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Abstract 
NEURAL NETWORK PREDICTION OF MATH AND READING PROFICIENCY AS 
REPORTED IN THE EDUCATIONAL LONGITUDINAL STUDY 2002 BASED ON 
NON-CURRICULAR VARIABLES 
Jason Brown 
Doctor of Education, December 2007 
Duquesne University 
Chair: Connie Moss, Ed.D. 
 
 
Predicting student achievement is often the goal of many studies, and a frequently 

employed tool for constructing predictive models is multiple linear regression. This 

research sought to compare the performance of a three-layer back propagation neural 

network to that of traditional multiple linear regression in predicting math and reading 

proficiency from 103 non-curricular variables collected in the National Center for 

Educational Statistics’ 2002 Educational Longitudinal Study. The neural network model 

was implemented using the Java programming language and the coefficients for the 

regression equations were produced by SPSS.  The results showed that, for this data set, 

neither model provided an advantage over the other in terms prediction accuracy when 

presented with error-free cases. When synthetic noise was introduced into the data, 

however, the neural network model showed a greater resistance to degradation. The fact 

that the neural network model performed as well as, and in some cases better than, 

regression suggests that further study of neural network modeling is warranted to better 

understand the most effective ways to harness this flexible modeling technology.
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CHAPTER 1 

INTRODUCTION 

Overview 

Assessing student performance has long been a goal of educators, administrators, 

and academicians. By accurately predicting which students are at risk, interventions can 

happen earlier in an effort to increase the overall success rate of a given student 

population.  

Traditionally, though, predicting student outcomes has been accomplished 

through the application of traditional statistical tests such as correlation, ANOVA, 

MANOVA, and regression. A limitation of these analyses, though, is the need for a 

hypothesis that describes the interrelationships between the variables being studied. 

Consequently, statistical studies often focus on small sets of variables in order to make 

the model understandable and the mathematics manageable.  

Streifer and Schumann, in their 2005 work involving data mining techniques, 

made this same observation when they wrote “Traditional analytics can neither easily nor 

systematically handle the complexities of school data to address the queries school 

leaders have about achievement” (Streifer & Schumann, 2005). Neural networks, 

however, may provide an alternative analysis that can be employed with complex data 

sets having no suitable hypothesis.  

In a direct comparison of regression and neural network approaches, Snyder 

observes that regression models require a specific hypothesis, which leads to a specific 

model that introduces difficulties in handling imperfect data. He then contrasts this with 
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neural networks in which the only decisions that need to be made are how many hidden 

layers to use, the number of neurons per layer, the neuron transfer function, learning rate, 

and training algorithm (Snyder, 1996).  

Neural networks take a black box approach to model simulation in that few, or no, 

assumptions are made about the interactions of the variables. In neural network modeling 

identifying as many potentially involved variables as needed, along with a suitable set of 

sample data for training purposes, is possible. The neural network can also be trained to 

mimic the performance of the known system. Once trained, the neural network can 

produce accurate outcomes based on new inputs representing the same system. 

Neural network models have been used in the past to predict synthetic or man-

made systems, such as performance prediction systems in the stock market or the success 

rates of MBA candidates. Saad (1998) developed a back-propagation neural network 

model that effectively predicted profit opportunities in the stock market (Saad, 1998). In 

this study, the future price performance was modeled on past price performance. 

Additional examples of neural networks in use for prediction can be found in the section 

Neural Networks in Use in chapter 2.  

Neural networks attempt to simulate the biological computation of the brain by 

constructing layers of simple processing units (neurons) connected through (synaptic) 

weights. In practice, feed-forward neural networks are presented with a set of input 

values that are passed to a hidden layer where each neuron computes its own activation 

potential and produces an output. These outputs feed the inputs to subsequent layers and 

are either strengthened or diminished by the inter-layer synaptic weights. It is the 



 

   

3 

synaptic weights that form the “memory” or pattern-recognition abilities of the neural 

network. 

Feed-forward neural networks that employ error back-propagation have shown to 

be able to accurately model complex systems of many potentially interrelated variables 

by training with a known data set (Mandic & Chambers, 2001). Back-propagation 

training of a feed-forward neural network involves presenting a set of input values and 

allowing the network to compute an output response. The output is then compared with 

the expected value, an error measurement is made, and the error is propagated back 

through the network to adjust the synaptic weights. The fact that the network will 

converge to an optimal set of weights has been shown by Werbos’ work on the back-

propagation algorithm cited in Mandic & Chambers 2001 text on neural networks for 

prediction. 

Modeling Student Achievement 

The following citations, from a brief sampling of the literature, are demonstrative 

of typical studies, which focus on modeling various factors that may impact achievement. 

In each of these studies, assumptions were tested about the impact certain variables had 

on the sample populations. 

In 2003, Bridglall and Gordon studied the factors leading to high performance in 

African American and Latino students in Department of Defense schools (Bridglall & 

Gordon, 2003). Isaacs studied the impact of counselor interventions (Isaacs, 2003). 

Lashway produced a work in 2002 that serves as a guidebook for school administrators 

on mining performance data and reporting (Lashway, 2002). Russell and Zhang 
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attempted to determine if gender, poverty, or ethnicity impacted performance on the 

Hawaii State Assessment reading test (Russell & Zhang, 2006). Skidmore modeled 

gender, motivation, learning strategies, and other affective factors in attempting to predict 

final exam scores (Skidmore, 2003). Tell and McDonald investigated whether a student’s 

performance in 10th grade could serve as a predictor for their performance in the first 

year of college (Tell & McDonald, 2003). Crawford, Tindal, and Stieber used students’ 

performance in oral reading exercises to predict performance on statewide achievement 

tests (Crawford, Tindal, & Stieber, 2001). House and Keeley focused on graduate 

students in researching the correlation between performance on the Miller Analogies Test 

(MAT) and the ability to predict subsequent graduate student achievement (House & 

Keeley, 1993). And finally, Chen, Campbell, and Suleiman attempted to build a 

prediction model for student performance at a minority professional school using the 

United States Medical Licensure Examination, Medical College Admission Test score, 

medical school freshman grade point average, sophomore course performance, and 

financial aid work-study dollars (Chen, Campbell, & Suleiman, 2001).  

Problem Statement 

Much of the research on academic achievement has been focused on evaluating 

student performance after-the-fact by generalizing study populations to other similar 

populations. These traditional studies, however, typically require a sense of the 

underlying model and the relationships of the variables in that model. In a sense, one 

must completely, or nearly completely, understand the inner workings of the system in 

question. 
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Developing predictive models of student achievement, as evidenced by the 

literature, is the focus of real interest within the education community. However, 

traditional studies continue to focus on model development first, followed by the analysis 

of a small number of independent variables. It is expected that the pattern recognition 

capabilities of neural networks will overcome the inaccuracy, lack of generalizability, 

and limitations on independent variables present in more traditional modeling techniques. 

Goal Statement 

This research seeks to develop a neural network model that can accurately predict 

student achievement on standardized math and reading tests and thus provide a 

mechanism for identifying students who are at risk of under-performing.  

To build a neural network model capable of predicting math and reading 

proficiencies as reported in the Educational Longitudinal Study: 2002 and to test the 

prediction accuracy of feed-forward, back-propagation neural networks, this study will 

focus on five groups of non-curricular variables as defined by the Educational 

Longitudinal Study: 2002 (ELS: 2002). The ELS: 2002 collected data on 15,362 high 

school sophomores from 752 public, Catholic, and private schools to produce a general-

purpose dataset for the study of various educational policy issues. (Ingels et al, 2005). 

Significance of the Study 

The value in this research comes from its attempt to generalize a predictive 

framework for student achievement based on non-curricular variables present across all 

institutions, rather than curricular attributes which are often specific to a given state, 

school district, or school. Further, the ability to predict student achievement serves 
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educational administrators, teachers, and parents by identifying those students at risk of 

underperforming and providing early opportunities for intervention. In the shadow of 

national assessments such as NCLB, Goals 2000, America 2000, and others (Holbrook, 

2003) as well as similar state and local initiatives, the sooner at-risk students or settings 

can be identified, the sooner interventions can occur. 

Limitations of the Models 

As with any modeling exercise, certain limitations arise through the data, the 

mathematical tools, or both. From a data perspective, this study will focus on a known 

population of high school sophomores. Therefore, the resulting model will only be 

applicable to other sophomores. Further, the study examines students in Public, Private, 

and Catholic schools. Data from Charter school students was not available in the ELS: 

2002 study. As for the mathematical tools, due to the black box nature of neural network 

modeling, while the model may prove to be more accurate than traditional regression it 

will not provide an explanation of what parameters should be changed for an at-risk 

student in order to increase their chances of success. 

Definition of Terms 

Accountability. In the context of this study, accountability refers to the 

responsibility held by schools, school administrators, and teachers to ensure that students 

are making adequate academic progress. 

Axon. An outgoing, branched fiber from a biological neuron, which carries a 

neuron’s signal to the input of other neurons. 
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Data Driven Decision Making. The act of basing policymaking and other decision 

processes on quantifiable measures. 

Data Mining. The act of using various pattern recognition techniques to search for 

patterns in a large pool of data. 

Dendrite. An incoming, branched fiber of a biological neuron that receives input 

signals from other neurons. 

Dichotomous Output. An output with only two possible states. 

Hyperplane. An object in n-dimensional space having n-1 dimensions and 

dividing the n-dimensional space into two parts. For example, a point is hyperplane that 

divides a line into two rays; a line is hyperplane that divides a plane into two planes; and 

a plane is a hyperplane that divides 3-dimensional space into two spaces. The concept can 

be carried into as many dimensions as required. 

Linear Function. A function resulting in a straight line, generally of the form 

f(x)=mx+b. 

Logit. The logarithm of the odds of probability p where the odds are expressed as 

p/1-p. 

Neural Network. In the context of this work, a neural network is a collection of 

artificial neurons arranged in layers with every neuron in a given layer fully connected 

via synaptic weights to the neurons in the following layer. 

Neuron. In the context of a neural network a neuron is the fundamental processing 

unit that takes a weighted sum of its inputs and passes that value through a transfer 

function to product an output. 
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Non-linear Function. A function whose graph does not result in a straight line and 

for which each point may have a different slope. 

Probit. A “probability unit” defined by Charles Bliss used to generate a more or 

less straight-line plot of probability of the normal distribution. Also, a technique used in 

regression with a dummy coded (dichotomous) dependent variable.  

Synaptic Weight. In the context of this work a synaptic weight connects a neuron 

in one layer to a neuron in the following layer and is used to strengthen or diminish the 

output of the first neuron as it passes to the input of neuron in the next layer. 

Topology. In the context of this work topology refers to an arrangement of 

neurons and layers in a neural network. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

Neural Network Overview 

Neural Networks have been an on-again, off-again research area in both computer 

science and cognitive psychology. Neural networks, in a nutshell, are an attempt to model 

the biological processes that occur in the human brain that allow it to learn, remember, 

and predict. Fundamentally, the human brain stores and processes information via 

neurons and the connections formed between neurons. Biologically speaking, a neuron 

consists of a dendritic tree that collects input signals from other neurons, a cell body, 

which integrates the inputs and generates a response, and a branching axon that 

distributes the response to other neurons (Reed & Marks, 1999). 

The first neural network model, created by Warren McCulloch and Walter Pitts in 

the early 1940’s featured digital neurons with no learning capability (Blum, 1992). 

Shortly thereafter, Donald Hebb proposed the idea of Hebbian learning which detailed a 

method of altering the synaptic weights between neurons that enabled networks to learn. 

Frank Rosenblatt furthered this idea with his work on what would come to be known as 

perceptrons, when he published the perceptron convergence theorem, which provided a 

methodology for updating synaptic weights in a way that would guarantee convergence 

on an optimal set of weights (Blum, 1992). 

Not everyone was convinced of the utility of machine learning based on 

biological systems, and in the late 60’s Marvin Minsky and Seymour Papert worked 

together to disprove Rosenblatt’s claims regarding the usefulness of perceptrons. Minsky 
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and Papert ultimately discovered that a single layer of perceptrons, no matter how large, 

could not do something as simple as representing the various states of the exclusive-or 

function (XOR). Given two inputs, A and B, the XOR function returns true if A = true or 

B = true and returns false if both A and B = true or both A and B = false. In other words, 

one or the other must be true, but not both. Seemingly discredited, neural networks faded 

from the limelight until 1974 when the XOR problem was solved and multi-layer neural 

networks utilizing a new error propagation algorithm were born (Satinover, 2001). 

Werbos developed the back propagation algorithm, which supported learning in 

multi-layer neural networks and, along with that, the ability to approximate any non-

linear function with a sufficiently large network (Blum, 1992). This is not to say that 

neural networks are without limits. The previous statement “sufficiently large neural 

network” implies that a mathematical proof may exist for a network topology to be able 

to approximate any function, however, in practical terms, the network may need to be so 

large that it is infeasible to implement in practice. 

This begs the question, “how do neural networks approximate non-linear 

functions?” In general terms, a function is something that maps a set of input values to a 

set of output values. This becomes interesting when we begin to group certain output 

conditions into recognizable patterns so that certain groups of inputs produce an output 

that falls in the same region as the other outputs from the group of inputs. In this way, 

groups of inputs (conditions) become recognizable as belonging to a certain class (output 

region). A non-linearly separable function produces many such output regions, depending 

on the function, and requires many hyperplanes to define the regions. Multi-layer neural 

networks permit the approximation of non-linear functions by being able to produce as 
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many hyperplanes as needed depending on the size of the neural network (Reed & Marks, 

1999). 

The premise then is that neural networks can learn from examples, which define 

the regions (classifications), and then, when presented with new inputs (conditions) 

correctly classify the new output as belonging to the correct group. It is this sort of 

supervised learning neural network that is of interest for this study on predicting 

academic performance. 

Neural Network Implementation 

Neural networks provide a unique mechanism for the study of student 

achievement due to the fact that they are often applied in complex pattern recognition 

problems and also with time-varying sets of data (Mandic & Chambers, 2001). In their 

simplest form, neural networks are composed of arrays of computational elements each 

taking one or more input values, performing a computation on the inputs and producing 

an output which is distributed to one or more additional elements or considered the output 

of the network as shown in Figure 2-1.  
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Figure 2-1. Three layer neural network model 

 

Neural networks learn, as it were, by loosely simulating the behavior of biological 

neurons in the brain in which connections between neurons either favor or inhibit the 

transmission of signals from one neuron to the next. Whether or not the synaptic 

connection between two neurons is excitory or inhibitory is the result of learning that has 

occurred. Excitory connections are typically those with strong synaptic connections that 

enhance the outputs of neurons in the previous layer and inhibitory connections are those 

with weak synaptic connections. 

In a neural network, the behavior of biological synapses is captured through 

synaptic weights. Synaptic weights are applied to the inputs, usually by multiplying the 
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input times its weight, to either strengthen or diminish the signal. Figure 2-2 shows a 

subset of the connections in the example model with their weights. 

 

 

Figure 2-2. Synaptic weighting of connections 

 

The final process in computing the output of a neural network model involves 

each neuron summing its weighted inputs and then providing that result as input to a non-

linear “squashing” function, f(x), in order to constrain the output of the neuron to some 

known range of values such as 0,1 or -1,1. Common functions include inverse tangent 

(tan-1) and sigmoid (1/1+e-1). These continuous, non-linear functions ensure that neuron 

outputs fall within a known range as shown in Figure 2-3. 
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Figure 2-3. Processing neuron outputs through a non-linear function 

 

Neural Networks in Use  

One of the attractive features of the neural network approach is that there is no 

real penalty, save a computational one, for modeling as many input variables as possible. 

One of the behaviors of neural networks is that they are good at determining which input 

factors are significant and strengthening those synaptic connections, and which inputs 

represent noise, or are of little value and diminishing their effect on the network’s output. 

A review of the Institute of Electrical Engineers and the Institute of Electrical and 

Electronics Engineers (IEE/IEEE) publications demonstrates a growing interest in neural 
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networks for prediction. In 1990 approximately 10 articles were published. In 1999 that 

number rose to nearly 140 (Mandic & Chambers, 2001). 

In reviewing the literature on the application of neural networks, two facts 

became evident 1) There has been very little written on the use of neural networks in 

predicting academic performance; and 2) There has been much more written on the 

applications of neural networks in other fields. There do, however, seem to be two broad 

classifications of systems in which neural networks are applied, natural and synthetic.  

Naturally occurring systems include topics such as weather, geology, and the 

environment while synthetic systems focus on man-made topics such as the stock market, 

finance, information retrieval and academics. The field of medicine was slightly different 

in that it seems to straddle the line between synthetic and natural systems because the 

application of neural networks in that field often involves a natural system, such as 

cancer or heart disease detection, in conjunction with man-made treatments and medical 

procedures. 

In this review of neural networks in use, examples are provided of applications in 

both natural and synthetic systems. Special emphasis, however, will be placed on 

applications in education, since that is the central topic of this research. 

Natural Systems 

The literature reveals that there are many examples of neural network models 

utilized for predictive purposes. For instance, a neural network was employed to forecast 

the runoff due to daily precipitation, temperature, and snowmelt for a watershed in 

Maryland (Tokar & Johnson, 1999). The neural network model in this study compared 
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favorably to more common statistical regressions or simple conceptual models ordinarily 

used.  In addition, the authors found that the model reduced the necessary size of 

calibration data and reduced the time necessary to calibrate the model while at the same 

time producing more accurate predictions in a more flexible manner. 

In another work, a neural network was used to aid in predicting tornado formation 

as a result of updrafts during severe thunderstorms (Marzban & Stumpf, 1996). Data 

extracted from Doppler radar feeds comprising 23 separate variables were provided as 

input to a feed-forward neural network, the output of which was the predicted existence 

of a tornado. Compared to existing rule-based algorithms and discriminant analysis, the 

neural network model proved to be more accurate. 

The prediction of stream flow (flash floods) and water quality was the focus of the 

2006 work of Sahoo, Ray, and De Carlo. The researchers in this study employed a back-

propagation neural network in the assessment of the quantity and quality of running water 

in Hawaii. Their model, which used rainfall, stream flow, stream stage and water quality 

values as inputs accurately predicted the resultant stream flow with an R value of 0.99 

(Sahoo, Ray, & De Carlo, 2006). R in the case of this study represented the line of exact 

fit with 1.0 being a perfect fit between the model and the measured values. 

Martynenko and Yang employed a neural network to model the drying 

characteristics of ginseng. This problem is particularly challenging because ginseng root 

is still biologically active and counteracts the drying action through internal physiological 

processes. In particular the drying rate is known to be non-linear at the beginning and end 

of the drying process (Martynenko & Yang, 2006). By way of validation they compared 

their neural network model to the performance of previously established models such as 
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the exponential model and Page’s model and found that the neural network model gave 

the best fit for their experimental data. 

In modeling another natural phenomenon, a researcher built a neural network for 

predicting the ozone forecast in an industrialized urban area (Yi, 1996). This article 

points out that while more conventional models exist, they need to be more accurate and 

that the interplay of the meteorological variables and photochemical reactions is complex. 

As previously discussed in this paper, neural networks are efficient at pattern recognition, 

and the author of this work used that to his advantage and found that a neural network 

approach was superior in estimating ozone concentrations over more traditional statistical 

approaches. 

Synthetic Systems 

On to more synthetic activities, neural networks are also at use in the area of 

finance. Researchers at the University of Oklahoma built a neural network for bankruptcy 

prediction (Odom & Sharda, 1990) and found that it compared favorably to the more 

traditional method of multivariate discriminant analysis. 

Stock prediction is also an area of focus for neural networks and three researchers 

studied the accuracy of three separate neural network topologies for market forecasting 

(Saad, Prokhorov & Wunsch, 1998). Their findings were that each of the network layouts 

was feasible and performed better than conventional stock analysis tools. In a separate 

text by Mandelbrot and Hudson, The Misbehavior of Markets, they state “Wall Street has 

long been the computer industry’s biggest customer, unleashing ‘genetic algorithms,’ 
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‘neural networks,’ and other computational techniques on the market…” (Mandelbrot & 

Hudson, 2004). 

Exchange rate prediction was the subject of the work of Ince and Trafalis. The 

challenge presented by this problem is found in the inherent efficiency of financial 

markets. That is, any information that would make one direction favorable over another is 

quickly known by all, and the market again equalizes. Nevertheless, the authors 

compared the non-parametric approaches of support vector regression and artificial 

neural networks and found that both performed well when coupled with the appropriate 

input selection (Ince & Trafalis, 2005). 

Murat and Ceylan studied the ability to forecast energy transport demand in 

Turkey in their 2006 work with neural networks. The authors constructed a feed-forward 

neural network and compared its modeling ability to that of the model developed by the 

Ministry of Energy and Natural Resources (MENR). Using as input the annual gross 

national product (GNP), population, and vehicle density, they found the neural network 

resulted in a lower total minimum average error when compared to MENR predictions 

(Murat & Ceylan, 2006). 

Predicting the final prices of online auction items was the focus of the 2006 work 

of Xuefeng, Lu, Lihua, and Zhao. This study collected auction data from a single auction 

site for all auctions of an identical item and based the predictive model on 11 seller 

attributes such as auction start and stop time, seller credibility (as reported by the auction 

web site), shipping and payments methods, and the final price. Five bidder attributes were 

also included in the model including bidder credibility, bid amount, item demand, and bid 

time. A three layer feed forward neural network was then constructed and trained using 
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the familiar back-propagation algorithm. In summary, the neural network demonstrated 

an average accuracy of 91.29% while their comparison method of logistic regression 

recorded an average accuracy of just 76.46% (Xuefeng, Lu, Lihua, & Zhao, 2006). 

Information filtering and retrieval represents another area of applied neural 

networks. With the explosion of information on the Internet and in globally networked 

databases, as well as in the files on our personal computers and in the contents of our 

email messages, efficient means of search and retrieval have become paramount. Boger, 

Kuflik, Shoval, and Shapira applied a neural network approach to information filtering 

and retrieval in their 2000 work and found that their neural network approach 

outperformed traditional keyword filtering systems (Boger, Kuflik, Shoval, & Shapira, 

2000). 

Neural Networks in Education 

In a 2004 study, Naik and Ragothaman explored a neural network’s ability to 

predict the success of MBA students as part of the admissions process at a private 

midwestern university. In this work, variables typically used in the college admission 

screening process were identified such as overall undergraduate GPA, junior/senior GPA, 

undergraduate major and institution, and GMAT score.  

These variables are typically evaluated with various statistical models such as 

discriminant analysis, multiple regression and stepwise regression to predict an 

applicant’s success in an MBA program. Naik goes on to point out some of the 

shortcomings of these typical approaches such as the assumption that there is multivariate 

normality, the rather skewed distribution of graduate GPAs found in other research such 
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as Abedi in 1991, and that statistical models only use objective data disregarding 

potentially relevant subjective data. 

The neural network topology for the Naik and Ragothaman study was a three-

layer back-propagation network. Ten variables comprised the input layer with 1 neuron in 

the output layer. The size of the hidden layer was unspecified. The result (output) of the 

network was either a 1 (successful) or 0 (marginal). A successful MBA student was 

deemed to be one who achieved an overall GPA of 3.3. A marginal student would have 

achieved a GPA less then 3.3. 

After training, which consisted of using historical data from admitted MBA 

students and their final GPA, the neural network was used to analyze 184 MBA 

applicants. The results of the neural network were then compared to the results of two 

common linear models, Logit and Probit.  

The results showed that the neural network model correctly predicted 93.38% of 

the successful students and 80.90% of the marginal students for an overall accuracy of 

89.13%. Comparatively speaking, Logit correctly predicted 86.78% of the successful 

students and 46.03% of the marginal students for an overall accuracy of 72.83% and the 

Probit model correctly classified 87.60% of the successful students and 46.03% of the 

marginal students for an overall accuracy of 73.37%. 

These results would seem to indicate that the neural network model was able to 

make use of some subtleties in the relationships of the variables that defy more traditional 

linear regression. In either case, as is intended for this research, the authors suggest that 

their predictive tool be used as an additional factor in aiding decision making, not as the 

only factor. 
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Hoefer and Gould also compared neural networks to linear and non-linear 

regression in an attempt to forecast the success of MBA students. In their 2000 study they 

found the neural network to only be marginally better than the traditional methods. They 

did note, however, that the neural network model allowed them to include qualitative 

variables in the model such as gender, birth date, and students graduating from tier 1 

schools (Hoefer & Gould, 2000). 

In Jing Luan’s 2002 paper presented at the Annual Forum for the Association of 

Institutional Research (Luan, 2002) he proposed the use of neural networks to predict the 

likelihood of student dropouts in higher education. Using the predictive capacity of 

neural networks allows the college to intervene prior to a dropout in an effort to enhance 

retention. 

Gonzalez and DesJardins also apply the predictive capabilities of neural networks 

in their 2001 and 2002 papers, which studied the ability to predict what engineering 

school students would apply to. They then compared this to the traditional logistic 

regression modeling and discovered that neural networks proved an enhancement in 

making this sort of prediction (Gonzalez & DesJardins, 2002, 2001). The authors point 

out, along with a neural network’s predictive ability, the additional benefit of not having 

to first culled the relationships between variables, as required in more traditional 

statistical analyses. 

Finally, neural networks have also been applied in the field of education to 

forecast educational spending. In the 1999 work of Baker and Richards, three neural 

network architectures were used to predict the 1991-1995 per-pupil spending in U.S. 

public elementary and secondary schools. Their results were compared to the National 
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Center for Educational Statistics’ multivariate regression model and found to range from 

comparable to superior (Baker & Richards, 1999). 

Summary 

This review of neural network applications reveals a common thread – in all 

cases, neural networks seem to be applied when the interrelationships among variables 

are either too numerous to account for or too complex to model well using traditional 

mathematical constructs. In many cases, where existing models are already in place, they 

seem to make assumptions that put boundaries around the solution space in order to 

permit the construction of a finite model. It is here that neural networks excel in allowing 

the model to be what it is and discerning the patterns and relationships; learning as it 

were, from pre-existing data.  
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CHAPTER 3 

METHODOLOGY 

Research Question 

This study sought the answer to the question, “Can a neural network model of 

non-curricular variables provide greater accuracy in predicting student performance on 

standardized math and reading tests for high school sophomores when compared to 

standard multiple regression?” The non-curricular variables that were used came from the 

National Center for Educational Statistics Educational Longitudinal Study: 2002 

encompassing 15,362 high school sophomores from 752 public, Catholic, and private 

schools. 

Expected Result 

Given a Neural Network’s proven ability to accurately model both linear and non-

linear systems, it was expected that the Neural Network would outperform the standard 

regression predictors in the prediction of both math and reading scores. This would seem 

plausible given that that multi-layer Neural Networks are able to model non-linear 

functions to an arbitrary degree of precision (Satinover, 2001). Further, Neural Networks 

have been shown to outperform linear predictors in a variety of applications (Mandic, 

2001). 

Model performance was compared via standard error of estimate (RMSE) and 

Wilmott’s indices of agreement (d1 and d2). A second comparison was also performed 

with varying levels of noise introduced into the data. It was expected that the accuracy of 
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both models would degrade in this second case but that the neural network would degrade 

more gradually. 

Classification of Independent Variables 

The non-curricular data collected by the ELS: 2002 were organized into five 

categories. The five categories include 1) socio-demographics, 2) students’ perceptions of 

school, 3) extracurricular and sports activities, 4) students’ use of time outside of school, 

and 5) students’ values, expectations and future plans.  

Prior studies such as the National Longitudinal Study of the High School Class of 

1972, the High School and Beyond Longitudinal Study, and the National Educational 

Longitudinal Study of 1988 have all pointed to a relationship between socio-

demographics and student achievement (Ingels et al, 2005). Studies by Green et al 

(1995), Ladd and Birch (1997), and Osterman (2000) connected students’ perceptions of 

their school and teachers to educational expectations and achievement test scores (Green, 

et all 1995; Ladd and Birch, 1997; Osterman, 2000). 

The relationship between extracurricular activities and achievement, however, is 

less clear. As reported by Ingels et al, it is tempting to associate high achievement with 

participation in extracurricular activities, but this cannot be confirmed. This is partly 

because it is difficult to determine if participants in extracurricular activities perform 

better due to those activities or because they tend to be from higher socio-demographic 

status (Ingels et al, 2005). In the realm of how students spend their time outside of the 

classroom, Ingels et al report that findings vary with respect to affect on achievement. 
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Participation in extracurricular activities, homework outside of school, and reading for 

pleasure tend to be positively associated with achievement though (Ingels et al, 2005).  

Ingels et al (2005) did not relate the final category, life values and student 

expectations, to achievement in anyway, but this category captures student perceptions of 

themselves and what they believe parents, teachers, and counselors expect of them. It is 

conceivable then, that factors in this category may impact student achievement as the 

students’ perceptions in this area likely have direct influence on student motivation (e.g., 

Pintrich & De Groot, 1990, Bandura 1986, Bandura 1997, Hammouri 2004, Pajares & 

Graham 1999). 

Tables 3-1 through 3-5 outline the variables to be studied in each of the five 

categories. The name(s) in parentheses is the variable name from the ELS: 2002 data set. 

These variables represent the independent variables in the model. For a full inventory of 

independent variables, including survey response options, please refer to Appendix A. 
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Table 3-1 

Socio-Demographic Variables 

Variable Description 

Family composition (BYFCOMP) A nominal measure of the family 
configuration such as (1) mother and 
father and (2) mother and male guardian. 

Father’s education (FATHED) A nominal measure of the father’s highest 
level of education such as (1) Did not 
finish high school and (2) Graduated from 
high school. 

Mother’s education (MOTHED) A nominal measure of the mother’s 
highest level of education similar to 
FATHED. 

Parent’s education (PARED) A nominal measure similar to FATHED 
and MOTHED reporting the highest level 
of education attained by either parent. 

Socioeconomic status (SES1QU) An ordinal measure of the student’s 
socioeconomic status as classified in one 
of four quartiles. 
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Table 3-2 

Student Perceptions of School 

Variable Description 

Region (BYREGION) A nominal measure of the geographic 
region in which the school is located such 
as Northeast or South. 

Type (BYSCTRL) A nominal measure of the type of school 
such as public, Catholic, or Private. 

Location (BYURBAN) A nominal measure of the metropolitan 
status of the school such as Urban, 
Suburban, or Rural. 

Cutting class (BYS24B) An ordinal measure in five ranks of how 
many times the student skipped class. 

No books/homework (BYS38B) An ordinal measure in four ranks of how 
often the student came to class without 
texts or completed homework. 

High school program (BYS26) A nominal measure of the student’s self-
reported high school program such as 
General, College Prep (Academic), or 
Vocational (including technical or 
business). 

Crime and bullying (BYS22A, BYS22B, 
BYS22C, BYS22D, BYS22E, BYS22F, 
BYS22G, BYS22H) 

These ordinal measures indicate how 
often a student experienced various types 
of school crime or bullying. The ranks 
include never, once or twice, and more 
than twice. 

Importance of good grades (BYS37) An ordinal measure in four ranks of the 
importance of grades to the student. 

Likes school (BYS28) An ordinal measure in three ranks of how 
much the student likes school. 

Reasons for going to school (BYS27A, 
BYS27B, BYS27C, BYS27D, BYS27E, 
BYS27F, BYS27G, BYS27H, BYS27I) 

Ordinal measures in four ranks of various 
reasons the student attends school. 

School Rules (BYS21A, BYS21B, 
BYS21C, BYS21D, BYS21E) 

Ordinal measures in four ranks of how 
much students agreed or disagreed with 
various school rules. 

School safety (BYS20J, BYS20M, 
BYS20N) 

Ordinal measures in four ranks of how 
much students agree or disagree with 
various statements about school safety. 

School and teachers (BYS20A, BYS20B, 
BYS20C, BYS20E, BYS20F, BYS20G) 

Ordinal measures in four ranks of how 
much students agreed or disagreed with 
various statements about their teachers 
and their school. 
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Table 3-3 

Extracurricular and Sports Activities 

Variable Description 

School activities (BYS41A, BYS41B, 
BYS41C, BYS41D, BYS41E, BYS41F, 
BYS41G, BYS41H, BYS41I) 

Indicates which school sponsored 
activities, if any, in which the student 
participated. 

Intramural (BYS39A-BYS39H) Indicates which intramural sports, if any, 
in which the student participated. 

Interscholastic sports (BYBASEBL, 
BYSOFTBL, BYFOOTBL, BYSOCCER, 
BYTEAMSP, BYSOLOSP, 
BYBSKTBL) 

Indicates which interscholastic sports, if 
any, in which the student participated. 

Work (BYS72) A nominal measure of the students work 
history answering the question “have you 
ever worked for pay?” with the responses 
No, Yes, and I am currently employed, 
and Yes, but I am currently not employed. 
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Table 3-4 

Student Use of Time 

Variable Description 

Computer use (for schoolwork 
BYS46A/other than schoolwork 
BYS46B) 

A measure of the number of hours spent 
by the student using computers for 
schoolwork and purposes besides 
schoolwork. 

Computer use for various purposes 
(BYS45A, BYS45B, BYS45C) 

Ordinal measures of how much the 
student used computers, in any location, 
for various purposes. The choices are 
Never, Rarely, Less than once a week, 
Once or twice a week, Almost Every Day, 
or Every Day. 

Extracurricular activities (BYS42) A measure of the number of hours the 
student spent on school-sponsored 
extracurricular activities. 

Math homework (in school BYS35A/out 
of school BYS35B) 

Measures of the number of hours the 
student spent on math homework. 

English homework (in school 
BYS36A/out of school BYS36B) 

Measures of the number of hours the 
student spent on English homework. 

Total homework (in school BYS34A/out 
of school BYS34B) 

Measures of the number of hours the 
student spent on homework per week in 
all subjects. 

Outside reading (BYS43) A measure of the number of hours the 
student spent reading material not 
assigned by school. 

Working for pay (BYS75) A measure of the number of hours per 
week a student currently works or has 
worked in the past if they are currently 
unemployed. 
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Table 3-5 

Student Values Expectations and Future Plans 

Variable Description 

Educational expectations (STEXPECT) A nominal measure of the student’s 
expected highest level of academic 
achievement such as Less than high 
school, high school, 2 year community 
college or vocational school, and so on. 

Education past high school (BYS57) A nominal measure of the student’s 
expectation of continuing their education 
past high school, if they reported they 
thought they would complete high school. 
Values are Yes, right after high school, 
Yes, after staying out of school for 1 year, 
Yes, but I don’t know when, No, I don’t 
plan to continue my education after high 
school and so on. 

Participate in college sports (BYS60) An indicator of whether or not students 
who indicated they planned to continue 
their education planned to participate in 
college sports (not intramural). 

Athletic scholarship (BYS61) For students planning to continue to their 
education and planning to participate in 
college sports, they were asked to indicate 
if they hoped to receive an athletic 
scholarship. 

Life values (BYS54A-L, BYS54N, 
BYS54O) 

Nominal measures from Not Important to 
Very Important, of the student’s 
perception of the importance of a series of 
life values related to work and education, 
family and friends, and the community. 

Right after high school (BYS66A, 
BYS66B, BYS66F) 

Student’s perceptions of what they think 
is the most important thing to do right 
after high school from the point of view 
of their parents, school counselor, and 
favorite teacher. The possible choices 
were Get a full-time job, Enter a trade 
school, Enter the military, Get married, 
Whatever the student wants to do, or 
Don’t know. 
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Dependent Variables 

The dependent variables for the model were the standardized math and reading 

scores. For the purposes of the ELS: 2002 study, the math and reading achievement 

scores were standardized to a mean of 50 and a standard deviation of 10. 

 

Table 3-6 

Dependent Variables 

Variable Description 

Standardized math (BYTXMSTD) Standardized math achievement score. 
Standardized reading (BYTXRSTD) Standardized reading achievement score. 

 
 

Procedures 

Sample Selection 

The population being studied consisted of 15,362 high school sophomores from 

752 public, Catholic, and private schools. Since all the data had been collected and is in 

electronic form, the entire population was theoretically available for study. For the 

purposes of this research, however, a representative sample of 10% of the population was 

selected and used to A) train the neural network model and B) develop the regression 

prediction equations. In determining the sample size a power table was consulted to 

ensure that comparisons would be statistically meaningful. In order to detect small to 

medium effect sizes at power = .80 and alpha = .05, this study requires 800 (small effect) 

and 85 (medium effect) samples respectively (Cohen, 1977). Since this study used 
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approximately 10% of the total population, or 1,534 samples, there was more than 

enough data to provide a statistically meaningful analysis. Another 10% of the population 

(distinct from the first 10%) was also selected to A) test the accuracy of the neural 

network model and B) test the accuracy of the regression prediction equations. 

Prior to case selection, the data were cleaned so that any cases containing missing 

or invalid responses were removed. Following the cleaning process 3,068 cases remained. 

Since the original intent was to use a sample size of 10%, or 1,536 cases, for training and 

test purposes, the remaining 3,068 cases were split into two groups of 1,534 cases each. 

Case selection was performed with an algorithm developed specifically for this 

study that would ensure an even distribution of survey responses in each of the two 10% 

samples. Initially, the data were dummy coded so that they would be in a format suitable 

for the regression analysis and the scores were scaled to the range [0.0, 1.0] by simply 

dividing by 100. Scaling the scores into this range facilitated training the neural network 

since the outputs of the neural network are limited to the range [0.0, 1.0] as a 

consequence of using a sigmoid transfer function in the output layer. 

The case selection process then built a map for each dummy variable of those 

cases for which each variable had a value of 1. Case selection then proceeded by 

randomly selecting a dummy variable, without replacement, and then randomly selecting 

one of the cases for which this variable had the value 1. Once this process had cycled 

through all of the dummy variables, the pool of dummy variables was recycled and the 

process repeated until 1,534 cases had been selected. The overall algorithm is shown in 

Figure 3-1. 
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The selected 1,534 cases were then written to a file to be used for training the 

neural network and developing the regression equation. The remaining 1,534 cases were 

written to another file to be used to test the performance of the neural network and 

regression equations. Four additional files of test data were also produced at this time, 

one each with 10, 15, 20, and 25 noisy variables introduced. The purpose of these 

additional test files was to measure how each model degraded as the quality of the data 

degraded. To introduce noise into the data, 10 variables were selected at random and 

marked as missing. For each subsequent file, another 5 variables were selected at random 

and also marked as missing thus allowing each noisy test file to carry forward the noise 

from the previous file. Then an additional 5 noisy (missing) variables were added. 

Following the case selection process, the 10% training and test samples were 

compared to the total population of cases to ensure that the distribution of standardized 

math and reading scores was similar. The math and reading scores in the ELS: 2002 data 

were standardized to a mean of 50 and a standard deviation of 10. Histograms for both 

the math and reading scores for the total population and the 10% samples show that the 

case selection process had not skewed the distribution of scores. The histograms are 

shown in Figures 3-2 through 3-7. 

A program written for this study performed the case selection process. The source 

code for the software is shown in appendix B. 
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Figure 3-1. Case selection method 
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Figure 3-2. Histogram of reading scores for the total population 
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Figure 3-3. Histogram of reading scores for the training sample 
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Figure 3-4. Histogram of reading scores for the test sample 
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Figure 3-5. Histogram of math scores for the total population 
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Figure 3-6. Histogram of math scores for the training sample 
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Figure 3-7. Histogram of math scores for the test sample 

 

Instruments 

A three-layer back propagation neural network and regression prediction 

equations were developed in an effort to forecast student math and reading scores based 

on the non-curricular independent variables. In the case of the regression equations, 

dummy variables were created for all nominal and ordinal variables, and separate 

regression equations were developed to predict math and reading scores independently. 

The regression equation was developed by importing the dummy coded training 

data, which was produced by the case selection process, into SPSS and performing a 

linear regression with 103 independent variables. This regression was performed twice: 
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once for math scores and once for reading scores. The resulting regression coefficients 

were then exported from the SPSS output viewer to an excel spreadsheet as shown in 

Figure 3-8. 

 

 

Figure 3-8. Regression coefficients exported as an Excel spreadsheet 

 

The spreadsheet was then reduced to two columns of data representing the 

variable names and the regression coefficients as shown in Figure 3-9. 
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Figure 3-9. Variable names and regression coefficients  

 

This file was then saved as a comma-separated-value file, which was read by the 

cross-validation software written for this study. The cross-validation program first read 

the variable names and coefficients and then a file of test data. Next, it executed the 

regression equation for each case in the test file and, when complete, computed the 

RMSE, d1, and d2 statistics. See the analysis section in this chapter for further discussion 
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of the comparison statistics. The source code the cross-validation program is shown in 

appendix C. 

The neural network model employed by this study was a three-layer, feed-forward 

neural network trained via resilient back-propagation. The input layer consisted of 103 

neurons, one for each feature (independent variable) identified in the ELS: 2002 data set.  

The input neurons were fully connected to the hidden layer. This means that each 

neuron in the input layer was connected to every neuron in the hidden layer. The hidden 

layer consisted of 30 neurons. The sizing of the hidden layer has no hard and fast rules 

and, generally speaking, is usually smaller than the input layer but larger than the output 

layer. Often, for a given application, several different hidden layer sizes are tried in an 

attempt to balance network accuracy and training time since the more neurons there are in 

the hidden layer, the more computationally expensive the network will be to train.  

The output layer consisted of two neurons, one each to provide the network’s 

prediction of the student’s math and reading scores. Each neuron in the hidden layer was 

fully connected to the neurons in the output layer. 

Figure 3-10 displays the neural network model. Note that connections are only 

shown from the first neuron in the input layer to the hidden layer and from the neurons in 

the hidden layer to the first output layer neuron. The input layer neurons have been 

grouped in the figure by the five classifications of data present in the ELS: 2002 for 

illustrative purposes but otherwise have no impact on the topology or functioning of the 

network. 
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Figure 3-10. Neural network model 

 

Training the neural network consisted of presenting the file of training cases to 

the neural network, computing the RMSE, and propagating the error back through the 

synaptic weights to minimize the network’s error. Each pass through all of the test cases 

represented one training epoch, and the network was trained for a total of 500 epochs. 

To present each case to the neural network, the input values from the training data 

were encoded for the 103 input neurons. Encoding the input variables consisted of scaling 

each input value to the range [0.2, 0.8] based on the position of the input value in the list 
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of possible input values. Missing values were encoded as 0. For example, the variable 

STEXPECT had the following list of possible values of -1, 1, 2, 3, 4, 5, 6, and 7. If the 

response for a given case was 4, then the encoded value for the neural network would be 

0.2 + (4/7)*0.6 = 0.54286. Scaling the input values in this way helps to avoid swamping 

the hidden layer neurons, given that each hidden layer neuron has 103 incoming 

connections. 

One risk, however, of extensive training of a neural network is over-fitting. Over-

fitting occurs when the neural network so tightly fits the training data that it doesn’t 

generalize well to the overall population. To avoid this problem, 10%, or 153 cases, of 

the training data were set aside. The network was then trained using the remaining 1,381 

training cases. After every 10th epoch, the neural network was shown the 153 reserved 

training cases and the RMSE computed. If this RMSE was the best one so far for the 153 

training cases, the state of the neural network was set aside and the training continued. 

When 500 training epochs had completed the final state of the network, the network with 

the best RMSE for the 153 reserved training cases, was saved. 

Once the network had been trained, cross-validation was performed in two steps: 

first by setting the network’s training property to false; second by presenting the network 

with the test data files produced during the case selection process. In this mode the neural 

network would read the test cases, run each case through the network to compute the 

predicted math and reading scores, and then compute the RMSE, d1, and d2 statistics once 

all cases had been processed. See the analysis section for further discussion of the 

comparison statistics. The source code for the neural network program is shown in 

appendices D and E.   
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Data Collection 

Data for this study was borrowed from the National Center for Educational 

Statistic from the Education Longitudinal Study: 2002. The ELS: 2002 collected data 

from school administrators, teachers, parents, and students. For this research, however, 

the primary data of interest comes from the student assessment (standardized math and 

reading scores) and the student survey, with just a few pieces of data from the parent 

survey. 

The ELS: 2002 was administered in a group setting in each school. The items on 

the questionnaire were partly based on past performance as well as continuing relevance 

of items from prior longitudinal studies. The questionnaire was field tested in 2001. This 

field-testing investigated response rates, reliability and factor structure, differential item 

functioning, reliabilities of scales, and inter-item consistency (Ingels et al, 2005). 

Analysis 

Two measures of prediction accuracy were computed for the neural network 

model and the regression equations: 1) standard error or estimate, also known as root 

mean square error (RMSE), and 2) Wilmott’s indices of agreement, d1 and d2. Standard 

error of estimate is the square root of the average of the total squared error between the 

predicted and actual values. This measure is often used in model comparison but suffers 

from sensitivity to outliers. The general form of this measure is  

RMSE = ([Σ(Ŷi – Yi)2]/n)1/2  

where n is the total number of cases. The smaller the value of RMSE the more closely the 

model predicts the actual values. 
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Wilmott’s indices of agreement, d1 and d2, offer another indicator of model fit that 

measures the degree to which a model’s predictions are correct. It does this by showing 

the degree to which the model’s predictions vary about the mean as compared to the 

actual observations’ variance around the mean. d1 is the more conservative measure, 

using simple differences, while d2 uses square differences (Comrie, 1997). For Wilmott’s 

indices of agreement, the closer the measure is to 1, the more accurately the model fits 

the data. The general forms of d1 and d2 are: 
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To compare the performance of the neural network and the regression equations, 

RMSE and d1 and d2 were calculated for the neural network’s predicted math and reading 

scores, as well as for the regression equations’ predicted math and reading scores. Once 

this comparison was completed, the neural network and regression equations were run 

with the same test data but with ever increasing levels of noise introduced into the data. 
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CHAPTER 4 

FINDINGS AND DATA ANALYSIS 

Introduction 

The goal of this study was to compare the performance of a feed-forward neural 

network to multiple linear regression to determine if either could provide more accurate 

modeling of student performance on math and reading achievement tests based on non-

curricular variables. Two separate samples of 1,534 cases each were pulled from the 

survey data to be used for training and cross-validation.  

Once the regression equations had been developed and the neural network trained, 

performance comparisons were made, first with the training data, to see which model 

provided a better fit to the training population, and then with the cross-validation data to 

see which model provided a better fit for cases that had never been seen before. 

Additional comparisons were also made using noisy versions of the cross-validation data 

to see if either model was more resistant to imperfect data. The following tables and 

figures show the results of those comparisons and, in the case of differences, where those 

differences are statistically significant. 

Model Comparison of Training Data 

Following the development of the regression equations and the training of the 

neural network, the comparison statistics RMSE, d1, and d2 were computed for the 

training data, that is, the data used to develop the regression equation as well as to train 

the neural network. For RMSE measures, smaller values indicate better fit with zero 
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being a perfect fit. For the d1 and d2 measures, larger values indicate a better fit with a 

value of 1.0 indicating a perfect fit. For all three measures of fit, the regression equation 

modeled the data more accurately as shown in Table 4-1 and Figure 4-1. 



 

   

50 

 

Table 4-1 

Comparison of Multiple Linear Regression and Neural Network Models with Training 

Data 

Model Math 
RMSE 

Math 
d1 

Math 
d2 

Reading 
RMSE 

Reading 
d1 

Reading 
d2 

Multiple Linear 
Regression 

0.05856 0.64783 0.85112 0.05852 0.64784 0.85406 

Neural Network 0.06557 0.56425 0.78083 0.06644 0.55685 0.77714 
 

 

 
Figure 4-1. Comparison of models with training data 
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This is not necessarily a surprising result as the regression equation is the 

theoretical best possible fit through the training data while the neural network was trained 

to avoid over-fitting. By avoiding over-fitting, the final neural network chosen was not 

the one that necessarily fit the training data as tightly as possible but the one that was the 

best fit for a small reserve of the training data during training as described in Chapter 3. 

Model Comparison of the Cross-Validation Data 

When the models were executed with the cross-validation data, the second 10% 

sample, the results showed that multiple linear regression and the neural network were 

virtually indistinguishable. The neural network had slightly lower RMSE values for both 

math and reading score prediction while the d1 and d2 statistics were nearly identical as 

shown in Table 4-2 and Figure 4-2. 
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Table 4-2 

Comparison of Multiple Linear Regression and Neural Network Models with Cross-

Validation Data 

Model Math 
RMSE 

Math 
d1 

Math 
d2 

Reading 
RMSE 

Reading 
d1 

Reading 
d2 

Multiple Linear 
Regression 

0.08129 0.51019 0.69804 0.08218 0.50927 0.70343 

Neural Network 0.07351 0.50250 0.71164 0.07535 0.50066 0.70230 
 

 

 
Figure 4-2. Comparison of models with cross-validation data 
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Model Comparison of the Cross-Validation Data with Synthetic Noise 

The final comparison involved the performance of each model when faced with 

data involving progressively larger numbers of missing input values. During the case 

selection process, following the selection of the 10% training and cross-validation 

samples, four additional versions of the cross-validation data were produced with 10, 15, 

20, and 25 missing variables respectively. Each model was then run using these 

additional data sets. 

For reading score prediction, the neural network performed slightly better across 

all three measures of fitness. See Tables 4-3, 4-4, and 4-5 and Figures 4-3, 4-4, and 4-5. 

The differences, however, were not statistically significant at an alpha level of .05 

between any of the three measures of fitness. 
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Table 4-3 

RMSE Comparison of Multiple Linear Regression and Neural Network Models for 

Reading Score Prediction with Synthetic Noise 

Model 0  
Mising 
Inputs 

10 
Missing 
Inputs 

15 
Mising 
Inputs 

20 
Missing 
Inputs 

25 
Missing 
Inputs 

Multiple Linear Regression RMSE 0.08128 0.08229 0.09484 0.09777 0.11939 
Neural Network RMSE 0.07535 0.08497 0.08774 0.08769 0.08278 
 

 

 
Figure 4-3. RMSE comparison of reading score prediction 
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Table 4-4 

d1 Comparison of Multiple Linear Regression and Neural Network Models for Reading 

Score Prediction with Synthetic Noise 

Model 0  
Mising 
Inputs 

10 
Missing 
Inputs 

15 
Mising 
Inputs 

20 
Missing 
Inputs 

25 
Missing 
Inputs 

Multiple Linear Regression d1 0.50927 0.47752 0.44784 0.43519 0.39055 
Neural Network d1 0.50066 0.47722 0.47633 0.47829 0.48096 
 

 

 
Figure 4-4. d1 comparison of reading score prediction 
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Table 4-5 

d2 Comparison of Multiple Linear Regression and Neural Network Models for Reading 

Score Prediction with Synthetic Noise 

Model 0  
Mising 
Inputs 

10 
Missing 
Inputs 

15 
Mising 
Inputs 

20 
Missing 
Inputs 

25 
Missing 
Inputs 

Multiple Linear Regression d2 0.70343 0.6686 0.62404 0.60734 0.54806 
Neural Network d2 0.70320 0.66274 0.66079 0.66292 0.66745 

 

 

 
Figure 4-5. d2 comparison of reading score prediction 
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For math scores prediction, again the neural network showed less degradation 

across all three measures of fitness and for the d1 and d2 statistics, the differences were 

statistically significant at an alpha level of .05, td1(4)=2.43, pd1=0.03 (one-tailed) and 

td2(4)=3.21, pd2=0.02 (one-tailed). See Tables 4-6, 4-7, and 4-8 and Figures 4-6, 4-7, and 

4-8. 

 

Table 4-6 

RMSE Comparison of Multiple Linear Regression and Neural Network Models for Math 

Score Prediction with Synthetic Noise 

Model 0  
Mising 
Inputs 

10 
Missing 
Inputs 

15 
Mising 
Inputs 

20 
Missing 
Inputs 

25 
Missing 
Inputs 

Multiple Linear Regression RMSE 0.08129 0.10062 0.08191 0.08137 0.08649 
Neural Network RMSE 0.07351 0.07553 0.07624 0.08172 0.09606 
 

 

 
Figure 4-6. RMSE comparison of math score prediction 
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Table 4-7 

d1 Comparison of Multiple Linear Regression and Neural Network Models for Math 

Score Prediction with Synthetic Noise 

Model 0  
Mising 
Inputs 

10 
Missing 
Inputs 

15 
Mising 
Inputs 

20 
Missing 
Inputs 

25 
Missing 
Inputs 

Multiple Linear Regression d1 0.51019 0.44535 0.48406 0.46737 0.43895 
Neural Network d1 0.50250 0.50456 0.51160 0.50165 0.45765 
 

 

 
Figure 4-7. d1 comparison of math score prediction 
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Table 4-8 

d2 Comparison of Multiple Linear Regression and Neural Network Models for Math 

Score Prediction with Synthetic Noise 

Model 0  
Mising 
Inputs 

10 
Missing 
Inputs 

15 
Mising 
Inputs 

20 
Missing 
Inputs 

25 
Missing 
Inputs 

Multiple Linear Regression d2 0.69804 0.62124 0.67066 0.65278 0.61710 
Neural Network d2 0.71164 0.70684 0.71357 0.69115 0.63791 
 

 

 
Figure 4-8. d2 comparison of math score prediction 
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Summary 

In terms of model performance the regression equation performed better on the 

training data, although this was not strictly unexpected. In the case of regression, the 

equation was the best possible fit for the training data. The neural network, however, 

avoided over fitting the training data by balancing the fit of the training data with the fit 

of a small set of cases reserved from the training data. Had the neural network been 

permitted to fit the training data as tightly as possible the total error could have been 

reduced to, or near, zero. 

Comparison of the cross-validation data showed virtually no difference in 

performance between the two models. When noise was introduced to the cross-validation 

data, however, some differences did begin to emerge. Visually, the neural network 

appeared to slightly outperform the regression equations for both the math and reading 

scores. The differences, though, were only statistically significant for the d1 and d2 

measures for the math scores. 
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CHAPTER 5 

SUMMARY AND RECOMMENDATIONS 

Introduction 

As stated in Chapter 1, assessing student performance has been a common goal of 

those involved in the education enterprise. Through more accurate modeling, leading to 

more accurate predictions, educators and administrators may be able to glimpse a short 

distance into the future and identify students who are at risk, permitting earlier 

intervention in the hope of increasing the overall success rate of a given student 

population.  

At present, however, modeling and prediction are commonly accomplished 

through a variety of tools such as analysis of variance, regression, and correlation. These 

methods, while very well understood, require a hypothesis that describes the 

interrelationships between the variables being studied. Consequently, studies often focus 

on small sets of variables in order to make the model understandable and the mathematics 

manageable.  

Neural networks provide an alternate modeling tool that can be employed with 

complex data sets having no suitable hypothesis; or, as a means to arrive at a hypothesis 

by exploring a complex pool of data to learn what inferences might be drawn. Inspired by 

the biological processes that describe the function of real neurons and synapses, neural 

networks are able to learn from the data, infer the model from examples and then make 

predictions about never-before-seen cases. 
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The purpose of this study then, was to compare the performance of neural 

network modeling to that of multiple linear regression. These comparisons were drawn 

from a large pool of data collected by the National Center for Educational Statistics, 

using three measures of fit; root mean square error (RMSE) and Wilmot’s indices of 

agreement, d1 and d2. 

Summary of Procedures 

For the purposes of modeling, data collected by the National Center for 

Educational Statistics, Educational Longitudinal Study: 2002 (ELS: 2002) was used to 

supply 103 independent non-curricular variables, and two dependent math and reading 

score variables.  

Since this study focused on the performance of two modeling strategies, data that 

were already described in the literature as related, were chosen rather than discovering 

the theoretical foundation of the model. Specifically, the categories of non-curricular 

variables chosen from the ELS: 2002 were proved to be related to student achievement in 

several studies (Green, et all 1995; Ladd and Birch, 1997; Osterman, 2000; Ingels, et al., 

2005). 

Three pieces of software were developed to clean the data, perform the dummy 

coding required of the nominal and ordinal variables, perform case selection, execute the 

linear regression model, and train and execute the neural network model. The source code 

for these applications, shown in appendices B thru E. SPSS, was used to perform the 

linear regression and generate the regression coefficients for the math and reading score 

predictor equations.  
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The case selection process resulted in a set of cases to be used for training and 

another set to be used for cross-validation. The training data were used to develop 

regression equations for the math and reading scores as well as to train the neural 

network model. Once the regression coefficients had been determined and the neural 

network trained, the cross-validation cases were used to compare predictions made by 

linear regression and the neural network. 

Summary of Findings 

It was expected, based on other studies of neural network modeling, that the 

neural network would provide measurable improvements over regression analysis. This, 

however, was not the case. In a direct comparison of the neural network to multiple linear 

regression, the performance of the two models was virtually identical. The neural 

network had slightly lower RMSE values, where lower values demonstrate a better fit, 

with values of 0.07351 vs. 0.08129 for math scores and 0.07535 vs. 0.08218 for reading 

scores. Linear regression, however, had slightly higher d1 and d2 values for reading, 

where higher values demonstrate a better fit, with values of 0.50927 and 0.70343 vs. 

0.50066 and 0.70230. For math scores, linear regression had a higher d1 value 0.51019 

vs. 0.50250 while the neural network had a higher d2 value, 0.71164 vs. 0.69804. 

A second comparison that introduced synthetic noise into the cross-validation 

data, however, did reveal that the neural network was somewhat more resistant to 

degradation when faced with noisy data. As the cross-validation was performed with 

progressively noisier data the neural network maintained lower overall RMSE values and 
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higher overall d1 and d2 values. This advantage, however, was only statistically 

significant for math score prediction and only for the d1 and d2 measures of fitness. 

These results are somewhat surprising given the results of other neural network 

studies. For instance, in Xuefeng’s study of auction price prediction that compared linear 

regression to a three-layer, feed-forward, back-propagation neural network similar in 

topology to the neural network employed in this study, the results indicated that the 

neural network achieved 91.29% accuracy compared to 76.46% accuracy for regression 

(Xuefeng, 2006). Sahoo’s study of flash flooding and water quality that employed a 

similar neural network but with two hidden layers, achieved RMSE values near zero 

(Sahoo, 2006). And, in another study by Naik and Ragothaman of neural network 

prediction involving the success of MBA students, when neural network modeling was 

compared to the Logit and Probit models, results showed that the neural network 

achieved 89.13% accuracy while Logit and Probit achieved 72.83% and 73.37% 

respectively.  

Given the results of these studies it was expected that the neural network would 

show more pronounced improvement over linear regression in predicting math and 

reading scores in this study. The difference between this study’s result and that of other 

studies suggests the need to explore the differences between the previously mentioned 

models and the model in this study. 

Perhaps the most significant difference involved the nature of the independent 

variables. In each of the previously mentioned studies, the independent variables were 

entirely, or mostly, scalar values. The independent variables for this study, however, were 

all nominal or ordinal. In order to present nominal and ordinal values to the neural 
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network the values were artificially scaled to the range [0.2, 0.8] as discussed in chapter 

3. Alternatively, dummy coding could also have been used for the input layer of the 

neural network but that would have increased the number of input neurons from 103 to 

nearly 500 with a related increase in the size of the hidden layer. A neural network of that 

size would require significantly longer to train and, according to neural network rules of 

thumb, violate the need for 10 times the number of training cases as input neurons.  

Two smaller differences were also present related to network topology and the 

nature of the dependent variables. The Sahoo (2006) study involved a four layer neural 

network having one input layer, two hidden layers, and one output layer. By contrast, the 

neural network model in this study was the more familiar three-layer topology with an 

input layer, hidden layer, and output layer. Naik’s study involved a discrete, rather than 

continuous dependent variable. Naik’s neural network classified MBA candidates as 

either “successful” or “marginal” while the neural network in this work predicted reading 

and math scores as continuous values ranging from [0.0, 1.0]. 

One additional benefit demonstrated by the neural network, however, was the 

neural network’s ability to predict multiple dependent variables simultaneously. In order 

to predict both math and reading scores, two regression equations were developed: one 

for each dependent variable. In the case of the neural network, though, a single network 

was able to predict both scores simultaneously.  

Research Implications 

The results of this study suggest that neural networks can be at least as good as 

linear regression in developing predictive models and suffer less from degradation in the 
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face of noisy data. As such, neural networks deserve further study in the field of 

educational modeling and should be considered as tool in that regard. Neural networks 

may provide avenues to more complex studies involving subtle or unknown relationships 

that then direct researchers to other methods of study on more narrow bands of data. 

Neural networks also demonstrate remarkable flexibility. Researchers have the 

ability to shape the input data by transforming it from one representation to another as 

needed by the input layer. Studies may also investigate a variety of network topologies in 

seeking the most appropriate modeling architecture for a given problem.  

Furthermore, the initial investment in training a neural network is not lost when a 

model is used to make predictions. If the accuracy of the network begins to decrease over 

time, small re-training sessions with new data can realign the existing model without the 

need for the full training that was done initially. 

Neural networks also have the ability to predict multiple dependent variables with 

a single network. In this study, math and reading scores were predicted simultaneously 

with a single neural network. In terms of data manipulation this has the potential to 

reduce the burden on researchers in terms of the number of instruments that must be 

managed. 

Limitations of the Research 

This study employed a single neural network model, and thus the results are 

applicable only to three-layer, feed-forward, back-propagation networks using the 

sigmoid transfer function in the hidden and output layers. Other network topologies 

utilizing a different number of layers and/or different transfer functions may perform 
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differently. Alternate schemes for encoding the independent variables for presentation to 

the input layer may also affect the performance of the network.  

Finally, the results of this study are only representative of this data set. Therefore, 

the results may be generalizable to data gathered from other 10th graders in public, private 

and Catholic schools, but it is unknown if the results would be the same for data from 

students in other grades or other types of institutions. 

Future Research 

Given the virtually identical performance of both models in this study, and the 

resistance to degradation shown by the neural network when presented with noisy data, it 

would be of value to compare model performance when training with imperfect data. 

Recall that during the case selection process, any cases with invalid or missing values 

were discarded. This resulted in training data that was free from noise. This perfect 

training data was then used to develop the regression equations and train the neural 

network. 

Noisy or imperfect data, however, is more the norm than the exception in typical 

field research. Noisy data are often handled through various imputation processes to fill 

in the blanks. If neural networks could be shown to accurately model noisy data 

researchers would have a powerful new tool that did not require the present data 

imputation techniques.  

In the near future this study could be repeated using the same data, software, and 

procedures with a single modification in the case selection process: selecting from the 

entire sample population and not just the cases that were free from noise. This would 
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result in training data and cross-validation data that contained noisy samples. The 

comparisons in this study would then demonstrate whether or not neural networks have 

any advantage over linear regression when starting with imperfect data. 

What’s more, it would be of value to study what characteristics, if any, of a given 

set of data lend themselves to neural network modeling. For instance, future researchers 

could perform correlations between the independent and dependent variables and then 

test neural network modeling to see if higher correlation values imply that the data are 

better suited to neural network modeling. The converse may also be interesting if future 

research found that neural networks were able to model un-correlated data.  

Future research might also explore neural networks that dummy code nominal and 

ordinal input data as opposed to converting such data to a scalar format. This necessarily 

expands the size of the input layer and places additional burdens on the training data, but 

it would be valuable to explore what impact, if any, dummy coding has on neural 

network performance. 

Clearly, neural network modeling shows promise in the areas of modeling and 

prediction. Additional study is needed, however, to understand its full utility in 

educational research and the circumstances under which neural network modeling is most 

effective. It is possible that such research could lead to pre-configured modeling software 

specifically for educational researchers to further enhance their ability to understand the 

complex landscape of the teaching and learning enterprise. 
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Table A-1 

Independent Variable Inventory 

Variable Description 

BYFCOMP A nominal measure of the family 
configuration with values (1) mother 
and father, (2) mother and male 
guardian, (3) father and guardian, (4) 
two guardians, (5) mother only, (6) 
father only, (7) female guardian only, 
(8) male guardian only, and (9) parent 
or guardian lives with student less 
than ½ time. 

FATHED A nominal measure of the father’s 
highest level of education with values 
(1) did not finish high school, (2) 
graduated from high school, (3) 
attended 2-year school, no degree, (4) 
graduated from 2-year school,  
(5) attended college, no 4-year degree, 
(6) graduated from college, (7) 
completed master’s degree, and (8) 
completed PhD, MD, or other 
advanced degree. 

MOTHED A nominal measure of the mother’s 
highest level of education with the 
same possible values as FATHED. 

PARED A nominal measure similar to 
FATHED and MOTHED reporting 
the highest level of education attained 
by either parent. 

SES1QU An ordinal measure of the student’s 
socioeconomic status as classified in 
one of four quartiles with values (1) 
lowest quartile, (2) second quartile, 
(3) third quartile, and (4) highest 
quartile. 
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Table A-1 (continued). 
 
STEXPECT 

 
 
An ordinal measure of how far the 
student believes they will go in school 
with values (-1) don’t know, (1) less 
than high school graduation, (2) high 
school graduation or GED, (3) attend 
and/or complete 2-year college/school, 
(4) attend college, 4-year degree 
incomplete, (5) graduate from college, 
(6) obtain master’s degree or 
equivalent, and (7) obtain PhD, MD, 
or other advanced degree. 

BYBASEBL An ordinal measure of the student’s 
participation in interscholastic 
baseball with values (1) no 
interscholastic team, (2) did not 
participate, (3) participated at the 
junior varsity level, (4) participated at 
the varsity level, and (5) participated 
as varsity captain. 

BYSOFTBL An ordinal measure of the student’s 
participation in interscholastic softball 
with values (1) no interscholastic 
team, (2) did not participate, (3) 
participated at the junior varsity level, 
(4) participated at the varsity level, 
and (5) participated as varsity captain. 

BYBSKTBL An ordinal measure of the student’s 
participation in interscholastic 
basketball with values (1) no 
interscholastic team, (2) did not 
participate, (3) participated at the 
junior varsity level, (4) participated at 
the varsity level, and (5) participated 
as varsity captain. 

BYFOOTBL An ordinal measure of the student’s 
participation in interscholastic football 
with values (1) no interscholastic 
team, (2) did not participate, (3) 
participated at the junior varsity level, 
(4) participated at the varsity level, 
and (5) participated as varsity captain. 
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Table A-1 (continued). 
 

BYSOCCER 

 
 
An ordinal measure of the student’s 
participation in interscholastic soccer 
with values (1) no interscholastic 
team, (2) did not participate, (3) 
participated at the junior varsity level, 
(4) participated at the varsity level, 
and (5) participated as varsity captain. 

BYTEAMSP An ordinal measure of the student’s 
participation in other interscholastic 
team sports with values (1) no 
interscholastic team, (2) did not 
participate, (3) participated at the 
junior varsity level, (4) participated at 
the varsity level, and (5) participated 
as varsity captain. 

BYSOLOSP An ordinal measure of the student’s 
participation in interscholastic 
baseball with values (1) no 
interscholastic team, (2) did not 
participate, (3) participated at the 
junior varsity level, (4) participated at 
the varsity level, and (5) participated 
as varsity captain. 

BYSCTRL An ordinal measure of school control 
with values (1) public, (2) catholic, 
and (3) other private. 

BYURBAN An ordinal measure of the school’s 
locale with values (1) urban, (2) 
suburban, and (3) rural. 

BYREGION An ordinal measure of the schools 
region with values (1) northeast, (2) 
midwest, (3) south, and (4) west. 

BYS20A An ordinal measure of the students’ 
agreement with the statement that they 
get along with their teachers with 
values (1) strongly agree, (2) agree, 
(3) disagree, and (4) strongly disagree. 

BYS20B An ordinal measure of the students’ 
agreement with the statement that 
there is school spirit with values (1) 
strongly agree, (2) agree, (3) disagree, 
and (4) strongly disagree. 
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Table A-1 (continued). 
 
BYS20C 

 
 
An ordinal measure of the students’ 
agreement with the statement that they 
are friendly with other racial groups 
with values (1) strongly agree, (2) 
agree, (3) disagree, and (4) strongly 
disagree. 

BYS20E An ordinal measure of the students’ 
agreement with the statement that the 
teaching is good with values (1) 
strongly agree, (2) agree, (3) disagree, 
and (4) strongly disagree. 

BYS20F An ordinal measure of the students’ 
agreement with the statement that 
teachers are interested in the students 
with values (1) strongly agree, (2) 
agree, (3) disagree, and (4) strongly 
disagree. 

BYS20G An ordinal measure of the students’ 
agreement with the statement that 
teachers praise effort with values (1) 
strongly agree, (2) agree, (3) disagree, 
and (4) strongly disagree. 

BYS20J An ordinal measure of the students’ 
agreement with the statement that they 
do not feel safe at school with values 
(1) strongly agree, (2) agree, (3) 
disagree, and (4) strongly disagree. 

BYS20M An ordinal measure of the students’ 
agreement with the statement that 
there are gangs at school with values 
(1) strongly agree, (2) agree, (3) 
disagree, and (4) strongly disagree. 

BYS20N An ordinal measure of the students’ 
agreement with the statement that 
racial/ethnic groups often fight with 
values (1) strongly agree, (2) agree, 
(3) disagree, and (4) strongly disagree. 
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Table A-1 (continued). 
 
BYS21A 

 
 
An ordinal measure of the students’ 
agreement with the statement that 
everyone knows the school rules with 
values (1) strongly agree, (2) agree, 
(3) disagree, and (4) strongly disagree. 

BYS21B An ordinal measure of the students’ 
agreement with the statement that 
school rules are fair with values (1) 
strongly agree, (2) agree, (3) disagree, 
and (4) strongly disagree. 

BYS21C An ordinal measure of the students’ 
agreement with the statement that 
punishment is the same no matter who 
you are with values (1) strongly agree, 
(2) agree, (3) disagree, and (4) 
strongly disagree. 

BYS21D An ordinal measure of the students’ 
agreement with the statement that 
school rules are strictly enforced with 
values (1) strongly agree, (2) agree, 
(3) disagree, and (4) strongly disagree. 

BYS21E An ordinal measure of the students’ 
agreement with the statement that 
student know punishment for broken 
rules with values (1) strongly agree, 
(2) agree, (3) disagree, and (4) 
strongly disagree. 

BYS22A An ordinal measure of whether the 
student had anything stolen at school 
with values (1) never, (2) once or 
twice, and (3) more than twice. 

BYS22B An ordinal measure of whether the 
student was ever offered drugs at 
school with values (1) never, (2) once 
or twice, and (3) more than twice. 

BYS22C An ordinal measure of whether 
anyone ever threatened to hurt the 
student with values (1) never, (2) once 
or twice, and (3) more than twice. 
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Table A-1 (continued). 
 
BYS22D 

 
 
An ordinal measure of whether the 
student ever got in to a physical fight 
with values (1) never, (2) once or 
twice, and (3) more than twice. 

BYS22E An ordinal measure of whether the 
student was ever hit with values (1) 
never, (2) once or twice, and (3) more 
than twice. 

BYS22F An ordinal measure of whether 
anyone ever forced money or items 
from the student with values (1) never, 
(2) once or twice, and (3) more than 
twice. 

BYS22G An ordinal measure of whether 
anyone ever damaged the student’s 
belongings with values (1) never, (2) 
once or twice, and (3) more than 
twice. 

BYS22H An ordinal measure of whether 
anyone ever bullied or picked on the 
student with values (1) never, (2) once 
or twice, and (3) more than twice. 

BYS24B A nominal measure of how many 
times the student cut classes with 
values (1) never, (2) 1-2 times, (3) 3-6 
times, (4) 7-9 times, (5) 10 or more 
times. 

BYS26 An ordinal measure of the student’s 
high school program with values (1) 
general, (2) college 
prepatory/academic, (3) vocational 
including technical/business. 

BYS27A An ordinal measure of the students’ 
agreement with the statement that 
classes are interesting and challenging 
with values (1) strongly agree, (2) 
agree, (3) disagree, and (4) strongly 
disagree. 
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Table A-1 (continued). 
 
BYS27B 

 
 
An ordinal measure of the students’ 
agreement with the statement that they 
are satisfied by doing what is expected 
in class with values (1) strongly agree, 
(2) agree, (3) disagree, and (4) 
strongly disagree. 

BYS27C An ordinal measure of the students’ 
agreement with the statement that they 
have nothing better to do than school 
with values (1) strongly agree, (2) 
agree, (3) disagree, and (4) strongly 
disagree. 

BYS27D An ordinal measure of the students’ 
agreement with the statement that 
education is important to get a job 
later with values (1) strongly agree, 
(2) agree, (3) disagree, and (4) 
strongly disagree. 

BYS27E An ordinal measure of the students’ 
agreement with the statement that 
school is a place to meet friends with 
values (1) strongly agree, (2) agree, 
(3) disagree, and (4) strongly disagree. 

BYS27F An ordinal measure of the students’ 
agreement with the statement that they 
attend school to play a sport or attend 
a club with values (1) strongly agree, 
(2) agree, (3) disagree, and (4) 
strongly disagree. 

BYS27G An ordinal measure of the students’ 
agreement with the statement that they 
learn job skills in school with values 
(1) strongly agree, (2) agree, (3) 
disagree, and (4) strongly disagree. 

BYS27H An ordinal measure of the students’ 
agreement with the statement that 
teachers expect success in school with 
values (1) strongly agree, (2) agree, 
(3) disagree, and (4) strongly disagree. 
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Table A-1 (continued). 
 
BYS27I 

 
 
An ordinal measure of the students’ 
agreement with the statement that 
parents expect success in school with 
values (1) strongly agree, (2) agree, 
(3) disagree, and (4) strongly disagree. 

BYS28 An ordinal measure of how much the 
student likes school with values (-1) 
don’t know, (1) not at all, (2) 
somewhat, (3) a great deal. 

BYS34A A nominal measure of how many 
hours/week the student spent on 
homework in school with values (-1) 
don’t know, (0) 0 hours, (1) 1 hour, 
(2) 2 hours, (3) 3 hours, (4) 4 hours, 
(5) 5 hours, (6) 6 hours, (7) 7 hours, 
(8) 8 hours, (9) 9 hours, (10) 10 hours, 
(11) 11 hours, (12) 12 hours, (13) 13 
hours, (14) 14 hours, (15) 15 hours, 
(16) 16 hours, (17) 17 hours, (18) 18 
hours, (19) 19 hours, (20) 20 hours, 
and (21) 21 or more hours. 

BYS34B A nominal measure of how many 
hours/week the student spent on 
homework out of school with values 
(0) 0 hours, (1) 1 hour, (2) 2 hours, (3) 
3 hours, (4) 4 hours, (5) 5 hours, (6) 6 
hours, (7) 7 hours, (8) 8 hours, (9) 9 
hours, (10) 10 hours, (11) 11 hours, 
(12) 12 hours, (13) 13 hours, (14) 14 
hours, (15) 15 hours, (16) 16 hours, 
(17) 17 hours, (18) 18 hours, (19) 19 
hours, (20) 20 hours, (21) 21 hours, 
(22) 22 hours, (23) 23 hours, (24) 24 
hours, (25) 25 hours, and (26) 26 or 
more hours. 
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Table A-1 (continued). 
 
BYS35A 

 
 
A nominal measure of how many 
hours/week the student spent on math 
homework in school with values (-1) 
don’t know, (0) 0 hours, (1) 1 hour, 
(2) 2 hours, (3) 3 hours, (4) 4 hours, 
(5) 5 hours, (6) 6 hours, (7) 7 hours, 
(8) 8 hours, (9) 9 hours, (10) 10 hours, 
(11) 11 hours, (12) 12 hours, (13) 13 
hours, (14) 14 hours, (15) 15 hours, 
(16) 16 hours, (17) 17 hours, (18) 18 
hours, (19) 19 hours, (20) 20 hours, 
and (21) 21 or more hours. 

BYS35B A nominal measure of how many 
hours/week the student spent on math 
homework out of school with values (-
1) don’t know, (0) 0 hours, (1) 1 hour, 
(2) 2 hours, (3) 3 hours, (4) 4 hours, 
(5) 5 hours, (6) 6 hours, (7) 7 hours, 
(8) 8 hours, (9) 9 hours, (10) 10 hours, 
(11) 11 hours, (12) 12 hours, (13) 13 
hours, (14) 14 hours, (15) 15 hours, 
(16) 16 hours, (17) 17 hours, (18) 18 
hours, (19) 19 hours, (20) 20 hours, 
and (21) 21 or more hours. 

BYS36A A nominal measure of how many 
hours/week the student spent on 
English homework in school with 
values (-1) don’t know, (0) 0 hours, 
(1) 1 hour, (2) 2 hours, (3) 3 hours, (4) 
4 hours, (5) 5 hours, (6) 6 hours, (7) 7 
hours, (8) 8 hours, (9) 9 hours, (10) 10 
hours, (11) 11 hours, (12) 12 hours, 
(13) 13 hours, (14) 14 hours, (15) 15 
hours, (16) 16 hours, (17) 17 hours, 
(18) 18 hours, (19) 19 hours, (20) 20 
hours, and (21) 21 or more hours. 
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Table A-1 (continued). 
 
BYS36B 

 
 
A nominal measure of how many 
hours/week the student spent on 
English homework out of school with 
values (-1) don’t know, (0) 0 hours, 
(1) 1 hour, (2) 2 hours, (3) 3 hours, (4) 
4 hours, (5) 5 hours, (6) 6 hours, (7) 7 
hours, (8) 8 hours, (9) 9 hours, (10) 10 
hours, (11) 11 hours, (12) 12 hours, 
(13) 13 hours, (14) 14 hours, (15) 15 
hours, (16) 16 hours, (17) 17 hours, 
(18) 18 hours, (19) 19 hours, (20) 20 
hours, and (21) 21 or more hours. 

BYS37 An ordinal measure of the importance 
of good grades to the student with 
values (1) not important, (2) 
somewhat important, (3) important, 
and (4) very important. 

BYS38B An ordinal measure of how often the 
student goes to class without books 
with values (1) never, (2) seldom, (3) 
often, and (4) usually. 

BYS39A An ordinal measure of whether the 
student played intramural baseball 
with values (1) school doesn’t have 
team, (2) no, and (3) yes. 

BYS39B An ordinal measure of whether the 
student played intramural softball with 
values (1) school doesn’t have team, 
(2) no, and (3) yes. 

BYS39C An ordinal measure of whether the 
student played intramural basketball 
with values (1) school doesn’t have 
team, (2) no, and (3) yes. 

BYS39D An ordinal measure of whether the 
student played intramural football 
with values (1) school doesn’t have 
team, (2) no, and (3) yes. 

BYS39E An ordinal measure of whether the 
student played intramural soccer with 
values (1) school doesn’t have team, 
(2) no, and (3) yes. 
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Table A-1 (continued). 
 
BYS39F 

 
 
An ordinal measure of whether the 
student played another intramural 
team sport with values (1) school 
doesn’t have team, (2) no, and (3) yes. 

BYS39G An ordinal measure of whether the 
student played an individual 
intramural sport with values (1) school 
doesn’t have team, (2) no, and (3) yes. 

BYS39H An ordinal measure of whether the 
student participated on an intramural 
cheerleading/drill team with values (1) 
school doesn’t have team, (2) no, and 
(3) yes. 

BYS41A An ordinal measure of whether the 
student participated in band or chorus 
with values (-1) don’t know, (1) no, 
and (2) yes. 

BYS41B An ordinal measure of whether the 
student participated in a school play or 
musical with values (1) no and (2) 
yes. 

BYS41C An ordinal measure of whether the 
student participated in student 
government with values (1) no and (2) 
yes. 

BYS41D An ordinal measure of whether the 
student participated in an academic 
honor society with values (1) no and 
(2) yes. 

BYS41E An ordinal measure of whether the 
student participated in the school 
yearbook or newspaper with values 
(1) no and (2) yes. 

BYS41F An ordinal measure of whether the 
student participated in school service 
clubs with values (-1) don’t know, (1) 
no, and (2) yes. 

BYS41G An ordinal measure of whether the 
student participated in school 
academic clubs with values (-1) don’t 
know, (1) no, and (2) yes. 
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Table A-1 (continued). 
 
BYS41H 

 
 
An ordinal measure of whether the 
student participated in school hobby 
clubs with values (-1) don’t know, (1) 
no, and (2) yes. 

BYS41I An ordinal measure of whether the 
student participated in school 
vocational clubs with values (-1) don’t 
know, (1) no, and (2) yes. 

BYS42 A nominal measure of the hours/week 
the student spent on extracurricular 
activities with values (-1) don’t know, 
(0) 0 hours, (1) 1 hour, (2) 2 hours, (3) 
3 hours, (4) 4 hours, (5) 5 hours, (6) 6 
hours, (7) 7 hours, (8) 8 hours, (9) 9 
hours, (10) 10 hours, (11) 11 hours, 
(12) 12 hours, (13) 13 hours, (14) 14 
hours, (15) 15 hours, (16) 16 hours, 
(17) 17 hours, (18) 18 hours, (19) 19 
hours, (20) 20 hours, and (21) 21 or 
more hours. 

BYS43 A nominal measure of the hours/week 
the student spent reading outside of 
school with values (-1) don’t know, 
(0) 0 hours, (1) 1 hour, (2) 2 hours, (3) 
3 hours, (4) 4 hours, (5) 5 hours, (6) 6 
hours, (7) 7 hours, (8) 8 hours, (9) 9 
hours, (10) 10 hours, (11) 11 hours, 
(12) 12 hours, (13) 13 hours, (14) 14 
hours, (15) 15 hours, (16) 16 hours, 
(17) 17 hours, (18) 18 hours, (19) 19 
hours, (20) 20 hours, and (21) 21 or 
more hours. 

BYS45A An ordinal measure of how often the 
student uses computer for fun with 
values (1) never, (2) rarely, (3) less 
than once a week, (4) once or twice a 
week, and (5) everyday or almost 
everyday. 
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Table A-1 (continued). 
 
BYS45B 

 
 
An ordinal measure of how often the 
student uses computer for school work 
with values (1) never, (2) rarely, (3) 
less than once a week, (4) once or 
twice a week, and (5) everyday or 
almost everyday. 

BYS45C An ordinal measure of how often the 
student uses computer to learn on his 
own with values (1) never, (2) rarely, 
(3) less than once a week, (4) once or 
twice a week, and (5) everyday or 
almost everyday. 

BYS46A A nominal measure of how many 
hours/day the student uses a computer 
for school work with values (0) 0 
hours, (1) 1 hour, (2) 2 hours, (3) 3 
hours, (4) 4 hours, (5) 5 hours, and (6) 
6 or more hours. 

BYS46B A nominal measure of how many 
hours/day the student uses a computer 
for things other than school work with 
values (0) 0 hours, (1) 1 hour, (2) 2 
hours, (3) 3 hours, (4) 4 hours, (5) 5 
hours, and (6) 6 or more hours. 

BYS54A An ordinal measure of how important 
being successful at work is to the 
student with values (1) not important, 
(2) somewhat important, and (3) very 
important. 

BYS54B An ordinal measure of how important 
marrying the right person/having a 
happy family is to the student with 
values (-1) don’t know, (1) not 
important, (2) somewhat important, 
and (3) very important. 

BYS54C An ordinal measure of how important 
having lots of money is to the student 
with values (-1) don’t know, (1) not 
important, (2) somewhat important, 
and (3) very important. 
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Table A-1 (continued). 
 
BYS54D 

 
 
An ordinal measure of how important 
having strong friendships is to the 
student with values (1) not important, 
(2) somewhat important, and (3) very 
important. 

BYS54E An ordinal measure of how important 
being able to find steady work is to 
the student with values (-1) don’t 
know, (1) not important, (2) somewhat 
important, and (3) very important. 

BYS54F An ordinal measure of how important 
helping others in the community is to 
the student with values (1) not 
important, (2) somewhat important, 
and (3) very important. 

BYS54G An ordinal measure of how important 
giving children better opportunities is 
to the student with values (1) not 
important, (2) somewhat important, 
and (3) very important. 

BYS54H An ordinal measure of how important 
living close to parents/relatives is to 
the student with values (1) not 
important, (2) somewhat important, 
and (3) very important. 

BYS54I An ordinal measure of how important 
getting away from this area is to the 
student with values (-1) don’t know, 
(1) not important, (2) somewhat 
important, and (3) very important. 

BYS54J An ordinal measure of how important 
working to correct inequalities is to 
the student with values (-1) don’t 
know, (1) not important, (2) somewhat 
important, and (3) very important. 

BYS54K An ordinal measure of how important 
having children is to the student with 
values (-1) don’t know, (1) not 
important, (2) somewhat important, 
and (3) very important. 
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Table A-1 (continued). 
 
BYS54L 

 
 
An ordinal measure of how important 
having leisure time is to the student 
with values (-1) don’t know, (1) not 
important, (2) somewhat important, 
and (3) very important. 

BYS54N An ordinal measure of how important 
being an expert in a field of work is to 
the student with values (-1) don’t 
know, (1) not important, (2) somewhat 
important, and (3) very important. 

BYS54O An ordinal measure of how important 
getting a good education is to the 
student with values (1) not important, 
(2) somewhat important, and (3) very 
important. 

BYS57 An ordinal measure of the student’s 
plan to continue education after high 
school with values (-1) don’t know, 
(1) yes, right after high school, (2) 
yes, after being out of high school 1 
year, (3) yes, after being out of high 
school more than 1 year, (4) yes, but 
don’t know when, and (5) no, don’t 
plan to continue education. 

BYS60 An ordinal measure of whether the 
student want to play athletics in 
college with values (0) no and (1) yes. 

BYS61 An ordinal measure of whether the 
student hopes to receive an athletic 
scholarship for college with values (0) 
no and (1) yes. 

BYS66A An ordinal measure of the mother’s 
desire for the 10th grader after high 
school with values (-1) don’t know, 
(1) go to college, (2) get a full-time 
job, (3) enter trade school or 
apprenticeship, (4) enter military 
service, (5) get married, and (6) 
whatever the student wants to do. 
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Table A-1 (continued). 
 
BYS66B 

 
 
An ordinal measure of the father’s 
desire for the 10th grader after high 
school with values (-1) don’t know, 
(1) go to college, (2) get a full-time 
job, (3) enter trade school or 
apprenticeship, (4) enter military 
service, (5) get married, and (6) 
whatever the student wants to do. 

BYS66F An ordinal measure of the favorite 
teacher’s desire for the 10th grader 
after high school with values (-1) 
don’t know, (1) go to college, (2) get a 
full-time job, (3) enter trade school or 
apprenticeship, (4) enter military 
service, (5) get married, and (6) 
whatever the student wants to do. 

BYS72 An ordinal measure of whether the 
student ever worked for pay not 
around the house with values (1) no, 
(2) yes, currently employed, and (3) 
yes, not currently employed. 
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import java.util.ArrayList; 
import java.util.Random; 
import java.io.*; 
 
/** 
 * This program selects cases from the total population of 15,362 cases to create 
 * a 10% (N=1536) sample for training purposes, to train the neural net as well as 
 * to perform the linear regression, and a 10% (N=1536) sample to test the accuracy 
 * of the neural net and the linear regression equation. 
 *  
 * This program also removes all cases with missing data so that the selection is 
 * made from cases with no missing values. This may result in training and test 
 * populations less than N=1536 
 *  
 * Note: After cleaning the data, 3,068 cases remain so the total number of cases in  
 * each 10% sample is actually 1,534 
 * 
 */ 
public class CaseSelector { 
 
    private static int[][]inputFeatures = new int[103][]; 
    private static String[] inputNames = new String[103]; 
    private static ArrayList dummyFreqs; 
    private static int dummyCount = 0; 
    private static int categoryCount = 0; 
 
    private static ArrayList inputCases = new ArrayList(); 
    private static int[][] dummyCoding; 
    private static int[][] NNCoding; 
    private static String[] mathTargets; 
    private static String[] readingTargets; 
 
    //The position of the reading score in the input data 
    private static int READING_SCORE_INDEX = 8; 
    //The position of the math score in the input data  
    private static int MATH_SCORE_INDEX = 7;  
 
    // Used to randomly select input variables to code as "missing" to generate 
    // noisy test files. 
    private static int[] noise = new int[0];  
 
    public static void main(String[] args) { 
 
        // Initialize the input features 
        setupInputFeatures(); 
 
        // Determine the total number of Dummy Variables 
        for (int i=0;i<inputFeatures.length;i++) { 
            dummyCount+=inputFeatures[i].length-1; // The total number of dummy vars 
            categoryCount += inputFeatures[i].length; // The total number of categories 
        } 
        System.out.println("Total number of Dummy Variables = "+dummyCount); 
 
        loadInputCases("ELS2002_RawDataSet.dat"); 
 
        // Perform dummy coding of input cases into the dummyCoding array 
        dummyCoding = new int[inputCases.size()][dummyCount]; 
        NNCoding = new int[inputCases.size()][inputFeatures.length]; 
        mathTargets = new String[inputCases.size()]; 
        readingTargets = new String[inputCases.size()]; 
        performDummyCoding(); 
 
        // Now create the dummyFreqs array to determine which case #'s have 1 
        // for each of the dummy variables. dummyFreqs if an ArrayList that contains 
        // ArrayLists. The dummyFreqs ArrayList indexes all of the dummy variables. 
        // The inner ArrayLists each contain a list of the case #'s that have a 1 for  
        // that Dummy Variable. 
        performDummyFrequencies(); 
 
        // Now peform the case selection. 
        // This will return a 2 dimensional array representing two lists of case #'s 
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        int [][] selectedCases = performCaseSelection(); 
 
        // Now check to ensure we didn't select any duplicates 
        if (!performCrossCheck(selectedCases)) { 
            System.out.println("Error during cross check - duplicates found."); 
            System.exit(-1); 
        } else { 
            System.out.println("Cross check OK"); 
        } 
 
        //Finally, write out 4 files. Two containing the dummy coded training cases and 
        //dummy coded test cases and two containing NN coded training and test cases 
        writeOutputFile("ELS2002_DummyCoded_Training.txt", selectedCases[0]); 
        writeNNOutputFile("ELS2002_NNCoded_Training.txt", selectedCases[0]); 
        writeOutputFile("ELS2002_DummyCoded_Test.txt", selectedCases[1]); 
        writeNNOutputFile("ELS2002_NNCoded_Test.txt", selectedCases[1]); 
 
        // Now, generate progressively more and more noise, and write out 
        // dummy coded and NN coded files with more and more variables flagged as missing 
        noise = generateNoise(noise,10); // 10 input vars 
        performDummyCoding(); 
        writeOutputFile("ELS2002_DummyCoded_Test_Noise_"+noise.length+".txt", 
            selectedCases[1]); 
        writeNNOutputFile("ELS2002_NNCoded_Test_Noise_"+noise.length+".txt", 
            selectedCases[1]); 
        writeNoisyVariableInventory("ELS2002_NoisyVariables_"+noise.length+".txt"); 
 
        noise = generateNoise(noise,5); // 15 input vars 
        performDummyCoding(); 
        writeOutputFile("ELS2002_DummyCoded_Test_Noise_"+noise.length+".txt", 
            selectedCases[1]); 
        writeNNOutputFile("ELS2002_NNCoded_Test_Noise_"+noise.length+".txt", 
            selectedCases[1]); 
        writeNoisyVariableInventory("ELS2002_NoisyVariables_"+noise.length+".txt"); 
 
        noise = generateNoise(noise,5); // 20 input vars 
        performDummyCoding(); 
        writeOutputFile("ELS2002_DummyCoded_Test_Noise_"+noise.length+".txt", 
            selectedCases[1]); 
        writeNNOutputFile("ELS2002_NNCoded_Test_Noise_"+noise.length+".txt", 
            selectedCases[1]); 
        writeNoisyVariableInventory("ELS2002_NoisyVariables_"+noise.length+".txt"); 
 
        noise = generateNoise(noise,5); // 25 input vars 
        performDummyCoding(); 
        writeOutputFile("ELS2002_DummyCoded_Test_Noise_"+noise.length+".txt", 
            selectedCases[1]); 
        writeNNOutputFile("ELS2002_NNCoded_Test_Noise_"+noise.length+".txt", 
            selectedCases[1]); 
        writeNoisyVariableInventory("ELS2002_NoisyVariables_"+noise.length+".txt"); 
 
        System.out.println("Finished"); 
    } 
 
 
    /** 
     * Writes out a text file containing the variable index and name of the variables  
     * tagged as noise 
     * @param path The path to the file of noisy variables 
     */ 
    public static void writeNoisyVariableInventory(String path) { 
        System.out.println("Writing Noisy Variable Inventory - "+path); 
        File f = new File(path); 
        try { 
            FileWriter fw = new FileWriter(f); 
            BufferedWriter bw = new BufferedWriter(fw); 
            for (int i=0;i<noise.length;i++) { 
                bw.write(noise[i]+","+inputNames[i]); 
                bw.newLine(); 
            } 
            bw.flush(); 
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            bw.close(); 
 
        } catch (java.io.IOException e) { 
            System.out.println("Error writing noisy variable inventory - "+ 
                e.getMessage()); 
        } 
 
    } 
 
    /** 
     * Produces an array consisting of the entries in the <code>existingNoise</code>  
     * array plus 
     * <code>howMany</code> additional entries. Used to randomly select larger and larger  
     * pools 
     * of input variables so that we can generate noisy test files with missing entries  
     * to test the robustness of the Regression Equation and the Neural Network 
     * 
     * @param existingNoise An array of already selected variables indexes [0,102] 
     * @param howMany How many additional variables to select 
     * @return A new array containing the original array plus <code>howMany</code>  
     * additional variables indices 
     */ 
    public static int[] generateNoise(int[]existingNoise, int howMany) { 
        System.out.println("Selecting "+(existingNoise.length+howMany)+" ("+howMany 
                +" new) input variables to flag as missing."); 
        int[] newNoise = new int[existingNoise.length+howMany]; 
        for (int i=0;i<existingNoise.length;i++) { 
            newNoise[i] = existingNoise[i]; 
        } 
        Random random = new Random(System.currentTimeMillis()); //Initialize a pseudo- 
                                                                //random number generator 
        for (int i=0;i<howMany;i++) { 
            boolean ok = false; 
            int variableIndex = 0; 
            while (!ok) { 
                ok = true; // Assume we're good, unless we picked a dupe index 
                variableIndex = random.nextInt(inputFeatures.length); // Select a random  
                                                                      // index into the  
                                                                      // input vars 
                // Check to see that we haven't already selected this one. 
                for (int j=0;j<existingNoise.length+i;j++) { 
                    // Loop through the variable indices selected so far 
                    if (newNoise[j]==variableIndex) { 
                        // Found a dupe. 
                        ok = false; 
                        break; 
                    } 
                } 
            } 
            newNoise[existingNoise.length+i] = variableIndex; 
        } 
        return newNoise; 
    } 
 
    /** 
     * Writes an array of selected cases to an output file. The first line contains the  
     * dummy variable 
     * names and the remaining lines contain comma separated list of dummy coded values  
     * as well as the 
     * target math and reading scores, scaled to the range 0-1 
     * @param path The path to the output file 
     */ 
    public static void writeOutputFile(String path, int[] cases) { 
        System.out.print("Writing output file - "+path); 
        try { 
            File f = new File(path); 
            FileWriter fw = new FileWriter(f); 
            BufferedWriter bw = new BufferedWriter(fw); 
            // First write out the variable names 
            bw.write("MathScore,ReadingScore"); 
            for (int i=0;i<inputNames.length;i++) { 



 

   

98 

                for (int j=0;j<inputFeatures[i].length-1;j++) { // length-1 for C-1            
                                                                // dummy coding 
                    bw.write(","+inputNames[i]+"_D"+(j+1)); 
                } 
            } 
            bw.newLine(); 
            for (int i=0;i<cases.length;i++) { 
                int caseIndex = cases[i]; 
                String outLine = mathTargets[caseIndex]+","+readingTargets[caseIndex]; 
                for (int j=0;j<dummyCoding[caseIndex].length;j++) { 
                    outLine+=","+dummyCoding[caseIndex][j]; 
                } 
                bw.write(outLine); 
                bw.newLine(); 
            } 
            bw.flush(); 
            bw.close(); 
        } catch (java.io.IOException e) { 
            System.out.println("Error writing output file - "+e.getMessage()); 
        } 
        System.out.println(" - "+cases.length+" cases"); 
    } 
 
     /** 
     * Writes an array of selected cases to an output file for use by the NN. 
     * Each line contains the integer responses to the ELS2002 Survey questions 
     * for the 103 variables under study 
     * 
     * @param path The path to the output file 
     */ 
    public static void writeNNOutputFile(String path, int[] cases) { 
        System.out.print("Writing Neural Net output file - "+path); 
        try { 
            File f = new File(path); 
            FileWriter fw = new FileWriter(f); 
            BufferedWriter bw = new BufferedWriter(fw); 
 
            for (int i=0;i<cases.length;i++) { 
                int caseIndex = cases[i]; 
                String outLine = mathTargets[caseIndex]+","+readingTargets[caseIndex]; 
                for (int j=0;j<NNCoding[caseIndex].length;j++) { 
                    outLine+=","+NNCoding[caseIndex][j]; 
                } 
                bw.write(outLine); 
                bw.newLine(); 
            } 
            bw.flush(); 
            bw.close(); 
        } catch (java.io.IOException e) { 
            System.out.println("Error writing output file - "+e.getMessage()); 
        } 
        System.out.println(" - "+cases.length+" cases"); 
    } 
 
    /** 
     * Checks to make sure that there are no duplicates in the arrays case[0] and  
     *cases[1] 
     * @param cases A 2 dimensional array of selected cases. 
     * @return true if there are no duplicate cases, false otherwise 
     */ 
    public static boolean performCrossCheck(int[][] cases) { 
        System.out.println("Performing cross check validation of the selected cases"); 
        boolean ok = true; // Assume we're fine until we find a duplicate. 
 
        for (int i=0;i<cases[0].length;i++) { 
            for (int j=0;j<cases[1].length;j++) { 
                if (cases[0][i]==cases[1][j]) { 
                    // We found a duplicate, bail out. 
                    return false; 
                } 
            } 
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        } 
        return ok; 
    } 
 
    /** 
     * Generates 2 lists of case #'s. One for training the NN/Regresion Equation and one     
     * for 
     * testing the NN/Regression equation. See comments in the method for details on the  
     * selection 
     * algorithm. Essentially we want to mutually exclusive lists and we want to select  
     * cases  
     * that 
     * will result in all dummy variables being used. 
     */ 
    public static int[][] performCaseSelection() { 
        System.out.println("Performing case selection"); 
        Random random = new Random(System.currentTimeMillis()); //Initialize a pseudo- 
                                                                //random number generator 
 
        //The final selection of cases in two lists of 1536 (10%) samples 
        //In actuality, after cleaning we will only have two 1534 case samples 
        int[][] selectedCases = new int[2][]; 
        selectedCases[0]=new int[1534]; // The training data 
        selectedCases[1]=new int[1534]; // The test data 
 
        int[] tempSelectedCases = new int[2*1534]; // 20% of our population (10%  
                                                   // training, 10% test) 
        int numSelectedCases = 0; 
 
        // Keep track of which dummy's we've used in this iteration 
        ArrayList usedDummyVariables = new ArrayList(); 
        //We need to keep going until we select 20% the total cases 
        System.out.print("Cases selected so far:"); 
        while (numSelectedCases < (2*1534)) { 
            // Select a dummy variable at random until we've selected each dummy variable  
            // one, then start over. 
            boolean ok = false; 
            int selectedDummyVar = 0; 
            while (!ok) { 
                selectedDummyVar = random.nextInt(categoryCount); // Select a random in   
                                                                  // from  
                                                                  // 0-(categoryCount-1) 
                //Assume the selected category is OK, unless we found we've used it 
                ok = true; 
                // Check to see if we've exhausted all possible categories. If so, clear  
                // the used category arraylist and start over. 
                if (usedDummyVariables.size()==categoryCount) { 
                    usedDummyVariables.clear(); 
                } 
                // Did we already use this dummy variable. 
                for (int i=0;i<usedDummyVariables.size();i++) { 
                    int dummyIdx = ((Integer)usedDummyVariables.get(i)).intValue(); 
                    if (dummyIdx==selectedDummyVar) { 
                        ok = false; // Have to select another one 
                        break; // exit this loop; 
                    } 
                } 
            } 
            // Add this selected dummy to the list of used dummy variables 
            usedDummyVariables.add(new Integer(selectedDummyVar)); 
 
            // Now that we've selected the category, randomly select one of the cases 
            // that has a 1 for this category. If none of the cases had a 1 for this  
            // category 
            // or if there are no remaining cases to choose from for this category, just  
            // continue 
            ArrayList dummyCases = (ArrayList)dummyFreqs.get(selectedDummyVar); 
            if (dummyCases.size()>0) { 
                // Randomly select one of the remaining cases 
                int selectedCaseIndex = random.nextInt(dummyCases.size()); 
                int selectedCase =  
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                    ((Integer)dummyCases.get(selectedCaseIndex)).intValue(); 
                tempSelectedCases[numSelectedCases] = selectedCase; 
                numSelectedCases++; 
                if (numSelectedCases %500==0) System.out.print(" "+numSelectedCases); 
                // Now, remove this case from every array list in which it appears 
                // so that we don't select this case again. 
                for (int i=0;i<dummyFreqs.size();i++) { 
                    ArrayList cases = (ArrayList)dummyFreqs.get(i); 
                    for (int j=0;j<cases.size();j++) { 
                        int caseIndex = ((Integer)cases.get(j)).intValue(); 
                        if (caseIndex==selectedCase) { 
                            cases.remove(j); 
                            break; 
                        } 
                    } 
                } 
            } 
 
        } 
        System.out.println(); 
        System.out.println("Selected a total of "+numSelectedCases+" cases"); 
 
        // Finally, randomly split the (2*1534) cases into 2 lists of 1534 & 1534 cases  
        // respectively and return the resulting 2 dimensional array 
        ArrayList selectedCasesArrayList = new ArrayList(); 
        // Temporarily store the 2*1534 cases in an ArrayList for easier handling 
        for (int i=0;i<tempSelectedCases.length;i++) { 
            selectedCasesArrayList.add(new Integer(tempSelectedCases[i])); 
        } 
        // Randomly select 1534 cases, removing each selected case from the array list as  
        // it's added to the 
        // selectedCases array. First, select the 10% training sample 
        for (int i=0;i<(1534);i++) { 
            int selectedCaseIndex = random.nextInt(selectedCasesArrayList.size()); 
            int selectedCase =  
                ((Integer)selectedCasesArrayList.get(selectedCaseIndex)).intValue(); 
            selectedCases[0][i]=selectedCase; 
            selectedCasesArrayList.remove(selectedCaseIndex); 
        } 
        // Now, there should be only 1534 items left in the selectedCasesArrayList, just  
        // dump them into the second list of selected cases 
        for (int i=0;i<1534;i++) { 
            int selectedCase = ((Integer)selectedCasesArrayList.get(i)).intValue(); 
            selectedCases[1][i]=selectedCase; 
        } 
 
        return selectedCases; 
    } 
 
    /** 
     *  Determines which cases have a 1 for each dummy variable and populates an  
     *  ArrayList 
     *  representing the dummy variables with another ArrayList containing the case #'s. 
     */ 
    public static void performDummyFrequencies() { 
        System.out.println("Calculating dummay variable frequencies"); 
        // Create the ArrayList of ArrayLists 
        dummyFreqs = new ArrayList(); 
        for (int i=0;i<categoryCount;i++) { 
            dummyFreqs.add(new ArrayList()); 
        } 
        // Loop over all dummycoded test cases and then loop over all values for each  
        // case 
        // and add this case # to each DummyFreqs ArrayList where this case has a value  
        // of 1 
        for (int i=0;i<dummyCoding.length;i++) { 
            // For each dummy case, determine which categories are represented for each  
            // input 
            // variable. For categories 1-(C-1) this is easy, just check the dummy  
            // variable  
            // for a value of 1, for category C, though, we have to check all dummies  
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            // related to that input and see if they are all 0. 
            int cMinusOneIndex = 0; 
            int categoryIndex = 0; 
 
            for (int j=0;j<inputFeatures.length;j++) { // Loop over all input features  
                                                       // (input vars) 
                boolean categoryC = true; // flag that tells us if dummies 1-(C-1)  
                                          // were all 0 
                for (int k=0;k<inputFeatures[j].length-1;k++) { // Look for 1's in  
                                                                // categories  
                                                                // 1-(C-1) 
                    if (dummyCoding[i][cMinusOneIndex]==1) { 
                        categoryC = false; 
                        ArrayList cases = (ArrayList)dummyFreqs.get(categoryIndex); 
                        cases.add(new Integer(i)); 
                    } 
                    cMinusOneIndex++; 
                    categoryIndex++; 
                } 
                // Now check category C, which is denoted by category dummies 1-(C-1)  
                // being 0 
                if (categoryC) { 
                    // Dummies 1-(C-1) were all 0, so it was category C 
                    ArrayList cases = (ArrayList)dummyFreqs.get(categoryIndex); 
                    cases.add(new Integer(i)); 
                } 
                categoryIndex++; // Advance the category index 
            } 
        } 
    } 
 
    /** 
     * Encodes the cases from ArrayList inputCases into a two dimensional 
     * array dummyCoding where the 1st dimension represents the case # and the 
     * 2nd dimension represents each dummy variable 
     * Also extracts the math and reading scores, scales them to the range 0-1, 
     * and stored them in the arrays mathTargets and readingTargets 
     */ 
    public static void performDummyCoding() { 
        System.out.println("Performing dummy coding for "+inputCases.size()+ 
            " input cases (Noisy inputs = "+noise.length+")"); 
        String noisyVars = ""; 
        for (int i=0;i<inputCases.size();i++) { 
            noisyVars = ""; 
            String inputCase = (String)inputCases.get(i); 
            String[] inputValues = inputCase.split("\t"); 
            int dummyIndex = 0; 
            int inputValueIndex = 0; 
            for (int j=1;j<inputValues.length;j++) { // start at j=1 to skip student id 
                if (j==READING_SCORE_INDEX || j==MATH_SCORE_INDEX) { 
                    // Store the math and reading score values 
                    //in the mathTargets and readingTargets arrays 
 
                    //We're scaling the math and reading scores, which are in the range  
                    //0-100 
                    //down to the range 0-1. So, we simply extract the decimal point from  
                    //the score, e.g. 45.33, and put it in front, e.g. .4533 
                    String[] scoreParts = inputValues[j].split("\\."); 
                    String scaledScore = "."; 
                    for (int k=0;k<scoreParts.length;k++) { 
                        scaledScore+=scoreParts[k]; 
                    } 
                    if (j==READING_SCORE_INDEX) { 
                        // Store the reading score target 
                        readingTargets[i] = scaledScore; 
                    } else { 
                        // it must be a math score 
                        mathTargets[i] = scaledScore; 
                    } 
                } else { 
                    //Figure out which dummy variable gets the 1 and set the others to 0 
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                    //If this input value is not in the list of allowable values, set  
                    //all dummy variables to 0 
                    int intValue = Integer.parseInt(inputValues[j]); 
 
                    // But check to see if we have generated any noise, and if so, if  
                    // this  
                    // input variable has been flagged as noise, mark it as missing  
                    // (which will code it as all 0's) 
                    for (int l=0;l<noise.length;l++) { 
                        if (noise[l]==inputValueIndex) { 
                            // This input var has been marked as noise, flag is as  
                            // missing. 
                            intValue = -9; 
                            noisyVars += inputValueIndex+" "; 
                            break; 
                        } 
                    } 
 
                    // Store the quantative value for use by the NN 
                    NNCoding[i][inputValueIndex] = intValue; 
 
                    // We dummy coding C-1 categories, so we check to see if the value 
                    // is one of the categories from 1 to C-1 and set that dummy to 1 
                    // If it's the last Category, all dummies are set to 0 
                    for (int k=0;k<inputFeatures[inputValueIndex].length-1;k++) { 
                        if (intValue==inputFeatures[inputValueIndex][k]) { 
                            dummyCoding[i][dummyIndex]=1; 
                        } else { 
                            dummyCoding[i][dummyIndex]=0; 
                        } 
                        dummyIndex++; 
                    } 
                    inputValueIndex++; 
                } 
            } 
        } 
        System.out.println("Noisy Variable Indicies = "+noisyVars); 
    } 
 
    /** 
     * Read the full data set into a vector for processing. 
     * During the load, the input variables are checked and cases that have invalid 
     * inputs (missing, multiple answer, etc) are dicarded. This ensures that the  
     * training and test data are pure. 
     * 
     * @param path The path to the full data set. 
     */ 
    public static void loadInputCases(String path) { 
        System.out.println("Loading input cases from "+path); 
        try { 
            File f = new File(path); 
            FileReader fr = new FileReader(f); 
            BufferedReader br = new BufferedReader(fr); 
            String inputCase = br.readLine(); 
            int discardedCases = 0; 
            while (inputCase!=null) { 
                String[] inputValues = inputCase.split("\t"); 
                boolean discardCase = false; // Assume the case is OK until we find  
                                             // otherwise 
                int inputValueIndex = 0; 
                for (int i=1;i<inputValues.length;i++) { // Start at 1 to skip student id 
                    // Skip the math & reading scores 
                    if (i==MATH_SCORE_INDEX || i==READING_SCORE_INDEX) continue;  
                    boolean missingValue = true; 
                    int intValue = Integer.parseInt(inputValues[i]); 
                    for (int j=0;j<inputFeatures[inputValueIndex].length;j++) { 
                        if (intValue==inputFeatures[inputValueIndex][j]) { 
                            missingValue = false; 
                            break; // Exit the loop 
                        } 
                    } 
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                    if (missingValue) { 
                        discardCase = true; 
                        break; // Exit the loop 
                    } 
                    inputValueIndex++; 
                } 
                if (!discardCase) { 
                    inputCases.add(inputCase); 
                } else { 
                    discardedCases++; 
                } 
                inputCase = br.readLine(); 
            } 
            br.close(); 
            System.out.println("Discarded "+discardedCases+" cases"); 
        } catch (java.io.IOException e) { 
            System.out.println("Error reading the input cases - "+e.getMessage()); 
        } 
    } 
 
    /** 
     * Initializes the arrays containing the root names for the dummy variables 
     * as well as the valid values for each dummy variable 
     */ 
    public static void setupInputFeatures() { 
 
        //BYFCOMP 
        inputNames[0]="BYFCOMP"; 
        inputFeatures[0]=new int[]{1,2,3,4,5,6,7,8,9}; 
        //PARED 
        inputNames[1]="PARED"; 
        inputFeatures[1]=new int[]{1,2,3,4,5,6,7,8}; 
        //MOTHED 
        inputNames[2]="MOTHED"; 
        inputFeatures[2]=new int[]{1,2,3,4,5,6,7,8}; 
        //FATHED 
        inputNames[3]="FATHED"; 
        inputFeatures[3]=new int[]{1,2,3,4,5,6,7,8}; 
        //SES1QU 
        inputNames[4]="SES1QU"; 
        inputFeatures[4]=new int[]{1,2,3,4}; 
        //STEXPECT 
        inputNames[5]="STEXPECT"; 
        inputFeatures[5]=new int[]{-1,1,2,3,4,5,6,7}; 
        //BYBASEBL 
        inputNames[6]="BYBASEBL"; 
        inputFeatures[6]=new int[]{1,2,3,4,5}; 
        //BYSOFTBL 
        inputNames[7]="BYSOFTBL"; 
        inputFeatures[7]=new int[]{1,2,3,4,5}; 
        //BYBASKTBL 
        inputNames[8]="BYBASKTBL"; 
        inputFeatures[8]=new int[]{1,2,3,4,5}; 
        //BYFOOTBL 
        inputNames[9]="BYFOOTBL"; 
        inputFeatures[9]=new int[]{1,2,3,4,5}; 
        //BYSOCCER 
        inputNames[10]="BYSOCCER"; 
        inputFeatures[10]=new int[]{1,2,3,4,5}; 
        //BYTEAMSP 
        inputNames[11]="BYTEAMSP"; 
        inputFeatures[11]=new int[]{1,2,3,4,5}; 
        //BYSOLOSP 
        inputNames[12]="BYSOLOSP"; 
        inputFeatures[12]=new int[]{1,2,3,4,5}; 
        //BYSCTRL 
        inputNames[13]="BYSCTRL"; 
        inputFeatures[13]=new int[]{1,2,3}; 
        //BYURBAN 
        inputNames[14]="BYURBAN"; 
        inputFeatures[14]=new int[]{1,2,3}; 
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        //BYREGION 
        inputNames[15]="BYREGION"; 
        inputFeatures[15]=new int[]{1,2,3,4}; 
        //BYS20A 
        inputNames[16]="BYS20A"; 
        inputFeatures[16]=new int[]{1,2,3,4}; 
        //BYS20B 
        inputNames[17]="BYS20B"; 
        inputFeatures[17]=new int[]{1,2,3,4}; 
        //BYS20C 
        inputNames[18]="BYS20C"; 
        inputFeatures[18]=new int[]{1,2,3,4}; 
        //BYS20E 
        inputNames[19]="BYS20E"; 
        inputFeatures[19]=new int[]{1,2,3,4}; 
        //BYS20F 
        inputNames[20]="BYS20F"; 
        inputFeatures[20]=new int[]{1,2,3,4}; 
        //BYS20G 
        inputNames[21]="BYS20G"; 
        inputFeatures[21]=new int[]{1,2,3,4}; 
        //BYS20J 
        inputNames[22]="BYS20J"; 
        inputFeatures[22]=new int[]{1,2,3,4}; 
        //BYS20M 
        inputNames[23]="BYS20M"; 
        inputFeatures[23]=new int[]{1,2,3,4}; 
        //BYS20N 
        inputNames[24]="BYS20N"; 
        inputFeatures[24]=new int[]{1,2,3,4}; 
        //BYS21A 
        inputNames[25]="BYS21A"; 
        inputFeatures[25]=new int[]{1,2,3,4}; 
        //BYS21B 
        inputNames[26]="BYS21B"; 
        inputFeatures[26]=new int[]{1,2,3,4}; 
        //BYS21C 
        inputNames[27]="BYS21C"; 
        inputFeatures[27]=new int[]{1,2,3,4}; 
        //BYS21D 
        inputNames[28]="BYS21D"; 
        inputFeatures[28]=new int[]{1,2,3,4}; 
        //BYS21E 
        inputNames[29]="BYS21E"; 
        inputFeatures[29]=new int[]{1,2,3,4}; 
        //BYS22A 
        inputNames[30]="BYS22A"; 
        inputFeatures[30]=new int[]{1,2,3}; 
        //BYS22B 
        inputNames[31]="BYS22B"; 
        inputFeatures[31]=new int[]{1,2,3}; 
        //BYS22C 
        inputNames[32]="BYS22C"; 
        inputFeatures[32]=new int[]{1,2,3}; 
        //BYS22D 
        inputNames[33]="BYS22D"; 
        inputFeatures[33]=new int[]{1,2,3}; 
        //BYS22E 
        inputNames[34]="BYS22E"; 
        inputFeatures[34]=new int[]{1,2,3}; 
        //BYS22F 
        inputNames[35]="BYS22F"; 
        inputFeatures[35]=new int[]{1,2,3}; 
        //BYS22G 
        inputNames[36]="BYS22G"; 
        inputFeatures[36]=new int[]{1,2,3}; 
        //BYS22H 
        inputNames[37]="BYS22H"; 
        inputFeatures[37]=new int[]{1,2,3}; 
        //BYS24B 
        inputNames[38]="BYS24B"; 
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        inputFeatures[38]=new int[]{1,2,3,4,5}; 
        //BYS26 
        inputNames[39]="BYS26"; 
        inputFeatures[39]=new int[]{1,2,3}; 
        //BYS27A 
        inputNames[40]="BYS27A"; 
        inputFeatures[40]=new int[]{1,2,3,4}; 
        //BYS27B 
        inputNames[41]="BYS27B"; 
        inputFeatures[41]=new int[]{1,2,3,4}; 
        //BYS27C 
        inputNames[42]="BYS27C"; 
        inputFeatures[42]=new int[]{1,2,3,4}; 
        //BYS27D 
        inputNames[43]="BYS27D"; 
        inputFeatures[43]=new int[]{1,2,3,4}; 
        //BYS27E 
        inputNames[44]="BYS27E"; 
        inputFeatures[44]=new int[]{1,2,3,4}; 
        //BYS27F 
        inputNames[45]="BYS27F"; 
        inputFeatures[45]=new int[]{1,2,3,4}; 
        //BYS27G 
        inputNames[46]="BYS27G"; 
        inputFeatures[46]=new int[]{1,2,3,4}; 
        //BYS27H 
        inputNames[47]="BYS27H"; 
        inputFeatures[47]=new int[]{1,2,3,4}; 
        //BYS27I 
        inputNames[48]="BYS27I"; 
        inputFeatures[48]=new int[]{1,2,3,4}; 
        //BYS28 
        inputNames[49]="BYS28"; 
        inputFeatures[49]=new int[]{-1,1,2,3}; 
        //BYS34A 
        inputNames[50]="BYS34A"; 
        inputFeatures[50]=new int[]{ 
            -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
        //BYS34B 
        inputNames[51]="BYS34B"; 
        inputFeatures[51]=new int[]{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 
            21,22,23,24,25,26}; 
        //BYS35A 
        inputNames[52]="BYS35A"; 
        inputFeatures[52]=new int[]{ 
           -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
        //BYS35B 
        inputNames[53]="BYS35B"; 
        inputFeatures[53]=new int[]{ 
            -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
        //BYS36A 
        inputNames[54]="BYS36A"; 
        inputFeatures[54]=new int[]{ 
            -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
        //BYS36B 
        inputNames[55]="BYS36B"; 
        inputFeatures[55]=new int[]{ 
            -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
        //BYS37 
        inputNames[56]="BYS37"; 
        inputFeatures[56]=new int[]{1,2,3,4}; 
        //BYS38B 
        inputNames[57]="BYS38B"; 
        inputFeatures[57]=new int[]{1,2,3,4}; 
        //BYS39A 
        inputNames[58]="BYS39A"; 
        inputFeatures[58]=new int[]{1,2,3}; 
        //BYS39B 
        inputNames[59]="BYS39B"; 
        inputFeatures[59]=new int[]{1,2,3}; 
        //BYS39C 
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        inputNames[60]="BYS39C"; 
        inputFeatures[60]=new int[]{1,2,3}; 
        //BYS39D 
        inputNames[61]="BYS39D"; 
        inputFeatures[61]=new int[]{1,2,3}; 
        //BYS39E 
        inputNames[62]="BYS39E"; 
        inputFeatures[62]=new int[]{1,2,3}; 
        //BYS39F 
        inputNames[63]="BYS39F"; 
        inputFeatures[63]=new int[]{1,2,3}; 
        //BYS39G 
        inputNames[64]="BYS39G"; 
        inputFeatures[64]=new int[]{1,2,3}; 
        //BYS39H 
        inputNames[65]="BYS39H"; 
        inputFeatures[65]=new int[]{1,2,3}; 
        //BYS41A 
        inputNames[66]="BYS41A"; 
        inputFeatures[66]=new int[]{-1,0,1}; 
        //BYS41B 
        inputNames[67]="BYS41B"; 
        inputFeatures[67]=new int[]{0,1}; 
        //BYS41C 
        inputNames[68]="BYS41C"; 
        inputFeatures[68]=new int[]{0,1}; 
        //BYS41D 
        inputNames[69]="BYS41D"; 
        inputFeatures[69]=new int[]{-1,0,1}; 
        //BYS41E 
        inputNames[70]="BYS41E"; 
        inputFeatures[70]=new int[]{0,1}; 
        //BYS41F 
        inputNames[71]="BYS41F"; 
        inputFeatures[71]=new int[]{-1,0,1}; 
        //BYS41G 
        inputNames[72]="BYS41G"; 
        inputFeatures[72]=new int[]{-1,0,1}; 
        //BYS41H 
        inputNames[73]="BYS41H"; 
        inputFeatures[73]=new int[]{-1,0,1}; 
        //BYS41I 
        inputNames[74]="BYS41I"; 
        inputFeatures[74]=new int[]{-1,0,1}; 
        //BYS42 
        inputNames[75]="BYS42"; 
        inputFeatures[75]=new int[]{ 
            -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
        //BYS43 
        inputNames[76]="BYS43"; 
        inputFeatures[76]=new int[]{ 
            -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
        //BYS45A 
        inputNames[77]="BYS45A"; 
        inputFeatures[77]=new int[]{1,2,3,4,5}; 
        //BYS45B 
        inputNames[78]="BYS45B"; 
        inputFeatures[78]=new int[]{1,2,3,4,5}; 
        //BYS45C 
        inputNames[79]="BYS45C"; 
        inputFeatures[79]=new int[]{1,2,3,4,5}; 
        //BYS46A 
        inputNames[80]="BYS46A"; 
        inputFeatures[80]=new int[]{0,1,2,3,4,5,6}; 
        //BYS46B 
        inputNames[81]="BYS46B"; 
        inputFeatures[81]=new int[]{0,1,2,3,4,5,6}; 
        //BYS54A 
        inputNames[82]="BYS54A"; 
        inputFeatures[82]=new int[]{1,2,3}; 
        //BYS54B 
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        inputNames[83]="BYS54B"; 
        inputFeatures[83]=new int[]{-1,1,2,3}; 
        //BYS54C 
        inputNames[84]="BYS54C"; 
        inputFeatures[84]=new int[]{-1,1,2,3}; 
        //BYS54D 
        inputNames[85]="BYS54D"; 
        inputFeatures[85]=new int[]{1,2,3}; 
        //BYS54E 
        inputNames[86]="BYS54E"; 
        inputFeatures[86]=new int[]{-1,1,2,3}; 
        //BYS54F 
        inputNames[87]="BYS54F"; 
        inputFeatures[87]=new int[]{1,2,3}; 
        //BYS54G 
        inputNames[88]="BYS54G"; 
        inputFeatures[88]=new int[]{1,2,3}; 
        //BYS54H 
        inputNames[89]="BYS54H"; 
        inputFeatures[89]=new int[]{1,2,3}; 
        //BYS54I 
        inputNames[90]="BYS54I"; 
        inputFeatures[90]=new int[]{-1,1,2,3}; 
        //BYS54J 
        inputNames[91]="BYS54J"; 
        inputFeatures[91]=new int[]{-1,1,2,3}; 
        //BYS54K 
        inputNames[92]="BYS54K"; 
        inputFeatures[92]=new int[]{-1,1,2,3}; 
        //BYS54L 
        inputNames[93]="BYS54L"; 
        inputFeatures[93]=new int[]{-1,1,2,3}; 
        //BYS54N 
        inputNames[94]="BYS54N"; 
        inputFeatures[94]=new int[]{-1,1,2,3}; 
        //BYS54O 
        inputNames[95]="BYS54O"; 
        inputFeatures[95]=new int[]{1,2,3}; 
        //BYS57 
        inputNames[96]="BYS57"; 
        inputFeatures[96]=new int[]{-1,1,2,3,4,5}; 
        //BYS60 
        inputNames[97]="BYS60"; 
        inputFeatures[97]=new int[]{0,1}; 
        //BYS61 
        inputNames[98]="BYS61"; 
        inputFeatures[98]=new int[]{0,1}; 
        //BYS66A 
        inputNames[99]="BYS66A"; 
        inputFeatures[99]=new int[]{-1,1,2,3,4,5,6}; 
        //BYS66B 
        inputNames[100]="BYS66B"; 
        inputFeatures[100]=new int[]{-1,1,2,3,4,5,6}; 
        //BYS66F 
        inputNames[101]="BYS66F"; 
        inputFeatures[101]=new int[]{-1,1,2,3,4,5,6,7}; 
        //BYS72 
        inputNames[102]="BYS72"; 
        inputFeatures[102]=new int[]{1,2,3}; 
 
    } 
}
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import java.io.File; 
import java.io.FileReader; 
import java.io.BufferedReader; 
import java.math.BigDecimal; 
 
/** 
 * This program reads Dummy Variable names and coefficients from a CSV 
 * (comma separated value) file exported from Excel. The variable names and 
 * coefficients are the result of running a linear regression on the ELS2002 
 * training data. 
 * 
 */ 
public class CrossValidator { 
 
    private static int[][]inputFeatures = new int[103][]; 
    private static String[] inputNames = new String[103]; 
    private static int QUANT=0; // For quantitatively coded inputs 
    private static int CODED=1; // For dummy coded inputs 
 
    private static int dummyCount = 0; 
    private static int[][] inputCases; 
    private static String[] inputVariableNames; 
    private static double[] mathTargets = new double[1534]; 
    private static double[] readingTargets = new double[1534]; 
 
    private static int MATH_SCORE_INDEX = 0; // The location of the math score in the 
input  
                                             //data 
    private static int READING_SCORE_INDEX = 1; // The location of the reading score in 
the  
                                                // input data 
 
    private static double[] coefficients; // The regression coefficients 
    private static String[] coefficientVariables; // The variable each coefficient 
applies to 
 
    public static void main(String[] args) { 
        // Initialize the input features and dummy variable names 
        setupInputFeatures(); 
 
        //Calculate the total number of dummy variables 
        for (int i=0;i<inputNames.length;i++) { 
            dummyCount += inputFeatures[i].length; 
        } 
 
        // Set up storage for the dummy coded input cases 
        // and target values (reading and math) 
        inputCases = new int[1536][dummyCount]; 
        inputVariableNames = new String[dummyCount]; 
 
        // Load the input cases 
        loadInputData("ELS2002_DummyCoded_Test.txt"); 
 
        // Now load the coefficients for Reading 
        loadCoefficients("ELS2002_ReadingCoefficients.csv"); 
 
        // Now compute the predicted value for each of the test cases 
        // and compute the RMSE, d1, and d2 values 
        runModel(READING_SCORE_INDEX); 
 
        // Now load the coefficients for Math 
        loadCoefficients("ELS2002_MathCoefficients.csv"); 
 
        // Now compute the predicted value for each of the test cases 
        // and compute the RMSE, d1, and d2 values 
        runModel(MATH_SCORE_INDEX); 
 
    } 
 
    /** 
     * Runs all of the input cases through the regression equation 
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     * Compares the predicted value to the actual value and computes 
     * RMSE and R^2 for the regression equation 
     */ 
    public static void runModel(int whichScore) { 
        System.out.print("Running the model for "); 
        if (whichScore==MATH_SCORE_INDEX) { 
            System.out.println("math scores"); 
        } else { 
            System.out.println("reading scores"); 
        } 
        // Compute the mean actual value 
        double totalActual = 0; 
        for (int i=0;i<inputCases.length;i++) { 
            if (whichScore==MATH_SCORE_INDEX) { 
                totalActual += mathTargets[i]; 
            } else { 
                totalActual += readingTargets[i]; 
            } 
        } 
        double meanActual = totalActual/(double)inputCases.length; 
 
        System.out.println("Mean score = "+meanActual); 
        // Compute SST sum( (actual-mean)^2 ) 
        double SST = 0; 
        for (int i=0;i<inputCases.length;i++) { 
            double actual = 0; 
            if (whichScore==MATH_SCORE_INDEX) { 
                actual = mathTargets[i]; 
            } else { 
                actual = readingTargets[i]; 
            } 
            double diff = actual - meanActual; 
            SST = SST+(diff*diff); 
        } 
 
        double d1Numerator = 0.0; 
        double d1Denominator = 0.0; 
        double d2Numerator = 0.0; 
        double d2Denominator = 0.0; 
 
        // Loop over all input cases 
        double SSE = 0.0; 
        double SSR = 0.0; 
        for (int i=0;i<inputCases.length;i++) { 
            double result = computePredictedValue(inputCases[i]); 
            double target = 0; 
            if (whichScore == MATH_SCORE_INDEX) { 
                // We're running the model for math scores 
                target = mathTargets[i]; 
            } else { 
                // We're running the model for reading scores 
                target = readingTargets[i]; 
            } 
 
            double diff = new BigDecimal(Double.toString(target-                                 
                 result)).setScale(6,BigDecimal.ROUND_HALF_UP).doubleValue(); 
            SSE = new BigDecimal(Double.toString(SSE+Math.pow(diff,2))). 
                          setScale(6,BigDecimal.ROUND_HALF_UP).doubleValue(); 
 
            // Calculate the index of agreement numerators and denominators 
            d1Numerator += Math.abs(diff); // Sum( |Ypred-Y| ) 
            d2Numerator += (diff*diff);    // Sum( (|YPred-Y|)^2 ) 
            d1Denominator += (Math.abs(result-meanActual)+Math.abs(target-meanActual)); 
            d2Denominator += Math.pow((Math.abs(result-meanActual)+Math.abs(target- 
                                 meanActual)),2); 
        } 
        SSR = SST-SSE;  
        double RMSE = new BigDecimal(Double.toString(Math.sqrt(new  
                          BigDecimal(Double.toString(SSE/(double)inputCases.length)). 
                          setScale(6,BigDecimal.ROUND_HALF_UP).doubleValue()))). 
                          setScale(6,BigDecimal.ROUND_HALF_UP).doubleValue(); 
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        double R2 = new BigDecimal(Double.toString(SSR/SST)). 
                        setScale(4,BigDecimal.ROUND_HALF_UP).doubleValue(); 
        System.out.println("RMSE (least squares curve fit) = "+RMSE); 
 
        double d1 = 1.0-(d1Numerator/d1Denominator); 
        double d2 = 1.0-(d2Numerator/d2Denominator); 
        System.out.println("Indices of Agreement: d1="+d1+", d2="+d2); 
 
    } 
 
    /** 
     * Takes an array of input values and computes the output of the regression 
     * equeation and returns that value. 
     * 
     * @param values An array of input values 
     * @return The predicted value of the regression equation 
     */ 
    public static double computePredictedValue(int[] values) { 
        double result = coefficients[0]; // Start with the regression constant; 
        // Start at i=1 since 0 is the regression equation constant 
        for (int i=1;i<coefficients.length;i++) { 
            String varName = coefficientVariables[i]; // Get the var name for this  
            // coefficient find the index of this var in the list of input values 
            int j =0; 
            for (j=0;j<inputVariableNames.length;j++) { 
                if (inputVariableNames[j].equals(varName)) { 
                    break; // Exit the loop, we found it. 
                } 
            } 
            if (j<inputVariableNames.length) { 
                // We found the variable name, compute it's part of the equation and 
                // add the value to result 
                result = result+(coefficients[i]*(double)values[j]); 
            } else { 
                // We couldn't find the variable name in the list of input variables 
                // This is a problem. Report it and stop 
                System.out.println("Unable to locate "+varName+ 
                    " in the list of input variables"); 
                System.exit(-1); 
            } 
        } 
 
        return new BigDecimal(Double.toString(result)). 
                   setScale(6,BigDecimal.ROUND_HALF_UP).doubleValue(); 
    } 
 
    /** 
     * Reads the coefficients and variables names from a CSV input file 
     * 
     * @param path The path to the CSV file of coefficients and variable names 
     */ 
    public static void loadCoefficients(String path) { 
        System.out.println("Reading the coefficients and variable names from "+path); 
        try { 
            File f = new File(path); 
            FileReader fr = new FileReader(f); 
            BufferedReader br = new BufferedReader(fr); 
            String input = br.readLine(); 
            // First Count the lines in the file so we can size the coefficient arrays 
            int coeffCount = 0; 
            while (input!=null) { 
                coeffCount++; 
                input = br.readLine(); 
            } 
            coefficients = new double[coeffCount]; 
            coefficientVariables = new String[coeffCount]; 
            System.out.println( 
                "Found "+coeffCount+" coefficients (including the constant)"); 
            // Move back to the beginning of the file 
            br.close(); 
            fr.close(); 
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            fr = new FileReader(f); 
            br = new BufferedReader(fr); 
            // Now load the coefficients and variable names 
            coeffCount = 0; 
            input = br.readLine(); 
            while (input!=null) { 
                String[] values = input.split(","); 
                coefficientVariables[coeffCount] = values[0]; 
                coefficients[coeffCount] = Double.parseDouble(values[1]); 
                coeffCount++; 
                input = br.readLine(); 
            } 
            br.close(); 
        } catch (java.io.IOException e) { 
            System.out.println("Error reading coefficients - "+e.getMessage()); 
        } 
    } 
 
    /** 
     * Reads the input file and populates the inputData, mathTarget, and readingTarget  
     * arrays 
     * 
     * @param path The path to the input file 
     */ 
    public static void loadInputData(String path) { 
        System.out.println("Reading dummy variable names and input cases from "+path); 
        try { 
            File f = new File(path); 
            FileReader fr = new FileReader(f); 
            BufferedReader br = new BufferedReader(fr); 
            String inputCase = br.readLine(); // Read the variable names 
            String[] varNames = inputCase.split(","); 
            // Start at i=2 to skip the math and reading score var names 
            for (int i=2;i<varNames.length;i++) { 
                inputVariableNames[i-2]=varNames[i]; 
            } 
 
            inputCase = br.readLine(); 
            int caseCount = 0; 
            while (inputCase!=null) { 
                String[] inputValues = inputCase.split(","); 
                // Start at i=2 to skip the math and reading scores. 
                for (int i=2;i<inputValues.length;i++) { 
                    inputCases[caseCount][i-2] = Integer.parseInt(inputValues[i]); 
                } 
                // Now grab the math and reading scores 
                mathTargets[caseCount] =  
                    Double.parseDouble(inputValues[MATH_SCORE_INDEX]); 
                readingTargets[caseCount] =  
                    Double.parseDouble(inputValues[READING_SCORE_INDEX]); 
                inputCase = br.readLine(); 
                caseCount++; 
            } 
            br.close(); 
            System.out.println("Read "+caseCount+" input cases"); 
        } catch (java.io.IOException e) { 
            System.out.println("Error reading input file - "+e.getMessage()); 
        } 
    } 
 
     /** 
     * Initializes the arrays containing the root names for the dummy variables 
     * as well as the valid values for each dummy variable 
     */ 
    public static void setupInputFeatures() { 
 
         int i = 0; // Index into the input arrays 
 
         //BYFCOMP 
         inputNames[i]="BYFCOMP"; 
         inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8,9}; 
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         i++; 
         //PARED 
         inputNames[i]="PARED"; 
         inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8}; 
         i++; 
         //MOTHED 
         inputNames[i]="MOTHED"; 
         inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8}; 
         i++; 
         //FATHED 
         inputNames[i]="FATHED"; 
         inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8}; 
         i++; 
         //SES1QU 
         inputNames[i]="SES1QU"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //STEXPECT 
         inputNames[i]="STEXPECT"; 
         inputFeatures[i]=new int[]{-1,1,2,3,4,5,6,7}; 
         i++; 
         //BYBASEBL 
         inputNames[i]="BYBASEBL"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
        //BYSOFTBL 
         inputNames[i]="BYSOFTBL"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
        //BYBASKTBL 
         inputNames[i]="BYBASKTBL"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
        //BYFOOTBL 
         inputNames[i]="BYFOOTBL"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
        //BYSOCCER 
         inputNames[i]="BYSOCCER"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYTEAMSP 
         inputNames[i]="BYTEAMSP"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
        //BYSOLOSP 
         inputNames[i]="BYSOLOSP"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYSCTRL 
         inputNames[i]="BYSCTRL"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYURBAN 
         inputNames[i]="BYURBAN"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYREGION 
         inputNames[i]="BYREGION"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20A 
         inputNames[i]="BYS20A"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         inputCodings[i]=QUANT; 
         i++; 
         //BYS20B 
         inputNames[i]="BYS20B"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20C 
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         inputNames[i]="BYS20C"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20E 
         inputNames[i]="BYS20E"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20F 
         inputNames[i]="BYS20F"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20G 
         inputNames[i]="BYS20G"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20J 
         inputNames[i]="BYS20J"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20M 
         inputNames[i]="BYS20M"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20N 
         inputNames[i]="BYS20N"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS21A 
         inputNames[i]="BYS21A"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS21B 
         inputNames[i]="BYS21B"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS21C 
         inputNames[i]="BYS21C"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS21D 
         inputNames[i]="BYS21D"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS21E 
         inputNames[i]="BYS21E"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS22A 
         inputNames[30]="BYS22A"; 
         inputFeatures[30]=new int[]{1,2,3}; 
         i++; 
         //BYS22B 
         inputNames[i]="BYS22B"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22C 
         inputNames[i]="BYS22C"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22D 
         inputNames[i]="BYS22D"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22E 
         inputNames[i]="BYS22E"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22F 
         inputNames[i]="BYS22F"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
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         //BYS22G 
         inputNames[i]="BYS22G"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22H 
         inputNames[i]="BYS22H"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS24B 
         inputNames[i]="BYS24B"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYS26 
         inputNames[i]="BYS26"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS27A 
         inputNames[i]="BYS27A"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27B 
         inputNames[i]="BYS27B"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27C 
         inputNames[i]="BYS27C"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27D 
         inputNames[i]="BYS27D"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27E 
         inputNames[i]="BYS27E"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27F 
         inputNames[i]="BYS27F"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27G 
         inputNames[i]="BYS27G"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27H 
         inputNames[i]="BYS27H"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27I 
         inputNames[i]="BYS27I"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS28 
         inputNames[i]="BYS28"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS34A 
         inputNames[i]="BYS34A"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS34B 
         inputNames[i]="BYS34B"; 
         inputFeatures[i]=new int[]{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 
             21,22,23,24,25,26}; 
         i++; 
         //BYS35A 
         inputNames[i]="BYS35A"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
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         //BYS35B 
         inputNames[i]="BYS35B"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS36A 
         inputNames[i]="BYS36A"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS36B 
         inputNames[i]="BYS36B"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS37 
         inputNames[i]="BYS37"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS38B 
         inputNames[i]="BYS38B"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS39A 
         inputNames[i]="BYS39A"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39B 
         inputNames[i]="BYS39B"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39C 
         inputNames[i]="BYS39C"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39D 
         inputNames[i]="BYS39D"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39E 
         inputNames[i]="BYS39E"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39F 
         inputNames[i]="BYS39F"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39G 
         inputNames[i]="BYS39G"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39H 
         inputNames[i]="BYS39H"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS41A 
         inputNames[i]="BYS41A"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS41B 
         inputNames[i]="BYS41B"; 
         inputFeatures[i]=new int[]{0,1}; 
         i++; 
         //BYS41C 
         inputNames[i]="BYS41C"; 
         inputFeatures[i]=new int[]{0,1}; 
         i++; 
         //BYS41D 
         inputNames[i]="BYS41D"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
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         //BYS41E 
         inputNames[i]="BYS41E"; 
         inputFeatures[i]=new int[]{0,1}; 
         i++; 
         //BYS41F 
         inputNames[i]="BYS41F"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS41G 
         inputNames[i]="BYS41G"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS41H 
         inputNames[i]="BYS41H"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS41I 
         inputNames[i]="BYS41I"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS42 
         inputNames[i]="BYS42"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS43 
         inputNames[i]="BYS43"; 
         inputFeatures[i]=new int[]{ 
            -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS45A 
         inputNames[i]="BYS45A"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYS45B 
         inputNames[i]="BYS45B"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYS45C 
         inputNames[i]="BYS45C"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYS46A 
         inputNames[i]="BYS46A"; 
         inputFeatures[i]=new int[]{0,1,2,3,4,5,6}; 
         i++; 
         //BYS46B 
         inputNames[i]="BYS46B"; 
         inputFeatures[i]=new int[]{0,1,2,3,4,5,6}; 
         i++; 
         //BYS54A 
         inputNames[i]="BYS54A"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS54B 
         inputNames[i]="BYS54B"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54C 
         inputNames[i]="BYS54C"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54D 
         inputNames[i]="BYS54D"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS54E 
         inputNames[i]="BYS54E"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54F 
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         inputNames[i]="BYS54F"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS54G 
         inputNames[i]="BYS54G"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS54H 
         inputNames[i]="BYS54H"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS54I 
         inputNames[i]="BYS54I"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54J 
         inputNames[i]="BYS54J"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54K 
         inputNames[i]="BYS54K"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54L 
         inputNames[i]="BYS54L"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54N 
         inputNames[i]="BYS54N"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54O 
         inputNames[i]="BYS54O"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS57 
         inputNames[i]="BYS57"; 
         inputFeatures[i]=new int[]{-1,1,2,3,4,5}; 
         i++; 
         //BYS60 
         inputNames[i]="BYS60"; 
         inputFeatures[i]=new int[]{0,1}; 
         i++; 
         //BYS61 
         inputNames[i]="BYS61"; 
         inputFeatures[i]=new int[]{0,1}; 
         i++; 
         //BYS66A 
         inputNames[i]="BYS66A"; 
         inputFeatures[i]=new int[]{-1,1,2,3,4,5,6}; 
         i++; 
         //BYS66B 
         inputNames[i]="BYS66B"; 
         inputFeatures[i]=new int[]{-1,1,2,3,4,5,6}; 
         i++; 
         //BYS66F 
         inputNames[i]="BYS66F"; 
         inputFeatures[i]=new int[]{-1,1,2,3,4,5,6,7}; 
         i++; 
         //BYS72 
         inputNames[i]="BYS72"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
    } 
}
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import org.joone.engine.*; 
import org.joone.engine.learning.TeachingSynapse; 
import org.joone.net.NeuralNet; 
import org.joone.io.MemoryInputSynapse; 
import org.joone.io.MemoryOutputSynapse; 
import org.joone.helpers.factory.JooneTools; 
 
import java.io.*; 
import java.util.ArrayList; 
import java.util.Random; 
 
/** 
 * Either loads from disk or sets up a 3 layer, feed forward, supervised learning neural       
 * network utilizing the resilient back-propagation learning algorithm. 
 * 
 * If in training mode, reads the contents of the training file, sets aside 10% of the  
 * training data for 
 * validation purposes, and begins 500 training epochs during which 90% of the training  
 * cases are presented to the network in order to adapt the synaptic weights. 
 * 
 * Every 10th epoch the NeuralNetListener object makes a copy of the NeuralNet, runs the  
 * reserved 10% of the 
 * training data through the network and computes the RMSE. If the RMSE is better than  
 * the last validation, 
 * then this copy of the network is set aside as the best network so far and training  
 * continues. At the end 
 * of 500 training epochs, save a copy of the best Neural Network. 
 * 
 * If not in training mode, load the neural network from disk, load the test data and run  
 * the neural net. 
 * Compute the RMSE, and Wilmott's indices of agreement d1, and d2. 
 * 
 */ 
public class ELS2002NeuralNet { 
 
    private static int[][] inputFeatures = new int[103][]; 
    private static String[] inputNames = new String[103]; 
    private static int QUANT=0; 
    private static int CODED=1; 
 
    public static int MATH_SCORE = 0; //index to the math score in the input data 
    public static int READING_SCORE = 1; // index to the reading score in the input data 
 
    public static String inputColumns = ""; 
 
    private static NeuralNet neuralNet; 
 
    private static int totalInputNeurons = 0; 
 
    private static double[][] inputCases;      // The full set of input cases 
    private static double[][] inputTargets;    // The full set of input target values 
    private static double[][] trainingCases;   // Pulled from inputCases, used to train  
                                               // the network 
    public static double[][] testCases;        // Pulled from inputCases, used to test  
                                               // the fitness of the network 
    private static double[][] trainingTargets; // Pulled from inputTargets, used to train  
                                               // the network 
    public static double[][] testTargets;      // Pulled from inputTargets, used to test  
                                               // the fitness of the network 
 
    public static void main(String[] args) { 
 
        // Populate the arrays of input variable names, valid responses, and coding 
        setupInputFeatures(); 
 
        // figure out how many input neurons we'll have by examing the input variables 
        totalInputNeurons = 0; 
        for (int i=0;i<inputFeatures.length;i++) { 
            totalInputNeurons += inputFeatures[i].length; 
        } 
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        // Create a string of the form "1,2,3,4,5...n" where n=totalInputNeurons, used  
        // to identify the 
        // columns that will be used as input to the neural network 
        for (int i=0;i<totalInputNeurons;i++) { 
            if (i==0) 
                inputColumns += (i+1); 
            else 
                inputColumns += ","+(i+1); 
        } 
 
        // Try to load a saved neural network from disk 
        neuralNet = loadNet(); 
 
        // If the net wasn't found, create a new one 
        if (neuralNet==null) { 
            // Construct a new neural net and train it 
            LinearLayer inputLayer = new LinearLayer(); 
            SigmoidLayer hiddenLayer = new SigmoidLayer(); 
            SigmoidLayer outputLayer = new SigmoidLayer(); 
 
            System.out.println("Creating Input Layer with "+totalInputNeurons+ 
                " input neurons"); 
            inputLayer.setRows(totalInputNeurons); 
            hiddenLayer.setRows(30); 
            outputLayer.setRows(2); 
 
            FullSynapse synapse_IH = new FullSynapse(); 
            FullSynapse synapse_HO = new FullSynapse(); 
 
            inputLayer.addOutputSynapse(synapse_IH); 
            hiddenLayer.addInputSynapse(synapse_IH); 
            hiddenLayer.addOutputSynapse(synapse_HO); 
            outputLayer.addInputSynapse(synapse_HO); 
 
            neuralNet = new NeuralNet(); 
            neuralNet.addLayer(inputLayer,NeuralNet.INPUT_LAYER); 
            neuralNet.addLayer(hiddenLayer,NeuralNet.HIDDEN_LAYER); 
            neuralNet.addLayer(outputLayer,NeuralNet.OUTPUT_LAYER); 
 
            MemoryInputSynapse inputStream = new MemoryInputSynapse(); 
            inputStream.setInputDimension(totalInputNeurons); 
            inputStream.setAdvancedColumnSelector(inputColumns); 
 
            inputCases =getInputData("ELS2002_NNCoded_Training.txt"); 
            inputTargets = getTargetData("ELS2002_NNCoded_Training.txt"); 
 
            // Reserve 10% of the input cases to be used to test the accuracy of the net 
            splitInputCases(inputCases, 153); 
 
            inputStream.setInputArray(trainingCases); 
            neuralNet.getInputLayer().addInputSynapse(inputStream); 
 
            TeachingSynapse trainer = new TeachingSynapse(); 
            MemoryInputSynapse samples = new MemoryInputSynapse(); 
            samples.setOutputDimension(2); 
            samples.setInputArray(trainingTargets); 
 
            trainer.setDesired(samples); 
            samples.setAdvancedColumnSelector("1,2"); 
            neuralNet.setTeacher(trainer); 
            neuralNet.getOutputLayer().addOutputSynapse(trainer); 
        } 
 
        // Decide if we're training, or running cross-validation 
        boolean training = false; 
 
        if (training) { 
            //These three lines are settings for RProp 
            neuralNet.getMonitor().addLearner(0, "org.joone.engine.RpropLearner"); 
            neuralNet.getMonitor().setLearningMode(0); 
            neuralNet.getMonitor().setLearningRate(1.0); // For the RpropLearner 
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            neuralNet.getMonitor().setBatchSize(trainingCases.length); 
            neuralNet.getMonitor().addNeuralNetListener( 
                new MyNeuralNetListener(neuralNet)); 
            neuralNet.getMonitor().setTrainingPatterns(trainingCases.length); 
            neuralNet.getMonitor().setTotCicles(500); 
            neuralNet.getMonitor().setLearning(true); 
            neuralNet.go(); 
        } else { 
 
            // We're performing cross-validation 
            String inputPath = "ELS2002_NNCoded_Test.txt"; 
            neuralNet.getMonitor().addNeuralNetListener( 
                new MyNeuralNetListener(neuralNet)); 
            neuralNet.getInputLayer().removeAllInputs(); 
            MemoryInputSynapse testData = new MemoryInputSynapse(); 
            testData.setFirstRow(1); 
            testData.setAdvancedColumnSelector(inputColumns); 
            neuralNet.getInputLayer().addInputSynapse(testData); 
            inputCases = getInputData(inputPath); 
            testData.setInputArray(inputCases); 
            neuralNet.getOutputLayer().removeAllOutputs(); 
            MemoryOutputSynapse testResults = new MemoryOutputSynapse(); 
            neuralNet.getOutputLayer().addOutputSynapse(testResults); 
            neuralNet.getMonitor().setTotCicles(1); 
            neuralNet.getMonitor().setTrainingPatterns(inputCases.length); 
            neuralNet.getMonitor().setLearning(false); 
 
            double[][] outputData = getTargetData(inputPath); 
 
            neuralNet.go(); 
 
            File outputFile = new File("ReadingPredictions.txt"); 
            File outputFile2 = new File("MathPredictions.txt"); 
 
            double Math_SSResidual = 0; 
            double Math_SSRegression = 0; 
            double Reading_SSResidual = 0; 
            double Reading_SSRegression = 0; 
 
            // Compute the average reading score to be used in the calculation of R^2 
            double totalReading = 0; 
            double totalMath = 0; 
            for (int i=0;i<outputData.length;i++) { 
                totalReading+=outputData[i][READING_SCORE]; 
                totalMath+=outputData[i][MATH_SCORE]; 
            } 
            double avgReading = totalReading/(double)outputData.length; 
            double avgMath = totalMath/(double)outputData.length; 
            System.out.println("Computed Avergage Reading Score = "+avgReading); 
            System.out.println("Computed Avergage Math Score    = "+avgMath); 
 
            double Math_SSTotal = 0; 
            double Reading_SSTotal = 0; 
            for (int i=0;i<outputData.length;i++) { 
                double reading_diff = outputData[i][READING_SCORE]-avgReading; 
                Reading_SSTotal += (reading_diff*reading_diff); 
 
                double math_diff = outputData[i][MATH_SCORE]-avgMath; 
                Math_SSTotal += (math_diff*math_diff); 
            } 
 
            double Math_d1Numerator = 0.0; 
            double Math_d1Denominator = 0.0; 
            double Math_d2Numerator = 0.0; 
            double Math_d2Denominator = 0.0; 
 
            double Reading_d1Numerator = 0.0; 
            double Reading_d1Denominator = 0.0; 
            double Reading_d2Numerator = 0.0; 
            double Reading_d2Denominator = 0.0; 
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            try { 
                FileWriter fw = new FileWriter(outputFile); 
                FileWriter fw2 = new FileWriter(outputFile2); 
                BufferedWriter bw = new BufferedWriter(fw); 
                BufferedWriter bw2 = new BufferedWriter(fw2); 
 
                bw.write("Actual Reading Score,Predicted Reading Score"); 
                bw.newLine(); 
                bw2.write("Actual Math Score,Predicted Math Score"); 
                bw2.newLine(); 
 
                for (int i=0;i<inputCases.length;i++) { 
                    double[] results = testResults.getNextPattern(); 
 
                    double math_err = results[MATH_SCORE]-outputData[i][MATH_SCORE]; 
                    double reading_err = results[READING_SCORE]- 
                        outputData[i][READING_SCORE]; 
 
                    Math_SSResidual += (math_err*math_err); 
                    Reading_SSResidual += (reading_err*reading_err); 
 
                    bw.write(outputData[i][READING_SCORE]+","+results[READING_SCORE]); 
                    bw.newLine(); 
                    bw2.write(outputData[i][MATH_SCORE]+","+results[MATH_SCORE]); 
                    bw2.newLine(); 
 
                    // Calculate the index of agreement numerators and denominators 
                    Math_d1Numerator += Math.abs(math_err);      // Sum( |Ypred-Y| ) 
                    Math_d2Numerator += (math_err*math_err);     // Sum( (|YPred-Y|)^2 ) 
                    Math_d1Denominator += (Math.abs(results[MATH_SCORE]- 
                        avgMath)+Math.abs(outputData[i][MATH_SCORE]-avgMath)); 
                    Math_d2Denominator += Math.pow((Math.abs(results[MATH_SCORE]- 
                        avgMath)+Math.abs(outputData[i][MATH_SCORE]-avgMath)),2); 
 
                    Reading_d1Numerator += Math.abs(reading_err);     // Sum( |Ypred-Y| ) 
                    Reading_d2Numerator += (reading_err*reading_err); // Sum( (|YPred- 
                                                                      // Y|)^2 ) 
                    Reading_d1Denominator += (Math.abs(results[READING_SCORE]- 
                        avgReading)+Math.abs(outputData[i][READING_SCORE]-avgReading)); 
                    Reading_d2Denominator += Math.pow((Math.abs(results[READING_SCORE]- 
                        avgReading)+Math.abs(outputData[i][READING_SCORE]- 
                        avgReading)),2); 
                } 
                Math_SSRegression = Math_SSTotal-Math_SSResidual; 
                Reading_SSRegression = Reading_SSTotal-Reading_SSResidual; 
 
                double math_rmse = Math.sqrt(Math_SSResidual/(double)inputCases.length); 
                double reading_rmse =  
                    Math.sqrt(Reading_SSResidual/(double)inputCases.length); 
 
                System.out.println("Math RMSE = "+math_rmse+" Reading RMSE = "+ 
                    reading_rmse); 
 
                double math_d1 = 1.0-(Math_d1Numerator/Math_d1Denominator); 
                double math_d2 = 1.0-(Math_d2Numerator/Math_d2Denominator); 
 
                double reading_d1 = 1.0-(Reading_d1Numerator/Reading_d1Denominator); 
                double reading_d2 = 1.0-(Reading_d2Numerator/Reading_d2Denominator); 
 
                System.out.println("Math Indices of Agreement:    d1="+math_d1+ 
                    ", d2="+math_d2); 
                System.out.println("Reading Indices of Agreement: d1="+reading_d1+ 
                    ", d2="+reading_d2); 
 
                bw.flush(); 
                bw.close(); 
                bw2.flush(); 
                bw2.close(); 
 
            } catch (java.io.IOException e) { 
                System.out.println("Error writing predicted results - "+e.getMessage()); 
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            } 
 
        } 
 
    } 
 
    /** 
     * Splits the complete list of input cases into a set for test purposed and a set 
     * for training purposes. Periodically the net will be tested with the test cases 
     * so that we can determine if we're overfitting the net and so that we can preserve 
     * the best net even if the best net is found in the middle of the training. 
     * 
     * @param cases A 2-D array of input cases 
     * @param splitCount The number of cases to strip off to be used to test the net 
     * 
     */ 
    public static void splitInputCases(double[][] cases, int splitCount) { 
        System.out.println("Splitting the input cases into "+(cases.length-splitCount)+ 
            " training and "+splitCount+" test cases"); 
 
        ArrayList allCases = new ArrayList(); 
        // First, dimension the trainingCases and testCases arrays 
        trainingCases = new double[cases.length-splitCount][cases[0].length]; 
        trainingTargets = new double[trainingCases.length][2]; 
        testCases = new double[splitCount][cases[0].length]; 
        testTargets = new double[testCases.length][2]; 
 
        // Next, copy all of the case indices into the ArrayList 
        for (int i=0;i<cases.length;i++) { 
            allCases.add(new Integer(i)); 
        } 
 
        // Now, set up a loop to randomly select case indices from the remaining 
        // indicies and populate the test case array 
        Random random = new Random(System.currentTimeMillis()); 
        for (int i=0;i<splitCount;i++) { 
            int selectedIndex = random.nextInt(allCases.size()); 
            int selectedCaseIndex = ((Integer)allCases.get(selectedIndex)).intValue(); 
            for (int j=0;j<cases[selectedCaseIndex].length;j++) { 
                // Copy this case into the array of test cases 
                testCases[i][j] = cases[selectedCaseIndex][j]; 
            } 
            testTargets[i][READING_SCORE] =  
                inputTargets[selectedCaseIndex][READING_SCORE]; 
            testTargets[i][MATH_SCORE] = inputTargets[selectedCaseIndex][MATH_SCORE]; 
            // Now remove this case index from the array list of all cases, so we don't  
            // pick it again. 
            allCases.remove(selectedIndex); 
        } 
        // Finally, populate the training case array with the cases that haven't been  
        // selected 
        for (int i=0;i<allCases.size();i++) { 
            int selectedCaseIndex = ((Integer)allCases.get(i)).intValue(); 
            for (int j=0;j<cases[selectedCaseIndex].length;j++) { 
                trainingCases[i][j] = cases[selectedCaseIndex][j]; 
            } 
            trainingTargets[i][READING_SCORE] =  
                inputTargets[selectedCaseIndex][READING_SCORE]; 
            trainingTargets[i][MATH_SCORE] = inputTargets[selectedCaseIndex][MATH_SCORE]; 
        } 
    } 
 
    /** 
     * Used by MyNeuralNetListener to get the test cases, the reserved 10% of the 
     * training data used for validation of the neural network training. 
     * 
     * @return 2-D array of cases in dummy coded format. 
     */ 
    public static double[][] getTestCases() { 
        return testCases; 
    } 
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    /** 
     * Used by MyNeuralNetListener to get the targets for the test cases used for 
     * validation of the neural network training. 
     * 
     * @return 2-D array of target values 
     */ 
    public static double[][] getTestTargets() { 
        return testTargets; 
    } 
 
    /** 
     * Used by MyNeuralNetListener to save the best NN once training is complete. 
     * 
     * @param theNet The NeuralNetwork object to save 
     */ 
    public static void saveNet(NeuralNet theNet) { 
        try { 
            System.out.println("Saving the neural network"); 
            JooneTools.save(theNet,"MathAndReadingNeuralNet.net"); 
        } catch (java.io.IOException e) { 
            System.out.println("Error saving net - "+e.getMessage()); 
        } 
    } 
 
    /** 
     * Reads a saved NeuralNetwork object from disk. 
     * 
     * @return A previously trained NeuralNetwork object or null if the file doesn't  
     * exist. 
     */ 
    public static NeuralNet loadNet() { 
        File f = new File("MathAndReadingNeuralNet.net"); 
        NeuralNet net = null; 
 
        if (!f.exists()) { 
            System.out.println("Stored Neural Net not found"); 
            return null; 
        } 
 
        try { 
            System.out.println("Loading the neural net from disk"); 
            net = JooneTools.load("MathAndReadingNeuralNet.net"); 
        } catch (Exception e) { 
            System.out.println("Error loading net - "+e.getMessage()); 
        } 
        return net; 
    } 
 
    /** 
     * Parses the target data from the input file. Returns a 2D array [numcases][2]  
     * indexed 
     * by the cases in the first dimension and containing the target values in the second  
     * dimension. 
     * 
     * @param path Path to the file in the file system 
     * 
     * @return 2D array of doubles 
     */ 
    public static double[][] getTargetData(String path) { 
        File f = new File(path); 
        // Note - the input data must be read before the target data so that 
        // the total number of input cases has been set 
        int totalCases = 0; 
        double[][] targets = new double[0][0]; 
        if (f.exists()) { 
            try { 
                FileReader fr = new FileReader(f); 
                BufferedReader br = new BufferedReader(fr); 
                String pattern = br.readLine(); // Get the first real row of data 
                // Now figure out how many cases we have 
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                while (pattern!=null) { 
                    totalCases++; 
                    pattern = br.readLine(); 
                } 
                br.close(); 
                // Now read the data 
                fr = new FileReader(f); 
                br = new BufferedReader(fr); 
                pattern = br.readLine(); // Get the first read row of data 
                targets = new double[totalCases][2]; 
                int rowCount = 0; 
                while (pattern!=null) { 
                    String[] values = pattern.split(","); 
                    // Values scaled to [0,1] 
                    targets[rowCount][READING_SCORE] =  
                        Double.parseDouble(values[READING_SCORE]); 
                    targets[rowCount][MATH_SCORE] =  
                        Double.parseDouble(values[MATH_SCORE]); 
                    rowCount++; 
                    pattern = br.readLine(); 
                } 
                br.close(); 
            } catch (java.io.IOException e) { 
                System.out.println("Error reading target data - "+e.getMessage()); 
            } 
        } 
        System.out.println("    Read "+totalCases+" target cases from "+path); 
        return targets; 
    } 
 
    /** 
     * Reads the input data from an input file and scales the dummy coded values 
     * into the range 0, 0.2-0.8 
     * 
     * @param path Path to the input file in the file system 
     * @return  2D array of doubles indexes by case number and input neuron 
     */ 
    public static double[][] getInputData(String path) { 
        File f = new File(path); 
        double[][] activations = new double[0][0]; 
        int totalInputCases=0; 
 
        if (f.exists()) { 
            try { 
                FileReader fr = new FileReader(f); 
                BufferedReader br = new BufferedReader(fr); 
                // First count up the total number of input rows 
                String pattern = br.readLine(); // Get the first real row of data 
                totalInputCases = 0; 
                while (pattern!=null) { 
                    pattern = br.readLine(); 
                    totalInputCases++; 
 
                } 
                br.close(); 
                // Now read the data 
                fr = new FileReader(f); 
                br = new BufferedReader(fr); 
                pattern = br.readLine(); // Get the first real row of data 
                activations = new double[totalInputCases][totalInputNeurons]; 
                int rowCount = 0; 
                while (pattern!=null) { 
                    String[] values = pattern.split(","); 
                    for (int i=2;i<values.length;i++) { // Skip 0 & 1 which are the math   
                                                        // & reading scores 
                        int value = Integer.parseInt(values[i]); 
                        double activation = 0.0; 
                        // Recode to [0.2,0.8]. If the response isn't in the list of  
                        // valid responses, leave as 0 
                        for (int j=0;j<inputFeatures[i-2].length;j++) { 
                            if (value==inputFeatures[i-2][j]) { 



 

   

127 

                                // Found it, so scale the activaton value to [0.2,0.8] 
                                activation = 0.2+0.6*((double)j/ 
                                    (double)(inputFeatures[i-2].length-1)); 
                                break; 
                            } 
                        } 
                        activations[rowCount][i-2]=activation; 
                    } 
                    rowCount++; 
                    pattern = br.readLine(); 
                } 
                br.close(); 
            } catch (java.io.IOException e) { 
                System.out.println("Error reading input data - "+e.getMessage()); 
            } 
        } 
        System.out.println("    Read "+totalInputCases+" input cases from "+path); 
        return activations; 
    } 
 
    /** 
     * Initializes the arrays containing the root names for the dummy variables 
     * as well as the valid values for each dummy variable 
     */ 
    public static void setupInputFeatures() { 
 
         int i = 0; // Index into the input arrays 
 
         //BYFCOMP 
         inputNames[i]="BYFCOMP"; 
         inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8,9}; 
         i++; 
         //PARED 
         inputNames[i]="PARED"; 
         inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8}; 
         i++; 
         //MOTHED 
         inputNames[i]="MOTHED"; 
         inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8}; 
         i++; 
         //FATHED 
         inputNames[i]="FATHED"; 
         inputFeatures[i]=new int[]{1,2,3,4,5,6,7,8}; 
         i++; 
         //SES1QU 
         inputNames[i]="SES1QU"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //STEXPECT 
         inputNames[i]="STEXPECT"; 
         inputFeatures[i]=new int[]{-1,1,2,3,4,5,6,7}; 
         i++; 
         //BYBASEBL 
         inputNames[i]="BYBASEBL"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
        //BYSOFTBL 
         inputNames[i]="BYSOFTBL"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
        //BYBASKTBL 
         inputNames[i]="BYBASKTBL"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
        //BYFOOTBL 
         inputNames[i]="BYFOOTBL"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
        //BYSOCCER 
         inputNames[i]="BYSOCCER"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
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         i++; 
         //BYTEAMSP 
         inputNames[i]="BYTEAMSP"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
        //BYSOLOSP 
         inputNames[i]="BYSOLOSP"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYSCTRL 
         inputNames[i]="BYSCTRL"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYURBAN 
         inputNames[i]="BYURBAN"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYREGION 
         inputNames[i]="BYREGION"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20A 
         inputNames[i]="BYS20A"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         inputCodings[i]=QUANT; 
         i++; 
         //BYS20B 
         inputNames[i]="BYS20B"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20C 
         inputNames[i]="BYS20C"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20E 
         inputNames[i]="BYS20E"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20F 
         inputNames[i]="BYS20F"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20G 
         inputNames[i]="BYS20G"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20J 
         inputNames[i]="BYS20J"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20M 
         inputNames[i]="BYS20M"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS20N 
         inputNames[i]="BYS20N"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS21A 
         inputNames[i]="BYS21A"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS21B 
         inputNames[i]="BYS21B"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS21C 
         inputNames[i]="BYS21C"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS21D 



 

   

129 

         inputNames[i]="BYS21D"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS21E 
         inputNames[i]="BYS21E"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS22A 
         inputNames[30]="BYS22A"; 
         inputFeatures[30]=new int[]{1,2,3}; 
         i++; 
         //BYS22B 
         inputNames[i]="BYS22B"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22C 
         inputNames[i]="BYS22C"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22D 
         inputNames[i]="BYS22D"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22E 
         inputNames[i]="BYS22E"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22F 
         inputNames[i]="BYS22F"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22G 
         inputNames[i]="BYS22G"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS22H 
         inputNames[i]="BYS22H"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS24B 
         inputNames[i]="BYS24B"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYS26 
         inputNames[i]="BYS26"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS27A 
         inputNames[i]="BYS27A"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27B 
         inputNames[i]="BYS27B"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27C 
         inputNames[i]="BYS27C"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27D 
         inputNames[i]="BYS27D"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27E 
         inputNames[i]="BYS27E"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27F 
         inputNames[i]="BYS27F"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
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         //BYS27G 
         inputNames[i]="BYS27G"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27H 
         inputNames[i]="BYS27H"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS27I 
         inputNames[i]="BYS27I"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS28 
         inputNames[i]="BYS28"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS34A 
         inputNames[i]="BYS34A"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS34B 
         inputNames[i]="BYS34B"; 
         inputFeatures[i]=new int[]{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 
             21,22,23,24,25,26}; 
         i++; 
         //BYS35A 
         inputNames[i]="BYS35A"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS35B 
         inputNames[i]="BYS35B"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS36A 
         inputNames[i]="BYS36A"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS36B 
         inputNames[i]="BYS36B"; 
         inputFeatures[i]=new int[]{ 
            -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS37 
         inputNames[i]="BYS37"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS38B 
         inputNames[i]="BYS38B"; 
         inputFeatures[i]=new int[]{1,2,3,4}; 
         i++; 
         //BYS39A 
         inputNames[i]="BYS39A"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39B 
         inputNames[i]="BYS39B"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39C 
         inputNames[i]="BYS39C"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39D 
         inputNames[i]="BYS39D"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39E 
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         inputNames[i]="BYS39E"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39F 
         inputNames[i]="BYS39F"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39G 
         inputNames[i]="BYS39G"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS39H 
         inputNames[i]="BYS39H"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS41A 
         inputNames[i]="BYS41A"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS41B 
         inputNames[i]="BYS41B"; 
         inputFeatures[i]=new int[]{0,1}; 
         i++; 
         //BYS41C 
         inputNames[i]="BYS41C"; 
         inputFeatures[i]=new int[]{0,1}; 
         i++; 
         //BYS41D 
         inputNames[i]="BYS41D"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS41E 
         inputNames[i]="BYS41E"; 
         inputFeatures[i]=new int[]{0,1}; 
         i++; 
         //BYS41F 
         inputNames[i]="BYS41F"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS41G 
         inputNames[i]="BYS41G"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS41H 
         inputNames[i]="BYS41H"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS41I 
         inputNames[i]="BYS41I"; 
         inputFeatures[i]=new int[]{-1,0,1}; 
         i++; 
         //BYS42 
         inputNames[i]="BYS42"; 
         inputFeatures[i]=new int[]{ 
             -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS43 
         inputNames[i]="BYS43"; 
         inputFeatures[i]=new int[]{ 
            -1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}; 
         i++; 
         //BYS45A 
         inputNames[i]="BYS45A"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYS45B 
         inputNames[i]="BYS45B"; 
         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYS45C 
         inputNames[i]="BYS45C"; 
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         inputFeatures[i]=new int[]{1,2,3,4,5}; 
         i++; 
         //BYS46A 
         inputNames[i]="BYS46A"; 
         inputFeatures[i]=new int[]{0,1,2,3,4,5,6}; 
         i++; 
         //BYS46B 
         inputNames[i]="BYS46B"; 
         inputFeatures[i]=new int[]{0,1,2,3,4,5,6}; 
         i++; 
         //BYS54A 
         inputNames[i]="BYS54A"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS54B 
         inputNames[i]="BYS54B"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54C 
         inputNames[i]="BYS54C"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54D 
         inputNames[i]="BYS54D"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS54E 
         inputNames[i]="BYS54E"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54F 
         inputNames[i]="BYS54F"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS54G 
         inputNames[i]="BYS54G"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS54H 
         inputNames[i]="BYS54H"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS54I 
         inputNames[i]="BYS54I"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54J 
         inputNames[i]="BYS54J"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54K 
         inputNames[i]="BYS54K"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54L 
         inputNames[i]="BYS54L"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54N 
         inputNames[i]="BYS54N"; 
         inputFeatures[i]=new int[]{-1,1,2,3}; 
         i++; 
         //BYS54O 
         inputNames[i]="BYS54O"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
         //BYS57 
         inputNames[i]="BYS57"; 
         inputFeatures[i]=new int[]{-1,1,2,3,4,5}; 
         i++; 
         //BYS60 
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         inputNames[i]="BYS60"; 
         inputFeatures[i]=new int[]{0,1}; 
         i++; 
         //BYS61 
         inputNames[i]="BYS61"; 
         inputFeatures[i]=new int[]{0,1}; 
         i++; 
         //BYS66A 
         inputNames[i]="BYS66A"; 
         inputFeatures[i]=new int[]{-1,1,2,3,4,5,6}; 
         i++; 
         //BYS66B 
         inputNames[i]="BYS66B"; 
         inputFeatures[i]=new int[]{-1,1,2,3,4,5,6}; 
         i++; 
         //BYS66F 
         inputNames[i]="BYS66F"; 
         inputFeatures[i]=new int[]{-1,1,2,3,4,5,6,7}; 
         i++; 
         //BYS72 
         inputNames[i]="BYS72"; 
         inputFeatures[i]=new int[]{1,2,3}; 
         i++; 
    } 
}
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import org.joone.engine.NeuralNetListener; 
import org.joone.engine.NeuralNetEvent; 
import org.joone.engine.Monitor; 
import org.joone.net.NeuralNet; 
import org.joone.io.MemoryInputSynapse; 
import org.joone.io.MemoryOutputSynapse; 
 
/** 
 * Helper class that listens for NeuralNetwork events and performs functions such as 
 * printing the current RMSE for the network, validating the network, and saving the  
 * network 
 */ 
public class MyNeuralNetListener implements NeuralNetListener { 
 
    public NeuralNet net; 
    public NeuralNet bestNet = null; 
    public double bestRMSE = 0; 
 
    public MyNeuralNetListener(NeuralNet theNet) { 
        net = theNet; 
    } 
 
    public void netStarted(NeuralNetEvent nne) { 
        System.out.println("Starting the net"); 
    } 
 
    public void cicleTerminated(NeuralNetEvent nne) { 
    } 
 
    public void netStopped(NeuralNetEvent nne) { 
        System.out.println("Stopping the Net"); 
        Monitor monitor = (Monitor)nne.getSource(); 
        if (monitor.isLearning()) { 
            ELS2002NeuralNet.saveNet(bestNet); 
        } 
    } 
 
    public void errorChanged(NeuralNetEvent nne) { 
        Monitor monitor = (Monitor)nne.getSource(); 
        int currentCicle = monitor.getCurrentCicle(); 
        if (currentCicle%10==0 || currentCicle==1) { 
            System.out.println("Total Error Changed - "+monitor.getGlobalError()+ 
                " - Current Cicle "+currentCicle); 
 
            monitor.setExporting(true); 
            NeuralNet newNet = net.cloneNet(); 
            monitor.setExporting(false); 
            newNet.getInputLayer().removeAllInputs(); 
            MemoryInputSynapse testData = new MemoryInputSynapse(); 
            testData.setFirstRow(1); 
            testData.setAdvancedColumnSelector(ELS2002NeuralNet.inputColumns); 
            newNet.getInputLayer().addInputSynapse(testData); 
            double[][] inputData = ELS2002NeuralNet.getTestCases(); 
            testData.setInputArray(inputData); 
            newNet.getOutputLayer().removeAllOutputs(); 
            MemoryOutputSynapse testResults = new MemoryOutputSynapse(); 
            newNet.getOutputLayer().addOutputSynapse(testResults); 
            newNet.getMonitor().setTotCicles(1); 
            newNet.getMonitor().setTrainingPatterns(inputData.length); 
            newNet.getMonitor().setLearning(false); 
 
            double[][] outputData = ELS2002NeuralNet.getTestTargets(); 
            System.out.println("Running test cycle with "+inputData.length+" cases"); 
            newNet.go(); 
 
            double Math_SSResidual = 0; // Variability about the regression line 
            double Math_SSRegression = 0; 
            double Reading_SSResidual = 0; 
            double Reading_SSRegression = 0; 
 
            int READING_SCORE = ELS2002NeuralNet.READING_SCORE; 
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            int MATH_SCORE = ELS2002NeuralNet.MATH_SCORE; 
 
            // Compute the average reading score to be used in the calculation of R^2 
            double totalReading = 0; 
            double totalMath = 0; 
            for (int i=0;i<outputData.length;i++) { 
                totalReading+=outputData[i][READING_SCORE]; 
                totalMath+=outputData[i][MATH_SCORE]; 
            } 
            double avgReading = totalReading/(double)outputData.length; 
            double avgMath = totalMath/(double)outputData.length; 
 
            double Math_SSTotal = 0; 
            double Reading_SSTotal = 0; 
            for (int i=0;i<outputData.length;i++) { 
                double reading_diff = outputData[i][READING_SCORE]-avgReading; 
                double math_diff = outputData[i][MATH_SCORE]-avgMath; 
                Reading_SSTotal += (reading_diff*reading_diff); 
                Math_SSTotal += (math_diff*math_diff); 
            } 
 
            for (int i=0;i<inputData.length;i++) { 
                double[] results = testResults.getNextPattern(); 
                double math_err = outputData[i][MATH_SCORE]-results[MATH_SCORE];  
                double reading_err = outputData[i][READING_SCORE]-results[READING_SCORE]; 
                Math_SSResidual += (math_err*math_err); 
                Reading_SSResidual += (reading_err*reading_err); 
            } 
            Math_SSRegression = Math_SSTotal-Math_SSResidual; 
            Reading_SSRegression = Reading_SSTotal-Reading_SSResidual; 
 
            double math_rmse = Math.sqrt(Math_SSResidual/(double)inputData.length); 
            double reading_rmse = Math.sqrt(Reading_SSResidual/(double)inputData.length); 
 
            System.out.println("    Math RMSE (Sqrt(SSResidual/n)) = "+math_rmse); 
            System.out.println("    Reading RMSE                   = "+reading_rmse); 
            double avg_rmse = (math_rmse+reading_rmse)/2.0; 
            if (bestNet == null || avg_rmse < bestRMSE) { 
                System.out.println("    New best net, average rmse = "+avg_rmse); 
                bestNet = newNet; 
                bestRMSE = avg_rmse; 
            } 
        } 
    } 
 
    public void netStoppedError(NeuralNetEvent nne, String str) { 
        System.out.println("The net stopped due to an error - "+str); 
 
    } 
} 
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