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ABSTRACT 
 
 

PREPARATION AND CHARACTERIZATION OF OIL-IN-WATER NANO- 
 

EMULSIONS OF TRIFLUOPERAZINE FOR PARENTERAL DRUG DELIVERY 
 
 
 
 
 
 
 

By 
 

Toluwalope Onadeko 
 

May 2009 
 
 
 
Thesis Supervised by Moji Christianah Adeyeye, PhD 
 
Objectives: 1.) To develop and characterize an optimal formulation of oil-in-water nano-

emulsions of trifluoperazine for parenteral delivery. 2.) To perform short term stability 

testing of the optimal formulation and monitor the potency using high performance 

chromatography (HPLC). 

Materials and Methods: Emulsions containing soybean oil, water, trifluoperazine hcl as 

an amphiphilic drug, phospholipon 90 and Tween 80 as surfactant blend were prepared 

using the Thin-layer hydration method. Z-average, polydispersity index, zeta potential of 

emulsions were determined. A fully randomized 2X2X2X2X2 statistical design was 

developed using JMP software. Optimal formulation was selected based on desirable 

properties of low z-average and polydispersity index, and high zeta potential. Stability of 

optimal formulation was determined using HPLC analysis and based on ICH 

specifications. 
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Results: Z-average of optimal formulation was 72.9nm with zeta potential value of 25.59 

mV and polydispersity index 0.2. After storage for 3 months, z-average values were 

below 200nm indicating optimal formulation was not physically degraded. Drug content 

analysis showed chemical degradation due to reduction of potency.  

Conclusions: Trifluoperazine nano-emulsions formulations had acceptable values of low 

z-average, low polydispersity index and high zeta potential and were physically stable but 

not chemically stable over 3 months. 
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1.0 Introduction  

 
1.1 Statement of the Problem 

Development of intravenous lipid emulsions began in the 1920’s; however, none of 

the early fat emulsions could be used safely in man. Since then, a very large number of 

emulsions with various lipids and emulsifiers have been investigated (1). In the early 

1960s, Arvid Wretlind and co-workers developed the first safe parenteral lipid based 

emulsion for clinical nutrition, called Intralipid
® 

(2). This product provides concentrated 

energy and essential fatty acids to patients who are unable to eat. By focusing on the 

formulation technology and the selection and purification of the lipid raw materials, this 

group of researchers overcame several adverse clinical reactions that had caused 

extensive problems for earlier investigators, including withdrawal of products from the 

market. The basic objective is to mimic as well as possible the input of chylomicrons into 

the blood. The clinical use of parenteral fat emulsions is now globally accepted as a part 

of nutrition therapy. Intralipid became the starting point for using lipid emulsions as a 

delivery matrix for lipid-soluble drugs (3, 4). 

Studies have shown that nano-emulsions can prolong drug circulation in the plasma 

by preventing drug uptake by the liver in to the reticuloendothelial system (5). Their 

potential applications range from antifungal delivery agents to immunodulators (6,7). 
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These delivery systems may also be used for localized therapy, such as in the treatment of 

lymph node metastases, or injection in to other cavities and joints (8).   

There are several advantages to the use of parenteral lipid emulsions as drug 

carriers. These include stabilization of drugs that are susceptible to hydrolysis, 

enhancement of solubility for water insoluble drugs and reduction of sorption of aqueous 

drug on plastic material of infusion set. The use of oil-in-water emulsion can improve 

aqueous solubility by incorporating the insoluble drug into the interior oil phase. Protein 

binding and hydrolytic degradation of certain drugs such as barbiturates do not occur as 

long as the drug remains in the oil phase thus further improving the therapeutic efficacy 

for emulsion formulations compared with aqueous solutions.  Direct contact of such a 

drug in a parenteral emulsion with the body fluids and tissues is reduced and the drug 

may be released slowly over a prolonged period of time; this may minimize side effects  

(9, 10, 11). 

There is a potential for sustained release of drugs from parenteral emulsion (12, 

13). Delayed absorption of the total dose from an emulsion can be achieved for drugs 

with large partition coefficient. The fraction of drug available for absorption also depends 

on the phase volume ratio between the lipid and aqueous phases in the delivery system. 

For example, if the volume of the aqueous phase is much larger than that of the oil phase, 

a large partition coefficient (w/o) will result in a small fraction of the insoluble drug 

being available for absorption and hence a sustained release effect (14). 

 

Trifluoperazine was chosen as a model drug that could be delivered in a lipid 

emulsion because of its favorable properties. It is an amphiphilic drug, therefore, a good 
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candidate for an emulsion because it will tend to localize at the oil/water interface and 

intercalate in the phospholipids monolayers due to its surface active properties (15). Its 

high log P value indicates that more of the drug will be distributed in the oil phase. 

Formulation of trifluoperazine emulsion may enhance the solubility of the drug compared 

with an aqueous formulation of the drug.  

Commercially available aqueous parenteral preparation has been reported to be 

unstable and subject to discoloration with exposure to light and sorption of 

trifluoperazine hydrochloride to infusion sets has been reported in literature. 

Trifluoperazine hydrochloride 10mg/ml in sodium chloride 0.9% exhibited a cumulative 

45% loss during a seven hour simulated infusion through an infusion set consisting of a 

cellulose propionate chamber and 170 cm of PVC tubing due to sorption. The extent of 

sorption was found to be independent of concentration. (16). An oil-in-water emulsion 

formulation of trifluoperazine may improve the delivery and chemical stability of the 

drug by reducing the likelihood of sorption of the drug on to infusion sets since most of 

the drug will be incorporated in to the oil phase of the emulsion compared with an 

aqueous formulation. Higher drug load may also be possible compared to the aqueous 

solution. This is due to its high log P as stated earlier. Therefore, the aims of the project 

were; 

1. To prepare oil-in-water emulsions for parenteral delivery using excipients which 

are generally regarded as safe (GRAS). 

2. To develop an optimal formulation with acceptable particle size in the nano range 

and evaluate other properties such as polydispersity index, zeta potential and 

viscosity. 



 
 

 

4 

 

 

3. To perform short term stability testing of the optimal formulation and monitor the 

potency using high performance chromatography (HPLC). 
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1.2 Literature Review 

1.2.1 Emulsion Technology 

An emulsion is a dispersed system containing at least two immiscible liquid 

phases. In order to ensure stability, an emulsion must contain a suitable emulsifying agent 

aside from the dispersed phase and dispersion medium (17). 

Pharmaceutical emulsions usually consist of a mixture of an aqueous phase with various 

oils and or waxes. If the oil droplets are dispersed throughout the aqueous phase the 

emulsion is termed oil-in water (o/w). A system in which the water is dispersed 

throughout the oil is termed water-in-oil (w/o) emulsion. Multiple emulsions such as 

water-in-oil-in-water (w/o/w) can be formed. In this case, small water droplets are 

enclosed within larger oil droplets, which themselves are dispersed in water. The 

alternative o/w/o is also possible (18). 

Emulsions with droplet size in the nanometric scale (typically in the range 20-

200nm) are referred to in literature as miniemulsions, nano-emulsions, ultrafine 

emulsions, submicron emulsions, etc. The term nano-emulsions is preferred because it 

gives an idea of the nanoscale size range of the droplets; it is concise and it avoids 

misinterpretation with the term microemulsion which are thermodynamically stable 

systems  (19, 20). 

Parenteral emulsions are basically prepared in two ways. One is referred to as the 

extraneous addition of a lipophilic compound to a preformed sterile fat emulsion, usually 

with the assistance of an organic solvent such as ethanol or diethyl sulfoxide. This 

method is not recommended for several reasons such as formation of large poorly 

emulsified oil droplets, undissolved drug crystals and sterility problems. The second 
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method which is the preferred method is an ab initio emulsification of drug containing oil 

phase either aseptically or in conjunction with terminal heat sterilization. Thus, emulsions 

are custom designed to accommodate the unique requirements of a particular therapeutic 

agent
 
(21). 

     

1.2.2 Mechanisms of Emulsion Formation 

In order to disperse one liquid in another in the form of an emulsion, an amount of 

work (W) in ergs/cm must be done upon the system. W is equal to the interfacial tension 

() in ergs/cm
2
  multiplied by the S (cm

2
) which is the increase in surface area of 

dispersed phase due to formation of emulsion droplets. 

SW   ……………Equation 1 

To reduce the amount of energy required for emulsification and yet obtain small droplets, 

the interfacial tension between water and oil must be lowered to a marked degree. This 

can be achieved using appropriate emulsifying agent or and homogenization. To have 

thermodynamic stability, W must be very small. This implies that the surface area and 

interfacial tension must be small. However, to have a small specific surface area, the 

droplets must be large. This could lead to aggregation or coalescence and faster 

breakdown of emulsion. Therefore, there must be a balance of the thermodynamic and 

physical stability, i.e. keeping W as minimal as possible and keeping the z-average small 

enough (22). 

Emulsion droplets are deformed and disrupted by viscous or inertial forces. 

Viscous forces generate tangential and normal stresses at the drop surface. Inertial forces 
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generate pressure differences. Laminar or turbulent flow and or cavitation forces may 

occur. In laminar flow, viscous forces are predominant. The flow can cause shear or 

elongation. In turbulent flow, inertial forces predominate; however, viscous forces may 

also be involved (23). During cavitation, small vapor bubbles are formed which 

subsequently collapse extremely fast, causing heavy shock waves in liquid. These may 

disrupt droplets. The liquid is intensely agitated and flow is turbulent. Hence, cavitation 

is comparable to disruption by turbulence. 

The occurrence of any of these mechanisms depends on the type of apparatus, 

viscosity of liquid and constructional details. The scale of the apparatus may considerably 

affect the operation. A larger machine operated at appropriate speed gives more 

turbulence.  

Emulsion droplets may also be disrupted due to interfacial instability caused by 

surface tension gradients. This is dependent on the surfactant and can occur in any 

equipment (24). 

Emulsions can be prepared by high energy emulsification methods which includes 

high pressure homogenization and ultrasound generators or by low energy emulsification 

methods such as spontaneous emulsification or solvent diffusion method and phase 

inversion temperature (PIT) method (25).  

 

1.2.2.1 Emulsification by Ultrasonication.   

Emulsions can be produced using a sonicator, a laboratory equipment that 

generates ultrasonic waves. This type of sonicator has an ultrasonic transducer which 

consists of piezoelectric crystal contained within a protective metal casing. Application of 
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a high electrical wave to the transducer causes the piezoelectric crystal to rapidly oscillate 

and generate an ultrasonic wave.
 
At the beginning of emulsification, waves are produced 

at the interface giving rise to fairly coarse drops. During this process of emulsification by 

ultrasound, cavitation or formation of cavities by liquid and their subsequent collapse 

occur accompanied by intense hydraulic shocks. (Figure 1.1) The exact mechanism of 

droplet break up is unknown. Postulations are that the droplet oscillates at a natural 

frequency until it bursts (26).
  

 

Figure 1. 1 Mechanism of Cavitation in Emulsification by Ultrasound (27) 

(Cavity C collapses in the vicinity of droplet O) 

Drug emulsions for parenteral delivery have been prepared by sonication. J. 

Medina et al. studied the development of a parenteral emulsion formulation for 

lorazepam using sonication (28). Jafari and coworkers  evaluated the efficiency of 

sonication and microfluidization in the production of d-limonene oil-in-water nano-

emulsions and observed that the size of the emulsions decreased with increasing 

sonication time and also produced emulsions in the size range of 150-700nm (29). 
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1.2.2.2 Emulsification using High Pressure Homogenizers.  

Homogenizers may be used in one of two ways; 1.) By mixing ingredients in the 

emulsion and then passing those through the homogenizer to produce the final product 

and 2.) Produce a coarse emulsion first using a different method then passing it through a 

homogenizer.  The purpose is to decrease droplet size and obtain a greater degree of 

uniformity and stability. The homogenizers operate at pressures of 1000 to 5000 psi to 

produce some of the finest dispersions obtainable in an emulsion (30). 

 

1.2.2.3 Phase Inversion Method.  

Phase inversion in emulsions can be one of two types: transitional inversion or 

catastrophic inversion (31). These methods make use of changing the spontaneous 

curvature of the surfactant. For non-ionic surfactants, phase inversion can be achieved by 

changing the temperature of the system, forcing a transition from an oil-in-water (O/W) 

emulsion at low temperatures to a water-in-oil (W/O) emulsion at higher temperatures 

(transitional phase inversion). During cooling, the system crosses a point of zero 

spontaneous curvature and minimal surface tension, promoting the formation of finely 

dispersed oil droplets. Catastrophic inversion is a transition in the spontaneous radius of 

curvature that can be obtained by changing the volume fraction of the phase. By 

successively adding water into oil, initially water droplets are formed in a continuous oil 

phase. Increasing the water volume fraction changes the spontaneous curvature of the 

surfactant from initially stabilizing a W/O emulsion to an O/W emulsion at the inversion 

locus. This process is well known for short-chain surfactants which form flexible 



 
 

 

10 

 

 

monolayers at the oil–water interface, resulting in a bicontinuous microemulsion at the 

inversion point (32). 

 

1.2.3 Characterization of Emulsions 

Characterization of nano-emulsions is of utmost importance in order to ensure the 

production of emulsions which fall within the desired droplet size range, viscosity and 

charge and are stable with time. Several techniques have been developed to characterize 

emulsions such as particle size analysis, polydispersity and zeta potential determination, 

differential scanning calorimetry, nuclear magnetic resonance (NMR), HPLC, viscosity 

and surface tension determination.  Some of these methods will be highlighted below. 

 

1.2.3.1 Particle size determination 

Particle size of emulsions can be determined using several techniques. Some of 

the major techniques are hydrodynamic chromatography, photon correlation 

spectroscopy, spectroturbidimetry, field flow fractionation, sensing zone, electron 

microscopy and sedimentation (33).  

 

1.2.3.1.1  Photon Correlation Spectroscopy 

  Photon correlation spectroscopy is also known as dynamic light scattering. The 

principle of operation is based on the intensity of the light scattered from dispersions of 

particles and macromolecules. This intensity fluctuates with time and are too rapid and 

shift too little to be evident to the human eye. The pace of the movement of particles is 

inversely proportional to the particle size and can be detected by analyzing the time 
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dependency of the light intensity fluctuations scattered from particles when they are 

illuminated with a laser beam. The time dependence of the light scattered from a very 

small region of solution over a time range from 10
th

 of a microsecond to milliseconds is 

measured. These fluctuations in intensity are related to the rate of diffusion of particles in 

and out of the region being studied (Brownian motion), and the data can be analyzed to 

directly give the diffusion coefficients of the particles doing the scattering. The data are 

processed to give the ―size‖ of the particles (radius or diameter) which is based on the 

theoretical relationship between the Brownian motion and the size of the spherical 

particles (34). This is based on the Stokes-Einstein equation.   

d

kT
Do

3
 -----------------Equation 2 

where oD  is the diffusion coefficient,   is the viscosity of the suspending medium, and 

d  is the particle diameter (35). The instrumentation for photon correlation spectroscopy 

shown in Figure 1.2 consists basically of a light source, which is either argon or helium-

neon laser, a spectrometer consisting of an optical system for defining the scattering 

angle and limiting the number of coherence areas, a detector (usually a photomultiplier), 

a signal analyzer which is a digital autocorrelator and a computer for processing and 

displaying the data (36). Instruments such as Malvern Zetasizer Nanoseries® (Malvern 

Instruments, UK) and Nicomp® particle sizer (Particle Sizing Systems, CA) are available 

for measurement of particle size.  

The diameter that is measured in dynamic light scattering is the hydrodynamic 

diameter, known as z-average. Z-average is the mean hydrodynamic diameter and is 
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calculated according to the international standard on dynamic light scattering ISO 13321. 

It is intensity weighted so it is sensitive to the presence of large particles (37). 

 

 

 

Figure 1. 2 Schematic diagram of a PCS instrument (38) 

 

 

 

1.2.3.1.3 Electron Microscopy Techniques 

Scanning electron microscopy and transmission electron microscopy are 

important techniques in emulsion characterization. Microscopic techniques allow 

determination of both particle size and distribution, and observation of particle shape. In 
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addition, other parameters, such as morphology or surface roughness can be observed 

(39). 

 

1.2.3.1.3.1 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) is one of the most widely used techniques 

used in characterization of nanomaterials and nanostructures. The resolution of the SEM 

approaches a few nanometers, and the instruments can operate at magnifications that are 

easily adjusted from - 10 to over 300,000. SEM produces topographical information and 

the chemical composition information near the surface. In a typical SEM, a source of 

electrons is focused into a beam, with a very fine spot size of 5 nm and having energy 

ranging from a few 100 eV to 50 Kev that is rastered over the surface of the specimen by 

deflection coils. As the electrons strike and penetrate the surface, a number of 

interactions occur that result in the emission of electrons and photons from the sample. 

SEM images of the emitted electrons are consequently produced on a cathode ray tube 

(CRT) (40). 

 

1.2.3.1.3.2 Transmission Electron Microscopy (TEM)   

In TEM, electrons are accelerated to 100 KeV or higher (up to 1 MeV), projected 

onto a thin specimen (less than 200nm) by means of the condenser lens system, and 

penetrate the sample thickness either undeflected or deflected. The greatest advantages 

that TEM offers are the high magnification ranging from 50 to10
6 

and its ability to 

provide both image and diffraction information from a single sample. 
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1.2.3.2 Polydispersity Index 

The second characterization of emulsion to be discussed is the polydispersity 

index. Photon correlation spectroscopy can also be used to determine the polydispersity 

index of an emulsion using the Malvern
 

Zeta sizer. This is necessary to characterize the 

particle size distribution of an emulsion. Polydispersity is the width of particle size. A 

narrow size distribution, corresponding to a polydispersity index between 0.1 and 0.2, is 

generally found with colloidal drug carriers. Larger polydispersity indices indicate a 

broad size distribution. 

 

1.2.3.3 Zeta Potential Determination 

Zeta potential is a measurement of surface potential. The magnitude of zeta 

potential gives an indication of potential stability of an emulsion (41). Zeta potential is an 

important parameter in determining the stability of an emulsion and other colloidal 

dispersions; zeta potential larger than about 25 mV is typically required to stabilize a 

colloidal system. Zeta potential is determined by a number of factors, such as the particle 

surface charge density, the concentration of counter ions in the solution, solvent polarity 

and temperature (42). Zeta potential can be determined using the Malvern Zeta sizer or 

the Nicomp particle sizer. Zeta potential is determined by electrophoretic light scattering 

(ELS). The Smoluchowski equation can be used to compute the zeta potential from 

electrokinetic mobility µ. 

------------Equation 3 

where  is the permittivity and  the viscosity of the liquid used. (43) 
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 1.2.3.4 Viscosity Determination 

Viscosity is defined as a measurement of the applied stress per unit area required 

to maintain a certain flow rate or shear rate. In general, viscosity is the resistance to liquid 

flow, whereas fluidity is the reciprocal of viscosity or the coefficient of viscosity. Thicker 

liquids have higher the viscosities while thinner the liquids have lower viscosities or 

higher fluidity (44). Two types of viscosity may be specified: dynamic viscosity   and 

kinematic viscosity . Dynamic viscosity is the absolute viscosity of the emulsion and the 

kinematic viscosity is obtained by dividing the dynamic viscosity by the density of the 

liquid. The kinematic viscosity is the viscosity due to the influence of gravity. They are 

related by the expression    where   is the density of the fluid (45). Viscosity can 

be determined by several methods such as rotational, falling or rolling ball, capillary tube 

or orifice and surface viscosity methods. 

 

1.2.3.4.1 Rolling ball Viscometer 

The rolling ball viscometer operates based on Stoke’s law. When a body falls 

through a viscous medium it experiences a resistance or viscous drag which opposes the 

downward motion. Consequently if a body falls through a liquid under the influence of 

gravity, an initial acceleration period is followed by motion at a uniform terminal velocity 

when the gravitational force is balanced by the viscous drag (46). 

The Stoke’s equation can be used to determine the viscosity of the liquid as given below.  
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 ……………..Equation 4 
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Where  is viscosity, d is diameter of sphere, s is density of sphere, l is density of 

liquid, g is acceleration due to gravity and  is terminal velocity. 

Terminal velocity (  ) is determined when a liquid is placed in the fall tube which is 

clamped vertically in a constant temperature bath. Sufficient time must be allowed for 

temperature equilibration and for air bubbles to rise to the surface.  A steel sphere is 

introduced into the fall tube through a narrow guide tube. The passage of the sphere is 

monitored and the time it takes to fall is recorded. 

 

1.2.3.4.2 Capillary Viscometer 

The rate of flow of the fluid through the capillary is measured under the influence 

of gravity or an externally applied pressure. Liquid is allowed to flow under gravity from 

a reservoir through a tube of known cross-section. In different instruments, the tube can 

vary from capillary size to a large diameter. The pressure difference across the ends of 

the tube and the time for a given quantity of flow are measured, and then the liquid 

viscosity for Newtonian fluids can be calculated as  

 

LV

PTR
Cv

425.1 
 ……………….Equation 5 

Where R is the radius (m) of the tube, L is its length (m), P is the pressure difference 

(N/m
2
) across the ends and V is the volume of the liquid flowing in time T (m

3
/s) (47). 
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1.2.3.4.3 Rotational Viscometer 

The rotational viscometer involves concentric cylinder and cone and plate 

instruments. An approximation to uniform rate of shear throughout the sample is 

achieved by shearing a thin film of the liquid between concentric cylinders. The outer 

cylinder can be rotated or oscillated at a constant rate and the shear stress measured in 

terms of the deflection of the inner cylinder, which is suspended by a torsion wire or the 

inner cylinder can be rotated with the outer cylinder stationary and the resistance offered 

by the motor measured. This method is useful for studying the flow behavior of non-

Newtonian liquids and highly viscous materials (48). The viscosity in poise (CV) for 

Newtonian liquids is given by 

h

RR
GCv






2

2

2

1 /1/1
5.2 ------------Equation 6 

Where G is the couple formed by the torsion wire and its deflection, R1 and R2 are the 

radii of the inner and outer cylinders; h is the length of the cylinder and  is the angular 

velocity (rads/s) of the rotating cylinder. (49) 

   

 

1.2.4 Emulsion Components and Functionalities 

1.2.4.1 Trifluoperazine 

 The IUPAC Chemical name of trifluoperazine is 10-[3-(4-methylpiperazin-1-

yl)propyl]-2-(trifluoromethyl)-10H-phenothiazine. Trade names are Iatroneural


, 

Jatroneural


, Eskazinyl


, Eskazine


, Stelazine


 and Terfluzine


. It is a white to off 

white crystalline powder with little or no odor (53, 54, 55). Trifluoperazine has surface 
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active properties. The critical micellar concentration (CMC) of trifluoperazine is 4.2 x 10
-

5
. The CMC increases with increasing pH, due to protonation of the second nitrogen atom 

of the drugs’ piperazine ring (56). 

Trifluoperazine hydrochloride is a phenothiazine antipsychotic used in the 

treatment of a variety of psychiatric disorders including schizophrenia severe anxiety, and 

disturbed behavior. It is also used for the control of nausea and vomiting. It is effective 

for the short-term treatment of generalized non-psychotic anxiety. Trifluoperazine is 

given as the hydrochloride but its doses are expressed in terms of the base. 1 mg of 

trifluoperazine is approximately equivalent to 1.2 mg of trifluoperazine hydrochloride 

(57).  

 

 

Figure 1. 3 Structure of Trifluoperazine 

 

The usual initial dose for the treatment of schizophrenia and other psychoses is 2 

to 5 mg twice daily by mouth, gradually increased to a usual range of 15 to 20 mg daily. 

In severe or resistant psychoses, daily doses of 40 mg or more have been given. For the 

control of acute psychotic symptoms it may be given by deep intramuscular injection in a 
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dose of 1 to 2 mg, repeated if necessary at intervals of not less than every 4 hours; more 

than 6 mg daily is rarely required. The initial dose for use in children is up to 5 mg daily 

by mouth in divided doses adjusted according to age, body-weight, and response, or 1 mg 

given once or twice daily by intramuscular injection (57). 

For the control of nausea and vomiting, the usual adult dose by mouth is 1 or 2 mg twice 

daily; up to 6 mg daily may be given in divided doses. Children aged 3 to 5 years may be 

given up to 1 mg daily in divided doses; this may be increased to a maximum of 4 mg 

daily in children aged 6 to 12 years. When used as an adjunct in the short-term 

management of severe anxiety disorders, doses are similar to those used for the control of 

nausea and vomiting (55).  

In recent studies trifluoperazine, a calmodulin antagonist has also been reported as 

effective in T-cell recovery of HIV patients. It binds to Ca
(2+)

-calmodulin at high 

concentrations, it was found at low concentrations (10
-6

 to 10
-10

 M) to help T-cells from 

AIDS patients to restore proliferation in vitro (56, 57). Trifluoperazine also showed some 

significant antimicrobial activity.  Forty six of 55 strains of Staphylococcus aureus were 

inhibited by 10–50 μg/ml of trifluoperazine. This drug  also inhibited strains of Shigella 

species, Vibrio cholerae and Vibro parahaemolyticus at a concentration of 10–100 μg/ml. 

Other bacteria including Pseudomonas species were moderately sensitive to 

trifluoperazine (58). Preclinical studies have also shown that trifluoperazine can suppress 

opioid tolerance due to its inhibition of calcium/calmodulin dependent protein kinase II 

(59). 

 



 
 

 

20 

 

 

1.2.4.2 Soybean oil 

Soybean oil is defined by the USP 26 as the refined fixed oil obtained from the 

seeds of the Soya plant Glycine soja (Leguminosae). In pharmaceutical preparations, 

soybean oil emulsions are primarily used as a fat source in total parenteral nutrition 

(TPN) regimens. Although other oils, such as peanut oil, have been used for this purpose, 

soybean oil is now preferred because it is associated with fewer adverse reactions (60). 

Soybean oil is used as an oleaginous solvent in the preparation of the oil-in-water 

emulsions. Fatty acid composition of soybean oil is shown in Table 1.1. It has a viscosity 

of 49mPas at 25C. 

 

Table 1.1  Fatty acid composition of soybean oil 

 

Fatty acid Percentage Composition 

Palmitic acid 7-14% 

Stearic acid 1-6% 

Oleic acid 19-30% 

Linoleic acid 44-62% 

 

  

1.2.4.3 Tricaprylin 

Tricaprylin is a medium chain triglyceride. Other names include glyceryl 

tricaprylate; trioctanoin; caprylic acid triglyceride; 1,2,3- trioctanoylglycerol. It is an 

odorless, colorless to light yellow liquid.  Molecular weight of 470.69 g/mole.  
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Figure 1. 4 Chemical Structure of Tricaprylin (61). 

 

 

1.2.4.4 Tributyrin 

  Tributyrin is also known as glyceryl tributyrate. It is prepared by esterification of 

glycerol with excess butyric acid. Chemical abstract service (CAS) name is Butanoic acid 

1,2,3-propanetriyl ester. Its molecular formula is C15H26 O6 and it has a molecular weight 

of 302.36. It is an oily liquid with bitter taste, insoluble in water but very soluble in 

alcohol and ether (62). 
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Figure 1. 5 Chemical Structure of Tributyrin  

 

 

1.2.4.5 Ethyl Oleate 

 Other names include Ethyl 9-octadecenoate; oleic acid, ethyl ester. The chemical 

name is (Z)-9-octadecenoic acid, ethyl ester. The empirical formula is C20H3802. Ethyl 

oleate occurs as a pale yellow to almost colorless mobile oily liquid with a taste 

resembling that of olive oil. It is primarily used as a vehicle in parenteral preparations 

intended for intramuscular administration. It is a suitable solvent for steroids and other 

lipophilic drugs. It is less viscous than fixed oils and is more rapidly absorbed by body 

tissues (63). 

 

Figure 1. 6 Chemical Structure of Ethyl Oleate 
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1.2.4.6 Phosphatidyl choline 

  Phosphatidyl choline, also known as lecithin is a phospholipid which is a 

naturally occurring emulsifier obtained from either egg yolk or Soya beans. There several 

brands of lecithin available with different percentages of pure phosphatidyl choline. 

Hydrogenated egg phosphatidyl choline usually contain about 99% of phosphatidyl 

choline while soy derived phosphatidyl choline contains about 90%. 

Phospholipids are biological surfactants with two hydrocarbon tails (the R groups) 

and a hydrophilic head (the phosphate salt group). Phosphatidyl choline is regarded as 

safe for parenteral use. It can be biodegraded and metabolized, since it is an integral part 

of biological membranes making it virtually non-toxic (64). 

 

 

 

Figure 1. 7 α-phosphatidyl choline 

 

(R1 and R2 = C15-C17 hydrocarbon chains) 
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Phosphatidyl choline surfactant molecules have the ability to give necessary 

curvature of the interfacial film required to form nano-emulsions or microemulsions and 

this has been related to its packing geometry, which is the ratio of packing between the 

hydrocarbon volume, optimum head group area and tail length of the molecule at the 

surface. Phosphatidyl choline has a packing parameter around 0.8; this value is further 

increased if the oil phase penetrates into the alkyl chains of the lecithin molecule. In order 

to produce oil-in-water emulsions in the nano range, it is necessary to reduce this 

parameter by using co-surfactants or partial substitution of phosphatidyl choline by a 

more hydrophilic emulsifier (65). 

 

 

1.2.4.7 Polysorbate 80 

Polysorbate 80 (Chemical name: Polyoxyethylene 20 sorbitan monooleate, 

Chemical formula C64H124O26) is a non-ionic surfactant also referred to as Tween 80. It is 

an oleate ester of sorbitol and its anhydrides copolymerized with approximately 20 moles 

of ethylene oxide for each mole of sorbitol and sorbitol anhydrides. It has a HLB value of 

15 and as a result is used in the production of oil-in-water emulsions (66). 
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Figure 1. 8 Chemical Structure of  Polyoxeyethylene sorbitan monoester  

Polysorbate 80 (w + x + y + z = 80) 

 

 

1.2.5   Statistical Experimental Design. 

Experimental design can be defined as the strategy for setting up experiments in 

such a manner that the information required is obtained as efficiently and precisely as 

possible. Experimentation is carried out to determine the relationship between the factors 

acting on the system and the response or the properties of the system. This information 

was used to further and achieve the aims of the project (67). 

Statistical tests provide the tools by which decisions can be made. Factorial 

designs are used in experiments where the effects of different factors, or conditions on 

experiments are to be elucidated (68). It is the design of choice for simultaneous 

determination of the effects of several factors and their interactions. Factorial designs 

have maximum efficiency in estimating main effects. If interaction exist, a factorial 

design is necessary to reveal and identify the interactions. Since factor effects are 

measured over varying levels of other factors, conclusions apply to a wide range of 

conditions. Maximum use is made of data since all main effects and interactions are 

independent of effect of other factors (69). 
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1.2.6 Stability Studies of Emulsions 

The stability of any pharmaceutical product is defined as the capacity of the 

formulation to remain within defined limits for a predetermined period of time (shelf life 

of the product). The first step to designing any type of stability testing program is to 

specify these limits by establishing parameters defined in terms of chemical stability, 

physical stability and microbial stability. Next, methods must be established to evaluate 

these parameters (70). 

Emulsions are thermodynamically unstable exhibiting flocculation and 

coalescence unless significant energetic barriers to droplet interactions are present. 

Emulsions are sensitive to coarsening phenomena like coalescence and Ostwald ripening 

since droplet size is not uniform and concentration gradients drive mass exchange, thus 

inducing changes in droplet sizes (71). Forced degradation studies involve subjection of 

emulsions to harsh conditions such as elevation of temperature. Emulsion characteristics 

are determined before and after the tests. As discussed in the experimental section, 

stability of emulsions were determined using the stress tests and accelerated stability 

studies of emulsions based on ICH guidelines were also determined. Stress tests included 

centrifugation and freeze thaw cycles of emulsions. Emulsion characteristics were 

determined before and after the tests. 

 

 

1.2.6.1 Physical Instability 

Instability of lipid emulsions can arise from changes in particle size of oil droplets 

leading to creaming and coalescence or from changes in pH, hydrolysis of emulsifier, or 
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oxidation of oil (72). There are basically 5 ways in which the structure of a dispersion of 

liquid droplets in a continuous medium can change resulting in physical instability. 

 

1.2.6.1.1 Creaming 

Creaming is the upward movement of dispersed droplets relative to the 

continuous phase. There is no change in droplet size, but buildup of an equilibrium 

droplet concentration gradient within the emulsion. This phenomenon occurs from 

external force fields, usually gravitational, centrifugal or electrostatic, acting on the 

system. The disperse phase, according to its density relative to that of the continuous 

phase, rises to the top or sinks to the bottom of the emulsion, forming a concentrated 

layer at the top of the emulsion. Sedimentation involves the same process but in the 

opposite direction (73). 

 

1.2.6.1.2 Flocculation 

In flocculation of emulsion droplets, there is no change in droplet size or 

distribution but the buildup of aggregates of droplets within the emulsion. Flocculation 

results from the existence of attractive forces between the droplets. 

 

1.2.6.1.3 Coalescence 

 Emulsion droplets within a close- packed array resulting from sedimentation or 

creaming, coalesce to form larger droplets. This results in a change in the initial droplet 

size distribution. 
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1.2.6.1.4 Ostwald Ripening 

Larger emulsion droplets are formed at the expense of the smaller droplets. In 

principle, the system will tend to an equilibrium state in which all the all the droplets 

attain the same size. Ostwald ripening is associated with the difference in chemical 

potential for emulsion of different size (74). 

 

1.2.6.1.5 Phase Inversion 

 This is the process where an emulsion changes for example from an o/w 

emulsion to a w/o emulsion. This may be brought about by a change in temperature or 

concentration of one of the components or by the addition of a new component to the 

system  (75, 76). 

 

1.2.6.2 Chemical Instability 

Chemical instability of an emulsion may occur as a result of drug degradation. 

Possible degradation pathways include hydrolysis, dehydration, isomerization and 

racemization, elimination, oxidation, photodegradation, and complex interactions with 

excipients and other drugs (77). The degradation pathway depends on the chemical nature 

of the drug.  Trifluoperazine is a phenothiazine that is easily oxidized. It is subject to air 

and light induced oxidative degradation. The mechanism can be considered a two-step 

reaction involving the intermediate formation of a semiquinone free radical, which is then 

oxidized to the sulfoxide (78). 
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1.2.6.3 Regulatory Guidelines for Evaluation of Emulsion Stability 

The International conference on harmonization (ICH) of technical requirements 

for registration of pharmaceuticals for human use regulates the stability test by which 

emulsions and other drug products should be evaluated. This includes stress testing, long 

term, intermediate or accelerated stability studies.  

Stress testing of the drug substance can help identify the likely degradation 

products, which can in turn help establish the degradation pathways and the intrinsic 

instability of the molecule and validate the stability indicating power of the analytical 

procedures used.  

ICH guidelines recommend stress test on a single batch of the drug substance. It 

should include the effect of temperatures (in 10°C increments (e.g., 50°C, 60°C, etc.) 

above that for accelerated testing), humidity (e.g., 75% RH or greater) where appropriate, 

oxidation, and photolysis on the drug substance. The testing should also evaluate the 

susceptibility of the drug substance to hydrolysis across a wide range of pH values when 

in solution or suspension. Photostability testing should be an integral part of stress testing 

(82).  

ICH guidelines for accelerated stability studies includes testing at 40

C ± 2


C/75% 

RH± 5% RH for a minimum period of 6 months, intermediate studies at 30

C ± 2


C/65% 

RH ± 5% RH  for at least 6 months and long term stability studies at 25

C ± 2


C/60% RH 

± 5% RH or 30

C ± 2


C/65% RH ± 5% RH for a period of 12 months on at least three 

primary batches (79). 
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2.0  Experimental 

 
2.1 Materials 

Soybean oil was purchased from Nacalai Tesque, Japan.  Polysorbate 80 (Tween 

80) was purchased from Spectrum Chemicals, New Brunswick, NJ.  

Ethyl oleate, tricaprylin and tributyrin were also purchased from Spectrum chemicals. 

Hydrogenated egg phosphatidyl choline (HEPC) and Phospholipon 90


 (Soybean 

lecithin) were donated by Avanti Polar Lipids, Alabaster, AL and Natterman 

Phospholipid GMBH, Germany respectively. Trifluoperazine hydrochloride was obtained 

from Spectrum Chemicals, NJ. HPLC grade acetonitrile, monobasic ammonium 

potassium phosphate and chloroform were obtained from Fisher Scientific, Pittsburgh, 

PA as shown in Table 2.1. A list of the equipments used for the experiments is shown in 

Table 2.2 

 

2.2 Methodology 

 

2.2.1 Preparation of Nano-emulsions 

 

2.2.1.1 Thin Layer Hydration Method 

Soybean oil, polysorbate 80 (Tween 80), phosphatidylcholine and the drug were 

accurately weighed into a 50ml flask.  An appropriate volume of chloroform was added 
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to dissolve the materials in the flask. Chloroform was evaporated from the solution using 

a Buchi Rotavapor at a temperature of 35 degrees. After evaporation of solvent, the 

emulsion film was dried in a desiccator for at least 3 hours to remove any residual 

solvent. An appropriate volume of sterilized Millipore


 water was added to the film flask 

using a disposable plastic syringe through a 0.22m membrane filter. The flask opening 

was covered with a rubber closure. Two needles were inserted in to the rubber closure.  

Nitrogen gas was introduced into the glass through a rubber tube for 30 seconds to 

prevent oxidation of phosphatidyl choline. The nano-emulsion was formed through a 

series of sonication and vortex. This method has been previously described in literature 

(80). 

 

2.2.2 Preliminary Emulsion Formulations 

The preliminary experiments were screening experiments carried out prior to 

selection of emulsion components. Four different oil phases: soybean oil, ethyl oleate, 

tricaprylin and tributyrin were used in order to select the most suitable oil phase for the 

emulsion. Phosphatidyl choline was obtained from six different sources: soy lecithin, 

hydrogenated egg phosphatidyl choline, phospholipon 90 G, phospholipon 90 H, lipoid 

EPC and lipoid EPC-3 were used for the preliminary formulations (Table A1).   

 

2.2.3 Optimization of Emulsion Components       

After the preliminary emulsions were produced, more emulsions were formulated 

to determine the outcome of optimizing the concentration of the emulsion components.  
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The first set of emulsions were prepared in an Oil:Tween 80 weight ratio of 1:1, 

2:1 and 3:1 at 9%, 16% and 23w/w% (oil/oil+water) soybean oil concentration. Emulsion 

composition is shown in Table 2.3. Each emulsion was replicated to validate the z-

average, zeta potential and polydispersity index data. The effect of increasing 

concentration of phosphatidyl choline was evaluated and emulsion composition is shown 

in Table 2.4. The concentration of Tween 80 was also varied, formulation composition of 

emulsion is shown in Table 2.5. Drug content of emulsion was optimized by increasing 

trifluoperazine concentration and evaluating the outcome on emulsion characteristics, 

formulation composition is shown in Table 2.6. Phase diagrams were plotted to show the 

boundaries of the optimal formulation. 

 

                                                                                                                                                                                    

2.2.3 Z-average analysis, polydispersity index and zeta potential 

determination 

Size, polydispersity index and zeta potential were simultaneously determined 

using the Zeta sizer® (Malvern instruments, Westborough, MA) and Nicomp380 ZLS® 

particle sizer (Santa Barbara, CA). Both instruments operate based on photon correlation 

spectroscopy. 1ml of Soybean emulsion was diluted to 50ml with Millipore water prior to 

z-average, zeta potential and polydispersity analysis. Disposable cuvettes were used.  
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Figure 2. 1 Branson
®
 Sonicator 

 

 

    Figure 2. 2 Buchi Rotavapor® 
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Table 2.1  List of Materials 

 

 

 

 

 

 

 

 

 
 
 

 

 Material Manufacturer Lot.  no 

1. Polysorbate 80 Spectrum Chemical 

Manufacturing Company  

TR0021 

2. Trifluoperazine HCl Spectrum Chemical 

Manufacturing Company 

SK0706 

3.  Soybean Oil Nacalai Tesque, Japan M2G4769 

4.  Phospholipon 90 H Natterman Phospholipid GMBH 00250 

5. -Phosphatidylcholine Avanti Polar Lipids 830051P 

6. Lipoid EPC Lipoid GMBH 105023 

7 Lipoid EPC 3 Lipoid GMBH 276015-1 

8 Phospholipon 90G Natterman Phospholipid GMBH 10460 

9. Ammonium phosphate monobasic Fisher Scientific, Pittsburgh, PA 954716 

10. Acetonitrile HPLC grade Fisher Scientific, Pittsburgh, PA 954716 

11. Chloroform Fisher Scientific, Pittsburgh, PA 973219 

12. Millipore water Millipore corporation  
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Table 2.1  List of Equipments 

 
Equipment Company Model No Serial No 

Buchi Rotavapor Brinkmann Instruments Inc Westbury, NY.  R-200 411713045011 

Branson Sonicator Branson Ultrasonics Corporation, Danbury, CT 2510R-DTH RLC050384967

Shimadzu HPLC system Shimadzu Scientific Instruments Inc., Columbia, SCL-10A 20161E 

Shimadzu HPLC Auto injector Shimadzu Scientific Instruments Inc., Columbia, SIL-10A 20218F 

Shimadzu HPLC  Shimadzu Scientific Instruments Inc., Columbia, SPD-10A 200936 

Guard Column Phenomenex, Torrance, CA 03A-0082- 2619281 

Column Phenomenex, Torrance, CA Sphereclon 206197-3 

Shimadzu HPLC Shimadzu Scientific Instruments Inc., Columbia, LC-10AS 20226A 

Automated Microviscometer ANTON PAAR, Ashland VA AMVN 581875 

Microcentrifuge Denver Instrument Company  M005948 

Equipment Company Model No Serial No 

Mechanical Convection Oven Precision Scientific Inc.Chicago, IL STM 80 11RU-11 

Equipment Company Model No Serial No 

Nicomp Particle Sizer Particle Sizing systems , Santa Barbara USA 3802LS 9805302 

Malvern Zeta Sizer Malvern Instruments 3000-HS  

Zeta sizer Nano ZS Malvern Instruments Nanoseries  

Fisher Scientific Low Fisher Scientific, Pittsburgh, PA 307A 4100332 

Denver Instruments Balance Denver Instruments Company, Arvada, CO AB-120 B044193 

Denver Instruments Balance Denver Instruments Company, Arvada, CO 400 0058954 

pH Meter VWR Scientific Products, West Chester, PA 9100 1013 
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Table 2.3  Formulation Composition: Effect of Surfactant to Oil Ratio 

 

Oil:Tween 80 ratio P.90 (mg) Water (ml) Trifluoperazine (mg) 

1:1 250 10 40 

2:1 250 10 40 

3:1 250 10 40 

 

 

 

 

Table 2.4  Formulation Composition: Effect of Phosphatidyl choline 

Oil:Tween 80 ratio P. 90 (mg) Water (ml) Trifluoperazine (mg) 

1:1 100 10 40 

1:1 250 10 40 

1:1 500 10 40 

1:1 750 10 40 

 

 

 

 

 

Table 2.5  Formulation Composition: Effect of Tween 80 

 

T.80 (mg) P. 90 (mg) Soy.Oil (mg) Water (ml) 

(ml) 

Trifluoperazine(mg) 

300 250 1000 10 40 

650 250 1000 10 40 

1000 250 1000 10 40 

 

 

 

 

Table 2.6  Effect of Drug Content 

Oil:Tween 80 ratio P.90 (mg) Water (ml) 

(ml) 

Trifluoperazine(mg) 

1:1 250 10 40 

1:1 250 10 60 

1:1 250 10 80 

1:1 250 10 120 
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2.2.4 Viscosity Determination 

  Dynamic and kinematic viscosities of the emulsions were determined using the 

Automated Microviscometer® (Anton Paar, Ashland, VA). The AMVn® is an automated 

high precision viscometer. It utilizes the rolling ball technique. Viscosity of emulsions 

were  determined as shown in the diagram below (Figure 2.3) by observing the rolling 

time of a solid sphere under the influence of gravity in an inclined cylindrical tube filled 

with a sample liquid. The time taken by the ball to travel the fixed distance is measured 

with two inductive sensors. For each single rolling time, the result can be expressed as 

dynamic viscosity (mPa/s) and kinematic viscosity (mm
2
/s) if sample density is known 

(81). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Automated Microviscometer (AMVn) 
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2.2.5 Ternary Phase Diagrams 

In order to produce phase diagrams, over 50 different emulsions were prepared 

and characterized using the modified thin layer hydration method as previously 

described. The existence of nano-emulsion phase was identified as the area in the phase 

diagrams where clear and transparent formulations are obtained, based on visual 

inspection of many samples (82). Emulsions which had z-average less than 70nm and 

zeta potential greater than 25mV were selected as representative emulsions. These 

emulsions were selected because of transparence, relatively small z-average and high zeta 

potential, factors that indicate the potential stability of emulsions. 

 A phase diagram of representative emulsions (shown under the Results and Discussion 

section (Page 57) was plotted using JMP
®
 software. 

 

2.2.6. Statistical Design 

The results obtained from the phase diagrams were used to develop a statistical 

experimental design. The phase diagram data showed the effect of different compositions 

of emulsion components on the emulsion characteristics. Based on these data, two levels 

were selected (high level and low level) for each component (factor) of the emulsion as 

shown in Table 2.7. A completely randomized 2X2X2X2X2 full factorial design 

experimental design was developed using JMP
®
 software (Table 2.8).  

This design enables testing of the main effects due to formulation factors of the 

emulsion, determination of the possibility of interactions within the model and the 

significance of these factors and the interaction terms. The factors were the emulsion 
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components such as Tween 80, soybean oil, Phospholipon 90G
®
, trifluoperazine and 

Millipore water. The dependent variables were z-average, zeta potential, polydispersity 

index, dynamic viscosity and kinematic viscosity of the emulsions. JMP
®
 software was 

used to fit the model for each of the dependent variables. The p-values as shown under 

Results and Discussion (Page 59) indicate the level of significance of the factors. Pareto 

charts were plotted as graphical representations of the significance of the factors. 

 

 

 

Table 2.7  Experimental Design Factors 

Factors Level 

High Low 

Tween 80 1000mg 300mg 

Phospholipon 90 750mg 250mg 

Soybean Oil 3000mg 1000mg 

Millipore Water 20ml 10ml 

Trifluoperazine 120mg 40mg 

 

 

2.2.7 High Performance Liquid Chromatography (HPLC) Analysis and 

Method Development 

Several techniques have been utilized by researchers for HPLC analysis of 

phenothiazines. HPLC analysis is useful in determination of the stability of drug 

emulsions and identification of degradation products of trifluoperazine. A. Gindy et al. 

presented 3 methods for the determination of trifluoperazine in the presence of its 

degradation products (83). Many HPLC procedures have been described for the 
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determination of trifluoperazine singly or in combination with other phenothiazines (84-

87) HPLC analysis  was based on modification of a published method (87-90).  

 

Table 2.8 2X2X2X2X2 Full Factorial Experimental Design 

Experiment T. 80 
(mg) 

P. 90 (mg) Soy. Oil 
(mg) 

Millipore 
water 
(ml) 

Drug (mg) 

1 300 750 3000 20 120 

2 300 750 3000 10 40 

3 1000 250 1000 20 40 

4 300 250 1000 20 120 

5 1000 750 3000 20 120 

6 1000 750 1000 20 120 

7 300 750 3000 20 40 

8 300 750 1000 10 120 

9 300 250 1000 20 40 

10 1000 250 3000 20 120 

11 1000 750 1000 10 40 

12 300 250 1000 10 40 

13 300 250 1000 10 120 

14 1000 250 1000 20 120 

15 300 250 3000 20 40 

16 1000 250 3000 20 120 

17 1000 250 1000 10 40 

18 300 250 1000 10 120 

19 1000 750 3000 10 120 

20 300 250 3000 20 40 

21 300 250 3000 10 120 

22 300 750 1000 10 40 

23 1000 750 1000 20 40 

24 300 750 1000 20 40 

25 1000 250 1000 10 120 

26 300 750 1000 20 120 

27 1000 250 3000 10 120 

28 300 250 1000 10 40 

29 300 250 3000 10 40 

30 1000 750 1000 10 120 

31 1000 750 1000 10 120 

32 1000 750 3000 10 40 
T.80= Tween 80, P.90= Phospholipon 90 
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2.2.7.1 HPLC conditions 

  Chromatographic analysis was carried out using a Shimadzu® HPLC system 

consisting of a Shimadzu auto injector SIL 10A®, Shimadzu system controller SCL-

10A®, a Shimadzu SPD 10A UV® detector and a Shimadzu LC 10AS HPLC pump all 

from Shimadzu Scientific Instruments (Columbia, MD). Separations were carried out on 

a  Sphereclone® C-18 column (150mm X 4.6mm with a particle size of 5µm) from 

Phenomenex (Torrance, CA) equipped with a guard column (30 X 4.6mm) also from 

Phenomenex (Torrance, CA). The wavelength of detection was 255nm and the flow rate 

was 1.5ml/min. 

 

2.2.7.2 Preparation of Standard Solutions  

Ten milligrams of trifluoperazine hydrochloride was dissolved in 100ml 

deionized water to produce a 100μg/ml solution. The mobile phase was acetonitrile: 

monobasic ammonium phosphate (60:40), adjusted with 0.2M phosphate buffer to pH 

2.7.   

 

2.2.7.3 Linearity and Range 

Calibration curves were plotted using 1µg/ml-50µg/ml concentration range of 

trifluoperazine to determine linearity. 

 

2.2.7.4 Precision and Accuracy 

Precision and accuracy of the HPLC method were determined at 25%, 50% and 

100% of the calibration curve range to test the validity of the method at low, mid and 
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high concentrations respectively. Triplicate samples were analyzed at each level. 

Precision was calculated as percent relative standard deviation (RSD) and accuracy was 

calculated as percent relative recovery. Inter-day variation was determined by repeating 

the procedure using independent samples on three separate days.  

 

2.2.7.5 Drug Extraction 

The emulsions were extracted and analyzed for drug content using HPLC 

analysis. Trifluoperazine HCl was extracted from the nano-emulsion prior to HPLC 

analysis using the following procedure: The extract was diluted with the mobile phase 

and agitated for >1hr. The diluted solution was passed through a 0.45μm filter. The 

extracted drug from the emulsion was then analyzed for the drug content using HPLC. 

 

2.2.8 Emulsion Stability 

 

2.2.8.1 Forced degradation Study 

The optimal emulsion formulations Experiments 3 and 17 (Table 2.1) were 

prepared for the forced degradation studies. This experiment was designed determine the 

extent of emulsions degradation in terms of physical stability of the emulsions and the 

potency of the emulsions when subjected to high temperature over a period of 7 days. 

Blank emulsions were produced to compare with the drug loaded emulsions. Freshly 

prepared emulsions were stored in tightly sealed glass vials and placed in an oven at 

65
º
C. Physical stability of emulsions were monitored by determination of z-averages, zeta 
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potentials and polydispersity indices of emulsions on days 0 & 7. Potency was monitored 

by analysis of  drug content on days 0 & 7 using HPLC. 

 

 

2.2.8.2 Stress Test 

  Several stress methods can be used to predict the stability of emulsions according 

to ICH guidelines (88). These include shaking, thermal cycling and freeze-thaw cycling. 

Emulsion droplet size distributions are then assessed (89). The stress tests of the 

emulsions included centrifugation and freeze/thaw cycle of the optimal emulsion 

formulations (experiments 3 & 17). 

 

2.2.8.2.1 Centrifugation 

  Emulsions were centrifuged at 2000 X g/60min. The z-averages and zeta 

potentials of the emulsions were determined before and after centrifugation. 

 

2.2.8.2.2 Freeze/thaw cycle 

Emulsions were frozen for 24hours at -18°C and thawed at 25°C for another 24 

hours. The z-averages and zeta potential values of the emulsions were determined before 

and after the freeze/thaw cycle. 
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2.2.8.3 Accelerated stability test 

Optimal nano-emulsions of trifluoperazine: Emulsions 3 and 17 which have been 

shown to have z-averages less than 100nm were selected for stability studies at 40

C 

±2

C at 75% relative humidity (RH) ±5%RH. These emulsions were stored sealed glass 

ampoules. Emulsion characteristics such as potency, z-average and zeta potential were 

analyzed on day 0 and once a month for a period of 3 months.  
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3.0 Results and Discussion 

 

 
3.1  Preliminary Experiment Results 

The preliminary experiments were screening experiments carried out for  

selection of emulsion components. Four different oil phases: soybean oil, ethyl oleate, 

tricaprylin and tributyrin were used in order to select the most suitable oil phase for the 

emulsion. Phosphatidyl choline was obtained from six different sources: soy lecithin, 

hydrogenated egg phosphatidyl choline, phospholipon 90 G, phospholipon 90 H, lipoid 

EPC and lipoid EPC-3 were used for the preliminary formulations.   

Ethyl oleate emulsions had the lowest z-average while soybean oil emulsions had 

the highest z-average. Tributyrin emulsions had very large droplet sizes compared to the 

other formulations therefore were not further studied. Soybean oil emulsions had larger 

droplet sizes probably as a result of higher oil viscosity compared to ethyl oleate. (Figure 

3.1)  Soybean oil was selected as the oil phase despite the relatively higher emulsion 

droplet size because it has the least incidence of toxic reactions, greatest resistance to 

oxidation and widely used in research. 

Blank emulsions (without drug) and drug loaded emulsions were produced. The 

incorporation of trifluoperazine into the formulation gave emulsions with considerably 

high zeta potential and low z-average sizes. Zeta potential of soybean oil emulsion was 

increased from 2.4mV (formulation 5) without drug to 43.2mV (formulation 9) in Table 

3.1. This is because trifluoperazine confers a charge on the emulsion droplets. The 
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reduction of the z-average of emulsions can be attributed to the amphiphilic nature of 

trifluoperazine. Trifluoperazine is a cationic drug with surface active property and a 

critical micelle concentration (CMC) of 4.2 X 10
-5. 

The surfactant property should 

promote further lowering of surface tension by adsorption on the surface of oil droplets. 

Glycerin was incorporated as a component of the emulsion to confer iso-osmocity 

based on the prototype formulation of Intralipid®. This was not further explored because 

a high polydispersity indices and relatively high z-averages were obtained. A different 

technique or modification of the method may produce smaller droplet sizes. Iso-osmocity 

may also be achieved using electrolytes. 

The effect of the various sources of phosphatidyl choline was observed.  

Emulsions 11-25 were formulated using soy lecithin (Table 3.2). Concentrated emulsions 

were prepared by reducing the aqueous phase of the formulations. These emulsions 

(formulations 19-25) shown in Table 3.3 had high z-average. The increase in size may be 

due to reduced mobility as a result of the decreased aqueous phase. This possibly 

prevented collision that could yield smaller droplets. The zeta potentials of the emulsions 

were generally below 20mV thus indicating the potential instability of the emulsions. 

These emulsions had very large droplet sizes and may have exceeded the upper limit of 

detection of z-average for the Zeta sizer instrument, also the polydispersity indices at this 

point may not be reliable. Soy lecithin was not feasible in the production of nano-

emulsions because of its oily, viscous nature.  

 Lipoid EPC, Lipoid EPC-3 and Phospholipon 90G
® 

were
 
utilized as source of 

phosphatidyl choline in formulations 26-28 (Table 3.4).  Phospholipon 90 H was used for 

emulsions 29-31 (Table 3.5). Lipoid EPC
®
 and lipoid EPC-3

®
 are produced from egg 
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phosphatidyl choline while phospholipon 90
®
 is produced from soybean phosphatidyl 

choline (90). Phospholipon 90 was selected as the phosphatidyl choline of choice because 

emulsion with low droplet size could be produced and polydispersity index was low.  

The composition of the emulsion with the most desirable properties of low droplet 

size, low polydispersity index and high zeta potential is given in Table 3.6. 

Emulsions with low z-average are usually more stable compared with emulsions 

with larger z-average because larger droplets are more susceptible to aggregation or 

creaming. As referred to under literature review, these phenomena are undesirable and 

can lead to a more serious problem of coalescence of the emulsion droplets (91). Due to 

the very small droplet size of the nano-emulsion there is a large reduction in the 

gravitational force and Brownian motion may be sufficient for overcoming the effect of 

gravity. In addition, smaller droplet size also prevents flocculation. Weak flocculation 

(cases where the net attractive forces are relatively weak) is prevented, thus enabling the 

system to remain dispersed with no separation (92).  

  Zeta potential measurement is a useful tool in the prediction of emulsions stability. 

A zeta potential larger than 25mV is typically required to stabilize a system (93).  
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Figure 3.1 Effect different oil phases on Z-average and Polydispersity index of Emulsions 

 
 
  

Table 3.1  Preliminary Emulsions 

Form

. 

Oil (ml) Tween80(ml) HEPC 

(200mg) 

Glycerin Drug 

(mg) 

Z.ave 

(nm) 

P.I Z.P 

(mV) 

1 S.O 0.5 + - - 641.8 0.196 -12.4 

2 E.O 0.5 + - - 2198.8 0.219 -12.9 

3 S.O 0.5 + + - 374 0.84 -22.4 

4 E.O 0.5 + + - 9932 0.806

5 

-17.4 

5 S.O 1 + - - 229.7 0.034 2.4 

6 TRIC 1 + - - 221.1 0.030 2.8 

7 TRIB 1 + - - 1329.4 0.165 18.4 

8 E.O 1 + - - 91.4 0.477 2.5 

9 S.O 1 + - 40 118.5 0.54 43.2 

10 TRIC. 1 + - 40 139.2 0.3 32.5 
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Table 3. 1 Preliminary Experiments 
Formulation Tween 80 Oil Soy. Lecithin Drug (mg) Water (ml) Z.Ave (nm) P. I Z.P (mV) 

11 1ml 1ml 200mg - 10 3753.2 0.00 -64.1 
12 1ml 1ml 200mg 40 10 41.3 0.00 11.8 
13 1ml 1ml 200mg 40 10 8479.5 0.00 11.5 
14 1ml 1ml 200mg 40 10 5297.7 0.00 9.4 
15 10ml 10ml 2000mg - 100 12485.6 0.002 -28.6 
16 10ml 10ml 2000mg 400 100 10274.9 0.002 -0.1 
17 300mg 1000mg 400mg 40 40 163.2 0.002 -21.5 
18 750mg 1ml 250mg 40 40 696.4 0.002 9 

 

 

Table 3. 2 Preliminary Experiments: Concentrated Emulsions 
Formulation Tween 80 (mg) Oil (mg) P.C (mg) Drug  (mg) Water (ml) Z.ave (nm) P.I Z. P (mV) 

19 500 500 200 40 10 1347 0.002 19.7 
20 500 500 200 40 6 1825.7 0.002 22.3 
21 500 500 200 40 4 2099.7 0.002 22.8 
22 500 500 200 40 2 554.3 0.002 20.6 
23 500 500 400 40 10 825 0.002 -12.3 
24 500 500 400 40 6 3533 0.002 -7.9 
25 500 500 400 40 4 5218.4 0.002 -3.1 
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Table 3. 3 Emulsion Formulations Using 3 Different Sources of Phosphatidyl Choline 
Formulation Oil:Tween 80 ratio Phosphatidyl choline Drug (mg) Water (ml) Z.ave.(nm)) P.I Z.P (mV) 
26 1:1 Lipoid EPC 40 10 55 0.577 34.5 
27 1:1 Phospholipon 90 40 10 39.4 0.293 32.2 
28 1:1 Lipoid EP-3 40 10 153.8 0.372 32.9 

 

 

Table 3. 4 Emulsions Formulation with increasing Phospholipon 90 H® content 
Formulation T.80 (mg) P.90 (mg) Soy.oil (mg) Drug (mg) Water (ml) Z.ave.(nm)) P.I Z.P (mV) 

29 300 300 500 40 10 112.5 0.625 34.5 
30 400 400 500 40 10 52.3 0.61 32.9 
31 500 500 500 40 10 169.9 1 31.0 

 

 

Table 3. 5 Emulsion Composition (Formulation 27) 

 
Component Amount 
Soybean oil 1ml 

Phosphatidyl Choline 200mg 
Trifluoperazine 40mg 

Water 10ml 
Tween 80 1ml 
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3.2 Development of Optimal Formulations 

In these series of experiments, emulsion characteristics such as z-average, 

polydispersity index, zeta potential were optimized by changing the concentration of the 

emulsion components.   

The effect of soybean oil concentration on the mean particle size of emulsions 

was evaluated by increasing amount of soybean oil in a series of emulsions. The 

emulsions were produced in an Oil:Tween 80 weight ratio of 1:1, 2:1 and 3:1. (Table A2) 

When emulsions were prepared at 23w/w% (oil/oil+water) soybean oil concentration, the 

mean particle size was 136.2nm (Figure 3.2). The particle size fell along with the 

soybean oil concentration, at 9% w/w emulsions; the mean particle size was 34.2nm. The 

higher the oil phase ratio for an oil-in-water emulsion, the more viscous the emulsion 

since there is a greater number of oil droplets that require size reduction. This suggests 

that the oil constitutes the inner structure of the nano-emulsions, which is consistent with 

a direct o/w-type structure (94). The higher oil ratio also increases the interfacial tension 

between the aqueous phase and the oil phase, thus making it more difficult to form the 

emulsions. Polydispersity indices were generally low for all the emulsions, the highest 

being 0.46 at 23w/w%, while zeta potential of emulsions were not affected by the oil 

concentration. 
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Figure 3.2  Effect of Soybean oil concentration on Z-average of Emulsions 

 

The next step in the development of an optimal formulation was to determine the 

effect of Phospholipon 90G
®
 on the z-average of the nano-emulsions. The emulsions 

were produced at 1:1 Soybean oil:Tween 80 with increasing concentration of  

Phospholipon 90G
®
 at 0.9, 2.43,4.76,6.97 w/w% (Table A3). At high concentration of 

Phospholipon 90 G, the z-average of the emulsions were relatively high (Figure 3.3). This 

is in accordance with the HLB value of Phospholipon 90G 
®. Phospholipon 90G

® 
was 

used as a co-surfactant because of its ability to stabilize emulsion systems. However, it 

has lipophilic properties and a lower HLB of 9, therefore, at higher concentration it will 

tend to form a water-in-oil emulsion. There is also a tendency for Phospholipon 90G
®
 to 

form emulsions that are more viscous and have a higher z-average at very high 

concentration. This is in accordance to Bancroft’s rule, which states that the type of 

emulsion is dictated by the emulsifier and that the emulsifier should be soluble in the 

continuous phase. (Bancroft, 1913) (95,96).  At high oil:surfactant ratio and high 
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Phospholipon 90G® concentration, the polydispersity indices of the emulsions also 

increased (Figure 3.4). High polydispersity index indicates that the emulsion droplet size 

are not uniform in the emulsions with large sizes. 

 

 

Figure 3.3  Effect of Phospholipon 90 on z-average of emulsions at 1:1 Soybean   

Oil:Tween 80 ratio 

 

 

 

Figure 3.4  Effect of Phospholipon 90 on Polydispersity Index of emulsions at 1:1 

Soybean Oil:Tween 80 ratio 



 
 

 

54 

 

 

 

The concentration of Tween 80 was increased while maintaining constant levels 

of other components of the emulsion (Table A4). It was observed that z-average of the 

emulsions reduced as the concentration of the surfactant increased (Figure 3.5). This is 

because the surfactant reduces the interfacial tension between the oil phase and the 

aqueous phase thus enhancing the formation of emulsions and reduction of z-average. 

The zeta potentials are generally about 30mV for all emulsions irrespective of Tween 80 

concentration. 

 

 

 

Figure 3.5  Effect of Tween 80 on Z. average of Emulsions 
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The drug content of emulsions was optimized by formulation of emulsions with 

increasing drug content. Drug loading of emulsions were at 0.4%, 0.6%, 0.8% and 

1.2%w/v of trifluoperazine concentration. Emulsion droplet size were  below 70nm 

indicating high concentration of drug was loaded. (Figure 3.6)  Zeta potential of 

emulsions were in the acceptable range, above 25mV. There was an increase in zeta 

potential of emulsions at a higher concentration of trifluoperazine due to increased ionic 

strength of the emulsions. This is also an indication of potential stability. (Figure 3.7) 

 

 

Figure 3.6  Effect of Optimization of Drug Content on Z.average Of Nano-emulsions 
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Figure 3.7  Effect of Optimization of Drug Content on Z. Potential Of Nano-emulsions 

 

 

 

 

3.3 Phase Diagrams 

A phase diagram indicating the region of the composition of the optimal 

formulations was plotted using JMP


 software. In order to develop the phase diagram, 

components of the emulsions were varied to determine their effect on the emulsion 

characteristics. 

From the previous experiments, representative emulsions were selected and 

shown in a phase diagram (Figure 3.8). The 3 different axes of the phase diagram 

represent the relative percentages of 3 components, the oil phase, surfactant and aqueous 

phase. The software normalizes the data so that all the components add up to 1. The 

shaded region within the phase diagram indicates the areas where optimum formulations 
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may be produced. Thirteen representative emulsions are shown in this diagram. The 

emulsions had relatively low z. average below 70nm and are also clear in appearance. 

These representative emulsions had low polydispersity indices of less than 0.5 and high 

zeta potentials, greater than 25mV. 

From the phase diagram, we could identify the trends and relationships between 

surfactants, oil phase and the aqueous phase of the emulsions. The region producing the 

optimal formulation is shown to be that of high aqueous phase ratio, which is reasonable 

for the production of oil-in-water emulsions. The emulsions included in the phase 

diagram were emulsions with oil: surfactant ratio 1:1, the aqueous phase volumes were 

10, 15 and 20mls and drug content of 40mg. A table of included emulsions is shown in 

Table A6. 

Turbid emulsions were excluded in the phase diagram in Figure 3.8. Figure 3.9 shows all 

the emulsions in the experimental design. The emulsions with higher oil surfactant ratio 

can also be seen in the diagram. These emulsions had undesirable properties such as 

increased z-average, lower zeta potentials and were very turbid. 
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Figure 3.8  Ternary Phase diagram of Soybean emulsions showing region of optimal   

formulation 
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Figure 3.9  Ternary Phase diagram of Soybean emulsions showing experimental design 

formulations 
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3.4 Viscosity of Emulsions  

The dynamic viscosity of emulsions with increasing levels of phosphatidyl 

choline was determined using the Automated Microviscometer (AMVn). These 

formulations and their compositions are shown in Table A7.  

Phospholipon 90G
®
 had a significant effect on the dynamic viscosity of the 

formulation. The dynamic viscosity increased significantly beyond 4% w/w of 

phosphatidyl choline content as shown in Figure 3.10. This is due to the nature of the 

surfactant. Phospholipon 90G
®
 is more lipophilic and imparts a higher viscosity to the 

formulation.  With increasing amount of the surfactant to oil ratio, an increase in the 

dynamic viscosity of these emulsions was observed. These data were obtained after 

dilution of emulsions at a ratio 1:50 with Millipore water. At high phospholipid levels for 

the pure undiluted emulsions as shown in Figure 3.10 the viscosity of emulsions 

increased when Phospholipon 90G
®
 content was greater than 4%. The viscosity was 

extremely high when the phospholipid content was 750mg and at high surfactant levels to 

oil ratios. 



 
 

 

60 

 

 Effect of increasing % phospholipid on 

dynamic viscosity

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0 2 4 6 8

% of phospholipid in formulation

D
y
n

a
m

ic
 v

is
c
o

s
it

y
 

(m
P

a
.s

)

 

Figure 3.10  Effect of increasing %Phospholipon 90G
®
 on Dynamic Viscosity 

 

 

3.5 Statistical Design of Experiments 

JMP
®
 software was used to design the experiment having identified the low and 

high levels of the formulation components as shown in Table 3.7.  A completely 

randomized 2X2X2X2X2 full factorial design was used because it enables testing of the 

main effects due to factors (components) of the emulsion and determination of any 

interactions in the model, the significance of factors and elimination of bias. This yielded 

32 experiments as shown in Table 3.8. The effects of the components of the emulsion on 

attributes such as z-average, polydispersity indices, zeta potential and viscosity were 

determined.  

Analysis of variance (ANOVA) was used to determine the level of significance of 

the emulsion attributes and p-values were obtained using the ―Fit Model‖ analysis in 

Phospholipon 90 ® w/w% 
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JMP
® 

software version 4.0.  Parameter estimate values obtained from the analysis are 

given below in Table 3.9. Soybean oil showed the highest level of significance in 

determination of size based of the p-value of  < 0.0001. For polydispersity index, 

soybean oil also showed significance at p-value of  = 0.0059 and aqueous phase at  = 

0.01.For zeta potential, Tween 80 showed significance at  =0.0249 and Trifluoperazine 

at  =0.01. All emulsion components showed significance for dynamic viscosity. 

 

Table 3.7 Levels of Emulsion Factors 

Factors Level 

High Low 

X1 T80 Tween 80 1000mg 300mg 

X2 P90 Phospholipon 90 750mg 250mg 

X3 SO Soybean Oil  3000mg 1000mg  

X4 AP Millipore Water 20ml  10ml 

X5 TP Trifluoperazine 120mg 40mg  

 

 

 

 

 

The effect tests of the model were examined in order to determine the level of 

significance of the emulsion components on the Y values (z-average, polydispersity 

index, zeta potential and viscosity. The effects of interaction of any of the components, if 

present, were also determined in this statistical design. Pareto charts were plotted using 

JMP® software to show the variables and these were ordered according to their 

importance. The significance of any interactions is also shown. 
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Table 3.8  Statistical Design of Experiment Matrix 

Exp. T80 

(mg) 

P90 

(mg) 

SO 

(mg) 

AP 

(ml) 

TP 

(mg) 

Size 

(nm) 

PD Z.P 

(mV) 

Viscosity 

(mPa.S) 

1 300 750 3000 20 120 127.7 0.184 39.86 2.1604 

2 300 750 3000 10 40 157.2 0.145 44.61 8.7929 

3 1000 250 1000 20 40 57.1 0.244 22.2 1.8145 

4 300 250 1000 20 120 169.6 0.177 76.1 1.397 

5 1000 750 3000 20 120 74.09 0.211 36.46 2.9118 

6 1000 750 1000 20 120 73.47 0.271 34.34 2.6964 

7 300 750 3000 20 40 144.2 0.182 28.66 2.3457 

8 300 750 1000 10 120 91.71 0.223 32.92 5.2093 

9 300 250 1000 20 40 93.56 0.176 27.68 1.4337 

10 1000 250 3000 20 120 136.6 0.198 37.02 2.2481 

11 1000 750 1000 10 40 88.95 0.264 28.58 15.9533 

12 300 250 1000 10 40 97.23 0.201 29.85 2.1129 

13 300 250 1000 10 120 90.12 0.193 37.67 2.0335 

14 1000 250 1000 20 120 82.1 0.226 29.74 1.7702 

15 300 250 3000 20 40 179.1 0.213 31.89 1.733 

16 1000 250 3000 20 120 143.3 0.214 38.74 2.2214 

17 1000 250 1000 10 40 72.97 0.225 25.59 3.91 

18 300 250 1000 10 120 85.46 0.175 35.71 2.0271 

19 1000 750 3000 10 120 154.8 0.168 37.28 9.2643 

20 300 250 3000 20 40 190.1 0.236 39.64 1.7605 

21 300 250 3000 10 120 183.8 0.219 43.15 3.2152 

22 300 750 1000 10 40 81.92 0.213 29.64 5.1045 

23 1000 750 1000 20 40 66.9 0.269 23.94 2.8091 

24 300 750 1000 20 40 40.76 0.219 24.62 1.714 

25 1000 250 1000 10 120 37.93 0.199 14.22 3.4661 

26 300 750 1000 20 120 48.84 0.257 20.36 1.6605 

27 1000 250 3000 10 120 145.4 0.18 33.67 5.5925 

28 300 250 1000 10 40 90.33 0.187 33.63 1.9993 

29 300 250 3000 10 40 181.6 0.169 36.78 3.0946 

30 1000 750 1000 10 120 122 0.175 27.89 3.2214 

31 1000 750 1000 10 120 71.21 0.242 30.31 11.3596 

32 1000 750 3000 10 40 152 0.138 19.37 21.5565 
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3.5.1 Z-average Effects 

  Z-average effects and the level of significance of the individual factors as well as 

the interaction terms are shown in Figure 3.11. The concentration of soybean oil in the 

emulsion as shown in the pareto plot was the most significant factor in the determination 

of z-average of the emulsions. The significance of the oil phase in this statistical design 

further supports the effect observed in the phase diagrams that increasing the amount of 

soybean oil of the emulsions increased the z-average as shown previously in Figure 3.8. 

The interaction of the Phospholipon 90G
®
 and the aqueous phase are seen to be the 

second most important factor based on the pareto plot in Figure 3.11. The Pareto plot 

shows the factors of the emulsions in order of importance with respect to the z-average of 

the emulsions.  

 

3.5.2 Polydispersity Index Effects 

 The polydispersity index data and the level of significance of the individual 

factors are shown in Figure 3.12. The most significant factor was observed to be an 

interaction of Phospholipon 90G
®
 and soybean oil. Other factors shown in decreasing 

order of importance are soybean oil, aqueous phase and Tween 80. The polydispersity of 

the emulsion shows the width of distribution of emulsion size, will be influenced by all 

these factors as shown in Figure 3.12. 

 

3.5.3 Zeta Potential Effects 

  The zeta potential data and the level of significance of the individual factors are 

shown in Figure 3.13.  The most important factor having significance on the zeta 
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potential of the emulsions is shown here to be the concentration of trifluoperazine in the 

emulsion. This is supported by the nature of the drug which confers a positive surface 

charge on the emulsion droplets. All other factors and interaction terms are shown in 

decreasing other of importance in the pareto plot. 

 

3.5.4 Viscosity effects 

The most important factor in the determination of viscosity was the aqueous phase 

of the emulsion as shown in the pareto chart (Figure 3.14). Phospholipon 90G
® 

was a 

contributing factor and this confirms the previous findings of the influence of 

Phospholipon 90G
® 

on viscosity of emulsions. 

Graphs showing overlay plot of studentized residuals versus order of experiments 

were plotted for all the different Y variables. This data did not have any specific pattern 

thus indicating that there are no outliers in the data obtained. Studentized residuals did 

not indicate the presence of any outliers. 

 

 

3.5.5 Optimal Emulsions 

  From the experimental design, emulsions 3 &17 were selected as best and 

optimal for consideration in the stability studies. The acceptable formulation criteria 

were: low z-average less than 100nm, low polydispersity indices <0.5 and relatively high 

zeta potentials >25mV. 
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Table 3. 9 Parameter Estimates of Size, Polydispersity Index, Zeta Potential and Dynamic 

Viscosity obtained from JMP
® 

by ANOVA 

Size 

Term Estimate Std Error t Ratio Prob>|t| 

T80[300] 9.5947728 5.12255 1.87 0.0723 

P90[250] 8.4748422 4.953124 1.71 0.0990 

S0[1000] -35.12499 5.027934 -6.99 <.0001 

AP[10] 5.8354374 4.947362 1.18 0.2489 

TP[40] 0.3127429 5.08468 0.06 0.9514 

Polydispersity 

T80[300] -0.008195 0.005362 -1.53 0.1385 

P90[250] -0.003302 0.005185 -0.64 0.5298 

SO[1000] 0.0157765 0.005263 3.00 0.0059 

AP[10] -0.013549 0.005179 -2.62 0.0146 

TP[40] 0.0013753 0.005323 0.26 0.7981 

Zeta Potential 

T80[300] 4.1554993 1.745036 2.38 0.0249 

P90[250] 1.6340967 1.687319 0.97 0.3417 

SO[1000] -2.356583 1.712804 -1.38 0.1806 

AP[10] -0.827518 1.685356 -0.49 0.6275 

TP[40] -3.952409 1.732135 -2.28 0.0309 

Dynamic Viscosity 

T80[300] -1.696946 0.552771 -3.07 0.0050 

P90[250] -1.796257 0.534489 -3.36 0.0024 

SO[1000] -1.006527 0.542561 -1.86 0.0749 

AP[10] 2.2476529 0.533867 4.21 0.0003 

TP[40] 1.143537 0.548685 2.08 0.0471 
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SO[1000]

P90[250]*AP[10]

T80[1000]

T80[1000]*P90[250]

P90[250]

AP[10]

T80[1000]*AP[10]

P90[250]*SO[1000]

T80[1000]*SO[1000]

SO[1000]*AP[10]

P90[250]*TP[120]

AP[10]*TP[120]

T80[1000]*TP[120]

SO[1000]*TP[120]

TP[120]

Term

 -33.82046

 -13.22272

 -11.07343

 -10.72185

   8.73181

   5.78596

   5.69183

  -5.17179

   4.79023

  -4.28642

   4.00872

  -2.04046

  -1.95801

   1.09816

  -0.30166

Orthog Estimate

 

Figure 3.11  Pareto plot of Z-average Using Emulsions in the Statistical Design 
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SO[1000]*AP[10]
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Term

-0.0160713

 0.0139533

-0.0134271

 0.0083621

 0.0073507

-0.0058645

 0.0048408

-0.0047197

-0.0045366

 0.0039635

-0.0038213

-0.0034257

-0.0013266

-0.0006590

Orthog Estimate

 

Figure 3.12  Pareto Plot of Transformed Estimates of Polydispersity index Using 

Emulsions in the Statistical Design 
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TP[120]

T80[1000]

P90[250]*AP[10]

AP[10]*TP[120]

SO[1000]

P90[250]

SO[1000]*AP[10]

SO[1000]*TP[120]

P90[250]*TP[120]

AP[10]

P90[250]*SO[1000]
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T80[1000]*AP[10]
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 -3.371044

 -2.981904

 -2.527454

 -2.467914

  1.753727

 -1.239190

 -1.113724

  0.982851

 -0.832782

  0.681825

 -0.657069

  0.373229

  0.033710

Orthog Estimate

 

 

Figure 3.13  Pareto Plot of Transformed Estimates of Zeta potential Using Emulsions in 

the Statistical Design 
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Figure 3.14  Pareto Plot of Transformed Estimates of Dynamic Viscosity Using 

Emulsions in the Statistical Design 
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3.6 HPLC Method Validation  

 Pure trifluoperazine was linear in the range 1-50g/ml. The peak areas were 

analyzed and consistent and reproducible analysis was obtained. R-squared value of 

0.9993 was obtained from the calibration curve (Figure 3.15). Inter-day accuracy of 

97.97-101.3% with precision of 0.2-1.5% RSD was obtained from the calibration curve.  

Intra-day accuracy  determined by analysis of variance (ANOVA) showed that at level of 

significance (α=0.05), p-value> 0.05 and Fcal < Fcrit, indicate no significant differences 

in the results between days or different  concentration. Table A9. 

Content analysis and % recovery were determined on the basis of the calibration curve 

 

 

Figure 3.15  Calibration Curve for Trifluoperazine  
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3.7 Stability Studies of Optimal Formulations 

 

3.7.1 Forced Degradation Studies 

3.7.1.1 Z-average and zeta potential  

The optimal emulsion formulations 3 & 17 were subjected to forced degradation 

for a period of 7 days. The z-average of the emulsions increased on storage at 65
º
C for 

both sets of emulsions. Z-average distribution immediately after preparation of the 

emulsion was increased from 44.0nm to 183nm and from 43.3nm to 133.5nm for 

emulsions 3& 17 respectively after storage for 7 days. Typical z-average distribution for 

emulsion 3 on day 0 is shown in Figure 3.15 and day 7 is shown in Figure 3.16. The z-

average increased from about 36nm to over 100nm for the blank emulsions. The z-

average of the optimal emulsions and blank emulsions increased due to aggregation of 

droplets because of the high thermal energy involved when stored at 65
º
C. This relatively 

high temperature increased the thermal energy of droplets and aggregation which 

eventually led to coalescence of droplets and eventual breakdown of emulsion. 

The zeta potentials of both emulsions 3 & 17 increased after subjection to extreme 

temperature. In both cases, the zeta potential for the blank emulsion was very low since 

there are no active ingredients and therefore no charge. Increased zeta potential of 

optimal formulations can be attributed to breaking of the emulsions, thus more of the 

drug molecules are located at the interface of the emulsion droplets.  
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Table 3.10 Forced Degradation Test 

 Emulsion 3 Blank Emulsion 3 

 

Emulsion 17 Blank Emulsion 17 

 Z.Ave. 

(nm) 

(nm) 

Z.P 

(mV) 

Z.Ave. 

(nm) 

Z.P 

(mV) 

Z.Ave. 

(nm) 

Z.P 

(mV) 

Z.Ave. 

(nm) 

Z.P 

(mV) 

Day 0 44.0 14.86 36.0 2.34 43.3 16.45 37.5 1.93 

Day 7 183.3 16.2 90.5 5.05 93.1 18.58 100.7 6.03 

 

 

 

3.7.1.2 Potency 

The drug content of emulsions 3 &17 were determined by HPLC.  The emulsions 

were stored at 65

C for 7 days. Calibration curves were plotted for standards and potency 

was extrapolated from the curve. Drug content of emulsion 3 was reduced to 69.2 % after 

7 days and potency of emulsion 17 was reduced to 72% after 7 days. Chromatograms of 

emulsions 3 on day 0 showed retention time of 8.5 minutes as shown in Figure 3.17 

HPLC analysis showed emulsion degradation occurred. Figure 3.18 shows that the 

absorbance was reduced after 1 week of storage at 65

C. Blank emulsions containing no 

drug were included in the experiment to serve as control.  
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Figure 3.16  Z-average Distribution of Emulsion 3 at day 0 
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Figure 3.17 Z-average Distribution of Emulsion 3 after 1 week 
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Figure 3.18 Typical Chromatogram at Day 0 
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3.7.2 Stress test of Optimal Formulations 

 3.7.2.1 Centrifugation 

 Emulsions were centrifuged at 2000 X g/60min. Z-averages of emulsions were 

determined before and immediately after centrifugation. From the results obtained, it was 

observed that there were no significant changes in the z-average and the zeta potential of 

the emulsions before and after centrifugation on day 0 (Table 3.13). 

 

3.7.2.2 Freeze/thaw cycle 

 Emulsions were frozen immediately after preparation for 24 hours at -18°C and 

thawed at 25°C for another 24 hours. The z-average values of the emulsions were 

 

 

 

 

Figure 3.19  Typical Chromatogram of Emulsion stored at 65C  after 1 week 
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determined before and after the freeze/thaw cycle. All emulsions showed creaming after 

one freeze/thaw cycle process. A single cycle showed large increase in z-average of 

emulsion. Z-averages and the zeta potentials of emulsions increased considerably after 

the cycle.  Emulsions 3 increased from 48.8nm to 243nm in z-average and Emulsion 17 

increased from 51nm to 220.8nm. The zeta potentials of emulsions were observed to 

increase after the freeze thaw cycle. Destabilization of emulsion was greater with the 

freeze-thaw cycle than centrifugation. Majority of oil droplets were compressed together 

between the advancing ice crystals as the continuous phase of the emulsion freezes and it 

is not surprising that most of the oil droplets have coalesced (97). This is in contrast to 

centrifugation which is characterized by an insignificant change in z-average and zeta 

potential of emulsions. 

Table 3. 11 Stress Test 

 

Experiment Stress Test 
Z-average (nm) Zeta Potential (mV) 

Before After Before After 

Emulsion 3 
Centrifugation 48.89 48.99 21.1 23.8 

Freeze/Thaw 48.89 243.5 21.1 32.7 

Emulsion 17 
Centrifugation 51.56 52.33 20.5 20.8 

Freeze/Thaw 51.56 220.8 20.5 34.6 
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3.7.3 Accelerated Stability Test  

Accelerated stability test of selected Soybean emulsions of trifluoperazine was 

developed according to the International Conference on Harmonisation of Technical 

Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines. The 

guideline recommends storage at 40

C ±2


C at 75% relative humidity (RH) ±5%RH. A 6-

month study is recommended for an accelerated stability study. However, if significant 

change occurs within the first 3 months it is considered unnecessary to continue to test 

through 6 months (98). 

Emulsions 3 and 17 shown in the statistical design were reproduced in triplicates and 

used for the accelerated stability study. Emulsions were stored at 40ºC±2/ 75 RH ±5% 

RH. Drug content analysis of emulsions using HPLC, z-average and zeta potential of the 

emulsions were determined over 3 months. 

 

 

3.7.3.1 Content Analysis of Emulsions 3 and 17 

  Drug content of Emulsions 3 & 17 was determined on day 0 by HPLC after 

extraction of pure drug from emulsions by agitation for 1 hour in the mobile phase. The 

emulsions were filtered using 0.45µm filter and then analyzed by HPLC.  

Emulsions were stored in glass ampoules at 40ºC±2/75 RH ±5% RH, room. Drug 

content analyses of emulsions were determined after 1 month, 2 months and at 3 months 

(Table A10). These emulsions showed less than 75% potency after 3 months of storage .  
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Figure 3.20  HPLC Analysis of Emulsions 3 & 17 at 40ºC/ 75RH 

 

 

Emulsion breakdown can occur through physical degradation such as flocculation, 

Ostwald ripening etc. as discussed previously in the literature review and chemical 

degradation due to the instability of the drug. Factors responsible for the degradation of 

trifluoperazine were due to temperature, pH, air and light induced oxidation. The most 

likely degradation pathway for trifluoperazine is as shown in the figure below. Oxidation 

of trifluoperazine occurs through a two-step reaction involving the intermediate 

formation of a semiquinone free radical which is then oxidized to the sulfoxide. 
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Figure 3.21 Degradation Pathway of Trifluoperazine 
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3.7.3.2 Z-average analysis and Zeta Potential of Emulsions 3 &17 after 3 

months storage at 40
º
C/75% RH  

Z-average results were determined using the Nicomp particle sizer after 1, 2 &3 

months of storage at 40ºC/75 RH. Emulsion 3 had a z-average of 45.3nm immediately 

after preparation. Z- average value for Emulsion 3  was 61.4nm at 40
º
C after 3 months. 

The z-average of Emulsion 17 also increased from 21.3nm at day 0 to over 101.7 nm 

after 3 months at 40
º
C/75RH.  

Zeta potential value for Emulsion 3 was 17.34mV on day 0, this reduced 

drastically to 3.97 mV at 40
º
C (Table 3.12).  Zeta potential of Emulsion 17 on day 0 was 

21.32mV; this decreased to 6.36mV and 3.97mV after 3 months at 40ºC/75%RH. 

 

Table 3.12  Accelerated Stability Tests showing Z. average and Zeta potential Data For  

Z-average and Zeta Potential of Emulsions 3 & 17 Stored at 40ºC and 75RH 

 

Z-average 

 (nm) 

Zeta potential 

(mV) 

Emulsion 3 17 3 17 

DAY 0 45.3 21.3 17.34 21.32 

1 MONTH 71.3 93.9 14.1 5.27 

2 MONTHS 67.3 126.5 10.82 3.63 

3 MONTHS 61.4 101.7 7.5 3.97 
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3.8 Summary 

This research study describes a novel method for the preparation and 

characterization of emulsions intended for parenteral delivery using the thin layer 

hydration method. It is a very versatile method for producing nano-emulsions.  

 Oil-in-water nano-emulsions of trifluoperazine for parenteral delivery were 

produced using soybean oil and a blend of surfactants; Tween 80 and Phospholipon 

90G
®
. This was developed with the intention to provide a system which is more stable 

and better formulated to possibly prevent adherence to PVC tubing. 

 

3.8.1 Emulsion Formulation and Characterization 

Emulsions were formulated and characterized to determine z-average, 

polydispersity, zeta potential and viscosity. The emulsion components such as soybean 

oil, Tween 80, Phospholipon 90G
®
, Millipore water and trifluoperazine were varied to 

produce an optimal formulation. The oil: surfactant ratio was a very important factor in 

the determination of the z-average of the emulsions. Phase diagrams were produced 

following the preliminary emulsions and this showed the best formulation parameter 

ranges for emulsion formulation. A 2X2X2X2X2 factorial statistical experiment was 

designed to test the significance of the emulsion components and determine the influence 

of various emulsion components on the emulsion characteristics. Pareto charts were 

plotted to evaluate the significance of the factors and the presence of interactions if any. 
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Emulsions with z. averages of less than 100 nm were obtained. The small z-

average of the emulsions suggests that emulsions will be stable. They also had 

polydispersity indices of less than 0.4. Zeta potentials were greater than 20 mV indicating 

potential stability of emulsions. Viscosity data was obtained for emulsions. Viscosity data 

can be exploited as index of emulsion stability if changes are observed in the emulsion 

viscosity with time. 

 

3.8.2 Stability and HPLC Analysis 

   Emulsions were analyzed using HPLC immediately after production to determine 

drug content. Stability tests were done at 40ºC/75 RH to determine the level of 

degradation according ICH guidelines. The emulsion droplet sizes were not significantly 

increased thus indicating that the method is useful in formation of emulsions that can 

maintain integrity without breaking or coalescing. The drug content of emulsions was 

observed to reduce on storage mainly as a result of chemical degradation of the drug. 

The success of an emulsion as a drug product is dependent on the z-average, the 

zeta potential also the characteristics of the drug in question. The chemistry of a drug 

plays a large role in the determination of the zeta potential and how quickly a drug will 

be degraded. Other components may be included in the formulation to ensure stability of 

drug for further development. This method is very useful in the initial development 

process of drugs to be formulated as emulsions. 
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5.0 Appendix 

 

 

Table A 1 Preliminary  Emulsions 

Formulation Oil phase Oil Phase Tween 80  Phosphatidyl choline Drug (mg) 

1 S.O  0.5 200mg 0 

2 E.O  0.5 200mg 0 

3 S.O  0.5 200mg 0 

4 E.O  0.5 200mg 0 

5 S.O  1 200mg 0 

6 TRIC  1 200mg 0 

7 TRIB  1 200mg 0 

8 E.O  1 200mg 0 

9 S.O  1 200mg 40 

10 TRIC.  1 200mg 40 

11 S.O 1ml 1ml 200mg) - 

12 S.O 1ml 1ml 200mg 40 

13 S.O 1ml 1ml 200mg 40 

14 S.O 1ml 1ml 200mg 40 

15 S.O 10ml 10ml 2000mg - 

16 S.O 10ml 10ml 2000mg 400 

17 S.O 300mg 1000mg 400mg 40 

18 S.O 750 1ml 250mg 40mg 

19 S.O 500mg 500mg 200mg 40mg 

20 S.O 500mg 500mg 200mg 40mg 

21 S.O 500mg 500mg 200mg 40mg 

22 S.O 500mg 500mg 200mg 40mg 

23 S.O 500mg 500mg 400mg 40mg 

24 S.O 500mg 500mg 400mg 40mg 

25 S.O 500mg 500mg 400mg 40mg 

26 S.O 1ml 1ml Lipoid EPC (250mg) 40mg 

27 S.O 1ml 1ml Phospholipon 90 

(250mg) 

40mg 

28 S.O 1ml 1ml LipoidEP-3 (250mg) 40mg 

29 S.O 500mg 300mg 300mg 40mg 

30 S.O 500mg 400mg 400mg 40mg 

31 S.O 500mg 500mg 500mg 40mg 
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Table A 2.  Effect of Increasing  Oil: Surfactant ratios on Z. average, polydispersity and 

zeta potential 

 

 

Formulation Tween 

80 

 Oil: 

Surfactant 

ratio 

Water Soy. 

oil 

P. 90 Z.Ave 

(nm) 

P.I Z.P 

(mV) 

32a 1000

mg 

1:1 10ml 1000

mg 

250mg 32.9 0.316 30.4 

32b 1000

mg 

1:1 10ml 1000

mg 

250mg 35.5 0.412 29.7 

33a 1000

mg 

2:1 10ml 2000

mg 

250mg 110.7 0.385 30.6 

33b 1000

mg 

2:1 10ml 2000

mg 

250mg 105.3 0.303 28.6 

34a 1000

mg 

3:1 10ml 3000

mg 

250mg 123.4 0.509 30.0 

34b 1000

mg 

3:1 10ml 3000

mg 

250mg 149.0 0.420 31.9 

 

 

 

 

 

 Table A 3.  Effect of phosphatidylcholine on z-average, polydispersityindex and zeta 

potential (Soybean oil: Tween 80 1:1) 

 

Form. T.80 

(mg) 

Soy. Oil 

(mg) 

 

 

 

 

 

 

(mg) 

Water 

(ml) 

P.90 

(mg) 

Z.Ave 

(nm) 

P.I Z.P 

(mV

) 

35a 1000 1000 10 750 187.1 0.405 27.1 

35b 1000 1000 10 750 184.6 0.415 37.8 

36a 1000 1000 10 500 65.0 0.418 32.7 

36b 1000 1000 10 500 81.5 0.398 26.6 

32a 1000 1000 10 250 32.9 0.316 30.4 

32b 1000 1000 10 250 35.5 0.412 29.7 

37a 1000 1000 10 100 44.1 0.340 35.9 

37b 1000 1000 10 100 44.6 0.357 31.8 
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Table A4. Effect of increasing amount of Tween 80 on Average of Emulsions 

 

 

 

Form. 

Formulation 

Tween 80 (mg) Z-average (nm) 

52a 300 97.2 

52b 300 104.7 

53a 650 67.3 

53b 650 55.4 

54a 1000 30.1 

54b 1000 29.9 

 

 

 

 

 

Table A5. Emulsion formulations varying the concentration of Trifluoperazine 

 

 

Form. T.80  

(mg) 

Soy. oil  

(mg) 

Drug  

(mg) 

Water 

 (ml) 

P. 90  

(mg) 

Z. Ave. 

(nm) 

P.I Z.P 

(mV) 

54a 1000 1000 40 10 250 30.1 0.288 29.6 

54b 1000 1000 40 10 250 29.9 0.171 24.0 

54c 1000 1000 40 10 250 38.0 0.384 33.3 

55a 1000 1000 60 10 250 28.2 0.170 28.3 

55b 1000 1000 60 10 250 63.6 0.299 26.2 

55c 1000 1000 60 10 250 30.9 0.240 31.1 

56a 1000 1000 80 10 250 64.0 0.347 28.8 

56b 1000 1000 80 10 250 29.3 0.226 31.7 

56c 1000 1000 80 10 250 64.6 0.500 33.8 

57a 1000 1000 120 10 250 43.8 0.277 31.7 

57b 1000 1000 120 10 250 30.0 0.196 30.9 

57c 1000 1000 120 10 250 32.4 0.217 36.4 
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Table A6 Select Emulsions included in the phase diagram 

 

Form. Soy. Oil 

(mg) 

T. 80 

(mg) 

P.90(mg) Water Z. Ave 

(nm) 

Z.P(mV) P.I 

32a 1000 1000 250 10000 32.9 30.4 0.316 

32b 1000 1000 250 10000 35.5 29.7 0.412 

36a 1000 1000 500 10000 65 32.7 0.418 

37a 1000 1000 100 10000 44.1 35.9 0.34 

37b 1000 1000 100 10000 44.6 31.8 0.357 

44a 1000 1000 250 20000 53.3 26.2 0.335 

44b 1000 1000 250 20000 57.5 30.8 0.37 

47a 1000 1000 100 20000 66.2 31.3 0.338 

48a 1000 1000 100 15000 49.4 31.8 0.319 

49a 1000 1000 250 15000 65 27.6 0.494 

49b 1000 1000 250 15000 50.7 26.3 0.331 

50a 1000 1000 500 15000 67.2 27.3 0.417 

50b 1000 1000 500 15000 63.9 29.6 0.421 

 

 

 

 

Table A7 Effect of Phospholipid concentration on Emulsion viscosity 

 

Formulation Surf./oil ratio  T. 80 (w/w%) P. 90 (w/w%) Viscosity 

Av. 

dynamic 

viscosity 

(mPa.S) 

 

41a 0.36 7.07 0.71 0.8795 

41b 0.36 7.07 0.71 0.8795 

34a 0.41 6.99 1.74 0.8825 

34b 0.41 6.99 1.74 0.8825 

42a 0.49 6.87 3.40 0.8826 

42b 0.49 6.87 3.40 0.8826 

43a 0.58 6.76 5.07 0.8995 

43b 0.58 6.76 5.07 0.8995 
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Table A9 Analysis of Variance HPLC 

 

 

 
 

 
 

Table A10. Drug Content Analysis Of Emulsions 3 and 17 by HPLC after 3 
Months Stability Studies 

 

40ºC 
% Potency 

Day 0 

% Potency 

3 Months 

Emulsion 3 113.5 62.62 

Emulsion 17 106.81 36.04 

 
 
 

 

 

Anova: Two-Factor Without Replication 
   

       SUMMARY Count Sum Average Variance 
  Low 3 302.62 100.8733 15.11323 
  Medium 3 300.94 100.3133 2.420133 
  High 3 299.88 99.96 0.0976 
  

       Day 1 3 299.03 99.67667 2.777433 
  Day  2 3 300.28 100.0933 0.838933 
  Day 3 3 304.13 101.3767 12.29563 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Levels 1.272622 2 0.636311 0.08331 0.92162 6.944272 

Days 4.710556 2 2.355278 0.308369 0.750671 6.944272 

Error 30.55138 4 7.637844 
   

       Total 36.53456 8         
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