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ABSTRACT 
 

The importance of estrogen in bone regulation is exemplified by the rapid loss of bone 

density at the onset of menopause.  Post-menopausal women have low levels of estrogens, but 

high levels of inactive sulfated steroids.  These can be converted to active steroids by steroid 

sulfatase.  While it is known that estrogens can stimulate the growth and maintenance of bone 

cells, it is not known if sulfated steroids can induce a similar response.  The purpose of this study 

was to determine if sulfated steroids can induce proliferation of a human osteoblast-like cell line 

MG-63, and if steroid sulfatase inhibitors were capable of blocking that response.  A growth 

assay was developed to assess proliferation of MG-63 cells in the presence of various steroids.  

The results of an initial experiment with a number of steroids indicated differences in growth, 

with estradiol, estrone sulfate, and dehydroepiandrosterone sulfate showing increased 

proliferation.  A follow up experiment with estradiol, estrone sulfate, and 

dehydroepiandrosterone sulfate showed that proliferation was increased in the presence of 

estradiol and estrone sulfate.  A dose-response testing proliferation of MG-63 cells to estradiol 

and estrone sulfate, resulted in estradiol stimulating growth above baseline at 10µM and 1µM, 

and estrone sulfate increasing growth only at 10µM.  A steroid sulfatase inhibitor, DU-14, was 

able to block estrone sulfate-stimulated growth at 10µM, but not at 1µM.  Another steroid 

sulfatase inhibitor, EMATE, actually stimulated growth at 1µM; however, this inhibitor is known 

to be estrogenic.  The estrogen receptor antagonist ICI 182,780 inhibited estrone sulfate- and 

estradiol-stimulated growth at 100nM.  Steroid sulfatase activity was assessed in MG-63 

microsomes and whole cells in the presence of DU-14 and EMATE.  It was found that steroid 

sulfatase activity in the presence of the inhibitors was virtually eliminated.  These data 

demonstrate that growth in the human MG-63 osteoblast-like cells is stimulated by estrogens and 
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by sulfated estrogens.  This supports the concept that sulfated steroids are important in 

maintaining bone density.    
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CHAPTER 1-BACKGROUND 
 
Skeletal Functions 
  

The human skeletal system is one of the largest organs of the body and provides many 

functions; among the most important is structural integrity (Walsh et al., 2006).  The skeletal 

system is the main reservoir of calcium and phosphate ions and has a pivotal role in the 

homeostasis of these minerals.  Other important functions include: protecting vital internal 

organs, acting as an anchor for skeletal muscles, and supporting hematopoiesis (Cohen, 2006).    

Components of Bone 
  

The human skeletal system is a specialized type of connective tissue comprised of cells 

embedded in an extracellular matrix.  The extracellular matrix accounts for 90% of bone volume 

and consists of an organic and inorganic component.  Type I collagen is the main protein of the 

organic component (Downey and Siegel, 2006), while the inorganic component consists of a 

calcium-phosphate salt, hydroxyapatite (Ca10(PO4)6(OH)2) (Walsh et al., 2006).  During the 

process of mineralization hydroxyapatite crystals are deposited on and between the collagen 

fibrils producing hardened bone.   

The remaining 10% of bone volume includes the blood vessels and cellular component.  

Four different types of osteon cells, which include osteoblasts, osteocytes, bone lining cells, and 

osteoclasts, can be found within the cellular network of bone (Downey and Siegel, 2006).    Each 

of the cell types has a specific functional role in the formation and reabsorption of bone.  

However, the cell types are derived from different cell origins and respond to different signals 

for the processes of differentiation, proliferation, and activation or inhibition of activity (Robling 

et al., 2006).    
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Osteon Cells         

Osteoblasts are involved in the secretion of the extracellular matrix, the mineralization 

process, and in influencing bone reabsorption.  Active osteoblasts form a monolayer of cells and 

secrete unmineralized matrix called osteoid, which then further matures and mineralizes under 

the influence of the enzyme alkaline phosphatase.  Osteoblasts are derived from undifferentiated 

bone marrow mesenchymal stem cells that can also give rise to other cell lineages including 

adipocytes, myocytes, and chondrocytes (Robling et al., 2006).  The process of differentiation 

takes between 25 to 30 days in vitro, during this time three phases have been defined.  The initial 

proliferative phase occurs on days 0 to 4, the matrix deposition phase is seen between days 10 to 

16, and maximal mineralization occurring on day 28 (Duplomb et al., 2007).   

The initial proliferative phase of osteoblast differentiation is characterized by 

proliferation of mesenchymal stem cells (Robling et al., 2006). Differentiation of proliferating 

mesenchymal stem cells towards the osteoblastic lineage is accomplished through increased 

expression of runt-related transcription factor-2 (Runx2) (Robling et al., 2006), the earliest 

known osteoblast-specific marker (Wagner and Karsenty, 2001).  Newly committed 

preosteoblasts express the early phenotypic marker type I collagen.  Expression of the 

transcription factor osterix (Osx) is necessary for preosteoblasts to continue the differentiation 

process towards mature bone forming cells (Robling et al., 2006).  One phenotypic marker of 

maturing preosteoblasts is the continued increase in expression of alkaline phosphatase.  The late 

phenotypic marker typically used for identification of mature osteoblasts is osteocalcin, which is 

only expressed with the appearance of mineralized matrix (Malaval et al., 1999).  

During the process of mineralization, some osteoblasts become entrapped in the 

extracellular matrix secretions.  The trapped cells differentiate into osteocytes, which make up 
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more than 90% of osteon cells in adults.  As extracellular matrix is secreted, osteocytes become 

located deeper within the bone tissue and begin forming long cytoplasmic projections.  These 

projections allow osteocytes to remain in contact with adjacent cells and the bone surface.  The 

cellular network created by these projections is pivotal in sensing and responding to mechanical 

stimuli, communication, and exchange of nutrients within the bone microenvironment (Downey 

and Siegel, 2006). 

The third type of osteon cells, bone lining cells, cover most of the bone surfaces in an 

adult skeleton.  These cells are derived from the osteoblast lineage and are also referred to as 

resting osteoblasts or surface osteoblasts.  The role of bone lining cells in relatively unknown.  It 

has been speculated that these cells are involved in preparing the matrix for reabsorption, 

mineralization, and acting as a barrier between extracellular fluid and bone (Downey and Siegel, 

2006).   

Osteoclasts are the final type of osteon cells, which function in reabsorption of bone and 

subsequent release of calcium and phosphate ions into the bloodstream.  These giant 

multinucleated cells are terminally differentiated and are derived from hematopoietic stem cells 

(Robling et al., 2006).  Mature osteoclasts are highly motile and only able to reabsorb bone by 

tightly adhering to peripheral bone surfaces (Robling et al., 2006) and forming a specialized 

structure known as a sealing zone (Walsh et al., 2006).  Osteoclasts must first solubilize the 

mineralized matrix by pumping hydrogen ions across the characteristic ruffled border to acidify 

the isolated area.  Once the mineralized matrix has been degraded, osteoclasts release lysosomal 

enzymes that continue the reabsorption of bone by further breakdown the remaining organic 

component of the matrix.  The amount of bone reabsorbed by osteoclasts is dependent on the 

lifespan of the osteoclasts (Walsh et al., 2006).  Osteoclasts work in tight coordination with the 
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other osteon cells, to model and remodel bones, during development and general maintenance of 

the skeleton.   

Modeling and Remodeling of Bone  
 
 Bone is a dynamic structure that is constantly reabsorbed and formed.  Each year 10% of 

bone of is replaced and complete renewal of the skeleton occurs every 10 years (Cohen, 2006).  

Osteon cells work in a coordinated manner with one another in two distinct mechanisms, bone 

modeling and remodeling, which defines skeletal shape, maintains homeostatic levels of calcium 

and phosphate ions in the serum, and repairs any portion of bone that has become weakened or 

damaged (Robling et al., 2006).   

Bone modeling is responsible for the growth and shaping of bones that occurs during 

development and earlier years of life.  It can occur on any bone surface and requires activation of 

either osteoclasts or osteoblasts, but not both within the same area.  Activation of one or the 

other in a specific area allows for alteration of size, shape, and position of the bone within the 

growing tissue.  Once the skeletal system has matured, bone modeling activity is reduced to a 

minimal level and bone remodeling takes over.  However, in some bone diseases, bone modeling 

is reactivated, with serious consequences to the overall integrity of the affected bone(s) (Robling 

et al., 2006).    

In a mature skeleton, the process of bone remodeling dominates.  During this process 

discrete packets of bone are removed and replaced with new bone.  Bone remodeling is tightly 

regulated so that bone reabsorption and formation are coupled together in basic multicellular 

units.  Coupling ensures that there is a balance between bone removal and new bone formation 

so that the reabsorbed area is completely filled in (Robling et al., 2006).  Many factors such as 

hormones, mechanical stresses, and growth factors influence the regulation and coordination of 
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the basic multicellular units (Harada and Rodan, 2003).  Many bone diseases result from a 

disruption in the coupling process, which leads to an imbalance in either bone degradation or 

formation.  The imbalance results in bones that become structurally compromised (Robling et al., 

2006).        

Bone Pathologies 
 
 A loss in coupling of bone reabsorption and formation results in either an increase or a 

decrease of bone density.  This alteration of bone density can result in various types of bone 

pathologies.  Osteoporosis is one of the most prominent bone diseases, where there is a net loss 

of bone density.  According to the National Osteoporosis Foundation, this disease is currently 

estimated to affect 10 million Americans, 8 million of which are women (NOF, 2007).  It is 

projected by the year 2020, that one out of every two Americans over the age of 50 will have or 

be at risk for developing osteoporosis (Carmona, 2004).  Fragility of bones due to the loss of 

bone density during in osteoporosis results in bones that are easily fractured; 1.5 million of the 

fractures seen annually are attributed to osteoporotic bones.  Several risk factors for developing 

osteoporosis include:  post-menopausal women, estrogen deficiencies, low levels of androgens, 

and prolonged use of certain medications such as corticosteroids (NOF, 2007).                

 Due to the observed clinical heterogeneity of osteoporosis, many ideas have been 

proposed as to the cause.  The currently accepted cause is multiple pathogenic mechanisms 

converging on the skeleton, causing bone deterioration.  Research indicates that skeletal 

deterioration is the result of complex interactions that regulate bone cell function, which includes 

both local and systemic regulators (Raisz, 2005).    

The leading cause of osteoporosis is the estrogen decline at the onset of menopause, 

exemplifying the importance of estrogen in the maintenance and regulation of bone.  Post-
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menopausal osteoporosis is characterized by an increase in bone remodeling, where reabsorption 

far exceeds formation (Syed and Khosla, 2005).  The increased bone remodeling is the result of 

an increase in formation and number of active bone multicellular units.  Within these units, the 

reabsorptive phase is extended causing a larger pore in the bone that is too large for trailing 

osteoblasts to completely fill in.  The overall result is an increase in the porosity of bone leading 

to a loss of bone density and strength (Riggs et al., 2002). 

The most prevalent form of secondary osteoporosis is glucocorticoid-induced.  Attention 

to this type of osteoporosis has increased over the past several decades with the increased use of 

synthetic glucocorticoids in the treatment of inflammation (Mazziotti et al., 2006).  It is 

estimated that 30 million Americans are affected by diseases that are commonly treated with 

synthetic glucocorticoids (ACR, 2007).  There are two phases of glucocorticoid-induced 

osteoporosis.  The initial phase occurs early and is characterized by a rapid loss of bone density, 

possibly due to excessive bone reabsorption.  The second phase is slower, characterized by a 

further progressive loss of bone density due to a decrease in new bone formation (Mazziotti et 

al., 2006).  The important role of steroids on bone maintenance is exemplified by both post-

menopausal and glucocorticoid-induced osteoporosis.           

Effect of Steroids  

 Sex steroids are known to play a major part in the development and maintenance of bone.  

The clinical observation of rapid bone loss at the onset of menopause exemplifies the role of 

estrogen in bone maintenance.  Estrogen is able to exert its effects directly on osteon cells, 

through the presence of both nuclear estrogen receptors α and β (Braidman et al., 1995; Kusec et 

al., 1998; Braidman et al., 2001).  Estrogens function to increase bone formation by increasing 

osteoblast formation, differentiation, proliferation, and function (Riggs et al., 2002).  In 
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osteoclastic cells, estrogen causes a decrease in formation and activation and also induces 

apoptosis (Hughes et al., 1996).  During estrogen deficiency, there is an increase in formation of 

new basic multicellular units and an alteration in balance between the reabsorption and formation 

phases.  The reabsorption phase is prolonged, the formation phased is shortened, and there is an 

increase in osteoclast recruitment that continues to prolong the reabsorptive phase, all 

contributing to an increase in reabsorption beyond what osteoblasts are able to fill in (Riggs et 

al., 2002).   

As with the estrogen receptors, the nuclear androgen receptor has also been detected in 

osteoblasts (Colvard et al., 1989).  One main action of testosterone is to enhance bone formation.  

Testosterone mediates this process by stimulating proliferation and inhibiting apoptosis of 

osteoblasts (Riggs et al., 2002).  Another main action of testosterone is to decrease bone 

reabsorption, the majority of this process is indirect due to aromatization of testosterone to 17β-

estradiol (Riggs et al., 2002).  However, it has been shown that 5α-dihydrotestosterone interacts 

with osteoclasts to inhibit bone reabsorption directly (Pederson et al., 1999).      

 Besides the sex steroids, glucocorticoids also exert their effects on osteon cells.  In the 

presence of excessive amounts of glucocorticoids, rapid loss of bone density occurs.  The rapid 

loss of bone density is due to increased osteoclastogenesis (Canalis et al., 2004).  

Glucocorticoids increase osteoclastogenesis by the combination of increasing the expression of 

receptor activator of nuclear factor-κβ ligand, decreasing expression of receptor activator of 

nuclear factor-κβ ligand’s decoy receptor, and increasing expression of colony-stimulating factor 

(Rubin et al., 1998; Hofbauer et al., 1999).  Excessive amounts of glucocorticoids also affect the 

number and function of osteoblasts by inhibiting differentiation and proliferation of cells in the 

osteoblastic lineage (Mazziotti et al., 2006) and also decreasing the number of osteoblasts and 
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osteocytes by inducing an apoptotic pathway (Ishida and Heersche, 1998).  However, it has also 

been shown that when dexamethasone is added within a physiological concentration range to 

osteoblast-like cells lines in culture, differentiation into mature osteoblasts is promoted (Walsh et 

al., 2001).       

Local Production of Estrogen 
 

In post-menopausal women most of the active sex steroids are synthesized by an 

intracrine mechanism in peripheral tissues (Labrie et al., 2000).  Peripheral target tissues capable 

of producing extragonadal estrogen include adipose tissue, osteoblasts, chondrocytes, vascular 

endothelial cells, aortic smooth muscle cells, and several areas within the brain.  Estrogen 

produced by these tissues is more than likely to function in a paracrine or intracrine manner 

(Simpson et al., 2000).  The intracrine mechanism is a process that occurs in a specific target 

tissue or cell where inactive precursor hormone molecules are converted to active hormones and 

then utilized within that same tissue or cell, without being released into general circulation 

(Labrie et al., 2000).  The amount of active estrogen produced in this manner is relatively small, 

but at the local level is enough to invoke a significant biological response.  However, peripheral 

tissues are unable to synthesize estrogen de novo and are dependent on circulating precursor 

molecules (Simpson et al., 2000).  In addition to the need of circulating precursor steroids, cells 

of the peripheral tissues must possess the necessary enzymes for estrogen metabolism.  The 

enzymes responsible for estrogen synthesis in peripheral tissues include steroid sulfatase, 17β-

hydroxysteroid dehydrogenase, 3β-hydroxysteroid dehydrogenase, and aromatase cytochrome p-

450.  One pathway for production of estrogen in peripheral tissues via these enzymes starts with 

conversion of estrone sulfate and dehydroepiandrosterone sulfate to estrone and 

dehydroepiandrosterone, respectively, by steroid sulfatase.  Estrone is then oxidized to 17β-
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estradiol by 17β-hydroxysteroid dehydrogenase.  The pathway from dehydroepiandrosterone can 

synthesize 17β-estradiol in several ways.  Dehydroepiandrosterone can be converted to 

testosterone by 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase then 

metabolized by aromatase to 17β-estradiol.  Or testosterone can be converted by 17β-

hydroxysteroid dehydrogenase to androstenedione which can be converted to estrone by 

aromatase and then finally to 17β-estradiol by 17β-hydroxysteroid dehydrogenase (Fig. 1) 

(Janssen et al., 1999; Reed et al., 2005).  It has been demonstrated that human osteoblasts 

possess all of the enzymes required for estrogen metabolism from the sulfated precursors 

(Purohit et al., 1992; Kuwano et al., 1997; Janssen et al., 1999).  Once sexual maturity is 

reached, all of these enzymes are present, indicating a potentially important role of 

intracrinology in bone.  The local production of estrogen by osteoblasts would influence local 

bone mass accumulation and maintenance at the onset of sexual maturity and continuing into 

adulthood (Van der Eerden et al., 2004).      

The Role of Steroid Sulfatase in Intracrinology  

Since it has been shown that osteoblasts contain all of the necessary enzymes for estrogen 

metabolism, they would be capable of fully metabolizing estrone sulfate and 

dehydroepiandrosterone sulfate to 17β-estradiol (Van der Eerden et al., 2004).  Estrone sulfate 

and dehydroepiandrosterone sulfate can be found in high circulating amounts (Pasqualini et al., 

1996; Labrie et al., 2000); in fact, estrone sulfate in adults is found to be higher in concentration 

than the unconjugated form (Muir et al., 2004).  The enzymatic activity of steroid sulfatase is 

required for osteoblasts to be able to utilize sulfated precursors in the metabolism of estrogen 

(Muir et al., 2004), by catalyzing the removal of the sulfate group from inactive sulfated 

precursors (Van der Eerden et al., 2004).                 
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Steroid Sulfatase 
 
 The sulfatase family of enzymes is highly conserved and functions to cleave sulfate ester 

bonds from a broad range of substrates.  There are at least eight known human diseases that are 

associated with deficient sulfatases.  The characteristic dark scaly skin of X-linked ichthyosis is 

caused by a deficiency in steroid sulfatase, resulting in an alteration of the cholesterol 

sulfate:cholesterol ratio in the skin (Diez-Roux and Ballabio, 2005).   

Steroid sulfatase, also known as aryl sulfatase C (EC 3.1.6.2), is a transmembrane protein 

located in the endoplasmic reticulum capable of hydrolyzing 3β-hydroxysteroid sulfates  

including estrone sulfate, dehydroepiandrosterone sulfate, pregnenolone sulfate, 

deoxycorticosterone sulfate, cholesterol sulfate, and p-nitrophenyl-sulfate (Reed et al., 2005).  

Steroid sulfatase when purified to homogeneity from the microsomal fraction of human placenta 

yielded a 65 kilodalton hydrophobic protein of 562 amino acids with two membrane spanning 

domains (Hernandez-Guzman et al., 2001).  From the crystal structure, steroid sulfatase appears 

to be “mushroom-like” in shape, with the polar catalytic domain buried in the “gill” of the 

“mushroom”, located near the membrane surface on the lumen side of the endoplasmic 

reticulum.  Projecting out from the catalytic domain are two antiparallel helices of mainly of 

hydrophobic residues.  The helices traverse the membrane, interacting with one another creating 

a hydrophobic “tunnel” that leads to the catalytic domain and anchors steroid sulfatase to the 

membrane (Hernandez-Guzman et al., 2003).  One proposed mechanism of entry of sulfated 

steroids into the active site is along the hydrophobic “tunnel” created by the transmembrane 

domains.  However, the sulfate moiety would need to be shielded to pass through the membrane.  

Once in the polar catalytic site, the sulfate moiety under goes nucleophilic attack covalently 

linking it to the formylglycine side chain and releasing the unconjugated steroid into the lumen 
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of the endoplasmic reticulum (Hernandez-Guzman et al., 2003).  Kinetic analysis of purified 

steroid sulfatase indicates a Km value of 72.75µM for estrone sulfate and Km value of 9.59 µM 

for dehydroepiandrosterone sulfate (Hernandez-Guzman et al., 2001).  

    Steroid sulfatase was first identified in microsomes prepared from rat liver (Dodgson et 

al., 1954).  Since the first identification of steroid sulfatase, activity has also been found in the 

testis, ovary, adrenal glands, placenta, prostate, skin, brain, fetal lung, viscera, endometrium, 

peripheral blood lymphocytes, aorta, kidney, and bone (Reed et al., 2005).  However, the tissue 

distribution and activity varies considerably (Selcer et al., 2007).  Of all the known tissues 

containing steroid sulfatase activity, placenta has the highest activity (Pasqualini and Chetrite, 

2005).   

Steroid sulfatase is also suspected to have a role in supporting growth of hormone-

dependent cancers, by providing a local supply of biologically active steroids.  Estrogen levels 

found in breast tumors of post-menopausal women are 10 times higher than what is found in the 

plasma.  Presumably, the high plasma concentration of circulating estrone sulfate is acting as an 

inactive steroid reservoir, which is activated by steroid sulfatase in the breast tumor and further 

metabolized to locally acting estrogen (Utsumi et al., 1999).  It has been suggested that steroid 

sulfatase could be used as an independent prognostic indicator of human breast carcinomas.  

Because, decreased expression of steroid sulfatase mRNA has been reported to correlate with 

relapse-free survival (Utsumi et al., 1999; Utsumi et al., 2000; Al Sarakbi et al., 2006).  This 

report further supports a role for steroid sulfatase in intracrinology. 

 It has also been found that there is no significant difference in the estrogen plasma 

concentration of post-menopausal women with osteoporotic fractures and those of a similar age 

without fractures.  One explanation for the difference is possible in situ estrogen production by 
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bone cells (Reed et al., 2005).  Further support for this mechanism of estrogen production in 

bone has come from the detection of all the necessary enzymes in osteoblasts to produce 

estrogen from precursor steroids (Purohit et al., 1992).  Interestingly, steroid sulfatase activity in 

an osteoblast-like cell line (MG-63) was found to be 1000-fold higher than aromatase activity 

(Purohit et al., 1992).  With the same cell line, another study showed that steroid sulfatase could 

utilize both estrone sulfate and dehydroepiandrosterone sulfate as substrates (Fujikawa et al., 

1997).  The combined results of these two studies point to an important role of steroid sulfatase 

in local production of estrogen, from sulfated precursors, to support the maintenance of bone.  

The increasing realization of the importance of steroid sulfatase in both pathological and 

physiological mechanisms has increased attention to further understand the regulation of steroid 

sulfatase (Reed et al., 2005).         

Regulation of Steroid Sulfatase 

 Even with the importance of steroid sulfatase in pathological and physiological 

mechanisms very little is known about the regulation of expression or activity.  Reed et al. 

indicates that in breast cancer cells, cytokines interleukin-6 and tumor necrosis factor-α have 

been shown to increase the level of steroid sulfatase activity (Reed et al., 2005).  The increase in 

activity can be due to either posttranslational modifications or by an increase in availability of 

substrates (Newman et al., 2000).  In endometrial stromal cells and vascular smooth muscle 

cells, inflammatory cytokine interleukin-1β decreased both the activity and mRNA expression of 

steroid sulfatase (Matsuoka et al., 2002; Nakamura et al., 2003).  In MCF-7 and MDA-MB-231 

breast cancer cells, steroid sulfatase activity was increased by the presence of either basic 

fibroblast growth factor or insulin-like growth factor type-1 (Purohit et al., 1992b).  In addition 

to steroid sulfatase regulation by cytokines and growth factors, several steroids have also been 



 13 

tested.  Studies utilizing androgens and estrogens suggest that steroid sulfatase induction and 

regulation is in part controlled by these steroids (Lam and Polani, 1985; Moutaouakkil et al., 

1984).  In promyelocytic cells, steroid sulfatase activity was induced and expression increased by 

either retinoids or 1,25-dihydroxyvitamin D3 (Hughes et al., 2001).  The mechanisms of how 

these cytokines, growth factors, and steroids actually regulate steroid sulfatase activity and 

expression is yet to be determined (Reed et al., 2005).              

Steroid Sulfatase Inhibitors 

 The role of steroid sulfatase in supporting estrogen-dependent tumor growth has led to 

the generation of steroid sulfatase inhibitors.  These inhibitors can be classified into reversible 

and irreversible inhibitors.  The initial search for steroid sulfatase inhibitors began by designing 

replacement substrates for steroid sulfatase that would compete with estrone sulfate for the active 

site.  These compounds were made by replacing the sulfate group on estrone sulfate with some 

moiety that would mimic the sulfate group, but remain hydrolytically stable (Nussbaumer and 

Billich, 2004).  The majority of steroid sulfatase inhibitors fall into the classification of 

irreversible inhibitors, which tend to be more potent.  The first irreversible inhibitor estrone-3-O-

sulfamate, EMATE (Howarth et al., 1994), was designed initially as a replacement estrone 

sulfate substrate however, it was found to be a potent site-directed irreversible inhibitor of 

steroid sulfatase.  EMATE is not capable of being utilized as a therapeutic drug due to its 

estrogenicity.  As a result, all subsequent irreversible inhibitors of steroid sulfatase have been 

designed as analogs of EMATE that are less estrogenic, but with a similar potentency to the 

original parent compound (Li et al., 1995; Selcer et al., 1996; Selcer et al., 1997; Kolli et al., 

1999; Reed et al., 2005).           
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CHAPTER 2-PROPOSED RESEARCH 

Objective 

To determine the effect of sulfated steroids on growth of human osteoblast-like cells and 

to establish if steroid sulfatase is involved in mediating any response.    

Specific Aims 

1. To examine the role of sulfated steroids on growth of human osteoblast-like cells. 

a. Hypothesis: The addition of sulfated steroids to basal culture medium will be 

sufficient to increase proliferation.  

2. To examine the role of steroid sulfatase on growth of human osteoblast-like cells, in 

response to sulfated steroids.  

a. Hypothesis:  The response of human osteoblast-like cells to sulfated steroids 

is mediated by steroid sulfatase. 

Model System 

 The model system utilized to carry out the specific aims was the human osteoblast-like 

MG-63 cell line.  This particular cell line is a well established and well characterized cell line 

derived from a biopsy of a juxacoritcal osteosarcoma, in a fourteen-year-old Caucasian male 

(Heremans et al., 1978).  In culture, the MG-63 cell line grows morphologically uniform and 

rapidly, with a population doubling time of approximately 38 hours.  As the cells reach a 

confluent state, no contact inhibition occurs and multiple layers can form on the culture dish 

surface.  A disorganized hyperdiploid karotype of MG-63 cells was observed in 100% of the 

clones tested.  Upon hormonal induction, the cells differentiate and exhibit characteristics of an 

osteoblast-like phenotype (Lajeunesse et al., 1990) that closely resembles secretory, matrix 

producing osteoblasts (Cao et al., 2003).   
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CHAPTER 3-MATERIALS AND METHODS 

MG-63 Cell Culture 
 
 MG-63 cells (American Tissue Culture Collection-Manassas, VA) were cultured in 

100mm tissue culture dishes with 10-12mL of sterile whole medium.  Tissue culture plates were 

kept in a 37°C incubator with 5% carbon dioxide.  Old medium was removed on a routine basis 

every 2-3 days and replaced with 10-12mL of fresh sterile whole medium.   

MG-63 Whole Medium 
 
 Whole growth medium used for culturing the MG-63 cell line contained Hams F12 

nutrient mixture (Invitrogen-Grand Island, NY), minimal essential medium (Invitrogen-Grand 

Island, NY), fetal bovine serum (Hyclone-Logan, UT), and a penicillin-streptomycin solution 

(Hyclone-Logan, UT). 

 The Hams F12 nutrient mixture was prepared in the following manner.  1.176g of sodium 

bicarbonate (Fisher Scientific-Fair Lawn, NJ) and one package of powdered Hams F12 nutrient 

mixture were mixed with 900mL of nanopure water.  The pH of the solution was adjusted 

accordingly to fall within the pH range of 6.8-7.2 and then the total volume brought up to 1L.   

 To prepare minimal essential medium, 2.2g of sodium bicarbonate and one package of 

powdered minimal essential medium were dissolved in 900mL nanopure water.  The pH was 

adjusted accordingly to fall within the pH range of 6.8-7.2 and then the final volume brought up 

to 1L.       

 The Hams F12 nutrient mixture and minimal essential medium were then combined 

together with 200mL of fetal bovine serum and 20mL of a penicillin-streptomycin solution and 

thoroughly mixed.  The medium was filtered (0.2µM pore top filter) under the hood to sterilize 

and stored in the refrigerator.   
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Removal of Cells from 100mm Tissue Culture Dishes 

 To remove cells that have adhered to the bottom of a 100mm tissue culture dish, for 

either counting or re-plating, was done in the following manner.  First, the old medium was 

removed and discarded.  The 100mm dish was washed twice with 3mL of phosphate buffered 

saline (Sigma Chemical Company-St. Lewis, MO) and then enough trypsin-EDTA (Sigma 

Chemical Company-St. Lewis, MO) was added so that the bottom of the plate was completely 

covered.  The trypsin-EDTA was allowed to remain on the cells for 15-30sec.  Following 

removal of the trypsin-EDTA, the plate was left to sit for approximately 30sec to allow any 

residual trypsin-EDTA to continue lifting the cells from the plate.  The trypsin-EDTA reaction 

was neutralized by addition of 3-4mL of whole medium.  The sides of the plate were gently 

tapped to remove any cells that remained adhered.  Once the cells were lifted from the bottom of 

the plate and suspended in whole medium, the 3-4mL of cell solution was transferred to a 15mL 

conical tube. 

Cell Counting 
 
 To calculate the number of cells/mL, cells were first removed from a 100mm tissue 

culture dish.  To a small test tube (12x75mm) the following was added 500µL of trypan blue 

(Sigma Chemical Company-St. Lewis, MO), 300µL of phosphate buffered saline, and 200µL of 

cell solution removed from the culture dish.  The solution in the test tube was thoroughly mixed 

and viable cells counted using a hemacytometer.  Viable cells were distinguished from dead cells 

which uptake trypan blue and appear bluish in color.  The total number of viable cells was 

counted in a total of 10 squares on the hemacytometer grid.  The total viable cell count was 

divided by 10 squares to determine the average number of cells/square, which was then 
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multiplied by the dilution factor 5 and by 104 to calculate the number of cells/mL in the cell 

solution removed from the tissue culture dish.      

MG-63 Basal Medium  
 

Basal medium that was utilized for the MG-63 cell line contained 0.5% charcoal-stripped 

fetal bovine serum, 49.25% Hams F12 nutrient mixture (Invitrogen-Grand Island, NY), 49.25% 

minimal essential medium (phenol-free) (Invitrogen-Grand Island, NY), and 1% penicillin-

streptomycin solution (Hyclone-Logan, UT).  After combining and thoroughly mixing the 

components, the medium was filtered (0.2µM pore top filter) under the hood to sterilize and 

stored in the refrigerator.   

Charcoal-Stripped Fetal Bovine Serum 
 
 First, dextran-coated charcoal was prepared by combining 2mL of 2M Tris (Fisher 

Scientific-Fair Lawn, NJ) and 4mL of 0.1M EDTA (Fisher Scientific-Fair Lawn, NJ).  The 

volume of the Tris and EDTA solution was brought up to 400mL with nanopure water and the 

pH adjusted to 7.5.  Next, 0.2g of dextran (Sigma Chemical Company-St. Lewis, MO) was added 

and stirred on a stir plate for 1-2h at room temperature.  Finally, 2g of Norit-A (activated, 

charcoal) (Sigma Chemical Company-St. Lewis, MO) was added and allowed to stir overnight at 

4°C covered with foil.  After stirring overnight, 25mL were removed and placed into 50mL 

conical tubes.  These tubes were centrifuged at 2400rpm for 10min at 20°C (Fisher Scientific-

Marathon 21K/BR) to pellet the dextran-coated charcoal.  The supernatant was removed and 

fetal bovine serum poured over the pellet.  The fetal bovine serum and dextran-coated charcoal 

were briefly mixed and placed in a 37°C water bath for 30min.  Every 10min during the 30min 

incubation the tubes were removed and mixed.  After the incubation, the tubes were centrifuged 

as described above and the supernatant poured onto another pellet of dextran-coated charcoal.  
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The conical tubes were mixed and incubated for another 30min as previously described.  After 

the final incubation the tubes were re-centrifuged, the resulting supernatant poured into a clean 

50mL conical tube, and stored in the freezer.   

Standard Curve: 24-Well Plate 
 
 To assess cell proliferation in a 24-well plate a standard curve was generated.  The curve 

was generated by seeding 256000, 128000, 64000, 32000, 16000, 8000, 4000, 2000, 1000, and 

500cells/well in a 24-well plate by serial dilution.  Cells were first removed from a pre-confluent 

100mm culture dish and counted to determine the number of cells/mL.  A stock solution of 

512000cells/mL was prepared in whole medium and serially diluted to 500cells/well.  Once all 

wells had been serially diluted, 500µL of whole medium was added to all wells to bring the total 

volume up to 1000µL.  Plated along side of the serial dilution were two no cell control lanes that 

contained only 1000µL of whole medium.  The 24-well plate was then placed into a 37°C 

incubator for 18h to allow the cells to adhere to the bottom of the plate.  After the 18h incubation 

period, the medium was removed and a 24-well plate MTT assay ran.  The average no cell 

absorbance was subtracted from the average absorbance and plotted against cell number to 

generate a 24-well plate standard curve. 

MTT Assay:  24-Well Plate 
 
 After the incubation period of the assay, the medium was removed and replaced with 

100µL of MTT (Dimethylthiazol tetrazolium bromide) (Sigma Chemical Company-St. Lewis, 

MO).  Once all wells contained MTT the plate was returned to a 37°C incubator for 3h.  

Following the incubation the MTT was completely removed and replaced with 500µL of acidic 

isopropanol.  The plate was placed onto a plate shaker for 10min to solubilize the converted 

product and then two 200µL samples from each well was removed and placed into a 96-well 
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microtiter plate.  The 96-well plate was then read at an absorbance of 595nm using the BioRad 

Microplate reader (Model 3550).     

Standard Curve: 6-Well Plate 

 A standard curve was generated to assess cell number in a 6-well plate.  One 6-well plate 

was seeded in whole medium at the following cell densities 25000, 50000, 100000, 250000, 

500000, and one million cells/well.  Once the wells were seeded the volume of each was brought 

up to 2mL with whole medium.  One 35mm tissue culture dish was plated with 2mL of whole 

medium only to serve as a no cell control.  The plate was placed into a 37°C incubator overnight 

to allow the cells to adhere for 18h.  After 18h, the plate was removed from the incubator and a 

6-well plate MTT assay ran.  The average no cell absorbance was subtracted from the average 

absorbance and plotted against cell number to generate a 6-well plate standard curve.        

MTT Assay: 6-Well Plate 

 After the incubation period of an assay, the media was removed and replaced with 200µL 

of MTT.  The plate was then returned to a 37°C incubator for 3h.  Following the incubation, the 

plate was removed from the incubator and 1000µL acidic isopropanol was added to solubilize 

the converted product.   The plate was then placed onto a plate shaker for 10min and then four 

200µL samples were taken from each well and place into a 96-well microtiter plate.  The 96-well 

plate was then read using the BioRad Microplate reader (Model 3550) set to read absorbance at 

595nm.   

Growth in Basal and Whole Media 
 
 Four 24-well plates were seeded at 25000cells/well with each plate representing a 

different time point (24, 48, 72, and 96h).  Seeding of the 24-well plates was done in the 

following manner.  First, cells were removed from a pre-confluent 100mm dish, counted, and a 
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stock solution of 25000cells/mL prepared in whole medium.  1mL of stock solution was placed 

into three lanes of wells on each of the four plates.  Along side of the experimental lanes, were 

two wells containing 1mL of whole medium only to serve as no cell control wells.  Once all 

plates were seeded, they were placed into a 37°C incubator overnight for 18h.  After the 

incubation, the old medium was removed, and the wells washed with phosphate buffered saline.  

After the wash, 1mL of basal medium was added to all wells in the basal and addback lanes, and 

1mL of whole medium was added to all wells in the growth lanes.  The plates were then returned 

to the incubator for 48h.  Following the 48h, the old medium was removed and replaced as 

follows, 1mL of basal medium was added to all wells in the basal lanes, and 1mL of whole 

medium was added to all wells in both the addback and growth lanes.  Once the medium was 

replaced timing for the 24, 48, 72, and 96h time points began.  Then a 24-well plate MTT assay 

was performed at each time point to assess cell number.   

10µM Steroid Growth Assay 
 

One 24-well plate was initially seeded at 25000cells/well by first removing cells from a 

pre-confluent 100mm dish, counting, and preparing a stock solution of 25000cells/mL in whole 

medium.  1mL of stock solution was then added to the appropriate number of lanes, and 1mL of 

whole medium only was added to two no cell control wells.  Once the 24-well plate was seeded, 

it was placed into a 37°C incubator overnight for 18h.  Following the 18h incubation, the old 

medium was removed, and all wells washed with phosphate buffered saline.  After washing, the 

medium was replaced with 1mL basal medium, and returned to the incubator for a 48h starvation 

period.  Following the starvation period, the old medium was removed, and steroid treatments 

added.  The steroids tested included estradiol (Sigma Chemical Company-St. Lewis, MO), 

estrone sulfate (Steraloids-Newport, RI), dehydroepiandrosterone sulfate (Steraloids-Newport, 
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RI), progesterone (Sigma Chemical Company-St. Lewis, MO), testosterone (Nutritional 

Biochemicals-Cleveland, OH), dehydroepiandrosterone (Nutritional Biochemicals-Cleveland, 

OH), cortisol (Sigma Chemical Company-St. Lewis, MO), and dexamethasone (Sigma Chemical 

Company-St. Lewis, MO).  10µM steroid treatments were prepared in basal medium from 1mM 

steroid stock solutions (prepared in 100% ethanol).  Basal lanes and no cell control lanes were 

prepared by adding 10µL/mL of 100% ethanol to basal medium, to control for the effect of 

ethanol on growth.  Once the treatments had been added, the plates were returned to the 

incubator, and timing for the 72h time point began.  Following the 72h incubation period, a 24-

well plate MTT assay was performed to assess cell number.   

Proliferation Dose-Response 

 One 24-well plate was seeded at 25000cells/well by first removing cells from a pre-

confluent 100mm dish, counting, and preparing a 25000cells/mL stock solution in whole 

medium.  1mL of stock solution was then added to four lanes of wells, and 1mL of whole 

medium only was added to two no cell control wells.  Once the 24-well plate was seeded, it was 

placed into a 37°C incubator for 18h.  After the 18h incubation period, the old medium was 

removed, and all wells washed with phosphate buffered saline.  Following the wash, 1mL of 

basal medium was added to the wells and returned to the incubator for a 48h starvation period.  

After 48h, the basal medium was removed and the treatments were added.  Estradiol and estrone 

sulfate were prepared by serially diluting 1mM stock solutions (prepared in 100% ethanol) to 

concentrations of 10µM, 1µM, 0.1µM, and 0.01µM in basal medium.  The concentration of 

ethanol within each dilution were taken into consideration, and adjusted for accordingly so that 

all dilutions contained an equal amount of ethanol.  The dilutions were then added to the 
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appropriate lanes and returned to the incubator for 72h.  A 24-well plate MTT assay was 

performed at 72h following the treatment addition to determine cell number.       

Growth Assay with 1µM DU-14 or EMATE 
 

The estrone sulfate growth assay with steroid sulfatase inhibitors followed the same set 

up as the 10µM steroid assay.  Inhibitors used for the assays were either DU-14 or EMATE. 

Treatments for this assay were prepared in the following manner.  No cell control wells and basal 

lanes contained 11µL/mL 100% ethanol added to basal medium.  The basal+1µM inhibitor 

treatment was prepared in basal medium by adding 10µL/mL of 100% ethanol and 1µM inhibitor 

diluted from 1mM inhibitor stock solutions (prepared in 100% ethanol).  The estrone sulfate 

treatment was prepared by adding 1µL/mL 100% ethanol to basal medium and diluting estrone 

sulfate to 10µM from a 1mM stock solution (prepared in 100% ethanol).  The 10µM estrone 

sulfate+1µM inhibitor treatment was prepared by diluting a 1mM estrone sulfate stock solution 

to 10µM and also diluting a 1mM inhibitor stock solution to 1µM in basal medium.  Once the 

treatments had been prepared and added to the appropriate lanes the plate was returned to the 

incubator and timing for the 72h time point began.  Following 72h, a 24-well plate MTT assay 

was performed to assess cell number.   

Growth Assay with 10µM DU-14 

The estrone sulfate growth assay utilizing 10µM DU-14 was set up as the 1µM inhibitor 

assay.  However, treatments for this assay were prepared as follows.  No cell control wells and 

basal lanes contained 20µL/mL 100% ethanol added to basal medium.  The basal+10µM DU-14 

treatment was prepared in basal medium by adding 10µL/mL of 100% ethanol and 10µM DU-14 

diluted from a 1mM stock solution (prepared in 100% ethanol).  The estrone sulfate treatment 

was prepared by adding 10µL/mL 100% ethanol to basal medium and diluting estrone sulfate to 
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10µM from a 1mM stock solution (prepared in 100% ethanol).  The 10µM estrone sulfate+10µM 

inhibitor treatment was prepared by diluting a 1mM estrone sulfate stock solution to 10µM and 

also diluting a 1mM inhibitor stock solution to 10µM in basal medium.                

Growth Assay with 100nM ICI 182,780  

 The growth assay utilizing the estrogen receptor inhibitor ICI 182,780 (Tocris 

Bioscience-Ellisville, MO) was set up in the following manner.  One 24-well plate was initially 

seeded at 25000cells/well, by removing cells from a pre-confluent 100mm tissue culture dish, 

counting, and preparing a 25000cells/mL stock solution in whole medium.  1mL of stock 

solution was then added to six lanes of wells, and 1mL of whole medium only was added to two 

no cell control wells.  Once the plate was seeded, it was placed into a 37°C incubator overnight 

for 18h.  After 18h, the old medium was removed, and the wells washed with phosphate buffered 

saline.  1mL of basal medium was then added to the wells, and the plates returned to the 

incubator for 48h.  Following the 48h starvation period, the basal medium was removed, and 

replaced with the appropriate 1mL of treatment solution.  The treatments were prepared in the 

following manner.  No cell control wells and basal lanes contained 11µL/mL of 100% ethanol 

prepared in basal medium.  The basal+inhibitor treatment was prepared by diluting a 1mM ICI 

182,780 stock solution to 10µM (prepared in 100% ethanol) and then to 100nM in basal medium 

and adding 10µL/mL 100% of ethanol.  For the estrone sulfate and 17β-estradiol treatments 

1mM stock solutions were diluted to 10µM in basal medium plus 1µL/mL of 100% ethanol was 

added.  The estrone sulfate+ and 17β-estradiol+ICI 182,780 treatments were prepared by diluting 

1mM steroid stock solutions to 10µM and also diluting a 1mM stock ICI 182,780 solution to 

10µM in ethanol and then to 100nM in basal medium.  Once the treatments had been added the 
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plate was returned to a 37°C incubator for 72h.  After the 72h incubation, a 24-well plate MTT 

assay performed to assess the resulting cell number.           

Steroid Sulfatase Activity in Microsomes 

 Steroid sulfatase activity in MG-63 microsomes was assessed in duplicate 13x100mm 

test tubes, set up as follows.  To the DU-14 and EMATE treatment tubes the following was 

added 100µL 6,7-3H(E1S) prepared at approximately 100,000dpm/100µL (PerkinElmer-Boston, 

MA), 100µL 1µM E1S (final concentration), and 100µL 1µM appropriate inhibitor (final 

concentration).  To the no inhibitor treatment and no microsome control tubes 100µL 6,7-

3H(E1S) prepared at approximately 100,000dpm/100µL, 100µL 1µM E1S (final concentration), 

and 100µL ethanol control (1µL/1mL 100% ethanol) was added.  All dilutions of 6,7-3H(E1S), 

1mM estrone sulfate stock, 1mM inhibitor stock solutions, and ethanol control were prepared in 

Tris-HCl buffer to yield the appropriate final concentration in all reaction tubes.  Once all 

solutions were added, the test tubes were covered, and placed into a 37°C water bath, while the 

microsomes were prepared.   

 To prepare the microsomes, 2000µL of Tris-HCl buffer was added to a Beckman tube 

containing a microsomal pellet and then transferred to a beaker.  The microsomes were then 

homogenized with the Tissue Tearor (Biospec-Model 985370) by four 30sec on, 15sec off 

intervals.    Once homogenized, 200µL of the microsome solution was added to all test tubes, 

except for the no microsome control tubes, to which 200µL Tris-HCl buffer was added instead of 

the microsomes.  The test tubes were then incubated in a 37°C water bath for 1h.  At the end of 

the 1h incubation, an organic extraction was performed to assess steroid sulfatase activity.  The 

resulting conversion rate was adjusted for total protein concentration determined by a BCA 

protein assay performed on the remaining microsome solution.              
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Microsome Preparation 

 To make microsomes five pre-confluent 100mm tissue culture plates were utilized.  The 

medium was removed, and each plate washed with 3mL of phosphate buffered saline.  Following 

the wash, 2.5mL of Hank’s balanced salt solution (Cellgro-Herndon, VA) was added to each 

plate.  The plates were scraped with a cell scraper, transferred to a 15mL conical, and centrifuged 

at 4°C for 10min at 1000rpm (Fisher Scientific-Marathon 21K/BR).  After centrifugation the 

supernatant was removed, the pellet re-suspended in 5mL of Tris-Sucrose buffer, and transferred 

to a beaker.  The re-suspended pellet was homogenized with the Tissue Tearor (Biospec-Model 

985370) by four 30sec on, 15sec off intervals.  The homogenized solution was then transferred 

back into the 15mL conical, and centrifuged at 4°C for 10min at 2400rpm.  Following 

centrifugation, the resulting supernatant was transferred to a prechilled 11x60mm Beckman tube, 

and ultracentrifuged at 31200rpm for 1h at 4°C (Beckman-Ultracentrifuge XL-70).  Finally, the 

supernatant was completely removed, 200µL Tris-HCl buffer added to the pellet, and stored at  

-80°C.   

Toluene Organic Extraction 

 To assess conversion of 6,7-3H(E1S) to the unconjugated 6,7-3H(E1) form an organic 

toluene extraction was utilized.  3mL of toluene (Fisher Scientific-Fair Lawn, NJ) was added to 

the experimental 13x100mm test tubes, and vortex for 1min.  The tubes were then centrifuged at 

2500rpm for 10min at 24°C (Fisher Scientific-Marathon 21K/BR).  From the resulting organic 

phase, duplicate 1mL samples were taken, and placed into scintillation vials.  5mL of Ultimate 

Gold scintillation fluid (PerkinElmer-Shelton, CT) was then added to each vial, and the amount 

of radioactivity assessed by scintillation counting (Packard-Liquid Scintillation Analyzer Tri-

Carb 2100TR).    
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BCA Protein Assay 

 Protein concentration was determined by the Pierce Protein Assay Kit (Pierce Chemical 

Co., Rockford, IL).  First, a standard curve of bovine serum albumin was generated.  The 

following concentrations were prepared in duplicate from a 2mg/mL bovine serum albumin stock 

solution, 150, 100, 50, 25, 12.5, and 0µg/tube so that the final volume of each 13x100mm tube 

totaled 100µL.  The microsome samples were prepared in duplicate by placing 50µL nanopure 

water and 50µL sample into 13x100mm test tubes.  To all tubes 2mL of working reagent was 

added.  Working reagent was prepared by mixing 50 parts Reagent A with 1 part Reagent B.  

The tubes were briefly vortex, covered, and then placed into a 37°C water bath for 30min.  After 

the incubation, the tubes were removed from the water bath and allowed to cool to room 

temperature before reading at 562nm on the spectrophotometer (Thermo Spectronics-Genesys 

20).  The average 0µg/tube absorbance was subtracted from the average absorbance and plotted 

against concentration to generate a standard curve.  The average 0µg/tube absorbance was also 

subtracted from the average absorbance of the samples, and protein concentration calculated 

from the standard curve.      

Whole Cell Conversion Assay  

 Initially, one 6-well plate was seeded at 250000cells/well in whole medium.  2mL of 

whole medium only was also added to two 35mm culture plates to serve as no cell control wells.  

The plates were then placed into a 37°C incubator for 18h to allow the cells to adhere.  After 

18h, the plates were removed from the incubator, the old medium removed, and each well 

washed with phosphate buffered saline.  The medium was then replaced with the appropriate 

treatment.  Treatments were prepared as follows.  The DU-14 and EMATE treatments were 

prepared in 2mL of 6,7-3H(E1S) 0.5% charcoal-stripped basal medium (approximately 
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100,000dpm/mL) that contained a final concentration of 1µM E1S and 1µM of the appropriate 

inhibitor, both diluted from 1mM stock solutions.  The no inhibitor and no cell control treatments 

were prepared in 2mL of 6,7-3H(E1S) 0.5% charcoal-stripped basal medium (approximately 

100,000dpm/mL) that contained a final concentration of 1µM E1S diluted from a 1mM steroid 

stock, and 1µL/1mL 100% ethanol.  Once the treatments were added to the appropriate wells the 

plates were returned to the incubator for 24h.  Following the incubation period, the medium was 

removed from each well and placed into 13x100mm test tubes.  From each test tube two 500µL 

samples were removed and placed into separate 13x100mm test tubes, and an organic toluene 

extraction performed on the 500µL samples of medium.  To the remaining 6-well plate and 

35mm dishes a 6-well MTT assay was performed to adjust the resulting conversion rate for total 

cell number.   

Statistical Analysis 

 All statistical analysis was performed using GraphPad-Prism4 software (San Diego, CA).  

Details of the statistical analysis performed for each experiment can be found in the results 

section.   
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CHAPTER 4-RESULTS 

Validation of Growth Assay 

 In order to establish basal growth conditions for the MG-63 cell line, a series of 

preliminary experiments were run to determine the minimal amount of charcoal-stripped fetal 

bovine serum needed to maintain minimal growth (data not shown).  It was determined that 0.5% 

charcoal-stripped fetal bovine serum maintained cells, while not promoting growth.  Figure 2 

shows the results of growth experiments conducted in basal, addback, and growth media.  A two-

way repeated measures ANOVA resulted in a significant interaction value (p<0.001).  Therefore, 

separate one-way repeated measures ANOVAs were utilized to determine differences among 

treatment groups at each time point.  At all time points, addback and growth media resulted in 

significantly higher growth than basal medium, and growth medium resulted in higher growth 

than addback medium (24h: F=41.24; 2,8 df; p<0.001; 48h: F=87.83; 2,8 df; p<0.001; 72: 

F=606.6; 2,8 df; p<0.001; 96h: F=1704; 2,8 df; p<0.001 and Newman-Keuls Multiple 

Comparison Tests for each time point; p<0.05).  Therefore, 0.5% charcoal-stripped basal 

medium was established to be a good baseline for growth experiments with potential growth-

causing agents.   

Growth of MG-63 Cells in the Presence of Various Steroids 

 Figure 3 shows the results of MG-63 growth experiments using various steroids and 

sulfated steroids.  One-way repeated measures ANOVA revealed significant differences among 

treatments (F=6.475; 8,26 df; p<0.001).  Growth in treatments with estrone sulfate and estradiol 

were significantly higher than with basal (Newman-Keuls Multiple Comparison Test; p<0.05).  

However, growth in treatments with testosterone, dehydroepiandrosterone, 

dehydroepiandrosterone sulfate, dexamethasone, progesterone, and cortisol were not 
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significantly different from growth in basal medium.  It should be noted that 

dehydroepiandrosterone sulfate, cortisol, and progesterone resulted in higher growth than basal, 

but not significantly so.  The dexamethasone treatment was found to have a decrease in growth 

below basal, but this difference was also not significant.     

Growth with Estradiol, Estrone Sulfate, and Dehydroepiandrosterone Sulfate 

 Because the previous experiment indicated that dehydroepiandrosterone sulfate, estrone 

sulfate, and estradiol might stimulate MG-63 growth, an experiment was run to test these 

compounds separately (Fig. 4).  A one-way repeated measures ANOVA revealed differences in 

growth among treatments (F=13.25; 3,19 df; p<0.001).  Significantly higher growth was found in 

estradiol and estrone sulfate treatments than in basal medium (Newman-Keuls Multiple 

Comparison Test; p<0.05).  Treatment with estrone sulfate resulted in significantly higher 

growth than treatment with estradiol.  Growth in dehydroepiandrosterone sulfate was found not 

to be significantly different from growth in basal medium.  

Dose-Response to Estradiol and Estrone Sulfate 

Since growth was significantly increased in the presence of estrone sulfate and estradiol 

in the previous experiment, proliferation dose-responses were performed for each steroid (Fig. 

5).  Treatment with estradiol showed growth above baseline at 10µM and 1µM (Fig. 5A).  

Estrone sulfate only showed significant growth at the highest concentration 10µM (Fig. 5B).   

Effect of Steroid Sulfatase Inhibitors on Growth 

 Given that estrone sulfate was shown to stimulate growth of MG-63 cells, several 

experiments were performed utilizing steroid sulfatase inhibitors, in an attempt to determine if 

growth is mediated via steroid sulfatase.  
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Figure 6 shows the results of MG-63 growth experiments with estrone sulfate and DU-14 

as treatments.  Differences among treatment groups were found, using a repeated measures one-

way ANOVA (F=12.41; 3,11 df; p<0.01).  Significantly higher growth was found in estrone 

sulfate and estrone sulfate+DU-14 treatments, in comparison to basal and basal+DU-14 

treatment (Newman-Keuls Multiple Comparison Test; p<0.05).  Growth in basal and basal+DU-

14 treatments were not significantly different from one another, and growth in estrone sulfate 

and estrone sulfate+DU-14 treatments were not significantly different from each other. 

In the previous experiment, DU-14 did not inhibit growth at a low concentration (1µM).  

Figure 7 reveals the effect of an increased concentration (10µM) of DU-14 on MG-63 growth.  

Differences among means of the treatment groups were found by a repeated measures one-way 

ANOVA (F = 14.10; 3,27 df; p<0.001).  Basal, estrone sulfate, and estrone sulfate+DU-14 

treatments were found to be significantly higher in growth than the basal+DU-14 treatment 

(Newman-Keuls Multiple Comparison Test; p<0.05).  The estrone sulfate treatment was 

significantly higher in growth than all other treatments; however, growths in basal and estrone 

sulfate+DU-14 treatments were not statistically different from one another.              

 MG-63 growth with estrone sulfate and EMATE was also tested (Fig. 8).  A repeated 

measures one-way ANOVA revealed differences among treatment groups (F=27.97; 3,11 df; 

p<0.001).  Estrone sulfate and estrone sulfate+EMATE treatments resulted in a significant 

increase in growth in comparison to basal and basal+EMATE treatments, and estrone 

sulfate+EMATE treatment was found to be significantly higher in growth than the estrone sulfate 

treatment alone (Newman-Keuls Multiple Comparison Test; p<0.05).  Growths in basal and 

basal+EMATE treatments were not statistically different from one another. 
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Effect of an Estrogen Receptor Antagonist ICI 182,780 on Growth 

 Several estrogenic compounds from previous experiments indicated stimulation of MG-

63 growth.  The effect of the estrogen receptor antagonist, ICI 182,780, on MG-63 growth, in the 

presence or absence of estrone sulfate or estradiol were tested in order to determine if this effect 

was mediated by the estrogen receptor (Fig. 9).  A repeated measures two-way ANOVA revealed 

differences among the treatment groups.  Estradiol and estrone sulfate significantly increased 

growth over basal (p<0.05) and this effect was eliminated with ICI 182,780.   

Effect of Steroid Sulfatase Inhibitors on Steroid Sulfatase Activity 

 Steroid sulfatase activity was assessed with and without the addition of steroid sulfatase 

inhibitors, DU-14 and EMATE, in MG-63 microsomes and whole cell estrone sulfate conversion 

assays.  Figure 10 represents the effect of steroid sulfatase inhibitors on steroid sulfatase activity 

in microsomes prepared from MG-63 cells.  Differences among the treatments were determined 

by a one-way ANOVA (F=99.45; 2,8 df; p<0.001).  Steroid sulfatase activity in the presence of 

either inhibitor was found to be significantly decreased from steroid sulfatase activity found 

without an inhibitor (Newman-Keuls Multiple Comparison Test; p<0.05).  However, no 

statistical difference of steroid sulfatase activities was found between DU-14 and EMATE.  

Figure 11 shows the effect of steroid sulfatase inhibitors on steroid sulfatase activity in 

MG-63 whole cells.  A one-way ANOVA revealed differences among treatment groups 

(F=39.59; 2,8 df; p<0.001).  Steroid sulfatase activity in the presence of DU-14 or EMATE 

treatments were found to be significantly decreased in comparison to the steroid sulfatase 

activity found in the absence of an inhibitor (Newman-Keuls Multiple Comparison Test; 

p<0.05).  No significant difference of steroid sulfatase activities was found between DU-14 and 

EMATE. 
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Determination of Cell Number 

A MG-63 24-well plate standard curve was developed to determine cell number at the 

end of growth assays.  Figure A-1 is one representative MTT 24-well plate standard curve.  The 

resulting equation of the best-fit nonlinear trendline for this graph was y = 4e-6x + 0.0092,  

r2 = 0.9986.   

Figure A-2 is another representative MTT standard curve developed to determine cell 

number from a 6-well plate so that normalization of the whole cell estrone sulfate conversion 

assays could be performed.  The resulting equation of the best-fit nonlinear trendline was  

y = 2e-6x + 0.0431, r2 = 0.9997.      

Determination of Protein Concentration 

 To determine and adjust for total protein concentration in the microsomes used for the 

estrone sulfate conversion assays a BCA standard curve was generated (Fig. A-3).  The resulting 

equation of the best-fit linear trendline was y = 0.0134x + 0.1032, r2 = 0.9896.     
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Figure 1: Biosynthetic Pathway of Estrogens and Androgens. 

Abbreviations: SULT=Sulfotransferase, STS=Steroid Sulfatase, 17β-HSD=17β-Hydroxysteroid 

Dehydrogenase, A=Aromatase Cytochrome p-450, and 3β-HSD=3β-Hydroxysteroid 

Dehydrogenase.  Modified from Reed et al. 2005.   
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Figure 2: MG-63 Growth in Various Media. 

Cells were initially seeded and allowed to adhere for 18h.  Basal and addback wells were then 

starved for 48h in 0.5% charcoal-stripped basal medium, while growth wells were incubated in 

whole medium.  After the starvation period, basal wells were treated with 0.5% charcoal-stripped 

basal medium, while addback and growth wells were treated with whole medium.  At 24, 48, 72, 

and 96h following the treatment addition, a 24-well plate MTT assay was performed to 

determine cell number.  Bars represent the mean ± SEM and different letters indicate 

significantly different means within each time point.  Abbreviations: B = Basal, A = Addback, 

and G = Growth.  Data represent three independent experiments, each run in quadruplicate.       
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Figure 3: MG-63 Proliferation in the Presence of Steroid Treatments. 

Cells were seeded and allowed to adhere for 18h.  Then all treatment wells were starved for 48h 

in 0.5% charcoal-stripped basal medium.  Following the starvation period, 10µM steroid 

treatments or ethanol control, prepared in 0.5% charcoal-stripped basal medium, were added and 

incubated with the cells for 72h.  After the incubation period, a 24-well plate MTT assay was 

performed to assess cell number.  Bars represent the mean ± SEM and different letters indicate 

significantly different means.  Abbreviations: DHEA=Dehydroepiandrosterone, E1S=Estrone 

sulfate, and DHEAS=Dehydroepiandrosterone sulfate.  Data represent three independent 

experiments, each run in duplicate.           
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Figure 4: MG-63 Proliferation in the Presence of Sulfated Steroids and Estradiol. 

Cells were allowed to adhere for 18h following initial seeding.  After 18h the whole medium was 

replaced with 0.5% charcoal-stripped basal medium for 48h.  Following the starvation period, the 

appropriate 10µM steroid treatment or ethanol control, prepared in 0.5% charcoal-stripped basal 

medium, were added to the cells and incubated for 72h.  Then a 24-well plate MTT assay was 

performed to determine cell number.  Bars represent the mean ± SEM and different letters 

indicate significantly different means.  Abbreviations: E1S=Estrone sulfate and 

DHEAS=Dehydroepiandrosterone sulfate.  Data represent five independent replicates, each run 

in quadruplicate.               
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Figure 5: MG-63 Proliferation Dose-Response to Estradiol and Estrone Sulfate. 

Cells were seeded and allowed to adhere for 18h.  Once the cells had adhered, all treatment wells 

were starved for 48h in 0.5% charcoal-stripped basal medium.  The various concentrations were 

prepared by serial dilution in 0.5% charcoal-stripped basal medium, added to the appropriate 

wells, and incubated for 72h.  Then a 24-well plate MTT assay was performed to assess cell 

number.  Points represent mean±SEM of for each steroid concentration.  Data represent two 

independent replicates for estradiol and three independent replicates for estrone sulfate, each run 

in triplicate.   
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Figure 6: MG-63 Proliferation in the Presence or Absence of Estrone Sulfate and DU-14. 

Cells were initially seeded and allowed to adhere for 18h.  Treatment wells were then starved for 

48h in 0.5% charcoal-stripped basal medium.  Following the starvation period, the appropriate 

combination of 10µM estrone sulfate, 1µM DU-14, or ethanol control, prepared in 0.5% 

charcoal-stripped basal medium, were added to the treatment wells and incubated for 72h.  After 

the incubation, a 24-well plate MTT assay was performed to determine cell number.  Bars 

represent the mean ± SEM and different letters indicate significantly different means.  

Abbreviations: E1S=Estrone sulfate.  Data represent three independent experiments, each run in 

quadruplicate.     
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Figure 7: MG-63 Proliferation in the Presence or Absence of Estrone Sulfate and DU-14. 

Cells were allowed to adhere for 18h following initial seeding.  Treatment wells were then 

starved for 48h in 0.5% charcoal-stripped basal medium.  Following the starvation period, the 

appropriate combination of 10µM estrone sulfate, 10µM DU-14, or ethanol control, prepared in 

0.5% charcoal-stripped basal medium, were added to the treatment wells and incubated for 72h.  

A 24-well plate MTT assay was then performed to determine cell number.  Bars represent the 

mean ± SEM and different letters indicate significantly different means.  Abbreviations: 

E1S=Estrone sulfate.  Data represent seven independent replicates, each run in quadruplicate.            
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Figure 8: MG-63 Proliferation in the Presence or Absence of Estrone Sulfate and EMATE.  

Cells were seeded and allowed to adhere for 18h.  After 18h, the whole medium was replaced 

with 0.5% charcoal-stripped basal medium for 48h.  Following the starvation period, the 

appropriate combination of 10µM estrone sulfate, 1µM EMATE, or ethanol control, prepared in 

0.5% charcoal-stripped basal medium, were added to the treatment wells and incubated for 72h.  

Then a 24-well plate MTT assay was performed to assess cell number.  Bars represent the mean 

± SEM and different letters indicate significantly different means.  Abbreviations: E1S=Estrone 

sulfate.  Data represent three independent experiments, each run in quadruplicate.            
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Figure 9: MG-63 Proliferation in the Presence or Absence of Estrone Sulfate,  
      Estradiol, and ICI 182,780. 

 
Cells were seeded and allowed to adhere for 18h.  Treatment wells were then starved for 48h in 

0.5% charcoal-stripped basal medium.  Following the starvation period, the appropriate 

combination of 10µM estrone sulfate, 10µM estradiol, 100nM ICI 182,780, or ethanol control, 

prepared in 0.5% charcoal-stripped basal medium, were added to the treatment wells and 

incubated for 72h.  Then a 24-well plate MTT assay was performed to assess cell number.  Bars 

represent the mean ± SEM and * indicates significantly different from basal.  Abbreviations: 

ICI=ICI 182,780, E1S=Estrone sulfate, and E2=Estradiol.  Data represent three independent 

replicates, each run in triplicate.             
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Figure 10: Inhibition of Steroid Sulfatase Activity in MG-63 Microsomes 

       by DU-14 and EMATE. 

MG-63 microsomes were incubated with 6,7-3H(E1S), 1µM estrone sulfate, and 1µM inhibitor 

or ethanol control for one hour.   Following the incubation, a toluene organic extraction was 

performed to assess the amount of conversion from 6,7-3H(E1S) to 6,7-3H(E1).  The conversion 

rate was adjusted for total protein concentration determined by a BCA protein assay.  Bars 

represent the mean ± SEM and different letters indicate significantly different means.  Data 

represent three independent experiments, each run in duplicate.   
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Figure 11: Inhibition of Steroid Sulfatase Activity in MG-63 Whole Cells  
      by DU-14 and EMATE. 

Cells were seeded and allowed to adhere for 18h.  Cells were then treated with 6,7-3H(E1S) 0.5% 

charcoal-stripped basal media, 1µM estrone sulfate, and 1µM inhibitor or ethanol control and 

incubated for 24h.  Following the incubation period, a toluene organic extraction was performed 

on the medium to assess the amount of conversion from 6,7-3H(E1S) to 6,7-3H(E1).  The 

conversion rate was adjusted for total cell number determined by a 6-well plate MTT assay that 

was performed on the experimental plate, once the medium had been removed for analysis.  Bars 

represent the mean ± SEM and different letters indicate significantly different means.  Data 

represent three independent experiments, each run in duplicate.    
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CHAPTER 5-DISCUSSION 

Growth of bone cells is known to be stimulated by estrogens, as exemplified by rapid loss 

of bone at the onset of menopause (Pouilles et al., 1995; NOF, 2007).  However, it is unknown if 

sulfated steroids can stimulate bone growth.  The role of sulfated steroids in the growth of bone 

is important because post-menopausal women have high levels of sulfated steroids in their blood 

(Pasqualini et al., 1996).  This study tested the effect of sulfated steroids on growth of a bone cell 

line (MG-63) and found that estrone sulfate stimulated growth. Additionally, inhibitors of the 

enzyme that converts sulfated steroids into their active forms (steroid sulfatase), blocked estrone 

sulfate-stimulated growth. Thus, steroid sulfatase may be an important agent providing active 

steroids needed for bone growth in post-menopausal women. 

In order to assess the effect of sulfated steroids on growth, an assay was needed that 

could test for growth stimulation by a given compound. A basal, addback, growth (BAG) assay 

was developed for this purpose.  Criteria for a successful assay were selected to be as follows:  1) 

Basal growth should remain constant and at a low level over time, and 2) Addback growth 

should be higher than basal growth for the time points used, showing that growth is possible 

under the conditions of the experiment.  Furthermore, as an internal control for the assay, growth 

medium is an indication of the maximal growth possible and therefore should be the highest 

among the groups.  The test statistic for the developed assay is that growth in a particular 

treatment will be different from that in basal medium alone.  A series of experiments were 

performed initially in (96-well plates) testing basal medium containing various concentrations of 

charcoal-stripped fetal bovine serum, including 10%, 5%, 2.5%, and 0.5%, over a 96h period.  

After testing of the four different concentrations of charcoal-stripped fetal bovine serum, it was 

found that 0.5% charcoal-stripped fetal bovine serum at all time points better met the established 
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criteria for basal, addback, and growth media treatments than the other three concentrations.  The 

0.5% charcoal-stripped fetal bovine serum basal medium sustained the cells, did not promote 

growth over time, and resulted in significantly lower growth than addback and growth media 

treatments.  It was also found that at 72h there was a significant difference in growth between 

basal and addback treatments.  This area of difference is the workable range for the growth 

assays; basal treatment indicates the minimal amount of growth, and addback represents the 

maximal amount of growth that can occur once the cells have been starved with basal medium.  

Therefore, it was important to find a range large enough to detect any growth differences that 

might occur with the potentially growth-stimulating treatments.  From this assay it was 

determined that for all future experiments basal medium should contain 0.5% charcoal-stripped 

fetal bovine serum and exposure to the test compounds should last for 72h.         

Various steroid treatments were tested to determine growth stimulating effects.  The 

initial steroids tested included 17β-estradiol, progesterone, testosterone, dehydroepiandrosterone, 

estrone sulfate, dehydroepiandrosterone sulfate, cortisol, and dexamethasone.  These steroids 

were chosen as treatments based on the following information.  Sex steroids are known to have 

important roles in the development and maintenance of bone.  The positive effects of estrogen on 

bone development and maintenance include increasing osteoblast formation, differentiation, 

proliferation, and function (Riggs et al., 2002).  Androgens also play a role in bone maintenance, 

mainly by affecting mature osteoblasts to enhance bone formation (Syed and Khosla, 2005).  In 

contrast, little is known about the effect of progestins on bone metabolism (Compston, 2001), but 

we wanted to know if they have an effect on our system.  The estrogen (Kusec et al., 1998; 

Braidman et al., 2001), androgen (Nakano et al., 1994), and progestin (MacNamara et al., 1995) 

receptors have all been detected in osteoblasts (Saito and Yanaihara, 1998), and therefore could 
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directly affect these cells.  It has been demonstrated in the MG-63 cell line that 17β-estradiol 

(Fohr et al., 2000; Luo and Liao, 2003) and progesterone (Liang et al., 2003) increase 

proliferation, whereas testosterone was reported to have no effect on growth (Fohr et al., 2000).   

The effect of sulfated steroids on bone growth is relatively unknown.  One study reported 

that dehydroepiandrosterone sulfate and its unconjugated active form, dehydroepiandrosterone, 

had no effect on proliferation of MG-63 cells.  However, dehydroepiandrosterone sulfate was 

found to be more potent than dehydroepiandrosterone in enhancing 1,25-dihydroxyvitamin D3-

stimulation of MG-63 cells (Scheven and Milne, 1998).   

Glucocorticoids were also tested in our study, due to rapid bone loss observed in 

glucocorticoid-induced osteoporosis (Canalis et al., 2004).  Excessive amounts of 

glucocorticoids are known to influence the number and function of osteoblasts by inhibiting 

differentiation and proliferation of cells in the osteoblastic lineage (Mazziotti et al., 2006; 

Canalis et al., 2004).  It has been shown that excess glucocorticoids can decrease the number of 

osteoblasts and osteocytes by inducing an apoptotic pathway (Ishida and Heersche, 1998).  

However, there appears to be a dual role of glucocorticoids on osteoblast function.  When 

dexamethasone is added within a physiological concentration range to cells in culture, 

differentiation into mature osteoblasts is promoted (Walsh et al., 2001).  As with the sex steroids 

and progestins, glucocorticoid receptors are also found in osteoblasts (Abu et al., 2000).  In the 

MG-63 cell line, proliferation in the presence of dexamethasone has been shown to decrease 

(Jones et al., 2006).   

In the present study, 17β-estradiol and progesterone treatments stimulated growth, no 

effect on growth was found in response to the testosterone treatment, and a decrease in growth 

was found with the dexamethasone treatment.  These findings are generally consistent with 
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previously published literature.  The finding that estrone sulfate treatment significantly 

stimulated growth over the basal treatment supports the hypothesis for the role of sulfated steroid 

in the maintenance of bone.  There was also an indication of growth by other steroids 

progesterone, dehydroepiandrosterone sulfate, and cortisol that under the experimental design 

might not allow for the finding of significance.   

A more focused experimental design was developed for testing using only 17β-estradiol 

and sulfated steroids.  Again, it was found that 17β-estradiol and estrone sulfate significantly 

increased proliferation.  This result is consistent with the previous results and further supports 

the role of sulfated steroids in mediating bone cell growth.             

Given that sulfated steroids were shown to cause growth, we wanted to determine if this 

process is mediated by steroid sulfatase.  If so, then inhibitors of steroid sulfatase should block 

estrone sulfate-stimulated growth.  Due to the role of steroid sulfatase in supporting estrogen-

dependent tumor growth, a number of inhibitors have been designed as potential treatments.  One 

steroid sulfatase inhibitor estrone-3-O-sulfamate (EMATE) is a potent irreversible site-directed 

inhibitor it inhibits steroid sulfatase activity in placental microsomes with an IC50 of 80nM 

(Howarth et al., 1994).  Also, 99% of steroid sulfatase activity was inhibited in human placental 

microsomes at an EMATE concentration of 10µM.  For the hormone-dependent breast cancer 

cell line MCF-7, proliferation was inhibited with a calculated IC50=100nM (Selcer et al., 1996).  

However, this inhibitor has been shown to be estrogenic and therefore unable to be utilized as a 

therapeutic agent (Elger et al., 1995).  As a result, attempts have been made to develop potent 

non-steroidal inhibitors of steroid sulfatase.  One non-steroidal inhibitor (DU-14) was developed 

by our lab (Li et al., 1995; Kolli et al., 1999).  DU-14 inhibits steroid sulfatase activity in 

placental microsomes at a calculated IC50 of 55.8nM and in a hormone-independent breast cancer 
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cell line (MDA-MB-231) at a calculated IC50=350nM.  Inhibition of proliferation of the 

hormone-dependent breast cancer cell line (MCF-7) was calculated to inhibit at an IC50 value of 

38.7nM (Selcer et al., 1997).  Due to well-characterized inhibition of steroid sulfatase activity in 

placental microsomes and breast cancer cell lines, these two agents (EMATE and DU-14) were 

utilized in the experiments testing the role of steroid sulfatase in estrone sulfate-stimulated 

growth in the MG-63 bone cell line.  It was found that DU-14 was capable of blocking estrone 

sulfate-stimulated growth at 10µM, but not 1µM.  However, EMATE was shown to stimulate 

proliferation at 1µM, probably due to its known estrogenicity.  These data further support the 

hypothesis that sulfated steroid are important in bone maintenance and that this process is 

mediated by steroid sulfatase.          

 Given that MG-63 proliferation is stimulated by steroid sulfates (and nonsulfated 

steroids) as discussed previously, we wanted to determine if this process is mediated by the 

estrogen receptors.  If so, then an estrogen receptor inhibitor should block this response.  The 

inhibitor chosen for this set of experiments was ICI 182,780.  ICI 182,780 is a pure antiestrogen 

that competes with 17β-estradiol for the estrogen receptor (Wakeling et al., 1991) and binds with 

high affinity to both the α- and β-estrogen receptors (Sun et al., 1999).  MCF-7 hormone-

dependent breast cancer cell proliferation has been shown to be inhibited with ICI 182,780, with 

an IC50 calculated to be 0.29nM (Wakeling et al., 1991).  In this study, estrone sulfate and 17β-

estradiol were chosen as treatments for the MG-63 cells.  Estrone sulfate and 17β-estradiol were 

previously shown to stimulate growth.  It is known that of the estrogenic compounds tested in 

this experiment, 17β-estradiol is capable of binding to the estrogen receptor; however estrone 

sulfate is not able to bind (Kuiper et al., 1997).  As expected, ICI 182,780 inhibited estradiol-

stimulated growth of MG-63 cells.  Interestingly, estrone sulfate-stimulated growth was also 
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inhibited by ICI 182,780, indicating that estrone sulfate is also mediating growth through the 

estrogen receptor.  These results further support the hypothesis that steroid sulfatase is mediating 

estrone sulfate-stimulated growth.   It converts estrone sulfate, which unable to bind the estrogen 

receptor, to an active steroid that is capable of binding and therefore supports bone growth.      

 To demonstrate that the MG-63 cells indeed have steroid sulfatase and that the inhibitors 

work as expected, steroid sulfatase activity was assessed using estrone sulfate conversion assays 

in microsomes and whole cells.  It has previously been demonstrated that the MG-63 cell line 

contains steroid sulfatase activity (Purohit et al., 1992) and that it is capable of utilizing both 

estrone sulfate and dehydroepiandrosterone sulfate as substrates (Fujikawa et al., 1997). The 

estrone sulfate conversion assay has been used extensively by our lab to demonstrate steroid 

sulfatase activity.  The assay involves conversion of 6,7-3H(E1S) by steroid sulfatase to 6,7-

3H(E1) which can be extracted and assessed by scintillation counting.  The results of both the 

microsome and whole cell estrone sulfate conversion assays revealed that MG-63 cells do have 

steroid sulfatase, consistent with previous reports, and that the inhibitors DU-14 and EMATE do 

block steroid sulfatase activity in MG-63 microsomes and whole cells.  These data provide 

further support for the hypothesis that steroid sulfatase is mediating estrone sulfate-stimulated 

growth.                

 Overall, this study tested the effect of sulfated steroids on growth of the MG-63 bone cell 

line and found that estrone sulfate was capable of stimulating growth.  Both an inhibitor of 

steroid sulfatase and an estrogen receptor antagonist blocked estrone sulfate-stimulated growth.  

This block in growth demonstrated that estrone sulfate-stimulated growth is mediated by the 

estrogen receptor, indicating that estrone sulfate is being converted to an active form, since it is 

unable to bind the estrogen receptor.  Finally, it was demonstrated that steroid sulfatase is present 
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in the MG-63 cells and is blocked by steroid sulfatase inhibitors.  The combined results of this 

study support the hypothesis that sulfated steroids are capable of supporting bone growth, 

through a process that is mediated by steroid sulfatase.   

 The main conclusions to be drawn from the data in this study are that the sulfated steroid 

estrone sulfate is capable of stimulating growth of MG-63 osteoblast-like cells and that this is 

mediated by steroid sulfatase.  These findings have implications regarding post-menopausal 

women.  Post-menopausal women have low circulating unconjugated estrogens (particularly 

17β-estradiol), but high circulating levels of estrone sulfate.  Many post-menopausal women 

suffer from osteoporosis, presumably due to the low estradiol levels.  Our findings support that 

the estrone sulfate in circulation has potential for maintaining bone density via steroid sulfatase.  

Why then do women still develop osteoporosis?  One possibility is that there is insufficient 

steroid sulfatase in bone cells to generate sufficient estradiol to maintain bone.  It should be 

noted that there is substantial variation among women in the incidence and onset of osteoporosis.  

It is plausible that steroid sulfatase levels are one factor contributing to this difference.  Women 

with greater levels of bone steroid sulfatase may enjoy some level of protection from 

osteoporosis.  If steroid sulfatase levels in bone are able to influence the incidence of 

osteoporosis, then increasing the level of steroid sulfatase in bone would be desirable.  

Unfortunately, little is know about regulation of steroid sulfatase.     
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APPENDIX-ADDITIONAL FIGURES 

 

 
 
Figure A-1: MG-63 24-Well Plate Standard Curve. 

Standard curve of cell number versus absorbance for MTT assay of MG-63 cells in a 24-well 

plate.  The equation represents the best-fit nonlinear trendline for the data, y=4e-6x + 0.0092, 

r2=0.9986.              
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Figure A-2: MG-63 6-Well Plate Standard Curve. 

Standard curve of cell number versus absorbance for MTT assay of MG-63 cells in a 6-well 

plate.  The equation represents the best-fit nonlinear trendline for the data, y=2e-6x + 0.0431, 

r2=0.9997.              
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Figure A-3: BCA Protein Assay Standard Curve. 

Standard curve of protein concentration versus absorbance generated from the Pierce Protein 

Assay Kit.  Bovine serum albumin stock was diluted to the appropriate duplicate concentrations 

and incubated with the working reagent for 30min.  The equation represents the best-fit linear 

trendline for the data, y=0.0134x + 0.1032, r2=0.9896.              
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