
Duquesne University
Duquesne Scholarship Collection

Electronic Theses and Dissertations

2007

Neural Network Prediction of Math and Reading
Proficiency as Reported in the Educational
Longitudinal Study 2002 Based on Non-Curricular
Variables
Jason Brown

Follow this and additional works at: https://dsc.duq.edu/etd

This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact
phillipsg@duq.edu.

Recommended Citation
Brown, J. (2007). Neural Network Prediction of Math and Reading Proficiency as Reported in the Educational Longitudinal Study
2002 Based on Non-Curricular Variables (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/351

https://dsc.duq.edu?utm_source=dsc.duq.edu%2Fetd%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd/351?utm_source=dsc.duq.edu%2Fetd%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:phillipsg@duq.edu

NEURAL NETWORK PREDICTION OF MATH AND READING PROFICIENCY AS

REPORTED IN THE EDUCATIONAL LONGITUDINAL STUDY 2002 BASED ON

NON-CURRICULAR VARIABLES

by

Jason D. Brown

Submitted in partial fulfillment of

the requirements for the degree

Doctor of Education

Instructional Technology Doctoral program

School of Education

Duquesne University

December 2007

Copyright

by

Jason D. Brown

2007

iii

DUQUESNE UNIVERSITY
SCHOOL OF EDUCATION

Dissertation

Submitted in Partial Fulfillment of the Requirements
For the Degree of Doctor of Education (Ed.D.)

EdDIT Doctoral Program

Presented by:
Jason D. Brown

M.S., Environmental Science and Management, Duquesne University, 2003
B.S., Computer Science/Math, Duquesne University, 1989

September 21, 2007

NEUTRAL NETWORK PREDICTION OF MATH AND READING PROFICIENCY
AS REPORTED IN THE EDUCATIONAL LONGITUDINAL STUDY 2002 BASED

ON NON-CURRICULAR VARIABLES

Approved by:

___, Chair
Connie Moss, Ed.D.

Associate Professor, Department of Foundations and Leadership

___, Member
Misook Heo, Ph.D.

Assistant Professor, Department of Instruction and Leadership in Education

___, Member
Susan M. Brookhart, Ph.D.

Senior Research Associate, CASTL

iv

Abstract
NEURAL NETWORK PREDICTION OF MATH AND READING PROFICIENCY AS
REPORTED IN THE EDUCATIONAL LONGITUDINAL STUDY 2002 BASED ON
NON-CURRICULAR VARIABLES
Jason Brown
Doctor of Education, December 2007
Duquesne University
Chair: Connie Moss, Ed.D.

Predicting student achievement is often the goal of many studies, and a frequently

employed tool for constructing predictive models is multiple linear regression. This

research sought to compare the performance of a three-layer back propagation neural

network to that of traditional multiple linear regression in predicting math and reading

proficiency from 103 non-curricular variables collected in the National Center for

Educational Statistics’ 2002 Educational Longitudinal Study. The neural network model

was implemented using the Java programming language and the coefficients for the

regression equations were produced by SPSS. The results showed that, for this data set,

neither model provided an advantage over the other in terms prediction accuracy when

presented with error-free cases. When synthetic noise was introduced into the data,

however, the neural network model showed a greater resistance to degradation. The fact

that the neural network model performed as well as, and in some cases better than,

regression suggests that further study of neural network modeling is warranted to better

understand the most effective ways to harness this flexible modeling technology.

v

ACKNOWLEDGEMENTS

 Conventional wisdom suggests that doctoral programs are not to be undertaken

while one is in the midst of moving, changing jobs, or having children. The successful

end to this journey, however, is testament to the fact that one can succeed under these

circumstances for the simple fact that while a dissertation is the product of one person, it

is the result of a much larger network of individuals that support and guide the one person

to their goal.

 First and foremost I would like to thank my committee members Dr. Sue

Brookhart and Dr. Misook Heo as well as my committee chair Dr. Connie Moss. When

corporate mergers or the arrival of my third child drew my attention away from my

writing you waited patiently for me to resume my task, never losing faith, never tiring of

reviewing my drafts, and consistently providing just the right feedback to help develop

the manuscript into the polished work it is today.

 I would also like to thank my fellow cohort members from Cohort I of the EdDIT

program at Duquesne University. We embarked together on a journey of discovery and

along the way formed new friendships, sharing in each other’s lives. Many of you

provided feedback on my early research ideas and all of you contributed to my

appreciation of the program.

 Finally, it was the never-ending encouragement and love of my wife Leslie, my

two daughters, Natalie and Meredith, and my son, Andrew, that carried me to my goal.

Thanks for waiting. The weekends are ours once again.

vi

TABLE OF CONTENTS

Chapter Page

Abstract.. iv

Acknowledgements... v

Introduction... 1

Overview... 1

Modeling Student Achievement ... 3

Problem Statement .. 4

Goal Statement.. 5

Significance of the Study.. 5

Limitations of the Models... 6

Definition of Terms .. 6

Review of the Literature ... 9

Neural Network Overview.. 9

Neural Network Implementation .. 11

Neural Networks in Use.. 14

Natural Systems .. 15

Synthetic Systems ... 17

Neural Networks in Education.. 19

Summary... 22

Methodology... 23

Research Question .. 23

vii

Table of Contents (cont.)

Expected Result .. 23

Classification of Independent Variables ... 24

Dependent Variables... 31

Procedures... 31

Sample Selection... 31

Instruments.. 40

Data Collection ... 46

Analysis .. 46

Findings and Data Analysis .. 48

Introduction... 48

Model Comparison of Training Data.. 48

Model Comparison of the Cross-Validation Data .. 51

Model Comparison of the Cross-Validation Data with Synthetic Noise.............. 53

Summary... 60

Summary and Recommendations ... 61

Introduction... 61

Summary of Procedures.. 62

Summary of Findings.. 63

Research Implications... 65

Limitations of the Research .. 66

Future Research .. 67

viii

Table of Contents (cont.)

References... 69

Appendix A Inventory of Variables... 77

Appendix B Case Selection Source Listing... 94

Appendix C Regression Cross Validation Source Listing... 107

Appendix D Neural Network Source Listing ... 118

Appendix E Neural Network Listener Source Listing... 132

ix

LIST OF TABLES

Page

Table 3-1 Socio-Demographic Variables ... 26

Table 3-2 Student Perceptions of School.. 27

Table 3-3 Extracurricular and Sports Activities ... 28

Table 3-4 Student Use Of Time.. 29

Table 3-5 Student Values Expectations and Future Plans .. 30

Table 3-6 Dependent Variables .. 31

Table 4-1 Comparison of Multiple Linear Regression and Neural Network Models with

Training Data .. 50

Table 4-2 Comparison of Multiple Linear Regression and Neural Network Models with

Cross-Validation Data... 52

Table 4-3 RMSE Comparison of Multiple Linear Regression and Neural Network Models

for Reading Score Prediction with Synthetic Noise ... 54

Table 4-4 d1 Comparison of Multiple Linear Regression and Neural Network Models for

Reading Score Prediction with Synthetic Noise ... 55

Table 4-5 d2 Comparison of Multiple Linear Regression and Neural Network Models for

Reading Score Prediction with Synthetic Noise ... 56

Table 4-6 RMSE Comparison of Multiple Linear Regression and Neural Network Models

for Math Score Prediction with Synthetic Noise .. 57

x

List of Tables (cont.)

Table 4-7 d1 Comparison of Multiple Linear Regression and Neural Network Models for

Math Score Prediction with Synthetic Noise.. 58

Table 4-8 d2 Comparison of Multiple Linear Regression and Neural Network Models for

Math Score Prediction with Synthetic Noise.. 59

Table A-1 Independent Variable Inventory .. 78

xi

LIST OF FIGURES

Page

Figure 2-1. Three layer neural network model ... 12

Figure 2-2. Synaptic weighting of connections .. 13

Figure 2-3. Processing neuron outputs through a non-linear function 14

Figure 3-1. Case selection method.. 34

Figure 3-2. Histogram of reading scores for the total population..................................... 35

Figure 3-3. Histogram of reading scores for the training sample 36

Figure 3-4. Histogram of reading scores for the test sample .. 37

Figure 3-5. Histogram of math scores for the total population... 38

Figure 3-6. Histogram of math scores for the training sample ... 39

Figure 3-7. Histogram of math scores for the test sample .. 40

Figure 3-8. Regression coefficients exported as an Excel spreadsheet 41

Figure 3-9. Variable names and regression coefficients... 42

Figure 3-10. Neural network model.. 44

Figure 4-1. Comparison of models with training data .. 50

Figure 4-2. Comparison of models with cross-validation data ... 52

Figure 4-3. RMSE comparison of reading score prediction ... 54

Figure 4-4. d1 comparison of reading score prediction... 55

Figure 4-5. d2 comparison of reading score prediction... 56

Figure 4-6. RMSE comparison of math score prediction ... 57

Figure 4-7. d1 comparison of math score prediction... 58

xii

List of Figures (cont.)

Figure 4-8. d2 comparison of math score prediction... 59

1

CHAPTER 1

INTRODUCTION

Overview

Assessing student performance has long been a goal of educators, administrators,

and academicians. By accurately predicting which students are at risk, interventions can

happen earlier in an effort to increase the overall success rate of a given student

population.

Traditionally, though, predicting student outcomes has been accomplished

through the application of traditional statistical tests such as correlation, ANOVA,

MANOVA, and regression. A limitation of these analyses, though, is the need for a

hypothesis that describes the interrelationships between the variables being studied.

Consequently, statistical studies often focus on small sets of variables in order to make

the model understandable and the mathematics manageable.

Streifer and Schumann, in their 2005 work involving data mining techniques,

made this same observation when they wrote “Traditional analytics can neither easily nor

systematically handle the complexities of school data to address the queries school

leaders have about achievement” (Streifer & Schumann, 2005). Neural networks,

however, may provide an alternative analysis that can be employed with complex data

sets having no suitable hypothesis.

In a direct comparison of regression and neural network approaches, Snyder

observes that regression models require a specific hypothesis, which leads to a specific

model that introduces difficulties in handling imperfect data. He then contrasts this with

2

neural networks in which the only decisions that need to be made are how many hidden

layers to use, the number of neurons per layer, the neuron transfer function, learning rate,

and training algorithm (Snyder, 1996).

Neural networks take a black box approach to model simulation in that few, or no,

assumptions are made about the interactions of the variables. In neural network modeling

identifying as many potentially involved variables as needed, along with a suitable set of

sample data for training purposes, is possible. The neural network can also be trained to

mimic the performance of the known system. Once trained, the neural network can

produce accurate outcomes based on new inputs representing the same system.

Neural network models have been used in the past to predict synthetic or man-

made systems, such as performance prediction systems in the stock market or the success

rates of MBA candidates. Saad (1998) developed a back-propagation neural network

model that effectively predicted profit opportunities in the stock market (Saad, 1998). In

this study, the future price performance was modeled on past price performance.

Additional examples of neural networks in use for prediction can be found in the section

Neural Networks in Use in chapter 2.

Neural networks attempt to simulate the biological computation of the brain by

constructing layers of simple processing units (neurons) connected through (synaptic)

weights. In practice, feed-forward neural networks are presented with a set of input

values that are passed to a hidden layer where each neuron computes its own activation

potential and produces an output. These outputs feed the inputs to subsequent layers and

are either strengthened or diminished by the inter-layer synaptic weights. It is the

3

synaptic weights that form the “memory” or pattern-recognition abilities of the neural

network.

Feed-forward neural networks that employ error back-propagation have shown to

be able to accurately model complex systems of many potentially interrelated variables

by training with a known data set (Mandic & Chambers, 2001). Back-propagation

training of a feed-forward neural network involves presenting a set of input values and

allowing the network to compute an output response. The output is then compared with

the expected value, an error measurement is made, and the error is propagated back

through the network to adjust the synaptic weights. The fact that the network will

converge to an optimal set of weights has been shown by Werbos’ work on the back-

propagation algorithm cited in Mandic & Chambers 2001 text on neural networks for

prediction.

Modeling Student Achievement

The following citations, from a brief sampling of the literature, are demonstrative

of typical studies, which focus on modeling various factors that may impact achievement.

In each of these studies, assumptions were tested about the impact certain variables had

on the sample populations.

In 2003, Bridglall and Gordon studied the factors leading to high performance in

African American and Latino students in Department of Defense schools (Bridglall &

Gordon, 2003). Isaacs studied the impact of counselor interventions (Isaacs, 2003).

Lashway produced a work in 2002 that serves as a guidebook for school administrators

on mining performance data and reporting (Lashway, 2002). Russell and Zhang

4

attempted to determine if gender, poverty, or ethnicity impacted performance on the

Hawaii State Assessment reading test (Russell & Zhang, 2006). Skidmore modeled

gender, motivation, learning strategies, and other affective factors in attempting to predict

final exam scores (Skidmore, 2003). Tell and McDonald investigated whether a student’s

performance in 10th grade could serve as a predictor for their performance in the first

year of college (Tell & McDonald, 2003). Crawford, Tindal, and Stieber used students’

performance in oral reading exercises to predict performance on statewide achievement

tests (Crawford, Tindal, & Stieber, 2001). House and Keeley focused on graduate

students in researching the correlation between performance on the Miller Analogies Test

(MAT) and the ability to predict subsequent graduate student achievement (House &

Keeley, 1993). And finally, Chen, Campbell, and Suleiman attempted to build a

prediction model for student performance at a minority professional school using the

United States Medical Licensure Examination, Medical College Admission Test score,

medical school freshman grade point average, sophomore course performance, and

financial aid work-study dollars (Chen, Campbell, & Suleiman, 2001).

Problem Statement

Much of the research on academic achievement has been focused on evaluating

student performance after-the-fact by generalizing study populations to other similar

populations. These traditional studies, however, typically require a sense of the

underlying model and the relationships of the variables in that model. In a sense, one

must completely, or nearly completely, understand the inner workings of the system in

question.

5

Developing predictive models of student achievement, as evidenced by the

literature, is the focus of real interest within the education community. However,

traditional studies continue to focus on model development first, followed by the analysis

of a small number of independent variables. It is expected that the pattern recognition

capabilities of neural networks will overcome the inaccuracy, lack of generalizability,

and limitations on independent variables present in more traditional modeling techniques.

Goal Statement

This research seeks to develop a neural network model that can accurately predict

student achievement on standardized math and reading tests and thus provide a

mechanism for identifying students who are at risk of under-performing.

To build a neural network model capable of predicting math and reading

proficiencies as reported in the Educational Longitudinal Study: 2002 and to test the

prediction accuracy of feed-forward, back-propagation neural networks, this study will

focus on five groups of non-curricular variables as defined by the Educational

Longitudinal Study: 2002 (ELS: 2002). The ELS: 2002 collected data on 15,362 high

school sophomores from 752 public, Catholic, and private schools to produce a general-

purpose dataset for the study of various educational policy issues. (Ingels et al, 2005).

Significance of the Study

The value in this research comes from its attempt to generalize a predictive

framework for student achievement based on non-curricular variables present across all

institutions, rather than curricular attributes which are often specific to a given state,

school district, or school. Further, the ability to predict student achievement serves

6

educational administrators, teachers, and parents by identifying those students at risk of

underperforming and providing early opportunities for intervention. In the shadow of

national assessments such as NCLB, Goals 2000, America 2000, and others (Holbrook,

2003) as well as similar state and local initiatives, the sooner at-risk students or settings

can be identified, the sooner interventions can occur.

Limitations of the Models

As with any modeling exercise, certain limitations arise through the data, the

mathematical tools, or both. From a data perspective, this study will focus on a known

population of high school sophomores. Therefore, the resulting model will only be

applicable to other sophomores. Further, the study examines students in Public, Private,

and Catholic schools. Data from Charter school students was not available in the ELS:

2002 study. As for the mathematical tools, due to the black box nature of neural network

modeling, while the model may prove to be more accurate than traditional regression it

will not provide an explanation of what parameters should be changed for an at-risk

student in order to increase their chances of success.

Definition of Terms

Accountability. In the context of this study, accountability refers to the

responsibility held by schools, school administrators, and teachers to ensure that students

are making adequate academic progress.

Axon. An outgoing, branched fiber from a biological neuron, which carries a

neuron’s signal to the input of other neurons.

7

Data Driven Decision Making. The act of basing policymaking and other decision

processes on quantifiable measures.

Data Mining. The act of using various pattern recognition techniques to search for

patterns in a large pool of data.

Dendrite. An incoming, branched fiber of a biological neuron that receives input

signals from other neurons.

Dichotomous Output. An output with only two possible states.

Hyperplane. An object in n-dimensional space having n-1 dimensions and

dividing the n-dimensional space into two parts. For example, a point is hyperplane that

divides a line into two rays; a line is hyperplane that divides a plane into two planes; and

a plane is a hyperplane that divides 3-dimensional space into two spaces. The concept can

be carried into as many dimensions as required.

Linear Function. A function resulting in a straight line, generally of the form

f(x)=mx+b.

Logit. The logarithm of the odds of probability p where the odds are expressed as

p/1-p.

Neural Network. In the context of this work, a neural network is a collection of

artificial neurons arranged in layers with every neuron in a given layer fully connected

via synaptic weights to the neurons in the following layer.

Neuron. In the context of a neural network a neuron is the fundamental processing

unit that takes a weighted sum of its inputs and passes that value through a transfer

function to product an output.

8

Non-linear Function. A function whose graph does not result in a straight line and

for which each point may have a different slope.

Probit. A “probability unit” defined by Charles Bliss used to generate a more or

less straight-line plot of probability of the normal distribution. Also, a technique used in

regression with a dummy coded (dichotomous) dependent variable.

Synaptic Weight. In the context of this work a synaptic weight connects a neuron

in one layer to a neuron in the following layer and is used to strengthen or diminish the

output of the first neuron as it passes to the input of neuron in the next layer.

Topology. In the context of this work topology refers to an arrangement of

neurons and layers in a neural network.

9

CHAPTER 2

REVIEW OF THE LITERATURE

Neural Network Overview

Neural Networks have been an on-again, off-again research area in both computer

science and cognitive psychology. Neural networks, in a nutshell, are an attempt to model

the biological processes that occur in the human brain that allow it to learn, remember,

and predict. Fundamentally, the human brain stores and processes information via

neurons and the connections formed between neurons. Biologically speaking, a neuron

consists of a dendritic tree that collects input signals from other neurons, a cell body,

which integrates the inputs and generates a response, and a branching axon that

distributes the response to other neurons (Reed & Marks, 1999).

The first neural network model, created by Warren McCulloch and Walter Pitts in

the early 1940’s featured digital neurons with no learning capability (Blum, 1992).

Shortly thereafter, Donald Hebb proposed the idea of Hebbian learning which detailed a

method of altering the synaptic weights between neurons that enabled networks to learn.

Frank Rosenblatt furthered this idea with his work on what would come to be known as

perceptrons, when he published the perceptron convergence theorem, which provided a

methodology for updating synaptic weights in a way that would guarantee convergence

on an optimal set of weights (Blum, 1992).

Not everyone was convinced of the utility of machine learning based on

biological systems, and in the late 60’s Marvin Minsky and Seymour Papert worked

together to disprove Rosenblatt’s claims regarding the usefulness of perceptrons. Minsky

10

and Papert ultimately discovered that a single layer of perceptrons, no matter how large,

could not do something as simple as representing the various states of the exclusive-or

function (XOR). Given two inputs, A and B, the XOR function returns true if A = true or

B = true and returns false if both A and B = true or both A and B = false. In other words,

one or the other must be true, but not both. Seemingly discredited, neural networks faded

from the limelight until 1974 when the XOR problem was solved and multi-layer neural

networks utilizing a new error propagation algorithm were born (Satinover, 2001).

Werbos developed the back propagation algorithm, which supported learning in

multi-layer neural networks and, along with that, the ability to approximate any non-

linear function with a sufficiently large network (Blum, 1992). This is not to say that

neural networks are without limits. The previous statement “sufficiently large neural

network” implies that a mathematical proof may exist for a network topology to be able

to approximate any function, however, in practical terms, the network may need to be so

large that it is infeasible to implement in practice.

This begs the question, “how do neural networks approximate non-linear

functions?” In general terms, a function is something that maps a set of input values to a

set of output values. This becomes interesting when we begin to group certain output

conditions into recognizable patterns so that certain groups of inputs produce an output

that falls in the same region as the other outputs from the group of inputs. In this way,

groups of inputs (conditions) become recognizable as belonging to a certain class (output

region). A non-linearly separable function produces many such output regions, depending

on the function, and requires many hyperplanes to define the regions. Multi-layer neural

networks permit the approximation of non-linear functions by being able to produce as

11

many hyperplanes as needed depending on the size of the neural network (Reed & Marks,

1999).

The premise then is that neural networks can learn from examples, which define

the regions (classifications), and then, when presented with new inputs (conditions)

correctly classify the new output as belonging to the correct group. It is this sort of

supervised learning neural network that is of interest for this study on predicting

academic performance.

Neural Network Implementation

Neural networks provide a unique mechanism for the study of student

achievement due to the fact that they are often applied in complex pattern recognition

problems and also with time-varying sets of data (Mandic & Chambers, 2001). In their

simplest form, neural networks are composed of arrays of computational elements each

taking one or more input values, performing a computation on the inputs and producing

an output which is distributed to one or more additional elements or considered the output

of the network as shown in Figure 2-1.

12

Figure 2-1. Three layer neural network model

Neural networks learn, as it were, by loosely simulating the behavior of biological

neurons in the brain in which connections between neurons either favor or inhibit the

transmission of signals from one neuron to the next. Whether or not the synaptic

connection between two neurons is excitory or inhibitory is the result of learning that has

occurred. Excitory connections are typically those with strong synaptic connections that

enhance the outputs of neurons in the previous layer and inhibitory connections are those

with weak synaptic connections.

In a neural network, the behavior of biological synapses is captured through

synaptic weights. Synaptic weights are applied to the inputs, usually by multiplying the

13

input times its weight, to either strengthen or diminish the signal. Figure 2-2 shows a

subset of the connections in the example model with their weights.

Figure 2-2. Synaptic weighting of connections

The final process in computing the output of a neural network model involves

each neuron summing its weighted inputs and then providing that result as input to a non-

linear “squashing” function, f(x), in order to constrain the output of the neuron to some

known range of values such as 0,1 or -1,1. Common functions include inverse tangent

(tan-1) and sigmoid (1/1+e-1). These continuous, non-linear functions ensure that neuron

outputs fall within a known range as shown in Figure 2-3.

14

Figure 2-3. Processing neuron outputs through a non-linear function

Neural Networks in Use

One of the attractive features of the neural network approach is that there is no

real penalty, save a computational one, for modeling as many input variables as possible.

One of the behaviors of neural networks is that they are good at determining which input

factors are significant and strengthening those synaptic connections, and which inputs

represent noise, or are of little value and diminishing their effect on the network’s output.

A review of the Institute of Electrical Engineers and the Institute of Electrical and

Electronics Engineers (IEE/IEEE) publications demonstrates a growing interest in neural

15

networks for prediction. In 1990 approximately 10 articles were published. In 1999 that

number rose to nearly 140 (Mandic & Chambers, 2001).

In reviewing the literature on the application of neural networks, two facts

became evident 1) There has been very little written on the use of neural networks in

predicting academic performance; and 2) There has been much more written on the

applications of neural networks in other fields. There do, however, seem to be two broad

classifications of systems in which neural networks are applied, natural and synthetic.

Naturally occurring systems include topics such as weather, geology, and the

environment while synthetic systems focus on man-made topics such as the stock market,

finance, information retrieval and academics. The field of medicine was slightly different

in that it seems to straddle the line between synthetic and natural systems because the

application of neural networks in that field often involves a natural system, such as

cancer or heart disease detection, in conjunction with man-made treatments and medical

procedures.

In this review of neural networks in use, examples are provided of applications in

both natural and synthetic systems. Special emphasis, however, will be placed on

applications in education, since that is the central topic of this research.

Natural Systems

The literature reveals that there are many examples of neural network models

utilized for predictive purposes. For instance, a neural network was employed to forecast

the runoff due to daily precipitation, temperature, and snowmelt for a watershed in

Maryland (Tokar & Johnson, 1999). The neural network model in this study compared

16

favorably to more common statistical regressions or simple conceptual models ordinarily

used. In addition, the authors found that the model reduced the necessary size of

calibration data and reduced the time necessary to calibrate the model while at the same

time producing more accurate predictions in a more flexible manner.

In another work, a neural network was used to aid in predicting tornado formation

as a result of updrafts during severe thunderstorms (Marzban & Stumpf, 1996). Data

extracted from Doppler radar feeds comprising 23 separate variables were provided as

input to a feed-forward neural network, the output of which was the predicted existence

of a tornado. Compared to existing rule-based algorithms and discriminant analysis, the

neural network model proved to be more accurate.

The prediction of stream flow (flash floods) and water quality was the focus of the

2006 work of Sahoo, Ray, and De Carlo. The researchers in this study employed a back-

propagation neural network in the assessment of the quantity and quality of running water

in Hawaii. Their model, which used rainfall, stream flow, stream stage and water quality

values as inputs accurately predicted the resultant stream flow with an R value of 0.99

(Sahoo, Ray, & De Carlo, 2006). R in the case of this study represented the line of exact

fit with 1.0 being a perfect fit between the model and the measured values.

Martynenko and Yang employed a neural network to model the drying

characteristics of ginseng. This problem is particularly challenging because ginseng root

is still biologically active and counteracts the drying action through internal physiological

processes. In particular the drying rate is known to be non-linear at the beginning and end

of the drying process (Martynenko & Yang, 2006). By way of validation they compared

their neural network model to the performance of previously established models such as

17

the exponential model and Page’s model and found that the neural network model gave

the best fit for their experimental data.

In modeling another natural phenomenon, a researcher built a neural network for

predicting the ozone forecast in an industrialized urban area (Yi, 1996). This article

points out that while more conventional models exist, they need to be more accurate and

that the interplay of the meteorological variables and photochemical reactions is complex.

As previously discussed in this paper, neural networks are efficient at pattern recognition,

and the author of this work used that to his advantage and found that a neural network

approach was superior in estimating ozone concentrations over more traditional statistical

approaches.

Synthetic Systems

On to more synthetic activities, neural networks are also at use in the area of

finance. Researchers at the University of Oklahoma built a neural network for bankruptcy

prediction (Odom & Sharda, 1990) and found that it compared favorably to the more

traditional method of multivariate discriminant analysis.

Stock prediction is also an area of focus for neural networks and three researchers

studied the accuracy of three separate neural network topologies for market forecasting

(Saad, Prokhorov & Wunsch, 1998). Their findings were that each of the network layouts

was feasible and performed better than conventional stock analysis tools. In a separate

text by Mandelbrot and Hudson, The Misbehavior of Markets, they state “Wall Street has

long been the computer industry’s biggest customer, unleashing ‘genetic algorithms,’

18

‘neural networks,’ and other computational techniques on the market…” (Mandelbrot &

Hudson, 2004).

Exchange rate prediction was the subject of the work of Ince and Trafalis. The

challenge presented by this problem is found in the inherent efficiency of financial

markets. That is, any information that would make one direction favorable over another is

quickly known by all, and the market again equalizes. Nevertheless, the authors

compared the non-parametric approaches of support vector regression and artificial

neural networks and found that both performed well when coupled with the appropriate

input selection (Ince & Trafalis, 2005).

Murat and Ceylan studied the ability to forecast energy transport demand in

Turkey in their 2006 work with neural networks. The authors constructed a feed-forward

neural network and compared its modeling ability to that of the model developed by the

Ministry of Energy and Natural Resources (MENR). Using as input the annual gross

national product (GNP), population, and vehicle density, they found the neural network

resulted in a lower total minimum average error when compared to MENR predictions

(Murat & Ceylan, 2006).

Predicting the final prices of online auction items was the focus of the 2006 work

of Xuefeng, Lu, Lihua, and Zhao. This study collected auction data from a single auction

site for all auctions of an identical item and based the predictive model on 11 seller

attributes such as auction start and stop time, seller credibility (as reported by the auction

web site), shipping and payments methods, and the final price. Five bidder attributes were

also included in the model including bidder credibility, bid amount, item demand, and bid

time. A three layer feed forward neural network was then constructed and trained using

19

the familiar back-propagation algorithm. In summary, the neural network demonstrated

an average accuracy of 91.29% while their comparison method of logistic regression

recorded an average accuracy of just 76.46% (Xuefeng, Lu, Lihua, & Zhao, 2006).

Information filtering and retrieval represents another area of applied neural

networks. With the explosion of information on the Internet and in globally networked

databases, as well as in the files on our personal computers and in the contents of our

email messages, efficient means of search and retrieval have become paramount. Boger,

Kuflik, Shoval, and Shapira applied a neural network approach to information filtering

and retrieval in their 2000 work and found that their neural network approach

outperformed traditional keyword filtering systems (Boger, Kuflik, Shoval, & Shapira,

2000).

Neural Networks in Education

In a 2004 study, Naik and Ragothaman explored a neural network’s ability to

predict the success of MBA students as part of the admissions process at a private

midwestern university. In this work, variables typically used in the college admission

screening process were identified such as overall undergraduate GPA, junior/senior GPA,

undergraduate major and institution, and GMAT score.

These variables are typically evaluated with various statistical models such as

discriminant analysis, multiple regression and stepwise regression to predict an

applicant’s success in an MBA program. Naik goes on to point out some of the

shortcomings of these typical approaches such as the assumption that there is multivariate

normality, the rather skewed distribution of graduate GPAs found in other research such

20

as Abedi in 1991, and that statistical models only use objective data disregarding

potentially relevant subjective data.

The neural network topology for the Naik and Ragothaman study was a three-

layer back-propagation network. Ten variables comprised the input layer with 1 neuron in

the output layer. The size of the hidden layer was unspecified. The result (output) of the

network was either a 1 (successful) or 0 (marginal). A successful MBA student was

deemed to be one who achieved an overall GPA of 3.3. A marginal student would have

achieved a GPA less then 3.3.

After training, which consisted of using historical data from admitted MBA

students and their final GPA, the neural network was used to analyze 184 MBA

applicants. The results of the neural network were then compared to the results of two

common linear models, Logit and Probit.

The results showed that the neural network model correctly predicted 93.38% of

the successful students and 80.90% of the marginal students for an overall accuracy of

89.13%. Comparatively speaking, Logit correctly predicted 86.78% of the successful

students and 46.03% of the marginal students for an overall accuracy of 72.83% and the

Probit model correctly classified 87.60% of the successful students and 46.03% of the

marginal students for an overall accuracy of 73.37%.

These results would seem to indicate that the neural network model was able to

make use of some subtleties in the relationships of the variables that defy more traditional

linear regression. In either case, as is intended for this research, the authors suggest that

their predictive tool be used as an additional factor in aiding decision making, not as the

only factor.

21

Hoefer and Gould also compared neural networks to linear and non-linear

regression in an attempt to forecast the success of MBA students. In their 2000 study they

found the neural network to only be marginally better than the traditional methods. They

did note, however, that the neural network model allowed them to include qualitative

variables in the model such as gender, birth date, and students graduating from tier 1

schools (Hoefer & Gould, 2000).

In Jing Luan’s 2002 paper presented at the Annual Forum for the Association of

Institutional Research (Luan, 2002) he proposed the use of neural networks to predict the

likelihood of student dropouts in higher education. Using the predictive capacity of

neural networks allows the college to intervene prior to a dropout in an effort to enhance

retention.

Gonzalez and DesJardins also apply the predictive capabilities of neural networks

in their 2001 and 2002 papers, which studied the ability to predict what engineering

school students would apply to. They then compared this to the traditional logistic

regression modeling and discovered that neural networks proved an enhancement in

making this sort of prediction (Gonzalez & DesJardins, 2002, 2001). The authors point

out, along with a neural network’s predictive ability, the additional benefit of not having

to first culled the relationships between variables, as required in more traditional

statistical analyses.

Finally, neural networks have also been applied in the field of education to

forecast educational spending. In the 1999 work of Baker and Richards, three neural

network architectures were used to predict the 1991-1995 per-pupil spending in U.S.

public elementary and secondary schools. Their results were compared to the National

22

Center for Educational Statistics’ multivariate regression model and found to range from

comparable to superior (Baker & Richards, 1999).

Summary

This review of neural network applications reveals a common thread – in all

cases, neural networks seem to be applied when the interrelationships among variables

are either too numerous to account for or too complex to model well using traditional

mathematical constructs. In many cases, where existing models are already in place, they

seem to make assumptions that put boundaries around the solution space in order to

permit the construction of a finite model. It is here that neural networks excel in allowing

the model to be what it is and discerning the patterns and relationships; learning as it

were, from pre-existing data.

23

CHAPTER 3

METHODOLOGY

Research Question

This study sought the answer to the question, “Can a neural network model of

non-curricular variables provide greater accuracy in predicting student performance on

standardized math and reading tests for high school sophomores when compared to

standard multiple regression?” The non-curricular variables that were used came from the

National Center for Educational Statistics Educational Longitudinal Study: 2002

encompassing 15,362 high school sophomores from 752 public, Catholic, and private

schools.

Expected Result

Given a Neural Network’s proven ability to accurately model both linear and non-

linear systems, it was expected that the Neural Network would outperform the standard

regression predictors in the prediction of both math and reading scores. This would seem

plausible given that that multi-layer Neural Networks are able to model non-linear

functions to an arbitrary degree of precision (Satinover, 2001). Further, Neural Networks

have been shown to outperform linear predictors in a variety of applications (Mandic,

2001).

Model performance was compared via standard error of estimate (RMSE) and

Wilmott’s indices of agreement (d1 and d2). A second comparison was also performed

with varying levels of noise introduced into the data. It was expected that the accuracy of

24

both models would degrade in this second case but that the neural network would degrade

more gradually.

Classification of Independent Variables

The non-curricular data collected by the ELS: 2002 were organized into five

categories. The five categories include 1) socio-demographics, 2) students’ perceptions of

school, 3) extracurricular and sports activities, 4) students’ use of time outside of school,

and 5) students’ values, expectations and future plans.

Prior studies such as the National Longitudinal Study of the High School Class of

1972, the High School and Beyond Longitudinal Study, and the National Educational

Longitudinal Study of 1988 have all pointed to a relationship between socio-

demographics and student achievement (Ingels et al, 2005). Studies by Green et al

(1995), Ladd and Birch (1997), and Osterman (2000) connected students’ perceptions of

their school and teachers to educational expectations and achievement test scores (Green,

et all 1995; Ladd and Birch, 1997; Osterman, 2000).

The relationship between extracurricular activities and achievement, however, is

less clear. As reported by Ingels et al, it is tempting to associate high achievement with

participation in extracurricular activities, but this cannot be confirmed. This is partly

because it is difficult to determine if participants in extracurricular activities perform

better due to those activities or because they tend to be from higher socio-demographic

status (Ingels et al, 2005). In the realm of how students spend their time outside of the

classroom, Ingels et al report that findings vary with respect to affect on achievement.

25

Participation in extracurricular activities, homework outside of school, and reading for

pleasure tend to be positively associated with achievement though (Ingels et al, 2005).

Ingels et al (2005) did not relate the final category, life values and student

expectations, to achievement in anyway, but this category captures student perceptions of

themselves and what they believe parents, teachers, and counselors expect of them. It is

conceivable then, that factors in this category may impact student achievement as the

students’ perceptions in this area likely have direct influence on student motivation (e.g.,

Pintrich & De Groot, 1990, Bandura 1986, Bandura 1997, Hammouri 2004, Pajares &

Graham 1999).

Tables 3-1 through 3-5 outline the variables to be studied in each of the five

categories. The name(s) in parentheses is the variable name from the ELS: 2002 data set.

These variables represent the independent variables in the model. For a full inventory of

independent variables, including survey response options, please refer to Appendix A.

26

Table 3-1

Socio-Demographic Variables

Variable Description

Family composition (BYFCOMP) A nominal measure of the family
configuration such as (1) mother and
father and (2) mother and male guardian.

Father’s education (FATHED) A nominal measure of the father’s highest
level of education such as (1) Did not
finish high school and (2) Graduated from
high school.

Mother’s education (MOTHED) A nominal measure of the mother’s
highest level of education similar to
FATHED.

Parent’s education (PARED) A nominal measure similar to FATHED
and MOTHED reporting the highest level
of education attained by either parent.

Socioeconomic status (SES1QU) An ordinal measure of the student’s
socioeconomic status as classified in one
of four quartiles.

27

Table 3-2

Student Perceptions of School

Variable Description

Region (BYREGION) A nominal measure of the geographic
region in which the school is located such
as Northeast or South.

Type (BYSCTRL) A nominal measure of the type of school
such as public, Catholic, or Private.

Location (BYURBAN) A nominal measure of the metropolitan
status of the school such as Urban,
Suburban, or Rural.

Cutting class (BYS24B) An ordinal measure in five ranks of how
many times the student skipped class.

No books/homework (BYS38B) An ordinal measure in four ranks of how
often the student came to class without
texts or completed homework.

High school program (BYS26) A nominal measure of the student’s self-
reported high school program such as
General, College Prep (Academic), or
Vocational (including technical or
business).

Crime and bullying (BYS22A, BYS22B,
BYS22C, BYS22D, BYS22E, BYS22F,
BYS22G, BYS22H)

These ordinal measures indicate how
often a student experienced various types
of school crime or bullying. The ranks
include never, once or twice, and more
than twice.

Importance of good grades (BYS37) An ordinal measure in four ranks of the
importance of grades to the student.

Likes school (BYS28) An ordinal measure in three ranks of how
much the student likes school.

Reasons for going to school (BYS27A,
BYS27B, BYS27C, BYS27D, BYS27E,
BYS27F, BYS27G, BYS27H, BYS27I)

Ordinal measures in four ranks of various
reasons the student attends school.

School Rules (BYS21A, BYS21B,
BYS21C, BYS21D, BYS21E)

Ordinal measures in four ranks of how
much students agreed or disagreed with
various school rules.

School safety (BYS20J, BYS20M,
BYS20N)

Ordinal measures in four ranks of how
much students agree or disagree with
various statements about school safety.

School and teachers (BYS20A, BYS20B,
BYS20C, BYS20E, BYS20F, BYS20G)

Ordinal measures in four ranks of how
much students agreed or disagreed with
various statements about their teachers
and their school.

28

Table 3-3

Extracurricular and Sports Activities

Variable Description

School activities (BYS41A, BYS41B,
BYS41C, BYS41D, BYS41E, BYS41F,
BYS41G, BYS41H, BYS41I)

Indicates which school sponsored
activities, if any, in which the student
participated.

Intramural (BYS39A-BYS39H) Indicates which intramural sports, if any,
in which the student participated.

Interscholastic sports (BYBASEBL,
BYSOFTBL, BYFOOTBL, BYSOCCER,
BYTEAMSP, BYSOLOSP,
BYBSKTBL)

Indicates which interscholastic sports, if
any, in which the student participated.

Work (BYS72) A nominal measure of the students work
history answering the question “have you
ever worked for pay?” with the responses
No, Yes, and I am currently employed,
and Yes, but I am currently not employed.

29

Table 3-4

Student Use of Time

Variable Description

Computer use (for schoolwork
BYS46A/other than schoolwork
BYS46B)

A measure of the number of hours spent
by the student using computers for
schoolwork and purposes besides
schoolwork.

Computer use for various purposes
(BYS45A, BYS45B, BYS45C)

Ordinal measures of how much the
student used computers, in any location,
for various purposes. The choices are
Never, Rarely, Less than once a week,
Once or twice a week, Almost Every Day,
or Every Day.

Extracurricular activities (BYS42) A measure of the number of hours the
student spent on school-sponsored
extracurricular activities.

Math homework (in school BYS35A/out
of school BYS35B)

Measures of the number of hours the
student spent on math homework.

English homework (in school
BYS36A/out of school BYS36B)

Measures of the number of hours the
student spent on English homework.

Total homework (in school BYS34A/out
of school BYS34B)

Measures of the number of hours the
student spent on homework per week in
all subjects.

Outside reading (BYS43) A measure of the number of hours the
student spent reading material not
assigned by school.

Working for pay (BYS75) A measure of the number of hours per
week a student currently works or has
worked in the past if they are currently
unemployed.

30

Table 3-5

Student Values Expectations and Future Plans

Variable Description

Educational expectations (STEXPECT) A nominal measure of the student’s
expected highest level of academic
achievement such as Less than high
school, high school, 2 year community
college or vocational school, and so on.

Education past high school (BYS57) A nominal measure of the student’s
expectation of continuing their education
past high school, if they reported they
thought they would complete high school.
Values are Yes, right after high school,
Yes, after staying out of school for 1 year,
Yes, but I don’t know when, No, I don’t
plan to continue my education after high
school and so on.

Participate in college sports (BYS60) An indicator of whether or not students
who indicated they planned to continue
their education planned to participate in
college sports (not intramural).

Athletic scholarship (BYS61) For students planning to continue to their
education and planning to participate in
college sports, they were asked to indicate
if they hoped to receive an athletic
scholarship.

Life values (BYS54A-L, BYS54N,
BYS54O)

Nominal measures from Not Important to
Very Important, of the student’s
perception of the importance of a series of
life values related to work and education,
family and friends, and the community.

Right after high school (BYS66A,
BYS66B, BYS66F)

Student’s perceptions of what they think
is the most important thing to do right
after high school from the point of view
of their parents, school counselor, and
favorite teacher. The possible choices
were Get a full-time job, Enter a trade
school, Enter the military, Get married,
Whatever the student wants to do, or
Don’t know.

31

Dependent Variables

The dependent variables for the model were the standardized math and reading

scores. For the purposes of the ELS: 2002 study, the math and reading achievement

scores were standardized to a mean of 50 and a standard deviation of 10.

Table 3-6

Dependent Variables

Variable Description

Standardized math (BYTXMSTD) Standardized math achievement score.
Standardized reading (BYTXRSTD) Standardized reading achievement score.

Procedures

Sample Selection

The population being studied consisted of 15,362 high school sophomores from

752 public, Catholic, and private schools. Since all the data had been collected and is in

electronic form, the entire population was theoretically available for study. For the

purposes of this research, however, a representative sample of 10% of the population was

selected and used to A) train the neural network model and B) develop the regression

prediction equations. In determining the sample size a power table was consulted to

ensure that comparisons would be statistically meaningful. In order to detect small to

medium effect sizes at power = .80 and alpha = .05, this study requires 800 (small effect)

and 85 (medium effect) samples respectively (Cohen, 1977). Since this study used

32

approximately 10% of the total population, or 1,534 samples, there was more than

enough data to provide a statistically meaningful analysis. Another 10% of the population

(distinct from the first 10%) was also selected to A) test the accuracy of the neural

network model and B) test the accuracy of the regression prediction equations.

Prior to case selection, the data were cleaned so that any cases containing missing

or invalid responses were removed. Following the cleaning process 3,068 cases remained.

Since the original intent was to use a sample size of 10%, or 1,536 cases, for training and

test purposes, the remaining 3,068 cases were split into two groups of 1,534 cases each.

Case selection was performed with an algorithm developed specifically for this

study that would ensure an even distribution of survey responses in each of the two 10%

samples. Initially, the data were dummy coded so that they would be in a format suitable

for the regression analysis and the scores were scaled to the range [0.0, 1.0] by simply

dividing by 100. Scaling the scores into this range facilitated training the neural network

since the outputs of the neural network are limited to the range [0.0, 1.0] as a

consequence of using a sigmoid transfer function in the output layer.

The case selection process then built a map for each dummy variable of those

cases for which each variable had a value of 1. Case selection then proceeded by

randomly selecting a dummy variable, without replacement, and then randomly selecting

one of the cases for which this variable had the value 1. Once this process had cycled

through all of the dummy variables, the pool of dummy variables was recycled and the

process repeated until 1,534 cases had been selected. The overall algorithm is shown in

Figure 3-1.

33

The selected 1,534 cases were then written to a file to be used for training the

neural network and developing the regression equation. The remaining 1,534 cases were

written to another file to be used to test the performance of the neural network and

regression equations. Four additional files of test data were also produced at this time,

one each with 10, 15, 20, and 25 noisy variables introduced. The purpose of these

additional test files was to measure how each model degraded as the quality of the data

degraded. To introduce noise into the data, 10 variables were selected at random and

marked as missing. For each subsequent file, another 5 variables were selected at random

and also marked as missing thus allowing each noisy test file to carry forward the noise

from the previous file. Then an additional 5 noisy (missing) variables were added.

Following the case selection process, the 10% training and test samples were

compared to the total population of cases to ensure that the distribution of standardized

math and reading scores was similar. The math and reading scores in the ELS: 2002 data

were standardized to a mean of 50 and a standard deviation of 10. Histograms for both

the math and reading scores for the total population and the 10% samples show that the

case selection process had not skewed the distribution of scores. The histograms are

shown in Figures 3-2 through 3-7.

A program written for this study performed the case selection process. The source

code for the software is shown in appendix B.

34

Figure 3-1. Case selection method

35

Figure 3-2. Histogram of reading scores for the total population

36

Figure 3-3. Histogram of reading scores for the training sample

37

Figure 3-4. Histogram of reading scores for the test sample

38

Figure 3-5. Histogram of math scores for the total population

39

Figure 3-6. Histogram of math scores for the training sample

40

Figure 3-7. Histogram of math scores for the test sample

Instruments

A three-layer back propagation neural network and regression prediction

equations were developed in an effort to forecast student math and reading scores based

on the non-curricular independent variables. In the case of the regression equations,

dummy variables were created for all nominal and ordinal variables, and separate

regression equations were developed to predict math and reading scores independently.

The regression equation was developed by importing the dummy coded training

data, which was produced by the case selection process, into SPSS and performing a

linear regression with 103 independent variables. This regression was performed twice:

41

once for math scores and once for reading scores. The resulting regression coefficients

were then exported from the SPSS output viewer to an excel spreadsheet as shown in

Figure 3-8.

Figure 3-8. Regression coefficients exported as an Excel spreadsheet

The spreadsheet was then reduced to two columns of data representing the

variable names and the regression coefficients as shown in Figure 3-9.

42

Figure 3-9. Variable names and regression coefficients

This file was then saved as a comma-separated-value file, which was read by the

cross-validation software written for this study. The cross-validation program first read

the variable names and coefficients and then a file of test data. Next, it executed the

regression equation for each case in the test file and, when complete, computed the

RMSE, d1, and d2 statistics. See the analysis section in this chapter for further discussion

43

of the comparison statistics. The source code the cross-validation program is shown in

appendix C.

The neural network model employed by this study was a three-layer, feed-forward

neural network trained via resilient back-propagation. The input layer consisted of 103

neurons, one for each feature (independent variable) identified in the ELS: 2002 data set.

The input neurons were fully connected to the hidden layer. This means that each

neuron in the input layer was connected to every neuron in the hidden layer. The hidden

layer consisted of 30 neurons. The sizing of the hidden layer has no hard and fast rules

and, generally speaking, is usually smaller than the input layer but larger than the output

layer. Often, for a given application, several different hidden layer sizes are tried in an

attempt to balance network accuracy and training time since the more neurons there are in

the hidden layer, the more computationally expensive the network will be to train.

The output layer consisted of two neurons, one each to provide the network’s

prediction of the student’s math and reading scores. Each neuron in the hidden layer was

fully connected to the neurons in the output layer.

Figure 3-10 displays the neural network model. Note that connections are only

shown from the first neuron in the input layer to the hidden layer and from the neurons in

the hidden layer to the first output layer neuron. The input layer neurons have been

grouped in the figure by the five classifications of data present in the ELS: 2002 for

illustrative purposes but otherwise have no impact on the topology or functioning of the

network.

44

Figure 3-10. Neural network model

Training the neural network consisted of presenting the file of training cases to

the neural network, computing the RMSE, and propagating the error back through the

synaptic weights to minimize the network’s error. Each pass through all of the test cases

represented one training epoch, and the network was trained for a total of 500 epochs.

To present each case to the neural network, the input values from the training data

were encoded for the 103 input neurons. Encoding the input variables consisted of scaling

each input value to the range [0.2, 0.8] based on the position of the input value in the list

45

of possible input values. Missing values were encoded as 0. For example, the variable

STEXPECT had the following list of possible values of -1, 1, 2, 3, 4, 5, 6, and 7. If the

response for a given case was 4, then the encoded value for the neural network would be

0.2 + (4/7)*0.6 = 0.54286. Scaling the input values in this way helps to avoid swamping

the hidden layer neurons, given that each hidden layer neuron has 103 incoming

connections.

One risk, however, of extensive training of a neural network is over-fitting. Over-

fitting occurs when the neural network so tightly fits the training data that it doesn’t

generalize well to the overall population. To avoid this problem, 10%, or 153 cases, of

the training data were set aside. The network was then trained using the remaining 1,381

training cases. After every 10th epoch, the neural network was shown the 153 reserved

training cases and the RMSE computed. If this RMSE was the best one so far for the 153

training cases, the state of the neural network was set aside and the training continued.

When 500 training epochs had completed the final state of the network, the network with

the best RMSE for the 153 reserved training cases, was saved.

Once the network had been trained, cross-validation was performed in two steps:

first by setting the network’s training property to false; second by presenting the network

with the test data files produced during the case selection process. In this mode the neural

network would read the test cases, run each case through the network to compute the

predicted math and reading scores, and then compute the RMSE, d1, and d2 statistics once

all cases had been processed. See the analysis section for further discussion of the

comparison statistics. The source code for the neural network program is shown in

appendices D and E.

46

Data Collection

Data for this study was borrowed from the National Center for Educational

Statistic from the Education Longitudinal Study: 2002. The ELS: 2002 collected data

from school administrators, teachers, parents, and students. For this research, however,

the primary data of interest comes from the student assessment (standardized math and

reading scores) and the student survey, with just a few pieces of data from the parent

survey.

The ELS: 2002 was administered in a group setting in each school. The items on

the questionnaire were partly based on past performance as well as continuing relevance

of items from prior longitudinal studies. The questionnaire was field tested in 2001. This

field-testing investigated response rates, reliability and factor structure, differential item

functioning, reliabilities of scales, and inter-item consistency (Ingels et al, 2005).

Analysis

Two measures of prediction accuracy were computed for the neural network

model and the regression equations: 1) standard error or estimate, also known as root

mean square error (RMSE), and 2) Wilmott’s indices of agreement, d1 and d2. Standard

error of estimate is the square root of the average of the total squared error between the

predicted and actual values. This measure is often used in model comparison but suffers

from sensitivity to outliers. The general form of this measure is

RMSE = ([Σ(Ŷi – Yi)2]/n)1/2

where n is the total number of cases. The smaller the value of RMSE the more closely the

model predicts the actual values.

47

Wilmott’s indices of agreement, d1 and d2, offer another indicator of model fit that

measures the degree to which a model’s predictions are correct. It does this by showing

the degree to which the model’s predictions vary about the mean as compared to the

actual observations’ variance around the mean. d1 is the more conservative measure,

using simple differences, while d2 uses square differences (Comrie, 1997). For Wilmott’s

indices of agreement, the closer the measure is to 1, the more accurately the model fits

the data. The general forms of d1 and d2 are:

!

d1 =1"
| ˆ Y i "Yi |()

i=1

n

#$ % &
'
()

| ˆ Y i "Y ||Yi "Y |()
i=1

n

#$ % &
'
()

!

d2 =1"
| ˆ Y i "Yi |()

2

i=1

n

#$ % &
'
()

| ˆ Y i "Y ||Yi "Y |()
2

i=1

n

#$ % &
'
()

To compare the performance of the neural network and the regression equations,

RMSE and d1 and d2 were calculated for the neural network’s predicted math and reading

scores, as well as for the regression equations’ predicted math and reading scores. Once

this comparison was completed, the neural network and regression equations were run

with the same test data but with ever increasing levels of noise introduced into the data.

48

CHAPTER 4

FINDINGS AND DATA ANALYSIS

Introduction

The goal of this study was to compare the performance of a feed-forward neural

network to multiple linear regression to determine if either could provide more accurate

modeling of student performance on math and reading achievement tests based on non-

curricular variables. Two separate samples of 1,534 cases each were pulled from the

survey data to be used for training and cross-validation.

Once the regression equations had been developed and the neural network trained,

performance comparisons were made, first with the training data, to see which model

provided a better fit to the training population, and then with the cross-validation data to

see which model provided a better fit for cases that had never been seen before.

Additional comparisons were also made using noisy versions of the cross-validation data

to see if either model was more resistant to imperfect data. The following tables and

figures show the results of those comparisons and, in the case of differences, where those

differences are statistically significant.

Model Comparison of Training Data

Following the development of the regression equations and the training of the

neural network, the comparison statistics RMSE, d1, and d2 were computed for the

training data, that is, the data used to develop the regression equation as well as to train

the neural network. For RMSE measures, smaller values indicate better fit with zero

49

being a perfect fit. For the d1 and d2 measures, larger values indicate a better fit with a

value of 1.0 indicating a perfect fit. For all three measures of fit, the regression equation

modeled the data more accurately as shown in Table 4-1 and Figure 4-1.

50

Table 4-1

Comparison of Multiple Linear Regression and Neural Network Models with Training

Data

Model Math
RMSE

Math
d1

Math
d2

Reading
RMSE

Reading
d1

Reading
d2

Multiple Linear
Regression

0.05856 0.64783 0.85112 0.05852 0.64784 0.85406

Neural Network 0.06557 0.56425 0.78083 0.06644 0.55685 0.77714

Figure 4-1. Comparison of models with training data

51

This is not necessarily a surprising result as the regression equation is the

theoretical best possible fit through the training data while the neural network was trained

to avoid over-fitting. By avoiding over-fitting, the final neural network chosen was not

the one that necessarily fit the training data as tightly as possible but the one that was the

best fit for a small reserve of the training data during training as described in Chapter 3.

Model Comparison of the Cross-Validation Data

When the models were executed with the cross-validation data, the second 10%

sample, the results showed that multiple linear regression and the neural network were

virtually indistinguishable. The neural network had slightly lower RMSE values for both

math and reading score prediction while the d1 and d2 statistics were nearly identical as

shown in Table 4-2 and Figure 4-2.

52

Table 4-2

Comparison of Multiple Linear Regression and Neural Network Models with Cross-

Validation Data

Model Math
RMSE

Math
d1

Math
d2

Reading
RMSE

Reading
d1

Reading
d2

Multiple Linear
Regression

0.08129 0.51019 0.69804 0.08218 0.50927 0.70343

Neural Network 0.07351 0.50250 0.71164 0.07535 0.50066 0.70230

Figure 4-2. Comparison of models with cross-validation data

53

Model Comparison of the Cross-Validation Data with Synthetic Noise

The final comparison involved the performance of each model when faced with

data involving progressively larger numbers of missing input values. During the case

selection process, following the selection of the 10% training and cross-validation

samples, four additional versions of the cross-validation data were produced with 10, 15,

20, and 25 missing variables respectively. Each model was then run using these

additional data sets.

For reading score prediction, the neural network performed slightly better across

all three measures of fitness. See Tables 4-3, 4-4, and 4-5 and Figures 4-3, 4-4, and 4-5.

The differences, however, were not statistically significant at an alpha level of .05

between any of the three measures of fitness.

54

Table 4-3

RMSE Comparison of Multiple Linear Regression and Neural Network Models for

Reading Score Prediction with Synthetic Noise

Model 0
Mising
Inputs

10
Missing
Inputs

15
Mising
Inputs

20
Missing
Inputs

25
Missing
Inputs

Multiple Linear Regression RMSE 0.08128 0.08229 0.09484 0.09777 0.11939
Neural Network RMSE 0.07535 0.08497 0.08774 0.08769 0.08278

Figure 4-3. RMSE comparison of reading score prediction

55

Table 4-4

d1 Comparison of Multiple Linear Regression and Neural Network Models for Reading

Score Prediction with Synthetic Noise

Model 0
Mising
Inputs

10
Missing
Inputs

15
Mising
Inputs

20
Missing
Inputs

25
Missing
Inputs

Multiple Linear Regression d1 0.50927 0.47752 0.44784 0.43519 0.39055
Neural Network d1 0.50066 0.47722 0.47633 0.47829 0.48096

Figure 4-4. d1 comparison of reading score prediction

56

Table 4-5

d2 Comparison of Multiple Linear Regression and Neural Network Models for Reading

Score Prediction with Synthetic Noise

Model 0
Mising
Inputs

10
Missing
Inputs

15
Mising
Inputs

20
Missing
Inputs

25
Missing
Inputs

Multiple Linear Regression d2 0.70343 0.6686 0.62404 0.60734 0.54806
Neural Network d2 0.70320 0.66274 0.66079 0.66292 0.66745

Figure 4-5. d2 comparison of reading score prediction

57

For math scores prediction, again the neural network showed less degradation

across all three measures of fitness and for the d1 and d2 statistics, the differences were

statistically significant at an alpha level of .05, td1(4)=2.43, pd1=0.03 (one-tailed) and

td2(4)=3.21, pd2=0.02 (one-tailed). See Tables 4-6, 4-7, and 4-8 and Figures 4-6, 4-7, and

4-8.

Table 4-6

RMSE Comparison of Multiple Linear Regression and Neural Network Models for Math

Score Prediction with Synthetic Noise

Model 0
Mising
Inputs

10
Missing
Inputs

15
Mising
Inputs

20
Missing
Inputs

25
Missing
Inputs

Multiple Linear Regression RMSE 0.08129 0.10062 0.08191 0.08137 0.08649
Neural Network RMSE 0.07351 0.07553 0.07624 0.08172 0.09606

Figure 4-6. RMSE comparison of math score prediction

58

Table 4-7

d1 Comparison of Multiple Linear Regression and Neural Network Models for Math

Score Prediction with Synthetic Noise

Model 0
Mising
Inputs

10
Missing
Inputs

15
Mising
Inputs

20
Missing
Inputs

25
Missing
Inputs

Multiple Linear Regression d1 0.51019 0.44535 0.48406 0.46737 0.43895
Neural Network d1 0.50250 0.50456 0.51160 0.50165 0.45765

Figure 4-7. d1 comparison of math score prediction

59

Table 4-8

d2 Comparison of Multiple Linear Regression and Neural Network Models for Math

Score Prediction with Synthetic Noise

Model 0
Mising
Inputs

10
Missing
Inputs

15
Mising
Inputs

20
Missing
Inputs

25
Missing
Inputs

Multiple Linear Regression d2 0.69804 0.62124 0.67066 0.65278 0.61710
Neural Network d2 0.71164 0.70684 0.71357 0.69115 0.63791

Figure 4-8. d2 comparison of math score prediction

60

Summary

In terms of model performance the regression equation performed better on the

training data, although this was not strictly unexpected. In the case of regression, the

equation was the best possible fit for the training data. The neural network, however,

avoided over fitting the training data by balancing the fit of the training data with the fit

of a small set of cases reserved from the training data. Had the neural network been

permitted to fit the training data as tightly as possible the total error could have been

reduced to, or near, zero.

Comparison of the cross-validation data showed virtually no difference in

performance between the two models. When noise was introduced to the cross-validation

data, however, some differences did begin to emerge. Visually, the neural network

appeared to slightly outperform the regression equations for both the math and reading

scores. The differences, though, were only statistically significant for the d1 and d2

measures for the math scores.

61

CHAPTER 5

SUMMARY AND RECOMMENDATIONS

Introduction

As stated in Chapter 1, assessing student performance has been a common goal of

those involved in the education enterprise. Through more accurate modeling, leading to

more accurate predictions, educators and administrators may be able to glimpse a short

distance into the future and identify students who are at risk, permitting earlier

intervention in the hope of increasing the overall success rate of a given student

population.

At present, however, modeling and prediction are commonly accomplished

through a variety of tools such as analysis of variance, regression, and correlation. These

methods, while very well understood, require a hypothesis that describes the

interrelationships between the variables being studied. Consequently, studies often focus

on small sets of variables in order to make the model understandable and the mathematics

manageable.

Neural networks provide an alternate modeling tool that can be employed with

complex data sets having no suitable hypothesis; or, as a means to arrive at a hypothesis

by exploring a complex pool of data to learn what inferences might be drawn. Inspired by

the biological processes that describe the function of real neurons and synapses, neural

networks are able to learn from the data, infer the model from examples and then make

predictions about never-before-seen cases.

62

The purpose of this study then, was to compare the performance of neural

network modeling to that of multiple linear regression. These comparisons were drawn

from a large pool of data collected by the National Center for Educational Statistics,

using three measures of fit; root mean square error (RMSE) and Wilmot’s indices of

agreement, d1 and d2.

Summary of Procedures

For the purposes of modeling, data collected by the National Center for

Educational Statistics, Educational Longitudinal Study: 2002 (ELS: 2002) was used to

supply 103 independent non-curricular variables, and two dependent math and reading

score variables.

Since this study focused on the performance of two modeling strategies, data that

were already described in the literature as related, were chosen rather than discovering

the theoretical foundation of the model. Specifically, the categories of non-curricular

variables chosen from the ELS: 2002 were proved to be related to student achievement in

several studies (Green, et all 1995; Ladd and Birch, 1997; Osterman, 2000; Ingels, et al.,

2005).

Three pieces of software were developed to clean the data, perform the dummy

coding required of the nominal and ordinal variables, perform case selection, execute the

linear regression model, and train and execute the neural network model. The source code

for these applications, shown in appendices B thru E. SPSS, was used to perform the

linear regression and generate the regression coefficients for the math and reading score

predictor equations.

63

The case selection process resulted in a set of cases to be used for training and

another set to be used for cross-validation. The training data were used to develop

regression equations for the math and reading scores as well as to train the neural

network model. Once the regression coefficients had been determined and the neural

network trained, the cross-validation cases were used to compare predictions made by

linear regression and the neural network.

Summary of Findings

It was expected, based on other studies of neural network modeling, that the

neural network would provide measurable improvements over regression analysis. This,

however, was not the case. In a direct comparison of the neural network to multiple linear

regression, the performance of the two models was virtually identical. The neural

network had slightly lower RMSE values, where lower values demonstrate a better fit,

with values of 0.07351 vs. 0.08129 for math scores and 0.07535 vs. 0.08218 for reading

scores. Linear regression, however, had slightly higher d1 and d2 values for reading,

where higher values demonstrate a better fit, with values of 0.50927 and 0.70343 vs.

0.50066 and 0.70230. For math scores, linear regression had a higher d1 value 0.51019

vs. 0.50250 while the neural network had a higher d2 value, 0.71164 vs. 0.69804.

A second comparison that introduced synthetic noise into the cross-validation

data, however, did reveal that the neural network was somewhat more resistant to

degradation when faced with noisy data. As the cross-validation was performed with

progressively noisier data the neural network maintained lower overall RMSE values and

64

higher overall d1 and d2 values. This advantage, however, was only statistically

significant for math score prediction and only for the d1 and d2 measures of fitness.

These results are somewhat surprising given the results of other neural network

studies. For instance, in Xuefeng’s study of auction price prediction that compared linear

regression to a three-layer, feed-forward, back-propagation neural network similar in

topology to the neural network employed in this study, the results indicated that the

neural network achieved 91.29% accuracy compared to 76.46% accuracy for regression

(Xuefeng, 2006). Sahoo’s study of flash flooding and water quality that employed a

similar neural network but with two hidden layers, achieved RMSE values near zero

(Sahoo, 2006). And, in another study by Naik and Ragothaman of neural network

prediction involving the success of MBA students, when neural network modeling was

compared to the Logit and Probit models, results showed that the neural network

achieved 89.13% accuracy while Logit and Probit achieved 72.83% and 73.37%

respectively.

Given the results of these studies it was expected that the neural network would

show more pronounced improvement over linear regression in predicting math and

reading scores in this study. The difference between this study’s result and that of other

studies suggests the need to explore the differences between the previously mentioned

models and the model in this study.

Perhaps the most significant difference involved the nature of the independent

variables. In each of the previously mentioned studies, the independent variables were

entirely, or mostly, scalar values. The independent variables for this study, however, were

all nominal or ordinal. In order to present nominal and ordinal values to the neural

65

network the values were artificially scaled to the range [0.2, 0.8] as discussed in chapter

3. Alternatively, dummy coding could also have been used for the input layer of the

neural network but that would have increased the number of input neurons from 103 to

nearly 500 with a related increase in the size of the hidden layer. A neural network of that

size would require significantly longer to train and, according to neural network rules of

thumb, violate the need for 10 times the number of training cases as input neurons.

Two smaller differences were also present related to network topology and the

nature of the dependent variables. The Sahoo (2006) study involved a four layer neural

network having one input layer, two hidden layers, and one output layer. By contrast, the

neural network model in this study was the more familiar three-layer topology with an

input layer, hidden layer, and output layer. Naik’s study involved a discrete, rather than

continuous dependent variable. Naik’s neural network classified MBA candidates as

either “successful” or “marginal” while the neural network in this work predicted reading

and math scores as continuous values ranging from [0.0, 1.0].

One additional benefit demonstrated by the neural network, however, was the

neural network’s ability to predict multiple dependent variables simultaneously. In order

to predict both math and reading scores, two regression equations were developed: one

for each dependent variable. In the case of the neural network, though, a single network

was able to predict both scores simultaneously.

Research Implications

The results of this study suggest that neural networks can be at least as good as

linear regression in developing predictive models and suffer less from degradation in the

66

face of noisy data. As such, neural networks deserve further study in the field of

educational modeling and should be considered as tool in that regard. Neural networks

may provide avenues to more complex studies involving subtle or unknown relationships

that then direct researchers to other methods of study on more narrow bands of data.

Neural networks also demonstrate remarkable flexibility. Researchers have the

ability to shape the input data by transforming it from one representation to another as

needed by the input layer. Studies may also investigate a variety of network topologies in

seeking the most appropriate modeling architecture for a given problem.

Furthermore, the initial investment in training a neural network is not lost when a

model is used to make predictions. If the accuracy of the network begins to decrease over

time, small re-training sessions with new data can realign the existing model without the

need for the full training that was done initially.

Neural networks also have the ability to predict multiple dependent variables with

a single network. In this study, math and reading scores were predicted simultaneously

with a single neural network. In terms of data manipulation this has the potential to

reduce the burden on researchers in terms of the number of instruments that must be

managed.

Limitations of the Research

This study employed a single neural network model, and thus the results are

applicable only to three-layer, feed-forward, back-propagation networks using the

sigmoid transfer function in the hidden and output layers. Other network topologies

utilizing a different number of layers and/or different transfer functions may perform

67

differently. Alternate schemes for encoding the independent variables for presentation to

the input layer may also affect the performance of the network.

Finally, the results of this study are only representative of this data set. Therefore,

the results may be generalizable to data gathered from other 10th graders in public, private

and Catholic schools, but it is unknown if the results would be the same for data from

students in other grades or other types of institutions.

Future Research

Given the virtually identical performance of both models in this study, and the

resistance to degradation shown by the neural network when presented with noisy data, it

would be of value to compare model performance when training with imperfect data.

Recall that during the case selection process, any cases with invalid or missing values

were discarded. This resulted in training data that was free from noise. This perfect

training data was then used to develop the regression equations and train the neural

network.

Noisy or imperfect data, however, is more the norm than the exception in typical

field research. Noisy data are often handled through various imputation processes to fill

in the blanks. If neural networks could be shown to accurately model noisy data

researchers would have a powerful new tool that did not require the present data

imputation techniques.

In the near future this study could be repeated using the same data, software, and

procedures with a single modification in the case selection process: selecting from the

entire sample population and not just the cases that were free from noise. This would

68

result in training data and cross-validation data that contained noisy samples. The

comparisons in this study would then demonstrate whether or not neural networks have

any advantage over linear regression when starting with imperfect data.

What’s more, it would be of value to study what characteristics, if any, of a given

set of data lend themselves to neural network modeling. For instance, future researchers

could perform correlations between the independent and dependent variables and then

test neural network modeling to see if higher correlation values imply that the data are

better suited to neural network modeling. The converse may also be interesting if future

research found that neural networks were able to model un-correlated data.

Future research might also explore neural networks that dummy code nominal and

ordinal input data as opposed to converting such data to a scalar format. This necessarily

expands the size of the input layer and places additional burdens on the training data, but

it would be valuable to explore what impact, if any, dummy coding has on neural

network performance.

Clearly, neural network modeling shows promise in the areas of modeling and

prediction. Additional study is needed, however, to understand its full utility in

educational research and the circumstances under which neural network modeling is most

effective. It is possible that such research could lead to pre-configured modeling software

specifically for educational researchers to further enhance their ability to understand the

complex landscape of the teaching and learning enterprise.

69

References

Baker, B. D., & Richards, C. E. (1999). A Comparison of Conventional Linear

Regression Methods and Neural Networks for Forecasting Educational Spending.

Economics of Education Review, 18, 405-415.

Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive

Theory. Englewood Cliffs, NJ: Prentice Hall.

Bandura, A. (1997). Self-Efficacy: The Exercise of Control. New York: W.H. Freeman

and Co.

Blum, A. (1992). Neural Networks in C++. Wiley.

Boger, Z., Kuflik, T., Shoval, P., & Shapira, B. (2000). Automatic Keyword

Identification by Artificial Neural Networks Compared to Manual Identification

by Users of Filtering Systems. Information Processing and Management, 37(2),

187-198.

Bridglall, B. L. & Gordon, E. W. (2003). Raising Minority Academic Achievement: The

Department of Defense Model (Report No. EDO-UD-03-8). Washington D. C.:

Department of Education. (ERIC Number ED480919).

70

Chen, C., Campbell, V. C., & Suleiman, A. (2001). Predicting Student Performance at a

Minority Professional School. Paper presented at the Annual Meeting of the

Association for Institutional Research, Long Beach, CA.

Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences. New York:

Academic Press.

Crawford, L., Tindal, G., & Stieber, S. (2001). Using Oral Reading Rate to Predict

Student Performance on Statewide Assessment Tests. Educational Assessment, 7,

303-323.

Comrie, A. C. (1997). Comparing Neural Networks and Regression Models for Ozone

Forecasting. Journal of Air & Waste Management Association, 47, 653-663.

Gonzalez, J. M. B. & DesJardins, S. L. (2001). Artifical Neural Networks: A New

Approach to Predicting Application Behavior. AIR 2001 Annual Forum Paper.

Paper presented at the Annual Forum for the Association for Institutional

Research, Long Beach. CA.

Gonzalez, J. M. B. & DesJardins, S. L. (2002). Artifical Neural Networks: A New

Approach to Predicting Application Behavior. Research in Higher Education, 43,

235-258.

71

Green, P.J., Dugoni, B.L., Ingels, S.J., and Camburn, E. (1995). A Profile of the

American High School Senior in 1992 (NCES 95–384). U.S. Department of

Education, National Center for Education Statistics. Washington, DC: U.S.

Government Printing Office.

Hammouri, H.A.M. (2004). Attitudinal and motivational variables related to mathematics

achievement in Jordan: Findings from the Third International Mathematics and

Science Study. Educational Research, 46, 214-257.

Holbrook, R. G. (2003). Impact of selected non-curricular variables on regular education

student achievement as measured by the 2001-2002 reading and mathematics

PSSA scores. Dissertation Abstracts International, 64(12), 4289A. (UMI No.

3116331)

Hoefer, P., & Gould, J. (2000). Assessment of Admission Criteria for Predicting

Students’ Academic Performance in Graduate Business Programs. Journal of

Education for Business, 75, 225-229.

House, D. J., & Keeley, E. J. (1993). Differential Prediction of Graduate Student

Achievement from Miller Analogies Test Scores. Paper presented at the Annual

Meeting of the Illinois Association for Institutional Research, Oakbrook, IL.

72

Ince, H., & Trafalis, T. B. (2005). A Hybrid Model for Exchange Rate Prediction.

Decision Support Systems, 42, 1054-1062.

Ingels, S. J., Chen, X., and Owings, J. A. (2005). A Profile of the American Highschool

Sophomore in 2002 (NCES 2005-338). U.S. Department of Education. National

Center for Education Statistics. Washington, DC: U.S. Government Printing

Office.

Ladd, G.W., and Birch, S.H. (1997). The Teacher-Child Relationship and Children’s

Early School Adjustment. Journal of School Psychology, 35(1), 61–79.

Lafee, S. (2002). Data-Driven Districts. School Administrator, 59(11), 6-7, 9-10, 12, 14-

15.

Lashway, L. (2002). Data Analysis for School Improvement. Research Roundup, 19(2),

1-4.

Luan, J. (2002, June). Data Mining and Knowledge Management in Higher Education –

Potential Applications. Paper presented at the Annual Forum for the Association

for Institutional Research, Toronto, Ontario, Canada.

Mandelbrot, B. B., & Hudson, R. L. (2004). The (mis)Behavior of Markets. New York:

Basic Books.

73

Mandic, D. P., & Chambers, J. A. (2001). Recurrent Neural Networks for Prediction.

New York: Wiley.

Martynenko, A. I., & Yang, S. X. (2006). Biologically Inspired Neural Computation for

Gunseng Drying Rate. Biosystems Engineering, 95, 385-396.

Murat, Y. S., & Ceylan, H. (2006). Use of Artificial Neural Networks for Transport

Energy Demand Modeling. Energy Policy, 34, 3165-3172.

Naik, B., & Ragothaman, S. (2004). Using Neural Networks to Predict MBA Student

Success. College Student Journal, 38(1), 143-149.

Odom, M.D., & Sharda, R. (1990). A Neural Network for Banruptcy Prediction. Paper

presented at the1990 IJCNN International Joint Conference on Neural Networks,

San Diego, CA.

Osterman, K. F. (2000). Students’ Need for Belonging in the School Community. Review

of Educational Research, 70, 323–367.

Pajares, F., & Graham, L. (1999). Self-efficacy, motivation constructs, and mathematics

performance of entering middle school students. Contemporary Educational

Psychology, 24, 124-139.

74

Pintrich, P.R. & De Groot E. (1990). Motivational and self-regulated learning

components of classroom academic performance. Journal of Educational

Psychology, 82(1), pp. 33-50.

Reed, R. D., & Marks, R. J, II. (1999). Neural Smithing: Supervised Learning in

Feedforward Artifical Neural Networks. Cambridge: The MIT Press.

Russell, U., & Zhang, S. (2006). The Role of Demographic Factors in Predicting Student

Performance on a State Reading Test. Paper presented at the Annual Meeting of

the American Edicational Research Association, San Francisco, CA.

Saad, E. W., Prokhorov, D. V., & Wunsch, D. C. II. (1998). Comparative Study of Stock

Trend Prediction Using Time Delay, Recurrent and Probabilistic Neural

Networks. IEEE Transactions on Neural Networks, 9, 1456-1470.

Sahoo, G. B., Ray, C., & De Carlo, E. H. (2006). Use of Neural Network to Predict Flash

Flood and Attendant Water Qualities of a Mountainous Stream on Oahu, Hawaii.

Journal of Hydrology, 327, 525-538.

Satinover, S. (2001). The Quantum Brain. New York: Wiley.

75

Skidmore, R. L. (2003). Predicting Final Examination Grades in a Self-Paced

Introductory Psychology Course: The Role of Motivational Orientation, Learning

Strategies, Procrastination, and Perception of Daily Hassles. Paper presented at

the Annual Meeting of the Mid-South Educational Research Association, Biloxi,

MS.

Streifer, P. A., & Shumann, J. A. (2005) Using Data Mining to Identify Actional

Information: Breaking New Group in Data-Driven Decision Making. Journal of

Education for Students Placed At Risk, 10, 281-293.

Snyder, R. M. (1996). Neural Networks for the Beginner. Paper presented at the

Association for Small Computer Users in Education, Myrtle Beach, SC.

Tell, C. A., & McDonald, D. (2003). The First Year: Students’ Performance on 10th

Grade Standards and Subsequent Performance in the First Year of College

(2001-02). Paper presented at the Annual Meeting of the Association for the

Student of Higher Education, Portland, OR.

Tokar, A. S., & Johnson, P. A. (1999). Rainfall-Runoff Modeling Using Artificial Neural

Networks. Journal of Hydrological Engineering, 4, 232-239.

Xuefeng, L., Lu, L., Lihua, W., & Zhang, Z. (2006). Predicting the Final Prices of Online

Auction Items. Expert Systems with Applications, 31, 542-550.

76

Yi, P. J. (1996). A Neural Network Model Forecasting for Prediction of Daily Maximum

Ozone Concentrations in an Industrialized Urban Area. Environmental Pollution,

92, 349-357.

77

APPENDIX A

Inventory of Variables

78

Table A-1

Independent Variable Inventory

Variable Description

BYFCOMP A nominal measure of the family
configuration with values (1) mother
and father, (2) mother and male
guardian, (3) father and guardian, (4)
two guardians, (5) mother only, (6)
father only, (7) female guardian only,
(8) male guardian only, and (9) parent
or guardian lives with student less
than ½ time.

FATHED A nominal measure of the father’s
highest level of education with values
(1) did not finish high school, (2)
graduated from high school, (3)
attended 2-year school, no degree, (4)
graduated from 2-year school,
(5) attended college, no 4-year degree,
(6) graduated from college, (7)
completed master’s degree, and (8)
completed PhD, MD, or other
advanced degree.

MOTHED A nominal measure of the mother’s
highest level of education with the
same possible values as FATHED.

PARED A nominal measure similar to
FATHED and MOTHED reporting
the highest level of education attained
by either parent.

SES1QU An ordinal measure of the student’s
socioeconomic status as classified in
one of four quartiles with values (1)
lowest quartile, (2) second quartile,
(3) third quartile, and (4) highest
quartile.

79

Table A-1 (continued).

STEXPECT

An ordinal measure of how far the
student believes they will go in school
with values (-1) don’t know, (1) less
than high school graduation, (2) high
school graduation or GED, (3) attend
and/or complete 2-year college/school,
(4) attend college, 4-year degree
incomplete, (5) graduate from college,
(6) obtain master’s degree or
equivalent, and (7) obtain PhD, MD,
or other advanced degree.

BYBASEBL An ordinal measure of the student’s
participation in interscholastic
baseball with values (1) no
interscholastic team, (2) did not
participate, (3) participated at the
junior varsity level, (4) participated at
the varsity level, and (5) participated
as varsity captain.

BYSOFTBL An ordinal measure of the student’s
participation in interscholastic softball
with values (1) no interscholastic
team, (2) did not participate, (3)
participated at the junior varsity level,
(4) participated at the varsity level,
and (5) participated as varsity captain.

BYBSKTBL An ordinal measure of the student’s
participation in interscholastic
basketball with values (1) no
interscholastic team, (2) did not
participate, (3) participated at the
junior varsity level, (4) participated at
the varsity level, and (5) participated
as varsity captain.

BYFOOTBL An ordinal measure of the student’s
participation in interscholastic football
with values (1) no interscholastic
team, (2) did not participate, (3)
participated at the junior varsity level,
(4) participated at the varsity level,
and (5) participated as varsity captain.

80

Table A-1 (continued).

BYSOCCER

An ordinal measure of the student’s
participation in interscholastic soccer
with values (1) no interscholastic
team, (2) did not participate, (3)
participated at the junior varsity level,
(4) participated at the varsity level,
and (5) participated as varsity captain.

BYTEAMSP An ordinal measure of the student’s
participation in other interscholastic
team sports with values (1) no
interscholastic team, (2) did not
participate, (3) participated at the
junior varsity level, (4) participated at
the varsity level, and (5) participated
as varsity captain.

BYSOLOSP An ordinal measure of the student’s
participation in interscholastic
baseball with values (1) no
interscholastic team, (2) did not
participate, (3) participated at the
junior varsity level, (4) participated at
the varsity level, and (5) participated
as varsity captain.

BYSCTRL An ordinal measure of school control
with values (1) public, (2) catholic,
and (3) other private.

BYURBAN An ordinal measure of the school’s
locale with values (1) urban, (2)
suburban, and (3) rural.

BYREGION An ordinal measure of the schools
region with values (1) northeast, (2)
midwest, (3) south, and (4) west.

BYS20A An ordinal measure of the students’
agreement with the statement that they
get along with their teachers with
values (1) strongly agree, (2) agree,
(3) disagree, and (4) strongly disagree.

BYS20B An ordinal measure of the students’
agreement with the statement that
there is school spirit with values (1)
strongly agree, (2) agree, (3) disagree,
and (4) strongly disagree.

81

Table A-1 (continued).

BYS20C

An ordinal measure of the students’
agreement with the statement that they
are friendly with other racial groups
with values (1) strongly agree, (2)
agree, (3) disagree, and (4) strongly
disagree.

BYS20E An ordinal measure of the students’
agreement with the statement that the
teaching is good with values (1)
strongly agree, (2) agree, (3) disagree,
and (4) strongly disagree.

BYS20F An ordinal measure of the students’
agreement with the statement that
teachers are interested in the students
with values (1) strongly agree, (2)
agree, (3) disagree, and (4) strongly
disagree.

BYS20G An ordinal measure of the students’
agreement with the statement that
teachers praise effort with values (1)
strongly agree, (2) agree, (3) disagree,
and (4) strongly disagree.

BYS20J An ordinal measure of the students’
agreement with the statement that they
do not feel safe at school with values
(1) strongly agree, (2) agree, (3)
disagree, and (4) strongly disagree.

BYS20M An ordinal measure of the students’
agreement with the statement that
there are gangs at school with values
(1) strongly agree, (2) agree, (3)
disagree, and (4) strongly disagree.

BYS20N An ordinal measure of the students’
agreement with the statement that
racial/ethnic groups often fight with
values (1) strongly agree, (2) agree,
(3) disagree, and (4) strongly disagree.

82

Table A-1 (continued).

BYS21A

An ordinal measure of the students’
agreement with the statement that
everyone knows the school rules with
values (1) strongly agree, (2) agree,
(3) disagree, and (4) strongly disagree.

BYS21B An ordinal measure of the students’
agreement with the statement that
school rules are fair with values (1)
strongly agree, (2) agree, (3) disagree,
and (4) strongly disagree.

BYS21C An ordinal measure of the students’
agreement with the statement that
punishment is the same no matter who
you are with values (1) strongly agree,
(2) agree, (3) disagree, and (4)
strongly disagree.

BYS21D An ordinal measure of the students’
agreement with the statement that
school rules are strictly enforced with
values (1) strongly agree, (2) agree,
(3) disagree, and (4) strongly disagree.

BYS21E An ordinal measure of the students’
agreement with the statement that
student know punishment for broken
rules with values (1) strongly agree,
(2) agree, (3) disagree, and (4)
strongly disagree.

BYS22A An ordinal measure of whether the
student had anything stolen at school
with values (1) never, (2) once or
twice, and (3) more than twice.

BYS22B An ordinal measure of whether the
student was ever offered drugs at
school with values (1) never, (2) once
or twice, and (3) more than twice.

BYS22C An ordinal measure of whether
anyone ever threatened to hurt the
student with values (1) never, (2) once
or twice, and (3) more than twice.

83

Table A-1 (continued).

BYS22D

An ordinal measure of whether the
student ever got in to a physical fight
with values (1) never, (2) once or
twice, and (3) more than twice.

BYS22E An ordinal measure of whether the
student was ever hit with values (1)
never, (2) once or twice, and (3) more
than twice.

BYS22F An ordinal measure of whether
anyone ever forced money or items
from the student with values (1) never,
(2) once or twice, and (3) more than
twice.

BYS22G An ordinal measure of whether
anyone ever damaged the student’s
belongings with values (1) never, (2)
once or twice, and (3) more than
twice.

BYS22H An ordinal measure of whether
anyone ever bullied or picked on the
student with values (1) never, (2) once
or twice, and (3) more than twice.

BYS24B A nominal measure of how many
times the student cut classes with
values (1) never, (2) 1-2 times, (3) 3-6
times, (4) 7-9 times, (5) 10 or more
times.

BYS26 An ordinal measure of the student’s
high school program with values (1)
general, (2) college
prepatory/academic, (3) vocational
including technical/business.

BYS27A An ordinal measure of the students’
agreement with the statement that
classes are interesting and challenging
with values (1) strongly agree, (2)
agree, (3) disagree, and (4) strongly
disagree.

84

Table A-1 (continued).

BYS27B

An ordinal measure of the students’
agreement with the statement that they
are satisfied by doing what is expected
in class with values (1) strongly agree,
(2) agree, (3) disagree, and (4)
strongly disagree.

BYS27C An ordinal measure of the students’
agreement with the statement that they
have nothing better to do than school
with values (1) strongly agree, (2)
agree, (3) disagree, and (4) strongly
disagree.

BYS27D An ordinal measure of the students’
agreement with the statement that
education is important to get a job
later with values (1) strongly agree,
(2) agree, (3) disagree, and (4)
strongly disagree.

BYS27E An ordinal measure of the students’
agreement with the statement that
school is a place to meet friends with
values (1) strongly agree, (2) agree,
(3) disagree, and (4) strongly disagree.

BYS27F An ordinal measure of the students’
agreement with the statement that they
attend school to play a sport or attend
a club with values (1) strongly agree,
(2) agree, (3) disagree, and (4)
strongly disagree.

BYS27G An ordinal measure of the students’
agreement with the statement that they
learn job skills in school with values
(1) strongly agree, (2) agree, (3)
disagree, and (4) strongly disagree.

BYS27H An ordinal measure of the students’
agreement with the statement that
teachers expect success in school with
values (1) strongly agree, (2) agree,
(3) disagree, and (4) strongly disagree.

85

Table A-1 (continued).

BYS27I

An ordinal measure of the students’
agreement with the statement that
parents expect success in school with
values (1) strongly agree, (2) agree,
(3) disagree, and (4) strongly disagree.

BYS28 An ordinal measure of how much the
student likes school with values (-1)
don’t know, (1) not at all, (2)
somewhat, (3) a great deal.

BYS34A A nominal measure of how many
hours/week the student spent on
homework in school with values (-1)
don’t know, (0) 0 hours, (1) 1 hour,
(2) 2 hours, (3) 3 hours, (4) 4 hours,
(5) 5 hours, (6) 6 hours, (7) 7 hours,
(8) 8 hours, (9) 9 hours, (10) 10 hours,
(11) 11 hours, (12) 12 hours, (13) 13
hours, (14) 14 hours, (15) 15 hours,
(16) 16 hours, (17) 17 hours, (18) 18
hours, (19) 19 hours, (20) 20 hours,
and (21) 21 or more hours.

BYS34B A nominal measure of how many
hours/week the student spent on
homework out of school with values
(0) 0 hours, (1) 1 hour, (2) 2 hours, (3)
3 hours, (4) 4 hours, (5) 5 hours, (6) 6
hours, (7) 7 hours, (8) 8 hours, (9) 9
hours, (10) 10 hours, (11) 11 hours,
(12) 12 hours, (13) 13 hours, (14) 14
hours, (15) 15 hours, (16) 16 hours,
(17) 17 hours, (18) 18 hours, (19) 19
hours, (20) 20 hours, (21) 21 hours,
(22) 22 hours, (23) 23 hours, (24) 24
hours, (25) 25 hours, and (26) 26 or
more hours.

86

Table A-1 (continued).

BYS35A

A nominal measure of how many
hours/week the student spent on math
homework in school with values (-1)
don’t know, (0) 0 hours, (1) 1 hour,
(2) 2 hours, (3) 3 hours, (4) 4 hours,
(5) 5 hours, (6) 6 hours, (7) 7 hours,
(8) 8 hours, (9) 9 hours, (10) 10 hours,
(11) 11 hours, (12) 12 hours, (13) 13
hours, (14) 14 hours, (15) 15 hours,
(16) 16 hours, (17) 17 hours, (18) 18
hours, (19) 19 hours, (20) 20 hours,
and (21) 21 or more hours.

BYS35B A nominal measure of how many
hours/week the student spent on math
homework out of school with values (-
1) don’t know, (0) 0 hours, (1) 1 hour,
(2) 2 hours, (3) 3 hours, (4) 4 hours,
(5) 5 hours, (6) 6 hours, (7) 7 hours,
(8) 8 hours, (9) 9 hours, (10) 10 hours,
(11) 11 hours, (12) 12 hours, (13) 13
hours, (14) 14 hours, (15) 15 hours,
(16) 16 hours, (17) 17 hours, (18) 18
hours, (19) 19 hours, (20) 20 hours,
and (21) 21 or more hours.

BYS36A A nominal measure of how many
hours/week the student spent on
English homework in school with
values (-1) don’t know, (0) 0 hours,
(1) 1 hour, (2) 2 hours, (3) 3 hours, (4)
4 hours, (5) 5 hours, (6) 6 hours, (7) 7
hours, (8) 8 hours, (9) 9 hours, (10) 10
hours, (11) 11 hours, (12) 12 hours,
(13) 13 hours, (14) 14 hours, (15) 15
hours, (16) 16 hours, (17) 17 hours,
(18) 18 hours, (19) 19 hours, (20) 20
hours, and (21) 21 or more hours.

87

Table A-1 (continued).

BYS36B

A nominal measure of how many
hours/week the student spent on
English homework out of school with
values (-1) don’t know, (0) 0 hours,
(1) 1 hour, (2) 2 hours, (3) 3 hours, (4)
4 hours, (5) 5 hours, (6) 6 hours, (7) 7
hours, (8) 8 hours, (9) 9 hours, (10) 10
hours, (11) 11 hours, (12) 12 hours,
(13) 13 hours, (14) 14 hours, (15) 15
hours, (16) 16 hours, (17) 17 hours,
(18) 18 hours, (19) 19 hours, (20) 20
hours, and (21) 21 or more hours.

BYS37 An ordinal measure of the importance
of good grades to the student with
values (1) not important, (2)
somewhat important, (3) important,
and (4) very important.

BYS38B An ordinal measure of how often the
student goes to class without books
with values (1) never, (2) seldom, (3)
often, and (4) usually.

BYS39A An ordinal measure of whether the
student played intramural baseball
with values (1) school doesn’t have
team, (2) no, and (3) yes.

BYS39B An ordinal measure of whether the
student played intramural softball with
values (1) school doesn’t have team,
(2) no, and (3) yes.

BYS39C An ordinal measure of whether the
student played intramural basketball
with values (1) school doesn’t have
team, (2) no, and (3) yes.

BYS39D An ordinal measure of whether the
student played intramural football
with values (1) school doesn’t have
team, (2) no, and (3) yes.

BYS39E An ordinal measure of whether the
student played intramural soccer with
values (1) school doesn’t have team,
(2) no, and (3) yes.

88

Table A-1 (continued).

BYS39F

An ordinal measure of whether the
student played another intramural
team sport with values (1) school
doesn’t have team, (2) no, and (3) yes.

BYS39G An ordinal measure of whether the
student played an individual
intramural sport with values (1) school
doesn’t have team, (2) no, and (3) yes.

BYS39H An ordinal measure of whether the
student participated on an intramural
cheerleading/drill team with values (1)
school doesn’t have team, (2) no, and
(3) yes.

BYS41A An ordinal measure of whether the
student participated in band or chorus
with values (-1) don’t know, (1) no,
and (2) yes.

BYS41B An ordinal measure of whether the
student participated in a school play or
musical with values (1) no and (2)
yes.

BYS41C An ordinal measure of whether the
student participated in student
government with values (1) no and (2)
yes.

BYS41D An ordinal measure of whether the
student participated in an academic
honor society with values (1) no and
(2) yes.

BYS41E An ordinal measure of whether the
student participated in the school
yearbook or newspaper with values
(1) no and (2) yes.

BYS41F An ordinal measure of whether the
student participated in school service
clubs with values (-1) don’t know, (1)
no, and (2) yes.

BYS41G An ordinal measure of whether the
student participated in school
academic clubs with values (-1) don’t
know, (1) no, and (2) yes.

89

Table A-1 (continued).

BYS41H

An ordinal measure of whether the
student participated in school hobby
clubs with values (-1) don’t know, (1)
no, and (2) yes.

BYS41I An ordinal measure of whether the
student participated in school
vocational clubs with values (-1) don’t
know, (1) no, and (2) yes.

BYS42 A nominal measure of the hours/week
the student spent on extracurricular
activities with values (-1) don’t know,
(0) 0 hours, (1) 1 hour, (2) 2 hours, (3)
3 hours, (4) 4 hours, (5) 5 hours, (6) 6
hours, (7) 7 hours, (8) 8 hours, (9) 9
hours, (10) 10 hours, (11) 11 hours,
(12) 12 hours, (13) 13 hours, (14) 14
hours, (15) 15 hours, (16) 16 hours,
(17) 17 hours, (18) 18 hours, (19) 19
hours, (20) 20 hours, and (21) 21 or
more hours.

BYS43 A nominal measure of the hours/week
the student spent reading outside of
school with values (-1) don’t know,
(0) 0 hours, (1) 1 hour, (2) 2 hours, (3)
3 hours, (4) 4 hours, (5) 5 hours, (6) 6
hours, (7) 7 hours, (8) 8 hours, (9) 9
hours, (10) 10 hours, (11) 11 hours,
(12) 12 hours, (13) 13 hours, (14) 14
hours, (15) 15 hours, (16) 16 hours,
(17) 17 hours, (18) 18 hours, (19) 19
hours, (20) 20 hours, and (21) 21 or
more hours.

BYS45A An ordinal measure of how often the
student uses computer for fun with
values (1) never, (2) rarely, (3) less
than once a week, (4) once or twice a
week, and (5) everyday or almost
everyday.

90

Table A-1 (continued).

BYS45B

An ordinal measure of how often the
student uses computer for school work
with values (1) never, (2) rarely, (3)
less than once a week, (4) once or
twice a week, and (5) everyday or
almost everyday.

BYS45C An ordinal measure of how often the
student uses computer to learn on his
own with values (1) never, (2) rarely,
(3) less than once a week, (4) once or
twice a week, and (5) everyday or
almost everyday.

BYS46A A nominal measure of how many
hours/day the student uses a computer
for school work with values (0) 0
hours, (1) 1 hour, (2) 2 hours, (3) 3
hours, (4) 4 hours, (5) 5 hours, and (6)
6 or more hours.

BYS46B A nominal measure of how many
hours/day the student uses a computer
for things other than school work with
values (0) 0 hours, (1) 1 hour, (2) 2
hours, (3) 3 hours, (4) 4 hours, (5) 5
hours, and (6) 6 or more hours.

BYS54A An ordinal measure of how important
being successful at work is to the
student with values (1) not important,
(2) somewhat important, and (3) very
important.

BYS54B An ordinal measure of how important
marrying the right person/having a
happy family is to the student with
values (-1) don’t know, (1) not
important, (2) somewhat important,
and (3) very important.

BYS54C An ordinal measure of how important
having lots of money is to the student
with values (-1) don’t know, (1) not
important, (2) somewhat important,
and (3) very important.

91

Table A-1 (continued).

BYS54D

An ordinal measure of how important
having strong friendships is to the
student with values (1) not important,
(2) somewhat important, and (3) very
important.

BYS54E An ordinal measure of how important
being able to find steady work is to
the student with values (-1) don’t
know, (1) not important, (2) somewhat
important, and (3) very important.

BYS54F An ordinal measure of how important
helping others in the community is to
the student with values (1) not
important, (2) somewhat important,
and (3) very important.

BYS54G An ordinal measure of how important
giving children better opportunities is
to the student with values (1) not
important, (2) somewhat important,
and (3) very important.

BYS54H An ordinal measure of how important
living close to parents/relatives is to
the student with values (1) not
important, (2) somewhat important,
and (3) very important.

BYS54I An ordinal measure of how important
getting away from this area is to the
student with values (-1) don’t know,
(1) not important, (2) somewhat
important, and (3) very important.

BYS54J An ordinal measure of how important
working to correct inequalities is to
the student with values (-1) don’t
know, (1) not important, (2) somewhat
important, and (3) very important.

BYS54K An ordinal measure of how important
having children is to the student with
values (-1) don’t know, (1) not
important, (2) somewhat important,
and (3) very important.

92

Table A-1 (continued).

BYS54L

An ordinal measure of how important
having leisure time is to the student
with values (-1) don’t know, (1) not
important, (2) somewhat important,
and (3) very important.

BYS54N An ordinal measure of how important
being an expert in a field of work is to
the student with values (-1) don’t
know, (1) not important, (2) somewhat
important, and (3) very important.

BYS54O An ordinal measure of how important
getting a good education is to the
student with values (1) not important,
(2) somewhat important, and (3) very
important.

BYS57 An ordinal measure of the student’s
plan to continue education after high
school with values (-1) don’t know,
(1) yes, right after high school, (2)
yes, after being out of high school 1
year, (3) yes, after being out of high
school more than 1 year, (4) yes, but
don’t know when, and (5) no, don’t
plan to continue education.

BYS60 An ordinal measure of whether the
student want to play athletics in
college with values (0) no and (1) yes.

BYS61 An ordinal measure of whether the
student hopes to receive an athletic
scholarship for college with values (0)
no and (1) yes.

BYS66A An ordinal measure of the mother’s
desire for the 10th grader after high
school with values (-1) don’t know,
(1) go to college, (2) get a full-time
job, (3) enter trade school or
apprenticeship, (4) enter military
service, (5) get married, and (6)
whatever the student wants to do.

93

Table A-1 (continued).

BYS66B

An ordinal measure of the father’s
desire for the 10th grader after high
school with values (-1) don’t know,
(1) go to college, (2) get a full-time
job, (3) enter trade school or
apprenticeship, (4) enter military
service, (5) get married, and (6)
whatever the student wants to do.

BYS66F An ordinal measure of the favorite
teacher’s desire for the 10th grader
after high school with values (-1)
don’t know, (1) go to college, (2) get a
full-time job, (3) enter trade school or
apprenticeship, (4) enter military
service, (5) get married, and (6)
whatever the student wants to do.

BYS72 An ordinal measure of whether the
student ever worked for pay not
around the house with values (1) no,
(2) yes, currently employed, and (3)
yes, not currently employed.

94

APPENDIX B

Case Selection Source Listing

95

import java.util.ArrayList;
import java.util.Random;
import java.io.*;

/**
 * This program selects cases from the total population of 15,362 cases to create
 * a 10% (N=1536) sample for training purposes, to train the neural net as well as
 * to perform the linear regression, and a 10% (N=1536) sample to test the accuracy
 * of the neural net and the linear regression equation.
 *
 * This program also removes all cases with missing data so that the selection is
 * made from cases with no missing values. This may result in training and test
 * populations less than N=1536
 *
 * Note: After cleaning the data, 3,068 cases remain so the total number of cases in
 * each 10% sample is actually 1,534
 *
 */
public class CaseSelector {

 private static int[][]inputFeatures = new int[103][];
 private static String[] inputNames = new String[103];
 private static ArrayList dummyFreqs;
 private static int dummyCount = 0;
 private static int categoryCount = 0;

 private static ArrayList inputCases = new ArrayList();
 private static int[][] dummyCoding;
 private static int[][] NNCoding;
 private static String[] mathTargets;
 private static String[] readingTargets;

 //The position of the reading score in the input data
 private static int READING_SCORE_INDEX = 8;
 //The position of the math score in the input data
 private static int MATH_SCORE_INDEX = 7;

 // Used to randomly select input variables to code as "missing" to generate
 // noisy test files.
 private static int[] noise = new int[0];

 public static void main(String[] args) {

 // Initialize the input features
 setupInputFeatures();

 // Determine the total number of Dummy Variables
 for (int i=0;i<inputFeatures.length;i++) {
 dummyCount+=inputFeatures[i].length-1; // The total number of dummy vars
 categoryCount += inputFeatures[i].length; // The total number of categories
 }
 System.out.println("Total number of Dummy Variables = "+dummyCount);

 loadInputCases("ELS2002_RawDataSet.dat");

 // Perform dummy coding of input cases into the dummyCoding array
 dummyCoding = new int[inputCases.size()][dummyCount];
 NNCoding = new int[inputCases.size()][inputFeatures.length];
 mathTargets = new String[inputCases.size()];
 readingTargets = new String[inputCases.size()];
 performDummyCoding();

 // Now create the dummyFreqs array to determine which case #'s have 1
 // for each of the dummy variables. dummyFreqs if an ArrayList that contains
 // ArrayLists. The dummyFreqs ArrayList indexes all of the dummy variables.
 // The inner ArrayLists each contain a list of the case #'s that have a 1 for
 // that Dummy Variable.
 performDummyFrequencies();

 // Now peform the case selection.
 // This will return a 2 dimensional array representing two lists of case #'s

96

 int [][] selectedCases = performCaseSelection();

 // Now check to ensure we didn't select any duplicates
 if (!performCrossCheck(selectedCases)) {
 System.out.println("Error during cross check - duplicates found.");
 System.exit(-1);
 } else {
 System.out.println("Cross check OK");
 }

 //Finally, write out 4 files. Two containing the dummy coded training cases and
 //dummy coded test cases and two containing NN coded training and test cases
 writeOutputFile("ELS2002_DummyCoded_Training.txt", selectedCases[0]);
 writeNNOutputFile("ELS2002_NNCoded_Training.txt", selectedCases[0]);
 writeOutputFile("ELS2002_DummyCoded_Test.txt", selectedCases[1]);
 writeNNOutputFile("ELS2002_NNCoded_Test.txt", selectedCases[1]);

 // Now, generate progressively more and more noise, and write out
 // dummy coded and NN coded files with more and more variables flagged as missing
 noise = generateNoise(noise,10); // 10 input vars
 performDummyCoding();
 writeOutputFile("ELS2002_DummyCoded_Test_Noise_"+noise.length+".txt",
 selectedCases[1]);
 writeNNOutputFile("ELS2002_NNCoded_Test_Noise_"+noise.length+".txt",
 selectedCases[1]);
 writeNoisyVariableInventory("ELS2002_NoisyVariables_"+noise.length+".txt");

 noise = generateNoise(noise,5); // 15 input vars
 performDummyCoding();
 writeOutputFile("ELS2002_DummyCoded_Test_Noise_"+noise.length+".txt",
 selectedCases[1]);
 writeNNOutputFile("ELS2002_NNCoded_Test_Noise_"+noise.length+".txt",
 selectedCases[1]);
 writeNoisyVariableInventory("ELS2002_NoisyVariables_"+noise.length+".txt");

 noise = generateNoise(noise,5); // 20 input vars
 performDummyCoding();
 writeOutputFile("ELS2002_DummyCoded_Test_Noise_"+noise.length+".txt",
 selectedCases[1]);
 writeNNOutputFile("ELS2002_NNCoded_Test_Noise_"+noise.length+".txt",
 selectedCases[1]);
 writeNoisyVariableInventory("ELS2002_NoisyVariables_"+noise.length+".txt");

 noise = generateNoise(noise,5); // 25 input vars
 performDummyCoding();
 writeOutputFile("ELS2002_DummyCoded_Test_Noise_"+noise.length+".txt",
 selectedCases[1]);
 writeNNOutputFile("ELS2002_NNCoded_Test_Noise_"+noise.length+".txt",
 selectedCases[1]);
 writeNoisyVariableInventory("ELS2002_NoisyVariables_"+noise.length+".txt");

 System.out.println("Finished");
 }

 /**
 * Writes out a text file containing the variable index and name of the variables
 * tagged as noise
 * @param path The path to the file of noisy variables
 */
 public static void writeNoisyVariableInventory(String path) {
 System.out.println("Writing Noisy Variable Inventory - "+path);
 File f = new File(path);
 try {
 FileWriter fw = new FileWriter(f);
 BufferedWriter bw = new BufferedWriter(fw);
 for (int i=0;i<noise.length;i++) {
 bw.write(noise[i]+","+inputNames[i]);
 bw.newLine();
 }
 bw.flush();

97

 bw.close();

 } catch (java.io.IOException e) {
 System.out.println("Error writing noisy variable inventory - "+
 e.getMessage());
 }

 }

 /**
 * Produces an array consisting of the entries in the <code>existingNoise</code>
 * array plus
 * <code>howMany</code> additional entries. Used to randomly select larger and larger
 * pools
 * of input variables so that we can generate noisy test files with missing entries
 * to test the robustness of the Regression Equation and the Neural Network
 *
 * @param existingNoise An array of already selected variables indexes [0,102]
 * @param howMany How many additional variables to select
 * @return A new array containing the original array plus <code>howMany</code>
 * additional variables indices
 */
 public static int[] generateNoise(int[]existingNoise, int howMany) {
 System.out.println("Selecting "+(existingNoise.length+howMany)+" ("+howMany
 +" new) input variables to flag as missing.");
 int[] newNoise = new int[existingNoise.length+howMany];
 for (int i=0;i<existingNoise.length;i++) {
 newNoise[i] = existingNoise[i];
 }
 Random random = new Random(System.currentTimeMillis()); //Initialize a pseudo-
 //random number generator
 for (int i=0;i<howMany;i++) {
 boolean ok = false;
 int variableIndex = 0;
 while (!ok) {
 ok = true; // Assume we're good, unless we picked a dupe index
 variableIndex = random.nextInt(inputFeatures.length); // Select a random
 // index into the
 // input vars
 // Check to see that we haven't already selected this one.
 for (int j=0;j<existingNoise.length+i;j++) {
 // Loop through the variable indices selected so far
 if (newNoise[j]==variableIndex) {
 // Found a dupe.
 ok = false;
 break;
 }
 }
 }
 newNoise[existingNoise.length+i] = variableIndex;
 }
 return newNoise;
 }

 /**
 * Writes an array of selected cases to an output file. The first line contains the
 * dummy variable
 * names and the remaining lines contain comma separated list of dummy coded values
 * as well as the
 * target math and reading scores, scaled to the range 0-1
 * @param path The path to the output file
 */
 public static void writeOutputFile(String path, int[] cases) {
 System.out.print("Writing output file - "+path);
 try {
 File f = new File(path);
 FileWriter fw = new FileWriter(f);
 BufferedWriter bw = new BufferedWriter(fw);
 // First write out the variable names
 bw.write("MathScore,ReadingScore");
 for (int i=0;i<inputNames.length;i++) {

98

 for (int j=0;j<inputFeatures[i].length-1;j++) { // length-1 for C-1
 // dummy coding
 bw.write(","+inputNames[i]+"_D"+(j+1));
 }
 }
 bw.newLine();
 for (int i=0;i<cases.length;i++) {
 int caseIndex = cases[i];
 String outLine = mathTargets[caseIndex]+","+readingTargets[caseIndex];
 for (int j=0;j<dummyCoding[caseIndex].length;j++) {
 outLine+=","+dummyCoding[caseIndex][j];
 }
 bw.write(outLine);
 bw.newLine();
 }
 bw.flush();
 bw.close();
 } catch (java.io.IOException e) {
 System.out.println("Error writing output file - "+e.getMessage());
 }
 System.out.println(" - "+cases.length+" cases");
 }

 /**
 * Writes an array of selected cases to an output file for use by the NN.
 * Each line contains the integer responses to the ELS2002 Survey questions
 * for the 103 variables under study
 *
 * @param path The path to the output file
 */
 public static void writeNNOutputFile(String path, int[] cases) {
 System.out.print("Writing Neural Net output file - "+path);
 try {
 File f = new File(path);
 FileWriter fw = new FileWriter(f);
 BufferedWriter bw = new BufferedWriter(fw);

 for (int i=0;i<cases.length;i++) {
 int caseIndex = cases[i];
 String outLine = mathTargets[caseIndex]+","+readingTargets[caseIndex];
 for (int j=0;j<NNCoding[caseIndex].length;j++) {
 outLine+=","+NNCoding[caseIndex][j];
 }
 bw.write(outLine);
 bw.newLine();
 }
 bw.flush();
 bw.close();
 } catch (java.io.IOException e) {
 System.out.println("Error writing output file - "+e.getMessage());
 }
 System.out.println(" - "+cases.length+" cases");
 }

 /**
 * Checks to make sure that there are no duplicates in the arrays case[0] and
 *cases[1]
 * @param cases A 2 dimensional array of selected cases.
 * @return true if there are no duplicate cases, false otherwise
 */
 public static boolean performCrossCheck(int[][] cases) {
 System.out.println("Performing cross check validation of the selected cases");
 boolean ok = true; // Assume we're fine until we find a duplicate.

 for (int i=0;i<cases[0].length;i++) {
 for (int j=0;j<cases[1].length;j++) {
 if (cases[0][i]==cases[1][j]) {
 // We found a duplicate, bail out.
 return false;
 }
 }

99

 }
 return ok;
 }

 /**
 * Generates 2 lists of case #'s. One for training the NN/Regresion Equation and one
 * for
 * testing the NN/Regression equation. See comments in the method for details on the
 * selection
 * algorithm. Essentially we want to mutually exclusive lists and we want to select
 * cases
 * that
 * will result in all dummy variables being used.
 */
 public static int[][] performCaseSelection() {
 System.out.println("Performing case selection");
 Random random = new Random(System.currentTimeMillis()); //Initialize a pseudo-
 //random number generator

 //The final selection of cases in two lists of 1536 (10%) samples
 //In actuality, after cleaning we will only have two 1534 case samples
 int[][] selectedCases = new int[2][];
 selectedCases[0]=new int[1534]; // The training data
 selectedCases[1]=new int[1534]; // The test data

 int[] tempSelectedCases = new int[2*1534]; // 20% of our population (10%
 // training, 10% test)
 int numSelectedCases = 0;

 // Keep track of which dummy's we've used in this iteration
 ArrayList usedDummyVariables = new ArrayList();
 //We need to keep going until we select 20% the total cases
 System.out.print("Cases selected so far:");
 while (numSelectedCases < (2*1534)) {
 // Select a dummy variable at random until we've selected each dummy variable
 // one, then start over.
 boolean ok = false;
 int selectedDummyVar = 0;
 while (!ok) {
 selectedDummyVar = random.nextInt(categoryCount); // Select a random in
 // from
 // 0-(categoryCount-1)
 //Assume the selected category is OK, unless we found we've used it
 ok = true;
 // Check to see if we've exhausted all possible categories. If so, clear
 // the used category arraylist and start over.
 if (usedDummyVariables.size()==categoryCount) {
 usedDummyVariables.clear();
 }
 // Did we already use this dummy variable.
 for (int i=0;i<usedDummyVariables.size();i++) {
 int dummyIdx = ((Integer)usedDummyVariables.get(i)).intValue();
 if (dummyIdx==selectedDummyVar) {
 ok = false; // Have to select another one
 break; // exit this loop;
 }
 }
 }
 // Add this selected dummy to the list of used dummy variables
 usedDummyVariables.add(new Integer(selectedDummyVar));

 // Now that we've selected the category, randomly select one of the cases
 // that has a 1 for this category. If none of the cases had a 1 for this
 // category
 // or if there are no remaining cases to choose from for this category, just
 // continue
 ArrayList dummyCases = (ArrayList)dummyFreqs.get(selectedDummyVar);
 if (dummyCases.size()>0) {
 // Randomly select one of the remaining cases
 int selectedCaseIndex = random.nextInt(dummyCases.size());
 int selectedCase =

100

 ((Integer)dummyCases.get(selectedCaseIndex)).intValue();
 tempSelectedCases[numSelectedCases] = selectedCase;
 numSelectedCases++;
 if (numSelectedCases %500==0) System.out.print(" "+numSelectedCases);
 // Now, remove this case from every array list in which it appears
 // so that we don't select this case again.
 for (int i=0;i<dummyFreqs.size();i++) {
 ArrayList cases = (ArrayList)dummyFreqs.get(i);
 for (int j=0;j<cases.size();j++) {
 int caseIndex = ((Integer)cases.get(j)).intValue();
 if (caseIndex==selectedCase) {
 cases.remove(j);
 break;
 }
 }
 }
 }

 }
 System.out.println();
 System.out.println("Selected a total of "+numSelectedCases+" cases");

 // Finally, randomly split the (2*1534) cases into 2 lists of 1534 & 1534 cases
 // respectively and return the resulting 2 dimensional array
 ArrayList selectedCasesArrayList = new ArrayList();
 // Temporarily store the 2*1534 cases in an ArrayList for easier handling
 for (int i=0;i<tempSelectedCases.length;i++) {
 selectedCasesArrayList.add(new Integer(tempSelectedCases[i]));
 }
 // Randomly select 1534 cases, removing each selected case from the array list as
 // it's added to the
 // selectedCases array. First, select the 10% training sample
 for (int i=0;i<(1534);i++) {
 int selectedCaseIndex = random.nextInt(selectedCasesArrayList.size());
 int selectedCase =
 ((Integer)selectedCasesArrayList.get(selectedCaseIndex)).intValue();
 selectedCases[0][i]=selectedCase;
 selectedCasesArrayList.remove(selectedCaseIndex);
 }
 // Now, there should be only 1534 items left in the selectedCasesArrayList, just
 // dump them into the second list of selected cases
 for (int i=0;i<1534;i++) {
 int selectedCase = ((Integer)selectedCasesArrayList.get(i)).intValue();
 selectedCases[1][i]=selectedCase;
 }

 return selectedCases;
 }

 /**
 * Determines which cases have a 1 for each dummy variable and populates an
 * ArrayList
 * representing the dummy variables with another ArrayList containing the case #'s.
 */
 public static void performDummyFrequencies() {
 System.out.println("Calculating dummay variable frequencies");
 // Create the ArrayList of ArrayLists
 dummyFreqs = new ArrayList();
 for (int i=0;i<categoryCount;i++) {
 dummyFreqs.add(new ArrayList());
 }
 // Loop over all dummycoded test cases and then loop over all values for each
 // case
 // and add this case # to each DummyFreqs ArrayList where this case has a value
 // of 1
 for (int i=0;i<dummyCoding.length;i++) {
 // For each dummy case, determine which categories are represented for each
 // input
 // variable. For categories 1-(C-1) this is easy, just check the dummy
 // variable
 // for a value of 1, for category C, though, we have to check all dummies

101

 // related to that input and see if they are all 0.
 int cMinusOneIndex = 0;
 int categoryIndex = 0;

 for (int j=0;j<inputFeatures.length;j++) { // Loop over all input features
 // (input vars)
 boolean categoryC = true; // flag that tells us if dummies 1-(C-1)
 // were all 0
 for (int k=0;k<inputFeatures[j].length-1;k++) { // Look for 1's in
 // categories
 // 1-(C-1)
 if (dummyCoding[i][cMinusOneIndex]==1) {
 categoryC = false;
 ArrayList cases = (ArrayList)dummyFreqs.get(categoryIndex);
 cases.add(new Integer(i));
 }
 cMinusOneIndex++;
 categoryIndex++;
 }
 // Now check category C, which is denoted by category dummies 1-(C-1)
 // being 0
 if (categoryC) {
 // Dummies 1-(C-1) were all 0, so it was category C
 ArrayList cases = (ArrayList)dummyFreqs.get(categoryIndex);
 cases.add(new Integer(i));
 }
 categoryIndex++; // Advance the category index
 }
 }
 }

 /**
 * Encodes the cases from ArrayList inputCases into a two dimensional
 * array dummyCoding where the 1st dimension represents the case # and the
 * 2nd dimension represents each dummy variable
 * Also extracts the math and reading scores, scales them to the range 0-1,
 * and stored them in the arrays mathTargets and readingTargets
 */
 public static void performDummyCoding() {
 System.out.println("Performing dummy coding for "+inputCases.size()+
 " input cases (Noisy inputs = "+noise.length+")");
 String noisyVars = "";
 for (int i=0;i<inputCases.size();i++) {
 noisyVars = "";
 String inputCase = (String)inputCases.get(i);
 String[] inputValues = inputCase.split("\t");
 int dummyIndex = 0;
 int inputValueIndex = 0;
 for (int j=1;j<inputValues.length;j++) { // start at j=1 to skip student id
 if (j==READING_SCORE_INDEX || j==MATH_SCORE_INDEX) {
 // Store the math and reading score values
 //in the mathTargets and readingTargets arrays

 //We're scaling the math and reading scores, which are in the range
 //0-100
 //down to the range 0-1. So, we simply extract the decimal point from
 //the score, e.g. 45.33, and put it in front, e.g. .4533
 String[] scoreParts = inputValues[j].split("\\.");
 String scaledScore = ".";
 for (int k=0;k<scoreParts.length;k++) {
 scaledScore+=scoreParts[k];
 }
 if (j==READING_SCORE_INDEX) {
 // Store the reading score target
 readingTargets[i] = scaledScore;
 } else {
 // it must be a math score
 mathTargets[i] = scaledScore;
 }
 } else {
 //Figure out which dummy variable gets the 1 and set the others to 0

102

 //If this input value is not in the list of allowable values, set
 //all dummy variables to 0
 int intValue = Integer.parseInt(inputValues[j]);

 // But check to see if we have generated any noise, and if so, if
 // this
 // input variable has been flagged as noise, mark it as missing
 // (which will code it as all 0's)
 for (int l=0;l<noise.length;l++) {
 if (noise[l]==inputValueIndex) {
 // This input var has been marked as noise, flag is as
 // missing.
 intValue = -9;
 noisyVars += inputValueIndex+" ";
 break;
 }
 }

 // Store the quantative value for use by the NN
 NNCoding[i][inputValueIndex] = intValue;

 // We dummy coding C-1 categories, so we check to see if the value
 // is one of the categories from 1 to C-1 and set that dummy to 1
 // If it's the last Category, all dummies are set to 0
 for (int k=0;k<inputFeatures[inputValueIndex].length-1;k++) {
 if (intValue==inputFeatures[inputValueIndex][k]) {
 dummyCoding[i][dummyIndex]=1;
 } else {
 dummyCoding[i][dummyIndex]=0;
 }
 dummyIndex++;
 }
 inputValueIndex++;
 }
 }
 }
 System.out.println("Noisy Variable Indicies = "+noisyVars);
 }

 /**
 * Read the full data set into a vector for processing.
 * During the load, the input variables are checked and cases that have invalid
 * inputs (missing, multiple answer, etc) are dicarded. This ensures that the
 * training and test data are pure.
 *
 * @param path The path to the full data set.
 */
 public static void loadInputCases(String path) {
 System.out.println("Loading input cases from "+path);
 try {
 File f = new File(path);
 FileReader fr = new FileReader(f);
 BufferedReader br = new BufferedReader(fr);
 String inputCase = br.readLine();
 int discardedCases = 0;
 while (inputCase!=null) {
 String[] inputValues = inputCase.split("\t");
 boolean discardCase = false; // Assume the case is OK until we find
 // otherwise
 int inputValueIndex = 0;
 for (int i=1;i<inputValues.length;i++) { // Start at 1 to skip student id
 // Skip the math & reading scores
 if (i==MATH_SCORE_INDEX || i==READING_SCORE_INDEX) continue;
 boolean missingValue = true;
 int intValue = Integer.parseInt(inputValues[i]);
 for (int j=0;j<inputFeatures[inputValueIndex].length;j++) {
 if (intValue==inputFeatures[inputValueIndex][j]) {
 missingValue = false;
 break; // Exit the loop
 }
 }

103

 if (missingValue) {
 discardCase = true;
 break; // Exit the loop
 }
 inputValueIndex++;
 }
 if (!discardCase) {
 inputCases.add(inputCase);
 } else {
 discardedCases++;
 }
 inputCase = br.readLine();
 }
 br.close();
 System.out.println("Discarded "+discardedCases+" cases");
 } catch (java.io.IOException e) {
 System.out.println("Error reading the input cases - "+e.getMessage());
 }
 }

 /**
 * Initializes the arrays containing the root names for the dummy variables
 * as well as the valid values for each dummy variable
 */
 public static void setupInputFeatures() {

 //BYFCOMP
 inputNames[0]="BYFCOMP";
 inputFeatures[0]=new int[]{1,2,3,4,5,6,7,8,9};
 //PARED
 inputNames[1]="PARED";
 inputFeatures[1]=new int[]{1,2,3,4,5,6,7,8};
 //MOTHED
 inputNames[2]="MOTHED";
 inputFeatures[2]=new int[]{1,2,3,4,5,6,7,8};
 //FATHED
 inputNames[3]="FATHED";
 inputFeatures[3]=new int[]{1,2,3,4,5,6,7,8};
 //SES1QU
 inputNames[4]="SES1QU";
 inputFeatures[4]=new int[]{1,2,3,4};
 //STEXPECT
 inputNames[5]="STEXPECT";
 inputFeatures[5]=new int[]{-1,1,2,3,4,5,6,7};
 //BYBASEBL
 inputNames[6]="BYBASEBL";
 inputFeatures[6]=new int[]{1,2,3,4,5};
 //BYSOFTBL
 inputNames[7]="BYSOFTBL";
 inputFeatures[7]=new int[]{1,2,3,4,5};
 //BYBASKTBL
 inputNames[8]="BYBASKTBL";
 inputFeatures[8]=new int[]{1,2,3,4,5};
 //BYFOOTBL
 inputNames[9]="BYFOOTBL";
 inputFeatures[9]=new int[]{1,2,3,4,5};
 //BYSOCCER
 inputNames[10]="BYSOCCER";
 inputFeatures[10]=new int[]{1,2,3,4,5};
 //BYTEAMSP
 inputNames[11]="BYTEAMSP";
 inputFeatures[11]=new int[]{1,2,3,4,5};
 //BYSOLOSP
 inputNames[12]="BYSOLOSP";
 inputFeatures[12]=new int[]{1,2,3,4,5};
 //BYSCTRL
 inputNames[13]="BYSCTRL";
 inputFeatures[13]=new int[]{1,2,3};
 //BYURBAN
 inputNames[14]="BYURBAN";
 inputFeatures[14]=new int[]{1,2,3};

104

 //BYREGION
 inputNames[15]="BYREGION";
 inputFeatures[15]=new int[]{1,2,3,4};
 //BYS20A
 inputNames[16]="BYS20A";
 inputFeatures[16]=new int[]{1,2,3,4};
 //BYS20B
 inputNames[17]="BYS20B";
 inputFeatures[17]=new int[]{1,2,3,4};
 //BYS20C
 inputNames[18]="BYS20C";
 inputFeatures[18]=new int[]{1,2,3,4};
 //BYS20E
 inputNames[19]="BYS20E";
 inputFeatures[19]=new int[]{1,2,3,4};
 //BYS20F
 inputNames[20]="BYS20F";
 inputFeatures[20]=new int[]{1,2,3,4};
 //BYS20G
 inputNames[21]="BYS20G";
 inputFeatures[21]=new int[]{1,2,3,4};
 //BYS20J
 inputNames[22]="BYS20J";
 inputFeatures[22]=new int[]{1,2,3,4};
 //BYS20M
 inputNames[23]="BYS20M";
 inputFeatures[23]=new int[]{1,2,3,4};
 //BYS20N
 inputNames[24]="BYS20N";
 inputFeatures[24]=new int[]{1,2,3,4};
 //BYS21A
 inputNames[25]="BYS21A";
 inputFeatures[25]=new int[]{1,2,3,4};
 //BYS21B
 inputNames[26]="BYS21B";
 inputFeatures[26]=new int[]{1,2,3,4};
 //BYS21C
 inputNames[27]="BYS21C";
 inputFeatures[27]=new int[]{1,2,3,4};
 //BYS21D
 inputNames[28]="BYS21D";
 inputFeatures[28]=new int[]{1,2,3,4};
 //BYS21E
 inputNames[29]="BYS21E";
 inputFeatures[29]=new int[]{1,2,3,4};
 //BYS22A
 inputNames[30]="BYS22A";
 inputFeatures[30]=new int[]{1,2,3};
 //BYS22B
 inputNames[31]="BYS22B";
 inputFeatures[31]=new int[]{1,2,3};
 //BYS22C
 inputNames[32]="BYS22C";
 inputFeatures[32]=new int[]{1,2,3};
 //BYS22D
 inputNames[33]="BYS22D";
 inputFeatures[33]=new int[]{1,2,3};
 //BYS22E
 inputNames[34]="BYS22E";
 inputFeatures[34]=new int[]{1,2,3};
 //BYS22F
 inputNames[35]="BYS22F";
 inputFeatures[35]=new int[]{1,2,3};
 //BYS22G
 inputNames[36]="BYS22G";
 inputFeatures[36]=new int[]{1,2,3};
 //BYS22H
 inputNames[37]="BYS22H";
 inputFeatures[37]=new int[]{1,2,3};
 //BYS24B
 inputNames[38]="BYS24B";

105

 inputFeatures[38]=new int[]{1,2,3,4,5};
 //BYS26
 inputNames[39]="BYS26";
 inputFeatures[39]=new int[]{1,2,3};
 //BYS27A
 inputNames[40]="BYS27A";
 inputFeatures[40]=new int[]{1,2,3,4};
 //BYS27B
 inputNames[41]="BYS27B";
 inputFeatures[41]=new int[]{1,2,3,4};
 //BYS27C
 inputNames[42]="BYS27C";
 inputFeatures[42]=new int[]{1,2,3,4};
 //BYS27D
 inputNames[43]="BYS27D";
 inputFeatures[43]=new int[]{1,2,3,4};
 //BYS27E
 inputNames[44]="BYS27E";
 inputFeatures[44]=new int[]{1,2,3,4};
 //BYS27F
 inputNames[45]="BYS27F";
 inputFeatures[45]=new int[]{1,2,3,4};
 //BYS27G
 inputNames[46]="BYS27G";
 inputFeatures[46]=new int[]{1,2,3,4};
 //BYS27H
 inputNames[47]="BYS27H";
 inputFeatures[47]=new int[]{1,2,3,4};
 //BYS27I
 inputNames[48]="BYS27I";
 inputFeatures[48]=new int[]{1,2,3,4};
 //BYS28
 inputNames[49]="BYS28";
 inputFeatures[49]=new int[]{-1,1,2,3};
 //BYS34A
 inputNames[50]="BYS34A";
 inputFeatures[50]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 //BYS34B
 inputNames[51]="BYS34B";
 inputFeatures[51]=new int[]{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
 21,22,23,24,25,26};
 //BYS35A
 inputNames[52]="BYS35A";
 inputFeatures[52]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 //BYS35B
 inputNames[53]="BYS35B";
 inputFeatures[53]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 //BYS36A
 inputNames[54]="BYS36A";
 inputFeatures[54]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 //BYS36B
 inputNames[55]="BYS36B";
 inputFeatures[55]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 //BYS37
 inputNames[56]="BYS37";
 inputFeatures[56]=new int[]{1,2,3,4};
 //BYS38B
 inputNames[57]="BYS38B";
 inputFeatures[57]=new int[]{1,2,3,4};
 //BYS39A
 inputNames[58]="BYS39A";
 inputFeatures[58]=new int[]{1,2,3};
 //BYS39B
 inputNames[59]="BYS39B";
 inputFeatures[59]=new int[]{1,2,3};
 //BYS39C

106

 inputNames[60]="BYS39C";
 inputFeatures[60]=new int[]{1,2,3};
 //BYS39D
 inputNames[61]="BYS39D";
 inputFeatures[61]=new int[]{1,2,3};
 //BYS39E
 inputNames[62]="BYS39E";
 inputFeatures[62]=new int[]{1,2,3};
 //BYS39F
 inputNames[63]="BYS39F";
 inputFeatures[63]=new int[]{1,2,3};
 //BYS39G
 inputNames[64]="BYS39G";
 inputFeatures[64]=new int[]{1,2,3};
 //BYS39H
 inputNames[65]="BYS39H";
 inputFeatures[65]=new int[]{1,2,3};
 //BYS41A
 inputNames[66]="BYS41A";
 inputFeatures[66]=new int[]{-1,0,1};
 //BYS41B
 inputNames[67]="BYS41B";
 inputFeatures[67]=new int[]{0,1};
 //BYS41C
 inputNames[68]="BYS41C";
 inputFeatures[68]=new int[]{0,1};
 //BYS41D
 inputNames[69]="BYS41D";
 inputFeatures[69]=new int[]{-1,0,1};
 //BYS41E
 inputNames[70]="BYS41E";
 inputFeatures[70]=new int[]{0,1};
 //BYS41F
 inputNames[71]="BYS41F";
 inputFeatures[71]=new int[]{-1,0,1};
 //BYS41G
 inputNames[72]="BYS41G";
 inputFeatures[72]=new int[]{-1,0,1};
 //BYS41H
 inputNames[73]="BYS41H";
 inputFeatures[73]=new int[]{-1,0,1};
 //BYS41I
 inputNames[74]="BYS41I";
 inputFeatures[74]=new int[]{-1,0,1};
 //BYS42
 inputNames[75]="BYS42";
 inputFeatures[75]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 //BYS43
 inputNames[76]="BYS43";
 inputFeatures[76]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 //BYS45A
 inputNames[77]="BYS45A";
 inputFeatures[77]=new int[]{1,2,3,4,5};
 //BYS45B
 inputNames[78]="BYS45B";
 inputFeatures[78]=new int[]{1,2,3,4,5};
 //BYS45C
 inputNames[79]="BYS45C";
 inputFeatures[79]=new int[]{1,2,3,4,5};
 //BYS46A
 inputNames[80]="BYS46A";
 inputFeatures[80]=new int[]{0,1,2,3,4,5,6};
 //BYS46B
 inputNames[81]="BYS46B";
 inputFeatures[81]=new int[]{0,1,2,3,4,5,6};
 //BYS54A
 inputNames[82]="BYS54A";
 inputFeatures[82]=new int[]{1,2,3};
 //BYS54B

107

 inputNames[83]="BYS54B";
 inputFeatures[83]=new int[]{-1,1,2,3};
 //BYS54C
 inputNames[84]="BYS54C";
 inputFeatures[84]=new int[]{-1,1,2,3};
 //BYS54D
 inputNames[85]="BYS54D";
 inputFeatures[85]=new int[]{1,2,3};
 //BYS54E
 inputNames[86]="BYS54E";
 inputFeatures[86]=new int[]{-1,1,2,3};
 //BYS54F
 inputNames[87]="BYS54F";
 inputFeatures[87]=new int[]{1,2,3};
 //BYS54G
 inputNames[88]="BYS54G";
 inputFeatures[88]=new int[]{1,2,3};
 //BYS54H
 inputNames[89]="BYS54H";
 inputFeatures[89]=new int[]{1,2,3};
 //BYS54I
 inputNames[90]="BYS54I";
 inputFeatures[90]=new int[]{-1,1,2,3};
 //BYS54J
 inputNames[91]="BYS54J";
 inputFeatures[91]=new int[]{-1,1,2,3};
 //BYS54K
 inputNames[92]="BYS54K";
 inputFeatures[92]=new int[]{-1,1,2,3};
 //BYS54L
 inputNames[93]="BYS54L";
 inputFeatures[93]=new int[]{-1,1,2,3};
 //BYS54N
 inputNames[94]="BYS54N";
 inputFeatures[94]=new int[]{-1,1,2,3};
 //BYS54O
 inputNames[95]="BYS54O";
 inputFeatures[95]=new int[]{1,2,3};
 //BYS57
 inputNames[96]="BYS57";
 inputFeatures[96]=new int[]{-1,1,2,3,4,5};
 //BYS60
 inputNames[97]="BYS60";
 inputFeatures[97]=new int[]{0,1};
 //BYS61
 inputNames[98]="BYS61";
 inputFeatures[98]=new int[]{0,1};
 //BYS66A
 inputNames[99]="BYS66A";
 inputFeatures[99]=new int[]{-1,1,2,3,4,5,6};
 //BYS66B
 inputNames[100]="BYS66B";
 inputFeatures[100]=new int[]{-1,1,2,3,4,5,6};
 //BYS66F
 inputNames[101]="BYS66F";
 inputFeatures[101]=new int[]{-1,1,2,3,4,5,6,7};
 //BYS72
 inputNames[102]="BYS72";
 inputFeatures[102]=new int[]{1,2,3};

 }
}

108

APPENDIX C

Regression Cross Validation Source Listing

109

import java.io.File;
import java.io.FileReader;
import java.io.BufferedReader;
import java.math.BigDecimal;

/**
 * This program reads Dummy Variable names and coefficients from a CSV
 * (comma separated value) file exported from Excel. The variable names and
 * coefficients are the result of running a linear regression on the ELS2002
 * training data.
 *
 */
public class CrossValidator {

 private static int[][]inputFeatures = new int[103][];
 private static String[] inputNames = new String[103];
 private static int QUANT=0; // For quantitatively coded inputs
 private static int CODED=1; // For dummy coded inputs

 private static int dummyCount = 0;
 private static int[][] inputCases;
 private static String[] inputVariableNames;
 private static double[] mathTargets = new double[1534];
 private static double[] readingTargets = new double[1534];

 private static int MATH_SCORE_INDEX = 0; // The location of the math score in the
input
 //data
 private static int READING_SCORE_INDEX = 1; // The location of the reading score in
the
 // input data

 private static double[] coefficients; // The regression coefficients
 private static String[] coefficientVariables; // The variable each coefficient
applies to

 public static void main(String[] args) {
 // Initialize the input features and dummy variable names
 setupInputFeatures();

 //Calculate the total number of dummy variables
 for (int i=0;i<inputNames.length;i++) {
 dummyCount += inputFeatures[i].length;
 }

 // Set up storage for the dummy coded input cases
 // and target values (reading and math)
 inputCases = new int[1536][dummyCount];
 inputVariableNames = new String[dummyCount];

 // Load the input cases
 loadInputData("ELS2002_DummyCoded_Test.txt");

 // Now load the coefficients for Reading
 loadCoefficients("ELS2002_ReadingCoefficients.csv");

 // Now compute the predicted value for each of the test cases
 // and compute the RMSE, d1, and d2 values
 runModel(READING_SCORE_INDEX);

 // Now load the coefficients for Math
 loadCoefficients("ELS2002_MathCoefficients.csv");

 // Now compute the predicted value for each of the test cases
 // and compute the RMSE, d1, and d2 values
 runModel(MATH_SCORE_INDEX);

 }

 /**
 * Runs all of the input cases through the regression equation

110

 * Compares the predicted value to the actual value and computes
 * RMSE and R^2 for the regression equation
 */
 public static void runModel(int whichScore) {
 System.out.print("Running the model for ");
 if (whichScore==MATH_SCORE_INDEX) {
 System.out.println("math scores");
 } else {
 System.out.println("reading scores");
 }
 // Compute the mean actual value
 double totalActual = 0;
 for (int i=0;i<inputCases.length;i++) {
 if (whichScore==MATH_SCORE_INDEX) {
 totalActual += mathTargets[i];
 } else {
 totalActual += readingTargets[i];
 }
 }
 double meanActual = totalActual/(double)inputCases.length;

 System.out.println("Mean score = "+meanActual);
 // Compute SST sum((actual-mean)^2)
 double SST = 0;
 for (int i=0;i<inputCases.length;i++) {
 double actual = 0;
 if (whichScore==MATH_SCORE_INDEX) {
 actual = mathTargets[i];
 } else {
 actual = readingTargets[i];
 }
 double diff = actual - meanActual;
 SST = SST+(diff*diff);
 }

 double d1Numerator = 0.0;
 double d1Denominator = 0.0;
 double d2Numerator = 0.0;
 double d2Denominator = 0.0;

 // Loop over all input cases
 double SSE = 0.0;
 double SSR = 0.0;
 for (int i=0;i<inputCases.length;i++) {
 double result = computePredictedValue(inputCases[i]);
 double target = 0;
 if (whichScore == MATH_SCORE_INDEX) {
 // We're running the model for math scores
 target = mathTargets[i];
 } else {
 // We're running the model for reading scores
 target = readingTargets[i];
 }

 double diff = new BigDecimal(Double.toString(target-
 result)).setScale(6,BigDecimal.ROUND_HALF_UP).doubleValue();
 SSE = new BigDecimal(Double.toString(SSE+Math.pow(diff,2))).
 setScale(6,BigDecimal.ROUND_HALF_UP).doubleValue();

 // Calculate the index of agreement numerators and denominators
 d1Numerator += Math.abs(diff); // Sum(|Ypred-Y|)
 d2Numerator += (diff*diff); // Sum((|YPred-Y|)^2)
 d1Denominator += (Math.abs(result-meanActual)+Math.abs(target-meanActual));
 d2Denominator += Math.pow((Math.abs(result-meanActual)+Math.abs(target-
 meanActual)),2);
 }
 SSR = SST-SSE;
 double RMSE = new BigDecimal(Double.toString(Math.sqrt(new
 BigDecimal(Double.toString(SSE/(double)inputCases.length)).
 setScale(6,BigDecimal.ROUND_HALF_UP).doubleValue()))).
 setScale(6,BigDecimal.ROUND_HALF_UP).doubleValue();

111

 double R2 = new BigDecimal(Double.toString(SSR/SST)).
 setScale(4,BigDecimal.ROUND_HALF_UP).doubleValue();
 System.out.println("RMSE (least squares curve fit) = "+RMSE);

 double d1 = 1.0-(d1Numerator/d1Denominator);
 double d2 = 1.0-(d2Numerator/d2Denominator);
 System.out.println("Indices of Agreement: d1="+d1+", d2="+d2);

 }

 /**
 * Takes an array of input values and computes the output of the regression
 * equeation and returns that value.
 *
 * @param values An array of input values
 * @return The predicted value of the regression equation
 */
 public static double computePredictedValue(int[] values) {
 double result = coefficients[0]; // Start with the regression constant;
 // Start at i=1 since 0 is the regression equation constant
 for (int i=1;i<coefficients.length;i++) {
 String varName = coefficientVariables[i]; // Get the var name for this
 // coefficient find the index of this var in the list of input values
 int j =0;
 for (j=0;j<inputVariableNames.length;j++) {
 if (inputVariableNames[j].equals(varName)) {
 break; // Exit the loop, we found it.
 }
 }
 if (j<inputVariableNames.length) {
 // We found the variable name, compute it's part of the equation and
 // add the value to result
 result = result+(coefficients[i]*(double)values[j]);
 } else {
 // We couldn't find the variable name in the list of input variables
 // This is a problem. Report it and stop
 System.out.println("Unable to locate "+varName+
 " in the list of input variables");
 System.exit(-1);
 }
 }

 return new BigDecimal(Double.toString(result)).
 setScale(6,BigDecimal.ROUND_HALF_UP).doubleValue();
 }

 /**
 * Reads the coefficients and variables names from a CSV input file
 *
 * @param path The path to the CSV file of coefficients and variable names
 */
 public static void loadCoefficients(String path) {
 System.out.println("Reading the coefficients and variable names from "+path);
 try {
 File f = new File(path);
 FileReader fr = new FileReader(f);
 BufferedReader br = new BufferedReader(fr);
 String input = br.readLine();
 // First Count the lines in the file so we can size the coefficient arrays
 int coeffCount = 0;
 while (input!=null) {
 coeffCount++;
 input = br.readLine();
 }
 coefficients = new double[coeffCount];
 coefficientVariables = new String[coeffCount];
 System.out.println(
 "Found "+coeffCount+" coefficients (including the constant)");
 // Move back to the beginning of the file
 br.close();
 fr.close();

112

 fr = new FileReader(f);
 br = new BufferedReader(fr);
 // Now load the coefficients and variable names
 coeffCount = 0;
 input = br.readLine();
 while (input!=null) {
 String[] values = input.split(",");
 coefficientVariables[coeffCount] = values[0];
 coefficients[coeffCount] = Double.parseDouble(values[1]);
 coeffCount++;
 input = br.readLine();
 }
 br.close();
 } catch (java.io.IOException e) {
 System.out.println("Error reading coefficients - "+e.getMessage());
 }
 }

 /**
 * Reads the input file and populates the inputData, mathTarget, and readingTarget
 * arrays
 *
 * @param path The path to the input file
 */
 public static void loadInputData(String path) {
 System.out.println("Reading dummy variable names and input cases from "+path);
 try {
 File f = new File(path);
 FileReader fr = new FileReader(f);
 BufferedReader br = new BufferedReader(fr);
 String inputCase = br.readLine(); // Read the variable names
 String[] varNames = inputCase.split(",");
 // Start at i=2 to skip the math and reading score var names
 for (int i=2;i<varNames.length;i++) {
 inputVariableNames[i-2]=varNames[i];
 }

 inputCase = br.readLine();
 int caseCount = 0;
 while (inputCase!=null) {
 String[] inputValues = inputCase.split(",");
 // Start at i=2 to skip the math and reading scores.
 for (int i=2;i<inputValues.length;i++) {
 inputCases[caseCount][i-2] = Integer.parseInt(inputValues[i]);
 }
 // Now grab the math and reading scores
 mathTargets[caseCount] =
 Double.parseDouble(inputValues[MATH_SCORE_INDEX]);
 readingTargets[caseCount] =
 Double.parseDouble(inputValues[READING_SCORE_INDEX]);
 inputCase = br.readLine();
 caseCount++;
 }
 br.close();
 System.out.println("Read "+caseCount+" input cases");
 } catch (java.io.IOException e) {
 System.out.println("Error reading input file - "+e.getMessage());
 }
 }

 /**
 * Initializes the arrays containing the root names for the dummy variables
 * as well as the valid values for each dummy variable
 */
 public static void setupInputFeatures() {

 int i = 0; // Index into the input arrays

 //BYFCOMP
 inputNames[i]="BYFCOMP";
 inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8,9};

113

 i++;
 //PARED
 inputNames[i]="PARED";
 inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8};
 i++;
 //MOTHED
 inputNames[i]="MOTHED";
 inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8};
 i++;
 //FATHED
 inputNames[i]="FATHED";
 inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8};
 i++;
 //SES1QU
 inputNames[i]="SES1QU";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //STEXPECT
 inputNames[i]="STEXPECT";
 inputFeatures[i]=new int[]{-1,1,2,3,4,5,6,7};
 i++;
 //BYBASEBL
 inputNames[i]="BYBASEBL";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYSOFTBL
 inputNames[i]="BYSOFTBL";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYBASKTBL
 inputNames[i]="BYBASKTBL";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYFOOTBL
 inputNames[i]="BYFOOTBL";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYSOCCER
 inputNames[i]="BYSOCCER";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYTEAMSP
 inputNames[i]="BYTEAMSP";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYSOLOSP
 inputNames[i]="BYSOLOSP";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYSCTRL
 inputNames[i]="BYSCTRL";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYURBAN
 inputNames[i]="BYURBAN";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYREGION
 inputNames[i]="BYREGION";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20A
 inputNames[i]="BYS20A";
 inputFeatures[i]=new int[]{1,2,3,4};
 inputCodings[i]=QUANT;
 i++;
 //BYS20B
 inputNames[i]="BYS20B";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20C

114

 inputNames[i]="BYS20C";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20E
 inputNames[i]="BYS20E";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20F
 inputNames[i]="BYS20F";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20G
 inputNames[i]="BYS20G";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20J
 inputNames[i]="BYS20J";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20M
 inputNames[i]="BYS20M";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20N
 inputNames[i]="BYS20N";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS21A
 inputNames[i]="BYS21A";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS21B
 inputNames[i]="BYS21B";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS21C
 inputNames[i]="BYS21C";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS21D
 inputNames[i]="BYS21D";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS21E
 inputNames[i]="BYS21E";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS22A
 inputNames[30]="BYS22A";
 inputFeatures[30]=new int[]{1,2,3};
 i++;
 //BYS22B
 inputNames[i]="BYS22B";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22C
 inputNames[i]="BYS22C";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22D
 inputNames[i]="BYS22D";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22E
 inputNames[i]="BYS22E";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22F
 inputNames[i]="BYS22F";
 inputFeatures[i]=new int[]{1,2,3};
 i++;

115

 //BYS22G
 inputNames[i]="BYS22G";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22H
 inputNames[i]="BYS22H";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS24B
 inputNames[i]="BYS24B";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYS26
 inputNames[i]="BYS26";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS27A
 inputNames[i]="BYS27A";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27B
 inputNames[i]="BYS27B";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27C
 inputNames[i]="BYS27C";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27D
 inputNames[i]="BYS27D";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27E
 inputNames[i]="BYS27E";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27F
 inputNames[i]="BYS27F";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27G
 inputNames[i]="BYS27G";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27H
 inputNames[i]="BYS27H";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27I
 inputNames[i]="BYS27I";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS28
 inputNames[i]="BYS28";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS34A
 inputNames[i]="BYS34A";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS34B
 inputNames[i]="BYS34B";
 inputFeatures[i]=new int[]{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
 21,22,23,24,25,26};
 i++;
 //BYS35A
 inputNames[i]="BYS35A";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;

116

 //BYS35B
 inputNames[i]="BYS35B";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS36A
 inputNames[i]="BYS36A";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS36B
 inputNames[i]="BYS36B";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS37
 inputNames[i]="BYS37";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS38B
 inputNames[i]="BYS38B";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS39A
 inputNames[i]="BYS39A";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39B
 inputNames[i]="BYS39B";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39C
 inputNames[i]="BYS39C";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39D
 inputNames[i]="BYS39D";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39E
 inputNames[i]="BYS39E";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39F
 inputNames[i]="BYS39F";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39G
 inputNames[i]="BYS39G";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39H
 inputNames[i]="BYS39H";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS41A
 inputNames[i]="BYS41A";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS41B
 inputNames[i]="BYS41B";
 inputFeatures[i]=new int[]{0,1};
 i++;
 //BYS41C
 inputNames[i]="BYS41C";
 inputFeatures[i]=new int[]{0,1};
 i++;
 //BYS41D
 inputNames[i]="BYS41D";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;

117

 //BYS41E
 inputNames[i]="BYS41E";
 inputFeatures[i]=new int[]{0,1};
 i++;
 //BYS41F
 inputNames[i]="BYS41F";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS41G
 inputNames[i]="BYS41G";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS41H
 inputNames[i]="BYS41H";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS41I
 inputNames[i]="BYS41I";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS42
 inputNames[i]="BYS42";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS43
 inputNames[i]="BYS43";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS45A
 inputNames[i]="BYS45A";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYS45B
 inputNames[i]="BYS45B";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYS45C
 inputNames[i]="BYS45C";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYS46A
 inputNames[i]="BYS46A";
 inputFeatures[i]=new int[]{0,1,2,3,4,5,6};
 i++;
 //BYS46B
 inputNames[i]="BYS46B";
 inputFeatures[i]=new int[]{0,1,2,3,4,5,6};
 i++;
 //BYS54A
 inputNames[i]="BYS54A";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS54B
 inputNames[i]="BYS54B";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54C
 inputNames[i]="BYS54C";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54D
 inputNames[i]="BYS54D";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS54E
 inputNames[i]="BYS54E";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54F

118

 inputNames[i]="BYS54F";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS54G
 inputNames[i]="BYS54G";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS54H
 inputNames[i]="BYS54H";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS54I
 inputNames[i]="BYS54I";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54J
 inputNames[i]="BYS54J";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54K
 inputNames[i]="BYS54K";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54L
 inputNames[i]="BYS54L";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54N
 inputNames[i]="BYS54N";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54O
 inputNames[i]="BYS54O";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS57
 inputNames[i]="BYS57";
 inputFeatures[i]=new int[]{-1,1,2,3,4,5};
 i++;
 //BYS60
 inputNames[i]="BYS60";
 inputFeatures[i]=new int[]{0,1};
 i++;
 //BYS61
 inputNames[i]="BYS61";
 inputFeatures[i]=new int[]{0,1};
 i++;
 //BYS66A
 inputNames[i]="BYS66A";
 inputFeatures[i]=new int[]{-1,1,2,3,4,5,6};
 i++;
 //BYS66B
 inputNames[i]="BYS66B";
 inputFeatures[i]=new int[]{-1,1,2,3,4,5,6};
 i++;
 //BYS66F
 inputNames[i]="BYS66F";
 inputFeatures[i]=new int[]{-1,1,2,3,4,5,6,7};
 i++;
 //BYS72
 inputNames[i]="BYS72";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 }
}

119

APPENDIX D

Neural Network Source Listing

120

import org.joone.engine.*;
import org.joone.engine.learning.TeachingSynapse;
import org.joone.net.NeuralNet;
import org.joone.io.MemoryInputSynapse;
import org.joone.io.MemoryOutputSynapse;
import org.joone.helpers.factory.JooneTools;

import java.io.*;
import java.util.ArrayList;
import java.util.Random;

/**
 * Either loads from disk or sets up a 3 layer, feed forward, supervised learning neural
 * network utilizing the resilient back-propagation learning algorithm.
 *
 * If in training mode, reads the contents of the training file, sets aside 10% of the
 * training data for
 * validation purposes, and begins 500 training epochs during which 90% of the training
 * cases are presented to the network in order to adapt the synaptic weights.
 *
 * Every 10th epoch the NeuralNetListener object makes a copy of the NeuralNet, runs the
 * reserved 10% of the
 * training data through the network and computes the RMSE. If the RMSE is better than
 * the last validation,
 * then this copy of the network is set aside as the best network so far and training
 * continues. At the end
 * of 500 training epochs, save a copy of the best Neural Network.
 *
 * If not in training mode, load the neural network from disk, load the test data and run
 * the neural net.
 * Compute the RMSE, and Wilmott's indices of agreement d1, and d2.
 *
 */
public class ELS2002NeuralNet {

 private static int[][] inputFeatures = new int[103][];
 private static String[] inputNames = new String[103];
 private static int QUANT=0;
 private static int CODED=1;

 public static int MATH_SCORE = 0; //index to the math score in the input data
 public static int READING_SCORE = 1; // index to the reading score in the input data

 public static String inputColumns = "";

 private static NeuralNet neuralNet;

 private static int totalInputNeurons = 0;

 private static double[][] inputCases; // The full set of input cases
 private static double[][] inputTargets; // The full set of input target values
 private static double[][] trainingCases; // Pulled from inputCases, used to train
 // the network
 public static double[][] testCases; // Pulled from inputCases, used to test
 // the fitness of the network
 private static double[][] trainingTargets; // Pulled from inputTargets, used to train
 // the network
 public static double[][] testTargets; // Pulled from inputTargets, used to test
 // the fitness of the network

 public static void main(String[] args) {

 // Populate the arrays of input variable names, valid responses, and coding
 setupInputFeatures();

 // figure out how many input neurons we'll have by examing the input variables
 totalInputNeurons = 0;
 for (int i=0;i<inputFeatures.length;i++) {
 totalInputNeurons += inputFeatures[i].length;
 }

121

 // Create a string of the form "1,2,3,4,5...n" where n=totalInputNeurons, used
 // to identify the
 // columns that will be used as input to the neural network
 for (int i=0;i<totalInputNeurons;i++) {
 if (i==0)
 inputColumns += (i+1);
 else
 inputColumns += ","+(i+1);
 }

 // Try to load a saved neural network from disk
 neuralNet = loadNet();

 // If the net wasn't found, create a new one
 if (neuralNet==null) {
 // Construct a new neural net and train it
 LinearLayer inputLayer = new LinearLayer();
 SigmoidLayer hiddenLayer = new SigmoidLayer();
 SigmoidLayer outputLayer = new SigmoidLayer();

 System.out.println("Creating Input Layer with "+totalInputNeurons+
 " input neurons");
 inputLayer.setRows(totalInputNeurons);
 hiddenLayer.setRows(30);
 outputLayer.setRows(2);

 FullSynapse synapse_IH = new FullSynapse();
 FullSynapse synapse_HO = new FullSynapse();

 inputLayer.addOutputSynapse(synapse_IH);
 hiddenLayer.addInputSynapse(synapse_IH);
 hiddenLayer.addOutputSynapse(synapse_HO);
 outputLayer.addInputSynapse(synapse_HO);

 neuralNet = new NeuralNet();
 neuralNet.addLayer(inputLayer,NeuralNet.INPUT_LAYER);
 neuralNet.addLayer(hiddenLayer,NeuralNet.HIDDEN_LAYER);
 neuralNet.addLayer(outputLayer,NeuralNet.OUTPUT_LAYER);

 MemoryInputSynapse inputStream = new MemoryInputSynapse();
 inputStream.setInputDimension(totalInputNeurons);
 inputStream.setAdvancedColumnSelector(inputColumns);

 inputCases =getInputData("ELS2002_NNCoded_Training.txt");
 inputTargets = getTargetData("ELS2002_NNCoded_Training.txt");

 // Reserve 10% of the input cases to be used to test the accuracy of the net
 splitInputCases(inputCases, 153);

 inputStream.setInputArray(trainingCases);
 neuralNet.getInputLayer().addInputSynapse(inputStream);

 TeachingSynapse trainer = new TeachingSynapse();
 MemoryInputSynapse samples = new MemoryInputSynapse();
 samples.setOutputDimension(2);
 samples.setInputArray(trainingTargets);

 trainer.setDesired(samples);
 samples.setAdvancedColumnSelector("1,2");
 neuralNet.setTeacher(trainer);
 neuralNet.getOutputLayer().addOutputSynapse(trainer);
 }

 // Decide if we're training, or running cross-validation
 boolean training = false;

 if (training) {
 //These three lines are settings for RProp
 neuralNet.getMonitor().addLearner(0, "org.joone.engine.RpropLearner");
 neuralNet.getMonitor().setLearningMode(0);
 neuralNet.getMonitor().setLearningRate(1.0); // For the RpropLearner

122

 neuralNet.getMonitor().setBatchSize(trainingCases.length);
 neuralNet.getMonitor().addNeuralNetListener(
 new MyNeuralNetListener(neuralNet));
 neuralNet.getMonitor().setTrainingPatterns(trainingCases.length);
 neuralNet.getMonitor().setTotCicles(500);
 neuralNet.getMonitor().setLearning(true);
 neuralNet.go();
 } else {

 // We're performing cross-validation
 String inputPath = "ELS2002_NNCoded_Test.txt";
 neuralNet.getMonitor().addNeuralNetListener(
 new MyNeuralNetListener(neuralNet));
 neuralNet.getInputLayer().removeAllInputs();
 MemoryInputSynapse testData = new MemoryInputSynapse();
 testData.setFirstRow(1);
 testData.setAdvancedColumnSelector(inputColumns);
 neuralNet.getInputLayer().addInputSynapse(testData);
 inputCases = getInputData(inputPath);
 testData.setInputArray(inputCases);
 neuralNet.getOutputLayer().removeAllOutputs();
 MemoryOutputSynapse testResults = new MemoryOutputSynapse();
 neuralNet.getOutputLayer().addOutputSynapse(testResults);
 neuralNet.getMonitor().setTotCicles(1);
 neuralNet.getMonitor().setTrainingPatterns(inputCases.length);
 neuralNet.getMonitor().setLearning(false);

 double[][] outputData = getTargetData(inputPath);

 neuralNet.go();

 File outputFile = new File("ReadingPredictions.txt");
 File outputFile2 = new File("MathPredictions.txt");

 double Math_SSResidual = 0;
 double Math_SSRegression = 0;
 double Reading_SSResidual = 0;
 double Reading_SSRegression = 0;

 // Compute the average reading score to be used in the calculation of R^2
 double totalReading = 0;
 double totalMath = 0;
 for (int i=0;i<outputData.length;i++) {
 totalReading+=outputData[i][READING_SCORE];
 totalMath+=outputData[i][MATH_SCORE];
 }
 double avgReading = totalReading/(double)outputData.length;
 double avgMath = totalMath/(double)outputData.length;
 System.out.println("Computed Avergage Reading Score = "+avgReading);
 System.out.println("Computed Avergage Math Score = "+avgMath);

 double Math_SSTotal = 0;
 double Reading_SSTotal = 0;
 for (int i=0;i<outputData.length;i++) {
 double reading_diff = outputData[i][READING_SCORE]-avgReading;
 Reading_SSTotal += (reading_diff*reading_diff);

 double math_diff = outputData[i][MATH_SCORE]-avgMath;
 Math_SSTotal += (math_diff*math_diff);
 }

 double Math_d1Numerator = 0.0;
 double Math_d1Denominator = 0.0;
 double Math_d2Numerator = 0.0;
 double Math_d2Denominator = 0.0;

 double Reading_d1Numerator = 0.0;
 double Reading_d1Denominator = 0.0;
 double Reading_d2Numerator = 0.0;
 double Reading_d2Denominator = 0.0;

123

 try {
 FileWriter fw = new FileWriter(outputFile);
 FileWriter fw2 = new FileWriter(outputFile2);
 BufferedWriter bw = new BufferedWriter(fw);
 BufferedWriter bw2 = new BufferedWriter(fw2);

 bw.write("Actual Reading Score,Predicted Reading Score");
 bw.newLine();
 bw2.write("Actual Math Score,Predicted Math Score");
 bw2.newLine();

 for (int i=0;i<inputCases.length;i++) {
 double[] results = testResults.getNextPattern();

 double math_err = results[MATH_SCORE]-outputData[i][MATH_SCORE];
 double reading_err = results[READING_SCORE]-
 outputData[i][READING_SCORE];

 Math_SSResidual += (math_err*math_err);
 Reading_SSResidual += (reading_err*reading_err);

 bw.write(outputData[i][READING_SCORE]+","+results[READING_SCORE]);
 bw.newLine();
 bw2.write(outputData[i][MATH_SCORE]+","+results[MATH_SCORE]);
 bw2.newLine();

 // Calculate the index of agreement numerators and denominators
 Math_d1Numerator += Math.abs(math_err); // Sum(|Ypred-Y|)
 Math_d2Numerator += (math_err*math_err); // Sum((|YPred-Y|)^2)
 Math_d1Denominator += (Math.abs(results[MATH_SCORE]-
 avgMath)+Math.abs(outputData[i][MATH_SCORE]-avgMath));
 Math_d2Denominator += Math.pow((Math.abs(results[MATH_SCORE]-
 avgMath)+Math.abs(outputData[i][MATH_SCORE]-avgMath)),2);

 Reading_d1Numerator += Math.abs(reading_err); // Sum(|Ypred-Y|)
 Reading_d2Numerator += (reading_err*reading_err); // Sum((|YPred-
 // Y|)^2)
 Reading_d1Denominator += (Math.abs(results[READING_SCORE]-
 avgReading)+Math.abs(outputData[i][READING_SCORE]-avgReading));
 Reading_d2Denominator += Math.pow((Math.abs(results[READING_SCORE]-
 avgReading)+Math.abs(outputData[i][READING_SCORE]-
 avgReading)),2);
 }
 Math_SSRegression = Math_SSTotal-Math_SSResidual;
 Reading_SSRegression = Reading_SSTotal-Reading_SSResidual;

 double math_rmse = Math.sqrt(Math_SSResidual/(double)inputCases.length);
 double reading_rmse =
 Math.sqrt(Reading_SSResidual/(double)inputCases.length);

 System.out.println("Math RMSE = "+math_rmse+" Reading RMSE = "+
 reading_rmse);

 double math_d1 = 1.0-(Math_d1Numerator/Math_d1Denominator);
 double math_d2 = 1.0-(Math_d2Numerator/Math_d2Denominator);

 double reading_d1 = 1.0-(Reading_d1Numerator/Reading_d1Denominator);
 double reading_d2 = 1.0-(Reading_d2Numerator/Reading_d2Denominator);

 System.out.println("Math Indices of Agreement: d1="+math_d1+
 ", d2="+math_d2);
 System.out.println("Reading Indices of Agreement: d1="+reading_d1+
 ", d2="+reading_d2);

 bw.flush();
 bw.close();
 bw2.flush();
 bw2.close();

 } catch (java.io.IOException e) {
 System.out.println("Error writing predicted results - "+e.getMessage());

124

 }

 }

 }

 /**
 * Splits the complete list of input cases into a set for test purposed and a set
 * for training purposes. Periodically the net will be tested with the test cases
 * so that we can determine if we're overfitting the net and so that we can preserve
 * the best net even if the best net is found in the middle of the training.
 *
 * @param cases A 2-D array of input cases
 * @param splitCount The number of cases to strip off to be used to test the net
 *
 */
 public static void splitInputCases(double[][] cases, int splitCount) {
 System.out.println("Splitting the input cases into "+(cases.length-splitCount)+
 " training and "+splitCount+" test cases");

 ArrayList allCases = new ArrayList();
 // First, dimension the trainingCases and testCases arrays
 trainingCases = new double[cases.length-splitCount][cases[0].length];
 trainingTargets = new double[trainingCases.length][2];
 testCases = new double[splitCount][cases[0].length];
 testTargets = new double[testCases.length][2];

 // Next, copy all of the case indices into the ArrayList
 for (int i=0;i<cases.length;i++) {
 allCases.add(new Integer(i));
 }

 // Now, set up a loop to randomly select case indices from the remaining
 // indicies and populate the test case array
 Random random = new Random(System.currentTimeMillis());
 for (int i=0;i<splitCount;i++) {
 int selectedIndex = random.nextInt(allCases.size());
 int selectedCaseIndex = ((Integer)allCases.get(selectedIndex)).intValue();
 for (int j=0;j<cases[selectedCaseIndex].length;j++) {
 // Copy this case into the array of test cases
 testCases[i][j] = cases[selectedCaseIndex][j];
 }
 testTargets[i][READING_SCORE] =
 inputTargets[selectedCaseIndex][READING_SCORE];
 testTargets[i][MATH_SCORE] = inputTargets[selectedCaseIndex][MATH_SCORE];
 // Now remove this case index from the array list of all cases, so we don't
 // pick it again.
 allCases.remove(selectedIndex);
 }
 // Finally, populate the training case array with the cases that haven't been
 // selected
 for (int i=0;i<allCases.size();i++) {
 int selectedCaseIndex = ((Integer)allCases.get(i)).intValue();
 for (int j=0;j<cases[selectedCaseIndex].length;j++) {
 trainingCases[i][j] = cases[selectedCaseIndex][j];
 }
 trainingTargets[i][READING_SCORE] =
 inputTargets[selectedCaseIndex][READING_SCORE];
 trainingTargets[i][MATH_SCORE] = inputTargets[selectedCaseIndex][MATH_SCORE];
 }
 }

 /**
 * Used by MyNeuralNetListener to get the test cases, the reserved 10% of the
 * training data used for validation of the neural network training.
 *
 * @return 2-D array of cases in dummy coded format.
 */
 public static double[][] getTestCases() {
 return testCases;
 }

125

 /**
 * Used by MyNeuralNetListener to get the targets for the test cases used for
 * validation of the neural network training.
 *
 * @return 2-D array of target values
 */
 public static double[][] getTestTargets() {
 return testTargets;
 }

 /**
 * Used by MyNeuralNetListener to save the best NN once training is complete.
 *
 * @param theNet The NeuralNetwork object to save
 */
 public static void saveNet(NeuralNet theNet) {
 try {
 System.out.println("Saving the neural network");
 JooneTools.save(theNet,"MathAndReadingNeuralNet.net");
 } catch (java.io.IOException e) {
 System.out.println("Error saving net - "+e.getMessage());
 }
 }

 /**
 * Reads a saved NeuralNetwork object from disk.
 *
 * @return A previously trained NeuralNetwork object or null if the file doesn't
 * exist.
 */
 public static NeuralNet loadNet() {
 File f = new File("MathAndReadingNeuralNet.net");
 NeuralNet net = null;

 if (!f.exists()) {
 System.out.println("Stored Neural Net not found");
 return null;
 }

 try {
 System.out.println("Loading the neural net from disk");
 net = JooneTools.load("MathAndReadingNeuralNet.net");
 } catch (Exception e) {
 System.out.println("Error loading net - "+e.getMessage());
 }
 return net;
 }

 /**
 * Parses the target data from the input file. Returns a 2D array [numcases][2]
 * indexed
 * by the cases in the first dimension and containing the target values in the second
 * dimension.
 *
 * @param path Path to the file in the file system
 *
 * @return 2D array of doubles
 */
 public static double[][] getTargetData(String path) {
 File f = new File(path);
 // Note - the input data must be read before the target data so that
 // the total number of input cases has been set
 int totalCases = 0;
 double[][] targets = new double[0][0];
 if (f.exists()) {
 try {
 FileReader fr = new FileReader(f);
 BufferedReader br = new BufferedReader(fr);
 String pattern = br.readLine(); // Get the first real row of data
 // Now figure out how many cases we have

126

 while (pattern!=null) {
 totalCases++;
 pattern = br.readLine();
 }
 br.close();
 // Now read the data
 fr = new FileReader(f);
 br = new BufferedReader(fr);
 pattern = br.readLine(); // Get the first read row of data
 targets = new double[totalCases][2];
 int rowCount = 0;
 while (pattern!=null) {
 String[] values = pattern.split(",");
 // Values scaled to [0,1]
 targets[rowCount][READING_SCORE] =
 Double.parseDouble(values[READING_SCORE]);
 targets[rowCount][MATH_SCORE] =
 Double.parseDouble(values[MATH_SCORE]);
 rowCount++;
 pattern = br.readLine();
 }
 br.close();
 } catch (java.io.IOException e) {
 System.out.println("Error reading target data - "+e.getMessage());
 }
 }
 System.out.println(" Read "+totalCases+" target cases from "+path);
 return targets;
 }

 /**
 * Reads the input data from an input file and scales the dummy coded values
 * into the range 0, 0.2-0.8
 *
 * @param path Path to the input file in the file system
 * @return 2D array of doubles indexes by case number and input neuron
 */
 public static double[][] getInputData(String path) {
 File f = new File(path);
 double[][] activations = new double[0][0];
 int totalInputCases=0;

 if (f.exists()) {
 try {
 FileReader fr = new FileReader(f);
 BufferedReader br = new BufferedReader(fr);
 // First count up the total number of input rows
 String pattern = br.readLine(); // Get the first real row of data
 totalInputCases = 0;
 while (pattern!=null) {
 pattern = br.readLine();
 totalInputCases++;

 }
 br.close();
 // Now read the data
 fr = new FileReader(f);
 br = new BufferedReader(fr);
 pattern = br.readLine(); // Get the first real row of data
 activations = new double[totalInputCases][totalInputNeurons];
 int rowCount = 0;
 while (pattern!=null) {
 String[] values = pattern.split(",");
 for (int i=2;i<values.length;i++) { // Skip 0 & 1 which are the math
 // & reading scores
 int value = Integer.parseInt(values[i]);
 double activation = 0.0;
 // Recode to [0.2,0.8]. If the response isn't in the list of
 // valid responses, leave as 0
 for (int j=0;j<inputFeatures[i-2].length;j++) {
 if (value==inputFeatures[i-2][j]) {

127

 // Found it, so scale the activaton value to [0.2,0.8]
 activation = 0.2+0.6*((double)j/
 (double)(inputFeatures[i-2].length-1));
 break;
 }
 }
 activations[rowCount][i-2]=activation;
 }
 rowCount++;
 pattern = br.readLine();
 }
 br.close();
 } catch (java.io.IOException e) {
 System.out.println("Error reading input data - "+e.getMessage());
 }
 }
 System.out.println(" Read "+totalInputCases+" input cases from "+path);
 return activations;
 }

 /**
 * Initializes the arrays containing the root names for the dummy variables
 * as well as the valid values for each dummy variable
 */
 public static void setupInputFeatures() {

 int i = 0; // Index into the input arrays

 //BYFCOMP
 inputNames[i]="BYFCOMP";
 inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8,9};
 i++;
 //PARED
 inputNames[i]="PARED";
 inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8};
 i++;
 //MOTHED
 inputNames[i]="MOTHED";
 inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8};
 i++;
 //FATHED
 inputNames[i]="FATHED";
 inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8};
 i++;
 //SES1QU
 inputNames[i]="SES1QU";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //STEXPECT
 inputNames[i]="STEXPECT";
 inputFeatures[i]=new int[]{-1,1,2,3,4,5,6,7};
 i++;
 //BYBASEBL
 inputNames[i]="BYBASEBL";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYSOFTBL
 inputNames[i]="BYSOFTBL";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYBASKTBL
 inputNames[i]="BYBASKTBL";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYFOOTBL
 inputNames[i]="BYFOOTBL";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYSOCCER
 inputNames[i]="BYSOCCER";
 inputFeatures[i]=new int[]{1,2,3,4,5};

128

 i++;
 //BYTEAMSP
 inputNames[i]="BYTEAMSP";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYSOLOSP
 inputNames[i]="BYSOLOSP";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYSCTRL
 inputNames[i]="BYSCTRL";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYURBAN
 inputNames[i]="BYURBAN";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYREGION
 inputNames[i]="BYREGION";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20A
 inputNames[i]="BYS20A";
 inputFeatures[i]=new int[]{1,2,3,4};
 inputCodings[i]=QUANT;
 i++;
 //BYS20B
 inputNames[i]="BYS20B";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20C
 inputNames[i]="BYS20C";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20E
 inputNames[i]="BYS20E";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20F
 inputNames[i]="BYS20F";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20G
 inputNames[i]="BYS20G";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20J
 inputNames[i]="BYS20J";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20M
 inputNames[i]="BYS20M";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS20N
 inputNames[i]="BYS20N";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS21A
 inputNames[i]="BYS21A";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS21B
 inputNames[i]="BYS21B";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS21C
 inputNames[i]="BYS21C";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS21D

129

 inputNames[i]="BYS21D";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS21E
 inputNames[i]="BYS21E";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS22A
 inputNames[30]="BYS22A";
 inputFeatures[30]=new int[]{1,2,3};
 i++;
 //BYS22B
 inputNames[i]="BYS22B";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22C
 inputNames[i]="BYS22C";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22D
 inputNames[i]="BYS22D";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22E
 inputNames[i]="BYS22E";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22F
 inputNames[i]="BYS22F";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22G
 inputNames[i]="BYS22G";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS22H
 inputNames[i]="BYS22H";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS24B
 inputNames[i]="BYS24B";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYS26
 inputNames[i]="BYS26";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS27A
 inputNames[i]="BYS27A";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27B
 inputNames[i]="BYS27B";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27C
 inputNames[i]="BYS27C";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27D
 inputNames[i]="BYS27D";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27E
 inputNames[i]="BYS27E";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27F
 inputNames[i]="BYS27F";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;

130

 //BYS27G
 inputNames[i]="BYS27G";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27H
 inputNames[i]="BYS27H";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS27I
 inputNames[i]="BYS27I";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS28
 inputNames[i]="BYS28";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS34A
 inputNames[i]="BYS34A";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS34B
 inputNames[i]="BYS34B";
 inputFeatures[i]=new int[]{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
 21,22,23,24,25,26};
 i++;
 //BYS35A
 inputNames[i]="BYS35A";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS35B
 inputNames[i]="BYS35B";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS36A
 inputNames[i]="BYS36A";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS36B
 inputNames[i]="BYS36B";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS37
 inputNames[i]="BYS37";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS38B
 inputNames[i]="BYS38B";
 inputFeatures[i]=new int[]{1,2,3,4};
 i++;
 //BYS39A
 inputNames[i]="BYS39A";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39B
 inputNames[i]="BYS39B";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39C
 inputNames[i]="BYS39C";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39D
 inputNames[i]="BYS39D";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39E

131

 inputNames[i]="BYS39E";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39F
 inputNames[i]="BYS39F";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39G
 inputNames[i]="BYS39G";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS39H
 inputNames[i]="BYS39H";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS41A
 inputNames[i]="BYS41A";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS41B
 inputNames[i]="BYS41B";
 inputFeatures[i]=new int[]{0,1};
 i++;
 //BYS41C
 inputNames[i]="BYS41C";
 inputFeatures[i]=new int[]{0,1};
 i++;
 //BYS41D
 inputNames[i]="BYS41D";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS41E
 inputNames[i]="BYS41E";
 inputFeatures[i]=new int[]{0,1};
 i++;
 //BYS41F
 inputNames[i]="BYS41F";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS41G
 inputNames[i]="BYS41G";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS41H
 inputNames[i]="BYS41H";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS41I
 inputNames[i]="BYS41I";
 inputFeatures[i]=new int[]{-1,0,1};
 i++;
 //BYS42
 inputNames[i]="BYS42";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS43
 inputNames[i]="BYS43";
 inputFeatures[i]=new int[]{
 -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21};
 i++;
 //BYS45A
 inputNames[i]="BYS45A";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYS45B
 inputNames[i]="BYS45B";
 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYS45C
 inputNames[i]="BYS45C";

132

 inputFeatures[i]=new int[]{1,2,3,4,5};
 i++;
 //BYS46A
 inputNames[i]="BYS46A";
 inputFeatures[i]=new int[]{0,1,2,3,4,5,6};
 i++;
 //BYS46B
 inputNames[i]="BYS46B";
 inputFeatures[i]=new int[]{0,1,2,3,4,5,6};
 i++;
 //BYS54A
 inputNames[i]="BYS54A";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS54B
 inputNames[i]="BYS54B";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54C
 inputNames[i]="BYS54C";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54D
 inputNames[i]="BYS54D";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS54E
 inputNames[i]="BYS54E";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54F
 inputNames[i]="BYS54F";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS54G
 inputNames[i]="BYS54G";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS54H
 inputNames[i]="BYS54H";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS54I
 inputNames[i]="BYS54I";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54J
 inputNames[i]="BYS54J";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54K
 inputNames[i]="BYS54K";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54L
 inputNames[i]="BYS54L";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54N
 inputNames[i]="BYS54N";
 inputFeatures[i]=new int[]{-1,1,2,3};
 i++;
 //BYS54O
 inputNames[i]="BYS54O";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 //BYS57
 inputNames[i]="BYS57";
 inputFeatures[i]=new int[]{-1,1,2,3,4,5};
 i++;
 //BYS60

133

 inputNames[i]="BYS60";
 inputFeatures[i]=new int[]{0,1};
 i++;
 //BYS61
 inputNames[i]="BYS61";
 inputFeatures[i]=new int[]{0,1};
 i++;
 //BYS66A
 inputNames[i]="BYS66A";
 inputFeatures[i]=new int[]{-1,1,2,3,4,5,6};
 i++;
 //BYS66B
 inputNames[i]="BYS66B";
 inputFeatures[i]=new int[]{-1,1,2,3,4,5,6};
 i++;
 //BYS66F
 inputNames[i]="BYS66F";
 inputFeatures[i]=new int[]{-1,1,2,3,4,5,6,7};
 i++;
 //BYS72
 inputNames[i]="BYS72";
 inputFeatures[i]=new int[]{1,2,3};
 i++;
 }
}

134

APPENDIX E

Neural Network Listener Source Listing

135

import org.joone.engine.NeuralNetListener;
import org.joone.engine.NeuralNetEvent;
import org.joone.engine.Monitor;
import org.joone.net.NeuralNet;
import org.joone.io.MemoryInputSynapse;
import org.joone.io.MemoryOutputSynapse;

/**
 * Helper class that listens for NeuralNetwork events and performs functions such as
 * printing the current RMSE for the network, validating the network, and saving the
 * network
 */
public class MyNeuralNetListener implements NeuralNetListener {

 public NeuralNet net;
 public NeuralNet bestNet = null;
 public double bestRMSE = 0;

 public MyNeuralNetListener(NeuralNet theNet) {
 net = theNet;
 }

 public void netStarted(NeuralNetEvent nne) {
 System.out.println("Starting the net");
 }

 public void cicleTerminated(NeuralNetEvent nne) {
 }

 public void netStopped(NeuralNetEvent nne) {
 System.out.println("Stopping the Net");
 Monitor monitor = (Monitor)nne.getSource();
 if (monitor.isLearning()) {
 ELS2002NeuralNet.saveNet(bestNet);
 }
 }

 public void errorChanged(NeuralNetEvent nne) {
 Monitor monitor = (Monitor)nne.getSource();
 int currentCicle = monitor.getCurrentCicle();
 if (currentCicle%10==0 || currentCicle==1) {
 System.out.println("Total Error Changed - "+monitor.getGlobalError()+
 " - Current Cicle "+currentCicle);

 monitor.setExporting(true);
 NeuralNet newNet = net.cloneNet();
 monitor.setExporting(false);
 newNet.getInputLayer().removeAllInputs();
 MemoryInputSynapse testData = new MemoryInputSynapse();
 testData.setFirstRow(1);
 testData.setAdvancedColumnSelector(ELS2002NeuralNet.inputColumns);
 newNet.getInputLayer().addInputSynapse(testData);
 double[][] inputData = ELS2002NeuralNet.getTestCases();
 testData.setInputArray(inputData);
 newNet.getOutputLayer().removeAllOutputs();
 MemoryOutputSynapse testResults = new MemoryOutputSynapse();
 newNet.getOutputLayer().addOutputSynapse(testResults);
 newNet.getMonitor().setTotCicles(1);
 newNet.getMonitor().setTrainingPatterns(inputData.length);
 newNet.getMonitor().setLearning(false);

 double[][] outputData = ELS2002NeuralNet.getTestTargets();
 System.out.println("Running test cycle with "+inputData.length+" cases");
 newNet.go();

 double Math_SSResidual = 0; // Variability about the regression line
 double Math_SSRegression = 0;
 double Reading_SSResidual = 0;
 double Reading_SSRegression = 0;

 int READING_SCORE = ELS2002NeuralNet.READING_SCORE;

136

 int MATH_SCORE = ELS2002NeuralNet.MATH_SCORE;

 // Compute the average reading score to be used in the calculation of R^2
 double totalReading = 0;
 double totalMath = 0;
 for (int i=0;i<outputData.length;i++) {
 totalReading+=outputData[i][READING_SCORE];
 totalMath+=outputData[i][MATH_SCORE];
 }
 double avgReading = totalReading/(double)outputData.length;
 double avgMath = totalMath/(double)outputData.length;

 double Math_SSTotal = 0;
 double Reading_SSTotal = 0;
 for (int i=0;i<outputData.length;i++) {
 double reading_diff = outputData[i][READING_SCORE]-avgReading;
 double math_diff = outputData[i][MATH_SCORE]-avgMath;
 Reading_SSTotal += (reading_diff*reading_diff);
 Math_SSTotal += (math_diff*math_diff);
 }

 for (int i=0;i<inputData.length;i++) {
 double[] results = testResults.getNextPattern();
 double math_err = outputData[i][MATH_SCORE]-results[MATH_SCORE];
 double reading_err = outputData[i][READING_SCORE]-results[READING_SCORE];
 Math_SSResidual += (math_err*math_err);
 Reading_SSResidual += (reading_err*reading_err);
 }
 Math_SSRegression = Math_SSTotal-Math_SSResidual;
 Reading_SSRegression = Reading_SSTotal-Reading_SSResidual;

 double math_rmse = Math.sqrt(Math_SSResidual/(double)inputData.length);
 double reading_rmse = Math.sqrt(Reading_SSResidual/(double)inputData.length);

 System.out.println(" Math RMSE (Sqrt(SSResidual/n)) = "+math_rmse);
 System.out.println(" Reading RMSE = "+reading_rmse);
 double avg_rmse = (math_rmse+reading_rmse)/2.0;
 if (bestNet == null || avg_rmse < bestRMSE) {
 System.out.println(" New best net, average rmse = "+avg_rmse);
 bestNet = newNet;
 bestRMSE = avg_rmse;
 }
 }
 }

 public void netStoppedError(NeuralNetEvent nne, String str) {
 System.out.println("The net stopped due to an error - "+str);

 }
}

	Duquesne University
	Duquesne Scholarship Collection
	2007

	Neural Network Prediction of Math and Reading Proficiency as Reported in the Educational Longitudinal Study 2002 Based on Non-Curricular Variables
	Jason Brown
	Recommended Citation

	Microsoft Word - Brown_Dissertation_v19.doc

