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ABSTRACT 

 

THE NEONATAL ANTI-VIRAL RESPONSE FAILS TO CONTROL MEASLES VIRUS 

SPREAD IN NEURONS DESPITE INTERFERON-GAMMA EXPRESSION AND A 

TH1-LIKE CYTOKINE PROFILE 

 

 

By 

Priya Ganesan 

December 2017 

 

Dissertation supervised by Dr. Lauren A. O’Donnell 

Neonates are highly susceptible to infections in the central nervous system (CNS) and have a 

greater risk of viral infections and encephalopathies.  Neurotropic viral infections can lead to 

blindness, hearing loss and neurological deficiencies such as cognitive impairment, epilepsy, and 

even death in the neonatal and pediatric populations. Viral infections also are hypothesized to 

indirectly contribute to neurodegenerative and neuropsychiatric diseases such as Schizophrenia 

and Parkinson’s disease later in life due to early neuronal damage or stress. Many diverse viruses 

are capable of invading the neonatal CNS including Borna Disease Virus, Coxsackievirus (CV), 

Herpes simplex viruses (HSV), and measles virus.  Although, we understand that many viruses 

can cause CNS disease, the mechanisms of viral pathogenesis in the brain and the character of the 

neonatal anti-viral immune response are not well understood.  However, it is hypothesized that 

neurological damage results from the combined effect of the virus and the immune response. 
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Therefore, it is critical to develop immune-mediated strategies to promote viral clearance from the 

CNS while preventing neuronal damage or loss. This remains a challenge during neonatal CNS 

infections because of the uniquely immature nature of the neonatal immune system and the 

sensitivity of developing neurons to inflammation. In order to better understand how the neonatal 

immune response behaves in the brain, we use neurotropic measles virus (MV) as a model to 

understand the deficits in the neonatal immunity.  Measles is a single-stranded, negative-sense 

RNA virus that is highly contagious in humans. Typical infection involves inhalation of infected 

respiratory droplets, infection of dendritic cells and macrophages in the respiratory tract resulting 

in transient immunosuppression, and a characteristic fever and rash.  However, in some cases, MV 

also causes severe neurological diseases such as Post-infectious encephalomyelitis (PIE), Subacute 

sclerosing panencephalitis (SSPE), and Measles inclusion body encephalitis (MIBE). Currently, 

there is no cure for these MV-related neurological conditions, which occur overwhelmingly in 

newborns and children.  Thus, the goal of this project is to define how neonatal immunity responds 

to MV infection in the unique microenvironment of the brain.  

 

The role of interferon-gamma (IFN), a key anti-viral cytokine in controlling adult CNS 

infections, was explored during a neuronally-restricted MV infection in the neonatal brain. We 

hypothesized that neonatal mice would be deficient in either IFN production or in the infiltration 

of IFN-producing immune cells in the brain.  In order to address this question, we utilized the 

CD46+ mouse model, in which the human CD46+ receptor for MV is expressed only in mature 

neurons of the CNS.  We explored the differences in the neonatal immune response, where the 

mice succumb to MV infection, and compared that to the CD46+ adults, which successfully control 

MV and survive. Our findings suggest that IFN, which is critical for viral control and survival in 
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adults, only delays mortality in CD46+ neonates.  The neonatal brains also show the infiltration of 

natural killer cells, neutrophils, infiltrating monocytes and T cells in an IFN-independent manner, 

all of which are capable of contributing to the IFN pool.  However, neonates and adults 

differentially express pathogen recognition receptors (e.g. Toll-like receptors) and Type I 

interferons during infection in the CNS, which suggests that the initial recognition of the virus by 

the immune system may differ in an age-dependent manner. Both neonates and adults expressed 

IFN, CXCL10, IL-1, and IL-1RA, among other cytokines/chemokines.  Regardless, CD46+ 

neonates succumb to infection despite mounting a Th1-like, but apparently defective, 

inflammatory response.  We further explored whether there are age-dependent differences in IFN 

signalling given that both ages of mice expressed this critical cytokine. Both neonatal and adult 

CD46+ mice express similar levels of IFN but only adults show robust induction of the IFN-

responsive genes CIITA and CXCL9. This suggests that IFN signaling may be defective in the 

induction of IFN-responsive genes in neonates compared to adults.  

 

To dissect the role of individual components of the immune system, we utilized CD46+ 

mice crossed to specific immune knockouts: CD46+/IFN-KO mice, which lack IFN, and 

CD46+/RAG2-KO mice, which lack mature B and T cells.  We found that neonates lacking IFN 

succumbed more rapidly than wildtype CD46+ mice, while neonates lacking mature B and T cells 

showed delayed morbidity and mortality.  Neonates without IFN show high infiltration of 

neutrophils and inflammatory monocytes but similar numbers of NK cell infiltration compared to 

CD46+ neonates. CD46+/IFN-KO neonatal brains also show high infiltration of CD4 and CD8 T 

cells at the later stages of MV infection. Additionally, IFNα is significantly upregulated in the 

absence of IFN in the brain post-MV infection. Thus, compensatory cytokines and high immune 
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cell infiltration may contribute to uncontrolled inflammation and earlier death in CD46+/IFN-KO 

neonates. CD46+ mice deficient in T-cells and B-cells (CD46+/RAG2-KO) show prolonged 

survival and mount a robust IFNβ response post-MV infection. This suggests that the adaptive 

immune response may be detrimental during the neonatal period, potentially leading to greater 

tissue damage.  Additionally, CD46+/RAG2-KO neonates alone upregulate unique genes such as 

bone morphogenetic proteins (BMPs), which may mediate neuroprotection. Thus, these results 

suggest age-dependent expression of cytokine profiles in the brain and distinct dynamic interplays 

between lymphocyte populations and cytokines/chemokines in MV-infected neonates. 
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CHAPTER 1: LITERATURE REVIEW 

1. Introduction 

1.1 Neonatal infections 

Although smallpox and polio have been largely eradicated, various pathogens can cause 

damage to the fetus in utero and in young children.L  Pathogens that can infect during pregnancy 

and during the early neonatal period include the TORCH pathogens (Toxoplasma gondii, Rubella 

virus, Cytomegalovirus (CMV), and Herpes simplex viruses (HSV)), Treponema pallidum, 

Respiratory syncytial virus (RSV), Zika virus and Measles virus (MV) (Adams Waldorf and 

McAdams, 2013, Marodi, 2006). Many of these infections are common in developing countries 

(MV, Toxoplasma), whereas some infections remain common worldwide (CMV, HSV). 

Although, this diverse group of pathogens may have different mechanisms of replication, they 

each contribute to greater neuropathology and neurological changes in younger hosts. 

 

MV is a highly transmissible virus with an R0 value of 15, meaning that one infected 

person will infect 15 other people on average (Griffin et al. , 2008).  MV is associated with high 

infant mortality although, it is vaccine-preventable.  In 2014, 267,000 measles cases were 

reported and 146,000 estimated deaths, mostly in young children worldwide. According to the 

CDC, there was a 75% decline in measles deaths from 2000-2013 (15.6 million deaths 

prevented). But in 2017, till June 17th, there have been 117 reported cases of MV infection in the 

United States (Centers for Disease Control and Prevention, 2017). A two-dose vaccination 

approach has made significant strides towards global measles control. However, there is 

resurgence in MV and MV-related deaths due to logistical and financial challenges in sustaining 

the current mass campaign strategy in developing countries (Shibeshi et al. , 2014). In addition, 
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parental concerns about vaccine safety in addition to philosophical and religious objections has 

led to a resurgence of MV as an endemic disease in many industrialized nations, despite a lack of 

evidence between the MV vaccine and autism (Richard and Masserey Spicher, 2009) (Muscat et 

al. , 2009).   

 

Table 1 

Virus CNS pathology 

Cytomegalovirus Encephalitis, epilepsy, blindness, deafness 

Herpes Simplex Virus Encephalitis, blindness, herpetic neuralgia 

Zika Virus Microcephaly, agyria  

Eastern equine encephalitis virus Panencephalitis, meningitis, cerebral edema  

West Nile Virus Encephalitis, meningitis, myopathy, paralysis 

Human Immunodeficiency virus Dementia, loss of motor function, encephalitis, 
myelitis 

Borna Disease Virus  Schizophrenia, depression  

Measles Virus Encephalitis (PIE, SSPE, MIBE)  

Japanese Encephalitis Virus Seizures, acute flaccid paralysis 

Coxsackie B virus Epilepsy 

Chikungunya virus Altered consciousness, Seizures, Brain lesions 
and swelling 

Varicella Zoster Virus Vasculopathy of small and large cerebral vessels 

Table 1: Neurotropic Viruses and associated neuropathologies 
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Neurons are terminally differentiated, long-lived cells. Neurotropic viruses may spread 

by axonal transport and move from neuron to neuron through interconnected synapses 

(Ehrengruber et al. , 2002). Certain neurotropic infections can be resolved, but in some cases 

excessive or chronic inflammation in the CNS can be have disastrous effects. The virus and/or 

the immune response can irreversibly disrupt the complex architecture of the brain. For example, 

human infections with variegated squirrel Borna virus-1 show the presence of brain lesions with 

edema, necrosis, and glial activation, and in utero infections with CMV are associated with 

lissencephaly and enlarged ventricles (Volpe, 2008) (Hoffmann et al. , 2015, Ludlow et al. , 

2016).  Thus, viral infections can lead to substantial alterations in the structure and subsequent 

function of the brain.  

 

Viral infections in the CNS also are hypothesized to indirectly contribute to 

neurodegenerative and neuropsychiatric diseases later in life due to damage from a previous 

infection (e.g. schizophrenia, Parkinson’s Disease) (Jang et al. , 2009, Khandaker et al. , 2013, 

Landreau et al. , 2012). Infection in the CNS is due to a failure in the immune surveillance 

mechanism and is common in immunocompromised hosts (Ito et al. , 2000, McArthur, 2004, 

Utley et al. , 1997). Thus, it is apparent that neurotropic viruses cause significant disease in the 

neonatal brain, but the functionality of the anti-viral immune response in the brain during the 

neonatal period is poorly understood. Therefore, it is essential to understand mechanisms that 

contribute to neuropathological and immunopathological alterations post viral entry into the 

CNS.  
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1.2  Mechanisms of cell death in the CNS 

The resolution of infection varies depending on the tissue that is affected and on the type 

of invading pathogen (Miller et al. , 2016). We cannot tolerate the loss of non-renewable cells like 

neurons compared to lysis of renewable cells such as epithelial cells during infections. For example, 

HSV-1 causes severe immune and virus-mediated cell death of epithelial cells (Braaten et al. , 

2005, Jones et al. , 2003, Paludan et al. , 2011). However, the lost cells are readily replaced, as 

observed by healing of a cold sore. In contrast, Human herpes virus Type 6 infections cause 

seizures and meningoencephalitis in children, which is characterized by neuronal loss with gliosis 

and microglial nodules in the temporal cortex (Forest et al. , 2011).  

 

Neuronal loss and neuropathology during CNS infections may occur through direct 

infection and cytolysis by the virus, or through the inflammatory strategies that cause immune-

mediated lysis of the virally-infected cell.   In the CNS, a more favorable immune response in the 

brain would be non-cytolytic towards infected neurons and maintain neuronal integrity (Miller, 

Schnell, 2016). But when lytic approaches occur, such as through granzymes and perforins, they 

carry the risk of irreversible damage and cell death to the infected neurons, which could contribute 

long-term neurological impairments.  In many adult CNS infection models, the pleiotropic 

cytokine interferon gamma (IFN) is key to suppressing viral spread while sparing the infected 

neurons through non-cytolytic clearance, thus limiting neuropathology and viral replication 

(Burdeinick-Kerr et al. , 2007, Hausmann et al. , 2005, Larena et al. , 2013, Patterson et al. , 2002, 

Stubblefield Park et al. , 2011). However, in neonates, viruses often spread rapidly in brain tissue 

despite the initiation of an immune response (Hausmann, Pagenstecher, 2005, Kopp et al. , 2014, 

Manchester et al. , 1999).  
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Although the anti-viral role of many immune cells and factors have been well studied, how 

immune cells behave in the brain to mediate non-cytolytic clearance is not as clear.  Moreover, the 

impact of age on the function of the anti-viral response in the brain is largely undefined. In the 

next section, we review the current literature on immune cell function during viral infection and 

their roles in the CNS, and highlight any known differences based on the anatomical location of 

the infection (brain vs. peripheral organs) and age. 

 

1.3  Immune clearance of neuronal infection 

1.3.1 Innate immunity 

The innate immune response occurs within minutes to hours after infection or injury, such 

as meningitis, stroke or other brain trauma (Reviewed in (Ransohoff and Brown, 2012). It is 

characterized by activation of pattern recognition receptors, which are expressed by all cell types 

in the brain. Activation of microglia (brain-specific macrophages) causes expression of 

proinflammatory mediators (chemokines and cytokines) followed by infiltration of other innate 

immune cells such as natural killer cells and neutrophils (Downes and Crack, 2010).  The innate 

immune response is not antigen-specific, and thus it can be mounted quickly against a variety of 

insults.   

 

1.3.2  Pattern recognition receptors (PRRs) 

The innate immune system detects a viral infection by PRRs present either on the cell 

surface or within intracellular organelles. These PRRs include Toll-like receptors (TLRs), retinoic 

acid-induceble gene I-like receptor (RLRs), nucleotide oligomerization domain like receptors 

(NLRs), and cytosolic DNA sensor families. During viral infection, the virus replicates in different 
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compartments of the cell, where they are detected by the PRRs. These receptors recognize 

pathogen-associated molecular patterns (PAMPs) such as 5’ triphosphate RNA, which is not 

normally found in host RNA or nucleic acids such as viral DNA or double-stranded RNA 

(Reviewed in (Thompson and Whitley, 2011).  

 

RNA viruses, such as measles virus, are recognized by the cytoplasmic PRRs, retinoic acid-

induced gene-I (RIGI) and MDA5, and the endosomal TLRs. TLR3, RIG-1, and MDA5 recognize 

double stranded RNA (dsRNA) molecules, which can be a replication intermediate or the 

functional genome of the virus, depending on the viral life cycle.  TLR7/8 and TLR9 recognize 

viral single-stranded RNA (ssRNA) and DNA. The activation of these receptors lead to the 

induction of Type 1 interferons (IFNs), which are significant early steps in viral control (Akira et 

al. , 2006, Takeuchi and Akira, 2009, Yoneyama et al. , 2004, Zalinger et al. , 2015).  

 

A. Toll like receptors (TLRs) 

Various forms of viral nucleic acids are detected by TLR3, TLR7, TLR8, and TLR9 and play 

key roles in the recognition of viral genetic materials in endolysosomal compartments (Reviewed 

in (Lester and Li, 2014). All TLRs share a similar architecture consisting of extracellular leucine-

rich repeats and a cytoplasmic Toll/Interleukin-1 Receptor (TIR) domain. TLRs are type I 

transmembrane protein that traffic between the plasma membrane and endosomal vesicle and 

recognize PAMPs in the extracellular environment. TLRs on the plasma membrane recognize 

hydrophobic lipids and proteins and those in the endosomes detect nucleic acids (Figure 1). TLR3, 

TLR7, TLR8 and TLR9 are endosomal receptors and signal through the adaptor protein myeloid 

differentiation primary response gene 88 (MyD88) (Kawai and Akira, 2008). TLR3 utilizes the 
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TIR domain containing adaptor inducing interferon-β (Trif) adaptor molecule.  TLR3, in particular, 

has been shown to be induced by the MV-Edmonston strain in cell lines (Tanabe et al. , 2003). 

TLR stimulation leads to macrophage activation, followed by cytokine and chemokine production 

and initiation of adaptive immunity. Macrophage activation is defined by expression of major 

histocompatibility complex (MHC) class I and II molecules, which is induced by the IFNs that are 

triggered by TLR activation  (Frei et al. , 2010).  

 

PRRs are expressed by immune cells as well as in the CNS (Suh et al. , 2009). Both neurons 

and microglia express TLRs, RIG-1, and MDA5 and thus, play critical roles in the initiation of 

innate immunity (Nazmi et al. , 2011). There is evidence that intracellular TLRs in human neurons 

mediate viral recognition and initiation of the innate immune response during HSV-1 infection. 

Both IFNα and IFNβ are induced during neuronal HSV-1 infection as a result of TLR engagement 

(Zhou et al. , 2009). There is conflicting evidence on the functionality and expression of TLRs in 

neonates. Some studies suggest that newborns exhibit well developed TLR sensor function. 

Healthy children over the first 5 years of life appear to express stable TLRs and downstream 

signaling molecules at adult-like levels (Reviewed in (Kollmann et al. , 2012). Other studies 

indicate that murine neonatal intestinal epithelial cells fail to express TLR3 in response to rotavirus 

infection through post-natal days 1-10, which overlaps with the time points reflected in our studies 

(Pott et al. , 2012).  Similarly, human cord blood samples do not induce TLR3 in response to 

poly(I:C) treatment or HSV activation in comparison to adult NK cells (Slavica et al. , 2013).  Thus, 

the age-dependent effects of TLR induction and functionality in the neonatal CNS are not well 

understood.  
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B. Retinoic acid-inducible gene I-like receptors (RLRs) 

The RLR family is comprised of MDA-5 and RIGI and sense PAMPs in viral RNA. The 

expression of RLRs are low in resting cells but increase during viral infection and due to IFN 

exposure (Reviewed in (Loo and Gale, 2011)).  MDA5 expression is induced by the virus in cells 

without the IFN receptor, indicating that RLR expression is controlled by a direct virus-inducible 

signal (Yount et al. , 2007). Various families of virus such as Paramyxoviridae, Rhabdoviridae, 

Picornaviridae, and Orthomyxoviridae are recognized by RIGI and MDA5.  Viruses such as 

Dengue virus, West Nile virus, and Reovirus are recognized by both MDA5 and RIGI.  Studies 

suggest that mice lacking RIGI or MDA5 receptors are highly prone to RNA viral infections, 

highlighting the importance of these proteins in recognizing RNA viruses. (Reviewed in (Loo and 

Gale, 2011).  
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 RLRs signal through the common adaptor mitochondrial antiviral signaling protein 

(MAVS) (Kawai and Akira, 2008). RIG1 and MDA5 share several similarities such as i) N-

terminal region consisting of tandem caspase activation and recruitment domains (CARD) ii) a 

central DExD/H box RNA helicase domain with the capacity to hydrolyze ATP and to bind and 

unwind RNA, and iii) a C-terminal repressor domain (RD) for autoregulation. RIGI is present in 

the cytoplasm in resting conditions. During a viral infection, RIGI binds to PAMPs and 

undergoes a conformational change to release CARDs from RD. This conformational change 

results in formation of dimers in an ATP-dependent manner. The CARDs in the RIGI complex 

mediate signalling via mitochondrial antiviral signaling protein (MAVS).  MDA5 also signals 

through downstream adaptor protein, MAVS, which in turn induces type I IFNs and host defense 

gene expression (Reviewed in (Loo and Gale, 2011)). Both TLRs and RLRs lead to activation 

NF-κB, MAP kinases and IRF3, resulting in production of pro-inflammatory and anti-viral 

response genes (Akira, Uematsu, 2006).  
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Figure 1  

 

 

Figure 1. TLR signaling  

TLRs recognize viral proteins such as dsRNA, ssRNA and CpG DNA and antiviral immune 

response is initiated. TLR2 and TLR4 are cell surface receptors and recognize viral proteins. 

TLR3, TLR7, TLR8, and TLR9 are intracellular receptors present on the endosomes and 

recognize viral dsRNA, ssRNA and unmethylated CpG DNA. All TLRs recruit MyD88 except TLR3. 

Both TLR3 and TLR4 recruit adaptor protein TRIF. Both MyD88 and TRIF-dependent signaling 

complexes activate transcription factors such as NF-KB, IRF3, and IRF7. Inflammatory cytokines 

and chemokine expression is regulated by NF-KB. Whereas IRF3 and IRF7 mediate the 

transcription of Type I IFN and type III IFN genes.  ((Lester and Li, 2014); Reprinted from Toll-

Like Receptors in Antiviral Innate Immunity, Volume 426, Issue 6, Sandra N. Lester, Kui Li, Pages 

1246-1264, 20 March 2014, with permission from Elsevier) 

 

http://www.sciencedirect.com/science/journal/00222836/426/6
http://www.sciencedirect.com/science/article/pii/S0022283613007353?via%3Dihub#!
http://www.sciencedirect.com/science/article/pii/S0022283613007353?via%3Dihub#!
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1.3.3 Type I Interferon 

After a virus, has initiated infection in a host cell, the early anti-viral response is started by 

sensing of pathogen associated molecular patterns (PAMPs) by pattern recognition receptors 

(PRR), which are expressed in all cells. The binding of conserved motifs such as single stranded 

RNA (ssRNA), double stranded RNA (dsRNA), and glycoproteins induces the production of the 

type I IFNs: IFNα and IFNβ.  Type I IFNs are produced by infected cells and act in a paracrine 

and autocrine manner through IFNAα/β (IFNAR) receptor.  Engagement of IFNα/β with the 

cognate receptor results and in phosphorylation of tyrosine kinases (Janus kinases) and tyrosine 

phosphorylation of cytoplasmic signal transducer and activator of transcription (STAT1) and 

STAT2. Activated heterodimers of STAT1-STAT2 bind to IFN regulatory factor 9 (IRF9) to form 

Interferon-stimulated gene factor 3 (ISGF3), which translocates to the nucleus and binds to IFN-

stimulated response elements within the promoters of IFN-stimulated genes (ISGs). These genes 

produce proteins that inhibit viral replication and promote virus clearance. ISGs can directly cleave 

viral nucleic acids, trigger apoptosis or autophagy of the infected cell, and upregulate major 

histocompatibility complex (MHC) class I expression to mediate CD8 T cell cytotoxicity. Type I 

IFNs bind to neighbouring uninfected cells and protect them from infection, thereby containing 

the initial spread of the virus. Type I IFNs also contribute to the recruitment of adaptive immune 

effectors to infected sites, which further promotes viral clearance (Goodbourn et al. , 2000, 

Holmgren et al. , 2015). In canonical type I IFN signalling, JAK/STAT pathway is activated 

leading to transcription of ISGs and IFNβ. During viral spread and secondary infection, IFN-β 

drives IRF7 gene expression to enable a full type I IFN response (Perry et al. , 2005).  
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Infected neurons may secrete type I IFNs, which act in an autocrine and paracrine manner 

on other neurons and brain parenchymal cells (Delhaye et al. , 2006). Studies in Theiler’s virus 

and La Crosse virus models of CNS infection suggest that type I IFN is produced by infected 

ependymal cells, macrophages and neurons; but only 3% of infected neurons express Type I IFN 

(Delhaye, Paul, 2006). Other studies with La Crosse virus found that neurons do not express Type 

I IFN, but glial cells expressed Type I IFNs (Kallfass et al. , 2012).  However, hippocampal neurons 

have been shown to express a higher basal level of interferon beta (IFNβ) than peripheral 

fibroblasts, suggesting that neurons are capable of expressing Type I IFNs under a variety of 

circumstances (Cavanaugh et al. , 2015).  Whether virally-infected neurons express Type I IFNs 

may then be dependent upon the type of virus that is infecting the cells and the type of PRRs that 

detect it.  
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Figure 2

 

Figure 2. Antiviral innate immunity.  

Virus (red) infects the host cell (white circle). The virus is recognized by pattern 

recognition receptions (PRRs) such as RIGI, MDA5, TLR3 or TLR7. They activate 

downstream signaling cascades after they recognize the viral molecular patterns and lead 

to the induction of IFNα and IFNβ. Macrophages are innate cells that recognize a foreign 

pathogen and can phagocytose the pathogen and release several cytokines. 

Macrophages release cytokines that activate Natural killer cells (NKs). NK cells release 

IFNγ which further activates the T-cell response (adaptive immunity). NK cells also act 

through granzymes and perforin can attack the virally infected cells. Neutrophils, part of 

innate immunity release protease and reactive oxygen species during a viral infection. 
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1.3.4 Microglia 

Microglia and astrocytes are resident cells of the brain that respond immediately to neuronal injury.  

Microglia are the resident macrophages of the brain. They are derived from the early yolk sac from 

macrophage progenitor cells (Ginhoux et al. , 2010, Kierdorf et al. , 2013). They play critical roles 

during normal brain development, disease, injury, and homeostasis.  There is negligible infiltration 

of peripheral monocytes to the brain parenchyma under physiological conditions and the microglia 

population is likely sustained by self-renewal (Ajami et al. , 2007). When microglia undergo 

activation, they transform from ramified phenotype to an amoeboid phenotype with greater 

motility, migratory, and phagocytic capacities. Activated microglia produce neuroinflammatory 

mediators and cellular expansion (Atallah et al. , 2014, Lull and Block, 2010). Depending on the 

type of insult, microglia are polarized to M1 or M2 phenotype. M1 are activated or classical 

phenotype, produce proinflammatory cytokines such as TNF, IL-6. IL-1β and reactive oxygen 

species and nitric oxide. M2 microglia are anti-inflammatory and play a role in tissue repair. In 

vitro studies indicate that M1 microglia are neurotoxic. (Fernandes et al. , 2014). The age 

dependent differences in microglial phenotype during a neonatal CNS infection are not well 

understood.  

 

1.3.5 Neutrophils 

Neutrophils are part of the first line of defense and migrate from the bone marrow in response to 

chemokines that mediate the inflammatory response. These cells respond to PAMPs via TLRs and 

NLRs and are stimulated by cytokines such as TNFα and IFNγ. Activated neutrophils upregulate 

expression of CD15 and CD11b, adhesion molecules that help them bind to the endothelium and 

migrate into infected tissue (Mantovani et al. , 2011). Neutrophils produce large amounts of 
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reactive oxygen species (ROS) and release proteases that are stored in specific granules after 

activation. During viral infections, IFNs modulate the neutrophil response to the chemoattractant, 

CXCL1, and induce adaptive immunity (Munir et al. , 2011). Additionally, neutrophils are the 

dominant immune cell in the brains of mice deficient of IFNγ (Abromson-Leeman et al. , 2004, 

Wensky et al. , 2005), suggesting that IFNγ modulates neutrophil migration.  

 

Depending on the severity of infection, neutrophils may contribute to an unfavorable 

response. In multiple sclerosis models, neutrophils are among the earliest cells that infiltrate into 

the CNS. Depletion of neutrophils are associated with reduction in the severity of the disease in 

MS models (Carlson et al. , 2008). Studies in a neurotropic JHM strain of mouse hepatitis virus 

(JHMV) indicate that neutrophils and inflammatory monocytes are the first leukocytes to enter the 

brain post-infection (Zhou et al. , 2003). If neutrophils are eliminated, JHMV-infected mice 

preserve BBB integrity and show reduced infiltration of other immune cells.  Thus, these studies 

suggest that infiltrating neutrophils may contribute to neuropathology in the CNS. 

 

Neonatal innate immune cells such as neutrophils and monocytes show decreased 

chemotaxis, phagocytosis, and microbicidal properties compared to adult cells (Mariscalco et al. , 

1998). The number of polymorphonuclear leukocytes (PMNs)/granulocytes in neonates are higher 

than the numbers found in adults (Manroe et al., 1979).  Neonatal neutrophils have similar amounts 

of myeloperoxidase and defensins, but lower amounts of lactoferrin and elastase. This suggests 

that neonatal neutrophils may have quantitative and qualitative deficits that predispose newborns 

to infections.  
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1.3.6  Natural killer (NK) cells 

NK cells can respond to pathogens by mediating cytotoxicity and producing cytokines 

(Vivier et al. , 2008). These lymphocytes are critical players in innate immunity during viral 

infections and affect the outcome of adaptive immunity. Several viruses escape cytotoxic T-cells 

(CD8+) by decreasing MHC I expression in the infected cell. This prevents the host cell from 

presenting viral proteins to virus specific cytotoxic T-cells, but it makes the infected cell prone to 

NK cell defenses. NK cell activation is blocked by inhibitory receptors that bind to   MHC I. These 

receptors are called the Killer Cell Immunoglobulin-like receptor (KIR) family.  Therefore, cells 

with low MHC I expression, such as due to virus-dependent downregulation, are susceptible to 

attack by NK cells.  Cytokines such as Interleukin 12 (IL-12) and IL-18 mediate IFNγ production 

from NK cells during viral infections (Biron et al. , 1999). NK cells produce cytokines such as 

tumour necrosis factor (TNF) and IFNγ and various chemokines during an inflammatory response. 

NK cells mediate their anti-viral functions by lysis of infected cells, promoting recruitment of other 

non-specific innate cells such as neutrophils and macrophages, and modulate the T-cell and B-cell 

response (adaptive immunity) (Ljunggren and Malmberg, 2007). 

 

NK cells mediate protection in several neurotropic virus models such as HSV, Theiler’s 

murine encephalomyelitis virus, mouse hepatitis virus (MHV). For example, children with herpes 

encephalitis show deficiencies in NK cell function. There is also evidence of NK cells being 

neurotoxic as well as neuroprotective (Reviewed in (Poli et al. , 2013)). NK cells are known to not 

just promote the T-cell response but also to limit the immune response by killing APCs and 

lymphoid cells.  In neonates, there are higher numbers of circulating NK cells in the periphery than 

in adults, but the neonatal NK cells have limited cytotoxic function (Lee and Lin, 2013).  However, 
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the role of NK cells in the neonatal brain and how they infiltrate into the CNS are not well 

understood.  

 

1.4  Adaptive immunity 

The main cells involved in adaptive immunity are antigen-specific lymphocytes, including 

the CD4 and CD8 T cells and B-cells.  When a virus infects a host cell, it utilizes the protein 

machinery of the host cell to synthesize viral proteins. During this process, the viral proteins are 

degraded into peptides that will bind to major histocompatibility complex (MHC) class I molecules. 

The MHC I/peptide complex will be presented on the surface of the infected cells and CD8+ T 

cells specific to the peptide will identify the complex. The CD8 T cells then induce apoptosis of 

virally-infected cells through its cytotoxic molecules (Figure 3) (Rosendahl Huber et al. , 2014). 

However, in some circumstances, the CD8 T cells may be triggered to release cytokines that do 

not kill the infected cell but rather help to initiate an anti-viral program.  IFNγ, belonging to Type 

II IFN family, is mainly produced by mature CD4 T helper–1 (Th1) cells, but also by CD8 T cells 

and NK cells.  IFNγ is a key cytokine for mediating non-cytolytic clearance, allowing the infected 

cells to intiate an anti-viral program without cell death or lysis.   

 T cells induce an effective adaptive immune response, particularly an effective induction 

of MHC proteins. Type I IFNs contribute to the Th1 skew of naïve T-cells (Hibbert et al. , 2003), 

promote CD8 T-cell activity, and thus, promotes the B-cell response by antibody production 

(Curtsinger et al. , 2005, Nishikomori et al. , 2002). Depending upon the type and dose of antigen, 

T cells often skew towards a Th1, Th2, or a Th17 phenotype (Figure 3). Thus, Th1 cells aid in the 

clonal expansion of CD8+ T-cells, specifically through IFN. CD4+ cells can also skew towards 

a Th2 phenotype and produce cytokines such as IL-4, IL-5, and IL-21. Th17 cells are a subset of 
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CD4+ T cells which produce IL-17 (Reviewed in (Libbey and Fujinami, 2014). In Theiler’s murine 

encephalomyelitis virus (TMEV) infection, Th17 cells promotes viral pathogenesis by inhibiting 

apoptosis of virally infected cells and decreasing the cytotoxic function of CD8+ T-cell (Hou et 

al. , 2009). The other arm of adaptive immunity is the humoral immune response which consists 

of antibodies (Abs) specific to virus mediated by B-cells. Activated CD4 T cells will stimulate B 

cells that present a matching MHC II/peptide complex to lead to Ab production.  These Abs 

neutralize extracellular viruses before they can enter a host cell (Rosendahl Huber, van Beek, 2014). 

 

Studies suggest that infiltrating lymphocytes are the main source of critical cytokines in 

the brain. In parenchymal cells, IFNγ induces MHC class I (MHC-I) and MHC-II expression, 

particularly in microglia  (Merrill et al. , 1992, Renno et al. , 1995).  T-cells may play either a 

pathogenic role or a protective role in neurotropic infections. For example, in Borna virus infection, 

infiltrating CD8 T-cells in the absence of IFNγ cause hippocampal neuronal death and neurological 

disease in young and old mice. In the presence of IFNγ, virus was cleared from the neurons, 

suggesting that IFNγ is neuroprotective factor and limits neuronal loss during the antiviral immune 

response in the brain.  (Hausmann, Pagenstecher, 2005). CNS MHV infection is controlled by 

CD4+ and CD8+ T-cells. They decrease the viral load through IFNγ and cytolytic activity and lead 

to viral control and protection (Bergmann et al. , 2004, Parra et al. , 1999, Stohlman et al. , 1998).  

 

In respiratory syncytial virus (RSV) infection, CD8 T-cells and IFNγ are critical for viral 

control in adults (Olson et al. , 2008, Olson and Varga, 2007). Whereas, infants with RSV exhibit 

a defective CD8 T-cell response, reduced IFNγ production, and an aberrant Th2 skewed response 

(Harker et al. , 2010, Larranaga et al. , 2009). Evidence from other peripheral infections shows that 
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the neonatal immune response induces a distinct cytokine profile when compared to an adult 

response against the same pathogen (reviewed in (Adkins et al. , 2004). Neonatal T cells often 

skew towards Th2-like response (including production of IL-4, IL-5, and IL-13) as opposed to a 

Th1 response, characterized by the production of IFN and TNF (Zaghouani et al. , 2009). Thus, 

in neonates, viruses often spread rapidly in brain tissue despite the initiation of an immune response 

(Hausmann, Pagenstecher, 2005, Kopp, Ranaivo, 2014, Manchester, Eto, 1999). During a CNS 

infection, one could hypothesize that a Th1 response would be preferred in order to ensure 

adequate IFN expression and control viral replication in developing neurons while minimizing 

neuronal loss. However, IFN also has been shown to play both neurotoxic and neuroprotective 

roles for developing neurons, making the influence of IFN in controlling neonatal infections in 

the brain less clear (Mizuno et al. , 2008, O'Donnell et al. , 2015).  
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Figure 3. 

 

 

Figure 3. T-cell subsets.  Peptides from pathogens are processed and presented by MHC to 

naïve T-cells in the draining lymph node. CD4 T-cell depending on the type of pathogen and 

cytokines may skew towards either a Th1, Th2 or a Th17 phenotype. Th1 cells drive clonal 

expansion of CD8 T-cell through IFN. Th2 cells drive B-cell expansion via IL-4. Th17 cells secrete 

IL-17 and T regulatory (Treg) cells secrete IL-10. (Used with permission (Araya et al. , 2011) 
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A. Interferon gamma (IFNγ) 

Both innate immune cells such as NK cells and adaptive immune cells such as activated T-

cells produce IFNγ during neuronal infections. IFNγ helps to enhance the NK cell and macrophage 

response, upregulate MHC II expression on macrophages, and activates CD8+ T-cells. (Biron, 

Nguyen, 1999, Heise and Virgin, 1995). Murine CMV and HSV infections are severe in mice 

without IFNγ or its receptor (Novelli and Casanova, 2004). This cytokine signals through 

Interferon gamma receptor (IFNγR), a multimeric complex composed of two chains, the cell-

surface α-chain and a transmembrane β-chain. The α-chain of IFNγR binds IFNγ with high affinity, 

triggering its dimerization with the β-chain of IFNγR, and induction of a signaling cascade that 

results in that activation of Janus kinase (JAK) and signal transducer and activator of transcription 

(STAT) pathway. JAK-1 associates with the IFNγR α-chain while JAK-2 associates with β-chain. 

Activation of JAK 1 and 2 leads to the phosphorylation and activation of (STAT)-1α. STAT1 

homodimers translocate to the nucleus and binds to gamma-activated sequences (GAS), a specific 

DNA response element present in more than 200 IFNγ-responsive genes (Popko, et al., 1997). This 

promotes transcription and translation of antiviral proteins against infections or to induce apoptosis 

of infected cells (Goodbourn, Didcock, 2000).  
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Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. IFNγ signalling  

IFNγ binding to the receptor results in the formation of dimers and activation of (JAK-STAT) 

pathways. IFNγ mediated CIITA activation, which is a master regulator of Class II MHC expression. 

CIITA is a co-activator whose expression is regulated at a transcriptional level.  Class II MHC 

molecules play a critical role in the immune response in antigen presentation of CD4+ T cells, 

resulting in their activation and differentiation.  
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B. CIITA (Class II Major Histocompatibility Complex Transactivator 

CIITA, a critical regulator of MHC II induction, is an IFN-responsive gene (Reith et al. , 

2005). MHC II is expressed constitutively on antigen presenting cells (APCs) and its expression 

is IFNγ-inducible in macrophages, microglia, and endothelial cells (O'Keefe et al. , 2002, Reith, 

LeibundGut-Landmann, 2005) (Cullell-Young et al. , 2001). CIITA is the master regulator of class 

II gene activation and its expression is regulated at a transcriptional level. Studies suggest that 

neonatal macrophages are defective in antigen presentation due to its inability to stimulate MHCII 

expression after IFNγ treatment. This impairment is at the transcriptional level due to low 

expression of downstream CIITA (Lee et al. , 2001). Such impairments may also occur in the 

neonatal CNS during infection.  In this dissertation, we explore the role of IFNγ and CIITA 

transcription to understand their role in the pathogenesis of a neurotropic measles virus in neonates. 

The next section provides an overview of MV pathogenesis in the periphery and the CNS. 

 

1.5 MV pathogenesis 

Measles is a negative-sense, double-stranded RNA virus. MV is a member of genus 

Morbillivirus belonging to the family Paramyxoviridae (Malvoisin and Wild, 1993). It leads to a 

highly contagious disease. Before the introduction of measles vaccine it was one of the most 

devastating infections that caused millions of infant deaths worldwide (Moss and Griffin, 2012). 

MV is believed to have been established 5000-10000 years ago, when populations reached 

sufficient size in Middle Eastern river valley civilization to sustain virus transmission. 

Phylogenetic analysis reveals a recent divergence from rinderpest virus that infects cattle in the 

11th or 12th century. MV attenuated and killed vaccines were introduced in 1960s after successful 

isolation of the virus from tissue culture (Black, 1966). There is no latent or persistent MV 
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infection. There is no animal reservoir that maintains virus transmission (Moss and Griffin, 2012). 

Thus, the eradication of MV is favored by the monotypic nature of the virus.  

 

1.6 MV spread 

MV is efficiently transmitted via the respiratory route by aerosol or respiratory droplets. 

MV initiates infection in the respiratory tract where immature pulmonary (DCs) dendritic cells 

and alveolar macrophages are the initial cellular target.  MV is transmitted to the regional lymph 

node (LNs) by migrating infected immune cells. Thus, virus replication and spread occurs from 

the lymph nodes and the immune response is initiated (Ludlow et al. , 2013, Mesman et al. , 

2012). The incubation time is about 10 days for the onset of fever and 14 days for the onset of 

rash. The symptoms include cough, coryza, fever and white spots in the mouth called Koplik’s 

spots. It is then followed by maculopapular rash that starts in the face and neck and spreads to 

the rest of the body (Coughlin et al. , 2013, O'Donnell and Rall, 2010). The initial hypothesis 

was that MV pathogenesis starts in the respiratory epithelial cells followed by proliferation of 

MV in the lymphatic tissue eventually leading to monocyte-mediated viremia. But the SLAM 

receptor used by wildtype strains of virus was not expressed in any of these targets, suggesting 

the existence of alternative MV receptors that were yet to be discovered (de Swart et al. , 2007). 

 

CD46, CD150 (signaling lymphocyte activation molecule - SLAM) and nectin-4 are the 

known cellular receptors for MV. CD46 is a complement regulatory molecule which is expressed 

on all nucleated cells in human beings. Activated T and B lymphocytes and antigen presenting 

cells express the SLAM receptor. SLAM is favored by the wildtype MV strains. CD46 receptors 

are favored by vaccine strains, although both wildtype and vaccine strains are capable of using 
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either receptor to varying levels of efficiency (Navaratnarajah et al. , 2009). There are other 

putative MV receptors called CD147/EMMPRIN (extracellular matrix metalloproteinase inducer) 

on epithelial cells (Moss and Griffin, 2012). C-type lecithin DC-specific intercellular adhesion 

molecule 3-grabbing non-integrin (DC-SIGN) plays a role in MV infection of dendritic cells (DC). 

It appears to act as attachment receptor for DC. The epithelial cell receptor, Nectin-4, is a recently 

identified receptor for MV (Noyce and Richardson, 2012). This receptor binds to proteins involved 

in viral attachment with high affinity. MV entry and non-cytopathic spread in primary epithelial 

cells is through Nectin-4 (Muhlebach et al. , 2011).  

 

Several studies have tracked the movement of the virus through infected animals. Rhesus 

macaques were infected with a strain of MV encoding genes for enhanced green fluorescent 

proteins (EGFP). Examination of organs in MV-EGFP infected macaques revealed that lymphoid 

tissues were the primary sites of replication (de Vries et al. , 2010, Lemon et al. , 2011). Viral 

replication was seen primarily in T-cells, B-cells, and DCs first followed by replication in 

epithelial cells during the later stages of infection. Similar studies were performed using hSLAM 

transgenic mice, which were infected intranasally with wild-type MV expressing GFP. In this 

study, they observed MV replication in alveolar macrophages and dendritic cells in lungs prior to 

spread to lymphatic organs (Ferreira et al. , 2010). Lung epithelial cells were not infected. After 

the initial replication, the virus migrates to other organs such as skin, kidneys, gastrointestinal tract 

and liver. The virus also replicates in epithelial cells, endothelial cells, lymphocytes, monocytes 

and macrophages.  In the upper respiratory tract, lymphocytes are not present in large numbers but 

DCs are abundant. DCs express CD150 and DC-SIGN and are found at the site of infection (de 

Vries et al. , 2012). DCs are the predominant antigen presenting cells (APC) to the T cells, acting 
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as a bridge between the innate and the adaptive immune system. Studies in vitro indicate that 

infection of DCs with MV leads to syncytia and infectious virus formation. Both interstitial DC 

(iDC) and myeloid DC are infected with MV and more than 40-90% of infected cell express MV 

H envelope glycoprotein (Fugier-Vivier et al. , 1997, Grosjean et al. , 1997, Murabayashi et al. , 

2002). Thus, infected DCs lead to a highly productive infection. The host lymph node acts as a 

factory for virus production after escaping the respiratory tract. From the lymph nodes, MV causes 

a systemic infection.  

 

Infection of wildtype MV in mice expressing human SLAM on DCs led to downregulation 

of CD80, CD86, CD40 and MHC class 1 and 2. Thus, allogeneic T-cell stimulation and the 

mitogen-dependent T-cell proliferation is inhibited. At the later stages of infection, an increase in 

IFN-β transcripts was observed in MV-infected iDCs (Hahm et al. , 2004). The expression of the 

co-stimulatory molecule may be reduced in mDCs in the secondary lymphoid organs. Therefore, 

DCs attain a poor functional maturation status.  MV-infected mDCs also produce IFNs, which 

ultimately increases expression of maturation markers. Infected DCs lead to aberrant T-cell 

function leading to reduced IFNγ production and inhibition of a Th1 response (Duhen et al. , 2010, 

Shingai et al. , 2007).  

 

1.7 Viral Replication 

MV encodes for eight proteins including replication factors such as RNA-dependent RNA 

polymerase (L) and phosphoprotein (P) and structural proteins such as nucleoprotein (N), matrix 

(M), hemagglutinin (H), fusion (F), V, and C protein (Figure 5). The viral H and F proteins are 

envelope glycoproteins that are critical for attachment and membrane fusion. MV-H attaches to 
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the cellular receptor of the host cell providing a platform for MV-F to perform fusion activity. 

(Rima and Duprex, 2009) The P gene encodes for three proteins: the P protein when the mRNA is 

unedited and V and C proteins from alternate opening reading frames (Moss and Griffin, 2006). 

 

After attachment of the virus to the host cell, the virus envelope fuses with the host plasma 

membrane and viral RNA and proteins are released into the host cytoplasm. The viral genome is 

complexed with N, P, and L which are the components of the viral ribonucleoprotein (RNP). This 

complex is formed in the cytoplasm in infected cells. The RNA-dependent RNA polymerase 

(RdRp) complex contains the L and P protein. It acts as viral transcriptase and replicase (Rima and 

Duprex, 2009). For infectivity, every virion must contain a nucleocapsid/L/P complex.  After the 

cell fusion into the host, the negative strand RNA genome is inserted into the host cytoplasm where 

it as acts as a template for both transcription and replication (Horikami and Moyer, 1991). 

 

Transcription uses a negative-strand RNP complex to generate positive-strand mRNAs, 

but during replication there is a switch from negative-strand RNP to positive-strand RNP by 

RdRp, using its replicase function (de Swart, Ludlow, 2007). Viral proteins bind to the original 

negative strand RNA to stop the signals of polymerase from stopping and restarting. Therefore, 

full length positive strand can be generated which can be copied to create new negative strand 

RNA viral genomes. The presence of a strong promoter at the 3’end of positive-strand RNP 

allows several copies of RNP to be produced. Due to such replication mechanism, there exist 

both positive-strand RNP and negative-strand RNP at the ratio of 0.43:1 in the infected cell 

(Rima and Duprex, 2009). MV does not have any global effects on host protein translation. MV 

tends to establish noncytolytic and persistent infections that leads to balanced synthesis of viral 
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and host mRNAs and translation.  The new virions bud from the host cells and acquires H and F 

from the plasma membrane. This is the classical mechanism of virus spread to the neighboring 

cells (Figure 5).
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Figure 5 
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Figure 5. Measles virion and replication 

A.  Envelope proteins (H and F) are anchored on the lipid envelope of the virion. N, L and P 

form the RNP complex, which is the basic unit of infectivity. B.  MV genome consists of 16,000 

nucleotides. The genome codes for 8 protein: V, C, P, N, M, F, H, and L. V and C are non-

structural proteins encoding P.  C. MV enters the host through H and F by binding and attaching 

to the host cell membrane. After entry transcription, translation and viral replication occurs. 

The newly synthesized viral particle buds out of the cell and infects the neighboring cell to start 

this process again. Therefore, it was proposed that there are “two initiation site one at 3’ end 

that helps in synthesis of positive strand replicative RNA and the other one at the start of N 

gene for mRNA synthesis (Horikami and Moyer, 1991). Thus, six short positive RNA strands 

are generated and translated by the ribosomes to generate MV proteins. Along with RNP, there 

are host proteins, actin and tubulin, 
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 that play a vital role in transcription. There are gene end sequences after every gene that 

helps the transcription process to terminate. RNP follow follows this particular start and stop 

mechanism of gene transcription that can give rise to a gradient of gene expression. Due to 

this mechanism, the proximal genes (N and P/V/C) are expressed more repeatedly as that of 

distal genes that is H and L. (Coughlin, Bellini, 2013)  (Used with permission (Moss WJ, 

Griffin DE. 2006. Global measles elimination. Nature reviews. Microbiology 4:900-908)) 
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1.8 Evasion of host response 

As MV does not possess a segmented RNA genome, it is unable to undergo antigenic shifts in 

an animal or bird reservoir to generate new sequences. MV also does not mutate extensively to 

avoid neutralizing antibodies. The MV-F protein helps in viral entry by sticking the viral 

envelope to the external membrane of target cells. This leads to formation of a giant cell with 

multiple nuclei to be formed allowing MV to spread internally from cell to cell. Cytotoxic T-

cells (CD8 T-cells) play a critical role in eliminating the infected giant cells. MV evades the 

host defenses temporarily by causing transient immunosuppression of the host.  Infection with 

MV confers lifelong immunity after an immune response (Reviewed in (Mina et al. , 2015)). 

Thus, susceptibility to opportunistic infections of respiratory and gastrointestinal tract is 

increased. The common characteristics of immunosuppression includes lymphopenia and 

imbalance of cytokines towards a prolonged Th2 response, which reduces cellular immunity to 

secondary infections and T-cell non-responsiveness. Lymphopenia affects B-cells, monocytes, 

neutrophils, CD4+ and CD8+ T-cells (Malvoisin and Wild, 1993). There also is a loss of 

delayed hypersensitivity response to recall antigens, suggesting that memory immune responses 

may also be impaired. (Tamashiro et al. 1987).  

 

Several mechanisms have been postulated to explain immunosuppression. MV infected 

DCs cause an upregulation of various cytokines, IL-1β, IL-6, IL-11, IL-12 and IL-15 (Griffin, 

2010). The reduction of IL-12 is one of the proposed mechanisms of immunosuppression. 

However, when monkeys were vaccinated with IL-12-expressing virus, it did not change the 

lymphoproliferative effects of PBMCs ex vivo. This suggested that IL-12 alone cannot 

compensate for the reduced proliferation of lymphocytes and other mechanism seem be 
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essential. There may be compromised expression of chemokine receptor CCR7 in MV-infected 

DCs. CCR7 is upregulated in mDCs, which allows cells to home to secondary lymphoid organs. 

In vivo studies indicate a lower expression of CCR7 in PBMCs in infected children, which 

might lead to impaired CCR7-dependent chemotaxis. Thus, further studies are required to 

understand the role of CCR7 expression in chemotaxis of DCs during MV infection.  

 

MV-infected DCs abrogate the expansion of T-cells. Functions of DCs such as T-cell 

conjugation and activation are impaired post MV-infection. Vaccine and wildtype MV-infected 

DCs are unable to stimulate T-cells in in vitro co-culture. The crosstalk between MV-infected 

DCs and T-cells is compromised, which leads to insufficient T-cell stimulation.   Griffin and 

colleagues have shown that there is a reduction in interleukin-12 (IL-12) after MV infection of 

APCs, which skews the CD4+ T-cell response to a Th2 profile.  Several mechanisms other than 

loss of mature lymphocytes have been proposed.  The hematopoietic stem cells (HSC) that 

express SLAM remains unaffected by infection, but unknown components are released from 

infected stroma cells that target HSC differentiation. Thymocytes expressing CD150 may be 

depleted during infection. Thymic epithelial cells may release chemicals that may induce 

apoptosis. Thus, when T cells enter secondary lymphatic tissues, they are activated normally 

but might behave differently in the periphery.  

 

1.9 Measles in the central nervous system 

MV replicates in the lymphoid tissue and spreads to the other organs. CNS invasion 

may occur through the blood stream, transmigration of infected leukocytes across the blood 

brain barrier, migration through the choroid plexus or infection of microvascular endothelial 
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cells and basolateral release of virus. Infected nerves of the olfactory bulb also can transport 

the virus to the CNS (Reviewed in (Griffin, 2010)). Regardless of the mechanism of CNS entry, 

MV routinely infects neurons in the CNS, and it may involve other neural cell types such as 

oligodendrocytes and astrocytes.  In neurons, MV assumes a distinct viral life cycle from the 

periphery; the virus does not produce extracellular particles but moves between neurons through 

transfer at the neuronal synapse.  Thus, extracellular virus is not found in CSF or in brain tissue. 

Makhortova et al have demonstrated the role of neurokinin-1 (NK-1) in transynaptic spread of 

the virus by serving as a receptor for MV-F protein. But still, the molecular pathways involved 

in viral entry neurons is not well understood. (Markhortova 2007). 

 

1.9.1 CNS complications associated with MV infection 

 

A. Subacute sclerosing panencephalitis (SSPE) is a progressive, slow, and fatal 

disease that develops from 1 to 15 years after a MV infection (Dubois-Dalcq et al 1974). SSPE 

occurs in approximately 1/100,000 cases of acute measles infection and clinical symptoms 

appear months to years after the primary infection. The disease is characterized by progressive 

dementia, starting with subtle cognitive loss early on and progressing to cognitive dysfunction, 

motor loss, seizures, organ failure and death. Human SSPE specimens and MV animal models 

show MV infection in the neurons and involvement of gray and white matter. SSPE brains show 

the presence of cellular inclusion bodies, inflammation, glial activation, blood brain barrier 

(BBB) integrity loss and neuronal loss. (Johnson 1994, Rall 2003). SSPE patients have elevated 

MV-specific antibodies in the blood and cerebrospinal fluid (Dubois-Dalcq et al). MV does not 

bud from the infected neurons either in vivo or in vitro. Unlike fibroblasts and epithelial cells, 
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there is no formation of syncytia in MV-infected primary neurons. It is suggested that the viral 

spread is contact-dependent and trans-synaptic in nature. Infected brains show extensive 

presence of MV RNA and protein in SSPE and measles inclusion body encephalitis (MIBE) 

(Katz 1995; Payne et al 1969).  

 

Molecular epidemiological studies reveal that primary MV infection of patients with 

SSPE occurs under the age of two, although the symptoms of SSPE may not occur until years 

later. The immune response is immature during the neonatal period and the residual maternal 

antibodies may either be absent or insufficient to neutralize the virus. SPPE is characterized by 

intrathecal synthesis of MV-specific antibodies, which suggests that an antibody response is 

ultimately mounted in the brain even if the antibodies are ineffective at controlling the virus. 

There are also differences in MV replication and spread in the human CNS. The viral 

transmission in the neuron is less cytopathic and productive compared to non-neuronal cells. 

Studies in rat hippocampal slices found that the spread of rMV-EGFP occurs in a retrograde 

direction with the MV F, H, M and P proteins localized to the dendrite in the infected neuron 

(Ehrengruber, Ehler, 2002, Schneider-Schaulies et al. , 2003). Electron microscopy was used to 

show the presence of MV nucleocapsids at the presynaptic membrane of infected primary 

neurons. This suggested that the spread is in an anterograde direction or from the axon of the 

infected neuron (Lawrence et al 2000).  

 

B. Post-infectious encephalomyelitis (PIE) is more frequent than SSPE, affecting 1 in 

1000 infected individuals. PIE symptoms occur 5 to 14 days after the characteristic MV rash. 

(Johnson 1998). PIE and MIBE are is thought to be an autoimmune reaction characterized by 
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perivascular inflammation and demyelination and does not involve viral entry into the CNS. 

Symptoms of the PIE patients include seizures, deafness, ataxia, and movement disorders. The 

mortality rate is high and survivors are prone to suffer from frequent neurologic symptoms. 

Adults have a worse prognosis than young children (Schneider-Schaulies, Meulen, 2003) (Baba 

et al. , 2006) (Perry and Halsey, 2004). PIE is not unique to MV, and can occur after other 

bacterial and viral infections.  This suggests PIE is not driven by specific damage by MV in the 

brain but by an inappropriate immune response in CNS tissue.   

 

C. Measles inclusion body encephalitis (MIBE) 

This disease occurs in immunocompromised individuals within 1 year of MV infection or 

vaccination. Young immunocompromised patients with conditions such as lymphoblastic 

leukemia, HIV, and autoimmune diseases are affected by MIBE. The clinical symptoms 

include seizures, partial epilepsy, and ataxia. These patients show the presence of MV specific 

antibodies (IgM and IgG) in the cerebrospinal fluid (Mustafa et al. , 1993).  Biopsies of MIBE 

patient’s brains reveal neuronal loss, astrocytic, and microglial proliferation, focal necrosis, 

perivascular inflammation, and intranuclear or intracytoplasmic inclusion bodies, which are 

the pathological hallmark of the disease. There is no treatment for MIBE and it has a 76% 

mortality rate (Fisher et al. , 2015, Mustafa, Weitman, 1993). 

 

1.10 CD46+ Model 

Genetically engineered mice are a powerful model to dissect the immune cell types and effector 

functions that contribute to encephalitis or to successful resolution of the infection without 

pathogenesis (Bergmann et al. , 2006, Brooks et al. , 2010, Burdeinick-Kerr et al. , 2009) 
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(Manchester and Rall, 2001).  Wildtype mice are not susceptible to MV because the murine 

isoforms of the viral entry receptors (CD46, SLAM, nectin-4) do not support MV entry.  

Transgenic mice have been engineered for MV susceptibility through the CNS neuron-specific 

expression of the human isoform of CD46 (NSE-CD46), which acts as a receptor for the 

Edmonston B strain of MV. Transgenic CD46+ mouse, which expresses the human isoform of 

the measles virus receptor CD46 under the control of the neuron-specific enolase promoter 

(NSE) (Rall et al. , 1997), is used as a model to study MV pathogenesis in the brain. In this 

model, the human CD46 expression and viral infection are restricted to mature CNS neurons.   

Previous studies observed that CD46+ adult mice control and clear MV in a T-cell and IFNγ-

dependent manner. There is no evidence of loss of neurons or damage, suggesting a non-

cytolytic mechanism of viral clearance. CD46+ adults show no signs or symptoms of illness 

and show viral clearance by 15 days post infection (dpi). However the neonatal CD46+ mice 

succumb to the infection with severe neurological signs (Patterson, Lawrence, 2002) 

(O'Donnell et al. , 2012).  The mechanisms behind this failure of the neonatal immune response 

in the brain are unknown.   

 

In the current study, our goal was to understand the shortcomings of the neonatal 

immune response in the brain and study the neuropathology post infection.  Specifically, this 

work will help to develop effective therapeutic strategies for viral infections in the neonatal 

CNS, which are currently lacking, and provide a better understanding of neonatal susceptibility 

to viral infections in the brain.  
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CHAPTER 2 

2.  MATERIALS AND METHODS 

2.1. Animals and ethics statement 

Mice were maintained and treated in accordance with the Institutional Animal Care and 

Use Committee of Duquesne University and the NIH Guide for the Care and Use of Laboratory 

Animals. CD46+, CD46+/IFN knockout (KO), and CD46+/Recombination activating gene 2 

(RAG-2) KO mice (A gift from Dr. Glenn Rall; Fox Chase Cancer Center, Philadelphia, PA) 

were maintained on a 12:12 light/dark cycle under controlled temperature conditions 

(20 ± 2 °C) with free access to food and water. Upon arrival, mice are acclimatized prior to use.  

Breeding pair cages were established for the CD46+, CD46+/IFN KO and 

CD46+/RAG2 KO mice in order to generate neonatal pups for infections. All mice at p21 were 

sexed and equal numbers were used for adult experiments.  

 

2.2 Genotyping CD46+ mice 

In order to detect the CD46+ transgene, P21 mice were anesthetized, tail clipped, and numbered 

by an ear punch at weaning. The tails were stored at -20C until extraction. DNA was extracted 

from the tails using 1 mg of proteinase K (Fisher - BP-1700-50) in 500ul of Sodium Chloride-

Tris-EDTA (STE) buffer for each tail. The tails are kept overnight at 60C on a dry heat bath. 

The DNA was extracted with 1X-Phenol:Chloroform:Isoamyl alcohol (25:24:1), vortexed at 

high speed, and spun on high (13.2 RPM) in an Eppendorf centrifuge for 3 mins. The top 

aqueous layer was removed and mixed with 500ul of chloroform: isoamyl alcohol. The 

vortexing and spinning step is repeated. The aqueous layer was removed with a p200 pipette 

tip and added into 1 ml of 100% ethanol. The DNA precipitates out and the centrifugation step 
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is repeated. Then the DNA was air-dried after removing the ethanol for 10 mins. The pellet was 

resuspended pelleted in sterile Tris-EDTA (TE) buffer and stored at 4C.   

 

2.3 Measles virus infections 

Mice were infected with Measles virus (MV)-Edmonston obtained from the ATCC 

(American Type Culture Collection; Cat. No: VR-24). The virus was passaged twice in Vero 

fibroblasts to create a passage 3 (P3) stock for infections. The vero cells were plated on a 6-

well plate. After 24 hours, the stock virus was diluted and different concentration of 10-1, 10-2, 

10-3, 10-4 and 10-5 virus was added on the vero cells. The cells are incubated with the virus for 

1 hour. 1% agarose was heated in a microwave and then placed in a 56 C waterbath. The DMEM 

is placed in a 37 C water bath. After 1 hour, 1:1 ratio of DMEM and agarose are mixed. Each 

well is overlayed with 4ml of the mixture.  

Before infection, the inoculum was freshly diluted to 10,000 plaque forming units 

(PFU)/10 µl with phosphate-buffered saline (PBS) prior to injection. On postnatal day 2 (P2), 

pups were intracerebrally injected with virus, using a 27½ gauge needle, along the cerebral 

midline. The uninfected control group was injected in the same location with an equal volume 

of PBS (10 µl). Pups were monitored daily for symptoms of illness (seizures, tremors and 

dehydration) and survival, up to 35 days post-infection.  Mice were euthanized if seizures 

developed.  Adult mice (3-4 months of age) were anesthesized with isoflurane and injected with 

30 µl (30,000 PFU) of MV along the cerebral midline. Infected mice were monitored for signs 

of illness daily throughout the course of infection.  
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2.4 Body weight and brain weight measurement 

Both infected and control mice were weighed using digital balance and weights are 

recorded in grams. The neonates were also assessed for measures of health and sickness. Edema 

was recorded when observed at the later stages of infection.  

 

2.5 Polymerase chain reaction (PCR) 

 

To detect the CD46+ gene, PCR was performed using 10x PCR buffer, MgCL2, Taq 

polymerase (Fisher FEREP0402 ) and dNTP (FERR0192), CD46+ forward 

(CGGTCGCTACCATTACCAGT) and reverse primer (CCCCCTGAACCTGAAACATA). The 

PCR mixture along with 1ul of DNA was run on the thermocycler in RNAase free PCR tubes. 

The primers are diluted in TE buffer and aliquots are stored at -20 C. For each PCR mixture the 

following volumes were used. 

 

Reagent Volume  

10x PCR buffer (KCL) 5 uL 

25mM Magnesium chloride  3 ul  

40mM dNTP mix 1 ul  

Taq polymerase  0.5 ul  

CD46+ forward primer (10 uM) 5 ul  

CD46+ reverse primer (10 uM) 5 ul  

Nuclease free water  29.5 ul 

DNA template  1 ul  

Total  50ul Final 

volume/sample 
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For each PCR, both a positive control (CD46+ tail) and a negative control (PCR mixture without 

DNA) are run on the thermocycler. The thermocycler is set to (94 C 5 mins, 52 C 1min, 72 C 

1min) x 25 cycles, 72 C for 5 mins. The CD46+ gene is a 250bp  

 

DNA Electrophoresis 

A 1.5% agarose gel was made in Tris/Borate/EDTA (TBE) buffer. The gel was poured in the 

electrophoresis apparatus and allowed to solidfy. The 10ul of PCR product was diluted with 6X 

DNA Loading dye. The samples were loaded on the gel and run at 50V for 2 hours. The gel 

was then incubated with SYBR™ Green I Nucleic Acid Gel Stain, 10,000X 

concentrate in DMSO (S7585, Thermofisher) for 1 hrs at 20C and imaged in the UV box 

(Red Personal Gel Imager, Proteinsimple). The figure for the imaged gel is in (Figure 6). For 

each run, both a tail from a CD46+ mice - positive control (+) and negative control were run 

along with Generuler 100bp ladder (SM0241). The CD46+ product is 200bp (Figure 6). 
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Figure 6. 
 

 

 

Figure 6. DNA electrophoresis gel imaged by UV box. 

 A 1.5% agarose gel was run with tail DNA samples from CD46+ mice.  The first column is the 

100bp generuler ladder, followed by the positive and negative control. The adjacent wells 

include the PCR product from RAG2-KO tails to confirm the presence of CD46+ in those 

animals (For example 1M-D, 2M-D). 
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2.6 Quantitative Reverse transcription polymerase chain reaction (qRT-PCR) 

Quantitative RT-PCR for measles virus nucleocapsid (N) was performed as described 

previously (O'Donnell, Conway, 2012).  Mouse brains were snap frozen in liquid nitrogen and 

stored at -80°C. RNA was isolated by TRIzol, according to the manufacturer’s instructions 

(Sigma-Aldrich). Contaminating DNA was removed from RNA preparations using DNase I 

treatment (Invitrogen). Purified RNA was quantified using a Nanodrop instrument. RNA was 

reverse transcribed using Moloney murine leukemia virus reverse transcriptase (Ambion) and 

a mixture of anchored oligo-dT and random decamers. For each sample, two reverse 

transcriptase reactions were performed with inputs of 100 and 20 ng. An aliquot of the cDNA 

was used for 59-nuclease assays using TaqMan chemistry. A TaqMan set specific for the N 

gene of MV (GenBank sequence AB046218) was used for detecting viral nucleocapsid RNA. 

Sequences were as follows: forward, 59-CGCAGGACAGTCGAAGGTC-39; reverse, 59-

TTCCGAGATTCCTGCCATG- 39; probe, 59-6Fam-TGACGCCCTGCTTAGGCTGCAA-

BHQ1-39. Assays were used in combination with Universal Master mix and run on a 7900 HT 

sequence detection system (Applied Biosystems). Cycling conditions were 95°C, 15 min, 

followed by 40 (twostep) cycles (95°C, 15 s; 60°C, 60 s). The assay for MV-N was validated 

with a 4-fold five-points dilution curve of cDNA. The slope was 23.54, corresponding to a PCR 

efficiency of 95%. For each sample, the values are averaged and SD of data are derived from 

two independent PCRs. Relative quantification to the control was done using the comparative 

cycle threshold method. 

 

For qRT-PCR analysis of the pathogen recognition receptors and interferons, we reverse 

transcribed 1ug of RNA using QuantiTect Reverse Transcription Kit (20531, Qiagen) to 
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produce cDNA, then amplified using primers from Integrated DNA Technologies (Coralville, 

IA). We determined whether MV altered the mRNA expression of TLR3, TLR7, MDA5, RIGI, 

Type I and Type II IFN and CIITA relative to Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH). GAPDH is a loading control. The sense and antisense primer sequences are listed 

(Table 1) (McCarthy et al. , 2015, Zalinger, Elliott, 2015).  Real time PCR was performed using 

Bullseye EvaGreen qPCR Mastermix (MIDSCI) on an StepOne Plus qPCR detection system 

(Thermo Fisher Scientific) using a MicroAmp Fast optical reaction plate (4346906, Applied 

Biosystems). mRNA was quantified as ΔCT (threshold cycle) values relative to GAPDH. ΔCT 

values of the infected samples were expressed as fold changes over ΔCT values of control 

samples. All statistical tests were performed using SPSS software. Significance of the F statistic 

was defined as p≤0.05. The sense and antisense primer sequences are listed below (McCarthy, 

Procario, 2015, Zalinger, Elliott, 2015).   

 

2.7. Cytokine and chemokine gene expression (PCR array) 

RNA was isolated from adult and neonate mouse brains using the Qiagen RNeasy Midi 

Kit (75124, Qiagen, Valencia, CA) as per the manufacturers information. The brains were 

homogenised in a Qiazol lysis buffer. The extracted RNA was assessed by UV 

spectrophotometry to measure concentration and purity on a Nanodrop (ND-1000, Thermo 

Scientific). Cytokine and chemokine gene expression was assessed using the mouse cytokine 

and chemokine RT2 Profiler PCR Arrays (PAMM-150Z, Qiagen) by the manufacturer. The 

expression of 84 inflammatory genes and 5 housekeeping genes were assessed. Data analysis 

was done using the SABiosciences RT2 Profiler Web-Based PCR Array Data Analysis software, 

which automatically performs the Delta Ct (ΔΔCt) fold-change calculations from the uploaded 
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raw threshold cycle data. The fold changes were calculated after normalizing to their 

housekeeping genes. This is followed by normalising all groups to uninfected CD46+ p9 control 

when adults are compared to neonates and when neonatal comparisons are made. For the 

baseline differences, all the genes were normalised to CD46+ p9 uninfected controls (Table 3 

and Table 4). For each condition, infected neonatal brains (n = 16) and for uninfected n = 8 

were used for the PCR array.  
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Table 2 - Primer sequences 

Gene Abbreviation Sequence 

Measles MV-F CGCAGGACAGTCGAAGGTC 

 MV-R TTCCGAGATTCCTGCCATG- 

CIITA CIITA-F GGAGGAGATCGAACTCAGCTC 

 CIITA-R GTTCCGCAATGTTGGCATAGG 

GAPDH GAPDH- f ACCACAGTCCATGCCATCAC 

 GAPDH- r TCCACCACCCTGTTCTGTA 

IFNα mIFN-a4-F3 CCCACAGCCCAGAGAGTGACC 

 mIFN-a4-R3 GGCCCTCTTGTTCCCGAGGT 

IFNβ mIFN-B-F4 TCCGCCCTGTAGGTGAGGTTGAT 

 mIFN-B-R4 GTTCCTGCTGTGCTTCTCCACCA 

IFNγ IFNG-F AAAGAGATAATCTGGCTCTGC 

 IFNG-R GCTCTGAGACAATGAACGCT 

MDA5 MDA5-F GCTGCTAAAGACGGAAATCG 

 MDA5-R CTTGTCGCTGTCATTGAGGA 

RIGI RIGI-F GCGTCTCAGTGCAGCACATCATT 

 RIGI-R GGGTCCCGTGACTCTCCAAGTTT 

TLR3 TLR3-F AGCTTTGCTGGGAACTTTCA 

 TLR3-R GAAAGATCG AGCTGGGTGAG 

TLR7 TLR7-F CCACAGGCTCACCCATACTT 

 TLR7-R CAAGGCATGTCCTAG GTGGT 
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2.8. Flow cytometric analysis of brain homogenates 

At specific days post-infection (dpi), mice were deeply anesthetized with isoflurane. 

Once the mice were unresponsive, the brain and spleen were removed and pressed through a 70 

micron nylon mesh cell strainer in PBS. The dissociated tissue was run over a 30/70% 

discontinuous percoll gradient at 1500 rpm for 20 min at 4°C (Eppendorf 5810 R). Mononuclear 

cells were collected from the interface, washed with PBS, treated with 0.84% ammonium 

chloride to remove contaminating red blood cells (RBCs), and washed again in PBS. Primary 

antibodies (Abs) were applied in a solution of 1% fetal bovine serum/PBS for multi-color flow 

cytometry. The following Abs (BD Biosciences) were used to identify T cells: APC CD8a 

(561093), FITC CD19 (557398), PE CD4 (553048), PerCP-CYTM 5.5 CD3 Molecular complex 

(560527). To identify NK cells, APC NK1.1 (55067), PE CD49b (553858), PerCP-CYTM 5.5 

CD3 Molecular complex (560527) and FITC CD19 (557398) were used. All antibodies were 

added at a concentration of 600ng/ml.  

 

To identify neutrophils and inflammatory monocytes, PerCP CD45 (557235), CD11b 

APC (eBioscience 17-0112-81) and Ly6G FITC (551460) were used at 1:50 dilution. 

Infiltrating neutrophils were identified as CD45(hi)CD11b(+)Ly-6G(+) and F4/80-. 

Inflammatory monocyte are classified as CD45(hi)CD11b(+)Ly-6G(-) F4/80+. Cells were 

incubated with Ab for 1h at 4°C and then washed with 1% FBS/PBS, pelleted, stained cells 

were resuspended and analyzed in a BD Accuri CFlow flow cytometer (BD Biosciences).  For 

each sample, 1x10^5 events were run, with gates to exclude debris and doublet cells.  Single 

antibody stains were used for color compensation and isotype controls were used for gating 

(O'Donnell, Conway, 2012).  
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Table 3A. Antibodies for T-cell and B-cell flow cytometry 

T-cell panel 

Catalog number  Antibody Concentration 

 BD 560527 PerCP-CYTM 5.5 CD3 Molecular complex  600ng/150ul 

BD 561093 APC CD8a  600ng/150ul 

BD 557398  FITC CD19  600ng/150ul 

BD 553048 PE CD4 600ng/150ul 

 

Table 3B.  Antibodies for NK cell flow cytometry 

NK cell panel 

Catalog number  Antibody Concentration 

BD 560527 PerCP-CYTM 5.5 CD3 Molecular complex  600ng/150ul 

BD 55067 APC NK1.1 600ng/150ul 

BD 553858  PE CD49b 600ng/150ul 

BD 553048 PE CD4 600ng/150ul 

 

Table 3C. Antibodies for neutrophil flow cytometry 

 

 

Neutrophil panel 

Catalog number  Antibody Concentration 

eBioscience 557235 PerCP CD45 1:50 

eBioscience 17-0112-81 CD11b APC 1:50 

eBioscience 551460  Ly6G FITC 1:50 

eBioscience 553048 F4/80 1:50 
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2.9. Immunohistochemistry of mouse brain tissue 

Neonates and adult mice were anesthetized and perfused with ice-cold 4% 

Paraformaldehyde/PBS (PFA/PBS). Brains from MV-infected and mock-infected neonates and 

adults were collected and cut along the midline into two halves.  The brains were post-fixed 

with 4% PFA/PBS for 48 hours and cryoprotected with 30% sucrose solution till the brains sank 

to the bottom of the tube at 4°C. Then the brains were immersed in tissue embedding compound 

(TFM-5, TBS), frozen in a dry ice-isopentane bath, and stored at -80°C. Sagittal cryosections 

(16 µM) were cut on a cryostat (Microm HM-550, GMI). Sections were post fixed with 4% 

PFA/PFA and blocked with 5% goat and donkey serum. Standard immunohistochemistry was 

performed to detect mouse anti-measles hemagglutinin (Millipore MAB8905; 1:200), mouse 

measles matrix protein (Millipore MAB8910; 1:200), and rabbit anti-ionized calcium-binding 

adapter molecule 1 (Iba1) (Wako 019-19741; 2µg/ml) for microglia overnight at 4°C with 

combination of primary antibodies. Sections were washed (3x in PBS) and incubated with 

Alexa fluor 488 donkey anti rabbit IgG (Molecular Probes A21206; 1:500), Alexa fluor 555 

goat anti-mouse IgG (Molecular Probes A21424; 1:500) secondary antibodies, and Hoechst 

33343 stain (Thermofisher; 1 g/ml) for 1 hour at room temperature in the dark. 

Immunoreaction controls were carried by omission of primary antibodies. Sections were 

imaged using an EVOS epifluorescence microscope at 200x magnification. No primary 

antibody and isotype controls were performed. For all the histological analyses, at least five 

sections per brain were examined and at least four mice per experimental group were assessed. 

The stich images were captured using Olympus epifluorescence. 
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3. TUNEL staining 

Brains from control and MV-infected mice were collected after perfusion. Sagittal brain 

sections were fixed with 3.7 % formaldehyde and subjected to terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL; (TdT-FragEL DNA fragmentation detection kit; 

Millipore) using diaminobenzidine as a substrate. For counting of TUNEL-positive cells, four 

non-overlapping fields (×20) were chosen by a blinded examiner moving dorsally to ventrally 

across the slice. TUNEL-positive cells were counted on an Olympus BX41 Laboratory 

Microscope (Olympus Corporation). Three sagittal slices were counted from each brain, with 

three mice assayed per condition. The average number of TUNEL-positive cells per ×20 

field ± standard error was determined. 

 

3.1 IFNα ELISA 

Whole brains were lysed in RIPA buffer with 500ul of PMSF, 1% protease inhibitor cocktail 

and 10% NP-40. After sonication, the samples were centrifuges at 27,000g for 20 mins and 

stored at -20 C. The protein concentration was determined by Pierce BCA Protein Assay Kit 

(Life Technologies). The standards provided in the IFNα kit (PBL lifesciences) were run. The 

brain homogenates (150ug of protein) and standards were diluted with 1% casein/sample buffer. 

 

3.2 Intracellular IFNγ staining/ T cell culture.   

Spleens from 5 MV-infected and uninfected CD46+ adults were isolated and mechanically 

dissociated with plunger and forceps. The petri dish was rinsed and the homogenate was 

transferred to a conical flask. Percoll discontinuous gradient was used to isolate the 

lymphocytes. The cells from the interphase were resuspended in 50ml of RPMI media and 
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Interleukin 2. The cells were then plated in a T-75 flask and allowed to settle in the incubator 

for 1 hr. The cells were viewed under the microscope to check if they had settled. Once the cell 

attached, the media containing the floating T-cells were removed and transferred to a new T-

75. The cells were then incubated until the APC counts were finished.  

 

T-cells and APCs were counted and plated in the following ratios: 1:4, 1:10, 1:25, and 

1:50. The experimental groups that were included in the analysis were: 1. Uninfected APC: 

Uninfected T-cells and 2.  Infected APC: Ionomycin + infected T-cells.  After incubation, sterile 

PBS w/o Ca+2/Mg+2 was added followed by 2.5% trypsin. The trypsin was incubated at 37 C in 

the incubator for five minutes. Once the cells started to float, RPMI media was added and the 

cells were then resuspended. Macrophages/APCs were plated separately. The cells were spun 

at 1500rpm at or 23 C for 5 mins at a high brake. The cells were resuspended in a smaller 

volume of 100ul for T-cells.  In a 96 well plate, 2 x 106 Tcells/well were plated in a 96 well 

plate for both infected and uninfected group. 10U/ml of IL-2 was added to each well.   

Brefeldin A and Golgi Stop (Monesin) (2ul/well Brefeldin and 1.3ul/well Golgi Stop) 

were added to each well. After 3 hours, the cells were washed and resuspended in FACS buffer. 

A mixture of CD3, CD4 and CD8 Ab were made in FACS buffer. The cells were incubated in 

the dark for 1 hr and washed and resuspended. The cells were then run on the flow cytometer 

as for T cell flow cytometry.  

 

3.3 Western Blot  

Neonatal brain tissue was harvested at 3, 7 and 10 days post-infection (dpi) for western blot 

analysis. Mice were perfused with 10mM NaF in ice-cold PBS in order to inhibit endogenous 
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phosphatases.  The brains were dissected for the cerebellum, hippocampus, neocortex, and 

thalamus and lysed in cell Lysis Buffer with Protease inhibitors (Cell Signaling; 20 μl/mg of 

tissue).  The lysate was stored at -80°C until further use. The protein concentration of each 

lysate was measured using Pierce BCA Protein Assay Kit (Life Technologies). For each sample 

harvested, 20 μg of lysate was subjected to western blot analysis. The membranes were treated 

with primary antibody solutions overnight at 4°C on a rocker.  The primary antibodies used 

included goat anti-mouse CXCL10 (1ug/ml; RAF466NA, R&D Systems) and mouse anti-

mouse interferon gamma (1:100, Santa Cruz Biotechnology).  The membranes were washed 

thrice and incubated in secondary antibody solutions for 60 mins at room temperature. The 

membranes were imaged on the Odyssey infrared imaging system (Licor Biosciences). 

Individual bands on blots were quantified by Image Studio. Multiple antibodies IFNα 

(ab191903, Abcam) and IFNβ (sc-17569, Santacruz; NBP177288E, Novus; ab85803, Abcam) 

was used, but these resulted in non-specific bands (data not shown) 

 

3.4. Statistical Analysis 

Statistical analysis for the Kaplan-Meier plot was performed by log rank test to compare 

survival across different genotypes.  A two-way ANOVA was performed to compare body 

weight, brain weight, viral load, NK cell infiltration, T-cell infiltration, neutrophil, and qRT-

PCR data with Bonferroni post hoc test (p<0.05 considered as significant).  For the cytokine 

array, p values were calculated based on a student’s t-test to compare the control and treatment 

groups.  Three-way ANOVA was done to compare the differences between the Type I IFN and 

MDA5 gene expression (Figure 21). Differences were deemed significant when p values were 

less than 0.05. Statistical analysis was performed using GraphPad Prism software 6 (GraphPad 
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Software, Inc., La Jolla, CA) and SPSS. Outliers were identified using the Grubb’s method and 

the alpha level was set to 0.05 using Graphpad Prism. 
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CHAPTER 3 

Role of IFNγ-producing innate and adaptive immune cells during a neurotropic measles 

virus infection  

 

3.1  Hypothesis  

Inadequate infiltration of IFNγ-producing immune cells in the CNS may contribute to 

mortality and neuropathology in the CD46+ neonates. 

 

3.2  Rationale 

Neurotropic virus infections continue to impose major disease and economic burdens 

on society.  When these infections are in the neonates or children, they are associated with 

neurological sequelae and higher morbidity and mortality worldwide (Das and Basu, 2011).  

Additionally, there are qualitative and quantitative deficiencies in immune cells during the 

neonatal period (Zaghouani, Hoeman, 2009). Therefore, there are great challenges in treating 

these patients as age and immature host immunity are key factors. Moreover, the pathogenesis 

of neurotropic viruses in the neonatal brains are not well understood.  

 

Viral infections in non-replicating neurons lead to lasting neurological consequences, if 

a cytolytic immune strategy is employed to clear or control the virus (O'Donnell, Conway, 

2012). The severity of neurotropic virus pathogenicity may be dictated by the delicate balance 

between achieving viral clearance and removing virally-infected cells: effective immunity must 

control the infection while minimizing cytotoxic T lymphocyte (CTL)-mediated lysis of this 

chiefly nonrenewable cell population. Interferon-gamma (IFNγ) is a potent anti-viral cytokine 
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that is critical for non-cytolytic clearance of multiple neurotropic viral infections and clearance 

of measles virus (MV) from the adult CNS. Thus, the role of IFNγ in the neonatal CNS is 

explored in this study.  It is known that the adult immune response can protect the mice from 

disease, but neonates developed unrestricted neuronal infection and fatal CNS disease 

(Lawrence et al. , 1999) (Patterson, Lawrence, 2002). Therefore, we explored whether neonates 

can mount an immune response during a viral CNS infection. The goal of this project was to 

understand the shortcomings of the neonatal immunity during a viral CNS infection.  

 

 The immune system has two main arms: a generic innate response followed by a 

pathogen-specific adaptive response. The innate immune system cells constitute neutrophils, 

antigen presenting cells (APCs) such as macrophages, and natural killer cells (NK cells). We 

studied innate immune cells, such as NK cells, because they can produce pro-inflammatory 

cytokines such as TNFα and IFNγ and various chemokines during an inflammatory response. 

These innate cells also are capable of direct lysis of infected cells, recruitment of other non-

specific innate cells like neutrophils and macrophages, and modulation of T-cell and B-cell 

responses (Ljunggren and Malmberg, 2007). Thus, if NK cell infiltration is low it may affect 

several arms of the anti-viral immune response.  

 

Adult CD46+/RAG2-KO mice, which lack adaptive immunity, show extensive MV-

mediated neuropathology and high mortality post infection. This suggests that innate immune 

response is unable to mediate MV control in an adult CNS (Patterson, Lawrence, 2002). 

However, the role of the innate and adaptive immune response in the neonatal CNS are not well 

understood. For example, studies suggest that neonatal neutrophils have quantitative and 



 

 56 

qualitative defects (Melvan et al. , 2010). The neutrophil storage pools and neutrophil 

progenitor production is reduced compared to adults. Neonatal neutrophils also show reduced 

expression of TLR4 but similar levels of TLR2 compared to adults (Melvan, Bagby, 2010). 

Additionally, there are defects in downstream signalling of MyD88 and p38 pathways (Figure 

2) (Al-Hertani et al. , 2007). Thus, multiple lines of evidence suggest that the neonatal innate 

immune response may demonstrate deficits or impairments in cellular responses and number.  

To determine whether innate immunity in the brain is similarly impaired, we explored whether 

the neonates are capable of mounting an innate post a neurotropic infection in the brain.  

 

We used transgenic CD46+ mice to study neuron-restricted measles virus infection in 

the brain. Immunocompetent CD46+ adult mice initiate a protective adaptive immune response 

with infiltration of CD4 and CD8 T cells as early as 3 days post-infection (dpi), with peak T 

cell infiltration between 7-14 dpi. MV infection is resolved typically by 30 dpi without any 

symptoms or signs of illness and there is 100% survival (Patterson, Lawrence, 2002). Mice 

without T and B cells (CD46+/RAG2-KO) and mice that lack (CD46+/IFN-KO) die with 

rampant MV spread within a month after infection. Adult CD46+/IFN-KO mice do not clear 

the virus, with ~50% of the mice succumbing to the infection within 21 dpi. The surviving 

CD46+/IFNγ-KO mice showed long term neurological damage, including ataxia, piloerection, 

and hunched posture. Therefore, both T cells and IFN are critical to the survival of adult 

CD46+ mice (O'Donnell, Conway, 2012). Thus, we also wanted to define the role of IFNγ and 

the adaptive immunity in MV-infected neonates.   
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3.3  Results 

3.3.1 IFN delays, but does not prevent, mortality in infected neonates 

To study the outcome of infection in neonates, 2-day old CD46+ mice were infected 

with MV and monitored for signs of illness and mortality (Figure 7).  As a control for the 

injection procedure, CD46+ neonates were injected with 10µl of PBS intracerebrally and did 

not show signs of illness over the course of the experiment.  MV-infected CD46+ neonates 

succumbed to the virus by 16 dpi, with 50% mortality by 8 dpi.  During the infection, MV-

infected neonates showed signs of illness including dehydration, lethargy, and tremors starting 

at 6 dpi, with seizure activity before death.  Previous studies have shown that IFN-producing 

T cells are required for MV clearance in adult CD46+ mice (Lawrence, Vaughn, 1999, 

O'Donnell, Conway, 2012, Patterson, Lawrence, 2002).  To determine if IFN contributed to 

the outcome of infection in neonates, CD46+/IFN-KO pups were infected with MV and 

observed for signs of illness (Figure 7, closed circles).  MV-infected CD46+/IFN-KO pups 

succumb to the infection earlier than CD46+ pups, reaching 100% mortality by 10 dpi.  We also 

investigated the role of the adaptive immune system in neonates using recombinase activating 

gene 2 knockout (CD46+/RAG2-KO) mice that lack mature T and B cells (Figure 7, open 

diamonds).  Surprisingly, CD46+/RAG2-KO neonates survive longer than CD46+ and 

CD46+/IFN-KO neonates.  At 35 dpi, 20% of CD46+/RAG2-KO neonates had survived the 

infection with less signs of illness than the other CD46+ genotypes. These observations suggest 

that the adaptive immune response may play a detrimental role during neonatal infection, in 

contrast to the protective role that it plays in the adult brain. These findings also demonstrate 

that IFN delays the outcome of infection but is insufficient to protect the CD46+ neonates from 

death. 
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3.3.2 Measles virus RNA is lower in the absence of IFN compared to CD46+ neonates 

As CD46+/IFN-KO neonates succumb to the infection earlier than CD46+ neonates; 

one possibility is that MV replication is greater in the absence of IFN, thereby leading to 

more rapid death. To determine if survival correlates with the viral load in the brain, 

expression of measles virus nucleocapsid (N) RNA was determined in brain tissue using qRT-

PCR (Figure 8). We focused on 4 and 6 days post-infection, as these time points correspond 

with early T cell infiltration (4 dpi) and with more extensive T cell infiltration (6 dpi).  

Regardless of immune background, MV RNA increased in all neonates over time, although 

this increase was only significant in CD46+ pups (p<0.001). Unexpectedly, CD46+ neonates 

had a higher viral load compared to CD46+/IFN-KO (p<0.05) and CD46+/RAG2-KO 

neonates at 6 dpi (p<0.001, Figure 8A). Thus, the level of viral RNA did not correlate with 

survival in the CD46+ neonates (Figure 7). This result suggests that the virus may not be 

directly causing death in neonates, but rather the nature of the host immune response may be a 

better predictor of survival.  Regardless of genotype, levels of MV N-transcripts were higher 

in neonates than in adults (Figure 8B), which may reflect both a more successful anti-viral 

response in adults and/or the ability of the virus to readily spread in young neurons.  
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Figure 7. 

 

 

Figure 7. IFN delays, but does not prevent, mortality in infected CD46+ neonates. 

Kaplan-Meier plot of CD46+ neonates on various knockout backgrounds. CD46+, 

CD46+/INF-KO, and CD46+/RAG2-KO neonates were infected intracranially with measles 

virus (MV) (10^4 PFU/10μl PBS) at 2 days of age.  Mice were monitored for symptoms of 

illness and death for 35 days post-infection. Statistical analysis was applied by log rank test 

(p < 0.0001). Results from 4-6 separate litters were pooled (n = 30-50 mice per condition).  
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Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. CD46+ neonates have the highest viral load compared to CD46+/INF-KO and 

CD46+/RAG2-KO neonates. Whole brains from neonatal (B) and adult (C) MV-infected mice 

were collected at 4 and 6 dpi. RNA levels of measles virus nucleocapsid (N) transcript were 

quantified using qRT-PCR.  Bars represent the average of mice from three independent 

experiments (n=9-14) and error bars represent SD. Statistical analysis was applied by two-

way ANOVA (# p<0.001, * p<0.05, NS = not significant) with Bonferroni post hoc test.  
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3.3.3 Impact of MV-infection on body and brain weights  

MV-infected neonates showed clinical neurological symptoms such as ataxia and 

seizures, as well as signs of weight loss and dehydration.  From 7 dpi onwards, the clinical 

symptoms increase followed by neonates succumbing to the infection. We also observed that 

some CD46+/IFN-KO neonates (~8%) developed hydrocephaly, with relatively smaller brains 

upon dissection. The enlarged head and skull was filled with fluid upon dissection, but the 

actual brain was smaller (Figure 9). Thus, we wanted to determine if the loss of body weight 

correlated with changes in brain weight during infection (Figure 10). At the initial stages of 

infection (2 dpi), there is no difference in the body or brain weight of MV-infected CD46+ 

neonates (Figure 10A and 10C) or MV-infected CD46+/IFN-KO (Figure 10B and 10D) 

compared to uninfected controls. As the infection progresses, CD46+ neonates lose body 

weight at 4 dpi (11.7% loss compared to uninfected controls) followed by a transient increase 

in body (13.5%) and brain weight (6.2%; p<0.05) at 6 dpi.  MV-infected CD46+/IFN-KO 

neonates also show an increase in brain weight at 6 dpi (13%), but there is no difference in body 

weights compared to control. At 10 dpi, MV-infected CD46+ (loss of 10.3% brain weight, 21% 

body weight) and CD46+/IFNγ-KO (loss of 14.3% brain weight, 29% body weight) neonates 

show a significant decrease in brain and body weight compared to age-matched controls. Thus, 

MV-infected pups showed limited growth at the end stages of infection (10 dpi), when 

neurological symptoms are also the most severe.  The finding that brain weights increased at 6 

dpi, regardless of IFN expression, was surprising, as neurological symptoms are apparent at 

this time point. However, one possibility is that the temporary increase in brain weight could 

be due to edema or increased fluid retention in the tissue at that stage of infection, as the brains 

were not dried to eliminate water weight before measurement.  Regardless of the increase in 
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weight at 6 dpi, the loss of brain and body weights occurred independently of IFN, even when 

edema was not observed.   
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Figure 9.  

 

  Control     CD46+/IFNγ-KO MV 

 

 

 

 

 

 

 

 

Figure 9.  Hydrocephaly is observed in MV-infected neonates in the absence of IFN.  

CD46+/IFNγ-KO and CD46+ mice were infected with MV (1x10^4 PFU) at 2 days of age.  

Mice were monitored for signs of illness. CD46+ neonates did not demonstrate overt 

changes in head size during the infection.  In ~8% of CD46+/IFNγ-KO neonates (Figure 8B), 

enlarged heads and skulls were observed at the later stages post-infection.     Upon 

dissection, edema was observed in the intracranial space, with fluid accumulation in the brain 

and reduced brain size.  CD46+/IFNγ-KO neonates 8dpi MV skull (Figure 8B) is compared to 

age matched uninfected CD46+/IFNγ-KO neonate. 
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Figure 10. 
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Figure 10. CD46+ neonates lose body and brain weight at early and late time points 

post-infection.  

The brain weights (A, B) and body weights (C, D) of CD46+ (A, C) and CD46+/IFN-KO 

neonates (B, D) at different time points post-infection were measured.  Weights were 

recorded at the time of harvest for flow cytometry experiments.  Mean values are 

represented by horizontal bars for each condition. Statistical analysis was applied by two-

way ANOVA (* p<0.05) with Bonferroni post hoc test. 
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3.3.4. IFN expression does not prevent apoptosis during infection.   

Previous studies from our laboratory have demonstrated that IFN can be neuroprotective 

against certain insults in vitro.  Therefore, we wanted to test whether the CD46+/INF-KO 

neonatal brains showed greater apoptosis post infection. Terminal deoxynucleotidyl transferase 

dUTP nick-end labeling (TUNEL) staining was performed. We found that brain sections are 

strongly positive in the TUNEL reaction, particularly in the cerebellum. There is a significant 

increase in the number of TUNEL+ cells in both MV infected CD46+ and CD46+/IFNγ-KO 

brain sections compared to their age-matched uninfected controls (Figure 11).  However, there 

is no significant difference between CD46+ and CD46+/INF-KO, indicating IFN may not 

reduce the number of cells undergoing apoptosis in the neonatal brain. 
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Figure 11. 

 

 

Figure 11: IFN  does not prevent apoptosis in neonatal brain tissue during infection.  

Whole brains CD46+ control neonates (A) and CD46+ MV-infected neonates (B) were 

collected at 7 dpi.  Sagittal sections from the neocortex were immunostained for apoptotic 

cell (brown) and healthy cells (green). Slides from 4-5 mice per condition were examined, 

and representative sections with TUNEL+ cells are shown.  The number of TUNEL+ cells is 

counted from 3 fields per condition.  
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3.3.5. Microglial activation occurs in the absence of IFN during infection 

 IFN stimulates the activation of microglia and induces expression of chemokine genes 

that are mediators of T-cell recruitment (Rock et al. , 2005). Because microglia is highly 

sensitive to IFN, we examined changes in microglial activation post MV-infection in the 

neonatal brains. We hypothesized that pups lacking IFN would show limited microglial 

activation during infection.  Sagittal brain sections were immunostained for a marker for 

activated macrophage/microglia (Iba1; green) and for measles virus antigen using antibodies 

against the matrix and hemagglutinin protein (red, Figure 12).  In CD46+ (Figure 12A), 

CD46+/IFN-KO brains (Figure 12B), activated microglia were observed with bright Iba1 

staining in the brain parenchyma in comparison to uninfected controls. MV antigen was 

observed in the prefrontal cortex, thalamus, and cerebellum at 7 dpi regardless of IFN 

expression. At later stages from 7 to 10dpi, there is widespread MV infection throughout the 

CNS, including involvement of the hippocampus, which is also highly infected in adults (data 

not shown). Activated microglia was consistently observed in close proximity to MV-infected 

neurons.  In brain regions with MV+ cells, Iba1+ cells showed ameboid morphology with 

rounder cell bodies and retracted processes, which is indicative of activation during infection, 

in both CD46+ and CD46+/IFN-KO pups.  Iba1+ cells in uninfected brains show thin, ramified 

processes and with less intense Iba1 staining (Figure 12A and 12B, top rows) in comparison 

to MV-infected brains. Thus, microglial activation is observed in the absence of IFN, 

suggesting that other cytokines/chemokines can trigger activation of microglia during infection. 

We further looked at the distribution of infection in several brain regions such as hippocampus 

and thalamus (Figure 13A). We also observed greater Iba1 expression in areas of the brain that 
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also contained higher numbers of MV-infected neurons (Figure 13B).   These results suggest 

that neuronal infection leads to microglial activation in the surrounding brain tissues in neonates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. 
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 Figure 12. Microglial activation occurs during MV-infection in an IFN-independent 

manner.  

Whole brains from MV-infected and uninfected control CD46+ neonates (A) and 

CD46+/IFN-KO neonates (B) were collected at 7 dpi.  Sagittal sections from the neocortex 

were immunostained for measles (Hemagglutinin and matrix; red) and microglia (Iba1; 

green).  Slides from 4-5 mice per condition were examined, and representative sections with 

MV+ cells are shown.   

Figure 13. 
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C.  CD46+/IFN-KO 
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Figure 13. MV infection in the thalamas in both CD46+ and CD46+/IFN-KO neonates 

Sagittal sections were immunostained for measles (Hemagglutinin and matrix; red), microglia 

(Iba1; green) and Hoechst 33342 stain (blue) as a nuclear marker.  CD46+ 7dpi MV infected 

thalamus at 20x (A) and 40x (B). Stitched image of CD46+/IFN-KO brain at 7dpi MV (Scale 

bar = 200µm) (C). Slides from 4-5 mice per condition were examined, and representative 

sections with MV+ cells are shown.  
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3.3.6. IFN does not affect natural killer cell infiltration 

Natural killer (NK) cells play an important antiviral role by direct lysis of infected cells 

and/or release of antiviral cytokines such as IFN, particularly during early stages of infection 

before a specific adaptive response is mounted (Biron, Nguyen, 1999, Paolini et al. , 2015). 

Since NK cells can be major producers of IFN, we investigated whether NK cells infiltrate 

into the brain parenchyma in neonates. As NK cells are part of the innate immune response, we 

quantified the early stages of infection (2 and 4 dpi) as well as a time point where T cell 

infiltration was increasing (6 dpi) (Figure 14).  At 2 and 4 dpi, there is no significant difference 

in MV-infected pups compared to uninfected controls in both the genotypes. At 6 dpi, there is 

a significant increase in total NK cell number (NK1.1+, CD49b+, and NK1.1+/CD49b+) in 

MV-infected neonates compared to uninfected controls in both CD46+ (Figure 14A, p<0.05) 

and CD46+/IFN-KO (Figure 14B, p<0.001) genotypes.  Collectively, these data show that 

NK cells arrive in the CNS during infection independently of IFN.   
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Figure 14. 
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Figure 14. Infiltration of NK cells into the CNS is independent of IFN.   

Whole brain homogenates from CD46+ (A) and CD46+/IFN-KO (B) neonates were analyzed 

for total natural killer (NK) cell numbers at 2, 4, and 6 dpi by flow cytometry (CD3-

/NK1.1+/CD49b+). The horizontal line represents the mean number of cells for each 

condition. Results from 4-5 different litters were collected, and statistical analysis was applied 

by two-way ANOVA (# p<0.001, * p<0.05) with Bonferroni post hoc test. Whole brain 

homogenates from MV-infected CD46+, CD46+/IFN-KO, and CD46+/RAG2-KO neonates 

(C) were analyzed for neutrophils numbers (CD45hi/CD11b+/Ly6G+) at 4 dpi and 6dpi by flow 

cytometry. Results from 3 different litters were collected, and statistical analysis was applied 

by one-way ANOVA (* p<0.05) with Bonferroni post hoc test. 
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3.3.7  IFN limits neutrophil and inflammatory monocyte infiltration into the CNS 

We next investigated whether IFN affects neutrophil infiltration in the CNS.  

Neutrophils are recruited early in viral infections, and can contribute to tissue damage through 

protease and oxidase release during viral clearance (Drescher and Bai, 2013). Activated 

neutrophils produced ROS that activates innate immunity during HSV infection (Gonzalez-

Dosal et al. , 2011).  Neutrophils were identified as a population with CD45(hi), CD11b+, Ly-

6G+ cell type (Mutnal et al. , 2010). CD11b is a marker found on several cells such as monocytes, 

granulocytes, macrophage, and natural killer cells. The F4/80 Ag is expressed on tissue resident 

macrophages such as microglia. Ly6G is exclusively expressed on neutrophils; hence helps 

distinguish it from monocyte and macrophage population. Thus, a neutrophil is defined as 

CD45hiCD11b+++F4/80- Ly6G+ cells are neutrophils (Howe et al. , 2012).  

 

In neonates that lack IFN, neutrophil infiltration is significantly higher compared to 

CD46+ neonates at 4 and 6 dpi (Figure 15A). CD46+/RAG2-KO neonates also show 

progressively elevated levels of neutrophils in the CNS, but it is not significantly different from 

CD46+ or CD46+/IFN-KO neonates at either time point. This suggests that IFN may 

downregulate neutrophil recruitment in the CD46+ neonates during infection, and that 

excessive neutrophil infiltration may correlate with earlier death in CD46+/IFN-KO neonates.  

 

During brain insults, circulating monocytes migrate to the breached BBB and enter the 

brain. Thus, both the infiltrating monocyte and microglia contribute to the neuroimmune 

response in the brain (Mildner et al. , 2009, Prinz et al. , 2011). Gene expression profiles 

indicate that infiltrating monocytes are highly inflammatory in experimental autoimmune 
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encephalomyelitis (EAE) models compared to microglia. Inflammatory monocytes were 

defined as cells expressing CD45hiCD11b++F4/80+Ly6G- markers by flow  (Howe, 

Lafrance-Corey, 2012). In neonates without IFN, inflammatory monocyte numbers are 

highest at 6dpi compared to CD46+ and CD46+/RAG2-KO neonates (Figure 15B). From 4 to 

6dpi, there is a significant influx of inflammatory monocyte in CD46+/IFN-KO neonates 

post infection. In CD46+/RAG2-KO, there is an increase in infiltrating monocytes as the 

infection progresses from 4 to 6dpi. This suggests that both neutrophils and monocytes 

respond to the infection at 6dpi. In other CNS infection models, these cells were seen 12 

hours post infection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 78 

Figure 15. 
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Figure 15. Infiltration of neutrophils and inflammatory monocytes cells into the CNS is 

independent of IFN.   

Whole brain homogenates from CD46+ (A) and CD46+/IFN-KO (B) neonates were analyzed 

for neutrophils cell numbers at 2 and 4 dpi by flow cytometry (CD45hi/CD11b+/Ly6G+/F4/80) 

and inflammatory monocytes (CD45+/CD11b+/Ly6G-/F4/80+). The horizontal line represents 

the mean number of cells for each condition. Results from 4-5 different litters were collected, 

and statistical analysis was applied by two-way ANOVA (# p<0.001, * p<0.05) with 

Bonferroni post hoc test.  
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3.3.8  Higher infiltration of neonatal T cells in the absence of IFN at later stages of 

infection 

We observed the presence of NK cell, neutrophils, and inflammatory monocytes in an 

IFNg independent manner in the neonatal CNS. We wanted to understand if CD4 and CD8+ T-

cells, which are critical for MV control in the adults (O'Donnell, Conway, 2012) infiltrate into 

the neonatal CNS. Using flow cytometry of whole brain homogenates, the numbers of CD4 and 

CD8 T cells in the neonatal brain were quantified at 4, 7, and 10 dpi, which corresponds to time 

points where T cells are first observed by immunohistochemistry (4 dpi) and time points that 

parallel peak infiltration of T cells in adults (7 and 10 dpi).  At 4 dpi, there is no difference in 

the number of CD4 or CD8 T cells in the infected CD46+ neonates compared to uninfected 

controls (Figure 16A and 16B).  There is higher infiltration of CD4 T cells in the absence of 

IFN early in infection at 4 dpi (Figure 16A).  Similarly, at 7 dpi, significant CD4 T cell 

infiltration was observed only in the absence of IFN (Figure 16C), whereas CD8 T cell 

infiltration was induced in MV-infected neonates regardless of IFN expression (Figure 16D). 

At later stages of infection (10 dpi), significant infiltration of CD4 (Figure 16E) and CD8 T 

cells (Figure 16F) was observed only in the CD46+/IFN-KO pups in comparison to uninfected 

controls.  CD46+ pups did not show a significant increase in CD4 or CD8 T cells at 10 dpi, 

although a trend toward increasing CD8 T cell number was observed (p=0.082).  Comparing 

across genotypes, CD46+/IFN-KO neonates have significantly higher infiltration of CD4 T 

cells (p<0.001) and CD8 T cells (p<0.05) compared to CD46+ neonates at 10 dpi.  Thus, these 

results suggest that IFN may have a suppressive/anti-inflammatory effect on T-cell infiltration 

at later time points in infection.  
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We also monitored the changes in T-cells over time (Figure 17). In CD46+/IFN-KO 

neonates, there is significant decrease in CD4+ T-cell influx from 4 to 7dpi. This is followed 

by a significant influx of CD4+ T-cells from 4 to 10dpi and from 7 to 10dpi in CD46+/IFN-

KO neonates (Figure 17A).  In CD46+ neonates, there is a slight increase in CD4+ and CD8+ 

T-cells over time but it is not significant (A and B). When compared across genotypes, 

CD46+/IFN-KO neonates have higher infiltration of CD4+ T-cells at 4dpi and 10dpi compared 

to age matched infected CD46+ neonates. Infiltration of CD8+ T-cells is the highest in 

CD46+/IFN-KO compared to infected CD46+ neonates at 10dpi (Figure 17B). As the 

infection progresses, CD46+/IFN-KO neonates show a significant influx of CD8+ T-cells from 

4 to 10dpi and from 7 to 10dpi. This may be due to a breakdown of blood brain barrier in 

CD46+/IFN-KO neonates at the later stages of infection. There is no change in CD8+ T-cell 

infiltration during early stages of infection from 4 to 7dpi in CD46+/IFN-KO brains. In the 

CD46+ neonatal CNS, there is increase in CD4 and CD8 T-cells as the infection progresses 

from 7 to 10dpi. This may contribute to high viral load seen in the CD46+ neonatal brains 

(Figure 8).  
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Figure 16.  
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Figure 17. 
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Figure 16. Neonates show higher T cell infiltration at later stages of infection in the 

absence of IFN.   

Flow cytometry was performed on whole brain homogenates for CD4 T cells 

(CD3+/CD4+/CD19-) or CD8 T cells (CD3+/CD8+/CD19-).  CD4 T-cells (left column; A, C, E) 

and CD8 T cells (right column; B, D, E) were quantified in uninfected and MV-infected CD46+ 

and CD46+/IFN-KO neonates at 4 (A, B), 7 (C, D), and 10 dpi (E, F). The black line 

represents the mean number of cells for each group. Results represent pups from 4-5 

different litters. Statistical analysis was applied by two-way ANOVA (* p<0.05, # p<0.001) with 

Bonferroni post hoc test. 

 

Figure 17. Higher infiltration of CD4 (4 and 10dpi) and CD8+ T-cells (10dpi) in the 

absence of IFN at 10dpi. Flow cytometry was performed on whole brain homogenates for 

CD4 T cells (CD3+/CD4+/CD19-) or CD8 T cells (CD3+/CD8+/CD19-).  CD4 T-cells (A) and 

CD8 T cells (B) were monitored as the infection progresses. The black line represents the 

mean number of cells for each group. Results represent pups from 4-5 different litters. 

Statistical analysis was applied by two-way ANOVA (* p<0.05, # p<0.001) with Bonferroni 

post hoc test. 
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3.3.9 Greater CD4 T cell infiltration in adults compared to neonates regardless of IFN 

expression 

We next determined whether there were age-dependent differences in the number of T-

cells infiltrating into the brain (Figure 18).  CD46+ and CD46+/IFN-KO adults have a 

significantly higher number of CD4 T cells compared to neonates of both genotypes in infected 

whole brain tissue (Figure 18A, p<0.05).  CD8 T cells in CD46+/IFN-KO adults are 

significantly higher compared to MV-infected neonates (Figure 18B, p<0.05). However, in the 

CD46+ genotype, there is no difference in the number of CD8+ T cells between adults and 

neonates.  Additionally, in contrast to the neonates, there is no difference in the T cell numbers 

between CD46+ and CD46+/IFN-KO adults.   

We also determine the ratio of CD4:CD8+ T-cell in adult and neonatal CNS. CD46+ 

adults (5.9:1), CD46+/IFN-KO adults (2.6:1), and CD46+/IFN-KO neonates (2.9:1), skew 

towards CD4+ T-cells. Whereas CD46+ neonates (0.5:1) have a ratio that is skewed towards 

CD8 T-cells. Of note, only CD46+ adult mice can control MV in the CNS (O'Donnell, Conway, 

2012). This suggests that CD46+ neonates may lack adequate CD4+ T cell helper function, 

which may contribute to the relatively high viral load and poor pathological outcome. 
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Figure 18. 

 

 

 

 

Figure 18. CD4 T cell infiltration in the CNS is greater in MV-infected adults than in 

neonates.  

Whole brain homogenates from neonatal and adult CD46+ (A) and CD46+/IFN-KO (B) mice 

were analyzed for infiltrating T cells at 7 dpi.  Flow cytometry was performed for CD4 T cells 

(CD3+/CD4+/CD19) or CD8 T cells (CD3+/CD8+/CD19-).  Mice from 4-5 different litters were 

compared for each condition.  Statistical analysis was applied by two-way ANOVA (* p<0.05) 

with Bonferroni post hoc test.  
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3.3.10. B-cell infiltration at later stages is IFN independent 

B-cells play a protective role during RNA virus infection such as Sindbis virus, Semliki 

Forest virus, rabies virus, and neurotropic coronaviruses (Fragkoudis et al. , 2008, Griffin et al. , 

1997, Hooper et al. , 2009, Levine et al. , 1991). Studies in murine CMV models observe the 

infiltration of B-cells that produce mCMV specific antibodies (Ab) (Mutnal et al. , 2012). In 

adult CD46+ mice, B-cells are not required for survival or control of the virus (Solomos et al. , 

2016).  In neonates, there is a significant increase in B-cell numbers from 7 to 10 dpi in the 

absence of IFN  (Figure 19). But in CD46+ neonates, there is no differences in B-cell 

infiltration as the infection progresses. When compared across genotypes, CD46+/IFN-KO 

neonates show significantly higher influx of B-cells compared to age matched CD46+ neonates 

at 10 dpi. Thus, this suggest that there may be a blood-brain-barrier breakdown in the absence 

of IFN at the later stages of infection, which allows for entry of B-cells into the CNS.   
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Figure 19.  

 

7 1 0 7 1 0

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

N
u

m
b

e
r
 o

f 
C

D
3

-/
C

D
1

9
+

 B
-c

e
ll

s

C D 4 6 + C D 4 6 + /

IF N  -K O

d p i

#

#

 

 

Figure 19. B-cell infiltration is IFN independent at later stages of infection. 

Flow cytometry was performed on whole brain homogenates for B cells (CD3-/CD19+). B-

cells were quantified in MV-infected CD46+ and CD46+/IFN-KO neonates at 7 and 10dpi. 

Black line represents the mean number of cells for each group. Results represent pups from 

4-5 different litters. Statistical analysis was applied by two-way ANOVA (* p<0.05, # p<0.001) 

with Bonferroni post hoc test. 
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3.4  Discussion 

The goal was to define the course of pathology and immune cell infiltration in the 

neonatal brain during a viral infection. In the current study, CD46+ pups lacking IFN succumb 

earlier to the infection despite greater infiltration of neutrophils and T cells than in wildtype 

pups, which highlights the pleiotropic nature of this cytokine in influencing both leukocytes. 

We demonstrated that the neonates mount an innate immune response with microglial activation, 

NK cell, neutrophil and inflammatory infiltration in the brain. In CD46+/RAG2-KO mice, the 

neonatal innate response is capable of delaying mortality and disease. But despite this, neonates 

of all genotypes succumb to the infection. Our findings are consistent with the observation that 

neonatal immune responses are often ineffective at controlling viruses and other pathogens 

(reviewed in (Rouse and Sehrawat, 2010).   

 

We characterized the role of the Th1 cytokine IFN during a neonatal immune 

response in the brain because IFN is indispensable for neuronal clearance of many different 

viruses (Burdeinick-Kerr, Wind, 2007, Chesler et al. , 2004, Komatsu et al. , 1996, Larena, 

Regner, 2013, Patterson, Lawrence, 2002).  However, it is important to note that IFN also 

plays both pro- and anti-inflammatory roles in a variety of pathological conditions (Muhl and 

Pfeilschifter, 2003), in addition to roles in host defense.  We reasoned that IFN may be 

protective in the developing CNS during an infection, where neurogenesis and synaptic 

refinement are active.  We have previously shown that IFN protects neural stem cells, but not 

newly-differentiated neurons, in MV-infected CD46+ neonates (Fantetti et al. , 2016). 

Although IFN maintains the neural stem cell pool during infection, it does not preserve 

neurogenesis, demonstrating that IFN can prevent neural stem loss but cannot prevent loss of 
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function.  In the current study, CD46+ pups lacking IFN succumb earlier than wildtype pups, 

which highlights the pleiotropic nature of this cytokine in influencing both lymphocyte and 

neural cell activity. This finding also is consistent with models of experimental autoimmune 

encephalitis, where IFN-knockout mice demonstrate more severe inflammation in the brain 

(Willenborg et al. , 1999).  Studies in IFN receptor deficient mice infected with sindbis virus 

show greater infiltration of CD3+ T cells and perforin+ cells and more intense inflammation 

in the CNS compared to wildtype mice (Lee et al. , 2013). Thus, further studies will determine 

if CD46+/IFN-KO neonates express a more pro-inflammatory cytokine profile in the brain, 

which would parallel the increased T cell infiltration at late stages of infection (Chapter 4). 

 

The innate immune cells are the first responders of host defense against pathogens and 

are mediated by phagocytes such as macrophages and dendritic cells. Innate immunity may 

also contribute to early viral control, even if it is not responsible for the ultimate resolution of 

infection in the brain.  There were no differences in microglial morphology or intensity of 

Iba1 staining in the presence and absence of IFN. This result was surprising because 

microglial cells are exquisitely sensitive to IFN. Therefore, this suggests that compensatory 

cytokines may be activating the microglia in CD46+/IFN-KO. Resident microglia 

(CD45+(int) and CD11b(+)) do not express MHC class II in resting state. Microglia, become 

activated either in response to virus or IFN and upregulate MHC II (Hamo et al. , 2007). 

Studies in murine CMV suggest that upregulation of MHC II on microglia and high CXCL2 

expression may lead to high infiltration of neutrophils. Thus, MHC II is a marker of 

microglial activation and in some cases may indicate an exaggerated neuroinflammatory 

process in the brain (Mutnal, Cheeran, 2010).  Thus, further studies to address the differences 
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in MHC II expression may provide insights on microglial activation and how genetic 

deficiencies impact this. 

 

Natural killer cells can be significant producers of IFN during viral infections ((Biron, 

Nguyen, 1999)). We observed that there are no differences in NK cell infiltration (Figure 14) 

between CD46+ and CD46+/IFN-KO pups. Because NK cell cytotoxicity is highly dependent 

upon the type of cytokine stimulation, it is conceivable that the inflammatory milieu in 

CD46+/IFN-KO pups encourages greater cytotoxic activity in NK cells (Lauwerys et al. , 

2000), which may contribute to greater pathology.  Another possibility is that the cytokine 

milieu in neonates does not activate the microglia in a manner that is favorable for viral 

clearance or antigen presentation.  Additionally, children with herpes encephalitis show 

deficiencies in NK cell function. There is also evidence of NK cells being neurotoxic as well 

as neuroprotective (Reviewed in (Poli, Kmiecik, 2013)). Thus, further studies to explore the 

functional differences in neonatal NK cells to adult NK cells may explain the differences in age 

dependent outcome of infection. 

 

Neutrophils in circulation respond to proinflammatory, chemotactic signals and 

migrate to injured and infected tissue. Neutrophils play a role in extracellular bacterial 

infections and several viral infections. Studies indicate that in the absence of anti-

inflammatory cytokines such as IL-10, high numbers of neutrophil enter the brain and cause 

neuropathology (Jeong et al. , 2009, Mutnal, Cheeran, 2010). Thus, in the absence of IFN, 

infiltration of excessive neutrophils and inflammatory monocytes may contribute to edema 

and neuropathology.  There is evidence that neutrophils have destructive potential through 
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neurotoxic effects through the release of proteolytic enzymes (Allen et al. , 2012, Stowe et 

al. , 2009). Neutrophil activation during viral infections also leads to tissue damage (Drescher 

and Bai, 2013, Stout-Delgado et al. , 2009). C57Bl/6 mice infected with influenza A virus 

require IFN to modulate neutrophil activity in the lung and prevent tissue pathology (Stifter 

et al. , 2016). Thus, the heightened numbers of neutrophils, along with a lack of modulation of 

neutrophilic activity by IFN, may play a role in neuropathology in the CD46+/IFN-KO 

neonates. It will be interesting to study the differences in neutrophils in the adult CNS and 

compared it to neonates. This may help understand the inherent age dependent functionality 

of neutrophils in the brain.  

 

From these results, we can conclude that the neonatal immune response is capable of 

inducing infiltration of innate immune cells in the CNS, but may struggle with the extensive 

viral load that is produced in developing neurons.  Neurotropic viruses spread  readily in less 

mature or newly-differentiated neurons, which may pose a greater challenge for viral control 

and clearance in the developing brain (van den Pol et al. , 2002).  This notion is supported by 

the observation that MV-infected neonates exhibit more widespread expression of viral antigen 

in multiple brain regions prior to T cell infiltration, which suggests that the virus spreads readily 

in neonatal brain tissue.  Thus, further studies will look at the difference in infiltration of T-

cells which were critical for clearance in the adult CNS.  

  

Neonates had the highest levels of neutrophil (Figure 15) and T cell infiltration (Figure 

16) in the absence of IFN, and succumbed to the infection sooner than other genotypes. This 

finding contrasts with CD46+/RAG2-KO neonates, which lack mature T cells and show 
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delayed mortality.  Although we do not yet understand whether such a T cell response could 

contribute to neuropathology, these findings suggest that the lack of adaptive immune response 

may be beneficial to survival in the infected neonates.  Other models of viral CNS infections, 

including some strains of west nile virus and dengue virus, show that the CD8 T cell response 

induces immunopathology while also providing protection against the virus (An et al. , 2004, 

King et al. , 2007).  Cytotoxic T cells also play a more pathogenic role during infections with 

Murray Valley encephalitis virus, where mice lacking granule exocytosis showed prolonged 

survival (Licon Luna et al. , 2002).  Of note, while providing evidence for a detrimental role 

for T cell activity during a CNS infection, these studies were performed on adult mice, which 

contrasts with findings in the adult CD46+ model where viral control is not associated with 

immunopathology.  An outstanding question is whether age-dependent function of T-cell will 

dictate whether an anti-viral response will result in immunopathology.   

 

Adult CD46+ mice depend upon CD4 T cells in concert with CD8 T cells or B cells in 

order to survive a CNS infection with MV (Solomos, O'Regan, 2016, Tishon et al. , 2006).  The 

deletion of CD4 T cells alone results in death of adult CD46+ mice, whereas depletion of CD8 

T cells is associated with less viral control but no changes in survival (Solomos, O'Regan, 2016). 

Studies in other transgenic model suggest that CD4, CD8 or B-cells cannot control acute MV 

infection alone. A combination of either CD4 T cell and B cells or CD4 and CD8 Tcell are 

essential to control measles virus infection in the CNS (Tishon, Lewicki, 2006).   Within the 

adult brain, the CD4:CD8 T cell ratio revealed a greater proportion of CD4 T cells (5.9:1; 

Figure 18). In C57/Bl6 mice, which are the background strain of the CD46+ model, the 

CD4:CD8 ratios are relatively low in the spleen, as we also observed in splenocytes from the 
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CD46+ adult mice (1.7:1; data not shown) (Myrick et al. , 2002).  During many viral infections, 

the CD4:CD8 ratio reverses to greater proportion of CD8 T cells, where the CD8 T cells become 

necessary for viral clearance either through cytolytic or non-cytolytic mechanisms (Callan et 

al. , 1996, Tripp et al. , 1995).  The high CD4:CD8 ratio in the adult CD46+ brains, where viral 

clearance is successful, may suggest that a greater proportion of CD4 help is required to respond 

to neuronal infections non-cytolytically. These observations in MV-infected adult mice contrast 

with our findings in CD46+ pups, where the CD4:CD8 ratio skewed toward greater CD8 T cells 

(Figure 16).  One possibility is that the low proportion of CD4 T cells does not provide 

sufficient stimulation to the CD8 T cells to contribute to a non-cytolytic response.  Support for 

this idea is found in a model of neurotropic mouse hepatitis virus infection, where depletion of 

CD4 T cells impaired the anti-viral function and survival of infiltrating CD8 T cells (Phares et 

al. , 2012).  Thus, it is possible that the lack of adequate number of CD4 T cells in neonates 

may lead to inefficient activation of effector CD8 T-cells and loss of viral clearance.  

 

In contrast, CD46+/IFN-KO neonates, which had the highest level of T cell infiltration 

(Figure 16C and 16D), succumbed to the infection sooner than the other genotypes. These 

findings support the notion that a lack of a neonatal adaptive immune response may be 

protective in the brain.  Other models of viral CNS infections, including some strains of west 

nile virus and dengue virus, show that the CD8 T cell response induces immunopathology while 

also providing protection against the virus (An, Zhou, 2004, King, Getts, 2007).  Cytotoxic T 

cells also play a more pathogenic role during infections with Murray Valley encephalitis virus, 

where mice lacking granule exocytosis showed prolonged survival (Licon Luna, Lee, 2002).  

Of note, while providing evidence for a detrimental role for T cell activity during a CNS 
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infection, these studies were performed on adult mice, which contrasts with findings in the adult 

CD46+ model where viral control is not associated with immunopathology.  An outstanding 

question is whether there are age-dependent changes in T cell activity that dictate whether an 

anti-viral response will result in immunopathology.   

 

A second possibility is that the expression of IFN limits T cell infiltration into the brain, 

thereby limiting cytotoxicity.  Previous studies in respiratory syncytial virus (RSV)-infected 

neonates demonstrate that IFN expression in the lung leads to reduced recruitment of CD4 and 

CD8 T cells (Eichinger et al. , 2015).  Thus, a lack of IFN expression may allow for greater 

recruitment of immune cells into the CNS in CD46+/IFN-KO neonates, thereby contributing 

to greater immunopathology.  T cells also play a more pathogenic role during infections with 

Murray Valley encephalitis virus, where mice lacking granule exocytosis showed prolonged 

survival (Licon Luna, Lee, 2002).  Of note, while providing evidence for a detrimental role for 

T cell activity during a CNS infection, these studies were performed on adult mice, which 

contrasts with findings in the adult CD46+ model where viral control is not associated with 

immunopathology. CD4 T cells were shown to play a major role in protection from MV 

infection. However, in our system, CD4 T cells do not act independently to control MV 

infection as reported earlier for MV and for murine gammaherpesvirus (Finke and Liebert, 

1994) (Sparks-Thissen et al., 2005). Instead, CD4 T cells in conjunction with B cells or with 

CD8 T cells are required to abort acute MV infection in the vast majority of MV infected mice. 

These results indicate that control of MV may be dependent on multiple lymphocyte subsets 

and not on a single lymphocyte subset. Although, we observed high T-cell and B-cell infiltration 
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in the absence of IFNγ, these neonates succumb early to infection (Figure 7), suggesting that 

there are likely functional differences in these lymphocytes that are not present in adults.  

 

From these results, we observe that neonatal immune response is capable of inducing 

elements of a successful adult response in the brain, including robust infiltration of T-cells, B-

cells and NK-cells, but may struggle with the extensive viral load that is produced in the 

developing neurons. Neurotropic viruses spread readily in less mature or newly-differentiated 

neurons, which may pose a greater challenge for viral control and clearance in the developing 

brain (van den Pol, Reuter, 2002).  This notion is supported by the observation that MV-infected 

neonates exhibit more widespread expression of viral antigen in multiple brain regions prior to 

T cell infiltration, which suggests that the virus spreads readily in neonatal brain tissue (Figure 

8).  The combination of aggressive viral spread may overwhelm the neonatal CNS.     
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CHAPTER 4 

Neonates succumb to the infection despite a Type I and II interferon expression in the 

CNS 

 

4.1 Hypothesis: Neonatal immune response will be deficient in the expression of anti-viral 

cytokines during both early and late responses to a CNS infection.  

 

4.2 Rationale  

Neonatal immune response to peripheral infections  results in induction of distinct 

cytokine profile when compared to an adult response against the same pathogen (reviewed in 

(Adkins, Leclerc, 2004)).  Depending upon the type and dose of antigen, neonatal T cells often 

skew towards a Th2-like response (including production of IL-4, IL-5, and IL-13) as opposed 

to a Th1 response, characterized by the production of IFN and TNF (Zaghouani, Hoeman, 

2009). During a CNS infection, one could hypothesize that a Th1 response would be preferred 

in order to ensure adequate IFN expression and control viral replication in developing neurons 

while minimizing neuronal loss. However, IFN also has been shown to play both neurotoxic 

and neuroprotective roles for developing neurons, making the influence of IFN in controlling 

neonatal infections in the brain less clear (Mizuno, Zhang, 2008, O'Donnell, Henkins, 2015).  

Additionally, Type I IFNs (IFNα and IFNβ) also regulate various arms of the immune 

response against infections and have autocrine and/or paracrine effects. They promote the 

expression of IFN-stimulated genes (ISGs) during an anti-viral immune response, which can 

protect both infected and uninfected cells from viral replication (Borden et al. , 2007, Schoggins 

et al. , 2011). When neurons are infected, they quickly initiate a protective type I IFN response.  

IFNβ is an immediate early IFN that is produced by neurons and glia (Erlandsson et al. , 1998). 



 

 98 

The production of IFNβ over IFNα may be neuroprotective as IFNα contributes to greater 

neurotoxicity. The type I IFN response slows virus spread and constrains virus replication 

before the induction of a virus-specific adaptive immune response. Studies in CD46+ MV-

infected adults suggest that type I IFNs are dispensable for viral clearance in CNS neurons 

(Cavanaugh, Holmgren, 2015). Rather, viral clearance in the adult CD46+, CNS is mediated by 

CD4+ T-cells and IFN  production (Solomos, O'Regan, 2016).  Age-dependent effects of Type 

I and Type II IFNs in the brain post neurotropic infection are not well understood. Thus, we 

explored the differences in the cytokine and chemokine response in the neonatal brain to 

identify the shortcomings or deficits compared to an adult CNS.  

 

Studies have suggested that neonates have a predominant Th2 response during 

peripheral infections (Adkins, Leclerc, 2004) (Lambert et al. , 2014), which is an aberrant 

response during viral infections. But in context to the neonatal brain and neutrotropic infections, 

this response has not been studied. Thus, the initial hypothesis was that neonates may express 

a Th2-biased cytokine response in the CNS and this may contribute to ineffective viral clearance. 

Based on the results from the PCR array, our data suggests that a both neonates and adults 

exhibit a Th1 phenotype in the brain at 7dpi. Despite this, the CD46+ neonates succumb to the 

infection (Figure 7).  Therefore, we examined factors beyond the Th1/Th2 bias and focussed 

on early innate, Type I IFN response and its surrogate markers as well as downstream signalling 

of IFN. As the virus is high at 4 dpi (Figure 8), prior to robust NK and T-cell accumulation, 

the role of early IFNs and the potential deficits in downstream IFNs signaling may explain the 

lack of viral control in neonates.  
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4.3 Results 

 

4.3.1 MV-infected neonates upregulate Th1 cytokine and chemokine genes in the CNS  

To address the age dependent differences in chemokine/cytokine production, we examined the 

mRNA expression of 84 cytokine and chemokines genes in the MV-infected adult and neonatal 

brains using a qRT-PCR array. Table 1 lists genes that were significantly upregulated by ≥2 

fold in the MV-infected neonates and adults compared to their age-matched, uninfected controls. 

Classical Th2 cytokines such as IL-4, IL-5, and IL-13 were not upregulated in either MV-

infected neonates and in the adult CNS. Rather, many Th1-associated cytokines were 

upregulated in comparison to uninfected controls at both ages (p< 0.05; Table 4, top panel).  

Among the Th1-associated factors, IFN (11-fold in neonates, 8-fold in adults), IL-1β (3-fold 

in adults and neonates) and chemokine (C-X-C motif) ligand 10 (Cxcl10; 85-fold in neonates, 

44-fold in adults) were upregulated during MV infection at both ages. The anti-inflammatory 

cytokine interleukin-1 receptor antagonist (IL1rn) is also upregulated in neonates (17.84-fold) 

and adults (14.4-fold) post-infection, as well as the expression of several other chemokines 

genes (Ccl12, Ccl3, Ccl4, Ccl5, Cxcl11 and Cxcl13). Both adults and neonates do not 

upregulate IFNα2 post MV infection. These data suggest that the expression of many 

inflammatory genes is age-independent in the brain.  
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Table 4.  

 

Table 4. Gene expression of pro- and anti-inflammatory cytokines in MV-infected 

neonatal and adult brains.  

Gene expression of cytokines and chemokines in measles virus-infected neonatal and adult 

brains. Brain tissue from uninfected and MV-infected CD46+ neonates and adults were 

collected for RNA extraction at 7 dpi. qRT-PCR array analysis was performed using the RT2 

Profiler™ PCR Array. Changes in the gene expression that were more than two-fold relative 

to the uninfected controls are shown. For infected mouse brains (n = 16) and for uninfected 

(n=8) were used for adults and neonates. All data were normalized against levels of 

housekeeping genes within the same sample. *p< 0.05 by students t-test. 
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Additionally, neonates and adults also upregulate unique subsets of genes in an age-

dependent manner during infection (Table 4, middle and bottom panel). The expression of 

tumor necrosis factor (TNF) is significantly increased in MV-infected neonates, but not in 

adults. Interleukin 10 (IL-10), a global suppressor of the immune response (Moore et al. , 

2001), was the only Th2-related cytokine to be upregulated in MV-infected neonates.  CCL2, 

which is associated with reduced microglial/macrophage activation in adult infection with 

mouse hepatitis virus (MHV), is elevated only in infected neonates (Trujillo et al. , 2013).  

MV-infected adults also expressed unique inflammatory genes that were not activated in the 

neonates.  Adult mice show increased expression of the IFN-inducible gene CXCL9 (17.67-

fold) (Brice et al. , 2001), which suggests that IFN-responsive gene expression may be 

partially dependent on age.  Of note, gene expression in uninfected neonates and adults 

revealed modest baseline differences in the absence of infection (Table 7).  For example, 

adult mice expressed higher baseline levels of IL-12a (3.98-fold), IL-17a (2.13-fold), and IL-2 

(2.13-fold) in the brain than uninfected neonates.   Of these cytokines, IL-12a was the only 

factor to be upregulated by the neonates upon infection (7.87-fold versus uninfected neonates, 

Table 1).  Together, this data suggests that the majority of cytokines/chemokines that are 

induced upon infection are distinct from factors that show an age-dependent difference in 

uninfected controls.   

  

We also wanted to address the differences in survival between the immunocompetent 

and immunocompromised neonates. In order to define any variation in the cytokine profiles in 

infected neonates, we examined the cytokine expression in CD46+, CD46+/IFN-KO and 

CD46+/RAG2-KO neonatal brains (Table 5). CD46+/IFN-KO and CD46+/RAG2-KO 
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neonates expressed unique subsets of genes that were not upregulated in the immunocompetent 

CD46+ mice.  CD46+/IFN-KO neonates upregulated CXCL1 in the brain, which can act as a 

neutrophil chemoattractant and may partially explain the greater neutrophil infiltration 

observed in these mice (Figure 15A) (Bozic et al. , 1995).  Surprisingly, CD46+/IFN-KO 

neonates also upregulated CXCL9, which is classified as an IFN-inducible gene, suggesting 

that IFN-independent pathways may also regulate CXCL9 expression in the CNS.  The 

CD46+/RAG2-KO neonates, which demonstrated less mortality during infection, activated a 

number of genes that were not observed in the other neonates (Table 5, bottom panel). Various 

cytokines (IL-5, IL-7, IL-15, and bone morphogenic proteins (BMP) 2, 4, 6, and 7) and 

chemokines (CCL11, CCL17, CCL19, CCL22, CXCL16) were induced only in CD46+/RAG2-

KO brains upon infection.   However, comparison of the baseline gene expression between 

uninfected neonates demonstrates that CD46+/RAG2-KOs have lower basal expression of 

some of the factors that are upregulated during infection (e.g. the BMPs, CCL11, and CCL17; 

(Table 6) in comparison to the uninfected CD46+ neonates.  Thus, although the CD46+/RAG2-

KO neonates express many unique genes upon infection, a subset of these genes are expressed 

endogenously at low basal levels.   

 

As seen in the CD46+ neonates and adults, there was overlap in the expression of some 

Th1-related factors in the neonatal mice.  CXCL10 showed the greatest induction in all infected 

neonates: CD46+ (84.6-fold), CD46+/IFN-KO (291.4-fold) and CD46+/RAG2-KO neonates 

(771.1-fold).  IFN is upregulated in the CD46+ (11.1-fold) and CD46+/RAG2-KO neonates 

(15.0-fold), suggesting that innate immune cells are contributing to IFN production the 

absence of T cells.  With the exception of IL-10, genes that were activated in the CD46+ 
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neonates but not in the CD46+ adults (Table 4, middle panel) also were expressed in 

CD46+/IFN-KO and CD46+/RAG2-KO neonates. For example, TNF is upregulated in CD46+ 

(8.4-fold), CD46+/IFN-KO (17.9-fold) and CD46+/RAG2-KO (72.1-fold) neonates, but there 

is no upregulation in the adults.  In addition, genes that were only expressed in the CD46+ 

adults when compared to CD46+ neonates (e.g. CXCL9, CCL11; Table 4, bottom panel) were 

all expressed in the CD46+/RAG2-KO neonates upon infection.  Thus, the CD46+/RAG2-KO 

neonates express a cytokine profile that includes factors that are controlled in an age-dependent 

manner in the immunocompetent CD46+ mice.  

In addition to understanding the genes that are upregulated post infection, we wanted 

to understand the baseline differences in cytokine expression due to genetic deficiencies. 

Thus, in Table 6, basal gene expression in uninfected CD46+/IFN-KO and CD46+/RAG2-

KO neonates are compared to uninfected CD46+ neonates. As expected, IFN and IFN 

inducible CXCL11 is downregulated in CD46+/IFN-KO neonates. In CD46+/RAG2-KO 

neonates show downregulated Bmp 2, 4, 6, and 7 expression compared to CD46+ uninfected 

neonates. There were no baseline differences in IFNα and chemokines like CXCL10 and 

CCL2 among all the neonates (Table 6).  
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Table 5.  
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Table 5: Gene expression of cytokines and chemokine in measles virus-infected 

CD46+, CD46+/IFN-KO and CD46+/RAG2-KO neonates. Brain tissue was collected from 

uninfected and infected neonates and RNA was extracted at 7 dpi.  qRT-PCR array analysis 

was performed using the RT2 Profiler™ PCR Array. For each infected neonatal group (n=16) 

was used in the array. Changes in the gene expression that were more than two-fold relative 

to the uninfected controls are shown. All data were normalized against levels of 

housekeeping genes within the same sample. *p< 0.05 by students t-test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 106 

Table 6.  

 

Table 6: Baseline mRNA expression of cytokines/chemokines in uninfected neonatal 

brains. Brain tissue from uninfected CD46+, CD46+/IFN-KO, and CD46+/RAG2-KO 

neonates was collected for RNA extraction. qRT-PCR array analysis was performed using 

the RT2 profiler PCR Array. Changes in gene expression that were more than two-fold higher 

(blue) or more than two-fold less (red) relative to the uninfected CD46+ neonates are shown. 

All data were normalized against levels of housekeeping genes within the same samples. 

Genes with P values less than 0.05 are shown (student t-test).   
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In Table 7, the baseline differences in cytokine expression between adult CNS and neonatal 

CNS are compared. The adult CNS shows downregulated Bmp4, CCL20 and Tnfsf11 

expression. There are no differences in any Type I or Type II IFN expression between adults 

and neonates.  
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Table 7:  

 

 

Table 7: Baseline mRNA expression of cytokines/chemokines in uninfected neonatal 

and adult brains. Brain tissue from uninfected CD46+ neonates and adults was collected for 

RNA extraction. qRT-PCR array analysis was performed using the RT2 profiler PCR Array. 

Changes in uninfected adult gene expression that were more than two-fold higher (blue) or 

more than two-fold less (red) relative to the uninfected CD46+ neonates are shown. All data 

were normalized against levels of housekeeping genes within the same samples. Genes with 

P values less than 0.05 are shown (student t-test).   

 



 

 109 

4.3.2 CD46+ neonates and adults differentially express PRRs and Type 1 interferons 

during infection 

Our previous data suggests that adult mice may depend on the Type I interferons early in 

infection, whereas IFN is required for later control and resolution of the infection 

(O’Donnell, et al. 2012).  Furthermore, evidence from the Rall laboratory shows that 

embryonic hippomcampal neurons from the CD46+ mice express relatively high endogenous 

levels of IFNα/ compared to other cell types, although the Type I interferons were 

dispensable for survival in vivo (Cavanaugh, Holmgren, 2015). The data in Table 4 and Table 

5 suggests that neonates succumb to the infection despite a Th1 cytokine response. However, 

we had not explored the Type I IFNs, which are typically expressed at earlier time points in 

infection, because they were dispensable for ultimate viral control in adults.   In a canonical 

infection model, IFNβ is produced after recognition of viral PAMPs by PRRs. IFNβ binds to 

IFNαR leading to IRF7 gene expression to enable a full type I IFN response. In vivo studies in 

Theiler’s virus and La Crosse brain infection led to production of type I IFN response by 

ependymal cells, neurons, and macrophages (Delhaye, Paul, 2006). Thus, we wanted to 

explore whether age-related differences in the type I IFN response could contribute to loss of 

viral control in neonates.  

 

Our array data suggested that IFNα2 was not expressed at significant levels in either 

neonatal or adult mice brains during infection (data not shown).  We also wanted to determine 

if our gene expression data correlated with protein expression. This was to ensure that the 

mRNA translated into protein and that mRNA degradation does not occur. Thus, we 

attempted to analyze protein levels of IFNα/ IFNβ through multiple methods. We attempted to 
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measure 14 of the IFNα isoforms through an ELISA at 3 and 7 dpi. However, we could not 

detect any difference in IFNα protein expression between uninfected and MV-infected 

neonates and adults (Figure 20). This suggests that IFNα expression at early stages of 

infection may be low or the background signal for the ELISA may be too high to detect subtle 

changes. We also attempted to address protein levels by western blot analyses of hippocampal 

brain tissue at 3, 7, and 10 dpi using a variety of antibodies for IFNα and IFNβ. 

Unfortunately, we were unable to detect differences in IFNα/ proteins at any time point 

using western blot analysis. This data suggests that basal expression of IFNα may not change 

dramatically during early stages of infection (Cavanaugh, Holmgren, 2015). 

 

As an alternative approach, we instead measured IFNα/ mRNA levels by qRT-PCR 

in the RNA samples, as we have this technique to be more sensitive in our hands (Figure 21). 

We found that the neonatal mice expressed IFNα4 and IFNβ during infection at 7 dpi, 

whereas the adult mice did not show an appreciable increase in expression (Figure 21).  

These data correlate with our previously published observations on STAT2 activation in 

neonates, in which hippocampal tissue from CD46+ and CD46+/IFN-KO neonates show 

STAT2 phosphorylation at the same time point (Fantetti, Gray, 2016).  We looked at 3 dpi 

and 7 dpi to understand if there any differences in early type I IFN induction.  Early in 

infection (3 dpi), we did not observe significant expression of IFNα4 or IFNβ in the adults or 

neonates of any CD46+ genotype (Figure 21A, 21B). As the infection progressed (7 dpi), 

CD46+/IFN-KO neonates upregulated IFNα4 (29-fold) to a greater extent in comparison to 

CD46+ (7.5-fold) and CD46+/RAG2-KO (5.7-fold) neonates post-infection, whereas CD46+ 

adults did not increase the expression of IFNα4 significantly (Figure 21A, 21B).  In contrast, 
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CD46+/RAG2-KO neonates demonstrated greater upregulation of IFNβ in comparison to 

other neonates (1644.8-fold; Figure 21C). Although IFNβ also was upregulated in the CD46+ 

neonates (122-fold) at 7 dpi, CD46+ adults did not show significant upregulation of IFNβ at 

either time point (Figure 21D).  Thus, IFNβ upregulation in CD46+/RAG2-KO neonates may 

contribute to their early viral control and greater survival.  We also analyzed levels of the 

IFN-responsive gene (ISG), Melanoma Differentiation-Associated protein 5 (MDA5), which 

is a PRR, as a surrogate for Type I IFN signaling.  MDA5 was not induced significantly in 

infected CD46+ neonates or adults at either time point (Figure 21E, 21F).  At 7 dpi, only the 

CD46+/IFN-KO neonates significantly upregulated MDA5, which may correlate with the 

elevated IFNα4 observed at this time point.  
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Figure 20.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. IFNα protein expression in adult and neonatal CNS post infection at 3dpi. 

Brain tissue was isolated from infected and uninfected neonate and adult brains and protein 

was extracted at 3 dpi. Protein concentration was measured by protein assay and equal 

protein was loaded into each well of the ELISA to detect total IFNα (14 isoforms).  One-way 

ANOVA was used to determine statistical significance.  
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Figure 21.

 

Neonates 
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Figure 21.  Neonatal mice induce greater expression of Type I interferons during MV 

infection in comparison to adults.   

Brains of uninfected and MV-infected CD46+ mice were analyzed for the mRNA expression 

of Type I interferons at 3 dpi and 7 dpi.  CD46+, CD46+/IFN-KO, and CD46+/RAG2-KO 

neonates (left column; A, C, E) and CD46+ neonates and adults (right column; B, D, F) were 

compared.  qRT-PCR analysis was performed for IFNα4 (A, B), IFNβ (C, D) and MDA5 (E, 

F). Relative gene expression is shown as the fold-change normalized to the CD46+ 

uninfected controls (n=4-5 mice/condition).    Each bar represents the mean fold-change and 

SEM.  Statistical differences were determined by three-way ANOVA (* p<0.05, # p<0.001) 

with Bonferroni post hoc test. 
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4.3.3 MV-infection induces distinct expression of pattern recognition receptors in the 

neonatal and adult CNS. 

Although it is possible that other IFNα isoforms are expressed in the infected adults or 

neonates, we further looked at other PRRs that sense RNA virus such as RIGI, TLR3, and 

TLR7 to explore age dependent differences upstream of Type I IFNs. As we did not observe 

an early induction of Type I response at 3 dpi, we explored the changes of other PRRs at the 7 

dpi timepoint only (Figure 22). For our analysis, we focused on RIGI, which is expressed in 

the brains of MV-infected transgenic mice expressing Hsp70, and TLR 3 and 7, which 

recognize viral RNAs (Kim et al. , 2013, Sorgeloos et al. , 2013). TLR3, in particular, has 

been shown to be induced by the MV-Edmonston strain in cell lines (Tanabe, Kurita-

Taniguchi, 2003).  During infection of CD46+ mice, both CD46+ and CD46+/RAG2-KO 

neonates upregulate RIGI (12.2-fold and 24.4-fold respectively, Figure 22A) in the brain, 

whereas infected CD46+ adults did not demonstrate significant upregulation of RIGI with 

infection (Figures 22B).  CD46+ neonates did not upregulate either TLR3 or TLR7 (Figure 

22C and 22E), while CD46+/IFN-KO neonates upregulated TLR3 (41-fold, Figure 22C) 

and CD46+/RAG2-KOs upregulated TLR7 (11-fold, Figure 22E).  In contrast, CD46+ adults 

upregulate TLR3 (2.3x105-fold) and TLR7 (37.3-fold) to a greater extent than the any 

genotype of the MV-infected neonates (Figure 22D and 22F).  These results suggest that the 

CD46+ adult mice may rely on the TLR family of proteins for recognition of the virus.   

Additionally, these results suggest that gene expression of Type I IFN and associated ISGs 

remain relatively low at the start of infection in both neonates and adults, when Type I IFN 

expression would be expected to dominate.  Thus, we propose that the less effective immune 

response in neonates is not attributable to a diminished Type I IFN response. 
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Figure 22. 
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Figure 22. MV-infection induces distinct expression of pattern recognition receptors in 

the neonatal and adult CNS.  

Brains of uninfected and MV-infected CD46+ mice were analyzed for the mRNA expression 

of pattern recognition receptors (PRRs) at 7 dpi.  CD46+, CD46+/IFN-KO, and 

CD46+/RAG2-KO neonates (left column; A, C, E) and CD46+ neonates and adults (right 

column; B, D, F) were compared.  qRT-PCR analysis was performed for RIGI (A, B), TLR3 

(C, D), and TLR7 (E, F).  Relative gene expression is shown as the fold-change normalized 

to the CD46+ uninfected controls (n=4-5 mice/condition). Each bar represents the mean fold-

change and SEM. Statistical differences were determined by two-way ANOVA (* p<0.05, # 

p<0.001) with Bonferroni post hoc test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 118 

4.3.4 IFN induction occurs independently of age, but activation of the IFN-responsive gene 

CIITA occurs only in adults.   

Finally, to confirm the results of the RT array, we examined the mRNA induction of 

IFN in brain tissue through qRT-PCR at 7 dpi. Expression of IFN mRNA was higher in 

CD46+ neonates compared to CD46+/RAG2-KO neonates (Figure 23A).  Induction of IFN 

mRNA was also greater in CD46+ neonates than in adults (Figure 23B).  While we had 

observed the induction of some IFN-responsive genes in both age groups (Table 1), adult mice 

also expressed IFN-responsive genes that were not expressed in neonates (e.g. CXCL9), 

suggesting that neonatal mice may have impaired IFN signaling.    To investigate the 

downstream effects of IFN signaling, we compared the mRNA expression of CIITA (Class II 

Major Histocompatibility Complex Transactivator), a critical regulator of MHC-II induction 

and a IFN-responsive gene (Reith, LeibundGut-Landmann, 2005). There was no difference in 

CIITA expression among the three genotypes of the neonates (Figure 23C), despite the 

expression of IFN in CD46+ (4-fold) and CD46+/RAG2-KOs (2-fold) neonates.  However, 

CD46+ adults induced greater CIITA expression (11-fold) compared to uninfected controls and 

compared to infected CD46+ neonates (Figure 23D), despite less expression of both IFN and 

MV. These results suggest that although IFN may be induced in the brain during infection, 

there may be deficiencies in IFN signaling or transcriptional activation in the neonatal brain. 
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Figure 23. 
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Figure 23.  Despite elevated IFN expression during infection, transcription of IFN-

responsive genes is age-dependent.   

Brains of uninfected and MV-infected CD46+ mice were analyzed for the mRNA expression 

of IFN and CIITA at 7 dpi.  CD46+, CD46+/IFN-KO, and CD46+/RAG2-KO neonates (left 

column; A, C) and CD46+ neonates and adults (right column, B, D) were compared.  qRT-

PCR analysis was performed for IFN (A, B) and CIITA (C, D).  Relative gene expression is 

shown as the fold-change normalized to the CD46+ uninfected controls (n=4-5 

mice/condition). Each bar represents the mean fold-change and SEM. Statistical differences 

were determined by two-way ANOVA (* p<0.05, # p<0.001) with Bonferroni post hoc test. 
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4.4 Discussion 

Recognition of viral RNA by PRRs such as the RIG-I and the membrane bound TLRs lead to 

the induction of Type 1 IFNs, which are significant early steps in viral control (Akira, 

Uematsu, 2006, Yoneyama, Kikuchi, 2004, Zalinger, Elliott, 2015). As we observed greater T 

cell infiltration in the adults despite a lower viral load than the neonates, we considered the 

possibility that enhanced expression of pattern recognition receptors (PRRs), and subsequent 

Type I IFN expression, could correlate with the relatively robust immune response that is 

induced in adults. The type I IFNs, IFNα and IFNβ, both signal through the same receptor 

(comprised of IFNAR1 and R2), but they exert different biological effects in the CNS. 

Several studies suggest that IFNβ expression is associated with anti-inflammatory effects in 

the CNS (Hua et al. , 1998, Lu et al. , 1995, McLaurin et al. , 1995). Whereas IFNα 

expression has been associated with neuroinflammatory disorders and brain injury such as 

HIV-associated brain injury and HIV-associated neurocognitive disorders (Sas et al. , 2009, 

Sas et al. , 2007). Studies also suggest that transgenic expression of IFNα in the mouse CNS 

results in progressive inflammatory encephalopathy and neurodegeneration (Akwa et al. , 

1998). Thus, it is possible that high IFNα expression may contribute to inflammation and 

edema seen in CD46+/IFN-KO neonatal brains (Figure 21), which may lead to earlier death 

despite a lower viral load (Figure 7 and 8). 

 

In canonical Type I IFN signalling, production of IFNβ leads to the subsequent 

induction of IFNα. But studies in SIV infection suggests that CCL2 binds to the CCR2 

receptor on macrophages to selectively suppress IFNα induction without any effect on IFNβ 

and antiviral ISG expression (Zaritsky et al. , 2012). Thus, a pronounced upregulation of 
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CCL2 in CD46+/RAG2-KO CNS (493-fold – Table 2) may suppress IFNα in these brains 

and inhibit IFNα-mediated neurotoxicity. Studies in HIV-gp120 transgenic mice and SIV 

models suggest that IFNβ response is activated without the production of neurotoxic IFNα 

(Thaney et al. , 2017). RIG-I, a PRR that is expressed in microglia, astrocytes, and neurons 

and may contribute to endogenous production of IFNβ in the CNS (Furr et al. , 2008, Nazmi, 

Dutta, 2011). We observe that CD46+/RAG2-KO neonates have highest RIG-1 expression in 

the CNS which may correlate with higher IFNβ production in their brain (Figure 21 and 22). 

Studies in human fetal microglia provide evidence that IRF3, a transcription factor, is required 

for induction of IFNβ and contributes to the switch of microglia from pro- to anti-

inflammatory phenotype via the PI3K/AKT pathway (Tarassishin et al. , 2011). Thus, this 

suggests that IFNβ may change the phenotype of microglia from proinflammatory to anti-

inflammatory/protective state. Therefore, it will be interesting to look at the differences in 

IRF3 expression in the CD46+/RAG2-KO compared to CD46+ neonates post infection. 

Additionally, a future direction for this project is to characterize the phenotype of microglia in 

vivo to determine whether a predominant M1 or M2 phenotype occurs post neonatal MV 

infection. 

  

IFNβ also induces CCL4, a chemokine which is upregulated in the neonates (Figure 

and Table 2). CD46+/RAG2-KO neonates show a robust upregulation of CCL4 post infection. 

In vitro studies indicate the CCL4 protects cerebrocortical neurons against neurotoxicity 

(Thaney, O'Neill, 2017). The IFN response is complex and hence, interplay of several factors 

and ISGs such as CXCL10, CCL4, and CCL2 may contribute to neuronal rescue in 

CD46+/RAG2-KO neonate compared to CD46+ neonates, which express low levels of IFNβ. 
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Another possibility is that higher expression of RIG-1 and IFN in the CD46+/RAG2-KO 

CNS than other neonates or adults (Figure 21) may lead to early viral sensing and subsequent 

IFN  help. Thus, this may help control CD46+/RAG2-KOs neonates to control the infection 

better in the absence of adaptive immune cells.  Furthermore, CD46+/RAG2-KO neonates 

expressed a broader of array of cytokines/chemokines during infection than CD46+ neonates 

or adults (Table 2).  Among the factors that were upregulated only by the CD46+/RAG2-KO 

neonates, the expression of multiple BMP family members (BMP 2, 4, 6, and 7) was elevated 

during infection, although it is important to note that the BMP family members exhibited 

lower basal expression in the CD46+/RAG2-KO mice prior to infection.  Studies of neonatal 

mice infected with reovirus show that BMP signaling is activated during CNS infection, and 

that BMP6 protects virally-infected neurons from apoptosis (Beckham et al. , 2009).  We 

speculate that BMP expression in the CD46+/RAG2-KOs may confer a neuroprotective 

advantage against the virus, which may help the CD46+/RAG2-KOs to resist succumbing to 

the infection as readily as their wildtype counterparts.  

 

CCL2, which functions as a chemoattractant for monocytes, macrophages, and T cells, 

was upregulated significantly in CD46+ MV-infected neonates but not in adults.  Transgenic 

adult mice that express CCL2 in the CNS are ineffective at viral clearance and succumb when 

infected with a neurotropic strain of mouse hepatitis virus (Trujillo, Fleming, 2013). 

Overexpression of CCL2 is also associated with greater infiltration of regulatory T cells and 

reduced microglial/macrophage activation with a mixed M1/M2 phenotype, which also was 

associated with a suppressive phenotype (Trujillo, Fleming, 2013).  Thus, overexpression of 

CCL2 can lead to a defective immune response that fails to clear the virus and is both 
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inflammatory and immunosuppressive.  Although CCL2 is crucial for lymphocyte recruitment 

and clearance of some viruses from the brain (Chen et al. , 2001), it is possible that expression 

of CCL2 in MV-infected neonates contributes to a suppressive, M2-like phenotype in microglia.  

 

CD46+ neonates upregulate RIGI expression post virus infection (Red) in the brain and may 

activate downstream signaling cascade that result in Type I IFN (Interferon) production. 

(Figure 24A) Macrophages, part of innate immunity sense viruses and engulf them by 

phagocytosis and produce several cytokines such as IFNα, IFNβ, IL-12 and IL-27. These 

cytokines further lead to activation of Natural killer cells. Both NK cells and macrophages may 

also produce IFNγ that binds to IFNR on neurons and APCs. MHC-II encodes for genes that 

are essential for presentation of antigen to CD4+ T-cell. The induction of MHC-II expression in 

most cell types is modulated by exposure to IFN. In neonates, low expression of CIITA may 

lead to low   MHC-II and lead to loss of control to viral infection in the neonatal CNS (Figure 

24A). This contrasts to what occurs in the adult CNS, where IFN signaling leads to higher 

expression of CIITA (Figure 24B) that may lead to high MHC-II. Thus, adults exhibit effective 

antigen presentation and IFN-mediated viral clearance. 
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Figure 24. 

 

 

 

Figure 24. Model of neonatal immune response in the brain 
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Multiple studies have shown that neonates have poor Th1 function and a strong Th2 

response during microbial infections (Forsthuber et al. , 1996, Powell and Streilein, 1990, Singh 

et al. , 1996). This Th2 bias may be due to delayed maturation of accessory cells or intrinsic 

epigenetic factors in neonatal T cells. (Li et al. , 2004).  Regardless of the cause, Th2-like 

responses are not typically associated with IFN production, which is a hallmark of Th1 

responses.  Given the significance of IFN in viral control in neurons, we predicted that the 

failure of CD46+ pups to control MV would be due towards a Th2-bias in the brain. Although 

distinct cytokine subsets were observed in infected CD46+ adults and neonates, the neonatal 

mice did not demonstrate a clear Th2 bias. CCL2 can be important for the development of a 

Th2 phenotype (Gu et al. , 2000), but other key Th2 factors (e.g. IL-4, IL-5) were not 

upregulated in infected neonates.  Rather, both adult and neonatal CD46+ mice expressed Th1-

associated cytokines and chemokines, including IFN, CXCL10, CCL3, and CCL5, during 

infection.  IFN-inducible genes, including CXCL10 and CXCL11, were also upregulated in 

both infected neonates and adults, suggesting that there is a sufficient amount of IFN to activate 

downstream transcriptional changes.  However, neonatal CD46+ mice failed to activate both 

CXCL9 and CIITA (Table 1 and Figure 11), both of which are IFN-inducible genes.  These 

findings suggest that IFN signaling may be limited in the neonatal CNS, at least in regard to 

the profile of genes that are activated (Figure 24A).  Previous studies in CD46+ neonates 

demonstrate elevated expression and phosphorylation of Signal transducer and activator of 

transcription 1 (STAT1), the major signaling molecule downstream of IFN, in the 

hippocampus during infection (Fantetti, Gray, 2016).  This observation implies that IFN 

induces its canonical signaling cascade in the neonatal brain.  However, both Type I and II 

interferons signal through STAT1, so it is possible that STAT1 activation in neonates does not 
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reflect robust IFN signaling per se.  Regardless of the level of STAT1 activation, the disparity 

in the activation of IFN-inducible genes suggests that the outcomes of IFN signaling may be 

dictated by age-related factors (Figure 24).   

Although CD46+ neonates and adults upregulated similar Th1 cytokines and 

chemokines in the CNS, the expression of some cytokines during infection was age-dependent.  

In addition to unique expression of CCL2, neonatal mice express the anti-inflammatory 

cytokine IL-10, which is classically associated with Th2-like responses and repression of Th1 

cytokine synthesis (Couper et al. , 2008).  In the CNS, recombinant expression IL-10 is 

protective against virally-induced demyelination and lymphocyte infiltration (Trandem et al. , 

2011a). Endogenous IL-10 also protects against neuropathology caused by coronaviruses and 

flavivirues in murine models of adult infection (Trandem et al. , 2011b, Tun et al. , 2014).   

However, the lack of IL-10 induction in CD46+ adult mice suggests that IL-10 is dispensable 

for non-cytolytic viral clearance from neurons.  Similarly, CD46+ neonates, but not CD46+ 

adults, upregulated TNF during infection. TNF is associated with neuroprotection in models of 

flavivirus encephalitis (Hayasaka et al. , 2013, Tun, Aoki, 2014).  Thus, it is surprising that both 

IL-10 and TNF would be expressed in the neonatal CD46+ model, where viral clearance fails 

and neuronal dropout is apparent, but not in the adult CD46+ model, where viral control is 

successful. One possible explanation is that IL-10 induction in neonates dampens the expression 

of necessary anti-viral or neuroprotective cytokines but does not completely inhibit them, which 

may explain the extensive overlap in cytokine profiles between adults and neonates despite 

disparate outcomes in viral control and survival.  
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Age-dependent innate immune responses may also contribute to early viral control, 

even if innate immunity is not responsible for the ultimate resolution of the virus. Previous 

studies indicate that murine neonatal intestinal epithelial cells fail to express TLR3 in 

response to rotavirus infection through post-natal days 1-10, which overlaps with the time 

points reflected in our study (Pott, Stockinger, 2012).  Similarly, human cord blood samples 

do not induce TLR3 in response to poly(I:C) treatment or HSV activation in comparison to 

adult NK cells (Slavica, Nordstrom, 2013).  Although, we observed robust RIG-I expression 

in the CD46+ neonates, there is also evidence in human neonatal dendritic cells that RIG-I 

function is impaired and is associated with poor control of RSV (Marr et al. , 2014). In CNS 

infections of HSV, TLR3 signalling is critical to control both primary HSV infection and its 

reactivation. Humans with defects in TLR3 signaling are more susceptible to encephalitis 

(Guo et al. , 2011, Zhang et al. , 2007).  Nevertheless, neonatal mice demonstrated greater 

induction of Type I IFN expression than adults at the time points examined, suggesting that 

the neonatal mice are capable of detecting MV through other PRRs.  

 

CD46+/RAG2-KO neonates show high expression of IFNβ at 7dpi. Although, type I 

IFN may be dispensable for viral control in the adult CNS (Cavanaugh, Holmgren, 2015), IFNβ 

may contribute to early viral control in the neonatal CNS. To fully characterize age-dependent 

differences in Type I IFNs, the other isoforms of IFN would also have to be analyzed.  

However, it is possible that in the absence of a fully developed T cell response, a Type I IFN 

response can be especially impactful in the neonatal CNS.  Additionally, exploring the role of 

TLRs and their deficiencies in the neonatal CNS may provide future targets for therapeutic 

intervention. 
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5.  Conclusions 

The focus of this dissertation centered on dissecting the role of the neonatal immune 

response during a viral CNS infection. We found that (i) interferon-gamma (IFN), a key 

cytokine required for viral control in neurons in adults, delays mortality in neonates, (ii) 

neonates ultimately succumb despite IFN-independent infiltration of natural killer cells, 

neutrophils, inflammatory monocytes, and CD4 and CD8 T-cells (iii) neonates and adults 

differentially express pathogen recognition receptors and Type I interferons during infection, 

(iv) both neonates and adults express IFN, CXCL10, IL-1, and IL-1RA, among induction of 

other Th1-associated factors cytokines/chemokines, in the brain but only adults control the 

infection, and (v) neonates and adults also express non-overlapping sets of 

cytokines/chemokines. The results suggest age-dependent expression of cytokine profiles in the 

brain and distinct dynamic interplays between lymphocyte populations and 

cytokines/chemokines in MV-infected neonates. 

 

We had anticipated that neonatal mice would demonstrate major deficits in T cell 

infiltration.  Although we did observe lower T cell numbers in neonates at later time points, we 

did not observe as much of a quantitative deficit as we had anticipated.  Thus, we also 

investigated potential deficits in innate immune cells.  Here, we observed that NK cells, 

neutrophils and inflammatory monocytes infiltrate into the neonatal brain post MV infection.  

In the absence of IFN, highest numbers of NK cells, neutrophils, inflammatory monocytes, T-

cells and B-cells accumulate into the CNS. These neonates succumb earliest to the neurotropic 

MV infection in the brain. We hypothesized that IFN expression may be lacking in the CD46+ 
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neonatal CNS. However, surprisingly we found IFN expression in the brain but induction of 

downstream signalling of CIITA is decreased in neonates compared to adults.  

 

Our findings highlight the complex, age-specific responses of immune cells to a CNS 

viral infection, and suggest that multiple cytokines likely contribute to successful viral 

clearance from neurons.   A major focus of future work is to better understand how the cytokine 

milieu in adult mice affects viral clearance in neurons, and to determine if the cytokine profile 

in neonates can be directed toward more effective viral clearance.  Given that IFN was 

expressed in both neonatal and adult mice, but distinct profiles of IFN-responsive genes were 

induced, it suggests that there may be age-dependent differences in IFN signaling.  Prior 

studies by our laboratory have demonstrated cell type-specific differences in expression of the 

IFN receptor and of intracellular signaling molecules (e.g. STAT1) in neural cells.  As the 

proportion and/or maturity of cells change in the CNS with age, it is conceivable that the 

signaling pathways induced by IFN also change over time. How such age-dependent changes 

affect the profile of the anti-viral program, and what cells are most affected by age-dependent 

changes, remain an open question.   

 

Future studies may employ adoptive transfer approaches to transfer adult T-cells into 

the neonates to determine the age-dependent T-cell behaviour in the CNS. Additionally, the 

mechanism of early viral control in CD46+/RAG2-KO neonates may be explored. IFNβ was 

significantly upregulated at 7dpi in CD46+/RAG2-KO neonates. Therefore, further studies to 

elucidate the role of IFNβ and its downstream signalling in the neonatal CNS may enhance our 

understanding of Type I mediated viral control. BMPs were also upregulated only in the 
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CD46+/RAG2-KO neonatal brains. There is evidence for BMPs being neuroprotective in 

reovirus infections. Thus, the role of Bmp agonists in neurotrophic MV infections may shed 

light into the mechanisms of viral control in CD46+/RAG2-KO compared to CD46+ neonates. 

Hence, a better understanding of neonatal immunity will lead to effective therapeutic strategies 

and enable us to design better vaccines to protect the fetus, mother, and newborns.  
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