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Abstract of the Thesis

Optimization Techniques for Image Restoration

by

Melissa Anne Pirolli

Many fields of study use images to make discoveries about the past, decisions for

the present and predictions for the future. Images often acquire degradations such

as a blur due to a patient moving during an x-ray or noise picked up through remote

sensing imaging equipment. Images may also lose information through compression

or transmission. In this thesis, diffusion based models were used to solve the image

restoration problem as these models can simultaneously remove noise, preserve edges

and restore lost information. Specifically, numerical schemes that are more compu-

tationally efficient than the current implementation were developed and tested for

denoising via nonstandard diffusion. Furthermore, a new model for digital inpainting

is proposed based on the nonstandard diffusion model. Numerical results illustrate

the effectiveness of both the denoising and inpainting models in image restoration.

viii



Chapter 1

Introduction

1.1 Image Restoration Problem

Many fields of study use images to make discoveries about the past, decisions for

the present and predictions for the future. In medicine, doctors study MRI’s and

x-rays to diagnose patients with cancer, tumors or bone fractures. Geophysicists

use images of the earth’s strata to determine the location and accessibility of oil.

Images often contain degradations such as a blur due to a patient moving during an

x-ray or noise picked up through remote sensing imaging equipment. Images may

also lose information through compression or transmission. As technology continues

to develop, mathematicians are exploring quicker and more efficient ways to restore

images which will help doctors, scientists and engineers better solve these critical

problems.

In this project we developed models for image restoration. The image restoration

problem attempts to recover µ, a true image, from a degraded image, I (see figure

1.1), where I = Kµ + e. Here K is a linear operator which could represent blurring

and e is additive Gaussian noise with mean 0. In addition, the image may require

‘inpainting’ if there are subregions, A, of the true image, µ, that have been completely

1
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lost. In this case, we need to recover µ where we only know that I|Ac = Kµ|Ac + e

where Ac is the compliment of the subregions A on the entire image domain (see

figure 1.2).

Figure 1.1: Denoising
The image on the left is the noisy image and the right is the true image.

Figure 1.2: Inpainting
The image on the left is the image to be inpainted and the right is the true image.

There are numerous mathematical approaches to image restoration, for example,

Fourier methods, statistical methods, regularized least squares, etc. In this thesis,

diffusion based models were used to solve the image restoration problem since these

models can simultaneously smooth noise and preserve edges while also restoring lost

information. First, numerical schemes were developed for nonstandard diffusion that

are more computationally efficient than the current implementation for denoising.
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There is a comparison of the numerical results for both implementations. Next, this

new algorithm was used to expand the model to incorporate inpainting.

The remainder of this thesis is laid out as follows. Chapter 2 describes the be-

havior of the diffusion based models in denoising images. This chapter includes the

model for nonstandard diffusion and its current implementation. The third chapter

describes the optimization algorithms which were used to implement the nonstandard

diffusion model. Chapter 4 describes the precise numerical implementation and ex-

perimental results for the nonstandard diffusion denoising model. In the last chapter,

the nonstandard diffusion model is applied to inpainting.



Chapter 2

Diffusion based models for Image

Restoration

2.1 Images and edges

A two dimensional grayscale image is a function of two variables, µ : Ω → R where

Ω ⊆ R2. The domain is the spatial coordinates (or location in the image) (x1, x2) and

the range is the intensity value µ(x1, x2) . The lowest intensity value often corresponds

black. As the intensity values increases, the image displays increasingly lighter shades

of gray until the largest intensity value corresponds to white.

In image restoration whether removing degradations or restoring lost information,

it is important to preserve edges or object boundaries. An edge is defined as a location

where there is a large change in intensity values. More specifically, if µ(x1, x2) is an

intensity map, then an edge is defined to be locations where the magnitude of the

gradient of µ, |∇µ(x1, x2)|, achieves a local maximum.

4
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2.2 Diffusion based denoising

2.2.1 Isotropic Diffusion

Since the early 1980s, mathematicians have been using isotropic diffusion as a method

for image restoration. Isotropic diffusion diffuses equally in all directions. The stan-

dard model used for isotropic diffusion is

min
µ

∫

Ω

|∇µ|2 (2.1)

where Ω ⊆ R2 is the image domain. The main benefit of isotropic diffusion is that it

removes noise. However, it has a major drawback in that significant features such as

edges are not preserved (see figure 2.1).

2.2.2 Total Variation Based Diffusion

In the early 1990s, mathematicians began to use anisotropic diffusion in image restora-

tion. Anisotropic diffusion does not diffuse equally in all directions and can be used to

actually preserves edges. In 1992, Rudin, Osher and Fatemi [9] applied total variation

(TV) based diffusion, a type of anisotropic diffusion, to image restoration. TV-based

diffusion always diffuses strictly in one direction, that which is orthogonal to the gra-

dient. Since the gradient is directed across edges, the TV-model diffuses tangential

to edges. The model for TV-based diffusion is

min
µ

∫

Ω

|∇µ| (2.2)

where Ω ⊆ R2 is the image domain. The benefit of this model is that it preserves edges

thus making significant features easily identifiable. However, TV-based diffusion does

not as efficiently remove noise and may even mistake noise as a significant feature

thus creating unwanted artifacts or false edges. False edges can create significant
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problems especially when the ultimate goal of the processing is automatic recognition

of an object by a computer (see figure 2.2).

2.2.3 Best of Both Worlds

In the late 1990s, Chambolle and Lions introduced the idea of combining isotropic

diffusion (2.1) and total variation based diffusion (2.2) in such a way that noise is

removed while edges are preserved [2]. The model they introduced is:

min
µ

∫

Ω

|∇µ|p (2.3)

where Ω ⊆ R2 is the image domain and

p =















1, |∇µ| > ε

2, |∇µ| ≥ ε

The main feature of this model is that wherever the gradient is large, p ≡ 1,

yielding TV-based diffusion and where the gradient is small, p ≡ 2, yielding isotropic

diffusion. Chambolle and Lion’s model is theoretically sound, i.e. there exists a unique

solution. However, this model can be very sensitive to the threshold.

Blomgren introduced another model to calculate the exponent p where 1 ≤ p ≤ 2.

In [1], he set p = p(|∇µ|) where

• lim|∇µ|→0 p(|∇µ|) = 2

• lim|∇µ|→∞ p(|∇µ|) = 1 and

•p is monotonically decreasing.

Thus p depends on the strength of the gradient of the image µ and changes as the

image µ is updated. With Blomgren’s model, the type of anisotropy varies and the

numerical simulations showed good results. However, this model is very difficult to

study mathematically and there is no guarantee that a solution exists.
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Levine, Chan and Stanich introduced a model where p = p(x) depends on the

location, in the image [7]. This is the nonstandard diffusion model. The main feature

of the nonstandard diffusion is that where the gradient is large, p(x) ∼ 1 and only

TV-based diffusion is used since the location is likely to be an edge. On the other

hand, where the gradient is small, p(x) ∼ 2, only isotropic diffusion is used since the

location is likely to be away from the edges, i.e. where there is a small variation in

the image. At all other regions, p(x) falls between 1 and 2 and the image is diffused

using a combination of isotropic diffusion and TV-based diffusion, thus the type of

anisotropy varies. The nonstandard diffusion model is theoretically sound and has

good numerical results (see figure 2.3).

2.3 Nonstandard Diffusion

As usual, I is the degraded image and µ is the updated image. In the thesis, we focus

on the nonstandard diffusion model proposed by Levine, Chan and Stanich [7]:

min
µ

∫

Ω

Ψ(x,∇µ) +
λ

2
(µ− I)2 (2.4)

where Ψ is defined by

Ψ (x, r) =















1
p(x)
|r|p(x) if |r| ≤ ε

|r| − p(x)−1
p(x)

if |r| > ε

(2.5)

The first term in the minimization problem is the diffusion term. The functional

Ψ(x, r) in (2.5) was chosen for several reasons. First, when ε = 1, Ψ (x, r) and Ψr (x, r)

are continuous and there exists a unique solution to this problem [7]. Furthermore,

when the variation in the image is below a given threshold, ε, the exponent varies

so the type of anisotropy varies. When the variation is above a given threshold, ε,

TV-based diffusion is used since it is highly likely that the location in the image is at



8

an edge.

The second term in the minimization problem is the fidelity term. The fidelity

term controls how close the updated image, µ, stays to the initial image, I. The

parameter λ can vary from image to image, depending on the range of the intensity

values.

We will use the p(x) function defined in [7]:

p(x) = 1 +
1

1 + k|∇Gσ ∗ I|2
(2.6)

where Gσ is the Gaussian filter,

Gσ(x1, x2) =
1

4πσ
e

√
x21+x2

2
4σ

and k, σ > 0. The convolution of the Gaussian filter and the degraded image I is

the solution to the heat equation with initial condition I at a short time σ. This

removes a small portion of the noise so it is less likely to be detected as an edge.

Since |∇Gσ ∗ I|2 grows larger near an edge, the second term of p(x) approaches 0 so

lim|∇Gσ∗I|→∞ p(x) = 1. On the other hand, since |∇Gσ ∗I|2 grows smaller at locations

away from edges, the second term of p(x) approaches 1 so lim|∇Gσ∗I|→0 p(x) = 2.

2.4 Implementation

There are equivalent formulations of the nonstandard diffusion model defined by

equation (2.4). One formulation is to directly solve the minimization problem:

min
µ

∫

Ω

I(x,∇µ). (2.7)

where I(x,∇µ) = Ψ(x,∇µ) + λ
2
(µ− I)2 for the nonstandard diffusion model. A sec-

ond approach is to solve the Euler-Lagrange equation associated with (2.4). Specifi-
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cally, a solution of (2.7) must satisfy

d

dε

I(x,∇(µ+ εv))− I(x,∇µ)

ε
|ε=0 = 0

Using the calculus of variations, this is equivalent to:

divI(x,∇µ) = 0. (2.8)

Finally, we can approximate the solution using the flow of the Euler-Lagrange equa-

tion:

µt = divI(x,∇µ). (2.9)

In [7], Levine, Chen and Stanich show that as time approaches infinity, t → ∞, the

derivative of µ with respect to time approaches 0, µt → 0. So the solution to the

flow (2.9) approximates the the solution to the Euler-Lagrange equation (2.8) and

the minimization problem (2.7).

2.4.1 Time-marching finite differences schemes

In [7], Levine, Chen and Stanich used finite differences to approximate the flow the

Euler-Lagrange equation associated with (2.4). That is,

µt − div (Ψr (x,∇µ)) + λ (µ− I) = 0, in Ω× [0, T ]
∂µ

∂n
(x, t) = 0, on ∂Ω× [0, T ]

µ(0) = I, in Ω

where Ψ is given in (2.5), Ψr := ∇rΨ(x, r) and p(x) is given in (2.6). To avoid

singularities, the diffusion term, Ψ (x, r), is approximated by
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Ψβ(x, r) =















1
p(x)

(

√

|r|2 + β2
)p(x)

|r| < ε

√

|r|2 + β2 − p(x)−1
p(x)

|r| ≥ ε.

The implementation is as follows. Let h represent the spatial step size and ∆t rep-

resent the time step size. Then, denote µij = µ(xi, yj) and µn
ij = µ(xi, yj, tn) where

xi = ih, yj = jh and tn = n∆t. We approximate all of the spacial derivatives using

central differences which we denote by:

∆xµ =
µn
i+1,j − µn

i−1,j

2h
∆xxµ =

µn
i+1,j − 2µn

ij + µn
i−1,j

h2

∆yµ =
µn
i,j+1 − µn

i,j−1

2h
∆yyµ =

µn
i,j+1 − 2µn

ij + µn
i,j−1

h2

∆xyµ =
µn
i+1,j+1 − µn

i+1,j−1 − µn
i−1,j+1 + µn

i−1,j−1

h2

Using this notation, the diffusion term was approximated by

div((Ψβ)r(x,∇µ))nij =


















(∆2
xµ+∆

2
yµ+β2)(∆xxµ+∆yyµ)+(p−2)(∆2

xµ∆xxµ+2∆xµ∆yµ∆xyµ+∆2
yµ∆yyµ)

(∆2
xµ+∆

2
yµ+β2)

4−p
2

|∇µ| < ε

β2(∆xxµ+∆yyµ)+∆xxµ∆2
yµ−2∆xµ∆yµ∆xyµ+∆yyµ∆2

xµ

(∆2
xµ+∆

2
yµ+β2)

3
2

|∇µ| ≥ ε

Using a forward difference to approximate the time derivative ((µt)ij ≈
µn+1
ij −µnij
∆t

) the

scheme can be written

µn+1
ij = µn

ij +∆t
(

div((Ψβ)r(x,∇µ))nij + λ(µn
ij − In

ij)
)

.
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2.4.2 Optimization Techniques

In this thesis, I implemented the minimization problem (2.4) directly using optimiza-

tion techniques, specifically the method of steepest descent and the conjugate gradient

method. Both techniques are gradient descent methods. The purpose of directly im-

plementing (2.4) was twofold. First, we hoped to develop faster algorithms. Second,

(2.4) can be more easily modified to incorporate problems such as inpainting.
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Figure 2.1: Isotropic diffusion
Left to right: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

(An edge map outlines significant features)

Image plus noise

Image after isotropic diffusion

True image
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Figure 2.2: Total variation based diffusion
Left to right: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

Image plus noise

Image after total variation based diffusion

True image
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Figure 2.3: Nonstandard diffusion
Left to right: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

Image plus noise

Image after nonstandard diffusion

True image



Chapter 3

Optimization Techniques

In this chapter, we discuss optimization techniques used to implement (2.4). In

general, in order to solve the minimization problem

min
x∈D

f(x)

we need to find

x∗ = argmin
x∈D

f(x). (3.1)

First, we will look at ‘line search’ methods which are used to minimize one-dimensional

functions, i.e. D = R. The search methods we tested were Golden Section method,

Fibonacci method, Newton’s method and Secant method. Then, we will consider a

class of gradient descent methods that minimize more general functions, f : D → R

where D is a vector space. We will focus on two gradient descent methods for real-

valued functions, the method of steepest descent and the conjugate gradient method.

3.1 Line Search Methods

Line search methods are used to locate the value x∗ that minimizes the function f(x):

15
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x∗ = argmin
x∈R

f(x) (3.2)

The Golden Section method and Fibonacci method are the simplest to implement

since they do not require any derivatives of f . Newton’s method requires the first and

second derivative and the Secant method requires the first derivative only. These four

methods all assume that the function is unimodal, i.e. there is only one minimizer.

Line search methods can be used to determine the optimal step size in the gradient

descent methods.

3.2 Gradient Descent Methods

Gradient descent methods follow a general algorithm for minimizing a functional

f : D → R. The goal is to locate the x∗ that minimizes the functional f(x):

x∗ = argmin
x∈D

f(x) (3.3)

The algorithm begins with an initial guess, x(0). (When applying this to image

restoration x(0) = I, the initial degraded image). Then, a descent direction, d(0), is

computed. Using the descent direction and the step size, α, the initial guess moves

to a better approximation, x(1), of the true minimum. Next, the algorithm checks

some given stopping criteria, e.g. the squared difference between x(0) and x(1). If this

difference is ‘small enough’, then stop. Otherwise, use x(1) as the new initial guess

and repeat the process. Letting the superscript k represent the iteration count, the

algorithm is as follows:

1. Start with initial guess, x(0) = I. Then, for k = 0, 1, 2, ...

2. Compute a descent direction d(k) for f at x(k).
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3. Let x(k+1) = x(k) + αkd
(k), where αk is either a constant or determined using a

line search method where αk = argminα≥0 f(x
(k) + αd(k)).

4. Check stopping criteria. If it is satisfied, stop. If not, go back to step 2.

The method of steepest descent and conjugate gradient method are classified as gra-

dient methods since the gradient is used in determining the descent direction. Since

the gradient is the direction of maximal increase of a function at a particular loca-

tion, the opposite of the gradient is the direction of maximal decrease. The method

of steepest descent and conjugate gradient method differ in how they use the gradient

to compute the descent direction d(k).

3.2.1 Method of Steepest Descent

The first method we used to implement to the nonstandard diffusion model was the

method of steepest descent. The method of steepest descent uses the opposite of

the gradient of the function, −∇f(x), as the descent direction. The step size, αk,

is chosen to achieve the maximum amount of decrease at each iteration using a line

search, that is,

αk := argmin
α≥0

f(x(k) − α∇f(x(k))).

The method of steepest descent only differs from the time marching schemes in

the choice of the step size α. The time marching schemes (also referred to as ‘gradient

descent’) use a fixed step size, α = ∆t, where steepest descent updates the step size,

α = αk, at each iteration. The method of steepest descent is simpler to implement

than the conjugate gradient method and guarantees the minimum will be located in

at least a finite number of iterations if the minimum exists.

When we implemented the method of steepest descent, we discovered that the

implementation worked better with a fixed α value. The problem was that f(x(k) −
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α∇f(x(k))) is not unimodal. Depending on the initial guess for each line search,

different α values were found for the minimizer. Therefore, the time-marching finite

differences schemes (2.10) was found to be superior to the method of steepest descent.

3.2.2 Nonlinear Conjugate Gradient

The nonlinear conjugate gradient method uses the gradient of the function and the

direction from the previous iteration to find the current direction of descent. Our im-

plementation of the conjugate gradient method is motivated by quadratic functionals.

In the case that the functional is a quadratic:

f(x) =
1

2
xTQx− xTb,

then, the best search direction at the jth iteration, d(j) is the Q-conjugate direction,

that is, for all i < j, d(i)
T
Qd(j) = 0. The conjugate gradient method differs from

gradient descent and the method of steepest descent as follows. The direction, d(0),

at the initial iteration is the same descent direction as gradient descent, i.e. d(0) =

−∇f(x(0)). After the initial iteration if the stopping criteria is not satisfied, the

descent direction is a combination of gradient and the previous descent direction. In

particular, d(k+1) = −∇f(x(k+1)) + βk d
(k) where βk =

g(k+1)TQd(k)

d(k)TQd(k)
and g = ∇f . This

guarantees that x(k+1) < x(k). This algorithm applied to quadratic functionals with

n variables converges in n steps.

For non-quadratic functional such as that used in (2.4), α can either be fixed or

determined using a line search and the Hestenes-Stiefel formula and Fletcher-Reeves

formula [5] can be used to determine β. Denoting g = ∇f :

The Hestenes-Stiefel formula

βk =
g(k+1)

T
[g(k+1) − g(k)]

d(k)T [g(k+1) − g(k)]
(3.4)
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The Fletcher-Reeves formula

βk =
g(k+1)

T
g(k+1)

g(k)Tg(k)
(3.5)

Therefore, d(k+1) = −∇f(x(k+1)) + βkd
(k). The Hestenes-Stiefel formula is recom-

mended when the line search is known to be inaccurate [6]. In a study by Powell in

[8], a global convergence analysis suggests that the Fletcher-Reeves formula for βk is

superior.

For nonquadratic problems, there is no guarantee that the functional will converge

in n steps. Therefore, as the algorithm progresses, it is a common practice to reini-

tialize the direction vector to the opposite of the gradient so the directions continue

to be “Q-conjugate”. The nonlinear conjugate gradient method is more complex

to implement than the gradient descent method but converges faster as we will see

experimentally in chapter 4.



Chapter 4

Numerical Implementation

In this chapter, we discuss the numerical implementation of the minimization problem

min
µ∈BV ∩L2(Ω)

F (µ)

where

F (µ) =

∫

Ω

Φ(∇µ) +
λ

2
(µ− I)2 (4.1)

where
∫

Ω
Φ(∇µ) is the diffusion term and

∫

Ω
(µ− I)2 is the fidelity term. The domain

of the minimization problem is BV ∩ L2(Ω) := {µ|
∫

Ω
|µ|2 < ∞ and

∫

Ω
|∇µ| < ∞}.

The two special cases we will implement are total variation based diffusion where

Φ(∇µ) = |∇µ| and nonstandard diffusion where Φ(∇µ) = Ψ(x,∇µ) as defined in

(2.5). As usual, I is the degraded image and µ represents the updated image.

4.1 One Dimensional Implementation

Suppose that µ is the noisy one dimensional signal that we approximate using n +

1 data points. Specifically, we approximate µ by µ = (µ0, . . . , µn) where each µi

represents the intensity value at the ith location for i = 0 . . . n. Let ∆x = 1/n and

20
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Di = [0, . . . , 0,−1/∆x, 1/∆x, 0, . . . , 0]. The derivative of µ can then be approximated

by

Diµ =
µi − µi−1

∆x
(4.2)

.

For simplicity, we will let J(µ) represent the diffusion term:

J(µ) =

∫

Ω

Φ(∇µ).

We then can rewrite J(µ) in the discretized form

J(µ) ≈ 1
2

n
∑

i=1

Φ
(

(Diµ)
2)∆x.

Minimizing (4.1) using gradient descent methods requires computing the gradient

of J . We do so as follows. For any v ∈ Rn,

d

dτ
J(µ+ τv) =

n
∑

i=1

Φ′
(

[Diµ]
2
)

(Diµ) (Div)∆x

= ∆x (Dµ)T diag(Φ′(µ)) (Dµ))

= 〈∆xDT diag(Φ′(µ))Dµ,v〉

where

• diag(Φ′(µ)) represents the n×nmatrix whose ith diagonal entry is diag(Φ′(Diµ))

• D represents the n× (n+ 1) matrix whose ith row is Di

• 〈·, ·〉 denotes the Euclidean inner product

Using (4.3), the gradient of the diffusion term, J is given by.

grad J(µ) =
(

∆xDT diag(Φ′(µ))D
)

µ (4.3)
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Approximating the functional Φ:

The Euclidean norm, |x|, is non-differentiable at the origin since d
dx
|x| = x

|x|
, so

we must approximate the diffusion term for both the TV-based diffusion and the

nonstandard diffusion models. The diffusion term for TV-based diffusion, Φ(∇µ) =

|∇µ| is approximated by

Φβ(∇µ) =
√

|∇µ|2 + β2. (4.4)

The diffusion term for nonstandard diffusion,

Φ (x,∇µ) = Ψ (x,∇µ) =















1
p(x)
|∇µ|p(x) if |∇µ| ≤ ε

|∇µ| − p(x)−1
p(x)

if |∇µ| > ε

is approximated by

Φβ(x,∇µ) =















1
p(x)

(

√

|∇µ|2 + β2
)p(x)

if |∇µ| ≤ ε

√

|∇µ|+ β2 − p(x)−1
p(x)

if |∇µ| > ε

(4.5)

where β is a small positive parameter. In each case, Φβ is differentiable everywhere.

From (4.1) and (4.3), we obtain the gradient of F (µ) in one dimension,

gradF(µ) = grad Jβ(µ) + λ(µ− I) (4.6)

where

Jβ(µ) =

∫

Φβ(∇µ).

The optimization algorithm is then µ(k+1) = µ
(k) + αd(k). For gradient descent,

d(k) = −gradF (k) and for conjugate gradient, d(k) = −gradF (k) + βkd
(k−1).
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4.2 Results

Using the gradient calculations above for the TV model (2.2) and the nonstandard

diffusion model (2.4), figure 4.1 shows an example of one-dimensional noise removal

on a piecewise constant image. Figure 4.1(a) is the true image and figure 4.1(b) is

the noisy image, i.e. true image plus additive noise. Figure 4.1(b) was restored by

the following implementations:

• TV-based diffusion and gradient descent (figure 4.1(c))

• Nonstandard diffusion and gradient descent (figure 4.1(d))

• Nonstandard diffusion and (HSCG) (figure 4.1(e))

• Nonstandard diffusion and (FRCG) (figure 4.1(f)).

For simplicity, HSCG states for Hestenes-Stiefel conjugate gradient and FRCG states

for Fletcher-Reeves conjugate gradient. Each implementation used the parameters

that gave the optimal results. The number of iterations was chosen by studying the

change in the functional values. When this change was ‘small enough’ i.e. ||µ(k+1) −

µ
(k)|| < δ, the algorithm stopped.

TV-based diffusion

As discussed in Chapter 1, the major drawback of TV-based diffusion is that false

edges that may be created. Figure 4.1(c) shows an example of noise being detected

as false edges and creating ‘step edges’, sometimes called the ‘staircase effect’. This

image ran through 1000 iterations.

Nonstandard Diffusion

Each of the nonstandard diffusion implementations (figures 4.1(d), (e) and (f)) gave

good numerical results. The noise was removed to reconstruct the smooth lines and

the three corners in the image are still easily identifiable. For the three nonstandard

implementations, each image ran through the following number of iterations:
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• Figure 4.1(d): 1000 iterations

• Figure 4.1(e): 350 iterations

• Figure 4.1(f): 100 iterations

The conjugate gradient implementations (4.1(e) and 4.1(f)) converged faster than

the gradient descent implementation (4.1(d)). The Fletcher-Reeves implementation

converged faster than Hestenes-Stiefel implementation (100 to 350 iterations) for the

piecewise constant one-dimensional noisy image.
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Figure 4.1: One Dimensional Image
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(e) (f)

(a) True Image, ; (b) Noisy Image; (c) 1000 iterations of TV based
diffusion(gradient descent); (d) 1000 iterations of Nonstandard diffusion(gradient
descent); (e) 350 iterations of Nonstandard diffusion (HSCG); (f) 100 iterations of

Nonstandard diffusion(FRCG)
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4.3 Two Dimensional Implementation

We now consider minimizing this functional (4.1) in two dimensions. Suppose µ =

[µij] is a two-dimensional discretized image. Here, µij = µij(xi.yj) where xi =

i∇x, yj = j∇y, i = 0, . . . , nx, j = 0, . . . , ny. J can be approximated using the

discretized form

J(µ) ≈ 1
2

nx
∑

i=1

ny
∑

j=1

Φ
(

(Dx
ij µ)

2 + (Dy
ij µ)

2
)

where

Dx
ij µ =

µi.j − µi−1.j

∆x
, Dy

ij µ =
µi.j − µi.j−1

∆y
.

To calculate the gradient of J , we use a similar computation to that in one dimension:

d

dτ
J(µ+ τv)|τ=0 =

nx
∑

i=1

ny
∑

j=1

Φ′ij
[

(Dx
ijµ)(D

x
ijv) + (D

y
ijµ)(D

y
ijv)

]

= 〈diag (Φ′(µ))Dxµ, Dxv〉+ 〈diag (Φ′(µ))Dyµ, Dyv〉

where Φ′ij = Φ
′
(

(Dx
ijµ)

2 + (Dy
ijµ)

2
)

and Dx and Dy are matrices corresponding to

the grid operators in (4.7). Therefore, the gradient of the diffusion term, J , is:

grad J(µ) =
((

DT
x diag(Φ

′
β(µ))Dx

)

+
(

DT
y diag(Φ

′
β(µ))Dy

))

µ (4.7)

where Φβ is the approximation of Φ in equations (4.4) and (4.5) respectively. From

(4.1) and (4.7), the gradient of F (µ) for two dimensions is obtained the same as in

one dimension (4.6).
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4.4 Results

Using the gradient calculations above for the TV model (2.2) and the nonstandard

diffusion model (2.4), we tested both models on a piecewise constant image (see fig-

ure 4.2) and a real piecewise smooth image (see figure 4.4). Nonstandard diffusion

is successful in restoring both piecewise constant and piecewise smooth regions. Our

hypothesis was that directly implementing the minimization problem (2.4) with opti-

mization techniques will restore a degraded image faster than implementing the flow

of the Euler-Lagrange equation associated with the minimization problem. The re-

sults included here are purely experimental. In the future, based on the conclusions

from our numerical simulations, the convergence times can be studied and compared

in general.

In the remainder of this thesis, for each implementation the parameters chosen

were the ones which gave the optimal results and the stopping criteria was when

||µ(k+1) − µ(k)|| < δ. We found that the difference in CPU time per iteration for the

different methods was negligible. For the conjugate gradient implementation, the re-

sults displayed are for the Fletcher-Reeves implementation of β. The Fletcher-Reeves

implementation performed better than the Hestenes-Stiefel implementation in that it

consistently gave more efficient convergence. The Fletcher-Reeves implementation in

two dimensions reinitialize the direction vector d(k) to the opposite of the gradient,

−∇F , at any iteration where the calculation of the βk value was negative.

4.4.1 Piecewise constant image

Gradient Descent

In figure 4.2, the gradient descent implementation was used to denoise a piecewise con-

stant image. The initial noisy image is in 4.2(a), the restored image using TV-based

diffusion is in 4.2(b), the restored image using nonstandard diffusion is in 4.2(c) and
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the true image is in 4.2(d). When testing gradient descent with nonstandard diffusion

on the piecewise constant image (4.2(c)), the image converged after 85 iterations. The

numerical results were very promising since this final image shows smooth non-noisy

regions as well as sharp edges. Using the same algorithm but now implementing TV-

based diffusion, we ran the noisy image for 85 iterations. Figure 4.2(b) shows that

the convergence time for TV-based diffusion is slower than the nonstandard diffusion,

since the image reconstructed with the TV-model still appears noisy.

Conjugate Gradient

In figure 4.3, the conjugate gradient implementation was used to reconstruct the

same image. The initial noisy image is in 4.3(a), the restored image using TV-based

diffusion is in 4.3(b), the restored image using nonstandard diffusion is in 4.3(c) and

the true image is in 4.3(d). The initial noisy image is the same initial noisy image

used in figure 4.2. For the conjugate gradient algorithm, the numerical results are

given for nonstandard diffusion and TV based diffusion. TV-based diffusion (4.3(b))

and nonstandard diffusion (4.3(c)) implementations were run for 24 iterations because

at this point, the nonstandard diffusion model converged to the true image. Figure

4.3(c) appears to be almost identical to the true image, 4.3(d), after 24 iterations

versus 4.3(b) which still appears noisy.

When comparing the gradient descent and conjugate gradient implementations for

nonstandard diffusion for the piecewise constant image, the conjugate gradient im-

plementation (figure 4.3(c)- 24 iterations) converged faster than the gradient descent

implementation (figure 4.2(c)-85 iterations) which supports our original hypothesis.

4.4.2 Piecewise smooth image

Figures 4.4, 4.5, 4.6 and 4.7 demonstrate reconstructions of a piecewise smooth image,

Lenna. The stopping criteria was based on the edge map, 1
1+k|∇Gσ∗µ|2

, and gradient
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map, ∇µ. The models continued running iterations until the edge map was not

displaying noise and the gradient map appeared to represent the outline of the objects

in the image. In this case, the stopping criteria could not be based on the updated

image alone because of the loss of textures, i.e. Lenna’s hair and scarf. The final

gradient map does not represent the gradient map of the true image because the

textures merged as the noisy image was updated. Each figure displays the initial

degraded image (a), the updated image at about 1/3 of the total iterations (b), the

updated image at about 2/3 the total iterations (c), the final restored image (e) and

the true image (f).

Gradient Descent

The gradient descent implementation of TV-based diffusion (see figure 4.4) required

450 iterations until the image converged. The most noticeable change in the updated

images are between 150 and 300 iterations (4.4(b) and (c), respectively). After 300

iterations, the updated images have a very small change at each iteration. In the

final edge map (4.4(d)), there is some noise still appearing. Since the change between

iterations is small, it can be assumed that the TV-model has detected this noise to

be an edge thus has created and is preserving false edges. The TV-model kept sharp

edges and significant features such as Lenna’s lips and eyes which could have been

easily lost or blurred.

For the gradient descent implementation of nonstandard diffusion, (see figure 4.5),

the noisy image, 4.5(a), ran through 300 iterations until the image was restored

(4.5(d)). At this point, 4.5(d) appears to represent the true image, 4.5(e), with only

a difference in the appearance of the textures. The gradient in 4.5(d) represents a

good outline of the objects and boundaries in Lenna and the edge map shows that

the noise has been removed. The edge map shows good results since it is still defining

significant little features such as Lenna’s lips and eyes which could have been easily
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lost. From studying the three outputs at 100, 200 and 300 iterations, figures 4.5(b),

(c) and (d), respectively, it seems that the percent of the image restored at each

output is about the same. This is different from what was seen with the TV-based

diffusion where there was a large change between 4.4(b) and (c).

The gradient descent implementation of nonstandard diffusion (see figure 4.5)

restored the same noisy image faster than TV-based diffusion (see figure 4.4), i.e. 300

iterations versus 450 iterations. This again supports our hypothesis.

Conjugate Gradient

For the conjugate gradient implementation of TV-based diffusion, (see figure 4.6),

the noisy image, 4.6(a), ran for 425 iterations until the image was restored (4.6(d)).

At this point, there was sufficiently small change in the images and the edge map

between iterations. After 150 iterations, figure 4.6(b) appears to have little to no

change. The most noticeable change in the updated images are between 275 and 425

iterations (4.6(c) and (d), respectively). After 425 iterations, the updated images

have a very small change at each iteration. In the final edge map (4.6(d)), there is

some noise still appearing. As with the gradient descent implementation of conjugate

gradient (4.4), it appears that the TV-model still preserves true edges, but has also

detected some noise as edges and created false edges.

For the conjugate gradient implementation of nonstandard diffusion, (see figure

4.7), the noisy image, 4.7(a), ran for 140 iterations until the image was restored

(4.7(d)). At this point, figure 4.7(d) appears to represent the true image, 4.7(e), with

only a difference in the appearance of the textures. The gradient in 4.7(d), just like

the gradient descent implementation of nonstandard diffusion (figure 4.5), represents

a good outline of the objects in Lenna and the edge map shows that noise has been

removed while still defining significant little features. Again, similar to the gradient

descent, at each of the three outputs, i.e 50, 100 and 140 iterations, figures 4.7(b),
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(c) and (d), respectively, the same portion of the image is restored.

The conjugate gradient implementation of nonstandard diffusion (see figure 4.7)

restored the same noisy image faster than TV-based diffusion (see figure 4.6), i.e. 140

iterations versus 425 iterations. This again supports our hypothesis.

Comparison

Figure 4.8 compares the four implementations. In figure 4.8, the first column is the

gradient descent implementation of TV-based diffusion, the second column is the

gradient descent implementation of nonstandard diffusion, the third column is the

conjugate gradient implementation of TV-based diffusion and the fourth column is

the conjugate gradient implementation of nonstandard diffusion. The same initial

noisy image was used and the updated images are displayed for iteration 0, 50, 100

and 140. These outputs were chosen since they yielded the optimal results for the

conjugate gradient implementation of the nonstandard model. From figure 4.8, both

images implemented using nonstandard diffusion (columns two and four) provide

better and faster results for noise removal while preserving edges than TV-based

diffusion (columns one and three). These results again support our hypothesis that

the conjugate gradient implementation (column four) restores noisy images faster

than the gradient descent implementation (column two).

More experimental results

Since the conjugate gradient implementation for nonstandard diffusion had the faster

convergence for denoising, I have included three more images restored using this im-

plementation (figures 4.9, 4.10 and 4.11). Figure 4.9(a) is a MRI image of a brain

where additive noise was added using the Gaussian distribution with mean 0. Af-

ter 300 iterations (4.9(b)), the algorithm converged. Figure 4.9(b) has good edge

detection, especially outlining the tumor in the center of the brain. Figure 4.10(a)



32

is a PET image of a lung. After 250 iterations (4.10(b)), the algorithm converged.

Finally, figure 4.11(a) is an image of a lake with additive noise. As 225 iterations

(4.11(b)), the algorithm converged. In figure 4.11(b), some of the textures in the

trees were lost but the outline of the clouds in the sky and the boat in the water can

still be seen thus the edges were preserved while the noise was removed.
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Figure 4.2: Gradient Descent on a piecewise constant image
Left to right: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

(a) Image plus noise

(b) TV-based diffusion

(c) Nonstandard Diffusion

(d) True image
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Figure 4.3: Conjugate Gradient on a piecewise constant image
Left to right: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

(a) Image plus noise

(b) TV-based Diffusion

(c) Nonstandard Diffusion

(d) True image
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Figure 4.4: TV-based diffusion (gradient descent) on Lenna
Left to right: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

; gradient, ∇µ

(a) 0 iterations

(b) 150 iterations

(c) 300 iterations

(d) 450 iterations

(e) True image



36

Figure 4.5: Nonstandard diffusion (gradient descent) on Lenna
Left to right: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

, gradient ∇µ

(a) 0 iterations

(b) 100 iterations

(c) 200 iterations

(d) 300 iterations

(e) True image
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Figure 4.6: TV-based diffusion (conjugate gradient) on Lenna
Left to right: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

, gradient ∇µ

(a) 0 iterations

(b) 150 iterations

(c) 275 iterations

(d) 425 iterations

(e) True image
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Figure 4.7: Nonstandard diffusion (conjugate gradient) on Lenna
Left to right: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

, gradient ∇µ

(a) 0 iterations

(b) 50 iterations

(c) 100 iterations

(d) 140 iterations

(e) True image
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Figure 4.8: Comparison of implementations
Left to right: TV (gradient descent); NS (gd); TV (cg); NS (cg)

0 iterations

0 iterations

50 iterations

100 iterations

140 iterations

True image
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Figure 4.9: Nonstandard diffusion (conjugate gradient) on MRI image
Top to bottom: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

(a) (b) (c)

Noisy image 300 iterations True image
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Figure 4.10: Nonstandard diffusion (conjugate gradient) on a lung
Top to bottom: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

(a) (b)

Noisy image 250 iterations
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Figure 4.11: Nonstandard diffusion (conjugate gradient) on a lake
Top to bottom: image, µ(x1, x2); edge map,

1
1+k|∇Gσ∗µ|2

(a) (b) (c)

Noisy image 225 iterations True image



Chapter 5

Inpainting

5.1 The Inpainting Model

The term ‘inpainting’ comes from art restoration and is the process of restoring an-

cient paintings which have been damaged, aged or flawed by some other factor. This

inspired the term digital inpainting, which is the process of filling in missing infor-

mation or ‘lost packets’ within an image where the domain of these lost packets is

known. Chan and Shen [3] developed the inpainting model, Curvature-Driven Dif-

fusion (CDD), based on the TV based diffusion model by Rudin, Osher and Fatemi

[9]. Chan and Shen make note that one of the major drawbacks of inpainting models

are the inability to restore edges when ’packets’ lie across these large intensity value

changes or jumps. We use the same idea as Chan and Shen in [3] and [4] for inpainting

using the nonstandard diffusion model (2.4). Let Ω be the image domain and A be

the domain where information is missing. We propose the following inpainting model:

min
µ

∫

Ω

GA(x, |κ|)Ψ (x,∇µ) +
λA

2
(µ− I)2 (5.1)

where Ψ is the diffusion term defined in (2.5). The factor in front of the diffusion

term is

43
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GA (x, |κ|) :=















a if x ∈ Ω− A

|κ| if x ∈ A

where

κ = div
∇µ

|∇µ|

is the mean curvature of µ. The coefficient of the fidelity term is

λA :=















λ if x ∈ Ω− A

0 if x ∈ A.

In Ω − A, if denoising is required, we set a ≡ 1 and (5.1) is just the nonstandard

diffusion model (2.4). If denoising is not required, we can set a ≡ 0. In the inpainting

regions, A, GA is equal to the absolute value of curvature, |κ|. This encourages

inpainting in missing regions which lie across an edge, since curvature is very large

at corners (see figure 5.1). Furthermore, curvature is also extremely high at noise,

which is the initial random guess inside the inpainting regions. Thus, the diffusion

Figure 5.1: Inpainting
The left image requires inpainting and the right is the true image.



45

is stronger inside A since Ψ is multiplied by |κ|. As the region is inpainted, the

curvature will begin to decrease, eventually slowing the diffusion. Finally, the fidelity

term is not needed in the inpainting region, A, and is thus removed.

5.2 Results

Since the conjugate gradient implementation of nonstandard diffusion yields the best

results, the inpainting model 5.1 was only tested using this implementation. For the

rest of the thesis, all outputs are tested only using the Fletcher-Reeves conjugate gra-

dient implementation of nonstandard diffusion. There are four images that inpainting

was applied to:

• Piecewise constant image - figure 5.2

• Piecewise smooth image - figure 5.3

• Piecewise constant noisy image - figure 5.4

• Piecewise smooth noisy image - figure 5.5.

Inpainting

In figures 5.2 and 5.3, (a) is the image with missing regions, (b) is the restored image

and (c) is the true image.

In figure 5.2(a), almost all of the missing regions have been restored after 229

iterations using a = 1. These results are best seen in the edge maps corresponding to

the restored image and the true image, figures 5.2(b) and 5.2(c), respectively. There

are two missing regions which covered an edge. We had good results with inpainting

on these regions since the edges were restored.

The piecewise smooth image, Lenna, in figure 5.3(a) required 5000 iterations be-

fore the inpainting was complete. The convergence was much slower, since in this case

we set a = 0 in order to preserve the more intricate details such as textures. It ap-
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pears from figure 5.3(b) that inpainting smooth regions was very successful. However,

inpainting fine geometric structures such as edges is much more difficult.

In both the piecewise constant and piecewise smooth images, the use of nonstan-

dard diffusion instead of TV-based diffusion helps to prevent false edges from being

created in or around the inpainting regions.

Inpainting and Denoising

In figures 5.4 and 5.5, (a) is the noisy image with missing regions, (b) is the restored

image and (c) is the true image.

Figure 5.4(a) ran for 100 iterations using denoising only (2.4) and then ran for

11000 iterations using inpainting (5.1) with a = 0 until the image was optimal (figure

5.4(b)). In figure 5.4(b), the noise has been removed and the missing regions have

been completed. The inpainting for figure 5.4 was not as successful as the results in

figure 5.2 due to the edge reconstructions but in figure 5.4 the noise was removed, the

missing regions are correctly filled in and false edges have not been created. Thus, it

appears that denoising and inpainting a piecewise constant image was successful.

Figure 5.5(a) ran for 250 iterations using denoising only (2.4) and then ran for

5000 iterations using inpainting (5.1) with a = 0 until the image was optimal (figure

5.5(b)). In figure 5.5(b), the noise has been removed and the missing regions have

been completed. Thus, it appears that denoising and inpainting a piecewise smooth

image was successful. From the edge map corresponding with 5.5(b), some of the

significant features, i.e. lenna’s hair, are being lost due to the denoising. Similar

to the results for figure 5.3, the edges have not been reconstructed in the inpainted

regions but at the same time false edges have not been created.
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Figure 5.2: Inpainting on a piecewise constant image

(a)

(b)

(c)

Left to right: image, µ(x1, x2); edge map,
1

1+k|∇Gσ∗µ|2

(a) Image with missing regions;
(b) Conjugate Gradient: 229 iterations;

(c) True Image
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Figure 5.3: Inpainting on Lenna

(a)

(b)

(c)

Left to right: image µ(x1, x2); edge map,
1

1+k|∇Gσ∗µ|2

(a) Image with missing regions;
(b) Conjugate Gradient: 5000 iterations;

(c) True Image
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Figure 5.4: Inpainting and denoising on a piecewise constant image

(a)

(b)

(c)

Left to right: image µ(x1, x2); edge map,
1

1+k|∇Gσ∗µ|2

(a) Noisy image with missing regions;
(b) Conjugate Gradient: 11000 iterations;

(c) True Image
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Figure 5.5: Inpainting and denoising on Lenna

(a)

(b)

(c)

Left to right: image, µ(x1, x2); edge map,
1

1+k|∇Gσ∗µ|2

(a) Noisy image with missing regions;
(b) Conjugate Gradient: 5000 iterations;

(c) True Image



Chapter 6

Conclusion

We presented a new implementation using the conjugate gradient algorithm for

nonstandard diffusion for image restoration. This allowed us to denoise piecewise

constant and piecewise smooth images faster than the current time-marching finite

difference implementation. We included experimental results of images to support

this claim. The nonstandard diffusion model was also modified to incorporate in-

painting. This modification successfully inpainted regions on a piecewise constant

image such that the regions appeared natural after restoration. In the future, nu-

merical schemes developed here can be expanded to incorporate deblurring as well as

texture extraction.
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