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ABSTRACT

OPTIMAL CONTROL APPLIED TO A MATHEMATICAL MODEL FOR

VANCOMYCIN-RESISTANT ENTEROCOCCI

By

Jonathan Lowden

May 2013

Thesis supervised by Rachael Miller Neilan

Enterococci bacteria that cannot be treated effectively with the antibiotic van-

comycin are termed Vancomycin-Resistant Enterococci (VRE). In this thesis, we de-

velop a mathematical framework for determining optimal strategies for prevention and

treatment of VRE in an Intensive Care Unit (ICU). A system of five ordinary differential

equations describes the movement of ICU patients in and out of different states related

to VRE infection. Two control variables representing the prevention and treatment of

VRE are incorporated into the system. An optimal control problem is formulated to

minimize the VRE-related deaths and costs associated with controls over a finite time

period. Pontryagin’s Minimum Principle is used to characterize optimal controls by

deriving a Hamiltonian expression and differential equations for five adjoint variables.

Numerical solutions to the optimal control problem illustrate how hospital policy mak-

ers can use our mathematical framework to investigate optimal cost-effective prevention

and treatment schedules during a VRE outbreak.
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Chapter 1

Introduction to Optimal Control for

Ordinary Differential Equations

In this thesis, we study a system of coupled ordinary differential equations which repre-

sent the dynamics of a spreading bacterial infection in a hospital’s Intensive Care Unit.

We introduce two control variables within the system of equations as a way to drive the

infection dynamics to a desired state. Optimal control theory is applied to determine an

optimal cost-effective allocation of controls through time. In this first chapter, we look

at optimal control theory applied to a single ordinary differential equation (ODE) and a

single control variable for a better understanding of the topic. A detailed introduction

to optimal control theory can be found in [23].

We denote x(t) as the state variable and u(t) as the control variable. Both variables

are functions of time. Typically, the state variable has a physical interpretation (e.g.

population size at time t). An ODE is constructed to describe the changing dynamics

of the state variable, x(t). These dynamics are affected by the control variable in the

sense that

x′(t) = g(t, x(t), u(t)) (1.1)

where u(t) belongs to a set of admissible controls, U . We assume the control set U
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consists of Lebesgue integrable functions.

The goal of an optimal control problem is represented by an objective functional,

which is typically formulated as minimizing (or maximizing) an integral expression in

terms of both the state and control variables. Our ambition is to find an optimal control

u∗(t) ∈ U and the corresponding state x∗(t) that minimize (or maximize) the objective

functional. The optimal control problem can be represented as

min
u∈U

∫ T

0

f(t, x(t), u(t)) dt (1.2)

subject to

x′(t) = g(t, x(t), u(t)) (1.3)

where x(0) = x0 and x(T ) is free. (1.4)

An optimal control, denoted by u∗(t) ∈ U , achieves the minimum. Under the as-

sumption that f and g are continuously differentiable in their arguments, one can state

the first order necessary conditions in the simplest form by Pontryagin’s Minimum

Principle. Around 1950, Pontryagin, along with collaborators, developed optimal con-

trol theory for ODE’s [40]. They developed the important concept of introducing an

adjoint function that attaches the right hand side (RHS) of the differential equation in

(1.1) with the objective functional in (1.2).

Theorem 1. Pontryagin’s Minimum Principle: If u∗(t) and x∗(t) are optimal

for (1.2)-(1.4), then there exists an adjoint variable λ(t) such that

H(t, x∗(t), u∗(t), λ(t)) ≤ H(t, x∗(t), u(t), λ(t)),

at each time, where the Hamiltonian H is defined by
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H(t, x(t), u(t), λ(t)) = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t))

and

λ′(t) =
−∂H(t, x(t), u(t), λ(t))

∂x
,

λ(T ) = 0.

The final time condition on the adjoint variable is called the transversality condition.

This principle creates the current problem to optimize the Hamiltonian pointwise as

a method for finding a control that minimizes the objective functional subject to the

state ODE and initial conditions. A simpler way to define the Hamiltonian is

H(t, x, u, λ) = f(t, x, u) + λg(t, x, u)

= (integrand) + (adjoint)× (RHS of ODE)

One can generate the necessary conditions by optimizing H with respect to u at u∗.

The necessary conditions are

∂H

∂u
= 0⇒ fu + λgu = 0 (optimality condition)

λ′ = −∂H
∂x
⇒ λ′ = −(fx + λgx) (adjoint equation), and

λ(T ) = 0 (transversality condition).

We can also consider second-order conditions. For minimization, we have

∂2H

∂u2
> 0 at u∗

and for maximization, we have

∂2H

∂u2
< 0 at u∗.
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In the majority of biological models, the controls will be bounded as a result of

specific applications. Pontryagin’s Minimum Principle still holds when the controls are

restricted within the bounds

a ≤ u(t) ≤ b.

After introducing an adjoint variable, we now have three unknowns, u∗, x∗, and λ.

The concatenation of the state and adjoint differential equations, boundary conditions,

and control characterization are referred to as the optimality system. Solutions to

the optimality system, more than often, cannot be solved analytically, but can be

approximated numerically.
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Chapter 2

VRE: An Antibiotic-Resistant

Bacterium

2.1 Background

In today’s society, antibiotic resistance acquired in a hospital setting is a major health

care concern. Nosocomial infections caused by resistant bacteria represent approxi-

mately 100,000 deaths every year in hospitals located in the United States [47]. One of

the top Center for Disease Control (CDC) health concerns, and the focus of this study,

is Vancomycin-Resistant Enterococci (VRE) infections [54].

Vancomycin is an antibiotic that is used to treat bacteria that are resistant to peni-

cillin and penicillin derivatives. Enterococci are spherical bacteria that are normally

found living in digestive and genital tracts, bloodstreams, and wounds. These bacte-

ria are adaptable to wide range of pH levels and temperatures [29, 47]. As a result,

enterococci are hard to treat without the use of antibiotics.

There are severe mortality costs associated with VRE infections [2, 8, 13, 24, 27, 37,

44, 48]. Among VRE infected patients who are critically ill or VRE infected patients

who have had a liver transplant, there is an associated death rate of up to 70% [1, 30, 33].

The presence of VRE bacteria is most common in immuno-compromised patients and
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VRE also has the ability to transfer to other bacteria such as Methicillin-Resistant

Staphylococcus Aureus (MRSA) [20, 25]. VRE has a high contamination rate and is

difficult to treat [29, 47].

There are also severe monetary costs attributable to VRE. Hospitals use a reliable

and cheap method to screen the patients to see if VRE is present. Rectal swabs are

taken from the patient, on an every other day interval, to be grown on agar plates

[12, 29, 42]. However, this test takes several days for confirmation, potentially resulting

in an increased length of stay for the patients. When a patient is recognized as being

colonized with VRE, hospitals must spend money on preventative measures, such as

quarantining these patients from others and changing gowns and gloves before and after

seeing these patients. Also, money is spent reducing the size of the colony of VRE in the

patient. One way to do this is to subject the patient to chlorhexidine baths [12, 35, 46].

If the VRE colonization is severe enough to cause physical signs of infection, treatment

for the infection is an option. However, there are only a few drugs the can treat VRE

infection and they are very expensive. The two most commonly used drugs are Tygacil

and Linezolid.

In this thesis, we present a mathematical framework for determining an optimal

cost-effective balance of preventative care of colonized individuals and treatment of

infected individuals to reduce VRE-related deaths within a hospital’s ICU. The frame-

work allows for parameters that are specific to individual hospitals. The framework may

be used by hospital policy makers to investigate how to optimally allocated resources

given specific monetary constraints.

2.2 Biological Model

We adopt and modify a recent VRE model developed in Yahdi et al. [50]. The model

follows a population of individuals within an Intensive Care Unit (ICU) of a hospital.

Individuals within the population exist in one of five different states, based on their

6



VRE infection stage and access to care. The first infection stage is for patients who do

not have VRE. In this stage, all patients are susceptible to develop VRE. The second

infection stage is for patients that are colonized with VRE. In this stage, patients pro-

duce a positive culture of the VRE bacteria but do not have symptoms of an infection.

The second stage is further divided into colonized patients with no preventative care

and colonized patients with preventative care. The final infection stage is for patients

who have a VRE infection. In this final stage, patients have a high density of VRE

bacteria and show symptoms of an infection. This stage is further divided into infected

patients with no treatment and infected patients that are receiving treatment. A total

of five states are used to describe the ICU population.

Notation for each state and a brief description are listed below.

• Susceptible, S: Represents the proportion of the ICU population that do not

produce a positive culture of VRE. There is no natural immunity to VRE. Patients

who have been decolonized or cured of VRE are susceptible to contract VRE again

[16, 29].

• Colonized, X: Represents the proportion of the ICU population that have pos-

itive VRE cultures and are not receiving any preventative care. Hospital funds,

severity of colonization, etc. are not sufficient to place these individuals under

preventative care.

• Colonized with preventative care, Y: Represents the proportion of the ICU

population that have positive VRE cultures and are currently receiving preventa-

tive care. CDC requires VRE colonized patients to be put under contact isolation

to prevent further spread. Hospital funds, severity of colonization, etc. are suffi-

cient to be place these individuals under preventative care.

• Infected, V: Represents the proportion of the ICU population that show symp-

toms of an infection due to high-density VRE colonies and are not receiving
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treatment. Insufficient funds or resources prevent these patients from receiving

treatment.

• Infected with treatment, W: Represents the proportion of the ICU population

that show symptoms of an infection due to high-density VRE colonies and are

receiving treatment. There are several drugs to treat VRE infection, such as

Tygacil and Linezolid.

For this biological model we incorporate all possible VRE-related transitions in and

out of the ICU and between the five states introduced above. A brief description of the

movement in and out of each of the five states is provided below.

• Transitions into S (susceptible): The majority of patients enter the ICU VRE

free and are therefore placed into the S state. Colonized patients in states X or

Y who have spontaneously cured from VRE colonization or have been cleared of

their VRE colony from preventative care return immediately to the susceptible

state. There is no natural immunity to VRE. In addition, infected patients in

state W who have been cured due to treatment will move to the susceptible state.

• Transitions out of S: Patients can leave the S state by leaving the ICU. Patients

can also transfer from S to one of the colonized states, X or Y, if they have positive

VRE cultures.

• Transitions into X (colonized): Patients can enter the X state by entering the

ICU already colonized. Individuals in the S state who produce a positive culture

of VRE, but do not fit criteria for preventative care, are placed into state X. It is

possible for colonized patients in state Y who stop preventative care to transfer

into the X state due to, but not limited to, monetary reasons or reduced severity

of the colonization. Furthermore, infected patients in states V and W can become

infection-free but still be colonized with VRE and therefore they may transition

to the X state.
8



• Transitions out of X: Patients can leave the X state by leaving the ICU. Patients

in the X state can be spontaneously cured of their colonization and transition to

the susceptible stage. Transitions from X to Y occur when a colonized patient’s

VRE colony size dramatically increases, causing them to be put under preventa-

tive care. Alternatively, new hospital funds can increase the number of patients

who can receive preventative care. Patients in the X state can show a sign of

infection causing them to move to one of the infected states V or W.

• Transitions into Y (colonized with preventative care): Patients can enter

the ICU as colonized and under preventative care. Susceptible patients who

produce a positive culture and fit preventative care criteria transition to the Y

state. The severity of a colonization in an individual in state X can cause a

patient to be put under preventative care, thus moving them to the Y state.

Lastly, infected patients in states V and W can move to state Y if they become

infection-free but still have a severe colonization and require preventative care.

• Transitions out of Y: Patients can leave the Y state by leaving the ICU. Pa-

tients in the Y state can be cured of VRE colonization due to preventative care,

yet remain in the ICU, in the susceptible state S. Hospital policies and limited

resources can cause patients to be removed from preventative care, moving them

out of the Y state and into the X state. Furthermore, patients in Y who show

signs of infection transfer to one of the infected states, V or W.

• Transitions into V (infected without treatment): Patients can enter the V

state by entering the ICU with a VRE infection. Colonized patients in states X or

Y who show signs of infection but do not need immediate treatment transition to

state V. Limited funding can cause infected patients in state W to stop treatment

and move to the V state.
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• Transitions out of V: Patients can leave the V state by leaving the ICU. Pa-

tients can spontaneously cure from the infection and transition from the V state

to the S state. If patients are cleared from infection but are still colonized, then

they will transition to one of the colonized states, X or Y. If the infection of a pa-

tient in state V worsens, the patient may start treatment and therefore transition

to the W state.

• Transitions into W (infected with treatment): Patients can enter the W

state by entering the ICU with a VRE infection and treatment. Once colonized

patients in the X or Y states show signs of infection and are in need of treatment,

they are transferred into W. Patients in the V state with progressing infection

may transition to the W state by receiving treatment.

• Transitions out of W: Patients can leave the W state by leaving the ICU.

Patients in the W state can be cured from the infection due to treatment and

therefore move to the susceptible state S. If patients are cleared from infection

but are still colonized, then they will return to one of the colonized states, X or

Y. Patients in the W state may stop receiving treatment and move to the V state

due to monetary issues or the fact that some current drugs used to treat VRE

can only be used for seven to ten consecutive days.

We made two modifications to the model put forth by Yahdi et al. [50]. First, we

simplified the model by assuming the proportion of patients moving from colonized with

preventative care (Y) to infected with treatment (W) is equivalent to the proportion of

patients moving from colonized (X) to infected with treatment (W). Thus, one param-

eter (r) represents the proportion of people moving from both colonized states to the

infected with treatment state. Second, we made the model more realistic by including

a parameter (γp) which represents the movement of individuals from the colonized with

preventative care state (Y) to the susceptible state (S). The new parameter accounts
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for spontaneous curing and an increased curing rate attributed to preventative care.

2.3 Mathematical Model

We construct a mathematical model for an ICU population based on the above bio-

logical description of the five VRE-related states and transitions between the states.

The mathematical model consists of five state variables (S, X, Y, W, V) and a set of

parameters that realistically represents the factors that would lead to the progression

or recession of VRE infection. Figure 2.1 illustrates the dynamics of the mathematical

model. The parameters used in the model are defined in detail in a later section. For

a brief summary of the parameters, see Table 2.1.

Figure 2.1: VRE MODEL

The mathematical model is written as a system of coupled ordinary differential

equations (ODEs) based on the incoming and outgoing rates of the five states over

time. Our system consists of five differential equations with nineteen independent

parameters.
11



The ODE system with initial values and necessary conditions are given below.

dS

dt
= µ(m1 − S) + β(X + V ) + γpY + γW − f(δS(X + pY + V + pW ) + τS)

dX

dt
= µ(m2 −X) + (1− k)f(δS(X + pY + V + pW ) + τS) + αpY −X(β + α + fε)

dY

dt
= µ(m3 − Y ) + kf(δS(X + pY + V + pW ) + τS) + αX − Y (αp + γp + fpε)

dV

dt
= µ(m4 − V ) + (1− r)fε(X + pY ) + θtW − V (θ + β)

dW

dt
= µ(1−m1 −m2 −m3 −m4 −W ) + rfε(X + pY ) + θV −W (θt + γ)

The system has the following initial conditions:

S(0) = S0, X(0) = X0, Y (0) = Y0, V (0) = V0,W (0) = W0

where S0, X0, Y0, V0, and W0 are given initial values for each of the five states, and

S0 +X0 + Y0 + V0 +W0 = 1.

There are nineteen independent parameters in our model. Biologically realistic

ranges for these parameters were gathered from recent data found in professional jour-

nals, including National Institutes of Health and Clinical Trails website, Harvard School

of Public Health, and other scientific journals. Ranges were chosen to reflect the di-

versity among all ICUs. A list of all nineteen parameters, their brief description, mean

values, ranges, and the source(s) used to find these values can be found in Table 2.1.

A more in depth description of the parameters with units is listed below.

• µ (day−1) represents the general ICU admission rate, while m1, m2, m3, m4,

m5 represent the proportion admitted into each of the five states. Note m5 =

1−m1 −m2 −m3 −m4.

• δ (day−1) represents a contamination rate. This parameter encompasses all factors

leading to contamination. This includes contact with health care workers, contact

with other patients, etc.
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• β (day−1) represents spontaneous curing. VRE colonizations and infections can

vary in severity, and it is possible for patients to be cured naturally over time.

• τ (day−1) represents the rate at which susceptible individuals become colonized

with VRE by antibiotic use alone. Previous antibiotic use or misuse is a risk

factor for contracting VRE infection, including frequency and length of antibiotic

use.

• γ (day−1) represents the rate of curing due to treatment: Antibiotics such as

Tygacil and Linezolid can clear the infection.

• γp (day−1) represents the rate of curing due to preventative care. Isolation,

chlorhexidine baths, and compliance with hand washing, limited contact, and

new stethoscopes can clear colonizations.

• α and αp (day−1) represent the transition rates from colonized without preven-

tative care (X) to colonized with preventative care (Y) and vice versa. These

transitions are subject to limited resources, high density of VRE, previous surg-

eries, etc.

• θ and θt (day−1) represent the transition rates from infected patients without

treatment (V) to infected patients with treatment (W), and vice versa. These

transitions occur when a patient’s infection severity increases or decreases or when

a patient stops or starts antibiotics that can only be administered for a certain

amount of time.

• ε (day−1) represents the rate of infection. This parameter encompasses any factor

that can lead to VRE infection such as previous surgeries, prior hospital stays,

previous nosocomial infections, etc.

• f (unitless) represents the bacteria’s fitness. Fitness relates to the bacteria’s

ability to colonize. If it is easy for the bacteria to live with the plasmid, then

13



the patient experiences an increased probability of colonization. In this case, f

takes a value that is close to one. If it is difficult for the bacteria to live with

the plasmid, then the bacteria regresses to a nonresistant strain and the patient

experiences a reduced probability of colonization. In this case, f takes a value

that is close to zero.

• r (unitless) represents the proportion of individuals in the colonized states, X

and Y, that receive treatment when infection occurs. Thus, (1− r) represents the

proportion that do not receive treatment when infection occurs.

• p (unitless) represents the hospital’s and health-care workers’ compliance with

preventative care. This includes compliance regulations, hand hygiene, changing

of gloves and gowns, chlorhexidine baths, health-care workers contact rate with

other patients, etc.

• k (unitless) represents the proportion of individuals in the susceptible state S that

receive preventative care when colonization occurs. Thus, (1− k) represents the

proportion that do not receive preventative care when colonization occurs.

14



Description Mean Range Reference
µ General admission rate 0.0956 0.03 ≤ µ ≤ 0.14 [11, 26, 32]
µV Death rate for infected patients

without treatment
0.04353 0 ≤ µV ≤ 0.7 [13, 14, 36]

µW Death rate for infected patients
with treatment

0.00166 0 ≤ µW ≤ 0.7 [13, 14, 36]

δ Contamination rate 0.29845 0.2657 ≤ δ ≤ 0.3312 [22]
m1 Proportion of new ICU patients

that are susceptible
0.7 0 ≤ m1 ≤ 1 [11, 32]

m2 Proportion of new ICU patients
that are colonized without pre-
ventative care

0.1 0 ≤ m2 ≤ 1 [11, 32]

m3 Proportion of new ICU patients
that are colonized with preventa-
tive care

0.1 0 ≤ m3 ≤ 1 [11, 32]

m4 Proportion of new ICU patients
that are infected without treat-
ment

0.05 0 ≤ m4 ≤ 1 [11, 32]

β Rate of spontaneous curing 0.095 0.03 ≤ β ≤ 0.16 [18, 20, 22, 32]
τ Rate of infection due to antibi-

otic use alone
0.302 0.07 ≤ τ ≤ 0.65 [11, 26]

γ Rate of curing due to treatment 0.46 0 ≤ γ ≤ 0.46 [26]
γp Rate of curing due to preventa-

tive care
0.15 0 ≤ γp ≤ 0.33 [10]

α Movement rate from X to Y 0.2 0 < α < 0.5 [32]
αp Movement rate from Y to X 0.1 0 < αp < 0.5 [32]
θ Movement rate from V to W 0.2 0 < θ < 0.5 [32]
θt Movement rate from W to V 0.1 0 < θt < 0.5 [32]
ε Factors leading to infection 0.2083 0 < ε < 1 [11, 32]
f Fitness of bacteria 0.75 0.5 ≤ f ≤ 1 [41]
r Proportion of newly infected who

receive treatment
0.2 0 < r < 1 [32]

p Compliance 0.5 0 ≤ p ≤ 1 [11, 32]
k Proportion of newly colonized

who receive preventative treat-
ment

0.2 0 < k < 1 [32]

Table 2.1: Summary Table of Parameters
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Chapter 3

Optimal Control for VRE Model

3.1 Optimal Control Problem

Our goal is to minimize the total costs due to preventative care and treatment while

also minimizing the deaths attributed to VRE over a period of T days. We introduce

two control variables; both are functions of time. The control u1(t) is associated with

preventative care and the parameter k. The control u2(t) is associated with treatment

and the parameter r. The control variables are bounded such that 0 ≤ u1(t) ≤ 1.0

and 0 ≤ u2(t) ≤ 1.0. Controls u1 and u2 are associated with multipliers η1 and η2

respectively. The controls are assumed to affect the parameters linearly, so when no

control is applied (i.e, u(t) = 0), k and r are at baseline values and when control is

applied (i.e, u(t) > 0) k and r are multiplied by (1 + η1u1) and (1 + η2u2), respectively.

We define the set of admissible controls as

U = {0 ≤ u(t) ≤ 1 for 0 ≤ t ≤ T | u is Lebesgue integrable}.

The control variables are included within our system of differential equations as

16



indicated below.

dS

dt
= µ(m1 − S) + β(X + V ) + γpY + γW − f(δS(X + pY + V + pW ) + τS) (3.1)

dX

dt
= µ(m2 −X) + (1− (1 + η1u1)k)f(δS(X + pY + V + pW ) + τS)

+ αpY −X(β + α + fε) (3.2)

dY

dt
= µ(m3 − Y ) + (1 + η1u1)kf(δS(X + pY + V + pW ) + τS) + αX

− Y (αp + γp + fpε) (3.3)

dV

dt
= µ(m4 − V ) + (1− (1 + η2u2)r)fε(X + pY ) + θtW − V (θ + β) (3.4)

dW

dt
= µ(1−m1 −m2 −m3 −m4 −W ) + (1 + η2u2)rfε(X + pY ) + θV

−W (θt + γ) (3.5)

The system has the following initial conditions:

S(0) = S0, X(0) = X0, Y (0) = Y0, V (0) = V0,W (0) = W0 (3.6)

where S0, X0, Y0, V0, and W0 are given initial values for each of the five states, and

S0 +X0 + Y0 + V0 +W0 = 1.

Given controls u1 and u2 in U , there exists (S, Y,X, V,W ) satisfying system (3.1)-

(3.6). Existence is due to the fact that state variables are bounded, i.e.,

0 ≤ |S(t)| ≤ 1, 0 ≤ |X(t)| ≤ 1, 0 ≤ |Y (t)| ≤ 1, 0 ≤ |V (t)| ≤ 1, 0 ≤ |W (t)| ≤ 1,

and therefore the right hand side of each differential equation in (3.1)-(3.5) can be

written as |f(t, z)| ≤ a(t) + b(t)|z(t)| where z represents the state variable and a(t)

and b(t) are non-negative integrable functions. Thus, standard results in [28] provide

existence of solutions to the state system.
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Given the mathematical model with controls in (3.1)-(3.6), we formulate an objec-

tive functional that best fits the purpose of this research. We introduce µv and µw,

the death rates attributed to VRE for the infected without treatment (V) and infected

with treatment (W), respectively. Thus, we seek to find u∗1 in U and u∗2 in U satisfying

min

∫ T

0

(AµV V +BµWW + Cu21 +D(η1u1kf(δS(X + pY + V + pW )))

+ Eu22 +G(η2u2rfε(X + pY ))) dt (3.7)

subject to (3.1) - (3.6). Here A, B, C, D, E, and G are constants representing the

costs associated with death, preventative care, and treatment. Quadratic terms are

often used to represent non-linear costs. Cost coefficients A and B represent costs

associated with death, C and D represent costs associated with preventative care, and

E and G represent costs associated with treatment of infected individuals. Coefficients

A, B, D, and G are viewed as costs per person, while C and E are coefficients on the

quadratic terms and their values are chosen accordingly. Costs can vary dramatically

between different hospitals. We estimate values of costs based on available literature.

Table 3.1 displays the values of A, B, C, D, E, and G that we have chosen to use in

our simulations.

Description Starting Values Range Value REF
A Cost for death in V $150,000 variable -
B Cost for death in W $150,000 variable -
C Quadratic cost for preventative

care
$10 10 ≤ C ≤ 100 -

D Linear cost for preventative care $3,850 500 ≤ C ≤ 6000 [8, 39]
E Quadratic cost for treatment $100 10 ≤ E ≤ 100 -
G Linear cost for treatment $11,150 1000 ≤ C ≤ 36000 [8, 39]
η1 Multiplier for control u1 3 - -
η2 Multiplier for control u2 3 - -

Table 3.1: Summary Table of Objective Function Coefficients
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3.2 Optimality System

It can be shown that there exists an optimal pair u∗1 in U and u∗2 in U . Existence

relies on several conditions. First, the set of solutions to the state system is non-empty.

Second, each of the differential equations in (3.1)-(3.5) is linear in the control variables

u1 and u2. Third, the control set U is closed. Fourth, the integrand in the objective

functional is convex on U . Results in [15] (page 68) show that optimal controls exist if

these conditions are satisfied.

Pontryagin’s Minimum Principle is applied to solve for the optimal controls. The

principle states that we can solve the optimal control problem by solving the corre-

sponding optimality system. The optimality system consists of the adjoint equations,

the transversality conditions, and the control characterizations.

To generate the optimality system, we follow the methodology outlined in Chapter

1. We first form the Hamiltonian. The Hamiltonian is the sum of the integrand of

the objective functional and expressions involving the adjoint variables and the state

differential equations. In each expression, an adjoint variable is multiplied by the right

hand side of corresponding state’s differential equation with controls. Each of the

five state variables in our system of differential equations has an associated adjoint

variable. For example, λS corresponds to state S and therefore, in the Hamiltonian,

λS is multiplied by the right hand side of the differential equation for S. The complete

Hamiltonian is stated below.
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H = AµvV +BµwW + Cu21 +D(η1u1kf(δS(X + pY + V + pW ))) + Eu22+

G(η2u2rfε(X + pY )) + λS
[
µ(m1 − S) + β(X + V ) + γpY + γW−

f(δS(X + pY + V + pW ) + τS)
]

+ λX
[
µ(m2 −X)+

(1− (1 + η1u1)k)f(δS(X + pY + V + pW ) + τS) + αpY −X(β + α + fε)
]
+

λY
[
µ(m3 − Y ) + (1 + η1u1)kf(δS(X + pY + V + pW ) + τS) + αX−

Y (αp + γp + fpε)
]

+ λV
[
µ(m4 − V ) + (1− (1 + η2u2)r)fε(X + pY ) + θtW−

V (θ + β)
]

+ λW
[
µ(1−m1 −m2 −m3 −m4 −W ) + (1 + η2u2)rfε(X + pY )+

θV −W (θt + γ)
]

A system of differential equations is then formulated to describe the adjoint vari-

ables. The differential equation governing an adjoint variable is determined by the

negative partial derivative of the Hamiltonian with respect to the corresponding state

variable.
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dλS
dt

= −∂H
∂S

= µλS − f(δ(X + pY + V + pW ) + τ)((1− (1 + η1u1)k)λX+

(1 + η1u1)kλY − λS) (3.8)

dλX
dt

= −∂H
∂X

= µλX + f [δS(λS − (1− (1 + η1u1)k)λX − (1 + η1u1)kλY )−

ε((1− (1 + η2u2)r)λV + (1 + η2u2)rλW − λX)] + β(λX − λS)+

α(λX − λY ) (3.9)

dλY
dt

= −∂H
∂Y

= µλY + fp[δS(λS − (1− (1 + η1u1)k)λX − (1 + η1u1)kλY )−

ε((1− (1 + η2u2)r)λV + (1 + η2u2)rλW − λY )] + αp(λY − λX)+

γp(λY − λS) (3.10)

dλV
dt

= −∂H
∂V

= µλV + fδS(λS − (1− (1 + η1u1)k)λX − (1 + η1u1)kλY )+

β(λV − λS) + θ(λV − λW )− Aµv (3.11)

dλW
dt

= − ∂H
∂W

= µλW + fδSp(λS − (1− (1 + η1u1)k)λX − (1 + η1u1)kλY )+

γ(λW − λS) + θt(λW − λV )−Bµw (3.12)

The transversality condition implies every adjoint has a final time condition equal to

zero.

λS(T ) = 0, λX(T ) = 0, λY (T ) = 0, λV (T ) = 0, λW (T ) = 0 (3.13)

To characterize optimal controls u∗1 and u∗2 we set the partial derivative of the

Hamiltonian with respect to each control equal to zero, then solve for u∗1 and u∗2,

respectively.

∂H

∂u1
= 0 => u∗1 =

η1kf(δS(X + pY + V + pW ) + τS)(λx − λy −D)

2C
(3.14)

∂H

∂u2
= 0 => u∗2 =

η2rfε(X + pY )(λv − λw −G)

2E
(3.15)

The optimality system supplies necessary conditions for solutions to the optimal control
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problem. Our optimality system cannot be solved analytically for u∗1 and u∗2, so we

explore numerical approximations to solutions.
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Chapter 4

Numerical Solutions

4.1 Numerical Algorithm

As mentioned previously, it may not be possible to solve the optimality system explic-

itly. Alternatively, we use numerical methods to approximate solutions and display

results. An iterative scheme is implemented in MATLAB R© to to solve the optimal-

ity system with initial conditions for the state variables and final time conditions for

the adjoint variables. A Runge-Kutta method of the fourth-order is used within the

iterative scheme.

The iterative scheme can be generalized by the following steps.

1. Establish initial guesses for the control variables.

2. Given initial conditions for the states, approximate solutions for the state equa-

tions using the Runge-Kutta method.

3. Given the state solutions from the previous step and the final time conditions

on the adjoints, approximate the solutions for the adjoint equations using the

Runge-Kutta method.

4. Update the values of the control variables by averaging the previous value and
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the new value arising from the control characterization.

5. Repeat steps 1-4 until successive values of all the states, adjoints, and control(s)

are sufficiently close.

This final step for determining convergence requires that values of states, adjoints, and

controls from two successive iterations satisfy the relation

||v − oldv||
||v||

≤ ε̄

where ε̄ is the accepted tolerance, v is the vector of current values, oldv is the vector

of values from the previous iteration, and || · || refers the the sum of the absolute value

of the elements within v.

4.2 Simulations

Using the steps listed above, we numerically solve the optimality system and display

optimal VRE dynamics. We look at optimal controls and associated VRE dynamics

over a period of T = 30 days. For the simulations displayed here, we use the mean

values of each parameter (see Table 2.1) and initial conditions S(0) = 0.8, X(0) =

0.05, Y (0) = 0.05, V (0) = 0.05,W (0) = 0.05. Our objective is to start with an initial set

of cost coefficients (see Table 3.1) and vary one cost coefficient at a time to investigate

how optimal controls change with different costs. The figures that are shown below

display the same four plots for different cost coefficients. The top left plot displays

the proportion of ICU patients that are susceptible through time. The top middle

plot represents the proportion of ICU patients who are colonized through time. In this

graph, the red line represents colonized patients with preventative care and the blue

line represents colonized patients without preventative care. The top right plot displays

the proportion of ICU patients who are infected through time. In this graph, the red
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line represents infected patients receiving treatment, the blue line represents infected

patients who are not receiving treatment, and the black line represents all infected

patients (i.e., sum of red and blue lines). Finally, the bottom plot represents the level

of each control applied through time. In this graph, the green line represents control u1

(associated with preventative care) and the blue line represents control u2 (associated

with treatment).

In addition to displaying the optimal controls and corresponding VRE dynamics

through time, we compute the total VRE-related deaths and total costs of controls

over the 30-day period. The differential equation

dD̄

dt
= µvV + µwW D̄(0) = 0

was used to track total deaths over time. Here, D̄ represents the cumulative death

attributed to VRE.

dC̄

dt
=Cu21 +D(η1u1kf(δS(X + pY + V + pW )))+

Eu22 +G(η2u2rfε(X + pY ))

C̄(0) =0

Here, C̄ represents the cumulative cost attributed to VRE control. The total deaths

and total costs for all simulations are summarized in Table 4.1.

Figure 4.1 illustrates the solution to our system (3.1)-(3.5) when no controls are

applied. In this simulation, we set both controls equal to zero for the duration of the

simulation, i.e., u1(t) = 0 and u2(t) = 0 for 0 ≤ t ≤ 30. This scenario represents base-

line ICU conditions in which no additional resources are allocated towards preventative

care and treatment. Given that no control is being applied, the total VRE-related

death rate is 0.1650. Throughout the 30 days of this simulation, the proportion of ICU

patients infected with VRE is consistently ≈ 0.2.
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We now simulate model dynamics with optimal controls. We start with an initial

set of values for the cost coefficients in the objective functional, A = $150, 000, B =

$150, 000, C = $10, D = $3, 850, E = $100, G = $11, 150. Figure 4.2 displays the

optimal controls and the associated VRE dynamics. For this simulation, control u2 is

at a moderate level of approximately 0.4, while u1 is not applied at all during the 30

days. This control strategy means that parameter r is multiplied by 2.2 and parameter k

remains at baseline throughout the 30 days. Given this control strategy, the total VRE-

related death rate is reduced to 0.1308. The total costs associated with the controls are

$4,607.84. Throughout the 30 days of this simulation, the proportion of ICU patients

infected with VRE remains consistently just below 0.2.

For the second simulation, we reduce the linear cost of preventative care, D, to

$1,000 and keep the remaining cost coefficients the same. Figure 4.3 displays the

optimal controls and corresponding VRE dynamics. As a result of reducing the cost of

preventative care, both u1 and u2 are applied during the 30 days. By reducing D to

$1,000, u1 is now applied at maximum level (i.e., u1(t) = 1.0) and u2 is applied at a

level of ≈ 0.40 until day 26. Given this control strategy, the total VRE-related death

rate is reduced to 0.1182. The total costs associated with the controls are $4,057.49.

Throughout the 30 days of this simulation, the proportion of total infected patients is

≈ 0.15 until control is turned off on day 26.

For the third simulation, we keep the same cost coefficients used in the second

simulation, except we increase the quadratic cost for preventative care, C, to $50.

Figure 4.4 displays the optimal controls and corresponding VRE dynamics. Control u1

is initially applied at maximum level and u2 is initially ≈ 0.1. However, on the fifth day

both controls have the same value and remain at ≈ 0.5 for the majority of the time.

This scenario represents one in which resources are available for both preventative care

and treatment, but neither option is being applied at extreme values for a long period

of time. Given this control strategy, the total VRE-related death rate is reduced to

26



0.1248. The total costs associated with the controls are $4,480.64. Throughout the

30 days of this simulation, the proportion of total infected patients remains at ≈ 0.15

until control is turned off on day 26.

Finally, in the fourth simulation we keep the same cost coefficients used in the third

simulation except we reduce the quadratic cost coefficients for both preventative care

and treatment, C and E respectively, to $10. Figure 4.5 displays the optimal controls

and corresponding VRE dynamics. With this change in cost, both u1 and u2 are being

fully applied at maximum levels for most of the 30-day period. The effect of this

scenario is such that both parameters k and r are quadrupled in valued, going from 0.2

(baseline) to 0.8 (with controls). Given this control strategy, the overall total VRE-

related death rate is reduced to 0.0789. The total costs associated with the controls are

$8,570.23. Throughout the 30 days of this simulation, the proportion of total infected

patients remains just above 0.1 until control is turned off on day 26.

Figure 4.1: Solution to VRE model with no control
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Figure 4.2: Simulation 1: VRE model with optimal controls using A = B = $150,000,
C = $10, D = $3,850, E = $100, G = $11,150

Figure 4.3: Simulation 2: VRE model with optimal controls using A = B = $150,000,
C = $10, D = $1,000, E = $100, G = $11,150
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Figure 4.4: Simulation 3: VRE model with optimal controls using A = B = $150,000,
C = $50, D = $3,850, E = $100, G = $11,150

Figure 4.5: Simulation 4: VRE model with optimal controls using A = B = $150,000,
C = $10, D = $1,000, E = $10, G = $11,150
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Simulation Total Death Total Costs
No Control (Baseline) 0.1650 $0
1 0.1308 $4,607.84
2 0.1182 $4,057.49
3 0.1248 $4,480.64
4 0.0789 $8,570.23

Table 4.1: Summary of death rate and costs of control for each 30-day simulation

Throughout our investigation of various cost coefficients, we notice that, regardless

of costs, both u1 and u2 are turned off around day 26. The reason behind this event

is that there is no benefit (in terms of reducing death) of applying control on the last

couple of days. Therefore, it is optimal to turn the controls off. If we want to eliminate

this phenomena, then we could add a salvage term (e.g., V (T )+W (T )) to the objective

functional. This additional term then changes our goal to not only reducing the number

of deaths over time, but also reducing the total number of infected individuals at the

final time.

In our investigation of optimal controls, we also look at the maximum costs that

can be associated with a control before it is optimal to apply no control. Given A =

$150, 000, B = $150, 000, C = $10, E = $100, we simulated optimal controls for

different values of G and D. First, we assumed that the linear cost for treatment

remains at G = $11, 150. In this scenario, if D ≤ $1, 800, then it is optimal to apply

u1(t) > 0 for some duration of time. However, if D > $1, 800, then it is optimal that

u1 ≡ 0. Subsequently, we assumed the linear cost for preventative care remains at

D = $3, 850. In this scenario, if G ≤ $14, 500, then it is optimal to apply u2(t) > 0

for some duration of time. If G > $14, 500 then it is optimal that u2 ≡ 0. Thus, for

these particular parameters, we consider G = $14, 500 and D = $3, 850 to be threshold

values for the costs of controls.

Further analysis can be achieved by varying the values of the nineteen independent

parameters, initial conditions of the state variables, and duration of control (T).
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Chapter 5

Conclusions

In this thesis, we present a novel application of optimal control theory to solve a bio-

logical problem. The goal is presented as minimizing an integral expression written in

terms of state variables and control variables. To characterize optimal solutions we use

techniques in optimal control theory developed by Pontryagin [40]. Pontryagin’s Min-

imum Principle states that if there are optimal state and control variables, then there

exists an adjoint variable that minimizes an expression called the Hamiltonian. The

Principle also states how to characterize the adjoint variables. Pontryagin’s Minimum

Principle takes the complicated problem of minimizing the objective functional subject

to the state ODE and initial conditions and simplifies it to minimizing the Hamiltonian

point-wise.

We investigated cost-efficient strategies for mitigating the spread of Vancomycin-

Resistant Entercocci (VRE) within an Intensive Care Unit (ICU) using a mathematical

model and optimal control theory. We started with a biological model of VRE describ-

ing the movement of individuals between different infection stages. We converted the

biological model into a mathematical model with five state variables (S,X, Y, V,W )

and nineteen independent parameters. The mathematical model was written as a sys-

tem of five ordinary differential equations based on incoming and outgoing rates of

the five state variables. We introduced two control variables, u1(t) and u2(t) into our
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mathematical model. The control u1 relates to the proportion of newly colonized pa-

tients receiving preventative care and control u2 relates to the proportion of newly

infected patients receiving treatment. Next, we formulated an objective functional as

the minimization of an integral expression describing the total VRE-related deaths and

total costs associated with controls over a finite time period. We then used an ex-

tension of Pontryagin’s Minimum Principle to solve for optimal controls, u∗1 and u∗2 in

terms of state and adjoint variables. We wrote an iterative numerical scheme, which

included a fourth-order Runge-Kutta, in MATLAB R© to solve the optimality system,

which consisted of ODEs and initial conditions for the state variables, ODEs and fi-

nal time conditions for the adjoint variables, and the control characterizations. Using

this mathematical framework, we investigated cost-effective strategies for the control

of VRE spread within the ICU by running numerous simulations, changing one cost

parameter at time, and tracking the total VRE-related death rates and total costs for

control.

Our research provides a flexible mathematical framework for determining cost-

effective schedules for treatment and preventative care during a VRE outbreak within

an ICU. With VRE being a top health concern of the Center for Disease Control, our

research presents a solution to a problem that is of concern to many hospitals. The

flexibility of our model allows health care workers to adjust the nineteen parameters to

replicate the dynamics observed in a specific hospital ICU. Subsequently, policy makers

may use results of the mathematical model and optimal control problem to make cost

efficient decisions regarding the use of preventative care and treatment to reduce the

spread of VRE. This analysis has the potential to not only reduce hospital costs but

also reduce the impact that VRE has on the hospital patients. Lastly, the research

presented in this thesis can provide a mathematical framework that will be useful for

studying the control of other antibiotic-resistant bacteria such as MRSA.
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