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ABSTRACT 

 

MODELING THE NCAA TOURNAMENT THROUGH 

BAYESIAN LOGISTIC REGRESSION 

 

 

 

By 

Bryan T. Nelson 

August 2012 

 

Thesis supervised by Dr. Eric Ruggieri 

 Many rating systems exist that order the Division I teams in Men‟s College 

Basketball that compete in the NCAA Tournament, such as seeding teams on an S-curve, 

and the Pomeroy and Sagarin ratings, simplifying the process of choosing winners to a 

comparison of two numbers.  Rather than creating a rating system, we analyze each 

matchup by using the difference between the teams‟ individual regular season statistics as 

the independent variables.  We use an MCMC approach and logistic regression along 

with several model selection techniques to arrive at models for predicting the winner of 

each game.  When given the 63 actual games in the 2012 tournament, eight of our models 

performed as well as Pomeroy‟s rating system and four did as well as Sagarin‟s rating 

system when given the 63 actual games.  Not allowing the models to fix their mistakes 

resulted in only one model outperforming both Pomeroy and Sagarin‟s systems. 



 

v 
 

 

DEDICATION 

 

I dedicate this thesis to my incredible family, whose everlasting love and support has 

never wavered throughout my entire education.  Particularly, I dedicate this thesis to my 

parents, Scott and Kathy, for believing in me throughout everything I have sought after in 

life and for always being there for me when needed.  I would not be as successful as I am 

today without their guidance.  Also, I dedicate this work to my younger brother Kevin, 

for keeping me young at heart and for making me laugh during all the times that were 

difficult and stressful. 

 

A special dedication must go out to my grandfather Andrew Sickle, who never tried to 

hide how proud he was of my accomplishments, and my grandmother LaVerne Sickle, 

who truly believed it whenever she told me that I could do anything that I wanted to do in 

life. 

  



 

vi 
 

ACKNOWLEDGEMENTS 

 

This thesis marks the end of a spectacular journey here at Duquesne University that 

began six years ago as a freshman and is now culminating with the completion of my 

Master‟s degree.  There are several people who I must express my gratitude towards for 

making this thesis possible.  First and foremost, I would like to thank my advisor Dr. Eric 

Ruggieri for taking me on as a student and guiding me through the entire process of 

writing this thesis from start to finish.  His invaluable advice made performing the 

research and writing this thesis a truly enjoyable task.  I could not have imagined working 

with someone so dedicated and willing to help at a moment‟s notice.  The amount of 

knowledge I have gained from working with him is immeasurable. 

 

I would also like to thank Dr. John Kern and Dr. Stacey Levine for taking the time out of 

their busy schedules to serve as committee members and critique my research.  Having 

sat in so many of their classes over the past few years, I know that I have received a 

spectacular education that will help carry me through the rest of my future education and 

well into my career. 

 

Finally, I would like to thank Dr. Donald Simon for approval in allowing me to take on 

such a fun topic to research to complete my Master‟s degree, and to all the other 

professors in the Department of Mathematics and Computer Science with whom I worked 

who made the past six years an unforgettable experience for me. 

  



 

vii 
 

TABLE OF CONTENTS 

Page 

Abstract…………………………………………………………………………………... iv 

Dedication……………………………………………………………………………….... v 

Acknowledgements……………………………………………………………………..... vi 

List of Tables…………………………………………………………………………….viii 

Introduction…………………………………………………………………………..........1 

Methods……………………………………………………………………………………4 

Results…………………………………………………………………………………… 16 

Conclusion………………………………………………………………………………. 38 

Further Discussion………………………………………………………………………. 39 

References……………………………………………………………………….............. 43 

Appendix I………………………………………………………………………………. 44 

Appendix II…………………………………………………………………………….... 45 

 

 

  



 

viii 
 

LIST OF TABLES 

Page 

List of Statistics Collected for Each Team in the NCAA Tournament………………….. 17 

Number of Unique Models and Models Appearing at Least 500 Times………………... 22 

Accuracy of Most Likely Model of Each Size for Each Dataset in Test Set……………. 24 

Number of Games Predicted Correctly in Each Round for Each Model in Test Set….….27 

Comparison of Bayesian and Least Squares Models in Test Set………………………... 28 

T-Tests Performed on the Difference Between Bayesian and Least Squares Models for 

Each Round in the Test Set……………………………………………………… 28 

Number of Games Predicted Correctly in Each Round for Each Model in Actual 63 

Games ……………………………………………………………………………29 

Comparison of Bayesian and Least Squares Models in the Actual 63 Games………….. 30 

T-Tests Performed on the Difference Between Bayesian and Least Squares Models for 

Each Round in Actual 63 Games………………………………………………... 31 

Number of Games Predicted Correctly in Each Round for Each Model when Choosing 

Games to Fill Out the 2012 Bracket……………………………………………...32 

 

 



 

1 
 

1. Introduction 

Every March, the nation becomes captivated by the NCAA Men‟s Basketball 

Tournament, the 68 team single elimination tournament to decide the national champion 

that is also informally known as March Madness.  For readers unfamiliar with the format 

of the tournament, we will provide a brief overview before going into detail of the 

mathematics behind the modeling process.   The 30 teams winning their conference 

tournaments plus the Ivy League regular season champion all receive automatic bids into 

the tournament.  The remaining 37 at-large slots are filled by the best teams (according to 

the tournament selection committee) that did not win their conference tournament.  The 

68 teams are then ranked from 1 through 68 on an S-curve.  The S-curve is then used to 

seed teams from 1 through 16 in each of four brackets.  The top four teams on the S-

curve receive the four coveted number 1 seeds; teams ranked fifth through eight are given 

2 seeds, and so on, down to placing the 16 seeds from the bottom teams on the S-curve.  

The bottom four conference tournament winners and the bottom four at-large teams on 

the S-curve play in four play-in games.  These four games occur before what is typically 

considered the official beginning of the tournament and reduces the field to 64 teams.  

From this point, the 16 teams in each of the four brackets play a single elimination 

tournament to determine a regional champion.  These teams move on to play in the Final 

Four.  The first round games are determined by the seeds, where the 1 seed in each 

bracket plays the 16 seed, the 2 seed plays the 15 seed, and so on down to the 8 seeds and 

9 seeds playing each other.  For further rounds, the advancing teams are not reseeded.  

Once the four regional champions are determined, another single elimination tournament 

occurs between these teams in the Final Four to determine the national champion. 
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For the purposes of this paper, the four play-in games are not taken into consideration.  

The predictions will begin with games in the Round of 64.  Moreover, whereas the 

NCAA has referred to the play-in games as the “first round” since expanding to 68 teams 

in 2011, for the purposes of this paper, we will refer to the Round of 64 as the first round 

and the Round of 32 as the second round.  One would be led to believe that choosing the 

higher seeded team to win each game would result in relatively high accuracy.  However, 

this is not the case.  Between 2003 and 2011, choosing the higher seeded team to win in 

each game would have resulted in 409 correct picks out of 567 games, an accuracy of 

72%.  Many of these upsets have been 14 and 13 seeds upsetting 3 and 4 seeds, 

respectively, in the first round.  More curiously, in the same time span, seven 12 seeds 

advanced to the Sweet Sixteen by winning two games and two 11 seeds even advanced to 

the Final Four after four tournament victories.  These are teams that are ranked in the 

bottom third on the S-curve.   

 

Other rating systems that attempt to improve upon choosing teams simply based on 

seeding exist.  Two of the more famous include the Sagarin ratings and Pomeroy ratings.  

These methods use each team‟s regular season statistics to create a single rating for each 

team.  When confronted with a matchup, the team with the higher rating is favored to 

win.  Predicting the winners in each bracket from 2003 through 2011 based solely on the 

above ratings increases accuracy slightly; the Sagarin ratings were 73% accurate, and the 

Pomeroy ratings reached an accuracy of 74%. 
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In this paper, we introduce another method of predicting winners of March Madness 

games by identifying a model that will compare the two teams playing in each of the 63 

games each year on a head-to-head basis using their statistics from the regular season.  

This will allow for the realistic possibility of choosing an upset if the lower seeded team 

has a favorable matchup against the higher seeded team, despite the higher seeded team 

appearing to be better in all other rating systems.  We will use a Markov chain Monte 

Carlo (MCMC) approach in identifying the model that best fits the data as well as finding 

the coefficients of regression.  Logistic regression will be used to identify the predicted 

probability that the higher seeded team will win the game, and the accuracy of the 

prediction will be used to assess how well the model works.  The goal is both to render 

the seeding of teams in the NCAA tournament as artificial and to show that a rating 

system that creates an ordering of teams based on regular season statistics can be 

outperformed by analyzing the individual matchup using similar statistics. 

 

The structure of this paper is as follows.  Section 2 introduces the methods and 

algorithms used in the model selection process.  It also elaborates on the processes used 

to calculate the regression coefficients for those models.  Section 3 begins by explaining 

the data collection process.  It then continues by comparing how the models fare in 

numerous settings.  Section 4 states the conclusions that can be drawn from the entire 

process.  Finally, the last section offers some possibilities for further discussion, 

including problems that were encountered, other techniques that exist that were not 

explored in this project, and the potential for future research. 

 



 

4 
 

2. Methods 

Given the dependent variable   and   predictor variables       , the logistic function is 

given by 

 ( )  
    ∑     

 
   

      ∑     
 
   

 

where  ( ) is the predicted probability of a success given the   predictor variables 

       and    is the regression coefficient corresponding to predictor variable   .  In 

the context of the problem,        are basketball statistics (which will be explained in 

more detail in Section 3.1) for the teams playing in the matchup.  Assume that there are   

observations in the data set.  The dependent variable   is a vector of length   where each 

   is coded as either 0 or 1, where 0 is a failure (the lower seeded team wins) and 1 is a 

success (the higher seeded team wins).  Each of the independent variables        is a 

vector of length   as well.  Define a model as some subset of       .  We seek to find 

the model that maximizes the likelihood of the model given the data.  In developing this 

model, the ideal scenario would be to calculate the likelihood of each of the    possible 

models and choose the model with the maximum likelihood.  However, when   becomes 

large, this process becomes impossible to carry out efficiently.  Instead, we use the 

Metropolis-Hastings algorithm, a Markov chain Monte Carlo (MCMC) approach, to 

select the model. 

 

2.1  Likelihood of a Model 

We begin with an explanation of the likelihood of a model.  Given the data, the likelihood 

function of a model    *          + is a measure of how well the model fits the 
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data, where   is the size of the model with    .  The likelihood of a model is the 

product of three separate factors: 

1. The likelihood function for the model with variables            and the set of 

regression coefficients           . 

2. The joint prior distribution  (          |  ) for the regression coefficients 

          . 

3. The prior distribution  (  ) on the model itself. 

 

The likelihood function is given by 

 ( |             )  ∏(
    ∑          

      ∑          
)

  

(  
    ∑          

      ∑          
)

     

   

  

 

Assume for each    that     (     
 ).  Then the prior distribution for each    is 

 (  )  
 

  √  
 

 (     )
 

   
 

  

 

Furthermore, for the purposes of this paper, assume that              and 

     
    

      
 .  Then the prior distribution for each    is  

 (  )  
 

 √  
 

 (    )
 

     

 

Denote the joint prior distribution of            by  (          |  ).  Then  

 (          |  )  (
 

 √  
)
   

 
∑

 (    )
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Assume that the prior distribution on the model  (  ) is uniform.  This renders all 

models equally likely, and returns a prior distribution on the model of 

 (  )  
 

  
  

 

Since the marginal posterior distribution is proportional to the product of the likelihood 

function and the prior distributions, we must integrate out            to find the 

normalization constant.  Integrating out the regression coefficients also leaves us with 

just the likelihood of the model given the data.  Thus, the marginal posterior for    is  

 (  | )  ∫ ∫ ( |             )   (          |  ) (  )         

 

However, the above integral does not have a closed form.  Instead, Monte Carlo 

integration is used to approximate the integral.  We can approximate the integral using a 

uniform prior to approximate the normal prior by integrating each    over the interval 

,       -.  Since there are   variables and one constant term, each assumed to have 

the same prior distribution, there are     uniform priors in the approximation.  The 

marginal posterior for    can then be approximated by  

 (  | )  ∫ ∫ ( |             ) (  )   (
 

  
)         

 

As none of the regression coefficients appear in the uniform prior for the regression 

coefficients or the uniform prior for the model, these priors can be brought outside the 

integral, resulting in an approximation of the likelihood of 
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 (  | )  (  )   (
 

  
)∫ ∫ ( |             )         (  )   (

 

  
)      

 

Recall from the uniform prior that we assume each    may come from ,       -.  Let 

  be a (   )    matrix where   is the number of random samples we wish to generate 

to approximate the above integral.  Note that   must be large in order to approximate the 

above integral well enough to be considered approximately equal to the true likelihood.  

Let    denote the  th
 column of matrix  .  Uniformly sample (   )  random variables 

from ,       - and place them in  .  Through Monte Carlo integration, it follows 

that  

     (
 

  
)

    

 
∑  ( |     )

 

   
 

where  ( |     ) is the likelihood of model    using the uniformly sampled set of 

regression coefficients from   .  The reader interested in the specifics behind Monte 

Carlo integration should consult [1]. 

 

Multiplying the above approximation by the   uniform priors, the likelihood of the model 

is well approximated by  

 (  | )  (  )   (
 

  
)
 

 
∑  ( |     )

 

   
  

 

2.2  Bayesian Model Selection 

One common way to develop a model for a set of data is through Bayesian model 

selection.  Section 2.2.1 will describe the Metropolis-Hastings algorithm that is used to 

build the most likely model based on the likelihood from Section 2.1.  Section 2.2.2 will 
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then explain how the regression coefficients are calculated for a given model using 

Metropolis sampling. 

 

2.2.1  Metropolis-Hastings Algorithm 

The Metropolis-Hastings algorithm [1] is a process by which variable selection can be 

performed.  The goal is to maximize the likelihood of the model by proposing and 

accepting a new model and moving to a new state with some probability using the 

likelihood ratio test.  Let   *       + be the ordered set that contains all models 

evaluated during the course of the algorithm where      is a set containing the 

variables included in the model at iteration  . 

 

The algorithm contains seven steps: 

1. Initialization: Begin by letting    * + so that the logistic function is  ( )  

   

     
.  Note that the model will return the same predicted probability for each 

observation in the dataset since there are no variables, and all predictions are 

being made solely on the estimation of the intercept. 

2. Calculate the Likelihood of   : Use Monte Carlo integration as described in 

Section 2.1 to approximate the likelihood of   .  Denote this likelihood by   . 

3. Propose a New Model to Compare Against   : Generate a random integer   

between 1 and  .  If      , then set         *  +.  If      , then set 

        *  +. 

4. Calculate the Likelihood of     : As in Step 2, use Monte Carlo integration to 

approximate the likelihood of model     .  Let this likelihood be denoted by 
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    .  Note that the proposed model differs from the current model by only a 

single variable. 

5. Likelihood Ratio Test: Form the following ratio:   
    

  
.  Let the probability of 

accepting the new model be      *   +. 

6. Changing States: Generate a random uniform number   on the interval ,   -.  If 

   , then change states and accept      as the current state.  If    , then set 

       , and continue using    as the current state. 

7. Update: Increment   by 1, and repeat steps 2 through 6 as necessary. 

 

Observe that if        , then model      is more likely to represent the data than 

model   .  Moreover, since        , it follows that    .  Thus,    , so no matter 

what value of   is sampled from ,   -, we can guarantee that we change states so that we 

accept      as the new “current state”.  However, if        , then      .  This 

implies that model      is less likely than model   , but the existence of a nonzero 

probability   allows us to change states.  This occurs to prevent the algorithm from 

getting permanently stuck in a local maximum.  Even for very small values of  , the 

algorithm will eventually allow for a change of states in search of the true maximum 

likelihood. 

 

One downfall to the Metropolis Hastings algorithm is the inability to recognize that the 

true maximum likelihood has been reached.  Since the algorithm does allow for a change 

of states with some small probability, it is possible that it may move away from the true 

maximum and gravitate towards a local maximum.  The interested reader can refer to [2] 
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for more information on the Metropolis-Hastings algorithm. 

 

2.2.2  Metropolis Sampling 

Let    be the model for which we need to find regression coefficients for the included 

variables.  We can write the model as follows: 

 ( )  
    ∑          

      ∑          
 

where variable    is included in the model only if it is also in the set   .  Assume    

contains   unique variables.  Denote the variables contained in    by           .  

Note that here, the subscript on the variable does not correspond to the subscript on the 

variable from Section 2.2.1; instead, we are simply putting an ordering on the   variables 

that are included in this particular model.  We will now solve for the    that corresponds 

to each above    using Metropolis sampling. 

 

Since the joint posterior distribution for            is proportional to the product of the 

likelihood function, the prior distributions for each   , and the prior distribution on the 

model, the joint posterior is given by: 

 (          |    )   

∏(
    ∑          

      ∑          
)

  

(  
    ∑          

      ∑          
)

     

   

(
 

 √  
)

   

 
∑

 (    )
 

   
 
   (

 

  
)  

 

The algorithm to calculate            contains seven steps: 

1. Initialization: Let   ̂ be a vector of length     so that   ̂  〈          〉.  

Then   ̂ is the initial guess for the true values of           . 
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2. Evaluate the Joint Posterior: Plug the values in   ̂ into the joint posterior to 

calculate the initial joint posterior.  Denote this number by   . 

3. Change a Single Beta: Randomly sample another guess for    from the 

distribution  (    
 ) and call it   ̂.  Create a new vector   ̂  〈  ̂        〉.  

Evaluate the joint posterior above using   ̂, and denote this number by   . 

4. Likelihood Ratio Test: Form the following ratio:   
  

  
.  Let the probability of 

accepting   ̂ as the new guess for the true values of            be   

   *   +. 

5. Acceptance/Rejection of Beta: Generate a random uniform number   on the 

interval ,   -.  If    , then change states and accept   ̂ as the current set of 

regression coefficients.  If    , then set   ̂    ̂, and continue using   ̂ as the 

current set. 

6. Repeat steps 2 through 5   additional times, once for each regression coefficient, 

being sure to increment the subscript on   . 

7. Repeat steps 2 through 6 as necessary, generating many sets of   ̂.  (At least 

2,500 is suggested.)  Let   be a matrix with   columns and a finite number of 

rows.  Set the lag equal to   so that we save a set of   ̂ every   iterations.  If the 

iteration number is congruent to 0 modulo  , then save this particular set of   ̂ in 

the next empty row of  .  Otherwise, the set does not need to be saved. 

8. Calculation of Final Vector of Betas: Once all sets of   ̂ have been generated 

and saved, take the mean of each column of  .  This results in a vector  ̂  

〈          〉 that serves as the Bayesian approximation of the regression 
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coefficients for model   . 

 

Observe that since each    is sampled from a distribution that depends upon the 

previously sampled value, the sets of coefficients that are generated consecutively are not 

independent.  This is the reason we must include a lag when saving sets of regression 

coefficients.  For a detailed explanation of Metropolis sampling, one can consult [3]. 

 

2.3 Least Squares Model Selection 

The second way to identify a model is through mixed stepwise regression, a least squares 

approach.  Section 2.3.1 explains the Newton-Raphson method of maximum likelihood 

estimation, which is used to calculate the regression coefficients for any given model.  

Section 2.3.2 describes how mixed stepwise regression is used to arrive at a model. 

 

2.3.1  Newton-Raphson Method 

The Newton-Raphson method is a method of maximum likelihood estimation that we will 

use to maximize the likelihood of a given model.  Similar to the section on Metropolis 

sampling, let    be the statistical model for which we need to find coefficients for the 

included variables.  Then the logistic model is: 

 ( )  
    ∑          

      ∑          
 

where variable    is included in the model only if it is also in the set   .  Again, assume 

   contains   unique variables that are denoted by           .  Finding the least 

squares coefficients is equivalent to maximizing the likelihood function of the model.  

The likelihood function used in this method is the same as in Section 2.1: 
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 ( |             )  ∏(
    ∑          

      ∑          
)

  

(  
    ∑          

      ∑          
)

     

   

  

 

However, the likelihood function is computationally difficult to maximize, so instead we 

maximize the natural logarithm of the likelihood function, denoted by  .  Then   is given 

by 

  ∑ *    (
    ∑          

      ∑          
)  (    )   (  

    ∑          

      ∑          
)+

 

   
 

 

which simplifies to 

  ∑ *  (   ∑      
     

)    (      ∑          )+
 

   
  

 

We will use the Newton-Raphson algorithm to solve for the regression coefficients that 

maximize the log-likelihood function.  The algorithm contains five steps:  

1. Initialization: Let   ̂ be a vector of length     such that   ̂  〈          〉, 

where   ̂ is the initial prediction for the values of            in the  logistic 

function. 

2. Gradient Vector: Calculate the gradient vector 
  

   ̂
 .

  

   
 

  

   
   

  

   
/ where 

each 
  

   
 is given by  

  

   
 ∑ (      

    
   ∑          

      ∑          
)
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Note that       whenever    . 

3. Hessian Matrix: Calculate the Hessian matrix 

   

   ̂

 

[
 
 
 
 

   

   
  

   

      

   
   

      
 

   

   
 ]

 
 
 
 

 

where each 
   

      
 is given by 

   

      
 ∑

       
   ∑          

(      ∑          )
 

 

   
  

4. Update: Update the values of            by setting   ̂    ̂  .
   

   ̂
/

  

.
  

   ̂
/. 

5. Define     to be some tolerance used as a stopping criterion.  Calculate 

‖  ̂    ̂‖ 
.  If ‖  ̂    ̂‖ 

  , then stop.  Otherwise, set   ̂    ̂, and repeat 

steps 2 through 5 as necessary until the stopping criterion is satisfied. 

 

The Newton-Raphson algorithm will converge to the least squares estimates of the 

regression coefficients once the difference between   ̂ and   ̂ is small enough. 

 

2.3.2  Mixed Stepwise Logistic Regression 

Mixed stepwise logistic regression is a second method of selecting a model from the list 

of   variables at our disposal.  Rather than including and removing variables from a 

model with some probability, mixed stepwise regression is an algorithmic process that 

will always arrive at the same conclusion each time it is executed.  It uses the likelihood 

ratio test as the test statistic to include variables if it is less than some threshold      



 

15 
 

and remove variables if rises above some other threshold     .  The algorithm has four 

steps: 

1. Initialization: Begin with a model    containing only the intercept and no 

variables.  Use the Newton-Raphson method from Section 2.3.1 to find the least 

squares estimate for   .  Calculate the log likelihood of this model using the log 

likelihood function given in Section 2.3.1, and call it   . 

2. Forward Selection: Let    be the number of variables not included in model   , 

and let    be a vector of length   .  Begin by selecting the first variable not in    

and adding it to   .  Use the Newton-Raphson method to calculate the regression 

coefficients, and then calculate the log-likelihood of this model, denoted   .  

Calculate the test statistic   between the null model    and the alternative model 

where a variable is added to    using     (     ).   Place this value in the 

first cell of   .  Remove the first variable from    and add the second variable that 

was not originally in   .  Repeat the same process of adding a variable to   , 

calculating the regression coefficients, computing the log-likelihoods, finding the 

test statistic, and placing it in    until each of the    variables has been tested with 

  .  Choose the value of    that results in the smallest p-value from the test 

statistic and add it to model    assuming its significance level is less than   .  

Call this new model    , and let the likelihood of     be   . 

3. Backward Selection: Let     be the number of variables included in model    , 

and let     be a vector of length    .  Begin by selecting the first variable included 

in     and remove it.  Use the Newton-Raphson method to calculate the 

regression coefficients, and then calculate the log-likelihood of this model, 
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denoted   .  Calculate the test statistic   between the null model     and the 

alternative model where a variable is removed from     using     (     ).  

Place this value in the first cell of    .  Add this first variable back into the model 

and remove the second variable (if it exists) that was included in    .  Repeat the 

same process of removing a variable from    , calculating the regression 

coefficients, computing the log-likelihoods, find the test statistic, and placing the 

it in     until each of the     variables has been removed from     individually.  

Choose the value in     that results in the largest p-value.  If this p-value is greater 

than   , remove the variable from the model.  Repeat Step 3 until all variables 

that are no longer significant are removed.  Once only significant variables remain 

in the model, call this new model   , and let the likelihood of    be   . 

4. Repeat Steps 2 and 3, adding and removing variables from the model until 

       at the conclusion of the Backward Selection process. 

 

Once the algorithm finishes running, the least squares model selection process is 

complete.  We can define the least squares model to include all variables in   .  Use the 

Newton-Raphson algorithm one final time to calculate the least squares regression 

coefficients.  To delve deeper into the specifics behind stepwise logistic regression, the 

reader should consult [4]. 

 

3. Results 

Returning back to the original problem, the results will be presented in the following 

manner.  First, the data collection process will be explained since typical statistics in 
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college basketball are not used directly in the analysis.  Next, the implementation of the 

Metropolis Hastings algorithm and the Metropolis sampling will be discussed in the 

context of the problem.  Third, we will describe the model selection process and describe 

the models that were used in the comparisons.  Finally, we will test the models in three 

different settings and present the results. 

 

3.1  Data Collection 

In order to build the model, data from the 2001-2002 NCAA basketball season through 

the 2010-2011 season were first collected.  The statistics were all accumulated from 

statsheet.com and the predictor variables are listed in Table 1 below [5]. 

Table 1: List of Statistics Collected for Each Team in the NCAA Tournament 

General Team Statistics Team Game Statistics Team Game Statistics (cont.) 

 Conference 

 Tournament champion 

 Wins in last 10 games 

 AP Poll preseason ranking 

 Starting five years of seniority 

 Overall winning percentage 

 Conference winning 

percentage 

 Points per game 

 Field goal percentage 

 Free throw shooting percentage 

 3 point field goal percentage 

 Offensive rebounds/game 

 Defensive rebounds/game 

 Assists per game 

 Steals per game 

 Blocks per game 

 Turnovers per game 

 Personal fouls per game 

 Points per possession 

 Effective field goal percentage 

 True shooting percentage 

 Assist percentage 

 Steal percentage 

 Block percentage 

 Turnover percentage 

 Assist to turnover ratio 

 

The process of building the dataset occurred in several steps.  The procedure is not 

straightforward, so we will intertwine an example with the explanation.  Note that all data 

collected was from the regular season only and did not include any games in the NCAA 

Tournament.  First, for each of the 64 teams in the tournament, the seven statistics in the 

first column were collected.  Moreover, for the remaining 19 statistics in the second and 

third columns, each teams‟ offensive season statistics were gathered, as well as the 

corresponding defensive statistics for a total of 45 statistics for each of the 64 teams.  For 
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example, during the 2010-2011 NCAA basketball season, Butler scored an average of 

72.81 points per game while giving up 64.66 points per game to its opponents.  Similarly, 

Old Dominion averaged 65.85 points per game, but allowed its opponents to score only 

58.30 points per game.  Next, the teams were paired according to the matchups that 

actually occurred in the year‟s NCAA tournament.  As the tournament is single 

elimination, this resulted in 63 games per year and 630 games in the above time frame.  

In the 2011 tournament, eighth seeded Butler and ninth seeded Old Dominion were 

placed in the same bracket.  As a result, they faced off in the first round of the 

tournament, so this accounts for one of the 63 games in the 2011 tournament.  Third, the 

statistics used in the dataset were calculated as follows.  The first seven variables were 

the general team statistics for the higher seeded team.  The next seven variables were the 

general team statistics for the lower seeded team.  For the 19 statistics reflecting each 

team‟s offensive performance, the lower seeded team‟s statistics were subtracted from the 

higher seeded team‟s statistics.  From our example, since Butler was seeded higher than 

Old Dominion, we take Butler‟s 72.81 points scored per game and subtract Old 

Dominion‟s 65.85 scored points per game, yielding a 6.96 point advantage for Butler.  

Thus, for the difference in points scored per game, the statistic for this game would be 

6.96.  For the 19 statistics reflecting each team‟s opponents‟ performance, the higher 

seeded team‟s statistics were subtracted from the lower seeded team‟s statistics.  In our 

example, we take Old Dominion‟s 58.30 points allowed per game and subtract Butler‟s 

64.66 points allowed per game to get a  6.36 point advantage or a 6.36 point 

disadvantage for Butler.  Thus, for the difference in points allowed per game, the statistic 

for this game in the dataset is  6.36.  As a result, positive numbers indicate an advantage 
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for the higher seeded team, while negative numbers indicate an advantage for the lower 

seeded team.  This process was repeated for each of the 38 statistics.   Each number was 

entered into the dataset for a total of 52 variables for each of the 630 games.  The 

dependent variable is nominal and coded as „1‟ if the higher seeded team won the game 

and „0‟ if the lower seeded team won.  The same process was repeated for teams 

competing in the 2012 tournament, where these 63 games were used as the validation set.  

For a complete list of each individual variable in the dataset and its corresponding 

number used to reference it in the code, consult Appendix I. 

 

Most of the statistics collected are self explanatory.  All but the first two are treated as 

continuous variables.  The reader interested in the true definitions of the above basketball 

statistics may consult [5] or any one of many other resources available.  However, the 

one variable that must be addressed directly is the team‟s conference.  Here, conference is 

a nominal variable with three levels of measurement.  In college basketball, there are 

roughly 340 teams divided into 31 conferences.  These conferences are not of equal 

talent, and are generally divided into power conferences, mid-major conferences, and 

small conferences.  Here, we use the Ratings Percentage Index (RPI), a statistical 

measure based primarily on a team‟s wins, losses, and strength of schedule to rank a team 

based on conference.  The RPI of a conference is calculated by summing the RPIs of all 

teams in the conference and dividing by the number of teams.  If a team is in a 

conference whose RPI is at least .550, then conference is coded as „1‟ in the database for 

that team.  If its conference RPI is between .500 and .550 inclusive, then conference is 

coded as „2‟.  For conference RPIs under .500, the team is assigned „3‟ for its conference. 
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Since conference is coded nominally, we must create two dummy variables,    and    in 

order to perform the regression without using ANACOVA.  Using the mid-major teams, 

coded as „2‟ as the reference group, if a team‟s conference is coded as „1‟, then      

and     .  If the conference is coded as „3‟, then      and     .  Finally, if 

conference is coded as „2‟, then        .  Doing this for both teams in each game 

brings the total number of variables to choose from to 54.  Note that the variable 

tournament champion is also nominal, but since it has only two levels of measurement 

(„1‟ if the team won the tournament, and „0‟ if not), it is already coded as if a dummy 

variable existed. 

 

3.2  Implementation of Algorithms 

Given the 630 games that actually occurred between the 2002 and 2011 tournaments, 120 

of these were first round matchups between 1 and 16, 2 and 15, or 3 and 14 seeds.  The 

lower seeded team won only three of these games.  (Only Kansas in 2005, Iowa in 2006, 

and Georgetown in 2011 were given a top three seed and lost).  Rather than include these 

games in the dataset and try to get the model to predict these outcomes, it was decided to 

remove these games from the dataset and move teams seeded 1, 2, and 3 on to the second 

round with probability 1.  This leaves us with 510 games in the dataset. 

 

From here, two different ways to use the data to develop a model were implemented.  The 

first involved using the Metropolis-Hastings algorithm on all 510 games at once to create 

one single model for all of the data.  However, another approach is to divide the data up 



 

21 
 

into the rounds in which the games occurred.  Teams with a high seed often play a 

different type of game in the first round than they would in later rounds due to playing an 

easier opponent in the first round.  It is unlikely that all variables that are important in the 

first round have the same importance when playing in the championship game and vice 

versa.  As a result, we propose dividing the 510 games into three separate datasets: one 

containing the remaining 200 first round games between 2002 and 2011, one containing 

the 160 second round games, and one containing the final 150 games between rounds 

three and six.  Abiding by this process will result in a piecewise model where the model 

used to predict the results of the NCAA tournament depends on the round the game is 

being played. 

 

We used the algorithms described in Section 2 to generate models on each of the above 

four datasets under the following assumptions: 

1. The main Metropolis-Hastings algorithm was allowed to run for 100,000 

iterations, beginning with the model that included only the intercept.  The burn in 

period was 100 iterations.   

2. In order to approximate the likelihood of each model using Monte Carlo 

integration, a uniform prior on the interval ,    - was used instead of the typical 

normal prior as suggested in Section 2.1. 

3. When performing the numerical integration, a matrix with   rows and 10,000 

columns was created.  Each entry was filled with a random integer from the 

uniform interval ,    - using the random number generator in MATLAB 

R2007a. 
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4. In order to calculate the regression coefficients for a model using Metropolis 

sampling as described in Section 2.2.2, 5,000 sets of coefficients were accepted 

using a lag of 10 to guarantee independence of the samples. 

 

3.3 Model Selection Techniques 

After running the Metropolis-Hastings algorithm under the above conditions on each of 

the four datasets, the 100,000 models that resulted were reduced to the unique models.  

The number of times each of the unique models appeared in those 100,000 iterations 

were counted.  The results are presented in Table 2. 

Table 2: Number of Unique Models and Models Appearing at Least 500 Times 

Dataset Number of Unique Models Models Appearing at least 500 Times 

Round 1 
Round 2 

Rounds 3-6 

All Rounds 

1960 
1103 

2698 

1147 

36 
37 

35 

19 

 

From here, a number of different model selection techniques were used to identify 

potential models that would be good predictors for the NCAA Tournament.  In the first 

technique, which we will call Method 1, we identified all of the models in each dataset 

that appeared at least 0.5% of the time, or 500 of the 100,000 iterations.  Marginal 

probabilities for these models were calculated, allowing us to calculate the marginal 

probabilities for each variable.  Then, the data for each variable was multiplied by its 

corresponding marginal probability.  Metropolis sampling was used to calculate the final 

regression coefficients for these particular models.  When creating the final models, we 

chose to use one model that included all variables in proportion to their marginal 

probabilities and one that allowed only variables with a marginal probability of at least 

30% to be included in the model.  This model selection technique creates four models: 
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one with no threshold that predicts games in all rounds, one with a threshold at 30% that 

predicts games in all rounds, a piecewise model created by applying the model selection 

technique to the three smaller datasets and predicting games by using the model that 

corresponds to the appropriate round, and another piecewise model where the variables 

included in each piece abides by the 30% threshold for the marginal probability. 

 

The second technique, which we will call Method 2, involved using marginal 

probabilities on the models themselves.  Using all models that appeared at least 0.5% of 

the time again, Metropolis sampling was used to calculate the regression coefficients for 

each individual model.  These coefficients were then multiplied by the corresponding 

marginal probability for the model.  Taking the sum across all models for each variable 

and dividing by the total included probability resulted in the final set of regression 

coefficients for the second method.  No thresholding was used in this method.  We 

accumulate two additional models to use for predictive purposes: one that is used to 

predict all games and another piecewise model. 

 

We may also choose individual models generated from the Metropolis-Hastings 

algorithm to use as predictors.  The model that appeared the most often out of the 

100,000 iterations for each dataset was chosen.  We again built the piecewise model by 

using the most likely model from each of the smaller datasets to develop a second full 

model from this technique.   Metropolis sampling was used to calculate the regression 

coefficients for each of the four models above. 
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The final Bayesian technique involved selecting the most likely model of each size in 

each of the datasets.  From here, Metropolis sampling was used to calculate the 

regression coefficients in each of the individual models.  The accuracy of each of the 

models was then calculated using the datasets, and the model with the highest accuracy in 

each of the datasets was chosen.  Note that if two models had the same accuracy for the 

same dataset, the one with fewer predictor variables was selected.  The accuracies of the 

most likely model of each size are included in the table below, and the chosen model is in 

bold. 

Table 3: Accuracy of Most Likely Model of Each Size for Each Dataset in Test Set 

No. of Variables All Games Data Round 1 Data Round 2 Data Round 3 Data 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
14 

15 

16 

.651 

.651 

.651 

.649 

.6451 

.6627 

.6373 

.6431 

.6765 

.6765 

.6686 

.6608 

.635 

.635 

.635 

.64 

.67 

.645 

.68 

.645 

.635 

.68 

.70 

.71 

.70 

.70 

.69 

.6938 

.6938 

.6938 

.7438 

.6688 

.70 

.6938 

.7438 

.70 

.7188 

.7375 

.7563 

.6818 

.7563 

.7375 

.7375 

.6267 
.64 

.6267 

.62 

.6667 

.6733 

.6667 

.6733 

.6767 

.6733 

.66 

.66 

.6667 

.6533 

.6733 

.68 

 

In addition to the Bayesian models, we will compare the results to the least squares 

models that have been developed using mixed stepwise regression as described in Section 

2.2.2 and the Newton-Raphson method from Section 2.3.2.  The variable needed to be 

statistically significant at the       level in order to be included in the model during 

the forward selection process.  If a variable was already included, but its statistical 

significance rose above the       level at some point during the backward selection 

process, then it was removed from the model.  Running these algorithms on each of the 
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four datasets will result in two final models: one for all games, and one piecewise model. 

 

In summary, below we define the models that will be tested against the Pomeroy ratings, 

Sagarin ratings, and choosing winners of games based on the teams‟ seeds.  From this 

point forward, these names are how we will refer to the models. 

 Model 1: The model used for all games developed using Method 1. 

 Model 2: The piecewise model created using Method 1. 

 Model 3: The model used for all games from Method 1 using a threshold of 30%. 

 Model 4: The piecewise model created from Method 1 with a threshold of 30%. 

 Model 5: The model used for all games generated from Method 2. 

 Model 6: The piecewise model developed using Method 2. 

 Model 7: The most likely model that was used from the dataset with all 510 

games. 

 Model 8: The piecewise model created from the most likely model from each of 

the three small datasets. 

 Model 9: The most accurate model out of the most likely model of each size used 

for all games. 

 Model 10: The piecewise model generated by selecting the most accurate model 

out of the most likely model of each size in each of the smaller datasets. 

 Model 11: The model used for all games created using the least squares method. 

 Model 12: The piecewise model developed using the least squares method on 

each of the three smaller datasets. 
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Though Models 11 and 12 were devised using least squares methods, the regression 

coefficients used in the analysis in all 12 models were calculated using Metropolis 

sampling.  From this point forward, Models 1 through 10 will be referred to as the 

Bayesian models, while Models 11 and 12 will be called the least squares models.  A list 

of the included variables in each model can be found in Appendix II. 

 

3.4  Performance of the Models 

How each of the models performed as well as a comparison to picking winners by seed, 

Pomeroy ratings, and Sagarin ratings will be divided into three sections.  The first will 

present the results for how each model did in its respective test set.  The second section 

will be used to predict the winners of the 63 games that actually occurred in the 2012 

NCAA Tournament.  In the third section, we will use each of the models to actually fill 

out a bracket round by round to see how well each model does without knowing how far 

each team will advance.  Note that this is different from the second section since in the 

second section, we know which games will occur beyond the first round, but in the third 

section, the games are dependent upon which teams the model predicted would win in the 

previous rounds.  In all two sample t-tests that were performed, the degrees of freedom 

were calculated using the equation: 
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where    and    represent the sample standards deviations of groups 1 and 2 respectively, 

and     and    represent the sample sizes of groups 1 and 2 respectively. 

 



 

27 
 

3.4.1  Performance in the Test Set 

Over the ten year test period, there were 320 first round games played, 160 second round 

games, 80 third round games, 40 fourth round games, 20 fifth round games, and ten sixth 

round games.  Recall the decision to automatically advance all 1, 2, and 3 seeds to the 

second round of the tournament; this gives us an additional 117 games correct in the first 

round.  The number of games correct in each round for each of the models as well as 

selecting winners based on seed is listed in the following table.  The exact pre-

tournament Pomeroy and Sagarin ratings between 2002 and 2011 were not available to 

determine the accuracy to which their systems would have performed.   

Table 4: Number of Games Predicted Correctly in Each Round for Each Model in the Test Set 

Model Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Total 

Model 1 
Model 2 

Model 3 

Model 4 

Model 5 

Model 6 

Model 7 

Model 8 

Model 9 

Model 10 

252 

268 

254 

260 

251 

256 

250 

253 

254 

259 

114 

125 

109 

116 

114 

125 

115 

132 

111 

121 

58 

60 

53 

54 

57 

55 

57 

59 

57 

58 

23 

26 

23 

26 

24 

25 

24 

23 

23 

26 

10 

12 

9 

11 

11 

12 

10 

11 

11 

12 

6 

9 

5 

9 

5 

9 

5 

8 

5 

7 

463 

500 

453 

476 

462 

482 

461 

486 

461 

483 

Model 11 

Model 12 
248 

260 

121 

126 

55 

54 

24 

25 

9 

10 

7 

9 

464 

484 

Seed 244 99 47 15 5 1 411 

 

Observe first that all of our models greatly outperformed choosing the higher seeded 

team to win.  On average, the Bayesian models predicted 472.7 games correctly over the 

ten year span for an accuracy of 75%.  Compare this to choosing the winners based on the 

seeds, which was 65.2% accurate.  Model 3, the worst one at just under 72%, was almost 

7% better than choosing the winners from the teams‟ seeds.  Model 2 nearly eclipsed 

80% accuracy, which would have resulted in missing only 13 games per year given that 

the model knows all of the games ahead of time.  Even more impressive is the Bayesian 
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models‟ ability to choose the winner of the national championship game.  On average, the 

Bayesian models predicted 6.8 of the 10 championship games correctly; choosing based 

on seed correctly forecasted only Florida in 2007 to win the title.  Three of the Bayesian 

models missed only one championship game: Syracuse in 2003. 

 

A comparison between the average number of games correct in each round for the 

Bayesian models and the least squares models is available in the table below: 

Table 5: Comparison of Bayesian and Least Squares Models in Test Set 

Model Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Total 

Bayesian 

Least Sq. 
Difference 

255.7 

254 

1.7 

118.2 

123.5 
-5.3 

56.8 

54.5 

2.3 

24.3 

24.5 
-0.2 

10.9 

9.5 

1.4 

6.8 

8 
-1.2 

472.7 

474 
-1.3 

 

The Bayesian models were more accurate in rounds 1, 3, and 5 while the least squares 

models outperformed the Bayesian models in rounds 2, 4, and 6 and overall.  Testing for 

the equality of means assuming unequal variances in each round and overall with a 

significance level of       and the following number of degrees of freedom divulges 

the following information: 

Table 6: T-Tests Performed on the Difference Between Bayesian and Least Squares Models for Each 

Round in Test Set 

Model Degrees of Freedom t-Statistic P-value 

Round 1 

Round 2 

Round 3 

Round 4 

Round 5 

Round 6 

Overall 

1 

3 

6 

3 

2 

2 

1 

0.273 

-1.559 

2.684 

-0.390 

2.370 

-1.041 

-0.118 

.831 

.217 

.026 

.780 

.141 

.407 

.926 

 

Through the above t-tests, it is revealed that only the difference in round 3 between the 

Bayesian and least squares models is statistically significant.  The other six, including the 



 

29 
 

overall total, are not significantly different, which leads us to conclude that the Bayesian 

and least squares models performed approximately equally in all aspects.  However, with 

no more than three degrees of freedom in any of the other tests, there is not much of an 

opportunity to discover a significant effect, lowering the statistical power.  

 

3.4.2   Predicting the Actual 63 Games in the 2012 NCAA Tournament 

Testing each of the models on the games that occurred in the 2012 NCAA tournament 

returns the following results.  Here, we allow each model to fix its mistakes if it made an 

incorrect prediction in the previous round and make a prediction on the correct game.  

We again assign a probability of 1 to the 1, 2, and 3 seeds moving on to the second round.  

There are 32 first round games played, 16 second round games, eight third round games, 

four fourth round games, two fifth round games, and one sixth round game to determine 

the national champion.  We include the results for games chosen by seed, the Pomeroy 

ratings, and the Sagarin ratings here as well. 

Table 7: Number of Games Predicted Correctly in Each Round for Each Model in Actual 63 Games 

Model Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Total 

Model 1 
Model 2 

Model 3 

Model 4 

Model 5 

Model 6 

Model 7 

Model 8 

Model 9 

Model 10 

20 
19 

22 

21 

20 

21 

21 

23 

20 

24 

14 

13 

12 

16 

14 

15 

13 

15 

13 

13 

7 

7 
6 

6 

6 

6 

7 

6 

6 

6 

1 
2 

1 

3 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

2 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

44 
44 

43 

49 

44 

47 

45 

49 

43 

48 

Model 11 

Model 12 

20 

20 

11 

11 

6 

6 

2 

3 

1 

1 

1 

1 

41 

42 

Pomeroy 

Sagarin 
Seed 

22 

22 
22 

12 

13 
13 

5 

7 
6 

3 

3 
2 

1 

1 
2 

1 

1 
1 

44 

47 
46 

 

Comparing the Bayesian models to the brackets filled out using the Pomeroy and Sagarin 
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ratings uncovers a slightly different story.  In this year‟s tournament, the Sagarin ratings 

predicted three more games correctly than the Pomeroy ratings did.  Three of our ten 

Bayesian models choose more games correctly than the Sagarin ratings, and a fourth 

equaled his total of 47.  Conversely, five of our Bayesian models outperformed the 

Pomeroy total of 44, while another three tied his total.  The final two models were only 

one game behind at 43 games correct.  It is interesting to note that this year, choosing the 

true games by seed resulted in 46 correct picks, a better accuracy than the Pomeroy 

ratings.  Thus, we can conclude that, given the true games that occurred, most of our 

models can be expected to perform at least as well as the Pomeroy and Sagarin ratings; 

some will be expected to do better.  Observe also that of the five piecewise Bayesian 

models, four of them performed as well as if not better than Sagarin‟s ratings, and all five 

have accuracies equal to or better than Pomeroy‟s ratings.  However, none of the five 

Bayesian models generated from the dataset containing all 630 games did as well as 

Sagarin, and only three did as well as Pomeroy.  This provides some justification for 

splitting up the data by round and creating different models for different rounds.  It also 

implies that some statistics are more important later on in the tournament than in the first 

round, and vice versa. 

 

We will now compare the 2012 performance of the Bayesian models to the least squares 

models.  The averages across the two methods are displayed in the following table: 

Table 8: Comparison of Bayesian and Least Squares Models in the Actual 63 Games 

Model Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Total 

Bayesian 

Least Sq. 

Difference 

21.1 

20 

1.1 

13.8 

11 

2.8 

6.3 

6 

0.3 

1.6 

2.5 

-0.9 

1.8 

1 

0.8 

1 

1 

0 

45.6 

41.5 

4.1 
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The Bayesian models predicted more games correctly on average than the least squares 

models in rounds 1, 2, 3, and 5, as well as overall, while the least squares model did 

better in round 4.  Each of the 12 models selected Kentucky to defeat Kansas in round 6, 

so there is no difference in means or variance within either group.  Testing for the 

equality of means using a significance level of       and the following number of 

degrees of freedom reveals the following: 

Table 9: T-Tests Performed on the Difference Between Bayesian and Least Squares Models for Each 

Round in Actual 63 Games 

Model Degrees of Freedom t-Statistic P-value 

Round 1 

Round 2 

Round 3 
Round 4 

Round 5 

Overall 

9 

9 

9 
1 

9 

7 

2.282 

7.203 

1.964 
-1.646 

6.000 

4.494 

.048 

.00005 

.081 

.348 

.0002 

.003 

 

Since there was no variation between the predictions in round 6, a significance test could 

not be performed.  Here we discover that the differences in rounds 1, 2, and 5, as well as 

the total games correct are all statistically significant.  Thus, we can conclude that the 

Bayesian models predicted the winners of the 63 actual tournament games in 2012 better 

than the least squares models in most aspects with rounds 3 and 4 undetermined.  

However, the test in round four only had one degree of freedom, making it a weak test. 

 

3.4.3  Using the Models to Fill Out the 2012 Bracket 

In the third measurement of accuracy, we used each model and system to fill out a 

bracket as if it were the beginning of the tournament and only the first round games had 

been determined.  Different from the previous section, we do not allow the models to fix 

their mistakes and force them to make predictions on the games they believed would 
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occur, even if those teams were actually eliminated earlier in the actual 2012 tournament.  

In order to predict the game correctly, it is not imperative that both teams in the matchup 

are correct.  As long as the team that won the game in the tournament is predicted to win 

in the model, it is counted as a success even if their opponent is different.  This is the 

scenario that we are most interested in because most March Madness competitions do not 

allow participants to select games round by round. 

Table 10: Number of Games Predicted Correctly in Each Round for Each Model when Choosing 

Games to Fill Out the 2012 Bracket 

Model Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Total 

Model 1 
Model 2 

Model 3 

Model 4 

Model 5 

Model 6 

Model 7 

Model 8 

Model 9 

Model 10 

20 
19 

22 

21 

20 

21 

21 

23 

20 

24 

10 
8 

9 

11 

11 

9 

11 

10 

11 

11 

5 

5 

4 

6 

5 

4 

5 

4 

5 

7 

1 
1 

1 

2 

1 

1 

1 

1 

1 

2 

1 

1 

1 

0 

1 

1 

1 

0 

1 

1 

1 

1 

1 
0 

1 

1 

1 

0 

1 

1 

38 
35 

38 

40 

39 

37 

40 

38 

39 

46 

Model 11 

Model 12 

20 

20 

8 

8 
5 

6 

2 

2 
2 

1 

1 

1 

38 

38 

Pomeroy 

Sagarin 
Seed 

22 

22 
22 

9 

10 
11 

5 

5 
5 

3 

3 
1 

1 

1 
1 

1 

0 
1 

41 

41 
41 

 

Comparing the brackets chosen using the ten Bayesian models to the ones from the 

Pomeroy and Sagarin ratings or by seed, most performed worse with Model 10 being the 

exception.  We will discuss Model 10 later, leaving it out of this analysis, and focus on 

why the other models failed to achieve a higher accuracy.  Note that the accuracies were 

relatively low this year for all models, including Pomeroy and Sagarin (65% for both 

versus their ten year averages of 74% and 73% respectively) due to two major upsets in 

the first round.  Missouri and Duke, both awarded two seeds, fell to fifteen seeds Norfolk 

State and Lehigh.  Nine of our Bayesian models as well as Pomeroy and Sagarin had 

Missouri and Duke winning at least their first two games; some of our models advanced 
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Missouri to the Final Four.  Since these upsets are nearly impossible to predict, they 

affected all brackets that we are comparing here in a similar manner.  Excluding Model 

10, the other nine Bayesian models averaged 20.78 games correct in the first round versus 

22 for both Pomeroy and Sagarin.  Two major disparities between our models and 

Pomeroy‟s and Sagarin‟s ratings systems made the first round slightly less accurate.  

Both Pomeroy and Sagarin predicted fourth seeded Louisville to defeat thirteenth seeded 

Davidson in the first round.  However, all of our models except Model 10 predicted a 

Davidson upset.  This appears to be a case where a strong team coming from a weaker 

conference had its regular season statistics skewed by playing half of its games against 

teams that were inferior.  Since Louisville advanced to the Final Four, each of these 

models immediately lost the opportunity to get four games correct by eliminating 

Louisville in the first round.  Second, each of our models also failed to predict a Kansas 

State victory over Southern Mississippi in the first round, though Pomeroy and Sagarin 

both did; this was not as damaging since Kansas State was defeated by Syracuse in the 

next round.  The second and third round predictions in our models were comparable to 

Pomeroy and Sagarin.  Our models correctly identified an average of 10 Sweet Sixteen 

teams (versus 9 for Pomeroy and 10 for Sagarin) and 4.78 Elite Eight teams (against 5 for 

both Pomeroy and Sagarin).  Four of the nine Bayesian models did correctly predict 11 

Sweet Sixteen teams, which is notable considering two solid candidates in Missouri and 

Duke were eliminated in the first round.  However, predicting teams that advanced to the 

Final Four proved to be a challenge for our models.  Whereas Pomeroy and Sagarin both 

identified Kentucky, Ohio State, and Kansas as Final Four teams, our nine other models 

failed to predict more than two Final Four teams correctly.  Each one predicted Kentucky 
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to advance to the Final Four.  Model 4 was the only one to predict a second Final Four 

team correctly (Kansas), but failed to predict either team that would play for the national 

championship, opting for Michigan State over Syracuse. 

 

We will now compare the Bayesian methods to the least squares methods.  Observe that 

the Bayesian models averaged 39 games correct, whereas the least squares methods 

averaged 38 games correct.  The Bayesian models outperformed the least squares models 

in the second round, choosing an average of 10.1 Sweet Sixteen teams correctly against 

the least squares average of eight.  However, the least squares models slightly 

outperformed the Bayesian models from this point forward.  In the third round, Models 

11 and 12 correctly identified an average of 5.5 Elite Eight teams versus five for the 

Bayesian models.  The Bayesian models struggled to choose the Final Four teams 

correctly, with only two of ten models getting half of the teams correct; two models even 

failed to predict that either Kentucky or Kansas would play for the National 

Championship.  The least squares models both predicted that Kentucky would advance to 

the Final Four.  Model 11 correctly predicted that Kentucky would defeat Kansas in the 

championship game, while Model 12 believed Ohio State would join Kentucky in the 

Final Four.  Overall, the Bayesian methods appeared to predict games more accurately in 

the first and second rounds of the tournament, but performed slightly worse than the least 

squares models in the last four rounds.  However, given the close small differences in 

means and the small sample sizes in number of games, none of the differences are 

statistically significant. 
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Model 10 was the silver lining among all of the other models that underachieved.  It 

achieved the third highest accuracy in the test set at 76.67%.  Correctly predicting the 

winners of 46 of the 63 spots in the bracket (in spite of the two major first round upsets) 

resulted in an accuracy of 73%, far exceeding the accuracy of Pomeroy‟s and Sagarin‟s 

brackets, as well as the on chosen based on seeds, each of which was 65% accurate.  

Model 10 was primarily successful by minimizing the damage done in a volatile bottom 

left bracket, missing only four games; Pomeroy and Sagarin both missed on seven of the 

fifteen games here.  Model 10 succeeded in not only choosing Louisville to defeat 

Davidson in the first round, but by predicting them to advance to the Final Four, the only 

above method of choosing a bracket to do so.  Along the way, Louisville defeated New 

Mexico, St. Louis, and Murray State.  It is worth noting that St. Louis being predicted to 

win over Michigan State proved to be crucial since the model would have picked 

Michigan State over Louisville had they met.  Sending Louisville to the Final Four 

provided an extra three wins over Pomeroy‟s and Sagarin‟s brackets, both of whom had 

New Mexico defeating Louisville in the second round.  Also assisting in the accuracy of 

Model 10 was its ability to identify Missouri as a team that would lose early.  Although 

we advanced them to the second round immediately by virtue of their seed, Model 10 

correctly predicted that Florida would advance to the Sweet Sixteen, knocking out 

Missouri in our bracket instead of Norfolk State in reality.  This paved the way for 

Murray State to advance to the Elite Eight.  Otherwise, the model would have predicted 

Missouri to defeat both Murray State and Louisville in the third and fourth rounds 

respectively.  Model 10 was the only system that advanced seven teams correctly to the 

Elite Eight, missing only Florida.  Kentucky and Louisville were the only Final Four 
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teams it got correct, missing on the opportunity to choose Kentucky over Kansas in the 

championship game.  Model 10 achieved 83% accuracy between the top left and top right 

brackets.  In the top left bracket, it missed on only the first round games between Notre 

Dame and Xavier, and Duke and Lehigh.  Since the winners of these games faced off in 

the next round, it was impossible to predict the second round game correctly as our model 

chose Duke over Notre Dame, whereas Xavier defeated Lehigh in the tournament.  In the 

top right bracket, like all of our models, Model 10 favored Southern Mississippi over 

Kansas State for the first miss, and opted for Syracuse as the regional champion over 

Ohio State.  In the bottom right bracket, Model 10 performed somewhat worse than did 

Pomeroy and Sagarin, missing seven games compared to their five incorrect picks.  Our 

model missed the same five games that the rating systems did, but also missed North 

Carolina State defeating San Diego State and Kansas emerging as the regional champion 

instead of North Carolina. 

 

Strangely enough, Model 2, which achieved the highest accuracy (79.36%) of any model 

in the test set, performed the worst in the 2012 tournament with only 55.56% of the 

games correct.  Though it often predicted a lower seeded team to win, it was often wrong.  

Of the ten upsets that occurred in the first round of the 2012 tournament, Model 2 

correctly identified only three of them.  Conversely, Model 2 incorrectly chose an 

additional six lower seeded teams to upset higher seeded teams, leading to a first round 

accuracy of only 59%.  Of the fifteen games in the lower left bracket, Model 2 predicted 

only four games correct, all in the first round.  It even sent thirteenth seeded Davidson to 

the Elite Eight.  Model 2 struggled in the bottom right bracket in a similar manner that 
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Model 10 did, missing the same seven games.  In the top left, Model 2 missed the same 

three games as Model 10, but also predicted Wichita State to defeat Virginia 

Commonwealth in the first round.  Model 2 missed both games that Model 10 missed in 

the top right bracket, but also advanced Florida State to the Elite Eight instead of having 

them lose to Cincinnati in the second round. 

 

Recall from Section 3.4.2 how Models 4 and 8 both missed only 14 of the 63 actual 

games, yielding the best accuracy of all the Bayesian methods.  Both were good at fixing 

their mistakes and choosing the correct winner give the actual matchup.  However, when 

using these models to choose winners from the beginning, neither performed admirably.  

Model 4 returned an accuracy of 63.5% without allowing it to fix its mistakes.  Its biggest 

mistakes were picking Michigan State to win the national championship and advancing 

Missouri to the Elite Eight; these two teams accounted for seven of the 23 incorrect picks.  

Paired with four incorrect picks in toss-up games and having Syracuse in the 

championship game, this model made some bold picks that simply did not evolve.  It did 

correctly identify Kentucky and Kansas as Final Four teams.  Model 8, whose accuracy 

was worse at 60.3%, fell into the same trap as Model 4, choosing Michigan State as the 

champion and putting Missouri in the Elite Eight.  However, this model also picked 

Florida State as Michigan State‟s opponent in the championship game.  These three teams 

accounted for 11 of the 25 incorrect predictions.  Though Model 8 missed badly in the 

last four rounds, it did perform well in the first round, making 23 correct predictions.  

Model 8 trailed only Model 10 in first round accuracy, missing the same eight games, as 

well as picking Davidson over Louisville.   
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4. Conclusion 

Throughout this analysis of predicting the winners of games in the NCAA tournament, 

we have exhibited an ability to generate models that will retrospectively predict the 

winners of tournament games better than seeding alone does.  Each of our models 

achieved a higher accuracy in the test set than simply by selecting the higher seeded team 

to win.  However, this ability to predict the winners of the current year‟s games given that 

we do not know all 63 games at the beginning does not necessarily translate well to 

individual tournaments.  Nine of our ten Bayesian models were outperformed by the 

Pomeroy and Sagarin ratings, as well as choosing the games based on seed.  The 

Bayesian models, on average, did perform better than the least squares model though.  On 

the other hand, given that we know the 63 actual games in the tournament, the Bayesian 

models performed about as well as the other rating systems on average.  All ten 

outperformed both of the least squares models in this scenario. 

 

The disappointing performance of Model 2 in the 2012 tournament may be partly due to 

the fact that model averaging was used to generate the model.  When predicting outcomes 

retrospectively, this process should theoretically return the best results since all variables 

are included in proportion to their marginal probabilities.  However, for making 

prospective predictions on small datasets, this technique appeared to fail.  On the other 

hand, Model 10 performed quite well in all aspects.  Recall that Model 10 was created by 

selecting the most accurate model out of the most likely models of each size.  Doing this 

allowed each part of the piecewise model to identify different factors that were important 
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during different rounds of the tournament.  Choosing the most accurate models from the 

simulations ensured that the models did well in the test set.  Since they performed well in 

the past, but also included only those variables that were important and excluded ones 

that were not statistically significant, Model 10 appears to be the best model to use to fill 

out a bracket at the beginning of the NCAA tournament. 

 

Based on the predictions from one year‟s tournament, it is impossible to say whether or 

not any one of our Bayesian models is truly a success.  The models generated from model 

averaging do not appear to do well in predicting a tournament from the beginning, 

although they performed about as well as we expected given the actual tournament 

games.  Choosing the most accurate model from the Metropolis-Hastings algorithm 

provides some initial hope based on its success against the well known Pomeroy and 

Sagarin ratings.  However, we will need to use future tournaments to ultimately reach a 

conclusion on its true success.  Ultimately, matching up the teams playing in each game 

based on their regular season statistics and using those differences as the data proved to 

be an effective technique for making a prediction as to which team will win.    

 

5. Further Discussion 

Though we chose to use the two above described model selection techniques to perform 

variable selection, many other methods exist that would theoretically work just as well.  

Occam‟s window is a third technique that could have been used [6].  We also could have 

removed any model that had a more probable submodel from the analysis.  With regards 

to sampling techniques, a Gibbs sampler could have been used in place of Metropolis 
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sampling, although this would have made the process much less efficient since a larger 

lag would have been required to guarantee independence of the samples.  One possible 

limitation to our results arises from restricting the uniform prior distributions on the 

regression coefficients to the interval ,    -.  When each model‟s least squares 

regression coefficients were compared against the Bayesian regression coefficients, most 

fell into the above interval; however, for the few variables whose least squares regression 

coefficient was outside this interval, our results may have turned out better by allowing 

the regression coefficients to come from an interval with a larger width. 

 

Similarly, while we used stepwise logistic regression to identify the least squares models, 

other least squares techniques exist.  Branch and bound is a popular technique that 

searches the entire sample space of models by generating a sequence of variables that 

continually increase the likelihood, and eliminating the inclusion of a variable that does 

not contribute significantly to the likelihood [7].  Another least squares technique to help 

identify a logistic model is through partitioning, although one has to be careful so as not 

to force relationships in the data, thereby including variables that are not actually 

statistically significant even though the partition identifies a relationship. 

 

Within the Newton-Raphson algorithm, there exists the potential for two problems, one 

of which we encountered.  The first is the possibility that the algorithm will not converge 

to the least squares estimates of the regression coefficients, but rather to a different local 

maximum.  We did not come across this situation, but the opportunity for this to occur 

exists.  The second problem, which we did run across, was that the Hessian matrix in the 
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third step of the algorithm was often singular and could not be inverted.  To solve this 

problem, we used the pseudoinverse of the Hessian in its place.   

 

One of the larger problems encountered throughout the course of this project in terms of 

basketball was the presence of strong mid-major and small conference teams that were so 

much better than the competition within their own conferences that their statistics were 

skewed to make these teams look much stronger than they actually were.  Even imposing 

a penalty by classifying the teams by conference was not enough to make up for the 

difference.  This was particularly evident with Davidson in the 2012 tournament, who 

was predicted to defeat eventual Final Four team Louisville in the first round in 11 of our 

12 models, but in neither Pomeroy‟s nor Sagarin‟s ratings.  Future research would try to 

find a way to accommodate for this skewed data.  Another problem with these models is 

the inability to account for injuries and/or suspensions.  However, this will be 

encountered in all models and rating systems as it is impossible to put a numeric value on 

a player and exactly how much he adds to the probability of his team winning. 

 

The successful results from this paper have now left the door open for future research in 

this direction.  Instead of using the season averages as data, the distribution of each 

statistic for each team could be used.  A simulation could be created by sampling from 

each of those distributions and playing the game under those conditions instead of 

assuming the team is going to perform at its average level.  This could open the door to 

the prediction of more upsets in cases where an inconsistent higher seeded team that takes 

risks is playing a consistent lower seeded team that always plays a solid game that does 
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not deviate much from the mean.  Similarly, one could cluster all the teams in NCAA 

Division I basketball according to some chosen set of regular season statistics.  Similar 

opponents to the one in the tournament game could then be found and predictions could 

be made by comparing performances in similar games.  Finally, a method of determining 

how volatile the tournament is going to be would be helpful in predicting winners.  In 

recent years, we have seen tournaments with an unprecedented number of upsets, such as 

2011 where none of the 1 and 2 seeds advanced to the Elite Eight; conversely, just two 

years earlier, the 2009 tournament saw all 12 1, 2, and 3 seeds advance to the Sweet 

Sixteen for the first time in history.  Delving deeper into the regular season statistics and 

using teams outside of the tournament could reveal other information about what we 

should expect in terms of upsets.  
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Appendix I. Potential Variables Used for the Variable Selection Process 

 

Var. 

No. 

Variable Name Var. 

No. 

Variable Name 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 
13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 
24 

25 

26 

27 

28 

Constant 

Higher Seed- Conference =1 (1 or 0) 

Higher Seed- Conference =3 (1 or 0) 

Higher Seed- Won Conf. Tourn. (1 or 0) 

Higher Seed- Wins in Last 10 Games 

Higher Seed- Years of Seniority 

Higher Seed- Preseason AP Poll Ranking 

Higher Seed- Winning Percentage 

Higher Seed- Conference Winning Pct. 

Lower Seed- Conference =1 (1 or 0) 

Lower Seed- Conference =3 (1 or 0) 

Lower Seed- Won Conf. Tourn. (1 or 0) 
Lower Seed- Wins in Last 10 Games 

Lower Seed- Years of Seniority 

Lower Seed- Preseason AP Poll Ranking 

Lower Seed- Winning Percentage 

Lower Seed- Conference Winning Pct. 

Diff. in Points Scored per Game 

Diff. in Field Goal Pct. 

Diff. in Free Throw Pct. 

Diff. in 3 Point Pct. 

Diff. in Offensive Rebounds/Gm. 

Diff. in Defensive Rebounds/Gm. 
Diff. in Assists/Gm. 

Diff. in Steals/Gm. 

Diff. in Blocks/Gm. 

Diff. in Turnovers/Gm. 

Diff. in Personal Fouls/Gm. 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 
41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 
52 

53 

54 

55 

Diff. in Points Allowed per Game 

Diff. in Opponent Field Goal Pct. 

Diff. in Opponent Free Throw Pct. 

Diff. in Opponent 3 Point Pct. 

Diff. in Opponent OR/Gm. 

Diff. in Opponent DR/Gm. 

Diff. in Opponent Assists/Gm. 

Diff. in Opponent Steals/Gm. 

Diff. in Opponent Blocks/Gm. 

Diff. in Opponent Turnovers/Gm. 

Diff. in Opponent Per. Fouls/Gm. 

Diff. in Points Scored per Possession 
Diff. in Effective Field Goal Pct. 

Diff. in True Shooting Pct. 

Diff. in Assist Pct. 

Diff. in Steal Pct. 

Diff. in Block Pct. 

Diff. in Turnover Pct. 

Diff. in Assist/Turnover Ratio 

Diff. in Opponent Pts per Possession 

Diff. in Opponent Effective FG Pct 

Diff. in Opponent True Shooting Pct 

Diff. in Opponent Assist Pct. 
Diff. in Opponent Steal Pct. 

Diff. in Opponent Block Pct. 

Diff. in Opponent Turnover Pct. 

Diff. in Opponent Assist/TO Ratio 
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Appendix II. Variables Included in Each of the Twelve Models 

 

Model Round(s) Included Variables 

1 All All 

2 1 
2 

3 through 6 

All 
All 

All 

3 All 1 8 9 16 17 22 27 34 37 46 47 53 55 

4 1 

2 

3 through 6 

1 2 3 9 10 17 22 33 37 40 46 47 48 53 55 

1 2 5 7 8 9 17 26 40 47 48 

1 3 5 8 9 12 16 34 35 40 44 46 47 48 52 

5 All 1 3 4 6 7 8 9 10 12 15 16 17 19 21 22 27 28 31 34 37 39 40 41 42 45 46 47 48 53 

54 55 

6 1 

2 

3 through 6 

All except 6, 14, 18, 21, 30, 42, 51 

All except 6, 15, 21, 28, 29, 31, 45 

All except 21, 32, 49, 50, 51 

7 All 1 8 9 17 22 27 34 37 46 47 53 55 

8 1 

2 

3 through 6 

1 22 33 37 40 46 48 50 53 55 

1 3 4 7 9 12 14 17 20 40 

1 3 5 8 12 16 27 35 40 44 46 47 48 52 54 

9 All 1 16 17 27 34 37 47 53 55 

10 1 

2 

3 through 6 

1 3 11 17 26 29 36 37 40 46 47 48 

1 7 9 16 17 26 36 37 42 43 47 53 

1 2 8 9 11 12 16 25 31 34 36 38 40 41 47 48 

11 All 1 7 10 11 13 15 17 23 24 37 39 40 43 44 48 

12 1 
2 

3 through 6 

1 7 14 20 26 34 44 46 48 50 53 
1 5 7 18 23 39 41 43 44 45 53 

1 15 20 23 31 34 44 
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