.65 ± 0.03 0.64 ± 0.04 0.66 ± 0.01 0.67 ± 0.01 0.63 ± 0.00 

Tap density (g/cm3) 0.69 ± 0.06 0.70 ± 0.03 0.68 ± 0.00 0.73 ± 0.02 0.71 ± 0.04 0.69 ± 0.00 

Q20 (%) 83.27 ± 5.02 82.95 ± 12.66 85.53 ± 5.08 91.75 ± 2.10 79.47 ± 12.88 86.76 ± 13.00 

Friability (%) 1.50 ± 1.66 1.50 ± 1.65 1.50 ± 1.17 0.33 ± 0.71 1.00 ± 0.00 4.00 ± 4.71 
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talc, that also led to delayed wetting of the granules during processing, and consequently 

resulted in the powder blend losses.  

 

 Binder effect: Use of HPMC as binder improved the yield compared to the 

standard formulation (Table XXA, trial 6 vs.1), although it had higher standard deviation. 

 

 Rotor speed effect: Lower disk speed (500 rpm) produced higher yields than 

higher disk speed (650 rpm, Table XXA, trials 1 and 7 vs. 5 and 8 respectively).  This 

could be due to reduced centrifugal forces that minimized the collision of the spheres 

with the walls of the rotor container as well as losses into the cartridges.  This resulted in 

more efficiently fluidization of the spheroids, as has been reported with the traditional 

extrusion/spheronization method (250).   

 

 Rotor-disk plate material effect: Higher yield was obtained from the teflon 

waffle plate batches in comparison to those made with stainless steel waffle plate (trials 7 

and 8 vs. 1 and 5 respectively).  The yield was measured immediately after the process, 

thus, any free or residual moisture that was not dried by the drying process formed part of 

the product yield.  As can be seen from Table XXA, the moisture content for the 

formulations produced with the teflon plate ranged between 6.85 to 8.10% as compared 

to 1.75 to 2.96% of the stainless steel plate batches.  The higher moisture content for the 

teflon plate could have contributed to increase in the yield value.  The teflon disk tends to 

insulate the bed from some of the drying medium thus retaining a higher moisture level, 

and also resulting in higher yield.  In contrast, the stainless steel disk allows for better 
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conduction of heat and consequently better heat transfer and drying, resulting to reduced 

moisture content that consequently led to reduced product yield, compared to the output 

from batches made with the teflon plate.   

 

 ii. Yield of pilot scale-up batches 

 The two batches selected for scale-up (smooth stainless steel 500 rpm and waffle 

teflon 500 rpm) are highlighted in Table XXA.  The yield values were similar for 1, 5 and 

10 kg for the batches made with stainless steel smooth plate 84% - 87% (Table XXB).  

For the teflon plate, the values increased (88% -96%) compared to those of the stainless 

steel plate, though with higher LOD values as mentioned earlier.  However, student’s t-

test and one way ANOVA of the teflon plate data did not give any statistical difference 

between the yield results presented in Table XX (p < 0.05).  Nevertheless, increased 

fluidization air was used during the drying period to ensure that the LOD values of all 

future batches would be ≤ 5% at the drying end point.  There was statistically no 

difference in the LOD values of 10 kg and 5 kg or 1 kg batches made with the  

teflon plate.  

 

 Generally, the batch size did not affect the characteristics of 5 kg and 10 kg 

batches using 19”  plate, which was desirable.  In a previous report involving traditional 

extrusion/spheronization (142), it was shown that undesirable product qualities could 

result if inappropriate plate size was used relative to batch size. This is because at very 

low load, there are relatively insufficient granules to interact with each other, thereby 

leading to poor particle/particle interaction, while the opposite is true at high loads.   



 138 

     2. Density, Carr’s index and Flowability 

 These qualities were used as indices for the flow properties of the spheroids.  The 

low values of Carr’ s index (less than 15%) signify good flowability of the granules. This 

was confirmed with the angle of repose of all the formulations being less than or equal to 

30 degrees (± 0.13 o to 7.59o SD; 240), as also shown in Tables XXA and B above.  As 

shown in Table XXA, the flowability was decreased by the use of HPMC (trial 6) and 

high rotor speed (trials 5 and 8) that could have resulted in higher level of non-spherical 

and smaller geometric mean size of granules respectively.  Use of HPMC (trial 6) and 

high speed (trials 5 and 8) also produced granules with increased tap density and percent 

compressibility and thus bad flow characteristics. 

 The results of the true densities before and after purging were practically similar, 

and almost similar results were obtained from all the batches (Tables XXA and B).  From 

these results, it could be inferred that the samples have similar moisture content, 

indicating that the LOD (apart from influencing the yield that was measured immediately 

after production), might not have affected other product characteristics determined during 

storage at ambient conditions. 

 

     3. Drug content and Dissolution analyses 

 Calibration curve 

 Good linearity (r2 = 0.9996) was obtained from the calibration curve (Figure 22)  

The percent accuracy ranged between 75 and 101% and the percent interday coefficient of 

variation (CV) ranged between 0.10 and 11% (Table XXI), with the lowest concentration 
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observed as an outlier.  These results indicate acceptable accuracy and reproducibility for 

the assay method, respectively. 

 

Figure 22: Calibration curve for HPLC analyses 

 

Drug Content Analysis: With the exception of the batch without sodium 

lauryl sulfate (SLS; Tables XXA and XXB), the mean percentages of drug content 

obtained from six replicate samples ranged between 90.52% ± 4.71% and 98.65% ± 

4.37% ibuprofen, calculated on the content of theoretical formulation.  This indicated that 

the fluid-bed processes (blending, spheronization, drying) did not affect the ratio of the 

ibuprofen drug to the Avicel RC-581 in the powder blend. It has been shown that by 

adding surfactant to a spheronization system, the interaction between the liquid and the 

powder changes (56), as a result of greater accessibility of the pore structure by the liquid 
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within the powder bed. It is therefore possible that the absence of SLS delayed the 

wettability of the powder blend, leading to the loss of the lighter-weighted  

ibuprofen drug. 

 

Table XXI:  Accuracy and precision of HPLC Assay 

Concentration (µg/mL)   

Expected Obtained % Accuracy Interday CV (%) 

5 3.77 75.4 11.64 

10 8.68 86.8 3.44 

20 19.14 95.68 2.69 

40 40.45 101.12 2.14 

50 49.55 99.11 3.02 

100 102.63 102.63 1.72 

150 151.88 101.25 0.23 

200 202.12 101.06 1.3 

250 251.97 100.79 0.11 

300 295.61 98.54 0.25 

 

 

 Dissolution studies: The Q20 for all the formulations calculated using the 

obtained drug content was ≥ 80%, except the batch containing HPMC and that without 

SLS that released 75% and 74% respectively of ibuprofen at the same time (Tables XXA 

and B, and Figures 23A and B).  The variability between the replicate batches was 

generally around 5%. The slower release from granules made with HPMC as binder or in 

the absence of SLS could be attributed to densification, retardation of diffusion from the  
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Figure 23. Panel A: Profiles of 1 kg replicated batches. Panel B: Profiles of pilot scale-up 

batches. Trial 4: SS/Sm/1 kg; Trial 12: SS/Sm/5 kg; Trial 13: SS/Sm/10 kg; Trial 7: 

Tef/Waf/1 kg; Trial 14: Tef/Waf/5 kg; Trial 15: Tef/Waf/10 kg.  SS/Sm: stainless 

steel/smooth; Tef/Waf: Teflon/waffle. 
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granules and larger particle size (Figure 23A) that then reduced the surface area of the 

granules respectively.  There was no difference in drug release in batches made with 

Avicel® RC and CL cellulose types contrary to previous reports in which extrusion 

spheronization technique was used (254,255). 

 

     4. Friability 

 As shown in Table XXA, the percentage weight loss from the batches was 

generally less than 5% (± 0.00 to 4.71 SD).  However, increased rotor speed (trials 5 vs. 1 

and 8 vs. 7), use of HPMC (trial 6 vs. 1), and use of different plate contours (trial 4 vs. 1) 

increased the friability due to attrition and weakly agglomerated particles.  

 

     5. Sphericity and morphology of the granules 

The sphericity of the microparticulates was in the range of 0.84 ± 0.01 to 0.92 ± 

0.01, which is close to 1.0, the optimal value for sphericity (Table XXA).  The sphericity 

was reduced by the use of HPMC as binder (Figure 24G).  HPMC increases the viscosity 

of the binder, which could influence the resistance of liquid to flow. This has been shown 

to affect the consistency of the wet powder mass, which in turn would influence the 

process ability to produce spherical pellets (56).  Moreover, a 5% HPMC solution was 

used as the binder. It could be that a lower percentage with a lesser effect on binder 

viscosity would have resulted in a more spherical product.  

Sphericity was not affected by the use of SLS although the SLS is supposed to 

enhance the wetting, which could enhance formation of spherical particles (54).  

Moreover, neither batch nor process scale-up seemed to affect the sphericity of the 
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granules (Table XXB).  The results represented in Tables XXA and XXB are the 

sphericity means of 30 - 60 pellets from replicate batches.  Figures 24A-C show the 

morphology of 1 kg, 5 kg and 10 kg batches of both plate material types (teflon and  

   

        

         

 

 

 

        

 

 

 

        

 

 

 

 

 

 

 

Figure 24. Scanning electron micrographs (x30) of ibuprofen granules made with 

stainless steel and with Teflon/waffle plates (see below).  
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Figure 24 (Contd). Scanning electron micrographs (x30) of ibuprofen granules made with 

stainless steel plate, 1 kg (Panel A); 5 kg (Panel B); 10 kg (Panel C); and with 

Teflon/waffle plate 1 kg (Panel D); 5 kg (Panel E); 10 kg (Panel F). 1 kg batch made with 

HPMC as binder on a stainless steel plate (Panel G). 
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Figure 25. Scanning electron micrographs (x200) of ibuprofen granules made with 

stainless steel plate, 1 kg (Panel A); 5 kg (Panel B); 10 kg (Panel C). 
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stainless steel), and the 1 kg produced with HPMC as binder using the stainless steel 

plate. Figures 25A-C show typical morphology of the microparticulates at higher 

magnification. 

 

     6. Size distribution of granules 

Size distributions for most of the batches depicted log normal distribution (results 

not shown), with the values of the 20/60 mesh products ranging between 88 - 96%, 

except for the 1 kg batch made with stainless steel waffle plate at 650 rpm (trial 5) and 

that containing HPMC as binder (trial 6).   

For the loboratory scale batches, the presence of surfactant (SLS; trial 1 vs. 2) and 

use of water (in the standard) as binder (trial 6 vs. 1) decreased particle size (Figure 26A).  

Mean particle size increased in the absence of SLS, probably because in this situation, the 

surface energy required to reduce the particle size to what would be obtainable under 

similar conditions in the presence of the surfactant increases. It could also be due to 

decreased wettability that made these spheroids less vulnerable to attrition during drying.  

Type of Avicel hydrocolloid (trial 1 vs. 3), and disk contour type (trial 4 vs. 1) did not 

affect the distribution.  Rotor speed (650 rpm) decreased the particle size of the products 

made with stainless steel plate compared to the 500 rpm used in the standard (trial 5 vs. 

1), while plate type slightly increased the particle size at higher speed (formulations 8 vs. 

5; Figure 26A).  The geometric mean diameters of the granules together with the 

geometric standard deviations are shown in Table XXA and Figure 26A.   

The difference in size distribution between the batches could be attributed mainly 

to the formulation components and process variables, because the size distribution of the  
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Figure 26. Panel A: Geometric mean diameter of 1 kg replicated batches.  

Panel B: Geometric mean diameter of scale-up batches. The error bars did not show 

because of the very low geometric standard deviation (1.43 -1.95 µm). 
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starting raw materials were kept uniform by sieving the powders through a 16 mesh size 

prior to blending and spheronization. The decrease in the mean diameter with increased 

rotor speed (trial 1 vs. 5), could be due to surface defects on the pellets by the high speed, 

thereby producing more fines (7,256).  

In the scale-up batches, the particle size, especially that of the teflon plate batches, 

appeared to increase with larger batch size (Figure 26B). This is due to greater attrition by 

the smaller sized batches that are lighter, more readily fluidized, falling from higher 

heights during drying. It could also be due to increased tendency of the particles to bind 

together due to the increased surface area of the larger batch sizes.  The stainless steel 

batches had less attrition presumably because the spheroids dry up more easily than the 

products of equivalent batch sizes made with the teflon plate. Despite the increased 

particle size, the 20/60 mesh sizes yield in each of the scale-up batches was up to 85% 

thereby meeting the set acceptance criteria (page 94).  These observations however did 

not correlate with the report that the granule size is inversely related with the batch size 

(142), and will therefore be further investigated. 

 

In summary, trials 4 and 7 (Table XXA & B) were chosen as desirable 

preparations based on the acceptance criteria such as yield, drug content, dissolution and 

sphericity studies for rational screening and statistical design, as will be shown in the  

next phase. 
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Phase 2 

Optimization of the Developed Process and product Variables Using Statistically 

Designed Factorial Experiment 

 

a. Experimental Design 

Tables XXII and XXIII show the respective results of the means of replicate 

batches and p-values of the independent variables (block and main effects) obtained from 

the statistically analyzed full factorial blocked randomized design.  Table XXIV 

summarizes the qualities of the pellets by grouping them according to the used plate types 

and contours.  The effect of the main factors on spheroid qualities will be discussed in the 

sections addressing affected physical characteristics. 

 

 Binder level: The importance of water, used as binder or granulating liquid in the 

spheronization process, and the moisture content in the product, with respect to the 

physical performance of the end product have been reported in various studies (78,257).  

We have also shown that good spheroid qualities were obtained when the moisture 

content in the bed at the end of spheronization process was 50 – 52% (47), at defined 

parameters.  It is therefore evident that variation in the amount of water used for the 

production of formulations of similar composition and batch size will affect most of the 

spheroid qualities, as will be discussed in the respective sections.  Higher binder content 

implied higher yield of the spheroids and vice versa.  These results are shown in Tables 

XXII and XXIII and also in the Pareto charts (Figure 27).  
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Figure 27. Pareto plots of effects of main factors on the specified product qualities 
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Pareto plots of effects of main factors on the specified product qualities (Contd.).  

 

Surfactant level: Surfactant level significantly affected the Q20, the geometric mean 
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decreased the Q20 of the spheroids was observed (Table XXII). Thus, in the presence of 

high amount of water as the granulating liquid, SLS appears to lose some of its surface-

active property that should reduce the particle size of the spheroids. This result was 

confirmed by the highly statistical significance observed in the interaction between the 

high binder and surfactant levels.  

 

 Plate type: As seen in Table XXIII, plate type significantly influenced the 

yield, sphericity, friability; bulk density, geometric mean diameter, the Q20 and usable  

fraction (p < 0.05).  Stainless steel smooth plate gave more consistent product quality 

especially with respect to yield, drug content, usable fraction.  The effects of plate type on 

product yield, geometric mean diameter, drug content, Q20, usable fraction and sphericity 

are also represented with the Pareto plots of some of the response variables (Figure 27).  

 

 Blocking effect: Blocking had no significant effect on eleven of the twelve 

product characteristics studied (Table XXIII), and also had no significant interactions 

with the main factors [(X1 - X3), indicating batch-to-batch reproducibility.  A significant 

blocking effect (p = 0.0014) was observed with the sphericity response variable, which 

could actually be considered insignificant.  This is because the data showed that the 

difference between the sphericity values [that should range between 0.1 (non spherical) – 

1 (most spherical)] of the two blocks was very minute such that any slight change 

appeared statistically significant.  However, although the observed difference would not 

be clinically important, this effect was tested further. 
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 To test the significance of the blocking effect, statistical analysis was performed 

on the formulations within the individual blocks.  Significant effect (p = 0.02) was 

observed only with the binder level in block 1 of Table VII, which was found to be 

insignificant for the whole model test (p > 0.05).  In block 2, significant effects were 

observed with two of the main factors, namely, binder level (p = 0.0008) and plate type 

(p = 0.0033), and there was also significant interaction between binder level and plate 

type (p = 0.013). This blocking effect could be attributed to extraneous factors like 

humidity and temperature changes which have been shown to have possible effects on 

spheroid preparation (9), since the formulations in each of the blocks were produced at 

two different periods.  However, the results from both blocks were generally within our 

set acceptance criteria and the variability between blocks was very minute.  

 

 Interaction: Some of interaction results are shown in Figure 28.  There was 

significant interaction (p < 0.05) between binder level and plate type on the drug content, 

sphericity, friability and LOD response variables. Low binder yielded lower and less 

spherical spheroids as well as reduced usable fraction with teflon plate (Formulations 7 

and 9).  There were also significant interactions between the binder and the surfactant 

levels on the drug content, true density, LOD, the Q20, usable fraction and geometric 

mean diameter response variable. High binder-High surfactant levels resulted in bigger 

spheroids for the batches made with the stainless steel plates.  Significant (p < 0.05) 

interactions were also observed between the plate type and surfactant level on the drug 

content, bulk density and geometric mean diameter response variables.   
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Figure 28. Interaction plots of the effects of main factors on specified qualities. 
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b. Physical Characteristics of the Spheroids 

     1. Scanning electron microscopy  

 As shown in Tables XXII & XXIV and Figures 29 and 30, and also as already 

explained in the interaction studies, high binder/high surfactant (HbHs) levels with 

stainless steel smooth or waffle plates (Formulations 3 and 6 respectively) produced 

spherical but very big spheroids (~1 mm). In contrast, low binder/high surfactant (LbHs) 

and high binder/low surfactant (HbLs) levels with stainless steel smooth plate 

(Formulations 5 and 11 respectively) resulted in spherical and smaller microparticulates 

within the acceptable criterion range of 0.35 –0. 5 mm.  However, batches made with low 

binder/low surfactant (LbLs) or low binder/high surfactant (LbHs) levels and with teflon 

waffle plate (Formulations 7 and 9) produced very small spheroids (0.036 and 0.130 mm) 

with low sphericity.  These results correlated with other observations and statistical 

analysis with regard to significance of binder level in the formation of well granulated 

spheroids (93,122).  Typical morphology of the three different spheroid groups is shown 

in Figures 29 and 30. 

 

     2. Moisture content determination (Loss on drying) 

 Following our observations from previous studies, the moisture content at the end 

of drying of the products was generally ≤ 5% (Table XXII).  The highest values were  

obtained with the batches (Formulations 3 and 6) made with high binder-high surfactant 

(HbHs) levels and using the stainless steel plates.  This could be due to the large sizes 

(949 and 1070 µm) of these pellets that could reduce the efficient drying of the stainless  
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Figure 29: Scanning electron micrographs (30x) of ibuprofen granules. Formulations 3 

and 6 (Panels A & B); Formulations 5 and 11 (Panels C & D); Formulations 7 and 9 

(Panels E & F). 
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Figure 30: Scanning electron micrographs (100x) of ibuprofen granules. 

Formulations 3 (A); 11 (B); 7 (C). 

 

steel plate material.  In contrast, the formulation (#10) made with the teflon plate using 

HbHs levels at a fixed binder level had smaller sized pellets (356 µm).  This observation 

indicated that the teflon plate required higher amount of binder to yield products of 

similar sizes as those made with the stainless steel plate. The results were also supported 

by previous report that was obtained with the teflon plate.  The smaller sized pellets 

obtained with this plate must have contributed to the effects of plate type on most of the 

spheroid qualities.  In addition, these smaller sized pellets were easier to dry than the 

larger sized pellets obtained with the stainless steel plates, despite the insulating nature 

(lower drying efficiency) of the teflon material.
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TABLE XXII.  Physical Characteristics of Optimized Ibuprofen Spheroids.  
 

  

 Form. 1 Form. 2 Form. 3 Form. 4 **Form. 5 Form. 6 

Experimental variables Physical characteristics 

LbHsSS-waf LbLsSS-sm HbHsSS-sm HbLsTef-waf LbHsSS-sm HbHsSS-waf 

% Yield 80.85 ± 3.04 77.15 ± 9.83 95.85 ± 6.86 87.75 ± 7.57 89.7 ± 3.54 97.3 ± 1.56 

% Moisture content 2.10 ± 0.13 2.00 ± 0.01 5.15 ± 0.23 1.52 ± 0.56 1.55 ± 0.23 4.22 ± 0.01 

% Drug content 93.43 ± 2.17 92.57 ± 3.91 93.06 ± 1.40 96.67 ± 3.38 98.74 ± 0.81 92.76 ± 3.47 

Geometric mean diameter  (µm) 350 ± 1.55 354 ± 1.42 949 ± 1.40 460 ± 1.41 396 ± 1.35 1070 ± 1.40 

Sphericity 0.87 ± 0.01 0.87 ± 0.00 0.89 ± 0.02  0.88 ± 0.00 0.89 ± 0.03 0.89 ± 0.02 

Flowability (deg) 18.76 ± 0.54 20.38 ± 0.33 17.85 ± 0.00 17.92 ± 1.94 17.60 ± 1.95 19.14 ± 0.65 

Carr’s index. (%) 7.43 ± 1.55 9.12 ± 2.35 3.00 ± 0.59 7.48 ± 1.86  8.11 ± 0.24 3.78 ± 0.09 

True density (g/cm3) 1.30 ± 0.00 1.25 ± 0.01 1.22 ± 0.02 1.29 ± 0.01 1.29 ± 0.01 1.23 ± 0.00 

Bulk density (g/cm3) 0.63 ± 0.01 0.61 ± 0.09 0.78 ± 0.01 0.65 ± 0.07  0.64 ± 0.01 0.77 ± 0.00 

Q20 (%) 89.85 ± 1.48 91.00 ± 1.13 47.55 ± 7.14 84.35 ± 5.02 89.90 ± 0.28 47.25 ± 0.49 

Friability (%) 0.67 ± 0.00 0.67 ± 0.94  0.33 ± 0.00 0.67 ± 0.47 0.67 ± 0.47 0.5 ± 0.24 

Usable fraction (%) 92.00 ± 2.83 81.00 ± 7.07 54.00 ± 14.14 93.00 ± 1.41 97.00 ± 1.41 43.00 ± 1.41 

 
Low binder (Lb), High binder (Hb) 
Low surfactant (Ls), High surfactant (Hs) 
Stainless steel smooth (SS-sm), Stainless steelwaffle (SS-waf), Teflon waffle (Tef-waf) 
Form.: Formulation 

**The highlighted formulations showed the most acceptable spheroid qualities 
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TABLE XXII.  Physical Characteristics of Optimized Ibuprofen Spheroids (Contd.). 
 
 
 Form. 7 Form. 8 Form. 9 Form. 10 **Form. 11 Form. 12 

Experimental variables Physical characteristics 

LbLsTef-waf HbLsSS-waf LbHsTef-waf HbHsTef-

waf 

HbLsSS-sm LbLsSS-waf 

% Yield 68.65 ± 6.29 104.00 ± 9.9 60.4 ± 2.26 92.65 ± 18.87 92.10 ± 0.99 71.85 ± 4.6 

% Moisture content 0.37 ± 0.13 0.44 ± 0.13 2.60 ± 0.30 1.69 ± 0.13 1.80 ± 0.43 2.50 ± 0.28 

% Drug content 89.24  ± 2.18 99.96 ± 6.75  92.66 ± 0.94 99.79 ± 3.20  96.80 ± 0.47 93.96 ± 5.20 

Geometric mean diameter  (µm) 130 ± 2.54 417 ± 1.47 36 ± 5.93  356 ± 1.74 386 ± 1.48 384 ± 1.61 

Sphericity 0.84 ± 0.01 0.88 ± 0.02 0.84 ± 0.00 0.89 ± 0.02 0.88 ± 0.01 0.88 ± 0.01 

Flowability (deg) 24.36 ± 1.41  18.42 ± 0.44 26.47 ± 3.57 20.52 ± 1.88 20.93 ± 1.8 18.95 ± 1.85 

Carr’s index. (%) 10.85 ± 0.48 7.42 ± 1.39 18.61 ± 13.95  9.24 ± 0.86  8.07 ± 2.44 7.63 ± 1.41 

True density (g/cm3) 1.31 ± 0.00 1.28 ± 0.00 1.27 ± 0.04 1.28 ± 0.02 1.29 ± 0.00 1.29 ± 0.00 

Bulk density (g/cm3) 0.56 ± 0.02 0.65 ± 0.02 0.54 ± 0.05 0.60 ± 0.02 0.62 ± 0.03 0.65 ± 0.06 

Q20 (%) 88.90 ± 5.23 88.95 ± 6.01 89.25 ± 1.48 91.80 ± 2.12 92.45 ± 3.61 87.35 ± 3.61 

Friability (%) 0.37 ± 0.24 0.44 ± 0.24 7.62 ± 2.76 0.50 ± 0.71 1.00 ± 0.00  0.67 ± 0.94 

Usable fraction (%) 37.00 ± 15.56 95.00 ± 1.41  13.00 ± 7.07 78.00 ± 19.80 94.00 ± 0.00  87 00 ± 9.90 

Low binder (Lb), High binder (Hb) 
Low surfactant (Ls), High surfactant (Hs) 
Stainless steel smooth (SS-sm), Stainless steelwaffle (SS-waf), Teflon waffle (Tef-waf) 
Form.: Formulation 
**The highlighted formulations showed the most acceptable spheroid qualities 
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TABLE XXIII: P-values of Independent Variables for the Optimized Ibuprofen Spheroids�
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S: Significant 
NS: Non-significant 
Bold: indicates the few NS results obtained with the binder level factor in comparison to those obtained with the plate type and 
surfactant level factors. 

Dependent                   Independent variables Interactions
variables Blocking Plate type Binder level Surf. level

1 2 3 4 2*3 2*4 3*4
Yield NS S (0.03) S (<.0001) NS NS NS NS

Drug cont. NS NS S (<.0001) NS S (0.0291) S (0.0011) S (0.0036)

Q20 NS S (0.0198) S (0.0003) S (0.0071) NS NS (0.055) S (0.0007)

Carr’s Index NS NS (0.06) S (0.03) NS NS NS NS
Flowability NS NS (0.067) NS NS NS NS NS
Friability NS S (0.0001) S (0.0001) NS S (0.0001) NS NS

Bulk density NS S (0.0046) S (0.0017) NS (0.08) NS S (0.0522) S (0.0572)
True density NS NS NS NS (0.06) NS NS S (0.0468)

Geom. m. diam. NS S. (0.0006) S (<.0001) S (0.0066) NS S (0.011) S (0.0023)
Moisture content NS NS NS (0.0857) S (0.0026) S (0.0049) NS S (0.0007)
Usable fraction NS S (0.0037) NS S (0.0063) S (<.0001) NS S (0.0088)

Sphericity S  (0.0014) S (0023) S (0.0003) NS S (0.0058) NS NS
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TABLE XXIV:  Summary of the Optimized Ibuprofen Spheroid Qualities 
 

Plate type  Form.  Form.                                            Physical Charateristics
number vars

Yield (%) Q20 (%) Geom. Mean Usable 
diam. (mm) fraction (%)

12 Lb-Ls 71.85 ± 4.6 87.35 ± 3.61 384 ± 1.61 87.00 ± 9.90
SS-Waf 1 Lb-Hs 80.85 ± 3.04 89.85 ± 1.48 350 ± 1.55 92.00 ± 2.83

8 Hb-Ls 104.00 ± 9.9 88.95 ± 6.01 417 ± 1.47 95.00 ± 1.41 
6 Hb-Hs 97.3 ± 1.56 47.25 ± 0.49 1070 ± 1.40 43.00 ± 1.41
2 Lb-Ls 77.15 ± 9.83 91.00 ± 1.13 354 ± 1.42 81.00 ± 7.07
5 Lb-Hs 89.7 ± 3.54 89.90 ± 0.28 396 ± 1.35 97.00 ± 1.41

SS-Sm 11 Hb-Ls 92.1 ± 0.99 92.45 ± 3.61 386 ± 1.48 94.00 ± 0.00 
3 Hb-Hs 95.85 ± 6.86 47.55 ± 7.14 949 ± 1.40 54.00 ± 14.14
7 Lb-Ls 68.65 ± 6.29 88.90 ± 5.23 130 ± 2.54 37.00 ± 15.56
9 Lb-Hs 60.4 ± 2.26 89.25 ± 1.48 36 ± 5.93 13.00 ± 7.07

Tef-Waf 4 Hb-Ls 87.75 ± 7.57 84.35 ± 5.02 460 ± 1.41 93.00 ± 1.41
10 Hb-Hs 92.65±18.87 91.80 ± 2.12 356 ± 1.74 78.00 ± 19.80
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TABLE XXIV: Summary of the Optimized Ibuprofen Spheroid Qualities (Contd.) 

 
 

P late type  Form .  Form .                                     Physical characteristics
num ber vars

D rug cont. C arr’s Sphericity
(% ) index (% )

12 Lb-Ls 93.96 ± 5 .20 7.63 ± 1 .41 0.88 ± 0 .01

SS-W af 1 Lb-H s 97.3 ± 1 .56 7.43 ± 1 .55 0.87 ± 0 .01

8 H b-Ls 99.96 ± 6 .75 7 .42 ± 1 .39 0.88 ± 0 .02

6 H b-H s 92.76 ± 3 .47 3.78 ± 0 .09 0.89 ± 0 .02

2 Lb-Ls 92.57 ± 3 .91 9.12 ± 2 .35 0.87 ± 0 .00

5 Lb-H s 98.74 ± 0 .81 8.11 ± 0 .24 0.89 ± 0 .03

SS-Sm 11 H b-Ls 96.80 ± 0 .47 8.07 ± 2 .44 0.88 ± 0 .01

3 H b-H s 93.06 ± 1 .40 3.00 ± 0 .59 0.89 ± 0 .02 

7 Lb-Ls 89.24  ± 2 .18 10.85 ± 0 .48 0.84 ± 0 .01

9 Lb-H s 92.66 ± 0 .94 18.61 ± 13.95 0 .84 ± 0 .00

T ef-W af 4 H b-Ls 96.67 ± 3 .38 7.48 ± 1 .86 0 .88 ± 0 .00

10 H b-H s 99.79 ± 3 .20 9 .24 ± 0 .86 0 .89 ± 0 .02
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 The statistical analyses also showed that surfactant level significantly affected the 

moisture content of the products (p = 0.0026).  This might have led to the significant 

interaction (p = 0.0007) between these two factors that resulted in the yield of oversized 

granules.  The same reasons already given for the stainless steel and teflon plates might 

have led to the significant interaction (p = 0.0049) observed  between plate type and 

binder level.   

 

     3. Yield and usable fractions of spheroids 

The yield of the formulations ranged from 60.4 ± 2.26% - 104 ± 9.9% with the 

usable fractions (250 - 850 µm) ranging between 37 ± 15.56% - 97 ± -1.41% respectively 

(Table XXII). 

Comparing batches made with similar plates, the formulations with low binder 

level gave lower yield values (1 and 12 vs. 6 and 8 respectively; 2 and 5 vs. 11 and 3 

respectively; 7 and 9 vs. 4 and 10 respectively).  The lower yield obtained from the low 

binder batches could be attributed to insufficient amount of binder being added to the 

powder blend leading to the production of more fines that were lifted up by the 

fluidization air into the filters, and also coated the walls of the fluid-bed.  These 

observations were made more apparent from the results obtained with the geometric mean 

diameter (see below).  

 By comparing different batches made with plate material types of similar contours 

[Teflon waffle (TW) and stainless steel waffle (SSW)], it was observed that the latter 

yielded more products than the former (Formulations 4 vs. 8; 10 vs. 6; 9 vs. 1; 7 vs. 12). 
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This could be attributed to the production of more fines by the teflon material than the 

stainless steel material that could also lead to more losses, as already explained.  

Plate contour was affected by the binder and (more or less) by the surfactant 

levels. At low binder level, the stainless steel smooth contour yielded higher 

microparticulates and more usable fractions than the SSW plate irrespective of the 

surfactant levels (Formulations 5 vs. 1 and 2 vs. 12). This could be due to the loss of 

products in the waffle contour, as previously explained (47).  However, at higher binder 

levels, the SSW plate yielded more products and more or less equal usable fractions 

(Formulations 6 vs. 3 and 8 vs. 11) than the SS-smooth plate. The latter observation could 

be due to the formation of large sized spheroids that were neither lost in the filters nor in 

the waffle contours. The high binder-high surfactant batches are however practically 

unusable within our set acceptance criteria. 

 The results from Tables XXII & XXIV are supported by those of the p-values 

obtained using the JMP® software analyses (Table XXIII).  These show that binder level 

and plate type significantly affected the product yield (p < 0.0001 and p = 0.0311 

respectively). However, there was no significant interaction observed between any of the 

main factors (p > 0.05) on the yield product variable.   

 

     4. Drug content 

 Binder level significantly affected this response variable (p < 0.0001).  Low 

binder levels generally resulted in reduced drug content, probably due to some losses that 

could occur from insufficient wetting of the product at any stage of its development. As 

already explained, there was also significant interaction between plate type and binder 
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level (p = 0.0291), plate type and surfactant level (p = 0.0011) and also binder and 

surfactant levels (p = 0.0036) on this spheroid quality.  However, the results obtained 

from all the formulations are within our set acceptance criteria (≥ 85%), as shown in 

Table XXII.   

 

     5. Friability 

As shown in Table XXII, the percentage weight loss from all the formulations was 

generally < 1%, except that of the batch made with teflon plate and low binder 

(formulation 9) that also produced the smallest sized spheroids (geometric mean diameter 

36 ± 5.93) and the lowest usable fraction (13 ± 6.7%).   It was observed that both binder 

level and plate type significantly affected this response variable (p < 0.0001), and there 

was also significant interaction observed between these two factors (p < 0.0001).  

Generally, low binder content produced more friable spheres.  These results could 

be related to the explanations given under the LOD section.  At low binder levels there 

will not be enough binder for particle-particle contact and adhesion that will lead to the 

formation of primary and strong secondary nuclei (76), thereby forming friable spheroids.  

 

     6. True density and compressibility 

 The statistical analyses showed that none of the main factors significantly affected 

the true density of the microparticulates.  The closest was the effect of the surfactant level 

(p = 0.06) and its interaction with binder level (p = 0.048).  Different binder and 

surfactant levels might have led to different pellet sizes, which might have affected the 

true density of the pellets. Bulk density was significantly affected by plate type  
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(p = 0.0046) and binder level (p = 0.0017), however, no significant interaction was 

observed between these factors (p > 0.05).  Our results correspond with previous reports 

(using the traditional extrusion-spheronization process) that bulk density which greatly 

influences the packing properties of spheres is greatly dependent on the diameter of the 

pellets (134,258).  Thus, there would be no change in the volume occupied by pellets of 

high geometric mean diameter leading to high bulk density of the microparticulates 

(Formulations 3 and 6).  For true density that directly affects the compactness of 

substances, high geometric mean diameter is indicative of larger air pockets, and 

consequently, lower true density. However, we observed the lowest true density values 

for the spheroids with the highest geometric mean diameter (Table XXII), as was also 

observed by other authors (259).  This is probably due to larger air pockets entrapped by 

these bigger microparticulates that are practically open porous structures, as shown in 

Figure 30 above, and therefore would result in low true density (low compactedness) 

spheroids. 

 The percent compressibility (Carr’s index) was significantly affected by binder 

level (p = 0.032). It has been shown that during spheronization, agglomerates grow by 

coalescence (44), which depends on plastic deformability of the wet material mass. 

Sufficient binder is therefore required for the powder materials to achieve plastic 

deformation, which is related to the compressibility of the product, Hence the observed 

statistically significant effect at two binder levels. The p-value for plate type was 0.0642 

but there was no significant interaction observed. The results of the Carr’s index 

(generally < 15%) indicate that the granules have acceptable bulk and true densities for 
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the production of unit dosage forms except for formulation 9, which also has the lowest 

usable fraction, smallest geometric mean diameter and the poorest flowability  

(Table XXII).   

 Flowability was slightly affected by plate type (p = 0.067), though not statistically 

significant (p > 0.05), which could be attributed to the higher fines produced by the teflon 

plate material as already discussed.   

 

     7. Sphericity of the granules 

 The sphericity values of most of the microparticulates were within our set 

acceptance criterion (≥ 0.85), which is close to 1.0, the optimal value for sphericity (Table 

XXII).  The sphericity was reduced by the use of teflon waffle plate except in the 

presence of high binder levels (Formulations 7 and 9 vs. 4 and 10).  This could be due to 

the production of more fines in the presence of low binder levels by this plate type, thus 

producing less spheronized microparticulates, and also indicating the need for higher 

binder level by this plate type. Statistically, it was observed that binder level and plate 

type significantly affected this response variable (p = 0.003 and 0.023 respectively), and 

there was also significant interaction between these factors (p = 0.0058). Batch 

replication (blocking) was also observed to affect the sphericity of the batches  

(p = 0.0014).  This effect has been elaborated on page 152. 
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     8. Size distribution of granules 

 The geometric mean diameter of the microparticulates ranges from 36 ± 5.93 µm -

1070 ± 1.14 µm (Table XXII; Figure 31) respectively.  Three groups can be distinguished 

from the observed experimental results. The first group comprised of formulations 3 an6 

that present very large spheroid sizes caused probably by the simultaneous use of high 

binder and high surfactant levels, which could lead to excessive agglomeration (260).  

The second group included formulations 7 and 9 with very small spheroid sizes due to 

low binder level with the teflon plate material which tends to produce more fines than 

similar batches made with the stainless steel plates.  The results from both groups are in  

 

Figure 31: Geometric mean diameters of experimentally designed replicated batches. 
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accordance with previous experiments that showed that the higher the amount of binder, 

the more spherical the particles and the larger their sizes, and vice versa (261).   

The last group consisting of intermediate sizes (e.g. Formulations 5 and 11) with 

geometric mean diameter ranging from 350 ± 1.55 µm - 460 ± 1.41 µm respectively are 

mostly results of low levels of either the binder or the surfactant.  This group, with usable 

fractions mostly > 85% fell within our set acceptance criteria and comprised our most 

acceptable formulations. 

 As explained in various sections, the statistical data show that the three main 

factors significantly affected this response variable (Table XXIII), namely, binder level  

(p < 0.0001), plate type (p = 0.0006) and surfactant level (p = 0.0066).  There was  

significant interaction between plate type and surfactant level (p = 0.011) and also binder 

and surfactant levels (p = 0.0023).  Both effects could be related to our observation of the 

smaller pellets obtained with the different binder and surfactant levels when used with the 

different plate types.  Thus, the simultaneous presence of high binder and surfactant 

levels in the formulation made with teflon plate material (Formulation 4) did not lead to 

the production of big sized spheres (Table XXII; Figure 31), as seen with formulations 3 

and 6. This could be attributed to the hydrophobic nature of the teflon material that 

prevented fast spreading of the hydrophilic binder. Consequently higher amount of binder 

was required for miscibility with the powder and formation of good spheroids. 
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     9. Ibuprofen release from granules 

 All the formulations released > 80% of the drug within 20 minutes (Q20), except 

the batches with large sizes (Formulations 3 and 6) that consequently reduced the surface 

area of the granules (Table XXII; Figures 32A & B).  These formulations consisted of  

HbHs levels and made with stainless steel smooth and waffle plates respectively. 

Statistically, it was observed that plate type (p = 0.0198), binder level (p = 0.0003) and 

 

Figure 32: Dissolution profiles of experimentally designed replicated batches. 

Formulations 1-6, 11 (Panel A); Formulations 5, 7-12 (Panel B). 
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surfactant level (p = 0.0071) significantly affected this response variable (Table XXIII), 

which could be related to their effects on the spheroid sizes. As already explained, there 

was significant interaction between binder and surfactant levels (p = 0.0007).  High 

binder level might have resulted in reduced surface active properties of SLS that 

ordinarily would result in smaller particle sizes.  Consequently, larger spheroids were 

produced.  The interaction between plate type and surfactant level (p = 0.0554) should 

also be noted though not statistically significant (p > 0.05). 

 

Based on the results of the statistical analyses (effects of binder, SLS and plate 

type) and our set acceptance criteria such as yield, drug content, dissolution and sphericity 

studies, Formulation 11 (Tables XXII and XXIV) was chosen as the optimized 

preparation and was subsequently used to study the effects of particle size and drug load 

on spheroid qualities. 

 

Phase 3 

The Effects of Drug particle Size, Drug Loading and Intermediate Size Scale-up on 

the Characteristics of Ibuprofen Microparticulates 

 

a. Effects of drug particle size and drug loading 

     1. Experimental design 

 Drug micron size: Drug particle size significantly (p < 0.05) affected some of 

the physical characteristics studied, namely, moisture content (p = 0.0203), bulk density 

(p = 0.0088), flowability (p = 0.0028), sphericity (p = 0.0034) and usable fractions  
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(p = 0.0214). These results are as expected as similar observations have been previously 

reported necessary for most of these variables (52,153).  The bigger micron sized 

ibuprofen (40 µm) resulted in higher LOD, lower sphericity and lower bulk density.  The 

latter two observations could be a result of the bigger sizes breaking up during drying, 

leading to lower bulk density of the spheres. These outcomes would affect the sphericity 

and bulk density of the pellets. These results are shown in Tables XXV and XXVI and in  

Figure 33. 

 

 

 

 

Figure 33. Pareto plots of effects of main factors on the specified product qualities. 
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Drug load: Drug load significantly affected most of the qualities of the 

spheroids, except the yield, flowability and Carr’s index.  The insignificant effect on 

Carr’ s index was not expected since the bulk and tapped densities (p < 0.001) from which 

it was calculated were significantly affected by drug load (Tables XXV and XXVI).  

However, these observations conform with the reports that there may be other factors 

such as GMD and LOD contributing to the qualities of the finished product.  The 

observed increase in GMD with increased drug load could be due to the reduced amount 

of Avicel® RC-581 (a spheronization enhancer) in the system, which might have exposed 

the products to be easily over granulated.   

 

 Replication: Replication had no significant effect on ten of the twelve product 

characteristics studied (Table XXVI), as well as no significant interactions with the main 

effects [(drug load & drug micron size); results not shown], indicating batch-to-batch 

reproducibility.  The result obtained with the drug content response variable could be 

considered statistically significant (p = 0.0446).  However, this result falls on the 

borderline of our set level of significance (p = 0.05). In addition, the drug contents of all 

the response variables were > 90% (above our set acceptance criteria). Although 

statistical significance (p = 0.0069) was observed with friability, the friability values of 

all the response variables could be considered negligible (< 2%).  

 

 Interaction: There was significant interaction (p < 0.05) between drug micron 

size and drug load on the flowability (p = 0.0371) and Q20 (p = 0.0303) variables (Table 

XXVI).  These results are also shown in interaction plots (Figure 34). 
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Figure 34. Interaction plots of the effects of main factors on specified qualities. 

 

2. Physical characterization of granules   

 i. Scanning electron microscopy  

 Figure 35 shows typical morphology of the spheroids obtained from the three drug 

loads.  As shown in Table XXV and Figure 35, the size of the microparticulates increased 

with increased drug load. This could be due to the reduced amount of Avicel®, the water 

absorber in the system that increased the chances of over granulation of the spheroids. 
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Figure 35: Scanning electron micrographs (30x) of ibuprofen formulations (20 µm drug 

size and 1 kg batch) for the different drug loads, A (50%); B (65%); and C (80%). 

 

ii. Moisture content/Loss on drying analyses  

 Binder amount: As expected, the amount of binder needed for 

spheronization of the different drug levels was inversely related to drug load (Table XI).  

This indicates that, as previously reported (44,49), Avicel® acted as molecular sponge that 

absorbed water, thus the requirement for higher amount of binder as Avicel®  level 

increased.  It was also observed that at each drug level, less binder was required to  

spheronize the 40 micron sized ibuprofen, however, these batches took longer  

processing time.

A 
B 

C 
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Table XXV. Physical Characteristics of Drug Micron Size/Drug Load Batches (Means of replicated batches) 

 20 micron size ibuprofen 40 micron size ibuprofen 

% ibuprofen 50 65 80 50 65 80 

Physical characteristics       

% Yield 90.85 ± 7.99 87.7 ± 1.56 76.35 ± 10.11 85.60 ± 0.00 94.27 ± 0.07 93.6 ± 2.83 

% Moisture content 1.7 ± .14 0.89 ± 0.01 0.71 ± 0.28 1.72 ± 0.14 1.69 ± 0.15 0.94 ± 0.20 

% Drug content 98.55 ± 5.08 98.79 ± 0.95 91.57 ± 1.27 94.96 ± 1.10 99.13 ± 1.11 94.81 ± 1.12 

Geometric mean diameter  (µm) 485 ± 1.52 605 ± 1.45 697 ± 1.98 456 ± 1.37 528 ± 1.42 802 ± 1.35 

Sphericity 0.91 ± 0.00 0.91 ± 0.01 0.88 ± 0.01 0.871 ± 0.017 0.882 ± 0.00 0.873 ± 0.00 

Flowability (deg) 22.15 ± 0.00 21.43 ± 1.16 23 72 ± 1.73 20.63 ± 0.11 19.88 ± 0.11 17.95 ± 0.21 

Carr’s index. (%) 8.03 ± 1.67 6.02 ± 0.06 7.23 ± 1.38 6.79 ± .32 6.83 ± 0.92 8.43 ± 5.29 

True density (g/cm3) 1.29 ± 0.02 1.24 ± 0.00 1.18 ± 0.00 1.29± 0.00 1.21 ± 0.04 1.18 ± 0.01 

Bulk density (g/cm3) 0.69 ± 0.01 0.63 ± 0.01 0.58 ± 0.03 0.64 ± 0.02 0.57 ± 0.01 0.57 ± 0.00 

Q20 (%) 83.94 ± 4.00 86.87 ± 1.34 82.80 ± 6.19 89.48 ± 4.93 88.38 ± 3.73 67.04 ± 0.26 

Friability (%) 0.50 ± 0.24  0.50 ± 0.24 1.17 ± 0.71 0.84 ± 0.23 1.00 ± 0.47 1.17 ± 0.23 

Usable fraction (%) 91.00 ± 1.41 85.00 ± 1.41 59.00 ± 7.07 97.00 ± 1.41 92.00 ± 0.00 70.00 ± 5.66 
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  TABLE XXVI: P-values of Independent Variables of Drug Micron Size/Drug Load Batches 
 
 
 

Dependent variables Independent variables  

Physical characteristics Replication  
 

[1, 2] 

Micron size (MS) 
 

[20 µm, 40 µm] 

Drug load (DL) 
 

[50%, 65%, 80%] 

Interactions  
 

(MS * DL) 
     

Yield NS NS NS NS (0.0681) 

Moisture content S (0.0446) NS S (0.0108) NS (0.0777) 

LOD NS S (0.0203) S (0.003) NS (0.0689) 

Q20 NS NS S (0.0124) S (0.0303) 

Geometric mean diameter NS NS S (0.0196) NS 

True density NS NS  S (0.0003) NS 

Bulk density NS S (0.0088) S (0.001) NS 

Carr’ s index NS NS NS NS 

Flowability NS S (0.0028) NS  S (0.0371) 

Friability S (0.0069) NS (0.0584) S (0.0315 NS 

Sphericity NS S (0.0034) S (0.0282) NS (0.0613) 

Usable fraction NS S (0.0214) S (0.0004) NS 
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Moisture content in the fluid-bed: A plot of the moisture content for both drug 

particle sizes during spheronization and drying processes in function of time (Figure 36) 

showed that, as stated above, with the two drug micron sizes, the amount of the liquid 

binder needed for the spheronization of the powder blends decreased as the drug load 

increased.  It was also observed that the products containing 20% Avicel® or 80% drug 

load were easily overspheronized, resulting in larger particle sizes.  This is in accordance 

with the report that the lower the amount of Avicel® in the spheronization of most model 

drugs, the more difficult the spheronization process (49).  The moisture content at the end 

of drying of the products was generally < 2% (Table XXV). 
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Figure 36: The moisture content profile of 20 micron ibuprofen as a function of time  

(1 & 2 represent replicate batches). 

 

  iii. Yield and usable fractions of spheroids 

 The yield of the formulations ranged from 76.35 ± 10.11% - 94  ± 0.07% with the 

usable fractions (250 - 850 µm) ranging between 59 ± 7.07%– 97 ± 1.41% respectively 

(Table XXV).  Comparing batches made with 20 micron sized ibuprofen, the percent 

yield decreased as drug load increased.  This could be attributed to the poor wettability of 
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the batch due to increased ibuprofen that led to more losses in the system.  The 40 micron 

sized ibuprofen yielded slightly more products although this was not statistically 

significant (Table XXVI).   

 The usable fraction was significantly affected by both drug micron size  

(p = 0.0004) and drug load (p = 0.0214).  As shown in Table XXV, the fraction 

decreased as drug load increased, possibly due to greater percentage of oversized fraction 

that increased with increased drug load.  

 

 iv. Drug content 

 Although drug content was significantly affected by replication (p = 0.0446) and 

drug load (p = 0.0108), all the formulations had drug contents > 90% thereby meeting   

our set acceptance criteria (≥ 85%).  The lower drug content obtained with the 80% drug 

loaded 20 micron sized batch supports the hypothesis that the poor wettability of this 

more micronized drug size led to more losses of the drug to the fluid-bed walls, and 

consequently to decreased drug content. 

 

 v. Friability 

 As shown in Table XXV, the percentage weight loss from all the formulations 

was generally less than 2%, indicating that all the formulations could withstand 

processing frictional forces. The statistical importance of these results has been discussed 

above. 
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 vi. True density and compressibility 

 In both particle sizes, bulk and true densities decreased with increased drug loads. 

Considering the nature or composition of the blend, Avicel® is bulkier and has higher 

particle density than ibuprofen. Consequently, increasing the amount of ibuprofen, i.e. 

decreasing Avicel® content should lead to decreased bulk and true densities as observed.  

In addition, at each drug level, the densities of the 20 micron sized ibuprofen are higher 

than those of the 40 micron sizes.  These could be explained by the higher geometric 

mean sizes obtained from the 20 micron sizes, as already explained on page 168.  The 

50% drug loads of both drug micron sizes have almost similar GMDs and consequently 

slightly similar densities.  These results are supported by those of the statistical analyses 

shown in Table XXVI.  It was observed that drug load (p = 0.0003) significantly affected 

the true density of the microparticulates.   

Bulk density was also significantly affected by drug load (p = 0.001) as well as 

micron size (p = 0.0088), however, no significant interaction was observed between these 

factors (p > 0.05).  The percent compressibility (Carr’s index) was generally < 15%, 

indicative of the acceptable flowability of the spheroids as well as good bulk and true 

densities for the production of both single unit- (tablets) and multi unit (capsules) dosage 

forms. 

 

 vii. Flowability 

 The finer sized ibuprofen resulted in lower flowability (Table XXV). These 

results were as previously reported (52,153). 
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 viii. Sphericity of the granules 

 The sphericity of most of the microparticulates fell within our set acceptance 

criteria (≥ 0.85), which is close to 1.0, the optimal value for sphericity (Table XXV).  The 

sphericity of the 20 micron sized ibuprofen batches were slightly higher than the 40 

micron sized batches.  This could be explained by the smaller size of the particles that 

could form less porous bond with Avicel®, thereby leading to smoother surface texture.  

Statistically, sphericity was significantly affected by drug load (p = 0.0282) and micron 

size (p = 0.0034), but no significant interaction was observed between these factors. 

 

 ix. Size distribution of granules 

 The geometric mean diameter of the microparticulates ranged from 456 ± 1.37 µm 

- 802 ± 1.35 µm (Table XXV; Figure 37) respectively.  Within the batches made of the 

two ibuprofen micron sizes, the GMD increased with increased drug load, which could be 

either due to overgranulation or improved bonding due to higher amount of ibuprofen.  

This observation was also found to be statistically significant (p = 0.0196), as already 

discussed on page 168. 

 

x. Ibuprofen release from granules 

 All the formulations released more than 80% of the drug within 20 min, except 

the batch containing 80% ibuprofen spheronized using the 40 micron sized drug.  This 

could be due to the bigger GMD that consequently reduced the surface area of the 

granules (Table XXV; Figure 38).  For the same reason, the Q20 was lower with the 80% 

drug load. 
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Figure 37: Geometric mean diameters of drug particle size/drug load batches. 

   

Figure 38. Dissolution profiles of drug particle size/drug load batches. 

 

Statistically, it was observed that drug micron size (p = 0.0034) and drug load  

(p = 0.0282) significantly affected this response variable (Table XXVI).  There was also 

interaction between these main factors, although this was not statistically significant  

(p = 0.0613) based on our set significant level (p < 0.05). 

 In addition, the 65% drug loaded formulation of the 20 µm ibuprofen had similar 

characteristics with the previously optimized 50% and had the most significant positive 

effects on the products. This was therefore chosen for intermediate batch size scale-up. 
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b. Effect of Intermediate Size Scale-up on the Characteristics of Ibuprofen 

Microparticulates 

     1. Experimental design 

 Batch size: Batch size significantly (p < 0.05) affected some of the physical 

characteristics studied, namely, bulk density (p = 0.0072), tapped density (p = 0.0124), 

friability (p = 0.0146) and usable fractions (p = 0.0009).  These results were as expected 

as similar observations have been reported for most of these variables (101,140).  

Increased batch size led to higher densities, lower friability and lower usable fractions.  

The latter could be due to increased spheroid size as it affected only the 1 kg batches that 

have considerably big differences in their particle sizes.  These results are shown in 

Tables XXVII and XXVIII and in the Pareto plots (Figure 39). 

 

Drug load: Drug load significantly (p < 05) affected the densities of the 

spheroids (Table XXVIII).  This is due to the difference in the densities of the powder 

blends used in the formulations, which contained different percentages of Avicel®  and 

the drug. As was previously obtained, higher drug loads resulted in lower bulk                

(p = 0059), tapped (p = 0071) and true (p = 0022) densities. 

 

Replication: Replication had no significant effect (p > 0.05) on all twelve 

product characteristics studied (Table XXVIII), as well as no significant interactions with 

the main effects [(batch size and drug load); results not shown], indicating batch-to-batch 

reproducibility. 
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Figure 39. Pareto plots of effects of main factors on the specified product qualities. 

 

Interaction: The interaction results are shown in Figure 40.  There was 

significant interaction (p < 0.05) between batch size and drug load on the LOD               

(p = 0.0178) and usable fraction (p = 0.0255) variables (Table XXVIII; Figure 40).   
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          Figure 40. Interaction plots of the effects of main factors on specified qualities. 

 

Considering the significant interaction obtained with the usable fraction, and the fact that 

significant effect was obtained from batch size alone, it can be inferred that increased 

batch size resulted in decreased usable fraction.   

 However, the results obtained are within our set acceptance criteria that were 

based on published results from other reporters (6,9). 



 185 

2. Physical characteristics of pellets 

 i. Scanning electron microscopy  

 Figure 41 shows typical morphology of the spheroids obtained from the two drug 

loads (Figures 41A & B) and the two batch sizes (Figures 41B & C).  As shown in Table 

XXVII and Figure 41, the size of the microparticulates increased with increased drug load 

at the 1 kg level.  This effect was not pronounced at the scale-up level. This could be due 

to the fact that although the percentage of Avicel® present in the fluid-bed is the same in 

both batch sizes, the increased batch size of Avicel® might have enhanced   

its water-absorbing properties in the system and therefore reduced the chance of over 

granulation.  

 

 

  

 

 

Figure 41: Scanning electron micrographs (30x) of ibuprofen formulations (20 µm drug 

particle size) containing different drug loads, A (1 kg, 50%); B (1 kg, 65%),  

and C (50 kg, 65%).

A 

C 

B 
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Table XXVII.  Physical Characteristics of Batch Size/Drug Load Batches (Means of replicated batches) 
 
 
 

Batch size 1 kg 50 kg 

% ibuprofen 50 65 50 65 

Physical characteristics     

% Yield 90.85 � 7.99 87.7 � 1.56 95.70 � 0.18 91.38 � 0.76 

% Moisture content 1.7 � .14 0.89 � 0.01 1.50 � 0.27 1.74 � 0.35 

% Drug content 98.55 � 5.08 98.79 � 0.95 101.5 � 2.16 102.09 � 0.06 

Geometric mean diameter (mm) 485 � 1.52 605 � 1.45 522.00 � 2.04 538.00 � 1.95 

Sphericity 0.91 � 0.00 0.91 � 0.01 0.91 � 0.00 0.91 � 0.01 

Flowability (deg) 22.15 � 0.00 21.43 � 1.16 22.99 � 0.47 20.84 � 0.46 

Carr’s index. (%) 8.03 � 1.67 6.02 � 0.06 6.14 � 0.16 6.85 � 1.94 

True density (g/cm3) 1.287 � 0.02 1.235 � 0.00 1.27 � 0.01 1.22 � 0.00 

Bulk density (g/cm3) 0.69 � 0.01 0.63 � 0.01 0.77 � 0.02 0.68 � 0.01 

Tapped density 0.75 � 0.02 0.67 � 0.01 0.82 � 0.02 0.73 � 0.00 

Q20 (%) 83.1 � 1.68 83.1 � 1.68 83.1 � 1.68 87.45 � 1.05 

Friability (%) 0.50 � 0.24 0.50 � 0.24 0.00 � 0.00 0.00 � 0.00 

Usable fraction (%) 91.0 � 1.41 85.0 � 1.41 69.8 � 2.12 73.75 � 2.19 
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  TABLE XXVIII: P-values of Independent Variables of Batch Size/Drug Load Batches 
 
 

Dependent variables Independent variables Interactions 

Physical characteristics Replication Batch size Drug load Interactions 

 1 2 3 2 * 3 

Yield NS NS NS NS 

Drug content NS NS NS NS 

LOD NS NS (0.0602) NS (0.0813) S (0.0178) 

Q20 NS NS NS NS 

Geometric mean 

diameter 

NS NS NS NS 

True density NS NS (0.0753) S (0.0022) NS 

Bulk density NS S (0.0072) S (0.0059) NS 

Tapped density NS S (0.0124) S (0.0071) NS 

Carr’ s index NS NS NS NS 

Flowability NS NS NS (0.0774) NS 

Friability NS S (0.0146 NS NS 

Sphericity NS NS NS NS 

Usable fraction NS S (0.0009) NS S (0.0255) 
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ii. Moisture content/Loss on drying analyses  

 Binder amount: As expected and also as was previously observed, the 

amount of binder needed for spheronization of the different drug levels was inversely 

related to drug load (Table XV), although the amount used for the 50 kg-65% drug load 

appeared to be high. This could be due to some human error as both the total time used 

for spheronization and the percent moisture at the end of the spheronization process 

reflect an inverse relationship to the drug load.  These results indicated that, as previously 

stated, Avicel® acts as molecular sponge that absorbed water.  Additionally, the amount 

of binder needed for the process also decreased as the batch size increased.  From Table 

XV, it is apparent that a processing time was reduced by 13x for intermediate batch 

compared to the small scale batch irrespective of the drug load used (Equations 32 and 

33).  This confirmed the reproducibility of the process.  

 

For the 50% drug load:  

32 Eqn.                 13 
batches) kg 50  theof batches for two  value(Averagemin  246

 50 * batches) kg 1  theof batches for two  value(Averagemin  67 =  

 

For the 65% drug load:  

33 Eqn.                 13 
batches) kg 50  theof batches for two  value(Averagemin  198

 50 * batches) kg 1  theof batches for two  value(Averagemin  5.54 =  

  

Moisture content in the fluid-bed: A plot of the moisture content for both batch 

sizes during spheronization and drying processes in function of time (Figure 42) showed 

that with the two sizes, the amount of the liquid binder needed for the spheronization of  
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the powder blends decreased as the drug load increased.  These correlated with previous 

reports and our earlier explanations about the function of microcrystalline cellulose as a 

molecular sponge for water absorption.  The moisture content at the end of drying of the 

products was generally < 2% (Table XXVII). 

 

Figure 42: The moisture content profile of scale-up batches as a function of time. 

(1 & 2 represent replicate batches). 

 

 iii. Yield and usable fractions of spheroids 

 The yield of the formulations ranged from 87.7 ± 1.56% - 95.7 ± 0.18% with the 

usable fractions (250 - 850 µm) ranging between 69.8 ± 2.12% - 91 ± 1.41% respectively 

(Table XXVII).  Comparing the two batch sizes, increased batch resulted in increased 

product output, which could be attributed to decreased amount lost as a percentage of the 

initial powder blend input. Comparing the two drug loads within each of the batch sizes, 

increased load resulted in decreased product output, as was observed in the previous 

section, which could be attributed to higher amount of the lower weighted ibuprofen in 
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the larger drug load formulation. However, the analysis showed that these observations 

were not statistically significant (Table XXVIII). 

 The usable fraction was influenced by both batch size and drug load (Table 

XXVII). The fraction decreased as drug load increased, however, increased batch size 

appeared to have positively affected the usable fraction since the 50 kg-65% batch yielded 

slightly higher amount than the 50 kg-50% formulation.  These results were supported by 

the statistical results that showed a significant effect (p = 0.0009) of the batch size on this 

variable, as well as a significant interaction effect (p = 0.0255).  

 

 iv. Drug content 

All the formulations had drug contents > 90% thereby meeting our set acceptance 

criteria (≥ 85%).   

 

 v. Friability 

 As shown in Table XXVII, the percentage weight loss from all the formulations 

was generally less than 1. Thus, although the statistical results show a significant effect of 

batch size on friability (p = 0.0146), this effect was obtained between 0 and 0.5% values 

and could be considered clinically unimportant.  

 

 vi. True density and compressibility 

 In both batch sizes, bulk, tapped and true densities decreased with increased drug 

loads, which could be due to the reasons explained in the previous section. In addition, at 

each drug level, the true densities were similar as could be expected, being the same 
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formulation and moreover, true density is indicative of the importance of compactness of 

substances.  However, the bulk and tapped densities, which reflect the packing properties 

of spheres, increased with increased batch size. These could be as a result of other 

product qualities including pellet sizes.  The percent compressibility (Carr’s index) was 

generally < 15%, indicative of the acceptable flowability of the spheroids as well as good 

bulk and true densities for the production of both single unit- and multi unit  

dosage forms. 

 

 vii. Flowability 

 The flowability of the products fall within our set acceptance criteria (θ < 30o). In 

addition, no significant effect was observed on this variable by the main factors.  

 

 viii. Sphericity of the granules 

 The sphericity of all the microparticulates fall within our set acceptance criteria  

(≥ 0.85), which is close to 1.0, the optimal value for sphericity (Table XXVII).   

 

 ix. Size distribution of granules 

 The geometric mean diameters of the microparticulates range from 485 ± 1.52 µm 

- 605 ± 1.45 µm (Table XXVII; Figure 43).  Within the 1 kg batches, the GMD increased 

with increased drug load, which could either be due to over granulation or improved 

bonding due to higher amount of ibuprofen.  For the 50 kg batches, the effect of drug load 

on GMD appeared to be improved with the increased batch size, although these results 

were statistically insignificant (p > 0.05). 
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Figure 43: Geometric mean diameters of batch size/drug load batches. 

 

 x. Ibuprofen release from granules 

 All the formulations released more than 80% of the drug within 20 min. As 

observed by other reporters, the Q20 was higher for the higher drug loaded batches at each 

batch size, despite the larger GMD of the 1 kg batch containing 65% drug load (Table 

XXVII; Figures 43 & 44).  

Figure 44. Dissolution profiles of batch size/drug load batches. 

 

 In summary, increased batch size reduced the processing time at both drug loads 

and also improved some spheroid qualities such as geometric mean diameter (Table XVII 

and Figure 43). The dissolution of the 65% drug load 50 kg batch size was the most 

acceptable (highest Q20). This formulation was therefore chosen for coating. 
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Phase 4 

Coating and Encapsulation of Spheronized Ibuprofen Microparticulates Using 

Hard Gelatin Capsules 

 

a. Effects of coating  

     1. Experimental design 

 Polymer type:  Polymer type significantly (p < 0.05) affected most of the 

qualities of the spheroids, except the T50, geometric mean diameter (GMD), the friability 

and the sphericity.  The core pellets used in this experiment were similar for both 

Eudragit® and Surelease®.  The levels were chosen such that the medium level in each 

case represented the company recommended level to obtain satisfactory coating.  It is 

therefore evident from our results that these recommended levels are somehow equivalent 

in the coating capacities of the two polymers.  However, the polymer level necessary to 

achieve the objective (prolonged drug release) is formulation-dependent.  These results 

are shown in Tables XXIX and XXX and also in the Pareto plots in Figure 45. 

 

 Polymer level:  Polymer level significantly (p < 0.05) affected some of the 

physical characteristics studied, namely, yield (p = 0.0370), T50 (p = 0.0165), bulk 

density (p = 0.0462), true density (p = 0.0072), flowability (p < 0.0001), and usable 

fractions (p = 0.0071). Most of these results were as expected.  Drug release has been 

variously reported to decrease with increased polymer level (175,176).  Increased polymer 

level was also expected to increase particle size/geometric mean diameter, which will 

affect the flowability and densities of the formulations, as already explained in previous  
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Figure 45. Pareto plots of effects of main factors on the specified product qualities. 

 

sections.  The discrepancy observed within the batches coated with the Eudragit® polymer 

could be due to an uncontrollable sedimentation of talc present in the coating solution 
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tubing that might have altered most of the results expected from this polymer type and 

levels. Possible explanations with regard to this observation will be discussed at the 

various sections of the product quality variables.  The statistical results obtained with this 

variable are shown in Tables XXIX and XXX and also in the Pareto plots in Figure 45. 

 

 Replication: Replication had no significant (p > 0.05) effect on all the product 

characteristics studied (Table XXIX), as well as no significant interactions with the main 

effects [(polymer type and level); results not shown].  Although these results support 

batch-to-batch reproducibility of the process, some effort and experience with the fluid-

bed are required in order to achieve this goal. 

 

Interaction: There was no significant interaction (p > 0.05) between polymer type and  

 

Figure 46. Interaction plots of the effects of main factors on specified qualities. 



 196 

polymer level.  There were also no significant interactions between these main factors and  

replication. These results, some of which are presented in Figure 46 support the feasibility 

of the process.  

        

     2. Physical characterization of granules   

 i. Scanning electron microscopy  

 The size of the microparticulates increased directly with coating Table XXIX and 

Figures 47 & 48.  The pore size decreased, suggestive by the smoother surface of the 

coated pellets.  Thus, the particle size distribution and drug release were subsequently 

affected, as will be discussed further in the respective sections.    

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Scanning electron micrographs (30x) of ibuprofen granules (65 % drug load). 

Uncoated ibuprofen (A); Surelease® 12.5% (B); Eudragit® NE 30D 15.5% (C).  

A 

B C 
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Figure 48: Scanning electron micrographs (100x) of ibuprofen granules (65 % drug load). 

Uncoated ibuprofen (A); Surelease® 12.5% (B); Eudragit®  NE 30D 15.5% (C).  

 

 ii. Yield and usable fractions of spheroids 

 The yield of the formulations ranged from 82.36 ± 0.53% – 98.05 ± 1.47% with 

the usable fractions (250 - 850 µm) ranging between 68 ± 2.83% – 83 ± 2.82% 

respectively (Table XXIX).  The percent yield of the batches coated with Surelease® was 

greater than that of the Eudragit® batches.  The percent yield was calculated based on the 

ratio of the product output to the total weight of solids present in the fluid-bed.  This, as 

referred to earlier could be due to talc sedimentation in the tubing.  This observation was 

B C 

A 
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TABLE XXIX. Physical Characteristics of Coated Ibuprofen Spheroids (Means of replicated batches) 
 

Polymer type  Surelease Eudragit 

% Coating level 0 (Uncoated) 7.5 10 12.5 12.5 14 15.5 

                                                          Physical characteristics 

% Yield 91.38 ± 0.76 93.35 ± 2.35 98.05 ± 1.47 96.76± 0.54 82.36 ± 0.53 88.31 ± 4.76 90.76 ± 2.81 

% LOD 1.74 ± 0.35 0.66 ± .21 0.76 ± 0.21 0.81 ± 0.14 0.87 ± 

0.0.07 

1.25 ± 0.19 1.29 ± 0.28 

% Drug content 102.09 ± 0.06 108.22 ± 

0.25 

107.57 ± 0.55 109.02 ± 

1.34 

106.41 ± 

1.28 

105.95 ± 

1.13 

105.43 ± 

2.47 

Geometric mean 

diameter  (µm) 

538.00 ± 1.95 643 ± 0.04 680 ± 0.06 685 ± 0.05 725 ± 0.00 670 ± 0.01 669 ± 0.02 

Sphericity 0.91 ± 0.01 0.85 ± 0.026 0.86 ± 0.05 0.87 ± 0.01 0.86 ± 0.01 0.88 ± 0.01 0.88 ± 0.01 

Flowability (deg) 20.84 ± 0.46 21.06± 0.35 22.78 ± 0.00 23.75 ± 0.00 26.57 ± 0.00 28.73 ± 0.12 29.47 ± 0.30 

True density g/cm3) 1.22 ± 0.00 1.14 ± 0.01 1.12 ± 0.02 1.11 ± 0.01 1.19± 0.00 1.12 ± 0.01 1.15 ± 0.01 

Bulk density g/cm3) 0.68 ± 0.01 0.63 ± 0.01 0.62 ± 0.02 0.63 ± 0.01 0.60 ± 0.00 0.57 ± 0.00 0.60 ± 0.00 

T50 (min) 
< 15 

45 ± 7.07 75 ± 21.21 105 ± 21.21 60 ± 0 105 ± 21.21 100 ± 14.14 

Friability (%) 0.00 ± 0.00 0.33 ± 0.00  0.34 ± 0.47 0.17 ± 0.23 0.17 ± 0.23 0.33 ± 0.00 0.33 ± 0.00 

Usable fraction (%) 73.75 ± 2.19 80.00 ± 0.00 86.00 ± 2.82 83.00 ± 4.24 68.00 ± 2.83 81.00 ± 1.41 80.00 ± 0.00 
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TABLE XXX: P-values of Independent Variables of Coated Ibuprofen Spheroids 
 

Dependent variables Independent variables Interactions 

(PT*PL) 

Physical characteristics Replication (2x) Polymer type (PT) 

[Surelease, Eudragit] 

Polymer level (PL) 

[Low, Medium, High] 

 

 1 2 3 2 * 3 

Yield NS S (0.0016) S (0.0370) NS 

Drug content NS S (0.0269) NS NS 

LOD NS S (0.0248) NS NS 

t50 NS NS S (0.0165) NS 

Geometric mean 

diameter 

NS NS NS NS 

True density NS S (0.0008) S (0.0072) NS 

Bulk density NS S (0.0013) S (0.0462) NS 

Carr’ s index NS NS NS NS 

Flowability NS S (<.0001) S (<.0001) NS 

Friability NS NS NS NS 

Sphericity NS NS NS NS 

Usable fraction NS S (0.0083) S (0.0071) NS 
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confirmed with the fact that within the batches coated with Eudragit®, the percent yield 

increased with the theoretical coating level and increased solid content. The talc effect 

would be more pronounced on the batches coated with the lower polymer level as any 

effect on the ratios (used for yield calculation) would have greater effect on the lower  

polymer level.    

 The usable fractions were mostly < 85% of the product output. This could be 

attributed to some amount of agglomeration that led to increased particle size.  However, 

values as lower than this have been reported acceptable usable fraction in literature (9). 

 

 iii. Drug content 

 The drug content ranged between 105 ± 1.13% – 109 ± 1.34%. Although these are 

greater than 100%, they fell within the USP recommended range for drug content. 

Additionally, standard solution analyzed with these samples (without the extraction 

process) also gave a drug content greater than 100%. The results could be due to some 

random analytical errors. 

 

 iv. Friability 

 During coating, pellets are subjected to appreciable frictional forces, thus friable 

pellets generate significant amount of fines, which can mix with the coating solution and 

affect the topography of the coated pellets. The pellets to be coated must therefore 

withstand the vigorous agitation that occurs in the coating chamber. As shown in Table 

XXIX, the percentage weight loss from the uncoated ibuprofen formulation used for 

coating was zero, indicating its suitability for the coating processes.  The percentage 
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weight losses from all the coated formulations were also less than 2%.  These 

formulations are therefore suitable for the hard gelatin encapsulation process that will be 

subsequently performed.   

 

 v. Densities 

 Coating with both polymers decreased both the bulk and true densities (Table 

XXIX). This could be attributed to increased pellet sizes due to coating. There were 

generally no significant difference between the densities of pellets coated with the same 

polymer, except with the batch coated with 14% Eudragit®.  The inconsistencies observed 

with this polymer could be due to the presence of talc as has already been explained, that 

made it difficult to calculate the actual amount of polymer in the batches. This 

inconsistency was also made obvious with the release pattern observed with these 

Eudragit® batches, as will be shown below. 

 It was not possible to calculate the tapped density of the batches because the 

volume of most of the formulations increased with successive taps, thus making the 

tapped density higher than the bulk density.  This phenomenon was not problematic for 

future (encapsulation) study as it has been reported that the bulk and not the tapped 

density is used to calculate the fill weight for pellets. Consequently, the compressibility 

index could also not be calculated. 

 

 vi. Flowability 

 The flowability of the products fell within the generally acceptable flowability 

criterion (θ < 30o). However, flowability decreased with increased polymer level. 
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Considering the batches coated with Surelease®, the flowability trend could be due to 

increased diameter of the pellets that retarded flow properties, while the reduced flow 

within the Eudragit® batches could be due to increased tackiness with increased polymer 

caused by the absence of the sedimented talc in the products. This tackiness must have 

led to the difference in the flowability between the two polymer types that resulted in high 

significant level observed from this variable with both polymer type (p < 0.0001) and 

level (p < 0.0001). It could therefore be better to add the talc directly to the fluid-bed 

instead of dissolving it in the coating solution. 

 

 vii. Sphericity of the granules 

 The sphericity of both the coated and uncoated spheroids fell within our set 

acceptance criteria (≥ 0.85; Table XXIX).  No significant difference was observed 

between the results obtained from these analyses. However, the pellets coated with 

Surelease® appeared to be better spheres visually. 

 

 viii. Size distribution of granules 

 The geometric mean diameters of the microparticulates ranged from 643 ± 0.04 

µm - 725 ± 0 - 0.00 µm (Table XXIX; Figure 49). As expected, all the coated batches 

were larger than the uncoated formulation, confirming an increased diameter of the 

pellets due to the coating levels.  Within the batches coated with Surelease®, there was 

slight but statistically insignificant increase in diameter as the coating level increased. 

This indicated the consistency of this coating material.  With the batches coated using 

Eudragit® polymer, a discrepancy in the geometric diameter was observed. The batch 
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with the theoretical lowest polymer level was larger than the batches coated with higher 

polymer levels. Most of these pellets appeared to be agglomerated. 

 

Figure 49: Geometric mean diameters of uncoated and coated ibuprofen pellets. 

 

 ix. Ibuprofen release from pellets 

 The uncoated formulation released 50% (T50) of its drug content within 15 min.  

On the contrary, the release rates of the coated formulations were retarded (Table XXIX 

and Figure 50).  The T50 of the replicate batches of these coated formulations ranged 

between 45 ± 7.07 min - 105 ± 21.21 min, depending on the coating level.   

 Several factors affected the release rate of modified release formulations 

(175,176,262). These include the type of equipment used for coating, the porosity of the 

products, surface area, type of dissolution medium, coating level, physical characteristics 

of the model drug, etc.  In the case of pellets, type of spheronization technique and pellet 
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sizes have been reported as among the major factors affecting their release characteristics.  

Potter et al. (263), showed that at the same coating level using Surelease®, the T50 of 

chloropheniramine pellets was 40 min (500 – 600 µm), 3 hrs (850 – 1000 µm) and 5 hrs 

(1000 – 1400 µm).  The mean diameter of our pellets was between 642 – 725 µm (Figure 

49), with the mode value lying generally at 425 µm.  Pellet size could therefore explain 

the results obtained from our dissolution analysis. 

 As shown in Figure 50, the release rates of the formulations decreased as the 

coating levels increased. This observation was more consistent with the batches coated  

 

 

 

 

 

 

Figure 50. Dissolution profiles of ibuprofen pellets. Uncoated pellet and pellets coated 

with Surelease® polymer (Panel A), Uncoated pellet and pellets coated with Eudragit® 

polymer (Panel B). 
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with Surelease® polymer.  The batches coated with 14% and 15.5% Eudragit® released  

equivalent amount of drugs till 60% of their contents were released, consistent with the  

discrepancy that has been observed in the product qualities of these batches.  However, at 

the highest polymer coating level for both polymers, a prolonged release was  

observed generally. 

 

 x. Kinetics of drug release  

Kinetically, the decreased drug release observed with increased polymer levels is 

due to simultaneous increase in coating thickness and length of diffusion pathway 

(175,188).  These confirmed that the coating process was successfully achieved.  With 

uncoated pellets as well as at low coating levels, pores exist at the pellet surface or at 

pellet-coating interface of the latter due to the coating imperfections achieved at these 

levels. Drugs readily diffuse through these pores, thus the cumulative drug release in this 

case is linear with the square root of time (Equation 7).  The pores are sealed as coating 

levels increase so that drug is released through an intact membrane and consequently 

follow the zero order release kinetics (Equation 12). The transition point where drug 

release is defined by the zero order kinetics is called the critical coating level. Drug 

release has also been shown to follow first order kinetics (Equation 28).  Our data were 

therefore fitted to these equations, to Peppas empirical equation (Equation 9) and to a 

recently proposed combined mechanistic kinetics (Equation 15; 177).  The Peppas 

equation constant incorporates the structural and geometric characteristics of the release 

device (264).  The combined mechanistic equation constants incorporate the Higuchi and 
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zero-order release kinetics.  The results of these studies are shown in Figures 51, 52 and 

Table XXXI. 

 

9 Eqn.                          loglog)/( log tnkMMt +=  

 

  

28 Eqn.                           t         k-Qln   )100( ln
10

=− Q  

 

Uncoated pellets: Drug release from uncoated beads can be described by the 

pore controlled release model, and mathematically by the square root equation (Equation 

7).  Figure 51 shows plots of cumulative percent drug release vs. square root of time of all 

the formulations.  Table XXXI shows the results of the parameters of the drug release 

equations. The best correlation coefficients were achieved with the combined mechanistic 

and Higuchi equations. Howere, the release rate of uncoated formulation depicted by the 

Higuchi constant (kH) shows a high linear release constant compared to the coated pellets. 

These indicate that the uncoated pellets follow an inner matrix (Higuchi) release model. 

 

 Coated pellets: As previously discussed, Surelease® and Eudragit® 

polymers form water permeable but insoluble polymeric membranes that allow controlled  

7 Eqn.                                               2

1

ktQ =

12 Eqn.                                   
L

DKCsA
F =

15 Eqn.                      t         
L

DKCs 
2

1

+= KtQ



 207 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. Mathematically modeled drug release of uncoated and coated ibuprofen 

pellets 
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Table XXXI. Results of Regression Equations for Drug Release from Uncoated and 

Coated Pellets According to Equations 7, 12, 28, 15, and 9 Respectively. 

 

Formulations                     Kinetic models

   Higuchi equation      Zero order        First order
R2

kH R2
ko R2

k1

Uncoated 0.9543 19.491 0.7445 3.7974 0.9358 0.0395

SR 7.5% 0.9639 5.6918 0.7977 0.3163 0.9545 0.0034

SR 10% 0.9815 5.2065 0.8473 0.2955 0.9553 0.0026
SR 12.5% 0.9899 5.1117 0.908 0.2991 0.9794 0.0024
EUD 12.5% 0.9796 5.6065 0.8494 0.319 0.9698 0.003
EUD 14% 0.9892 5.1572 0.9183 0.3036 0.9833 0.0024
EUD 15.5% 0.9821 4.9152 0.8811 0.2844 0.9609 0.0022

Formulations                     Kinetic models

Combined mechanistic equation           Peppas equation
R2

k0 kH R2
kP n

Uncoated 0.9997 3.03 32.55 0.8594 0.2303 1.5443
SR 7.5% 0.9959 0.23 9.27 0.9041 0.304 0.7648
SR 10% 0.9938 0.13 7.22 0.935 0.2428 0.7578
SR 12.5% 0.99 0.01 5.28 0.9758 0.1431 0.7722
EUD 12.5% 0.9904 0.13 7.63 0.9414 0.2313 0.7746
EUD 14% 0.9893 0.01 4.96 0.9828 0.1153 0.7812
EUD 15.5% 0.9843 0.05 5.72 0.9708 0.1477 0.7677  

 

release of the model drug. Drug release from such systems can either be dissolution-

controlled (Equation 7), membrane-controlled (Equation 12) or a combination of both  

processes (Equation 15), depending on the coating levels (265,266).  As shown in the 

scanning electron micrographs in Figures 47 & 48, the uncoated pellets used for coating 

have pores.  If all the pores of the core ibuprofen pellets are blocked by permeable coating 

membranes of the polymers, the coating is complete, and the drug release is controlled by 
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Figure 52: First order release profiles from uncoated (Unctd) and coated ibuprofen pellets 

 

the coating film.  The release rate will depend on the polymer film/dissolution medium 

partition coefficient and zero order kinetics will be followed. Table XXXI shows that the 

highest correlation coefficient was achieved with the combined mechanistic and Higuchi  

equations. The correlation coefficients obtained with the first order kinetics appeared to 

be better than those of the zero order kinetics. However, the n values from the Peppas 

equation were > 0.75 for all the coated formulations, an inclination towards the zero order 

release mechanism.  These results, together with the first order plot shown in Figure 52 

exclude first order kinetics from the release mechanism of the coated pellets.  

Figure 51 also shows that although good correlation was obtained with the coated 

pellets for the Higuchi model, the coated pellets did not follow pure Higuchi mechanism. 

Therefore, the kinetics of drug release from these coated pellets follows either a complex 

system or a combination of square root of time and zero-order kinetics (Equation 15). 

Thus, a non-Fickian diffusion through the polymer films (0.5<n<1) was followed. 
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xi. Comparison of in vitro dissolution profiles using difference and similarity factors 

Drug release decreased as polymer levels increased. Table XXXII lists some time 

points and (their respective) percentage dissolution of both the uncoated and coated pellet 

formulations. Table XXX shows the p-values of some of the product qualities.  The time 

taken for both 50% (p = 0.0165) and 80% dissolutions (T50 and T80 respectively) varied 

for the different formulations, and were significantly affected by the coating levels.  

Results from difference and similarity factors calculations (Table XXXIII) showed that 

the profile of the uncoated pellets was different from those of all the coated pellets         

(f1 > 15 and f2 < 50). These indicated that the release was dependent on the coating level.  

 

TABLE XXXII: Mean Percent Dissolution of Ibuprofen Spheroids at the Specified 

Time Points 

 Time (min) 10 20 60 120 240 480 

Batches  Mean percent dissolution ± SD 

Uncoated 75.32  

± 1.22   

87.43 

± 0.03 

92.36 

± 0.28 

93.63 

± 0.52 

93.90 

± 0.46 

93.90 

± 0.20 

Surelease® 7.5% 21.55  

±  0.66  

31.8  

± 0.35 

56.94  

± 4.43 

72.91  

± 9.25 

85.61  

± 8.3 

92  

± 6.16 

Surelease® 10% 16.36  

± 0.94 

24.19  

± 1.78 

46.82  

± 3.76 

62.41  

± 7.56 

76.98  

±  4.72 

87.47 

± 3.38 

Surelease® 

12.5% 

11.00 

 ± 0.35 

16.56 

± 0.4 

37.23  

± 2.96 

55.24  

± 3.44 

72.66  

± 3.09 

83.63  

± 2.41 

 Eudragit® 

12.5% 

16.26  

± 2.37 

22.91 

± 4.07 

50.62  

± 0.98 

66.69  

± 1.25 

82.06  

± 4.21 

92.09 

± 0.01 

Eudragit® 14% 9.42  

± 1.80 

15.76 

± 3.11 

37.3  

± 5.16 

53.00  

± 2.77 

73.13  

± 4.10 

88.04 

± 6.14 

Eudragit® 

15.5% 

 

11.18 ± 

0.93 

15.28 

± 2.35 

39.05 ± 

3.35 

55.44 ± 

3.97 

71.12 ± 

4.26 

80.39 

± 0.90 
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TABLE XXXIII: Values of Difference and Similarity Factors (f1 and f2 respectively)  

for Uncoated and Coated Pellets 

Reference formulation Test formulation F1 value F2 value 

Uncoated Surelease® 7.5% 32.04 23.10 

Uncoated Surelease® 10% 40.81 19.25 

Uncoated Surelease® 12.5% 47.95 16.2 

Surelease® 7.5% Surelease® 10% 12.91 54.44 

Surelease® 7.5% Surelease® 12.5% 23.42 41.71 

Surelease® 10% Surelease® 12.5% 12.06 58.68 

 

Uncoated Eudragit® 12.5% 37.72 19.9 

Uncoated Eudragit® 14% 47.89 15.89 

Uncoated Eudragit® 15.5% 48.68 16.13 

Eudragit® 12.5% Eudragit® 14% 16.33 50.65 

Eudragit® 12.5% Eudragit® 15.5% 17.59 49.87 

Eudragit® 14% Eudragit® 15.5% 1.51 71.75 
 

 For the pellets coated with Surelease®, the f2 values indicate that the batch coated 

with 7.5% was similar (f2 > 50) to the profile of 10% coating level batch, but was 

significantly different (f2 < 50) from the pellets coated with 12.5% polymer. The same 

trend of f2 values was obtained from the batches coated with Eudragit®, although to a very 

limited level. The f2 values indicated that the batch coated with 12.5% polymer level was 

not significantly different from those coated with 14% (f2 = 50.65) and was slightly 

different (f2 = 49.87) from the batch coated with 15.5% polymer.  However, the  

results of the 15.5% coating level showed some discrepancies, as already observed from 

other product variables.   

Generally, f1 values confirmed the results of the f2 factor. However, the results of 

comparisons between Eudragit® 12.5% and 14% and Eudragit® 12.5% and 15% appeared 
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to be on a borderline. Thus, the more generally accepted results from f2 factor were 

considered more conclusive in these cases. The batch coated with 12.5% Surelease® was 

therefore chosen to study the effects of encapsulation on the uncoated and coated 

spheroids.  

 

b. Effect of Encapsulation on the Characteristics of Ibuprofen Microparticulates 

     1. Experimental design and Physical characteristics of pellets 

 A major objective of encapsulated formulations is to ensure that each capsule 

provides the expected dose of drug and that the drug should be released from the 

capsule to ascertain its bioavailability.  Tables XXXIV and XXXV show the 

respective results of the effects of encapsulation on pellet qualities and the p-values of 

the independent variables obtained from the statistically analyzed factorial design.  

 

 i. Formulation type 

 Fill weight: Formulation type significantly (p < 0.05) affected the average fill 

weight of the pellets (Figure 53).  As has been previously reported by other authors, this 

could be due to the effects of factors, e.g. flowability of the pellets (224,225,228). Based 

on the results of the angle of repose of the pellets before encapsulation, (Table XXIX), 

the XQFRDWHG�SHOOHWV�� � ������o��ZHUH�PRUH�IORZDEOH�WKDQ�WKH�FRDWHG�SHOOHWV�� � ������o), 

and consequently resulted in higher fill weights within the experimentally specified time 

(Table XXXIV).  Studentized residuals test statistic showed some likely pattern, however, 

based on Dubin-Watson there was no correlation between the observations (p < 0.05). 

The result causing the observed pattern could therefore be an outlier.
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TABLE XXXIV: Effects of Encapsulation Variables on Uncoated and Coated Ibuprofen Spheroids 
 

 

Operational Shuttle speed                   Uncoated                  Coated  
speed (rpm)  (msecs) Average fill SD %CV  Drug ~ T50 Average fill SD %CV  Drug ~ T50

weight (mg) content (mg) (mins) weight (mg) content (mg) (mins)
260 517.03 16.95 3.28 - - 467.8 14.97 3.2 - -

75 280 528.2 8.87 1.68 358.47 7 463.15 12.92 2.79 292.25 90
300 528.35 7.24 1.37 363.24 6 483.2 10.78 2.23 302.65 120

260 511.51 10.22 2 - - 460.7 18.48 4.01 - -
85 280 503.91 16.58 3.29 - - 470.33 18.32 3.89 - -

300 487.24 26.8 5.51 - - 471.58 11.63 2.47 - -

Unencapsulated 528.35 352.23 5 483.2 300.68 120
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Figure 53. Pareto plots of effects of main factors on the specified product qualities

 

TABLE XXXV: P-values of Independent Variables of Encapsulated and 

Unencapsulated (Uncoated and Coated) Ibuprofen Spheroids 

Dependent  variables Independent variables 

Physical characteristics Formulation type Operational speed Shuttle speed 

Average Fill weight S (0.0004) NS NS 

SD NS NS NS 

%CV NS NS NS 

 

 Standard deviation and coefficient of fill weight variation: The more flowable 

uncoated pellets resulted in lower standard deviations and consequently in lower fill 

weight variations. The bar diagram presented in Figure 54 shows that with the two 

formulation types (uncoated and coated), the SD and %CV were generally lower for the 

uncoated than with the coated pellets. The highest variability was however observed with 

the uncoated pellets encapsulated at the highest operational and shuttle speeds. This result 

Estimated effect on Av. fill wt. Significance (p) 
0.0004 
0.0809 
0.7135 
0.9493 
 
Significance (p) 
0.1791 
0.7860 
0.9013 
0.9833 
 

Estimated effect on SD 

Estimated effect on %CV Significance (p) 
0.1658 
0.7443 
0.7817 
0.9009 
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could be due to some interactions between the flowability of the pellets and these 

different factors. There was no pattern observed with this variable and autocorrelation 

result was also not significant (p > 0.05). 

 

ii. Operational speed 

 Although the operational speed was observed to be statistically insignificant (p > 

0.05), Table XXXIV shows that within each formulation type at different operational 

speeds, the average fill weight was slightly higher for the lower speed than the higher 

speed.  Figure 53 also shows that the lower speed (75 rpm) contributed more to the 

operational speed effect than the higher speed (85 rpm). This implied that for 

formulations of similar flowability, a certain amount of speed is required for machine 

operation as to achieve a desirable fill weight for the capsules. 

As can be seen from the Pareto plots (Figure 53) and Table XXXIV, the 

operational speed had more effect on the standard deviation and consequently on the 

coefficient of fill variation than the other factors.  Although these results were observed to 

be statistically insignificant (p > 0.05), they were similar to those obtained previously in 

literature with tamp filling machines using powders (216).  Higher speeds generally led to 

higher SD and %CV. This could be because with high operational speed, there was 

insufficient time to achieve consistent fill weight and reproducibility, thereby introducing 

more filling errors.  There was no pattern observed with this variable and autocorrelation 

result was also not significant (p > 0.05). 
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 iii. Shuttle speed 

The results obtained with the shuttle speed (which regulates how long the feeder 

assembly stays open to fill the capsules) varied for each formulation type. For the 

uncoated pellets with very good flow properties, there was no difference between fill 

weight at the medium and highest shuttle speeds.  This indicated that 280 msecs was 

sufficient for maximum fill weight of this formulation (Figure 5).  For the coated batches, 

the highest fill weight was also obtained at the lowest operational speed. However, higher 

shuttle speed (300 msecs) was required to achieve higher fill weights compared to those 

obtained with the lower shuttle speeds (260 and 280 msecs).  These results were as 

expected because higher shuttle speed allows more time for the capsule feeder to obtain 

Figure 54. Average fill weight (± SD) of ibuprofen pellets at different shuttle sizes 

and operational speeds. 

Uncted: Uncoated pellets; Cted: Coated pellets 

75, 85: Operational speeds, 75 rpm and 85 rpm 

260, 280, 300: Shuttle speeds, 260 msecs, 280 msecs, 300 msecs.  
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more pellets that will be fed into the capsules. The results obtained with the high shuttle 

speed at high operational speed might therefore be due to possible interactions between 

the product qualities, e.g. flowability, and these different factors. 

 Apart from the uncoated formulation filled at high operational (85 rpm) and 

shuttle (300 msecs) speeds, the SD and %CV decreased as shuttle speed increased (Table 

XXXIV).  A possible explanation to this has been given above, i.e. there was enough time 

for sufficient pellets to fill the gelatin capsules, leading to filling consistency and 

reproducibility.  This could lead to reduced variability in the capsule fill weight.  These 

observations shown in Figures 54 and 55, were however statistically insignificant  

(p > 0. 05).  

Figure 55. %CVs of the fill weight of ibuprofen pellets at different shuttle sizes and 

operational speeds. 

Uncted: Uncoated pellets; Cted: Coated pellets 

75, 85: Operational speeds, 75 rpm and 85 rpm 

260, 280, 300: Shuttle speeds, 260 msecs, 280 msecs, 300 msecs. 
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 In summary, formulation type had significant effect on the average capsule fill 

weight.  Within similar formulation types, high operational speed generally led to 

increased SD and CV.  Additionally, with the two formulation types and using the lower 

speed (75 rpm), high shuttle speed resulted in higher fill weight, lower SD and 

consequently to reduced %CV. The formulations encapsulated at low operational speed 

(75 rpm) and at the medium (280 msecs) and high (300 msecs) shuttle speeds were 

therefore selected to study the content uniformity and release profiles of the encapsulated 

pellets.  

 

iv. Drug content 

 The drug content was calculated as the amount of drug / capsule content used for 

the dissolution experiments. Table XXXIV shows that the drug content was directly 

related to the fill weight of the capsules, with the drug content of the uncoated pellets 

being higher than that of the coated pellets per capsule.  These results confirm the 

reproducibility of the processes involved in the spheronization and encapsulation steps.  

 

       v. Ibuprofen release from granules 

 The percent drug release was normalized for drug content.  The uncoated 

formulations (encapsulated and unencapsulated) consistently released more than 80% of 

the drug within 20 min. As was observed before encapsulation, the T50 of the coated 

formulation was ~ 120 min.  The T50 of the pellets encapsulated at 300 msecs was higher 

than that encapsulated at 280 msecs, although the former had more ibuprofen content. 

Although the gelatin capsules dissolved within 5 min of the dissolution analysis, the 
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pellets remained undispersed throughout the analytical period. Thus, the release of the 

capsules containing higher amount of pellets might have been retarded by the higher 

packing of the content (Table XXIV and Figure 56).   

Figure 56 also show that while the uncoated pellets released almost all their drug 

contents within 40 min, the coated pellets sustained ibuprofen release up to 12 hr. This 

confirmed that encapsulation had no undesirable effect on the formulated ibuprofen 

micrpoparticulates.   

 

 

 

 

 

 

 

 

Figure 56. Dissolution profiles of encapsulated and unencapsulated (uncoated and coated) 

ibuprofen spheroids. 

 

Uncted: Uncoated pellets;  

Cted: Coated pellets;  

Unencap: Unenapsulated pellets 

75, 85: Operational speeds; 75 rpm and 85 rpm;  

280, 300: Shuttle speeds; 280 msecs, 300 msecs. 
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 vi. Drug release kinetics 

 The release mechanism also showed similar results with the unecnapsulated 

pellets (Table XXXVI). However, encapsulation of the uncoated pellets, especially at 75 

rpm and 300 msecs yielded higher correlation coefficients.  The Higuchi release constant 

was however comparatively unaffected. It is possible that smoother release profile was 

achieved by adding the encapsulated pellets in the dissolution baskets, than by pouring  

  

Table XXXVI. Results of Regression Equations for Drug Release from 

Encapsulated and Unencapsulated (Uncoated and Coated) Pellets According to 

Equations Equations 7, 12, 28, 15, and 9 Respectively. 

 

Formulations                     Kinetic models

   Higuchi equation      Zero order        First order
R2

kH R2
ko R2

k1

Uncted-Unencap 0.9543 19.491 0.7445 3.7974 0.9358 0.0395

Uncted-75/280 0.9981 18.402 0.8848 3.82 0.9925 0.0359

Uncted-75/300 0.9985 18.149 0.9255 3.85 0.0361 0.9975

Cted-Unencap 0.9899 5.1117 0.908 0.2991 0.9794 0.0024

Cted-75/280 0.9698 5.4677 0.8712 0.3166 0.9563 0.0026
Cted-75/300 0.9873 5.0532 0.8954 0.294 0.9697 0.0023

Formulations                     Kinetic models

Combined mechanistic equation            Peppas equation
R2

k0 kH R2
kP n

Uncted-Unencap 0.9997 3.03 32.55 0.8594 0.2303 1.5443
Uncted-75/280 0.999 0.3924 20.09 0.899 0.1878 1.5209
Uncted-75/300 1 0.4966 16.01 0.9103 0.1751 1.5128
Cted-Unencap 0.99 0.01 5.28 0.9758 0.1431 0.7722
Cted-75/280 0.9717 0.05 6.3212 0.9792 0.0451 0.8242
Cted-75/300 0.9882 0.03 5.5603 0.9755 0.1368 0.7753   
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them in the basket.  For the coated pellets, encapsulation, especially at the same 

conditions (75 rpm, 300 msecs) yielded results that were very similar to the 

unencapsulated spheroids. The n values of Peppas equation were also > 0.75, thereby 

depicting a non-Fickian diffusion through the polymer film membrane. 

 

vii. Comparison of in vitro dissolution profiles using difference and similarity factors  

 Table XXXVII shows some time points and (their respective) percentage 

dissolution of both the uncoated and coated, unencapsulated and encapsulated pellet  

formulations. 

Results from difference and similarity factors calculations (Table XXXVIII) 

showed that the profiles of all the batches of each formulation type (uncoated and coated) 

were similar (f1 < 15 and f2 > 50). However, the profiles of all the uncoated pellets were 

different from those of all the coated pellets (f1 > 15 and f2 < 50).  These show that the 

ibuprofen release profile depended on the formulation type (coated vs. uncoated). These 

results also confirmed that encapsulation did not alter the release properties of the pellets. 

Consequently, the encapsulated pellets could be used for immediate (uncoated) and 

controlled (coated) delivery of ibuprofen. 

  

Using capsule size 0, the results showed that the highest fill weight and least 

variabilities were obtained in both coated and uncoated ibuprofen pellets with operational 

speed 75 rpm and shuttle speed 300 msecs on the K150i (tamp filling) encapsulation 

machine.  The encapsulation process did not affect the drug content and release profiles 

of the pellets (Table XXXIV and Figure 56). Under these conditions, about 530 mg of 
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TABLE XXXVII: Mean Percent Dissolution of Encapsulated and Unencapsulated (Uncoated and Coated) Ibuprofen 

Spheroids at the Specified Time Points 

 
 

Time (min) 10 20 60 120 240 480
Formulation type                              Mean percent dissolution
Uncoated-Unencapsulated 66.55 81.95 96.16 96.00 - -
*Uncoated-75/280 60.89 81.41 91.49 94.72 - -
*Uncoated-75/300 55.68 81.48 90.09 91.97 - -
Coated-Unencapsulated 4.19 12.27 36.00 54.76 72.13 83.84
*Coated-75/280 5.92 15.11 40.97 61.11 73.93 81.61
*Coated-75/300 9.6 18.60 37.52 56.26 71.36 82.29

 
 

*: Encapsulated batches 

 75, 85: Operational speeds; 75 rpm and 85 rpm 

 280, 300: Shuttle speeds; 280 msecs, 300 msecs. 
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TABLE XXXVIII: Values of Difference and Similarity Factor (f1 and f2) for 

Encapsulated and Unencapsulated (Uncoated and Coated) Pellets 

 

 

 

 

 

 

 

 

 

 

 

 

Bold: The release profiles of reference and test formulations were different. 

1. Uncoated and unencapsulated; 2. Uncoated and encapsulated at 75 rpm and 280 msecs 

3. Uncoated and encapsulated at 75 rpm and 300 msecs; 4. Coated and unencapsulated 

5. Coated and encapsulated at 85 rpm and 280 msecs 

6. Coated and encapsulated at 85 rpm and 300 msecs  

 

uncoated ibuprofen spheroids could be filled into this capsule size while about 485 mg 

coated pellets could be filled into the same capsule size (Table XXXIV). Based on the 

REFERENCE 

 FORMULATION 

TEST 

FORMULATION 

F1VALUE F2 VALUE 

1 2 3.57 74.68 

1 3 6.29 63.22 

1 4 68.53 15.75 

1 5 63.86 17.11 

2 3 2.83 78.7 

2 5 62.52 18.32 

2 6 64.85 17.80 

3 5 61.43 19.18 

3 6 61.79 19.32 

4 5 5.87 70.56 

4 6 4.73 71.49 

5 6 1.08 72.69 
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results of the drug content, these pellet weights contained 365 and 302 mg ibuprofen 

respectively.  

Thus, the following information could be deduced using the information in Figure 

14: Uncoated pellets; capsule size “ 0” , 0.68 mL contained 365 mg ibuprofen/capsule, 

therefore, capsule size “ 00” , 0.95 mL could hold 510 mg ibuprofen/capsule theoretically. 

Coated pellets; capsule size “ 0”  contained 302 mg ibuprofen/capsule, therefore, 420 mg 

ibuprofen could be encapsulated into the “ 00”  size capsule.  

It is expected that ≥ 25% of the content of the coated pellets will be released 

within 15 min of delivery to achieve a therapeutic level for the drug. The use of 

microparticulate system would also facilitate dose adjustment by varying capsule sizes 

and fill weights without reformulating the product (9). It is also possible to mix coated 

and uncoated pellets at different levels.  The initial burst effect will be achieved with drug 

release from the uncoated pellets, while sustained delivery will be maintained with the 

coated pellets (177).  
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IV.  CONCLUSIONS 

 

Phase 1 
 

Ibuprofen spheres with good physical characteristics were developed using the 

rotor-disk fluid-bed technology, a one-step closed process that did not require additional 

unit processes.  Based on plate radius and centrifugal force used as similarity factors for 

scale-up, the batch size and process could be scaled up to 5x and 10x. An attempt to 

simultaneously characterize spheronized ibuprofen granules, as well as process and batch 

scale-up was made.  Consequently, further efforts were centered on experimental design 

for critical study of important process variables and formulation, on scale-up and coating 

for slow release properties.  

 
 

Phase 2 

Experimentally designed studies on different process and product variables, and 

based on our set acceptance criteria showed that the formulations spheronized using low 

binder level, high surfactant level, stainless steel smooth plate (Formulation 5) and also 

that produced with high binder level, low surfactant level, stainless steel smooth plate 

(Formulation 11) were most acceptable.  The statistical design or approach also 

highlighted complexity and interplay of various variables in the outcome or predicted 

characteristics. It also showed the importance of rational approach in product 

development especially in multivariable unit process, as the case of rotor-disk fluid-bed 

operated. In consideration of the obtained data as well as previous reports 

(134,249,252,257) in which binder level had significant effect on most of the desirable 
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spheroid characteristics, with low binder level forming spheroids with low product 

quality, the conditions set in formulation 11 were used for further studies.  

 

Phase 3 

 Using the optimized formulation to study some of the major formulation variables 

in rotor-disk fluid-bed technology, such as drug load, drug particle size and scale-up, our 

results showed that both particle sizes of ibuprofen are spheronizable at the different drug 

levels studied. Although the time and amount of binder required for the formulations 

decreased with increased drug concentration while spheroid size increased, there were 

generally no differences observed in the physical characteristics of equivalent load of 

both ibuprofen particles.  The reduced surface area due to increased size slowed the rate 

of drug release with the highest drug load, while the low and medium sized drug loads 

showed very similar characteristics.   

 Intermediate size (50 kg) scale-up of the 65% drug load showed that, in contrast to 

the 1 kg batches, increased batch size reduced the effects of drug load on spheroid size 

and drug release, possibly due to an observed interaction between these two factors (batch 

size and drug load).  Statistical analysis showed that true and bulk densities were 

significantly affected by both ibuprofen drug load and batch size, while replication did 

not alter the physical characteristics of both spheroid batch sizes, showing batch-to-batch 

reproducibility.   

 However, in future work, process parameters, e.g. rate of binder addition and end 

point for the binder addition will need to be optimized. These might solve the problem 
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encountered with spheronization processes using increased drug loads.  From the results, 

it can be inferred that the rotor-disk spheronization process is scalable. 

 

Phase 4 

  Coating of 0.7 kg batches of the scaled-up formulation showed that ibuprofen 

product characteristics, e.g.  pellet size, drug release, bulk density, etc. depended on the 

coating levels. As previously reported, we observed slower release with increased coating 

level. This confirmed the successfulness of the coating process. The average fill weight of 

the encapsulated spheroids was mostly affected by the formulation types. Encapsulation 

of the microparticulates had no undesirable effect on the qualities of both formulation 

types.  Therefore, the formulation has a lot of pharmaceutical market potentials (70).    

 

 We have statistically studied the effects of various formulation and product 

variables on the development of spheronized microparticulates using the rotor-disk fluid-

bed technology. Our experience showed that a tighter spheroid fraction would be obtained 

if an in-process means of monitoring moisture content in the fluid-bed is introduced. This 

is because the moisture content is closely associated with the spheroid size and size 

distribution (44).  

Although ibuprofen was used as the model drug, the process could be extended to 

other poorly water soluble drugs. Additionally, with careful manipulation of the variables 

and parameters studied in this work, the process could be applied to water soluble drugs 

as well. These will aid in the production of several pharmaceutical products with reduced 

cost e.g. amount of excipients and production time. 
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IV. APPENDIX  

 

 

 

 

 

 

 

 

 

 

 

 

 

This appendix consists of typical examples of raw data generated during  

the study 
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Figure 57.  Log-Probability Profiles for Sieve Analysis of 1 kg Replicated 
Batches from Feasibility Studies 
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Figure 58.  Log-Probability Profiles for Sieve Analysis of Pilot Size Scale-up 

(1 kg, 5kg and 10 kg) Replicated Batches from Feasibility Studies 
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Table XXXIX.  Sphericity Analysis of SS/Sm/1 kg (Trial 4) Batch from 

Feasibility Studies 

Sample # Area Perimeter Roundness Sphericity

1 172440.77 1596.66 1.11 0.85

2 85836.72 1095.65 1.05 0.90

3 140054.00 1397.66 1.04 0.90

4 145441.75 1425.75 1.05 0.90

5 117719.24 1278.26 1.04 0.91

6 129925.26 1362.54 1.07 0.88

7 171147.28 1545.15 1.04 0.90

8 135543.20 1369.57 1.03 0.91

9 161336.42 1495.99 1.04 0.91

10 88412.76 1102.68 1.03 0.91

11 91745.16 1135.45 1.05 0.89

12 159993.59 1505.35 1.06 0.89

13 138333.00 1378.93 1.03 0.91

14 145737.72 1421.07 1.04 0.91

15 118678.41 1287.63 1.04 0.90

16 144636.05 1460.87 1.10 0.85

17 125809.09 1374.25 1.12 0.84

18 114332.04 1292.31 1.09 0.86

19 110314.52 1259.53 1.08 0.87

20 95691.42 1208.03 1.14 0.82

21 171695.36 1627.09 1.15 0.82

22 87930.44 1133.11 1.09 0.86

23 97401.47 1177.59 1.06 0.88

24 113997.70 1322.74 1.15 0.82

25 106412.10 1261.87 1.12 0.84

26 115866.70 1294.65 1.08 0.87

27 101599.85 1238.46 1.13 0.83

28 122586.31 1474.92 1.33 0.71

29 129963.63 1385.95 1.11 0.85

30 95691.42 1208.03 1.14 0.82

Average 124542.45 1337.26 1.09 0.87
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Table XL.  Sphericity Analysis of SS/Sm/5 kg (Trial 12) Batch from 

Feasibility Studies 

 

Sample # Area Perimeter Roundness Sphericity

1 99462.30 1186.96 1.06 0.89

2 335744.80 2172.58 1.05 0.89

3 121013.30 1311.04 1.06 0.88

4 181539.10 1601.34 1.06 0.89

5 121375.00 1311.04 1.06 0.89

6 115614.60 1275.92 1.05 0.89

7 137582.10 1409.36 1.08 0.87

8 162777.90 1526.42 1.07 0.88

9 100925.70 1179.93 1.03 0.91

10 151536.50 1449.16 1.04 0.91

11 139423.70 1388.29 1.03 0.91

12 99462.30 1186.96 1.06 0.89

13 388208.20 2380.94 1.09 0.86

14 162777.90 1526.42 1.07 0.88

15 100925.70 1179.93 1.03 0.91

16 141687.31 1404.68 1.04 0.90

17 178617.77 1582.61 1.05 0.90

18 277367.50 1947.83 1.02 0.92

19 281505.70 1964.21 1.03 0.92

20 185627.88 1638.80 1.08 0.87

21 187502.34 1603.68 1.03 0.92

22 172588.80 1540.47 1.03 0.91

23 124493.66 1325.08 1.05 0.89

24 158585.00 1479.60 1.03 0.91

25 218655.91 1734.78 1.03 0.91

26 288532.20 1996.99 1.03 0.91

27 172210.58 1545.15 1.04 0.91

28 180048.30 1570.90 1.03 0.92

29 166417.20 1512.38 1.03 0.91

30 148330.20 1449.16 1.06 0.89

Average 176684.65 1546.09 1.05 0.90
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Table XLI.  Sphericity Analysis of SS/Sm/10 kg (Trial 13) Batch from 

Feasibility Studies  

Sample # Area Perimeter RoundnessSphericity

1 233279.02 1805.02 1.04 0.90

2 258869.44 1898.66 1.04 0.90

3 312812.66 2128.09 1.08 0.87

4 349101.84 2217.06 1.05 0.89

5 212555.64 1734.78 1.06 0.89

6 350811.91 2221.74 1.05 0.89

7 199445.28 1666.89 1.04 0.90

8 183276.56 1603.68 1.05 0.90

9 183276.56 1603.68 1.05 0.90

10 332516.59 2151.51 1.04 0.90

11 211388.20 1709.03 1.03 0.91

12 211892.45 1711.37 1.03 0.91

13 269036.53 1938.46 1.04 0.90

14 191865.16 1652.84 1.06 0.88

15 291963.25 2032.11 1.06 0.89

16 153180.81 1467.89 1.05 0.89

17 114600.60 1261.87 1.04 0.90

18 143265.83 1442.14 1.09 0.87

19 121281.84 1292.31 1.03 0.91

20 93252.41 1151.84 1.06 0.88

21 110166.53 1245.49 1.05 0.89

22 104943.22 1210.37 1.04 0.90

23 104406.09 1224.42 1.07 0.88

24 156935.25 1533.45 1.12 0.84

25 87376.86 1130.77 1.09 0.86

26 109262.18 1238.46 1.05 0.90

27 158848.08 1488.96 1.04 0.90

28 135252.72 1367.22 1.03 0.91

29 101621.77 1205.69 1.07 0.88

30 102005.45 1222.07 1.10 0.86

Average 186283.02 1585.26 1.06 0.89
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Table XLII.  Sphericity Analysis of Tef/Waf/1 kg (Trial 7) Batch from 

Feasibility Studies 

Sample # Area Perimeter Roundness Sphericity
1 186444.53 1624.75 1.06 0.89
2 128922.25 1332.11 1.03 0.91
3 154353.73 1479.60 1.06 0.89
4 91410.82 1144.82 1.07 0.88
5 149968.98 1442.14 1.04 0.91
6 89010.17 1116.72 1.05 0.90
7 117576.74 1282.94 1.05 0.90
8 92523.45 1142.48 1.06 0.89
9 100350.20 1186.96 1.05 0.90

10 132906.88 1367.22 1.05 0.89
11 144986.83 1423.41 1.05 0.90
12 107053.38 1238.46 1.07 0.88
13 128418.01 1343.81 1.05 0.89
14 106116.13 1238.46 1.08 0.87
15 124970.51 1350.84 1.09 0.86
16 122476.69 1313.38 1.05 0.89
17 220431.72 1805.02 1.11 0.85
18 112090.34 1238.46 1.02 0.92
19 133619.41 1376.59 1.06 0.89
20 118267.34 1289.97 1.05 0.89
21 136255.72 1390.64 1.06 0.89
22 169672.91 1540.47 1.05 0.90
23 157368.23 1479.60 1.04 0.90
24 93756.66 1156.52 1.07 0.88
25 147201.13 1449.16 1.07 0.88
26 102789.21 1184.62 1.02 0.92
27 137543.73 1428.09 1.11 0.85
28 158530.19 1481.94 1.04 0.91
29 94140.32 1144.82 1.04 0.90
30 109547.19 1254.85 1.08 0.87

Average 128956.78 1341.63 1.06 0.89
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Table XLIII.  Sphericity Analysis of Tef/Waf/5 kg (Trial 14) Batch from 

Feasibility Studies  

 
Sample # Area Perimeter Roundness Sphericity

1 79599.43 1058.19 1.05 0.89
2 104449.93 1229.10 1.08 0.87
3 88133.23 1121.41 1.07 0.88
4 123797.59 1315.72 1.05 0.90
5 120646.06 1318.06 1.08 0.87
6 223632.58 1797.99 1.08 0.87
7 233322.86 1826.09 1.07 0.88
8 78300.45 1048.83 1.05 0.89
9 123797.59 1315.72 1.05 0.90

10 139051.00 1418.73 1.08 0.87
11 85102.28 1121.41 1.11 0.85
12 103989.54 1219.73 1.07 0.88
13 108933.33 1250.17 1.07 0.88
14 137335.47 1400.00 1.07 0.88
15 141479.05 1402.34 1.04 0.90
16 365150.00 2277.93 1.06 0.88
17 234342.31 1797.99 1.03 0.91
18 211985.63 1706.69 1.03 0.91
19 287041.38 2067.22 1.11 0.84
20 295553.25 2039.13 1.05 0.89
21 335103.59 2160.87 1.04 0.90
22 205118.03 1716.05 1.07 0.88
23 206789.72 1697.32 1.04 0.90
24 361494.22 2289.63 1.08 0.87
25 210999.06 1725.42 1.06 0.89
26 307726.38 2076.59 1.05 0.90
27 214605.50 1760.54 1.08 0.87
28 226740.27 1788.63 1.06 0.89
29 282135.94 2013.38 1.07 0.87
30 334314.31 2214.72 1.10 0.86

Average 199022.33 1639.19 1.06 0.88
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Table XLIV.  Sphericity Analysis of Tef/Waf/10 kg (Trial 15) Batch from 

Feasibility Studies  

Sample # Area Perimeter Roundness Sphericity
1 259647.72 1926.76 1.07 0.88
2 247162.19 1879.93 1.07 0.88
3 181413.05 1580.27 1.03 0.91
4 277932.09 2008.70 1.09 0.87
5 215515.34 1758.19 1.07 0.88
6 233465.36 1816.72 1.06 0.89
7 276194.63 1999.33 1.08 0.87
8 192506.42 1631.77 1.03 0.91
9 368345.38 2259.20 1.04 0.91

10 230390.56 1774.58 1.02 0.92
11 244279.22 1849.50 1.05 0.90
12 243468.05 1863.55 1.07 0.88
13 270680.81 1957.19 1.06 0.89
14 242169.06 1837.79 1.04 0.90
15 186296.55 1624.75 1.06 0.89
16 153202.73 1491.30 1.09 0.87
17 109240.26 1252.51 1.07 0.88
18 105579.00 1231.44 1.07 0.88
19 87338.49 1121.41 1.08 0.87
20 94743.22 1172.91 1.09 0.87
21 80569.56 1062.88 1.05 0.90
22 122997.38 1376.59 1.15 0.82
23 148702.91 1474.92 1.09 0.86
24 114496.46 1292.31 1.09 0.86
25 105688.63 1273.58 1.15 0.82
26 119275.83 1322.74 1.10 0.86
27 94798.03 1172.91 1.09 0.87
28 159730.52 1514.72 1.07 0.87
29 115921.50 1285.28 1.07 0.88
30 129936.22 1374.25 1.09 0.86

Average 180389.57 1572.93 1.07 0.88
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Table XLV.  Dissolution Data for Ibuprofen Release of Pilot Size Scale-up 
Replicated Batches from Feasibility Studies 

 

 

 

 

 

 

 

 

 

 

 

 

Time (mins)                         % Ibuprofen Released (S.D.)

SS/Sm/1 kg SS/Sm/5 kg SS/Sm/10 kg

5 62.02 (21.29) 60.35 (22.25) 63.64 (10.37)

10 75.73 (13.92 72.89 (19.62) 77.53 (12.88)

20 83.27 (5.02) 82.95 (12.66) 85.53 (5.08)

40 85.86 (1.03) 88.97 (6.74)  87.61 (2.45)

60 86.27 (0.92) 90.18 (4.79) 87.79 (2.38)

120 86.41 (0.54) 90.06 (4.15) 87.96 (4.1)

Time (mins)                            % Ibuprofen Released (S.D.)

Tef/Waf/1 kg Tef/Waf/5 kg Tef/Waf/10 kg

5 61.28 (5.42) 60.43 (24.86) 63.64 (10.37)

10 82.82 (5.83) 70.56 (21.64) 77.53 (12.88)

20 91.75 (2.07) 79.47 (12.88) 85.53 (5.08)

40 94.30 (1.64) 85.64 (5.30) 87.61 (2.45)

60 94.68 (1.66) 87.75 (1.65) 87.79 (2.38)

120 94.69 (2.01) 89.55 (0.07)  87.96 (4.10)
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Figure 59.  Log-Probability Profiles for Sieve Analysis of Experimentally 

Designed Replicated Batches  
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Table XLVI.  Sphericity Analysis of LbHSSS-sm (Formulation 5) Spheroids 
from Experimentally Designed Batches  

 

Sample # Area Perimeter Roundness Sphericity
1 224969.938 1751.17 1.019 0.92
2 191974.781 1620.067 1.022 0.92
3 164076.891 1510.033 1.039 0.90
4 99791.148 1172.91 1.031 0.91
5 86921.945 1102.676 1.046 0.90
6 251371.531 1865.886 1.035 0.91
7 124669.055 1315.719 1.038 0.91
8 179505.688 1566.221 1.022 0.92
9 124669.055 1315.719 1.038 0.91

10 179505.688 1566.221 1.022 0.92
11 176228.094 1549.833 1.019 0.92
12 83973.211 1081.605 1.041 0.90
13 170566.297 1533.445 1.031 0.91
14 118683.891 1271.237 1.018 0.92
15 116913.547 1266.555 1.026 0.92
16 207814.641 1723.077 1.068 0.88
17 190445.594 1662.207 1.085 0.87
18 174304.281 1580.267 1.071 0.88
19 253969.484 1908.027 1.072 0.88
20 219083.422 1765.217 1.063 0.88
21 289814.719 2022.742 1.055 0.89
22 241209.906 1847.157 1.057 0.89
23 130884.422 1353.177 1.046 0.90
24 84373.313 1095.652 1.064 0.88
25 184137.063 1631.772 1.081 0.87
26 104707.539 1236.12 1.091 0.86
27 189130.188 1659.866 1.089 0.86
28 226405.938 1828.428 1.104 0.85
29 259472.328 1959.532 1.106 0.85
30 293201.938 2081.271 1.104 0.85

Average 178092.52 1561.46 1.05 0.89
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Table XLVII.  Sphericity Analysis of HbLsSS-sm (Formulation 11) 
Spheroids from Experimentally Designed Batches  

 

Sample # Area Perimeter Roundness Sphericity
1 83627.906 1069.9 1.023 0.92
2 137658.844 1390.635 1.05 0.89
3 123797.586 1339.13 1.083 0.87
4 73005.883 1004.348 1.033 0.91
5 68259.406 962.207 1.014 0.93
6 62997.719 952.843 1.077 0.87
7 76069.719 1046.488 1.076 0.87
8 125474.75 1325.083 1.046 0.90
9 77160.422 1041.806 1.052 0.89

10 110078.844 1240.803 1.046 0.90
11 110034.992 1243.144 1.05 0.89
12 72337.211 994.983 1.023 0.92
13 152857.438 1456.187 1.037 0.91
14 110150.094 1247.826 1.057 0.89
15 251678.469 1931.438 1.108 0.85
16 207814.641 1723.077 1.068 0.88
17 190445.594 1662.207 1.085 0.87
18 174304.281 1580.267 1.071 0.88
19 253969.484 1908.027 1.072 0.88
20 219083.422 1765.217 1.063 0.88
21 219083.422 1765.217 1.063 0.88
22 241209.906 1847.157 1.057 0.89
23 130884.422 1353.177 1.046 0.90
24 84373.313 1095.652 1.064 0.88
25 259472.328 1959.532 1.106 0.85
26 184137.063 1631.772 1.081 0.87
27 104707.539 1236.12 1.091 0.86
28 149108.484 1470.234 1.084 0.87
29 189130.188 1659.866 1.089 0.86
30 226405.938 1828.428 1.104 0.85

Average 148977.31 1424.43 1.06 0.88
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Table XLVIII.  Dissolution Data for Ibuprofen Release of Experimentally 
Designed Replicated Batches  

Time (mins)                         % Ibuprofen Released (S.D.)

LbHsSS-waf LbHsSS-sm HbHsSSwaf

(Formulation 3) (Formulation 5) (Formulation 6)

5 21.93 (3.20) 69.20 (2.06) 22.48 (0.19)

10 31.76 (3.66) 83.52 (0.59) 32.29 (0.64)

20 47.56 (7.17) 89.87 (0.30) 47.23 (0.47)

40 61.62 (4.58) 91.19 (0.68) 63.98 (0.06)

60 72.66 (3.20) 90.325 (1.20) 77.86 (1.19)

120 86.12 (1.57) 91.11 (2.48) 90.15 (0.04)

Time (mins)                        % Ibuprofen Released (S.D.)

LbsTef-waf LbHsTef-waf HbLsSS-sm

(Formulation 7) (Formulation 9) (Formulation 11)

5 82.08 (3.26) 77.04 (2.75) 78.89 (4.95)

10 86.62 (4.27) 84.46 (2.09) 89.02 (1.37)

20 88.90 (5.25) 89.23 (1.45) 92.47 (3.61)

40 89.53 (3.91) 92.44 (1.03) 93.23 (3.30)

60 90.30 (3.54) 93.51 (0.15) 93.63 (3.87)

120 90.08 (3.17) 93.83 (0.83) 93.67 (3.56)
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Figure 60.  Log-Probability Profiles for Sieve Analysis of Drug Load/Drug Particle 

Size Replicated Batches  
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Table XLIX.  Sphericity Analysis of Ibuprofen Spheroids from Drug Load/Drug 

Particle Size Replicated Batches (1kg, 20 Micron Size, 65% Drug Load) 

Sample # Area Perimeter Roundness Sphericity

1 158058.83 1517.06 1.09 0.86

2 169914.06 1531.10 1.03 0.91

3 169914.06 1531.10 1.03 0.91

4 289491.34 2008.70 1.04 0.90

5 140152.66 1383.61 1.02 0.92

6 230428.92 1779.26 1.03 0.91

7 281631.69 2004.01 1.07 0.88

8 301708.31 2076.59 1.07 0.88

9 348685.31 2195.99 1.03 0.91

10 317049.44 2137.46 1.08 0.87

11 81495.83 1053.51 1.02 0.92

12 275821.94 2004.01 1.09 0.86

13 258737.89 1912.71 1.06 0.89

14 270735.63 1924.42 1.02 0.92

15 207376.17 1706.69 1.05 0.89

16 149810.05 1428.09 1.02 0.92

17 258710.48 1877.59 1.02 0.92

18 295262.75 2015.72 1.03 0.91

19 174254.95 1552.17 1.03 0.91

20 190966.30 1606.02 1.01 0.93

21 260650.73 1889.30 1.02 0.92

22 313782.78 2069.57 1.02 0.92

23 192122.77 1622.41 1.02 0.92

24 206559.52 1699.67 1.05 0.90

25 236112.64 1797.99 1.02 0.92

26 174814.02 1549.83 1.03 0.91

27 224536.94 1758.19 1.03 0.91

28 239203.89 1816.72 1.03 0.91

29 216945.86 1718.40 1.02 0.92

30 279384.53 1950.17 1.02 0.92

Average 230477.34 1770.60 1.04 0.91
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Table L.  Sphericity Analysis of Ibuprofen Spheroids from Drug Load/Drug Particle 

Size Replicated Batches (1kg, 40 Micron Size, 65% Drug Load) 

Sample # Area Perimeter Roundness Sphericity

1 200963.48 1673.91 1.04 0.90

2 249179.16 1901.00 1.08 0.87

3 223007.77 1793.31 1.08 0.87

4 154370.17 1467.89 1.04 0.90

5 314402.13 2118.73 1.07 0.88

6 260267.06 1933.78 1.07 0.87

7 171350.06 1568.56 1.07 0.88

8 261467.39 1908.03 1.04 0.90

9 133838.64 1397.66 1.09 0.86

10 274462.66 1985.28 1.07 0.88

11 206882.89 1706.69 1.05 0.89

12 218940.92 1765.22 1.06 0.88

13 146461.20 1444.48 1.07 0.88

14 185342.86 1624.75 1.07 0.88

15 188143.61 1638.80 1.07 0.88

16 157439.48 1495.99 1.06 0.88

17 207469.34 1711.37 1.06 0.89

18 232955.64 1821.41 1.07 0.88

19 120207.59 1301.67 1.05 0.89

20 196173.17 1664.55 1.06 0.89

21 112950.84 1271.24 1.07 0.88

22 193257.31 1648.16 1.05 0.89

23 319822.78 2153.85 1.08 0.87

24 287644.28 2029.77 1.07 0.88

25 268543.25 1961.87 1.07 0.88

26 144334.61 1444.48 1.08 0.87

27 164712.67 1540.47 1.08 0.87

28 126686.03 1339.13 1.06 0.89

29 189530.28 1636.46 1.06 0.89

30 178075.16 1594.31 1.07 0.88

Average 202962.75 1684.76 1.07 0.88
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Table LI.  Dissolution Data for Ibuprofen Release of Drug Load/Drug Particle Size 

Replicated Batches  

 

Time (mins)                         % Ibuprofen Released (S.D.)

Ibu 20-50 Ibu 20-65 Ibu 20-80

5 48.82 (7.73) 54.21 (6.32) 54.51 (14.00)

10 65.36 (10.95) 70.31 (6.17) 67.78 (12.92)

20 83.94 (4.00) 86.87 (1.34) 82.80 (6.19)

40 88.98 (2.67) 88.49 (0.69) 89.02 (5.04)

60 90.34 (2.13) 90.29 (0.12) 91.61 (3.95)

120 91.00 (0.90) 91.20 (0.11) 95.55 (0.78)

Time (mins)                            % Ibuprofen Released (S.D.)

Ibu 40-50 Ibu 40-65 Ibu 40-80

5 61.21 (6.38) 56.25 (3.55) 39.92 (3.46)

10 75.10 (6.03) 71.78 (2.36) 54.14 (4.75) 

20 89.48 (4.93) 88.38 (3.73) 74.34 (0.50)

40 91.35 (2.84) 92.13 (3.18) 86.07 (7.21)

60 94.04 (5.60) 93.09 (2.67) 93.33 (7.61)

120 94.01 (4.82) 93.22 (3.04) 99.65 (7.16)
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Figure 61.  Log-Probability Profiles for Sieve Analysis of Intermediate Size Scale-up  

Replicated Batches  
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Table LII.  Sphericity Analysis of Intermediate Scale-up Ibuprofen Replicated 

Batch (20 Micron, 50% Drug Load, 50kg Batch Size)

Sample # Area Perimeter Roundness Sphericity

1.00 84844.67 1069.90 1.01 0.93

2.00 114019.63 1243.14 1.01 0.93

3.00 113783.95 1264.21 1.05 0.89

4.00 110330.96 1243.14 1.05 0.90

5.00 196485.58 1645.82 1.03 0.91

6.00 122125.91 1296.99 1.03 0.91

7.00 128538.59 1329.77 1.03 0.91

8.00 140432.19 1407.02 1.05 0.89

9.00 133444.02 1355.52 1.03 0.91

10.00 132287.53 1357.86 1.04 0.90

11.00 105030.91 1219.73 1.06 0.89

12.00 125524.08 1327.43 1.05 0.90

13.00 85677.77 1079.26 1.02 0.92

14.00 137757.50 1376.59 1.03 0.91

15.00 78053.81 1037.12 1.03 0.91

16.00 132638.31 1357.86 1.04 0.90

17.00 93652.52 1140.13 1.04 0.91

18.00 122800.06 1292.31 1.02 0.92

19.00 126883.34 1322.74 1.03 0.91

20.00 248844.83 1856.52 1.04 0.91

21.00 147168.23 1411.71 1.01 0.93

22.00 130418.54 1350.84 1.05 0.90

23.00 84948.81 1086.29 1.04 0.90

24.00 107332.90 1210.37 1.02 0.92

25.00 178338.25 1582.61 1.05 0.89

26.00 161254.20 1500.67 1.04 0.90

27.00 116546.33 1271.24 1.04 0.91

28.00 88801.90 1109.70 1.04 0.91

29.00 139873.14 1383.61 1.02 0.92

30.00 80673.70 1067.56 1.06 0.89

Average 125617.07 1306.59 1.03 0.91
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Table LIII.  Sphericity Analysis of Intermediate Scale-up Ibuprofen Replicated 

Batch (20 Micron, 65% Drug Load, 50 kg Batch Size) 

Sample # Area Perimeter Roundness Sphericity

1.00 83874.56 1079.26 1.04 0.90

2.00 86752.04 1095.65 1.03 0.91

3.00 211404.64 1702.01 1.02 0.92

4.00 183040.88 1599.00 1.04 0.90

5.00 83677.23 1067.56 1.02 0.92

6.00 218343.50 1727.76 1.02 0.92

7.00 150763.72 1432.78 1.02 0.92

8.00 132517.73 1348.50 1.03 0.92

9.00 177647.64 1563.88 1.03 0.91

10.00 130933.75 1339.13 1.02 0.92

11.00 126905.27 1334.45 1.05 0.90

12.00 213525.77 1704.35 1.02 0.92

13.00 178880.86 1587.29 1.05 0.89

14.00 209552.09 1690.30 1.02 0.92

15.00 102071.21 1182.27 1.02 0.92

16.00 158650.77 1486.62 1.04 0.90

17.00 113285.18 1259.53 1.05 0.90

18.00 283385.59 1973.58 1.03 0.91

19.00 83046.93 1076.92 1.04 0.90

20.00 170878.70 1554.52 1.06 0.89

21.00 108401.68 1236.12 1.05 0.89

22.00 114836.28 1275.92 1.06 0.89

23.00 129788.23 1336.79 1.03 0.91

24.00 348723.66 2205.35 1.04 0.90

25.00 150089.58 1446.82 1.04 0.90

26.00 137012.09 1378.93 1.04 0.91

27.00 117193.08 1282.94 1.05 0.89

28.00 231903.30 1788.63 1.03 0.91

29.00 120931.06 1304.01 1.05 0.89

30.00 129788.23 1336.79 1.03 0.91

Average 156260.18 1446.59 1.04 0.91
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Table LIV.  Dissolution Data for Ibuprofen Release of Intermediate Batch size 

(Replicated Batches) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (mins)                         % Ibuprofen Released (S.D.)

1 kg-50% 1 kg-65% 50 kg-50% 50 kg-65%

5 48.82 (7.73) 54.21 (6.32) 50.09 (2.7) 62.25 (2.44)

10 65.36 (10.95) 70.31 (6.17) 63.74 (2.94) 75.32 (1.22)

20 83.94 (4.00) 86.87 (1.34) 83.10 (1.68) 87.43 (0.03)

40 88.98 (2.67) 88.49 (0.69) 88.02 (1.13) 90.82 (0.75)

60 90.34 (2.13) 90.29 (0.12) 91.29 (0.02) 92.36 (0.28)

120 91.00 (0.90) 91.20 (0.11) 93.01 (0.67) 93.63 (0.52)



 250 

Figure 62.  Log-Probability Profiles for Sieve Analysis of Uncoated and Coated 

Ibuprofen Spheroids (Replicated Batches) 
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Table LV.  Sphericity Analysis of SR 12.5% Coated Ibuprofen Spheroids 

Replicated Batches)

Sample # Area Perimeter Roundness Sphericity

1 157675.17 1493.65 1.06 0.89

2 128461.85 1348.50 1.06 0.89

3 170889.67 1554.52 1.06 0.89

4 337635.75 2205.35 1.08 0.87

5 167897.09 1545.15 1.06 0.88

6 116551.81 1275.92 1.04 0.90

7 212122.66 1734.78 1.06 0.89

8 170675.92 1563.88 1.07 0.88

9 96869.82 1165.89 1.05 0.90

10 122701.41 1299.33 1.03 0.91

11 117160.20 1287.63 1.06 0.89

12 99506.14 1170.57 1.03 0.91

13 196518.47 1669.23 1.06 0.89

14 208329.84 1727.76 1.07 0.88

15 123753.74 1296.99 1.02 0.92

16 257696.52 1903.34 1.05 0.89

17 106362.77 1212.71 1.03 0.91

18 220705.77 1748.83 1.04 0.91

19 106554.61 1217.39 1.04 0.90

20 181604.88 1573.24 1.02 0.92

21 192084.39 1634.11 1.04 0.90

22 114047.03 1257.19 1.04 0.91

23 78448.44 1037.12 1.03 0.92

24 157318.91 1463.21 1.02 0.92

25 233640.75 1814.38 1.05 0.89

26 135334.92 1374.25 1.04 0.90

27 72852.41 1018.40 1.06 0.88

28 185293.53 1634.11 1.08 0.87

29 171311.70 1547.49 1.05 0.90

30 227239.03 1781.61 1.04 0.90

Average 162241.51 1485.22 1.05 0.90
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Table LVI.  Sphericity Analysis of EUD15.5% Coated Ibuprofen Spheroids 

(Replicated Batches)

Sample # Area Perimeter Roundness Sphericity

1 154222.19 1486.62 1.07 0.88

2 113175.56 1250.17 1.03 0.91

3 89514.42 1140.13 1.09 0.87

4 198398.42 1659.87 1.04 0.91

5 199023.25 1662.21 1.04 0.91

6 141895.59 1402.34 1.04 0.91

7 143622.08 1411.71 1.04 0.91

8 142427.25 1418.73 1.06 0.89

9 93318.18 1165.89 1.09 0.86

10 93531.94 1140.13 1.04 0.90

11 154863.45 1486.62 1.07 0.88

12 148034.22 1437.46 1.04 0.90

13 186488.38 1636.46 1.07 0.88

14 186581.55 1624.75 1.06 0.89

15 191624.00 1664.55 1.08 0.87

16 154249.59 1481.94 1.06 0.88

17 145228.00 1430.44 1.05 0.89

18 141199.52 1395.32 1.03 0.91

19 97823.50 1170.57 1.05 0.90

20 91202.55 1140.13 1.07 0.88

21 125255.52 1320.40 1.04 0.90

22 154249.59 1481.94 1.06 0.88

23 179127.50 1582.61 1.05 0.90

24 242728.13 1840.13 1.04 0.90

25 191624.00 1664.55 1.08 0.87

26 107376.74 1224.42 1.04 0.90

27 321406.75 2135.12 1.06 0.89

28 267617.00 1964.21 1.08 0.87

29 146159.75 1428.09 1.04 0.90

30 278809.03 1973.58 1.04 0.90

Average 162692.59 1494.04 1.05 0.89
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Table LVII.  Dissolution Data for Ibuprofen Release Coated Replicated Batches  

Time (mins)                                    % Ibuprofen Released (S.D.)

Uncoated SR 7.5% SR 10% SR 12.5%

5 62.25 (2.44)

10 75.32 (1.22) 21.55 (0.67) 16.36 (0.93) 11 (0.35)

20 87.43 (0.03) 31.80 (0.37) 24.19 (1.78) 16.56 (0.40)

40 90.82 (0.75) 47.39 (1.46) 37.27 (3.05) 28.53 (0.98)

60 92.36 (0.28) 56.94 (4.43) 46.82 (3.76) 37.23 (2.96)

90 66.88 (6.58) 56.17 (5.78) 48.29 2.28)

120 93.63 (0.52) 72.91 (9.25) 62.41 (7.56) 55.24 3.44)

150 77.14 (7.59) 68.64 (8.63) 61.96 4.06)

180 80.26 (7.91) 70.01 (8.44) 66.92 (4.52)

240 93.9 (0.46) 85.61 (8.30) 76.98 (4.72) 72.66 (3.09)

360 90.76 (6.89) 84.12 1.46) 79.77 (3.95)

480 91.00 (6.16) 87.47 (3.38) 83.63 (2.41)

720 93.9 (0.20) 93.63 (5.39) 90.2 (4.01) 86.14 (3.27)

Time (mins)                         % Ibuprofen Released (S.D.)

Uncoated EUD 12.5% EUD 14% EUD 15.5%

5 62.25 (2.44)

10 75.32 (1.22) 16.26 (2.37) 9.43 (1.80) 11.18 (0.93)

20 87.43 (0.03) 22.91 (4.07) 15.76 (3.11) 15.28 (2.35)

40 90.82 (0.75) 39.88 (1.34) 27.67 (5.78) 30.09 (2.49)

60 92.36 (0.28) 50.62 (0.98) 37.30 (5.16) 39.05 (3.35)

90 58.97 (0.21) 47.38 (6.80) 49.47 (4.75)

120 93.63 (0.52) 66.69 (1.25) 53 (2.77) 55.44 (3.97)

150 71.49 (1.44) 60.11 (4.75) 60.34 (3.69)

180 75.20 (2.07) 68.43 (9.38) 61.64 (0.16)

240 93.9 (0.46) 82.06 (4.21) 73.13 (4.10) 71.12 (4.26)

360 88.42 (0.55) 81.68 (5.30) 74.87 (1.74)

480 92.09 (0.01) 88.04 (6.14) 80.39 (0.90)

720 93.9 (0.20) 96.61 (2.58) 93.80 (6.65) 89.22 (2.28)
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Table LVIII. Fill Weight and Statistical Parameters of Uncoated Ibuprofen 

Spheroids Encapsulated at 75 rpm and 280 msecs 

 

Sample # Wt. capsule + Av. wt. 20 empty Fill wt. spheroids

spheroids (mg) capsules (mg) (mg)

1 622.19 94.88 527.31

2 624.65 94.88 529.77

3 635.32 94.88 540.44

4 629.86 94.88 534.98

5 624.57 94.88 529.69

6 627.08 94.88 532.20

7 631.62 94.88 536.74

8 631.95 94.88 537.07

9 624.08 94.88 529.20

10 625.21 94.88 530.33

11 622.86 94.88 527.98

12 610.10 94.88 515.22

13 629.29 94.88 534.41

14 634.01 94.88 539.13

15 623.22 94.88 528.34

16 625.39 94.88 530.51

17 601.91 94.88 507.03

18 609.91 94.88 515.03

19 616.29 94.88 521.41

20 612.11 94.88 517.23

Average fill weight (mg) 528.20

Standard deviation 8.87

Coefficient of variation (%) 1.68
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Table LVIX. Fill Weight and Statistical Parameters of Uncoated Ibuprofen 

Spheroids Encapsulated at 75 rpm and 300 msecs 

 

Sample # Wt. capsule + Av. wt. 20 empty Fill wt. spheroids

spheroids (mg) capsules (mg) (mg)

1 617.23 94.88 522.35

2 608.26 94.88 513.38

3 611.68 94.88 516.80

4 617.65 94.88 522.77

5 625.15 94.88 530.27

6 626.09 94.88 531.21

7 630.84 94.88 535.96

8 629.47 94.88 534.59

9 621.19 94.88 526.31

10 627.60 94.88 532.72

11 629.39 94.88 534.51

12 616.45 94.88 521.57

13 620.57 94.88 525.69

14 628.66 94.88 533.78

15 624.45 94.88 529.57

16 613.77 94.88 518.89

17 632.14 94.88 537.26

18 625.23 94.88 530.35

19 635.21 94.88 540.33

20 623.54 94.88 528.66

Average fill weight (mg) 528.35

Standard deviation 7.24

Coefficient of variation (%) 1.37
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Table LX. Fill Weight and Statistical Parameters of Coated Ibuprofen Spheroids 

Encapsulated at 75 rpm and 280 msecs 

Sample # Wt. capsule + Av. Wt. 20 empty Fill wt. spheroids

spheroids (mg) capsules (mg) (mg)

1 552.89 94.88 458.01

2 547.78 94.88 452.90

3 569.09 94.88 474.21

4 554.30 94.88 459.42

5 536.72 94.88 441.84

6 536.67 94.88 441.79

7 573.11 94.88 478.23

8 581.93 94.88 487.05

9 566.62 94.88 471.74

10 554.00 94.88 459.12

11 537.81 94.88 442.93

12 551.14 94.88 456.26

13 552.14 94.88 457.26

14 557.43 94.88 462.55

15 560.84 94.88 465.96

16 574.71 94.88 479.83

17 556.03 94.88 461.15

18 574.26 94.88 479.38

19 565.69 94.88 470.81

20 557.52 94.88 462.64

Average fill weight (mg) 463.15

Standard deviation 12.92

Coefficient of variation (%) 2.79
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Table LXI. Fill Weight and Statistical Parameters of Coated Ibuprofen 

Spheroids Encapsulated at 75 rpm and 300 msecs 

Sample # Wt. capsule + Av. Wt. 20 empty Fill wt. spheroids

spheroids (mg) capsules (mg) (mg)

1 587.86 94.88 492.98

2 577.59 94.88 482.71

3 589.83 94.88 494.95

4 578.74 94.88 483.86

5 583.14 94.88 488.26

6 564.94 94.88 470.06

7 569.66 94.88 474.78

8 563.18 94.88 468.30

9 585.63 94.88 490.75

10 573.47 94.88 478.59

11 591.24 94.88 496.36

12 583.00 94.88 488.12

13 558.88 94.88 464.00

14 570.62 94.88 475.74

15 596.40 94.88 501.52

16 571.49 94.88 476.61

17 571.94 94.88 477.06

18 566.51 94.88 471.63

19 587.53 94.88 492.65

20 590.02 94.88 495.14

Average fill weight (mg) 483.20

Standard deviation 10.78

Coefficient of variation (%) 2.23
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Table LXIIA.  Dissolution Data for Ibuprofen Release of Encapsulated and 

Unencapsulated (Uncoated) Spheroids  

Time (mins)                                 % Ibuprofen Released (S.D.)

Uncoated-Unencapd. Uncoated-Unencapd. Uncoated-Unencapd. 

(75/280) (75/300) 

5 51.71 (0.00) 41.59 (0.00) 38.18 (0.00)

10 66.55 (0.00) 60.89 (0.01) 55.68 (0.00)

20 81.95 (0.00) 81.41 (0.01) 81.48 (0.00)

40 88.69 (0.00) 87.34 (0.01) 87.24 (0.00)

60 96.16 (0.00) 91.49 (0.00) 90.09 (0.00)

90

120 96 (0.00) 94.72 (0.00) 91.97 (0.00)

150

180

240

360

480

720 99.03 (0.01) 97.9 (0.00) 95.06 (0.00)
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Table LXIIB.  Dissolution Data for Ibuprofen Release of Encapsulated and 

Unencapsulated (Coated) Spheroids 

 

Time (mins)                         % Ibuprofen Released (S.D.)

Coated-Uncapd. Coated-Encapd. Coated-Encapd.  

 (75/280) (75/300)

10 4.19 (0.01) 5.92 (0.00) 9.6 (0.00)

20 12.27 (0.00) 15.11 (0.00) 18.6 (0.00)

40 25.87 (0.01) 30.44 (0.00) 28.62 (0.00)

60 36.00 (0.01) 40.97 (0.00) 37.52 (0.00)

90 45.83 (0.00) 52.36 (0.01) 48.1 (0.00)

120 54.76 (0.01) 61.11 (0.01) 56.26 (0.00)

150 60.12 (0.01) 64.63 (0.01) 62.18 (0.00)

180 66.48 (0.01) 69.16 (0.00) 65.8 (0.00)

240 72.13 (0.01) 73.93 (0.01) 71.36 (0.00)

360 79.19 (0.01) 80.93 (0.00) 80.29 (0.00)

480 83.84 (0.01) 81.61 (0.00) 82.29 (0.00)

720 84.77 (0.01) 86.18 (0.00) 85.53 (0.00)
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VII. ABSTRACT 

The aim was to develop uncoated and coated ibuprofen microparticulates in a one-step 

fluid-bed machine with rotor-disk insert, for immediate and prolonged drug delivery. 

Feasibilty studies using ibuprofen:Avicel® (RC-581; 50:50), sodium lauryl sulfate (1%) 

as surfactant and water as binder in FLM-15 Vector Flo-coater with 12”  stainless-steel 

and waffle-disk inserts showed that amount of binder, plate type and the presence of 

surfactant affected most of spheroid characteristics. These variables were used in a 2x2x3 

full factorial (replicated) experiment. Blocking was used to study batch-to-batch 

reproducibility of the process and product variables. Our results confirmed that the binder 

amount, plate-type and the presence of surfactant were important variables in rotor-disk 

spheronization. The amount of binder was the most critical. The batch with the most 

acceptable product characteristics was chosen as the optimized formulation, and used to 

statistically study the effects of other formulation variables viz, drug particle size (20 µm, 

40 µm) and drug load (50%, 65%, 80%) in a 2x3 factorially designed (replicated) 

experiment.  The two ibuprofen particle sizes and the three drug loads were 

spheronizable.  However, spheronization of the higher drug load was more difficult and 

yielded larger sized microparticulates that consequently retarded drug release. The 65% 

drug load was therefore used for intermediate size scale-up, which resulted in spheroids 

with good product characteristics.  

The optimized scaled-up batch was used in a 2x3 factorially designed (replicated) 

experiment to study the effects of polymer type (Surelease®, Eudragit® NE-30D) and 

level (low, medium, high) on the developed microparticulates. Coating level was found to 

be inversely related to the drug release. The batch coated with the highest Surelease® 
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level yielded the most acceptable spheroid characteristics, including most prolonged 

release. The latter and the uncoated spheroids were encapsulated using a 2x2x3 

experiment in Romaco Index-K150i machine. The average fill-weight of the encapsulated 

spheroids was mostly affected by the formulation type. Encapsulation of the 

microparticulates had no undesirable effects on the qualities of both the uncoated and 

coated pellets.   

This study provides spheronized ibuprofen microparticulates that can be sold as 

ready-to-use modified ibuprofen to pharmaceutical companies owing to their lots of 

pharmaceutical market potentials. 
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