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ABSTRACT 

 

DEVELOPMENT OF MULTIVARIATE POWDER X-RAY DIFFRACTION 

TECHNIQUES AND TOTAL SCATTERING ANALYSES TO ENABLE 

INFORMATIC CALIBRATION OF SOLID DISPERSION POTENTIAL 

 

 

By 

Michael D. Moore 

December 2010 

 

Dissertation supervised by: Peter L.D. Wildfong, Ph.D. 

 The objective of this work was to introduce a novel method for predicting solid 

dispersion potential enabled by the ability to differentiate phase-separated co-solidified 

products from amorphous molecular solid dispersions.  The central hypothesis states that 

a combination of materials properties exists that defines the propensity of an active 

pharmaceutical ingredient to form a binary amorphous molecular solid dispersion with 

polyvinylpyrrolidone:vinyl acetate copolymer using a melt-quench procedure.  Testing 

this hypothesis required execution of specific aims directed to address issues inherent to 

characterizing amorphous materials.  The work herein is presented with respect to two 

separate subjects: (1) analytical development and (2) theoretical applications.  In the first 

few chapters, advanced powder X-ray diffraction data processing techniques are explored 

and adapted to composite pharmaceutical systems.  Specific emphasis will be placed on 
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total scattering data manipulations and their benefits over traditional practices.  The 

concluding part of this work is devoted to illustrating the use of materials informatics in 

modeling solid dispersion potential, ultimately afforded by implementing the materials 

characterization methodologies developed in the initial stages.  Molecular descriptors, 

commonly employed in quantitative structure-property relationship assessment, were 

tested for correlation to dispersion potential across a library of small molecule organic 

compounds.  The final model accurately predicted dispersion potential for all 12 

calibration compounds and three test compounds. 
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Chapter 1: Introduction 
 
 
1.1 Statement of Problem 
 
 The development of small molecule organic (SMO) new chemical entities (NCE) 

for use in therapeutic products is a complex process involving effort from a diverse 

multidisciplinary scientific team.  Charged with the formidable task of formulating 

chemically/physically stable, manufacturable, and bioavailable dosage forms, scientists 

have traditionally relied on highly empirical tactics for solving the most daunting 

developmental issues.  Instances where first-principles approaches are not available for 

troubleshooting problematic materials-based deterrents seldom precipitate empirically-

derived predictive models largely due to analytical limitations.  As a result, innovation in 

the areas of pharmaceutical pre-formulation and formulation development are often 

precluded by advancements in materials characterization. 

 In the area of solid oral dosage form development, solubility of a solid material in 

the aqueous environment of the gastrointestinal fluid and subsequent permeability of 

active pharmaceutical ingredient (API) molecules through epithelial cellular membranes 

are two principal biopharmaceutical properties given significant consideration when 

deciding the fate of a NCE in the pharmaceutical development process.  Molecules 

having acceptable aqueous solubility and permeability, i.e., biopharmaceutical 

classification system1 (BCS) I compounds, are desirable owing to typically higher in 

vitro-in vivo correlation (IVIVC), but are encountered less frequently among emerging 

NCEs.  Therefore, modifications to APIs intended to improve biopharmaceutical 

properties inherent to successful development are becoming routinely necessary.   
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 Tactics commonly employed in permeability enhancement of NCEs often require 

alteration of intramolecular functional groups, thereby manipulating properties, including 

reduction of ionization potential under physiological conditions and lipophilicity.  These 

modified functional groups, however, often influence other physicochemical and 

pharmacological properties, such as aqueous solubility and receptor binding efficiency.  

Consequently, molecules that lack adequate permeability (BCS Class III, IV) are often 

dismissed as viable development candidates.  As aqueous solubility enhancing 

approaches are developed, BCS Class II compounds (low aqueous solubility, high 

permeability) exhibit greater potential for successful development.  With the decline in 

“blockbuster” drug development in the last decade, methods for optimizing 

biopharmaceutical properties of SMO compounds are becoming increasingly important. 

 The solubilization of a solid material in an aqueous medium is a complex, 

equilibrium process that can be broken down into three general steps.  The first step 

involves removing a molecule from the bulk solute particle.  This is achieved by 

breaking/overcoming the cohesive inter-molecular non-bonded interactions (NBI) 

responsible for maintaining the crystal lattice.  Half of the work committed in this process 

is regained from “closing” the hole created from the departure of the molecule.  The 

second step is called pre-solvation and is the work of breaking cohesive solvent:solvent 

interactions to create a “hole” sufficient to accommodate the solute molecule.  The final 

step, solvation, is the insertion of the solute molecule into the solvent “hole” and 

subsequent formation of adhesive interactions.  The final step represents an overall gain 

in work (or decrease in potential energy) due to: (1) the formation of adhesive 
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interactions between the solute molecule and surrounding solvent molecule(s); and (2) 

the “hole” created in step two is sealed.2

 Techniques that may be used to enhance the aqueous solubility and/or dissolution 

rate of NCEs can be broken down into two subgroups: (1) chemical and (2) physical 

modifications.  Conventional chemical modifications include prodrug development3 and 

salt screening/selection.4,5  Though successfully applied to commercially available 

therapeutic agents,2 these methods have their shortcomings.  Synthesizing an appropriate 

prodrug through the addition of an optimal physiologically cleavable functional group is 

not trivial.  Further, chemical modifications also possess the potential to unpredictably 

alter other biopharmaceutical properties, such as permeability, toxicological potential and 

pharmacological action.  Specifically, a molecular modification resulting in the greatest 

aqueous solubility enhancement may increase the toxicity of the molecule, e.g., in the 

case of quaternary ammonium prodrugs of tertiary amine containing compounds.6  

Further, salt formation of a compound is only a viable option when the NCE possesses an 

ionizable group, and oftentimes results in a material that has sub-optimal physical 

properties for manufacturing and stability.   

 Physical modifications, on the other hand, are more generally applied in the 

pharmaceutical industry relative to their chemical counterparts.  From classical 

dissolution theory, such as Noyes-Whitney,7 various materials properties can be altered, 

theoretically resulting in enhanced aqueous dissolution.  The inverse relationship between 

particle size and dissolution rate has enabled the exploitation of particle size reduction as 

a method of enhancing aqueous dissolution.8  Impact mills and fluid-energy mills are 

commonly used for reduction of particle size, however, the high-energy input of these 
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methods imparts the ability to induce phase changes (i.e., polymorphism,9 

amorphization,10,11 etc.,) with implications of physical instability.12   

 Other physical strategies, such as the formation of non-covalent inclusion 

complexes using cyclodextrins, provide solubility advantages over the un-manipulated 

drug.13  The prediction of solubilization potential with cyclodextrins, however, remains 

highly empirical, and is limited to appropriately sized, chemically compatible molecules.  

Solubility enhancement can be achieved through the use of formulation additives such as 

surfactants, however, drug:excipient compatibility becomes an issue.14  Despite the extent 

of viable options described herein, it has still been estimated that more than 40% of 

highly potent NCEs fail to reach clinical trials owing to their poor aqueous solubility.15  

Therefore, alternative methods need to be rigorously explored, and more fundamentally 

understood. 

 Controlled solid state modifications comprise an additional tactic for aqueous 

solubility enhancement on the principle that different solid forms have different 

physicochemical properties.  Adoption of metastable forms, however, is limited by their 

potential to convert to a more thermodynamically stable form in pharmaceutically-

relevant time-frames.12  Formation of binary amorphous molecular solid dispersions 

offers a method for physically stabilizing the amorphous phase of a drug substance.  

Generally speaking, amorphous molecular solid dispersions are formed by the co-

solidification of a drug and polymer, in a specific ratio, producing an overall amorphous 

phase displaying short-range order unique from that of either amorphous component.  

These systems, coupled with other composite entities (e.g. eutectics and solid solutions) 

are commonly implemented in manufacturing in the areas of metallurgy,16 
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microelectronics, and superconductor technology, where their controlled formation is 

well understood in the optimization of specific materials properties (other than solubility 

enhancement).17,18   

 The application of composite systems to pharmaceuticals is highly empirical, 

where solid dispersion potential screening may involve multiple concentration points (i.e. 

drug to excipient ratios), various excipient (e.g. polymers) materials, and different 

methods of preparation.  The raw material requirement involved with this assessment in 

early drug development stages remains an impediment for producing viable dosage forms 

from this technology.  Given this, the commercial availability of these systems in 

currently marketed pharmaceutical dosage forms is limited.8,19   

 Predicting drug:polymer solid dispersion compatibility/stability presents a 

difficult task, which suffers from the absence of universally applicable rules describing 

the molecular requirements for physically stabilizing amorphous therapeutic agents.  

Attempts to empirically model solid dispersed systems have yielded conflicting accounts, 

which are seemingly due to the dependency of specific stabilization effects on the 

particular components in the system, as well as inconsistencies in analytical 

characterization.  The insensitivity to structure at the short-range order level frequently 

impedes identification of miscible products from phase-separated products.  Additionally, 

variable reports on the presence of adhesive drug:excipient interactions oftentimes 

prevents accurate modeling/calibration of dispersion potential.   

 The random orientation of molecules in a molecularly dispersed system, as well 

as the indiscriminate specific/non-specific bonding schemes, implies that miscibility-

indicating features may be specifically related to properties of the individual molecules.  
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Through in silico modeling, various molecular properties and descriptors can be 

calculated from the compound’s atomic crystallographic coordinates.  With the enormous 

number of molecular properties available for modeling, a method for sorting through 

multi-dimensional data is required.  Materials informatics provides a statistically-robust 

method for surveying multi-scale data to seek specific structure-property relationships 

through linear/non-linear modeling.  Coupled with identification of successful amorphous 

molecular dispersion formation, this may ultimately provide an answer to determining 

molecular requirements for successful formation of amorphous molecular solid 

dispersions.  The ability to predict the miscibility between a drug and polymer and 

thereby limit the overall resource burden would significantly enhance the appeal of solid 

dispersion technology.   

 

1.2 Hypothesis and Objectives 

 The central hypothesis of this dissertation is that a combination of materials 

properties exists that defines the propensity of an API to form a binary amorphous 

molecular solid dispersion with polyvinylpyrrolidone:vinyl acetate (PVPva) copolymer 

using the melt-quench process.  In order to test this hypothesis, the following specific 

aims were proposed and executed: 

1.  Due to the considerable complexity of composite materials relative to single 

component systems, the quantitative ability of multivariate PXRD techniques 

will be compared with traditional univariate methods to support the use of 

full-pattern analyses on composite samples. 
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2.  The sensitivity of the PDF transform to subtle alterations in interatomic 

distances of an API:excipient composite mixture induced by high compaction 

pressures will be demonstrated with the goal of illustrating the potential of 

finite phase differentiation using the short-range structural order. 

3.  A statistically-relevant method for interpreting PDF difference plots based on 

the propagation of an initial PXRD error estimate will be derived and applied 

to classification schemes for solid dispersion systems. 

4.  An informatics calibration from a molecular descriptor database will be 

created to predict the potential of a compound to form an amorphous 

molecular solid dispersion with a given polymeric carrier using a single 

preparation method. 

 The purposes of the previous specific aims are: (1) to support the use of advanced 

analytical techniques to improve the characterization of complex pharmaceutical systems; 

and (2) to replace traditional empirical methodologies with advanced in silico modeling.   

1.3 Literature Survey 

1.3.1 Powder X-ray Diffraction 

 The discovery of X-radiation occurred in 1895 by W.C. Röntgen.  It was not until 

1912 when Max von Laue confirmed the wave character of X-rays from his single crystal 

diffraction experiments that the birth of the X-ray crystallography field commenced.  

Following von Laue’s three-vector dot-product description of X-ray diffraction, William 

Henry Bragg and his son William Lawrence Bragg derived a simpler method for 

understanding and predicting this phenomenon, thereby arriving at the well-known Bragg 

equation (Equation 1.1): 
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θλ sindn 2=  (1.1) 

where λ is the wavelength of X-radiation, n is the integer value of wavelength 

displacement satisfying constructive interference criteria, d is the interplanar spacing 

between a pair of Miller indices, θ is equal to 2θ/2 and 2θ is the angle between incidence 

and diffracted beams.20

 According to Equation 1.1, when a particular set of molecular planes is oriented 

toward an X-ray beam, X-rays will be diffracted at an angle (2θ) satisfying a particular 

distance between planes.  Although initially derived for single crystal samples, 

applications of X-ray crystallography principles to powders (i.e. polycrystalline material) 

provide the ability to study structural order without isolating a single crystal specimen.  

The powder diffraction pattern arises from the assumption that a large number of 

polycrystalline aggregates have crystallites in all possible orientations permitting the X-

ray beam to see all intermolecular planes.  Powder X-ray diffraction (PXRD) has become 

particularly useful practically, as structure-sensitive analyses may be applied to samples 

obtained from all stages of various manufacturing unit operations. 
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Figure 1.1.  Example PXRD focusing arrangements (after Zevin and Kimmel21, with 
modifications): (a) diverging incident radiation converges upon diffraction in reflectance 
geometry; (b) converging incident radiation diverges upon diffraction in reflectance 
geometry; (c) diverging incident radiation diverges upon diffraction in transmission 
geometry; and (d) converging incident radiation converges upon diffraction in 
transmission geometry. 
 
 Fundamentally, there are two primary geometric modes of PXRD analysis: (1) 

reflectance and (2) transmission.  Differences between the two setups involve the 

convergence-divergence of the X-ray beam.  In reflectance, the sample itself either: (a) 

changes a divergent beam into a convergent beam or (b) changes a convergent beam into 

a divergent beam.  In transmission mode, an incident diverging beam remains divergent 

upon diffraction and vise versa.  From these definitions, four types of focusing 

arrangements may be envisioned.  The first scheme involves a reflectance orientation 

where incident X-rays diverge with subsequently diffracted convergence and is 
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commonly referred to as Bragg-Brentano parafocusing geometry (Figure 1.1a).  The 

second reflectance setup produces converging incident X-radiation with subsequent 

diffracted divergence and is known as Seeman-Bohlin focusing geometry (Figure 1.1b).  

The first transmission mode produces converging X-rays that display convergence upon 

diffraction and is named for Guinier (Figure 1.1d).  The second transmission mode, 

which is much less common relative to the Guinier geometry, is divergent incident 

radiation with subsequent divergent diffracted radiation (Figure 1.1c).21  Both reflectance 

and transmission geometries have their own advantages and disadvantages that may be 

ultimately reconciled into instrumental and chromatic effects.  

 The most commonly employed focusing scheme, Bragg-Brentano reflectance, 

suffers from both instrumental and chromatic aberrations.  Each error source has 

scattering angle dependence, where instrumental effects decrease with increasing 

scattering angle and chromatic effects increase with increasing scattering angle.  There 

are four inherent instrumental errors of particular significance that are largely a 

consequence of the geometrically-imposed parafocusing circle.  They include the axial-

divergence error, flat specimen error, sample transparency error, and sample 

displacement error, where the latter two are closely related.  

 The axial-divergence error arises from the divergence of X-rays within the plane 

of the specimen, orthogonal to the theta angle.  This anomaly produces asymmetric 

broadening of Bragg diffraction peaks in the low two-theta direction.  Additionally, it 

introduces a decreasing negative error in two-theta up to 90°, then an increasingly 

positive error beyond.  To combat this issue, collimator slits comprised of a metal (i.e. 

molybdenum for copper radiation), cut to a specific length, and evenly spaced apart are 
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placed in between the source and sample, as well as, the sample and detector, to axially 

focus the X-ray beam.20   

 The flat-specimen error, as indicated by the name, is due to the inability of the 

entire irradiated sample to be co-concentric with the parafocusing circle.  The sample 

surface forms a tangent to the circle, where a different apparent irradiation distance for 

specimen extremities results in diffraction at an angle lower than expected.  The overall 

pattern aberration is a broadening of Bragg peaks due to a distortion of the average radius 

of the parafocusing circle.  Assuming a fixed incident divergence slit, the magnitude of 

the error is highly dependent on scattering angle, where decreasing divergent slit sizes 

result in smaller errors.20

 The principles associated with errors from sample transparency and sample 

displacement are very similar, where both are a result of instances where the effective 

diffraction surface lies above/below the focusing circle.  Pharmaceutically-relevant SMO 

compounds are effectively “transparent” to X-radiation, as the mass-attenuation of atoms 

comprising these molecules is relatively low.  The specimen-transparency error arises 

when X-rays penetrate to layers below the surface with subsequent diffraction from 

planes well below the focusing circle.  It has been reported that decreasing linear 

attenuation coefficients result in as much as a tenth of a degree peak shift and substantial 

angular asymmetry.22  Practical difficulties associated with placing a specimen directly 

co-concentric to the focusing circle lead to sample-displacement errors.  Pattern 

aberrations attributable to this error include low two-theta asymmetric peak broadening 

and absolute peak shifts equivalent to 0.01°2θ for every 15 μm displacement.20
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 To understand chromatic aberrations, an explanation of X-ray generation is 

warranted.  The production of X-rays is a highly inefficient process with respect to both 

substantial heat generation and emission of polychromatic radiation.  Copper X-radiation 

is produced as a result of the displacement of electrons from its inner electron shell and 

the concurrent replacement of those electrons from an outer electron shell.  The demoted 

electron releases energy equivalent to the energy difference between each orbital, which 

is on the order of the wavelength of X-radiation.  Typically, high current voltage is 

passed through a tungsten filament, which is encased in a glass housing that possesses an 

overall negative potential.  As high current passes through the filament, electrons are 

generated and subsequently directed towards the copper anode.  When they collide with 

the copper anode, electrons are displaced from the inner electron shell (normally 1s) and 

subsequently replaced by an electron from an outer shell (2p→1s).  This particular 

transition produces Kα radiation.  Also, a transition of electrons from the 3p shell (3p→1s) 

results in radiation (termed Kβ) of shorter wavelength.  Depending on the combination of 

the angular quantum number and spin quantum number of the electron which transitions 

from the outer shell, different wavelengths of radiation may be produced (Kα1/ Kα2 or Kβ1/ 

Kβ3).23

 Nickel has an absorption edge at 1.488Å with mass attenuation coefficients for Kβ 

and Kα radiation of 286 cm2/g and 49.2 cm2/g, respectively.  By controlling the thickness 

of a Ni filter in the path of incident/diffracted X-rays, considerable attenuation of Kβ 

radiation with minimal affect on Kα
 intensity is possible.  It is common practice to use Ni 

filters, where 15 μm results in an integrated intensity ratio of Kα / Kβ = 50:1.20  Given this, 

the bulk of chromatic aberrations are due to the inability to discriminate between Kα1 and 
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Kα2. At large scattering angles, the Kα1/Kα2 doublet results in significant Bragg peak 

broadening unless otherwise resolved.  The use of a monochromator to remove Kα2 

radiation is the most effective method; however, mathematical “stripping” may be carried 

out through data processing, having knowledge of each respective profile (i.e. shape, 

magnitude).24  Inaccuracies associated with the estimation of each wavelength’s 

contribution to the overall diffraction peak when mathematically stripping Kα2, however, 

may result in the introduction of substantial error into the data.  

 The transmission technique where a constant specimen-detector distance is 

employed creates an analog similar to the back-reflection of the aforementioned Bragg-

Brentano scheme.  Given the conceptual similarities, it may be envisioned that a certain 

likeness exists between errors encountered using Bragg-Brentano and transmission 

schemes.  Generally speaking, both instrumental and chromatic aberrations are much 

lower in transmission geometry relative to reflectance, largely due to the focusing circle 

placement at θ - 90°.  This emulates back-reflection characteristics, and as previously 

discussed, is approximately where instrumental aberrations decrease in Bragg-Brentano 

setups.  Chromatic aberrations are largely eliminated due to competitive dispersion 

elements arising from the specimen and/or the mechanism used for incident X-ray 

convergence, e.g. elliptical mirror.  These factors largely reduce the separation between 

the Kα1 and Kα2 components.21  In addition to lower instrumental and chromatic 

aberrations, constant depth-of-penetration in transmission geometry results in increased 

robustness to particle size, preferred orientation, and stress/strain aberrations relative to 

traditional Bragg-Brentano reflectance, where depth of penetration varies with diffraction 
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angle thereby amplifying these effects.  When significant sample absorption is not an 

issue, transmission geometry affords superior performance. 

1.3.1.1 Quantitative Powder X-ray Diffraction 

 Ranging from univariate to full-pattern approaches, quantitative powder X-ray 

diffraction (qPXRD) techniques have long been plagued with errors attributable to the 

physical characteristics of the sample.  Paramount to the list is the issue of sample 

absorbance, where the electron density of the atoms comprising the specimen may result 

in considerable radiation attenuation.  The implementation of full-pattern multivariate 

quantitative modeling will be discussed, specifically in the context of the aforementioned 

instrumental and chromatic pattern aberrations. 

 The interaction between the radiation and matter is fairly complex, where 

“absorbed” radiation may have been subjected to various other transformations.  Total 

absorption or energy loss as a function of passing through matter is due to a combination 

of scattering and the photoelectric effect.  General scattering occurs when radiation 

interacts with matter, retains the initial energy/wavelength, but scatters at an angle not 

defined by Bragg’s law (Equation 1.1).  An instance where a decrease in energy of the 

radiation occurs in addition to the previously described situation is commonly referred to 

as Compton scattering.  Radiation can be absorbed by atoms according to the 

photoelectric effect, where the atom is excited and an electron is ejected.  When the atom 

returns to its ground state, another electron (Auger effect) or fluorescent radiation can be 

emitted.25  The methods for absorption corrections in qPXRD applications range from 

first principles estimations to empirical assessments with respect to a reference 

material(s).  The principles originally developed by Alexander and Klug26 for quantitative 
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analysis of powder mixtures with respect to the absorptive properties of the sample are 

the foundation for the forthcoming discussion. 

 The oldest method for absorption correction in qPXRD applications is a 

univariate approach known as the internal standard technique.21  The specimen is spiked 

with a known amount of a pure reference phase and subsequently analyzed as a mixture.  

The ratio of unknown phase intensity to the internal standard intensity can be used to 

determine the concentration of the unknown phase, as the ratio of intensity values are 

independent of sample absorption.  Analyte concentration values are, therefore, obtained 

from a single experiment negating the need for a calibration.  The weight fraction of a 

phase j is given by: 

hs

ij
j I

I
Hc =  (1.2) 

where Iij is the intensity value for the unknown phase, Ihs is the intensity value for the 

internal standard, and H is a constant determined from knowing the weight of the internal 

standard.  In this analysis, intensity is taken as the peak height or integrated intensity.   

 In selecting an internal standard, a few considerations must be made.  First, the 

standard is desired to possess high symmetry, thereby producing a small number of 

highly intense Bragg peaks.  Additionally, sufficient isolation of the peak(s) used for the 

unknown phase from that of the standard is also a necessity.  The density of the internal 

standard should be close to that of the unknown phase as to permit a homogeneous 

distribution upon mixing.27  Finally, the standard material should be chemically stable in 

the analytical environment. 

 The internal standard method is insensitive to unknown phases and therefore may 

be implemented to analyze any crystalline material in a multiphase matrix.  Lithium 
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fluoride was used to aid in simultaneously quantifying an enantiomeric material and 

racemic compound mixture of ibuprofen, where limits of quantification were around 

three percent.28  A potential disadvantage involves the physical addition of an internal 

standard to the sample matrix.  Errors in weighing and inhomogeneous distribution of the 

standard may increase the uncertainty associated with the measurement.  Further, the 

methodology prevents analysis of composite samples intact, as the sample must be 

destroyed and blended with the standard. 

 The most direct method for absorption correction is afforded through knowledge 

of the mass absorption coefficient.  This may be determined using a simple calculation 

from the chemical composition23 or any direct experimental technique, provided the 

determination is independent of the diffraction measurement.  Born from this approach is 

the diffraction-absorption method, where calibrations are created from correlating 

standard samples to corrected intensity(s).  If it is assumed that the absorption coefficient 

for the unknown phase is the same as that for the entire sample matrix, the concentration 

of phase j is given by: 

ijijj Ic χ=  (1.3) 

where Iij is a measured intensity value and χij is a calibration constant obtained by 

analyzing any mixture with a known concentration of phase j.  The use of a single 

intensity value in this application may introduce significant error into the analysis due to 

many of the systematic aberrations described previously.  Variations in the lattice strain 

and particle size, which commonly influence Bragg peak shape, are avoided by using the 

integrated intensity.27   
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 Adaptations for constant and variable absorption coefficients have been 

developed for multiphase analysis.  Unfortunately, sources of nonlinearity other than 

absorption can introduce errors into this type of calibration, including microabsorption, 

extinction, and preferred orientation.  The effect of preferred orientation may be 

substantially different in a composite system than that exhibited by the pure phase, as 

powder consolidation has been shown to induce preferred orientation.29  A qPXRD study 

by Tiwari et al. to quantify polymorphs of a specific drug showed particle size and 

preferred orientation errors significantly affected the number of identifiable peaks and 

their respective integrated areas.30  To increase the accuracy and precision of their 

method, substantial parameter and sample optimization was required beforehand, thereby 

increasing raw material demands and other costly resources. 

 Full pattern techniques are particularly useful when peak overlap between 

components occurs in a mixture.  The most popular full pattern method for quantification 

of crystalline phases was introduced by Rietveld,31,32 which was originally developed for 

crystallographic structure refinement using single-crystal neutron diffraction data.  It was 

over ten years after its introduction before the Rietveld method was applied to X-ray data.  

Once accepted by crystallographers, the number of publications citing this method 

drastically increased.33  Under the Rietveld method, a powder pattern is thought of as a 

collection of individual profiles the have a peak height, position, breadth, and an 

integrated intensity proportional to the square of the structure factor.  Being a structure 

refinement technique, a starting structural model is refined to fit the experimentally 

determined intensity values.  Calculated intensity values are determined from the 

structure factor (derived from a structural model) that sums neighboring Bragg reflection 
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contributions plus a background estimate.  Adjustable parameters in the calculation of the 

structural model are iteratively altered as to obtain a least-squares minimization between 

the calculated and experimental intensity values.  No specific effort is made by the 

Rietveld method to allocate an observed intensity to a particular Bragg peak or resolve 

overlapped peaks, thereby mandating accurate initial model estimation.34  A central part 

of Rietveld’s contribution stated information in overlapping peaks (unless coincident) is 

not entirely lost when the peak profile function is known. 

 It was realized some time after the Rietveld method was proposed that the scale 

factors derived from the analysis of multiphase diffraction data are proportional to crystal 

phase composition when the product of the mass and volumes of the unit cell of each 

phase are known.35  This full-pattern analysis proceeds with structural parameters, 

experimental parameters, and scale values (weight fractions) that are simultaneously 

refined against the experimental pattern.  The Rietveld method has been successfully 

applied to both inorganic and organic samples, where additional information concerning 

preferred orientation may be gained from the analysis.36  This imposes a requirement of 

crystallographic structure solutions for all phases present and thus precludes its use for 

quantifying multiple amorphous phases, which is not to say that a collective amorphous 

content is unavailable through mass balance.   

 In all of the qPXRD methods mentioned thus far, the overarching limitation, with 

respect to pharmaceutical applications, is the inability to quantify multiple amorphous 

phases.  Although each ostensibly permits the ability to back-calculate the collective 

amorphous element of a mixture, they all fail to address the individual contributions 

comprising the disordered component.  This is particularly important, as an increasing 
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number of formulations contain amorphous excipients as well as disordered API, where 

differentiation is paramount for claiming sensitivity.  In an effort to assert sensitivity to 

all components present in a mixture, other full pattern techniques that consider Bragg 

diffraction and diffuse scattering have been developed. 

 The term “full pattern” with respect to qPXRD applications has traditionally 

referred to two different types of analyses, one that solely solved the issue of overlapping 

peaks and the other addressing the additional issue of multiple amorphous components.  

The first approach is generally referred to as profile fitting, as clusters of overlapping 

peaks are decomposed into components (i.e. individual peaks).  Unlike Rietveld’s method, 

structural data is not needed; rather, knowledge of peak shape (i.e. profile) and, less 

importantly, position are used to decompose convoluted peaks.  Once clusters are 

separated, integrated intensity values are assigned to each component.21  These intensity 

values can then be used in a calibration-based method, such as the diffraction-absorption 

technique, or standard-based methods that do not require construction of a calibration, as 

previously described. 

 The second approach may be tailored to handle the quantification of multiple 

amorphous phases in a mixture.  The entire powder pattern of a multiphase mixture is 

assumed to be the sum of the scaled patterns of the individual phases present.  Linear 

combinations of each pure component pattern are used to create a simulated pattern that 

can be compared with the experimental pattern.  The scaling constants serve as estimates 

of the mass fraction of each phase in the mixture.  To date, it appears as though this 

method has only been applied to pharmaceuticals in an effort to quantify the amount of 

amorphous lactose in a multiphase mixture.37  The technique, however, could be 
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theoretically extended to multiple amorphous phases, provided the diffuse scatter patterns 

of each individual disordered component were unique. 

 For the aforementioned method, the advantage in handling convoluted peaks and 

quantification of amorphous phase(s) without the creation of a calibration is contingent 

upon a few factors.  Diffraction patterns must be obtained for each individual component 

comprising the mixture; impurities in the composite pattern or individual component 

patterns would introduce error into the analysis.  Each pattern in the analysis should be 

collected using exactly the same parameters and conditions.  Additionally, peak shape 

and intensity must be consistent for a given phase to give reliable predictions.  Much of 

the success of implementing the latter full-pattern technique was attributable to invoking 

a pattern normalization method based on Vainshtein’s law.37  This states that total 

integrated diffraction intensity in reciprocal space is independent of phase, as total 

electron density does not change with solid form, given constant mass.  An important 

interpretive assumption linked to this law imposes either: (1) the whole sample must be 

irradiated throughout the entire angular range of the diffraction experiment; or (2) the 

same mass of sample is irradiated throughout the entire angular range of the diffraction 

experiment.  If violated, the total electron density interrogated between samples would 

vary.  Issues with preferred orientation, particle size broadening, strain, and 

microabsorption, unless uniformly observed between samples, will all introduce error 

into the analysis. 

 From the preceding qPXRD discussion, it may seem apparent that an increased 

sensitivity to materials that diffract X-rays at a lower intensity (e.g. amorphous, 

disordered, nanocrystalline materials) is afforded through multivariate techniques.  
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Recent qPXRD literature has introduced multivariate chemometric linear algorithms as 

useful tools in pharmaceutical applications and demonstrated robust modeling 

capabilities using classical least squares regression, principal components regression, and 

partial least squares regression.  The implementation of full-pattern analysis in 

combination with creating a calibration, avoids many of the preceding issues.  This is the 

subject of Chapter 2. 

1.3.1.2 Pair Distribution Function 

 The majority of pharmaceutical applications employing PXRD focus on analysis 

of Bragg diffraction peaks only.  These diffraction data contain highly useful information 

pertaining to the global view of the structure (i.e. long range interatomic correlations).  

To be rigorous, one must recognize that structure occurs at a local level (i.e. short- and 

intermediate- range interatomic correlations), as well.  When considering ideal crystalline 

systems, this distinction is rather irrelevant, as the global structure is indicative of the 

local structure.  Lattice periodicity is a crucial element to the successful implementation 

of Bragg’s law.  If a material is not perfectly periodic, however, Bragg’s law does not 

fully characterize the solid structure and researchers are forced to describe it in different 

ways.  Therefore, when deviations from average crystallographic order are present, 

consideration of local structure packing becomes pertinent. 

 Given Bragg diffraction peaks contain information pertaining to global structure 

only, additional data is required to investigate local structure.  Total scattering methods 

make use of the entire diffraction pattern and are sensitive to local level structure.  The 

name “total scattering” comes from intensity values encompassing Bragg peaks (average 

structure), elastic diffuse scattering (static local structure) and inelastic scattering 
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(atom/molecular dynamics).38  Total scattering analyses make use of the collection of the 

aforementioned sources without resolving or differentiating the individual contributions 

and are, therefore, sensitive to short- and intermediate-range interatomic correlations.   

 When an atom, j, is irradiated by an incident wave, the total scattering amplitude 

of the wave due to the sample is given by: 

∑1
=

j

iQR
j

jef
f

Q)(ψ  (1.4) 

where ψ(Q) is the sample scattering amplitude, f is the atomic scattering factor, ‹› 

indicates the average, Rj is the position of the jth atom, and Q is the diffraction vector or 

momentum transfer.38  The momentum transfer is essentially equivalent to the change in 

momentum between the incident wavevector and the scattered wavevector.  If it is 

assumed that only elastic scattering is considered, the wavelength of each respective 

vector would remain constant, and thus the magnitude of the momentum transfer is given 

by: 

λ
θπ sin4

=Q  (1.5) 

where λ is the wavelength of radiation used, θ = 2θ/2, and 2θ is the maximum scattering 

angle interrogated in the experiment.  In deriving the sample scattering amplitude 

(Equation 1.4), the kinematic approximation was made, thereby only considering single 

scattering events.    

 Since the sample scattering amplitude can not be directly measured, it becomes 

highly advantageous that the square of its magnitude is directly related to the intensity of 

the diffracted beam.  Although PXRD intensity data are collected in “reciprocal space” as 

a function of Q, a direct representation of the real structure (i.e. real space domain) may 
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be obtained by Fourier transform of scattered intensity.  The pair distribution function 

(PDF) transform is a total scattering method that exploits the Fourier relationship 

between reciprocal space and real space.  The basis of this method resides in the structure 

function, S(Q), which is the normalized scattering intensity measured from a sample (i.e. 

normalized PXRD pattern).  The magnitude of the structure function with respect to the 

wavevector will be highly dependent on the direction interrogated in Q-space.  A 

simplification occurs when scattering becomes macroscopically isotropic, as only the 

magnitude of the scatter (and not direction) is important.  Isotropic scattering is easily 

envisioned for liquids, gases, and glassy materials; however, it is also reasonably 

assumed for fine crystalline samples, where each individual crystallite is not isotropic, 

but the ensemble of scattering is.38  The PDF, G(r), is therefore obtained as follows: 
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where r is the distance between two atoms, ρ(r) is the microscopic pair density, ρo is the 

average number density, f and ‹› are defined above, and δ is a delta function.  The PDF 

gives the probability of finding two atoms separated by a distance, r and is thus 

attributable to some atom-atom relationship, or interatomic correlation.39   

 From Equation 1.6, the integration of the function is taken from Q = 0 to Q = ∞ 

for an infinitely precise computation of the PDF.  The PDF of a perfectly crystalline 

material would display constant-amplitude oscillations in G(r) to infinity.  In reality, 

however, Q can only be measured over a finite range (i.e. Qmax).  The result is the 
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amplitude of the signal gradually falls off in G(r), not due to the limitation of structural 

coherence, but rather a limitation in spatial coherence of the measurement.  The finite Q-

resolution of a PXRD experiment can be the source of termination ripples (λ ~ 2π/Qmax)40 

in the PDF, unless treated appropriately. 

 In a PXRD experiment, substantial corrections need to be made to intensity data 

prior to Fourier transformation.  Generally speaking, a number of estimates and 

approximations are made when calculating the normalized structure function, thereby 

inducing some distortion(s) to the intensity data.  Fortuitously, inadequacies in the data 

normalization result in long-wavelength distortions to the structure function that manifest 

as nonphysical features (ripples) at very low r values in the PDF.41  These inadequacies 

are often dealt with through an arbitrary mathematical correction, including varying the 

sample density during scaling, varying the beam width, or scaling the structure function 

itself. 

 Although the sample density is fairly easy to determine with reasonable accuracy, 

it can be varied to produce a structure function consistent with its asymptotic 

requirements.  Varying sample density applies a predominantly multiplicative correction 

to the structure function, as is strongly affects both intensity normalization and absorption 

correction.  Although the beam size is known from the collimation of the instrument, the 

beam may not be homogeneous.41  The effective beam width will be different from the 

physical dimensions due to varying intensity across the beam profile.  Varying the beam 

size is primarily a multiplicative correction to the resulting structure function, as well.  

Both corrections can have additive components when multiple scattering manipulations 
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are applied.  Finally, directly scaling the structure function itself using multiplicative, 

additive, or a combination of the two, may be used to optimize the Fourier transform. 

 The selection of the value(s) to vary is arbitrary if some sort of quality criteria is 

implemented to assess the validity of optimization.  The PDF is highly sensitive to the 

asymptotic behavior of the structure function in the high Q region, which could 

ostensibly serve as a quality metric.  The density, beam width, or scaling factors would be 

varied to produce a structure function that asymptotes one.  Alternatively, the greatest 

manifestation of improper structure function correction is the introduction of ripples in 

the low r region of the PDF, and therefore, a quality criterion derived from this anomaly 

is more suitable.  The ΔGlow metric is given by: 
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where rlow is a region in r before the appearance of the first physically possible peak, and 

ρfit is the average number density.  From the Equation 1.9, the ΔGlow criterion is a 

measurement of the magnitude of ripples in the region between r = 0 and r = rlow.  

Parameters are varied, as described above, to effectively minimize the ΔGlow metric.  A 

study by Peterson et al.41 concluded the ΔGlow criterion was more robust than other 

options, and the choice of the parameter to vary during optimization (i.e. sample density, 

beam width), for all practical purposes, is inconsequential, as all seemingly yielded the 

same result. 

 Justification for using high energy synchrotron radiation for X-ray diffraction-

based PDF studies is warranted in the mere definition of the magnitude of the momentum 
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transfer.  The increase in spatial coherence of the measurement and decrease in 

nonsensical artifacts from the Fourier transform are as good a reason as any to use 

synchrotron radiation for all PDF studies.  It is impractical, however, for the average 

researcher to perform all studies using this highly sought, expensive technology.  Bruhne 

et al.42 showed that PDF transforms obtained from both synchrotron and laboratory 

source data on three icosohedral alloys were qualitatively comparable and both suitable 

for least squares local structure refinement.  This is ultimately attributable to the robust 

nature of the PDF transform with respect to errors in the structure function, as previously 

discussed. 

 The PDF has been extensively applied to inorganic-based materials assessment 

since its introduction into the literature.  One of the largest applications involves material 

structure refinement, where successful structure elucidation for atomic amorphous 

materials43,44 and intrinsically disordered materials44-46 has been reported.  In addition, 

size-dependent structure and strain of semiconductor nanoparticles45 and assessment of 

thermal motions46,47 in atomic structures are becoming more routine.  Although the 

number of pharmaceutically-related PDF applications is substantially less, the increased 

exposure from recent publications is significantly advancing the interest among scientists 

in the field. 

 Pharmaceutical processing involving high-energy input is commonplace in the 

manufacture of solid oral dosage forms.  Shear-intensive particle milling, powder 

consolidation, and thermal challenging (i.e. fluid bed drying) all have the potential to 

affect structural order in pharmaceutical powders.  Of the PDF applications published in 

the pharmaceutical literature, the overwhelming majority have transformed standard 
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laboratory X-ray data.  Sheth et al.48,49 used PDF transforms to explain local structure 

differences in amorphous phases created from milling different polymorphic forms of 

piroxicam.  Interestingly, residual long range order in cryogenically milled samples 

explained recrystallization habits of different polymorphic forms of the starting material.  

A study by Bates et al.50 assessed the potential of the PDF transform to describe the 

nature of an amorphous substance.  From their analysis, materials were classified as 

disordered nanocrystalline or amorphous.  Disordered nanocrystalline materials exhibited 

peak broadening as a function of increasing introduction of disorder.  The final X-ray 

amorphous halo had specific correlations to highly intense Bragg peaks displayed by the 

crystalline material.  Additionally, a comparison between PDF transforms revealed 

interatomic probability peak correlations between the disordered nanocrystalline material 

and crystalline material.  In contrast, PXRD patterns of amorphous materials did not 

display peak broadening as a function of continuous disordering.  Further, the PDF of 

amorphous materials relative to crystalline material displayed significant differences.  

Again, from distinguishing different types of disordered materials, information 

concerning recrystallization behavior was gained. 

 Dehydration-initiated crystalline-to-amorphous conversions must be considered 

during high-temperature pharmaceutical processing, such as that observed for raffinose 

pentahydrate.  Authors proposed a quasi-mechanism for this transition using PDF 

transforms obtained as a function of drying time.51  The study revealed that a defect-

mediated process led to the collapse of the crystalline structure, where retention of the 

crystalline order was accompanied by significant defect generation during the loss of the 

first two water molecules.  Additional heating beyond this point resulted in a total 
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collapse of the intermediate- and long-rang order of material structure.  The ability of the 

PDF transform to yield information concerning defect-generated disordering due to 

shear-intensive and high energy input processing, as illustrated in the previously 

discussed examples, foreshadows its potential use in investigating structural changes 

resulting from powder compaction, which is ultimately the subject of Chapter 3. 

 In addition to the lack of Bragg diffraction peaks exhibited by amorphous 

molecular solid dispersions, PXRD patterns have been shown to provide additional 

information pertaining to local structure in these systems.  The sensitivity of the PDF 

transform to interatomic correlations makes it an obvious choice for studying 

pharmaceutical systems displaying order on only a short length scale.  One of the most 

recent applications of the PDF transform to pharmaceutical systems is in the 

characterization of co-solidified products to aid in identifying miscibility between a drug 

and polymer (Section 1.3.2).  Newman et al.52 illustrated the principles behind the use of 

PDF transforms to distinguish co-solidified products possessing unique short-range order 

relative to the amorphous components that comprise the mixture.  The method involved 

obtaining PXRD patterns of the amorphous phases comprising the co-solidified product, 

as well as, one for the co-solidified product itself.  All PXRD patterns were subsequently 

transformed by the PDF algorithm and linear combinations of the amorphous component 

PDFs were compared to the PDF of the co-solidified product.  If the calculated PDF 

exacted a “good fit” to the PDF of the composite, the co-solidified product was 

categorized as phase-separated, due to the absence of a unique packing pattern.  If a good 

fit could not be obtained, the co-solidified product was categorized as completely 
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miscible, due to formation of unique short-range order (i.e. nearest neighbor and next-

nearest neighbor correlations) not explained by the individual amorphous phases. 

 The power of this method is quickly realized by the scientist charged with the task 

of determining miscibility in drug:polymer products, an all too often intangible 

distinction.  Upon first glance, an initial weakness is the necessity of obtaining 

amorphous phase samples for each of the pure components.  As the purpose of forming a 

solid dispersion is to physically stabilize the amorphous form of a drug, the ability to 

isolate and physically maintain a sample to provide sufficient analysis time is not trivial.  

A second limitation was the ambiguity with which an assessment of “difference” was 

made between linearly combined PDF transforms and the transform of the co-solidified 

product.  To make the analysis more robust, a method has been proposed to propagate 

error estimates for the calculated difference and is the subject of Chapter 4. 

1.3.2 Solid Dispersions 

 Rigorous differentiation between the different composite systems, such as 

eutectics (Appendix A) and solid dispersions, is somewhat ambiguously presented across 

the breadth of the pharmaceutical literature.  This leads to a systematic misclassification 

of these products, thereby founding fundamentally irrelevant conclusions from studies 

encompassing the subject area.  A more accurate approach to defining and contrasting the 

individual composites can be realized through a strict materials-based structural 

assessment.  Analogous to the way in which crystal symmetry defines a crystal system 

(and not vice versa) the microstructure of a binary solid composite defines its type.  From 

these definitions, analytical techniques required for accurate product classification are 
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identified, a better fundamental understanding of aqueous solubility enhancement can be 

provided, and issues inherent to the underutilization of the technology is established. 

1.3.2.1 Structure 

 The three types of symmetry defining long-range crystallographic order are 

translational, orientational, and conformational.  Crystalline solids have all three, where 

mesophase materials possess one or two.53  In amorphous materials, all three symmetry 

operators are characteristically absent; therefore the orientation and position of molecules 

relative to one another is random, as similarly observed in liquids, but short-range order 

over a few molecular dimensions is present.54,55  The thermodynamic relationship 

between crystalline and amorphous phases is best rationalized schematically in the 

enthalpy-temperature phase diagram (Figure 1.2).  Starting with a crystalline material, 

small changes in temperature correspond to minor changes in enthalpy response, where 

the slope defines the heat capacity of the solid at constant pressure.  Upon further 

increase in temperature to Tf, a discontinuity in the diagram is encountered and a sharp 

increase in enthalpy is observed.  This is the first-order fusion event representing the 

crystalline-to-liquid transition.  If the melt is rapidly cooled, enthalpy may bypass the 

melting/freezing point producing a supercooled liquid.  Upon further cooling the glass 

transition event is encountered, where a change in heat capacity is observed due to a 

higher-order transition from a supercooled liquid to a glass.  Any additional cooling is 

thought to have very little influence on the microstructure of the material.56  The 

Kauzmann temperature (TK in Figure 1.2) represents the temperature at which the 

entropy of a supercooled liquid would fall below that of the stable crystalline material.  
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The change in heat capacity that occurs at the glass transition prevents the hypothetical 

decrease in entropy to permit this phenomenon.57   

 

Figure 1.2. Enthalpy:temperature phase diagram. 

 From Figure 1.2, the glass is a higher free energy phase compared to its 

crystalline counterpart, and further deviates from equilibrium.  The system is said to be 

kinetically “trapped” in the solid state, as it exhibits increased molecular mobility relative 

to the crystalline phase, but lower than that of the liquid state.  The higher free energy 

provides for enhanced apparent aqueous solubility, as NBIs maintaining the solid-like 

viscosity are weaker than those responsible for crystalline counterpart.58  A corollary of 

this solubility enhancement is the thermodynamic driving force to revert back to the 

lower energy, crystalline phase.  To maintain the amorphous phase and sustain the 

solubility enhancements, solid dispersions are formed between an amorphous drug 

substance and a polymeric carrier material; although, the exact mechanism of physical 

stabilization is largely unknown. 
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 A binary amorphous molecular solid dispersion is a material consisting of two 

components co-solidified such that the short-range order of the product is distinct from 

that intrinsic to the amorphous phases comprising the mixture.  Since solid dispersions 

are macroscopically amorphous systems, it is worthwhile to note that this implies that 

they are also non-equilibrium phases.  Many of the models founded on equilibrium 

thermodynamic principles may be highly inappropriate for solid dispersions.  As a 

consequence, specific mechanistic explanations describing structural correlations 

between solid dispersion co-solidification and observed physicochemical and mechanical 

properties of these systems are lacking.  This void is also an effect of the random 

orientations of the drug and carrier molecules, as well as the heterogeneity of the 

interactions between the two components, which ultimately differ between single- and 

two-phase systems.  Both specific (i.e., hydrogen bonding) and nonspecific (i.e., van der 

Waals forces) intermolecular interactions, however, have been characterized in solid 

dispersed systems, and are well represented in the pharmaceutical literature.59-62  The 

extent of the participation of these interactions in solid dispersion stabilization (or lack 

thereof) continues to be a matter of discussion.   

 The lack of periodic NBI schemes in amorphous materials results in a higher 

internal energy, which can provide enhanced physicochemical properties, such as 

increased apparent aqueous solubility and/or enhanced dissolution.  The random 

structural framework of solid dispersed systems and the presence of various combinations 

of specific/non-specific bonding schemes, make direct correlations between structure and 

enhanced solubility less straightforward than other composite bodies (e.g. eutectics).  The 

increase in dissolution rate of solid dispersions, however, has been attributed to three 
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factors: (1) reduction in drug particle size (i.e., in molecular dispersions, the “particle 

size” of the amorphous inclusion is on the order of the dimensions of the API molecule), 

(2) decreased drug:water interfacial energy, and (3) establishment of weaker NBIs per 

unit volume material relative to the NBIs per unit volume of the drug’s crystalline 

phase.19,63  Given the number of possible structural variants, the degree to which each of 

these contributes to the optimized physicochemical properties may be dramatically 

different.  It may seem apparent from the preceding discussion that more rigorous 

structural characterization will be required to model physicochemical benefits afforded 

through the directed design of solid dispersions.  Furthermore, these benefits will vary 

with respect to individual systems; a universal model of solid dispersion structure-

function correlation seems impractical. 

 A review by Craig64 introduced a model that explained the release behavior of 

drug molecules from a solid dispersion as being either carrier-mediated or drug-mediated.  

A representation of these two schemes is illustrated in Figure 1.3, where drug release 

from a two-phase solid dispersion is shown.  Initially, a polymer-rich diffusion layer is 

formed at the interface between the solid dispersion and the dissolution medium.  The 

viscosity of this interfacial layer is assumed to be greater than that of the liquid phase.  In 

carrier-mediated dissolution, the amorphous drug inclusions (assuming a biphasic solid 

dispersion) diffuse from the dispersion matrix into the polymer-rich phase, where they 

begin to dissolve.  Drug is further released from this polymer-rich layer into the 

dissolution medium as either solvated molecules, or as amorphous particles having 

undergone size-reduction, at a rate dictated by the carrier. 
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Figure 1.3. Schematic showing various release modes of amorphous drug inclusions 
during dissolution of a solid dispersion (after Craig,64 with modifications); (a) carrier-
mediated dissolution: the carrier forms a polymer-rich phase aiding in initial drug 
complex dissolution; (b) drug-mediated dissolution: high solubility of the carrier in the 
dissolution medium prohibits formation of a polymer-rich phase; dissolution of the drug 
occurs following diffusion of the amorphous complex from the dispersion to the 
dissolution medium; (c) Complex aggregation following drug-mediated dissolution: 
amorphous inclusions agglomerate upon diffusion into the dissolution medium, resulting 
in their higher propensity for devitrification. 
 
 In drug-mediated dissolution, the solubility of the polymer in the medium is 

considered to be much greater relative to the dissolution time-frame, ultimately resulting 

in a polymer-rich layer that is smaller relative to the polymer-rich phase observed in 

carrier-mediated dissolution.  As the drug inclusions diffuse through the polymer-rich 

phase, the rate is sufficient to prevent their dissolution in the polymer layer.  The 

amorphous drug is, therefore, released intact into the surrounding aqueous medium, and 

its dissolution rate is proportional to the aqueous solubility of the amorphous condensed 

phase.  In both instances, solubility enhancement relative to crystalline materials is 

provided owing to either the total breakdown of drug inclusions prior to release in the 

medium (carrier-mediated), or to the release of amorphous complexes left to dissolve on 
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their own (drug mediated).  Craig proposes the application of this model to aid in 

identifying the correct strategy to improve dissolution via solid dispersion formulation.  

More importantly, the model may assist in understanding the basis for formulation 

instability, as related to dissolution, and provide a scientific approach to dealing with 

such issues. 

 A route of physical instability occurring during dissolution that is directly related 

to the drug-mediated model for solid dispersions is depicted in Figure 1.3c.  When the 

amorphous inclusions diffuse through the polymer-rich diffusion layer too rapidly, and 

their dissolution rate in the aqueous medium is relatively slow, a time-frame sufficient to 

promote recrystallization may be encountered.  Nucleation and growth can be thought of 

as occurring by, (1) each individual amorphous complex begins the recrystallization 

process independent of other amorphous complexes, or (2) agglomeration of amorphous 

complexes creates high-energy interfacial boundaries, thereby driving the interfacial term 

of nucleation models to favorable values.  The latter of these two conditions is expected 

to be more prevalent, as reduction in specific surface area upon formation of 

agglomerates would slow the dissolution rate even more, permitting a longer time-frame 

for recrystallization.  This particular mechanism of physical instability illustrates the 

importance of excipient selection in solid dispersion formulation; notably, the relative 

aqueous solubility of the carrier component may induce physical instability during the 

dissolution process.  Further, as will be discussed in greater detail, the relationship of 

manufacturing methods to resulting solid dispersion structure becomes an important 

variable when considering release behavior. 
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 The review by Craig was an important step in correlating the release behavior of 

solid dispersions to formulation, stability issues, solid dispersion design, etc.  However, 

the proposed model fails to address structurally-related bases for the proposed differences 

in release (e.g., effects of intermolecular interactions between drug and carrier on drug 

release mechanism) and focuses specifically on biphasic systems, thereby neglecting 

molecularly dispersed solids.  Karavas et al.,65 more recently reported that the molecular 

interactions between felodipine:polyethylene glycol (PEG) & 

felodipine:polyvinylpyrrolidone (PVP) dictate the resulting physical state of felodipine 

(crystalline versus amorphous), as well as the size of inclusions in the dispersed matrix.  

The additional characterization of the solid dispersion enabled the authors to ascertain the 

release mechanism as related to the specific structure of the dispersion and to identify 

critical manufacturing attributes which altered the structure and release mechanism.   

 The preceding discussion demonstrates the size-dependence of the carrier matrix-

dispersed inclusions on the release mechanism, and the additional implications 

concerning physical stability of the material during dissolution. Unfortunately, the 

structural heterogeneity of the solid dispersion variants often deters rigorous intrinsic 

correlation to physicochemical properties, creating an area having tremendous research 

potential. 

1.3.2.2 Manufacture 

 The traditional methods for manufacturing solid dispersions can generally be 

broken down into two general categories: (1) fusion-based methods and (2) solvent-based 

methods.  Sikiguchi and Obi66 were the first to demonstrate the use of a hot-melt 

procedure in the production of pharmaceutically-relevant solid dispersions.  Subsequently, 
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Tachibani and Nakumara67 dissolved both a drug and carrier in a common solvent, which 

was then evaporated under vacuum to produce a solid dispersion.  In the production of 

binary solid composites, each method has its own advantages and disadvantages 

stemming from production costs, ease of manufacture, scalability, and other critical areas.  

In the last decade, new techniques have emerged which address one or more of these 

deterrents.  Some of the barriers that complicate the application of each individual binary 

composite to pharmaceuticals manifest through investigation of the manufacturing 

regimes. 

 Since solid dispersions are structurally aperiodic, methods not traditionally used 

in other solid composite production may be employed in their creation.  Spray drying,68,69 

lyophilization,63 fluid-bed coating,70 and hot-melt extrusion71,72 have all been used in 

pharmaceutically-related manufacturing of solid dispersions, as these processes are 

known to result in amorphous products.  Current literature shows a trend in development 

of new schemes for solid dispersion formation that are fundamentally similar to 

traditional techniques; however, the newer methods have been shown to possess various 

benefits relative to their conventional counterparts, thereby deserving attention.  It may 

be worthwhile to note that although these methods are common in the sense that an 

amorphous co-solidified product is formed, it has been shown that common 

manufacturing methods may, in fact, have an effect on the supersaturation of drug in 

polymer.73  

 In a recent study, Papadimitriou et al.,74 used microwave irradiation in place of 

conventional heating to melt the drug and carrier mixtures and then compared the 

resulting dispersion with that prepared by the conventional fusion technique.  In both 

 37



instances, the resulting dispersions were two-phase systems possessing an element of 

periodicity; therefore, neither product would be defined as a solid dispersion according to 

the criteria proposed in this paper.  The authors claimed a reduction in production time by 

using microwave radiation with a slight enhancement in the dissolution profile.  However, 

the biphasic dispersion produced using this method was shown to result in a smaller 

particle size, which may better explain the improvement in dissolution kinetics.  

Although the authors attributed the decrease in particle size to the use of microwave 

irradiation, this actually appears to be a consequence of the more rigorous mixing regime 

employed.  The practicality of scale-up for this particular method may also limit its 

potential for adoption at the industrial level.  In addition to the limitations imposed by 

capital investment, since pharmaceutical applications of microwave technology are 

relatively new to the industry, considerable attention to issues involving distribution 

homogeneity, implications of microwave energy on chemical stability, and other method-

related topics is required. 

 Xu et al.,75 developed a pulse combustion dryer system designed from the basic 

principles of spray drying.  A combustion cycle is repeated at a specific frequency to 

produce consecutive high-temperature shock waves used to rapidly dry solutions of drug 

material and carrier.  Advantages of the system include an increased rate of heat transfer, 

decreased drying time, and lower costs compared with conventional spray drying.  

Studies show an enhanced apparent dissolution rate for ibuprofen solid dispersions 

prepared using the pulse combustion dryer versus conventional spray drying.  The 

authors failed to present structural characterizations for both products; therefore, the 

aforementioned dissolution advantage may be due to the decreased particle size of the 

 38



pulse combustion dryer final product relative to the conventional spray dryer product.  

Once again, the cost of developing a pulse combustion dryer system for large scale 

production may outweigh the benefits afforded by this technology.   

 Supercritical fluid processing was shown to be a valid alternative to the solvent-

evaporation method resulting in lower residual organic solvent, co-precipitates possessing 

smaller particle sizes, and better flowability.  In the work by Sethia and Squillante,76 the 

authors showed that solid dispersions prepared by supercritical fluid processing (SCP) 

had an enhanced intrinsic dissolution rate relative to dispersions made via conventional 

solvent evaporation (SE) augmented with amphiphilic carriers, thereby eliminating the 

stability issues associated with lipid carriers.  Powder X-ray diffraction analysis of 

products prepared by both SCP and SE augmented with an amphiphilic carrier revealed 

highly disordered materials; however, a closer look at the PXRD pattern of the SE 

product reveals some Bragg diffraction peaks attributable to the amphiphilic carrier.  The 

solubility advantage of this material is most likely due to considerable amorphous content; 

however, the presence of phase-separated crystalline solid suggests incomplete 

preparation of an amorphous dispersion via the SE method.  As with the other novel 

methods suggested above, although this technology holds some advantages, industrial 

scale-up may present a major cost-related barrier to its adoption.   

 Many of the authors presenting the manufacturing alternatives above advocate the 

cost-effectiveness of their respective processes in terms of efficiency (primarily 

decreased processing time) yet do not present a cost analysis to support their claims.  As 

a supplement to structural and physicochemical comparisons, contrasts in small-scale 
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research costs as well as large-scale manufacture should be considered when suggesting 

the viability of a new manufacturing technology.   

 Typically, studies involving the structural characterization and assessment of the 

physicochemical properties of solid dispersions only consider solids produced by a single 

manufacturing scheme.  In contrast, Dong et al.,77 published results that compared the 

solid state properties of dispersions prepared both by hot-melt extrusion and solvent co-

precipitation.  In this study, a proprietary compound was evaluated for its potential 

development as a solid dispersion formulation.  Dispersions were prepared using 

hypromellose acetate succinate (HPMC-AS) as the carrier molecule, via hot-melt 

extrusion and solvent co-precipitation.  Both methods were observed to yield a single-

phase (molecularly dispersed) amorphous dispersion.  Differential scanning calorimetry 

(DSC) analysis of each product showed them to have a single glass transition event, 

occurring at comparable temperatures.  The co-precipitation product, however, was 

determined to be more porous than the hot-melt extrusion product, thereby resulting in a 

larger specific surface area.  The co-precipitation product had a faster dissolution profile, 

but a slower intrinsic dissolution rate relative to the hot-melt extrusion product.  Though 

the authors did not suggest a reason for this observation and noted that it was unexpected, 

a possible explanation may be drawn from classical Noyes-Whitney dissolution theory: 
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where M is the mass of the drug dissolved in time t, D is the diffusion coefficient of the 

drug in the dissolution medium, S is the surface area of the exposed drug, h is the 

thickness of the diffusion layer, Cs is the solubility of the drug, and C is the concentration 

of the drug in the bulk solvent at time t.2  Traditional dissolution profiles were generated 
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by suspending the product in an aqueous vehicle and transferring it to a United States 

Pharmacopeia (USP) type II apparatus (paddles).  In these experiments, the co-

precipitation product reached its plateau dissolution value possibly attributable to the 

increased value of S relative to the hot-melt extrusion product.  Intrinsic dissolution 

studies were conducted by compressing each product at 2000 lbs. force to form a pellet 

having a constant exposed surface area.  Given that one of the principle steps in 

consolidation is a reduction in void volume, or porosity, it is not unexpected that the 

surface area enhancement gained by employing the solvent co-precipitation method was 

lost.  Normalization of the final compacted pellets to their solid fraction may explain the 

enhanced intrinsic dissolution observed for the hot-melt extrusion product.   

 The authors also showed an enhanced physical stability of the hot-melt extrusion 

product over the dispersion produced from the co-precipitation process, which once again, 

may be related to a specific surface area argument.  The co-precipitation product, having 

a larger specific surface area, possesses more accessible sites for water molecules relative 

to the hot-melt extrusion product.  The presence of water on the surface of amorphous 

materials can create supersaturated microenvironments which serve as nucleation sites.  

Additionally, water may act as a plasticizer,78 thereby theoretically increasing the 

molecular mobility.      

 Though this study illustrates that the various physicochemical properties of solid 

dispersions may be dependent upon the manufacturing method, it fails to address specific 

structural differences which may contribute to these properties.  For example, a powder 

X-ray diffraction pattern was shown for both products to illustrate an absence of Bragg 

diffraction peaks inherent of a crystalline material, which may be a result of the material 
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being truly X-ray amorphous or an artifact of inappropriate sensitivity to adequately 

detect diffraction.  Advanced methods in diffraction pattern processing (e.g. pair 

distribution function transformation) may have been applied to delineate local structure 

differences between the two products, where a correlation to these differences may be 

established.  Creation of models to explain and predict these types of phenomena will be 

imperative to understanding and applying these systems for commercial manufacturing 

and may ultimately result in the increased use of solid dispersions in pharmaceuticals. 

1.3.2.3 Stability 

 The amorphous state possesses a higher free energy relative to its crystalline 

counterpart, which should result in enhanced thermodynamic properties (i.e. solubility) 

and molecular motion.  A consequence of this increased molecular motion is the tendency 

to revert back to a stable crystalline phase (devitrification).56  Thermodynamically, 

amorphous substances will inevitably devitrify; however, the time frame of this process is 

at the heart of research directed at stabilizing these materials.   In addition to physical 

drivers for recrystallization, environmental factors, such as water, must be considered for 

dispersion systems, where the hygroscopicity of the polymeric carrier may be a 

significant factor.79  Oftentimes strategies to deal with physical stability issues in 

pharmaceutical products do not require elimination of the source for the mechanism of 

instability; rather, the kinetics of the transformation are manipulated to prolong a 

product’s shelf life. 

  Molecular mobility is frequently described as a key factor in the physical stability 

of amorphous phases.80  The glass transition, commonly represented as a single value (Tg), 

actually occurs over a temperature range delineating high and low molecular mobility 
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within the material.  Evidence of increased resistance to recrystallization in solid 

dispersions has been attributed to antiplasticization when polymeric carrier components 

having a higher Tg relative to that of the drug are used.81  However, other reports show 

examples where differences in Tg values between carrier components and API were not 

correlated to the physical stability of the dispersions studied.59,82  Both specific and 

nonspecific intermolecular bonds have been shown to occur in stable solid disperse 

systems.  This includes direct bonding interactions between carrier and drug molecules 

and/or the disruption of drug:drug interactions (e.g. dimer formation)48 by the carrier.48,83  

In conflicting reports, however, these interactions are shown unnecessary in the 

prevention of recrystallization.81  Consequently, the preceding points illustrate the 

difficulties with identifying and the limited understanding of the physicochemical 

properties of the carrier necessary for inhibiting drug devitrification. 

 The Gordon-Taylor equation,84 based on the mechanistic approach of free volume 

and related densities, has been successfully applied to predict Tg of molecular dispersions 

and is given by: 
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where w1 and w2 are the weight fractions of each component, Tg1 and Tg2 are the 

respective glass transition temperatures, and K = (Tg1ρ1)/(Tg2ρ2), where ρ is the density of 

the component.  A variation of Equation 1.11, where K = ΔCp1/ΔCp2 and derived from 

more thermodynamic assumptions, was later identified by Couchman and Karasz.85  

Although the Gordon-Taylor equation has been shown to be highly useful when both 

components are large polymeric materials, it has been shown to poorly predict SMO-

polymer systems.  Additionally, since many of the empirical parameters of each equation 
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are determined using thermodynamic techniques (e.g. DSC), it is somewhat more 

appropriate to use the Couchman-Karasz version of the equation.86

 Recall that formation of solid molecular dispersions assumes complete 

drug:polymer miscibility in the liquid phase, which, as previously interpreted, means that 

adhesive interactions must be comparable to cohesive interactions (in the liquid phase).  

In the case of antiplasticization, some intermolecular interactions between the polymer 

and drug would be anticipated to decrease the molecular mobility of the amorphous 

system.  This definition suggests a correlation between the two proposed mechanisms of 

stabilization, where this combination has been reported in studies as the underlying 

mechanism of stabilization.83   

 In order to maintain the advantage of drug substance solubility enhancement 

provided by its preparation in the amorphous state, methods to preserve its physical 

stability over a pharmaceutically-relevant time scale must be employed.  Water-soluble 

polymers such as PEG, PVP, and cellulose derivatives (e.g. hydroxypropylmethyl 

cellulose) are commonly incorporated as carriers in pharmaceutical solid dispersions.  

Much of the current research investigates the specific stabilization mechanisms afforded 

by polymers in pharmaceutical solid dispersions.  For amorphous molecular solid 

dispersions, it is recognized that devitrification is preceded by amorphous drug:polymer 

phase separation, in the case of nucleation and growth.87    In a study by Konno and 

Taylor59 the ability of three polymers to inhibit the recrystallization of felodipine was 

investigated.  PVP, HPMC, and HPMC-AS were combined with felodipine to create 

molecularly dispersed systems.  To study both antiplasticization effects and drug-polymer 

molecular interactions, the polymers were selected to span a range of Tg values and had 
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different potentials for hydrogen bonding.  PVP showed both increased hydrogen-

bonding interactions with felodipine as well as a greater antiplasticization effect relative 

to the other polymers.  All three polymers, however, were found to prolong the time to 

nucleation of amorphous API to a similar extent, given an equivalent weight fraction.  

The mechanism proposed by the authors ascribed the increase in physical stability to 

result from the provision of a kinetic barrier to nucleation by the polymeric carriers, with 

the magnitude of the effect being related to the polymer concentration (w/w). 

 The important distinction between drug:polymer miscibility and physical stability 

needs to be drawn.  The thermodynamic term “miscibility,” in a strict sense, is taken out 

of context when applied to drug:polymer systems.  Rather than associating miscibility to 

the equilibrium solubility between a drug and polymer, it more accurately describes the 

ability of a drug and polymer to form a supersaturated metastable phase.  Although 

miscibility between a drug and polymer is indicative of the compatibility between a drug 

and polymeric material, it does not, however, give any insight into the timeframe (extent) 

of physical stability.  

 Predicting drug:polymer miscibility at various concentration ranges, as well as 

differentiation from partial miscibility,88 has become the focus of recent studies.  The use 

of interaction parameters (e.g. derived from group contribution theory) and Flory-

Huggins theory to predict drug:polymer miscibility has recently appeared in the literature.  

One study89 concluded that the majority of SMO compounds will be supersaturated with 

respect to solubility in a polymer, providing a thermodynamic driving force for 

recrystallization.  Additionally, the physical stabilization was predominantly attributable 

to a kinetic barrier; however, molecular level miscibility was still shown to be an 
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important factor as molecularly dispersed systems have altered molecular level 

environments.  In an unrelated report, an attempt to predict dispersion potential from 

physical properties (melting point, molecular weight, etc.) and functional groups of 20 

compounds was described.  Although none of the physical properties probed were 

predictive of miscibility, compounds with hydrogen bonding potential were shown to be 

favorable candidates.90   

 From the background supplied herein on the subject of PXRD structural and 

quantitative analyses, an appreciation for the necessity of accurately characterizing 

amorphous systems and the local structure deviations in a crystalline material is gained.  

The ability to successfully model predictability for overall aperiodic systems, such as 

amorphous molecular solid dispersions, will be discussed in great detail and ultimately 

hinged on the credibility of differentiating co-solidified products at the local structure 

level.   

 A general consensus among the pharmaceutical community concerning 

appropriate characterization methods for studying solid dispersions is sufficiently lacking.  

Characterization inconsistencies between research groups have yielded conflicting reports, 

thereby complicating the advancement in understanding of solid dispersion systems.  

Vibrational spectroscopy has been successfully used to identify specific/non-specific 

interactions developed between a drug and polymer in co-solidified systems.59-62  

Unfortunately, the level of mixing between materials is not available from spectral 

changes.  Further, cohesive interactions are either so subtle or absent altogether that 

changes to molecular vibrations may not be detected.81  Traditional PXRD analyses only 

confirm a lack of detectable crystallinity in a co-solidified product and fail to provide 
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information concerning the extent of mixing between the components, as well.  Although 

DSC has served as the conventional method for identifying an overall phase-separated 

system, forthcoming sections will aim to illustrate instances where it is not sensitive to 

phase separation and the use of multiple characterization techniques is imperative.  To 

this end, the successful completion of the theoretical portion of this dissertation (i.e. solid 

dispersion potential) was afforded by the analytical optimization comprising Chapters 2, 

3, and 4. 
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Chapter 2: Chemometric Applications in Quantitative Powder 
X-ray Diffraction (PXRD) of Intact Multi-Component 
Consolidated Samples  
 
2.1 Introduction 

 Powder X-ray diffraction (PXRD) of intact, consolidated samples is an important 

technique for pharmaceutical materials and drug product characterization.  Quantitative 

PXRD methods are the most universal of the structure-sensitive methods for phase 

analysis of multi-phase systems.20,23  The foundation of quantitative PXRD techniques for 

analyzing mixtures was originally developed by Alexander and Klug,26 and some 

examples applied to pharmaceutical mixture analyses are reported in the literature.52-57

 Traditional quantitative PXRD methods can be subcategorized into those which 

incorporate a standard and those which are standardless.  Standardless techniques, such as 

whole-pattern fitting and Rietveld refinement, are particularly useful because they permit 

quantification without the use of specific calibration standards.  These methods have the 

ability to assess and account for physical phenomena (such as preferred orientation); 

however, selecting an appropriate function, is not trivial.36  Standardless quantification 

has also been limited to uses with crystalline materials.  Further, they require a known 

crystal structure, which is often obtained from the literature/online databases.   

 Numerous quantitative PXRD methods exist to incorporate a standard material 

into mixtures for analysis,21 the use of which permits correction for matrix absorption.  

The most commonly employed of these is the internal standard technique.  Incorporation 

of a standard within a sample, however, prevents analysis of intact, marketable drug 

products, for which the inclusion of an analytical dopant would be prohibited.  Moreover, 

finding a standard that is stable, has approximately the same absorption characteristics as 
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the sample, does not exhibit preferred orientation, and possesses isolated peaks which do 

not overlap with sample peaks are all potential barriers to using this method.21

 Diffraction-absorption calibrations are created through empirical linear regression 

modeling of component concentration against single diffraction peak intensity, a few 

diffraction peak intensities, or the integrated area under diffraction peak(s).  These 

techniques assume constant mass attenuation across the sample, and therefore, are 

susceptible to errors resulting from diffraction intensity attenuation.  Anisotropic 

intensity reduction due to microabsorption and extinction often result in non-linearities 

observed in quantitative PXRD calibrations.26,36  The largest contributor to intensity 

attenuation, however, is preferred orientation, which can be particularly problematic in 

consolidated samples.36  Problems with preferred orientation in powdered samples are 

traditionally resolved by optimizing the particle size used for PXRD analysis, which may 

add significantly to method development and execution,30 as well as the potential for 

induction of experimental artifact owing to conversions elicited by triturative particle 

sizing.20   

 By using only Bragg diffraction intensities, the traditional methods are limited to 

quantification of crystalline materials.  Many solid oral dosage forms are developed using 

excipient materials having no long range order.  The physicochemical benefits afforded 

by incorporating amorphous active pharmaceutical ingredients in formulations of solid 

oral dosage forms has resulted in increased interest in the use of these systems;56 however, 

for PXRD to be sufficiently sensitive to quantify disordered materials, a method that 

models both diffuse scatter and Bragg diffraction is required.  
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 Many of the aforementioned issues are addressed through the use of multivariate 

calibrations.91  In quantitative chemometrics, a multivariate relationship is sought 

between input data (e.g., diffraction patterns) and output data (e.g., composition, various 

physical phenomena).  Applications of chemometric-based analyses in PXRD are starting 

to surface in the literature.  Examples of applications of partial least squares regression 

(PLS),92 principal components analysis (PCA),93,94 and advanced techniques such as 

artificial neural networks (ANN)95,96 to PXRD data have all been reported.  The possible 

benefits of incorporating entire diffraction patterns into empirical models include 

enhanced signal-to-noise, analyte sensitivity and selectivity.97  The objective of this work 

was to investigate applications of different multivariate calibrations used to quantify both 

crystalline and amorphous components in consolidated samples.  Intact compact analysis 

using PXRD was used to determine which algorithm was most suitable for intact 

quantification of multi-phase consolidated pharmaceutical systems. 

 Quaternary mixtures composed of two crystalline materials and two disordered 

materials were compressed at multiple compaction pressures and subjected to intact 

PXRD analysis using two different instrumental optics setups.  Quantitative calibrations 

were created using the traditional (univariate) diffraction-absorption technique, and three 

multivariate algorithms commonly employed in spectroscopy.  Calibration linearity, 

precision, and prediction error were calculated for assessing model suitability. 

2.2 Materials and Methods 

 Four-component mixtures comprised of anhydrous theophylline (Lot No. 92577, 

Knoll AG, Ludwigshafen, Germany), Lactose 316 Fast Flo NF Monohydrate (Lot No. 

8502113061, Hansen Labs, New Berlin, WI), microcrystalline cellulose (Avicel PH 200, 
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Lot No. M427C, FMC BioPolymer, Mechanicsburgh, PA), and soluble starch GR (Lot 

No. 39362, EMD Chemicals, Inc., Gibbstown, NJ) were prepared.  The design matrix 

was fully balanced for compact concentration, having values ranging from 0 – 60% w/w.  

Approximately 800 mg of each mixture was compressed at 67.0 MPa, 117.3 MPa, 167.6 

MPa, 217.8 MPa, and 268.1 MPa using a single station Carver Press (Carver, Inc, Model 

3887.1SDOA00, Wabash, IN) equipped with a 13 mm flat-faced punch.     

2.2.1 Powder X-ray Diffraction Analysis of the Four Component Compacts 

 PXRD data were collected using an X’Pert Pro MPD system (PANalytical B.V., 

Alemlo, the Netherlands) equipped with a copper anode (λ = 1.5406 Å), programmable 

divergence slit, and X’CeleratorTM detector.  The operational voltage and amperage were 

set to 45.0 kV and 40.0 mA, respectively, and diffraction patterns were acquired using an 

angular step size of 0.02° 2θ over a range of 2 – 60° 2θ.  Data were collected with the 

instrument set in both Bragg-Brentano reflectance geometry (equipped with a spinning 

sample stage) and transmission geometry (equipped with a vertical spinner sample stage 

with the sample sandwiched between Kapton® film), optically fitted with an auxiliary 

elliptical mirror used to expose the sample to quasi-parallel beam radiation. 

 All chemometric routines were performed in the Matlab programming 

environment (v7.1, MathWorks, Natick, MA) using the PLS_Toolbox (v3.0, Eigenvector 

Research, Manson, WA), together with several analysis routines developed in-house. 

2.2.2 Data Preprocessing  

 Prior to the application of chemometric algorithms, sample diffraction patterns 

were corrected for anisotropic peak (axis) shift using an iterative program that tested for 

correlations between a reference pattern and the sample pattern as a function of 
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incremental calculated shifts.  Corrected shifts that resulted in the highest correlation 

were ultimately selected.  Additionally, the diffraction pattern of an empty sample holder 

(geometry dependent) was used to correct for scatter from that sample holder by pattern 

subtraction.  Sample absorption correction was also performed according to published 

equations specific to the geometric setup of the instrument,38 and finally, a modified 

version of the Rachinger method98 was used to mathematically correct for Kα2 radiation.    

2.2.3 Inverse Least Squares (ILS) Regression 

 Inverse least squares (ILS) regression assumes that component concentration is a 

function of diffraction intensity.  The standard ILS univariate model for a single 

component is calculated by: 

exby +=  (2.1) 

where y is the reference concentration value, b is the regression coefficient, x is the 

diffraction value at a specific peak position (i.e. a single peak intensity, a calculated peak 

area, ratio of intensities, etc.), and e is the error, which is assumed to be attributed to the 

concentration values.  One of the features of ILS regression is that quantitative analysis 

can be performed even when the concentration of only a single component is known in 

the calibration mixture.  In multiple linear regression (MLR), several independent 

variables are used, and the regression vector is calculated as follows (in matrix notation): 

XX'
YX'

=B  (2.2) 

where Y is a matrix of concentration values, X is a matrix of intensity values, B is an 

matrix of regression coefficients.  MLR is limited, in that the number of variables 

selected can not exceed or equal the number of samples in the calibration set.  For 

example, a calibration set having nvars = nsamples only possesses enough statistically-
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independent information to estimate the mean; a larger sample set provides additional 

degrees of freedom to estimate other statistical parameters.  Although statistical methods 

are available to assist with variable selection (i.e. stepwise regression), calibrations 

created with suboptimal selections can introduce modeling errors such as noise inflation 

from collinearity and over-fitting.99   

2.2.4 Classical Least Squares (CLS) Regression 

 Classical least squares (CLS) regression is often used in spectroscopic 

quantitative modeling owing to its agreement with Beer’s law.  Under some conditions, 

PXRD intensity will be a linear function of the number of diffracting planes present, 

which qualifies the application of CLS regression in PXRD data modeling.  CLS assumes 

a linear combination of pure component sensitivities, where each component is weighted 

by concentration.  Unique to this technique is the feature that the regression vectors can 

be used as estimates of the pure component diffraction patterns.  CLS regression models 

can be generated using PXRD data provided all reference constituent concentrations are 

known (Equation 2.3): 

cEKYX +=   (2.3) 

where X is a matrix of diffraction intensities, K is a matrix containing the regression 

vectors (pure component estimates), Y is a matrix of concentration values for all 

constituents, and Ec is the error matrix.  Model error is attributed to diffracted intensities 

(i.e., microabsorption, extinction, preferred orientation, etc.).  The calculation of the 

regression vector (estimated pure components) is as follows: 

X•Y=K +  (2.4) 
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where the superscript “+” indicates the Moore-Penrose pseudoinverse.  The effectiveness 

of CLS regression in multivariate modeling is limited when the concentrations of all 

constituents contributing to signal (in the case of PXRD, diffract or cause diffuse scatter) 

are not known, or when non-linearities are present.99   

2.2.5 Principal Components Regression (PCR) 

 Principal components regression (PCR) is the ILS regression of “scores” 

calculated from principal components analysis (PCA) against a dependent variable(s).  

The objective of PCA is to maximize the variation contained in a data matrix with as few 

underlying “factors” as possible.100  The PCA model has the form of: 

ETP'X +=  (2.5) 

where X is a data matrix of k sample-independent variables (diffraction intensities), for n 

samples, T is a matrix of component “scores” in vector form for each component, P is a 

matrix of component “loadings,” and E is a matrix containing the residuals (the prime 

indicates the transpose of the matrix).  Principal component scores and loadings are 

calculated using singular value decomposition.101  The algorithm proceeds through a least 

squares fit of a straight line through the data in a k-dimensional hyperspace.102  New 

components are fitted to the data until an adequate amount of the variance has been 

explained.  In PCR, the dependent variable(s) (i.e., reference concentration values) are 

linearly regressed against the scores.  The regression coefficients are calculated as 

follows: 

P•
TT'
YT'

=B  (2.6) 

where Y is a matrix of concentration values.  A full-length regression vector is obtained 

by projecting the regression coefficients onto the loading vector(s).  Calibrations may be 
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created with fewer samples than variables.  Reviews of PCA and PCR can be found 

elsewhere.99,102

2.2.6 Partial Least Squares (PLS) Regression 

 The PLS and PCR algorithms, being factor-based analysis methods, have similar 

goals.  The objective of PLS is to maximize the amount of co-variation explained 

between dependent variables and independent variables using the fewest number of 

factors.  Contrary to PCA where only the independent variables are used to calculate the 

basis set, PLS incorporates both dependent and independent variables in the basis set 

calculation.  It may be envisioned that this method is particularly powerful when the 

dependent variable set contains low noise.  Generally speaking, PLS explains the total 

variance in fewer factors relative to PCR.  In this study, the SIMPLS algorithm was used 

to directly calculate factors as linear combinations of the original variables, while 

constrained to orthogonality and normalization restrictions.103  The PLS algorithm used 

herein,104 and representative reviews can be found elsewhere.99,102  

2.3 Results and Discussion 

 The fully balanced concentration design matrix used for this study is shown in 

Table 2.1 and contains five concentration points (0,20,25,40,60% w/w) for each of the 

four constituents.  The concentration points were added to the design matrix in a one-by-

one fashion, followed by a calculation of the matrix covariance; each point was adjusted 

to minimize this covariance.  It should be noted that separate experimentation concerning 

instrument sensitivity, selectivity, and signal-to-noise has been previously reported in 

Moore et al.,.97  At each concentration point, mixtures were compacted using 5 different 

pressures (67.0 MPa, 117.3 MPa, 167.6 MPa, 217.8 MPa, and 268.1 MPa), resulting in a 
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calibration sample size of 145 compacts.  Recognizing that consolidation may induce 

changes to diffraction intensity105,106 and diffuse scatter, samples compacted at different 

pressures were included in the calibration set to incorporate pattern variability into the 

model approximation.   An additional sample at each concentration point, compacted 

using a randomly-assigned pressure, was used to test the calibrations. 

Table 2.1.  Sample composition design matrix. 
 

Tablet 
# 

Theophylline 
wt/wt 

Lactose 
wt/wt 

MCC 
wt/wt 

Starch 
wt/wt 

1 0.600 0.200 0.200 0.000 
2 0.400 0.400 0.200 0.000 
3 0.200 0.600 0.200 0.000 
4 0.400 0.200 0.400 0.000 
5 0.200 0.400 0.400 0.000 
6 0.200 0.200 0.600 0.000 
7 0.600 0.200 0.000 0.200 
8 0.400 0.400 0.000 0.200 
9 0.200 0.600 0.000 0.200 

10 0.600 0.000 0.200 0.200 
11 0.400 0.200 0.200 0.200 
12 0.200 0.400 0.200 0.200 
13 0.000 0.600 0.200 0.200 
14 0.400 0.000 0.401 0.200 
15 0.200 0.200 0.400 0.200 
16 0.000 0.400 0.400 0.200 
17 0.200 0.000 0.600 0.200 
18 0.000 0.200 0.600 0.200 
19 0.400 0.200 0.000 0.400 
20 0.200 0.400 0.000 0.400 
21 0.400 0.000 0.200 0.400 
22 0.200 0.200 0.200 0.399 
23 0.000 0.400 0.200 0.400 
24 0.200 0.000 0.400 0.400 
25 0.000 0.200 0.400 0.400 
26 0.200 0.200 0.000 0.600 
27 0.200 0.000 0.200 0.600 
28 0.000 0.200 0.200 0.600 
29 0.250 0.250 0.250 0.250 

 

 Univariate calibrations were created by regressing a single intensity value for 

each individual component (i.e., the largest Bragg peak for crystalline materials and the 
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largest overall intensity for the disordered materials) against constituent concentration 

(nominal value from the design).  The PCR and PLS regression vectors for each 

constituent were estimated individually from a component-specific orthogonal basis set.  

Selection of the ideal number of principal components/latent variables (shown in Table 

2.2) was performed through minimization of both the root mean square error of 

calibration (RMSEC) and the root mean square error of cross validation (RMSECV).



 Transmission Reflectance 

Method Component LV R2
SEP 
(%) 

Precision 
(%) R2 SEP (%) 

Precision 
(%) 

Theophylline 0.961 3.79 0.00024 0.898 5.09 0.09491 
Lactose 0.927 5.70 0.00081 0.911 4.95 0.03195 
MCC 0.809 9.70 0.00324 0.940 5.81 0.04044 Univariate 

Starch 

N/A 

0.292 15.30 0.00935 0.006 18.18 0.07608 
Theophylline 0.972 2.90 0.00027 0.942 3.57 0.16771 
Lactose 0.963 3.48 0.00076 0.939 3.63 0.12726 
MCC 0.955 3.69 0.00237 0.958 5.47 0.07263 CLS 

Starch 

N/A 

0.946 5.24 0.00413 0.866 4.91 0.01797 
Theophylline 1 0.972 2.92 0.00027 0.926 4.81 0.07780 
Lactose 3 0.968 3.16 0.00062 0.919 4.82 0.02580 
MCC 4 0.751 9.77 0.00346 0.875 7.49 0.03176 PCR 

Starch 5 0.941 4.98 0.00133 0.868 5.00 0.10102 
Theophylline 1 0.972 2.91 0.00028 0.933 4.49 0.08007 
Lactose 3 0.978 2.48 0.00110 0.943 3.71 0.02915 
MCC 3 0.955 3.84 0.00210 0.937 6.23 0.03226 PLS 

Starch 3 0.950 4.88 0.00256 0.804 7.15 0.07829 

Table 2.2. Selected statistical values for the different quantitative PXRD calibrations relative to the collection geometry. 
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 Traditionally, it is not common to use a univariate PXRD calibration to predict the 

concentration of a disordered component in a mixture; however, it was performed in this 

study as a means to illustrate the practicality of different multivariate methods.  In 

general, data collected in transmission geometry provided better linearity, precision and 

lower concentration prediction error relative to reflectance geometry for both the 

crystalline and disordered components.  In transmission geometry, the entire sample 

volume is irradiated, whereas only a fraction of the sample is interrogated in reflectance 

analysis.  Therefore, data collected in transmission mode is less susceptible to errors 

derived from analyzing inhomogeneous “regions” within a sample matrix. 

 The data in Table 2.2 indicate that the standard error of prediction (SEP) for 

theophylline in most instances is greater when using data collected in reflectance 

geometry relative to that in transmission.  This indicates a correlation between instrument 

geometry and prediction error; more than likely a result of the diffraction pattern 

anomalies related to specific analytical optics setup modes.  Barring microabsorption, 

extinction, and other anomalies, regression vectors should mimic pure component 

diffraction patterns.  In Figure 2.1, the pure component pattern and the calculated 

regression vectors for all three multivariate theophylline prediction models are shown for 

data collected in reflectance geometry.  There is good agreement between all regression 

vectors and the pure component pattern, as would be expected.  For PCR and PLS, 

negative correlations are observed at ~18º 2θ, which specifically corresponds with the 

location of Bragg peaks resulting from lactose monohydrate diffraction.  Therefore, the 

PCR and PLS models are sensitive to the changes in both theophylline and lactose 

concentration at this angle.  In Figure 2.2, the theophylline regression vectors calculated 
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from data collected using transmission geometry are identical to the pure component scan.  

Further, the negative correlations observed at ~18º 2θ in the reflectance geometry 

regression vectors are nearly absent from transmission data.  The calculated regression 

vectors from the transmission geometry are, therefore, more highly correlated to only 

changes in theophylline concentration, thereby resulting in enhanced theophylline 

sensitivity and decreased prediction errors. 

 

Figure 2.1. Calculated regression vectors for each multivariate calibration used in the 

prediction of anhydrous theophylline from data collected in reflectance geometry. 
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Figure 2.2. Calculated regression vectors for each multivariate calibration used in the 
prediction of anhydrous theophylline from data collected in transmission geometry. 
 
 When considering disordered materials, the diffuse scatter that produces the 

characteristic “amorphous halo” may not be linearly related to constituent concentration.  

Non-linear relationships may manifest as negative correlations in regression vectors as a 

result of modeling the decrease in concentration of other components.  In Figure 2.3, the 

calculated regression vectors for the three multivariate starch prediction models and the 

corresponding pure component scan are shown for data collected in reflectance geometry.  

The CLS regression vector bears the highest correlation with the pure component 

diffraction pattern, thereby affording enhanced linearity and decreased prediction error 
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relative to PCR and PLS (from Table 2.2).  Although they possess the same positive 

correlations as the starch pure component scan, the regression vectors from both PCR and 

PLS once again exhibit negative correlations attributable to changes in the concentrations 

of other mixture components at angles corresponding to their respective peaks of 

principal diffraction: theophylline (~12º 2θ), lactose (~18º 2θ) and MCC (~22º 2θ).  This 

same trend is also observed for the transmission data, as shown in Figure 2.4, where both 

the PLS and PCR regression vectors exhibit the same negative correlations seen in 

reflectance.  Additionally, the CLS regression vector of transmission data representing 

diffraction by the starch component possesses negative correlations at ~12º 2θ and ~18º 

2θ.  These regression vector similarities resulted in near-equal linearity and prediction 

error for the PCR, PLS, and CLS starch calibrations created from data collected in 

transmission.  The negative correlations observed in the disordered component regression 

vectors, therefore, could quite possibly be a result of the non-linear relationship between 

constituent concentration and diffuse scatter intensity. 

 62



 

 

Figure 2.3. Calculated regression vectors for each multivariate calibration used in the 
prediction of starch from data collected in reflectance geometry. 
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No 

corrections
Axis 
shift

Kα2 
subtraction

Absorption 
correction

Background 
subtraction All

Crystalline 0.723 0.898 0.759 0.729 0.723 0.904 Univariate Disordered 0.493 0.489 0.484 0.486 0.493 0.473 
Crystalline 0.906 0.936 0.906 0.908 0.906 0.938 R2

PLS Disordered 0.864 0.890 0.866 0.849 0.864 0.871 
Crystalline 7.61 5.59 6.75 7.34 7.61 5.02 Univariate Disordered 11.41 11.19 11.54 11.76 11.41 11.99 
Crystalline 4.39 4.45 4.40 4.11 4.39 4.10 

SEP 
(%) PLS Disordered 5.97 6.40 5.98 6.42 5.97 6.69 

Table 2.3.  The effects of various powder pattern corrections on linearity and the standard error of prediction of the univariate and 
PLS calibrations for prediction of both crystalline and disordered components using data collected by reflectance geometry. 
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Figure 2.4. Calculated regression vectors for each multivariate calibration used in the 
prediction of starch from data collected in transmission geometry. 
 
 In Table 2.3, linearity and SEP are reported as a function of applied pattern 

corrections using data collected in reflectance geometry.  Statistics are reported as an 

average of the two crystalline components and an average of the two disordered 

components.  The importance of correcting for axis shift prior to creating a univariate 

calibration in the prediction of crystalline components is supported by the observed 

increased linearity and decreased prediction error.  When modeling a single intensity, or 

the area of a single peak, anisotropic peak distortions may build errors into the calibration 

and result in inaccurate predictions.  Interestingly, in multivariate calibrations (such as 
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PLS) the linearity and predictability are not significantly affected by corrections to the 

powder patterns relative to univariate modeling.  By modeling multiple intensities having 

correlation with constituent concentration, the anisotropy of error-related variance is 

compensated for through increased correlation at unaffected variables.  Further, through 

maximization of the explained covariance between diffraction intensity and constituent 

concentration, variability due to anisotropic peak aberrations is modeled in the regression 

vectors. 



 
No 

corrections
Axis 
shift

Kα2 
subtraction

Absorption 
correction

Background 
subtraction All

Crystalline 0.940 0.947 0.937 0.939 0.941 0.944 Univariate Disordered 0.260 0.590 0.260 0.186 0.260 0.551 
Crystalline 0.968 0.972 0.968 0.971 0.968 0.975 R2

PLS Disordered 0.770 0.948 0.772 0.771 0.770 0.952 
Crystalline 4.24 4.10 4.42 4.47 4.15 4.75 Univariate Disordered 16.30 10.72 16.30 16.49 16.30 12.50 
Crystalline 3.07 2.89 3.07 2.96 3.07 2.70 

SEP 
(%) PLS Disordered 8.07 4.17 8.10 8.17 8.07 4.36 

Table 2.4.  The effects of various powder pattern corrections on linearity and the standard error of prediction of the univariate and 
PLS calibrations for prediction of both crystalline and disordered components using data collected by transmission geometry. 
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 Table 2.4 shows the effects of PXRD pattern corrections on linearity and 

prediction error using data collected in transmission geometry.  Comparison with Table 

2.3 (reflectance geometry collection) indicates that performance statistics are superior for 

transmission data, particularly for disordered (weakly diffracting) materials.  This is not 

unexpected, given that transmission experiments interrogate the entire compact sample 

volume.  Although the low mass attenuation coefficients of pharmaceutical materials 

permit some sample penetration (on the order of mm), reflectance experiments 

interrogate a much smaller volume compared to transmission experiments.  For the 

crystalline components, both models are invariant to all of the applied corrections.  

However, the SEP for the disordered components using PLS shows significant 

dependence on axis shift correction.  Figure 2.5 illustrates the effects of applied pattern 

corrections on the calculated PLS regression vectors.   The calculated regression vectors 

of raw diffraction patterns, patterns corrected for absorption only, patterns corrected for 

Kα2 only, or background subtraction only are highly correlated to one another.  Further, 

these regression vectors exhibit differences from the regression vector calculated from 

patterns corrected for axis shift.  The dashed boxes highlight the main differences 

observed between the aforementioned group of regression vectors and those for which 

axis shift was corrected.  These differences represent uncertainties correlated to peak 

aberrations and result in modeling concentration changes of other components.  

Ultimately, the prediction error was larger due to the error in modeling the concentration 

changes in multiple components. 
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Figure 2.5. The effects of various corrections on the PLS calibration regression vectors 
as applied to data collected in transmission geometry. 
 
 For many spectroscopic methods, building quantitative models that include 

variability associated with compression force is imperative.  However, the variability in 

diffraction intensity observed to have resulted from consolidation was minimal because 

the materials used in this study have low mass-attenuation coefficients and require few 

applied absorption corrections. Admittedly, creating a calibration and test sample matrix 

the size of the set presented in this work (n = 174) may be impractical in a multi-product 

industrial development group.  Given the results of the present data, however, efficient 

calibrations could have been created using fewer samples.  This was tested by 
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compressing a single sample from each concentration point (Table 2.1) at 268.1 MPa in 

order to re-create the calibrations (29 samples total), while the remaining samples (n = 

145) were used to test the models generated from this reduced data set.  The graph in 

Figure 2.6 shows prediction error as a function of component, as modeled by each 

calibration method for differently sized calibration sets relative to the experimental optics 

utilized.  Linearity statistics (not shown) were not affected by the reduction of the dataset 

used for calibration.  The data in Figure 2.6 illustrate that prediction error associated with 

transmission geometry is relatively unaffected by the size of the calibration set employed.  

Reflectance geometry, however, indicates that a slight increase in prediction error occurs 

when using the smaller calibration set, possibly due to the decreased signal-to-noise. 
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Figure 2.6.  The effects of the number of samples in the calibration set on the standard error of prediction for both collection 
geometries. 



 The starch and theophylline calculated CLS regression vectors for reflectance and 

transmission geometry are shown in Figure 2.7 and Figure 2.8, respectively.  When 

comparing the starch regression vectors as calculated from data collected in reflectance 

geometry, the smaller calibration set vector exhibits increased noise (rougher) and larger 

peak/trough correlations ultimately attributable to increased uncertainty.  Though the 

starch regression vector (as calculated from data collected in transmission geometry) for 

the smaller calibration set is “rougher” relative to the vector from the larger set, the 

overall shape is the same for both.  The regression vectors calculated from the smaller 

calibration set using data collected in transmission mode demonstrated increased 

correlation to the regression vectors calculated from the larger calibration set relative to 

the reflectance data.  Therefore, this enhanced correlation results in nearly identical error 

statistics independent of calibration sample size (shown in Figure 2.6). 
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Figure 2.7.  The effects of the number of samples in the calibration set on the starch and 
theophylline CLS regression vectors for data collected from reflectance geometry. 
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Figure 2.8.  The effects of the number of samples in the calibration set on the starch and 
theophylline CLS regression vectors for data collected from transmission geometry. 
 
 Based on the results presented herein, calibrations via PLS, created from the data 

collected in transmission geometry can be recommended as optimal for quantitative 

PXRD of similar systems.  The calibrations created using this algorithm exhibited 

optimal linearity values of 0.972, 0.978, 0.955, and 0.950 for theophylline, lactose, MCC, 

and starch, respectively.  The calibrations created in the present work stem from a 

quaternary design using the design matrix concentration values.  Given that each nominal 

design value is likely to differ slightly from the actual concentration, each component 

reference concentration value has some random error.  Overall, a cumulative 2-3% error 
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in content uniformity of all the constituents may be anticipated; linearity values 

approaching 0.98 in this design are, therefore, statistically acceptable.    Additionally, 

minimum prediction error and enhanced precision for both crystalline and disordered 

components in complex, intact compacts was achieved.  Furthermore, PLS models were 

observed to be less susceptible to errors associated with diffraction pattern anomalies and 

effects related to the size of the calibration set. 

2.4 Conclusions 

 The ability to analyze intact compacts makes PXRD an important analytical tool 

for non-destructive pharmaceutical characterization.  The structure-sensitivity afforded 

by PXRD enables quantitative applications having the ability to discriminate between 

different chemical components, polymorphs, and other phase mixtures. It has been shown 

in this work that the traditional univariate calibrations are affected by peak distortion, 

variable selection, and applied powder pattern corrections.  Multivariate calibrations, 

however, provided enhanced linearity, decreased prediction errors, and exhibited less 

susceptibility to errors attributable to peak distortions relative to single-point calibrations.  

Further, calibration errors related to pattern anomalies were minimized through empirical 

modeling of the entire diffraction pattern (i.e. both Bragg diffraction and diffuse scatter 

intensities).  As an increased amount of mixed amorphous/crystalline systems are 

formulated into dosage forms, the need for discriminative and sensitive quantitative 

analytical tools for intact analysis will become more prevalent. 
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Chapter 3: A Structural Investigation into the Compaction 
Behavior of Pharmaceutical Composites Using Powder X-ray 
Diffraction and Total Scattering Analysis  
 

3.1 Introduction 

 The US Food and Drug Administration’s Critical Path Initiative to New Medical 

Products maintains the need for industry to continue investigation and development of 

analytical methods capable of fundamentally characterizing pharmaceutical systems. The 

availability of more effective analysis techniques will facilitate product and process 

understanding, and reduce drug product failures.107  Challenges encountered during drug 

product development are often the result of unpredicted changes to the physicochemical 

and mechanical properties of materials used in manufacturing.  Characterization during 

small-scale research should predict performance modifications that may occur at 

commercial scale. This goal is contingent upon accurate detection and quantification of 

specific changes in material structure that can be linked with product performance.  Some 

such changes (i.e. dissolution rate, friability, etc.) can be traced to very subtle structure 

modifications, where the largest limitation in detection and quantification is inadequate 

analytical sensitivity, particularly in the context of complex mixtures of materials.  At 

present, research in this area is heavily focused on active pharmaceutical ingredients 

(API), with substantially fewer reports concerning responses of excipients or composites 

to processing.  As the pharmaceutical industry moves forward, it is imperative that the 

synergistic functions of both API and excipients be considered as the basis for claiming 

product understanding at the level of specifically engineered delivery platforms.   
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 Powder X-ray Diffraction (PXRD) is universally applied for detecting phase 

changes and assessing material structure and order.  Industrial applications of PXRD rest 

in the ability to analyze materials from all stages of powder processing, without prior 

destructive sample preparation.  Traditional uses of this technique have focused on 

analysis of prominent, high-intensity Bragg diffraction peaks that are characteristic of a 

given crystalline phase.  In addition to long-range order, the powder diffraction pattern 

contains information pertaining to intermediate and short-range order.  Specifically, 

diffuse scatter, which occurs between and superimposed on Bragg diffraction peaks, 

offers additional information pertaining to the short- and intermediate-range structure of 

materials, when treated appropriately.   

 In the present work, the compaction behavior of anhydrous theophylline was 

investigated.  Binary composite compacts were also prepared and analyzed, using either a 

common tablet filler (α-lactose monohydrate), or a common tablet compression aid 

(microcrystalline cellulose; MCC) in combination with anhydrous theophylline.  PXRD, 

in combination with total scattering computational methods, was used to assess the 

effects of powder compaction without reversion of compacts to powders.  Furthermore, 

the use of PCA as an alternative to the traditional weighted agreement factor in 

comparing PDF transformed diffraction data was explored. 

3.2 Materials and Methods 

 Binary mixtures comprised of anhydrous theophylline (Lot No. 92577, Knoll AG, 

Ludwigshafen, Germany) and either crystalline α-lactose monohydrate, referred to as 

lactose for the remaining discussion, (Lot No. 125090020, Acros Organics, Geel, 

Belgium) or microcrystalline cellulose, referred to as MCC for the remaining discussion, 
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(Avicel PH 200, Lot No. M427C, FMC BioPolymer, Mechanicsburgh, PA) were blended 

and compacted using an automatic single-station Carver Press (Carver, Inc, Model 

3887.1SDOA00, Wabash, IN) equipped with a 13 mm flat-faced punch.  The 

approximate median particle size of theophylline was 90 μm.  A circumscribed central 

composite experimental design102 was used for sample preparation, in which both 

excipient concentration (0 – 75% w/w) and compaction pressure (67 – 503 MPa) were 

varied.  Consolidation at each pressure resulted in composite solid fractions ranging from 

0.85 – 0.98.  The central point was repeated five times to build precision into the design. 

3.2.1 Powder X-Ray Diffraction (PXRD) 

 PXRD data were collected using an X’Pert Pro MPD system (PANalytical B.V., 

Almelo, the Netherlands) equipped with a copper anode (λ = 1.5406 Å), an auxiliary 

elliptical mirror, and X’CeleratorTM detector.  The operational voltage and amperage 

were set to 45.0 kV and 40.0 mA, respectively, and diffraction patterns were acquired 

using an irradiation time of 101.42 seconds per step and an angular step size of 0.017° 2θ 

over a range of 2 – 100° 2θ.  Data were collected with the instrument set in transmission 

geometry, using intact compact samples, sandwiched between two layers of X-ray 

transparent kapton film and placed on a spinning vertical sample stage (16 rpm). 

3.2.2 Pattern Separation 

 PXRD analysis of binary compacts produced diffraction patterns containing 

information from both components.  To study the effects of powder compaction on a 

specific constituent, a method for accurately separating diffraction events attributable to 

each individual component was required.  The pattern subtraction technique,108 

commonly reported for this purpose, often leaves residual artifact in separated patterns 
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attributable to diffraction by component(s) that are not of interest, or negative peak 

intensities as a result of overcompensation.  An alternative approach for isolating single 

constituent diffraction patterns from multi-component data has been recently reported in 

the literature.97

 Generalized Least Squares (GLS) pre-processing has been reported in the near-

infrared spectroscopy literature as a multiplicative orthogonalization technique used to 

make spectra “blind” to interferants, while retaining sensitivity to the main analyte.109  

Signal pre-processing using this covariance-weighted technique reduces the 

dimensionality of final models by including prior knowledge.  The scaling matrix, T, is 

calculated as follows: 

ILLL +'=∑ 2
L d  (3.1) 

)∑(= 1/2
LinvT  (3.2) 

where d is a scalar covariance-scaling constant, L is an m × n noise matrix, L' is the 

transpose of L, and I is an n × n identity matrix.  In the case of PXRD, the matrix L 

would be comprised of diffraction information from material(s) that are not of interest to 

a given evaluation.  The final scaling of the multi-component diffraction patterns, X, is 

given by: 

XTX FIN =   (3.3) 

where T multiplicatively suppresses diffraction in X displaying covariance with the noise 

matrix.  A problem is encountered with this particular method when components that are 

not of interest (noise) diffract at the same angle (2θ) as the component of interest.  This 

issue results in the suppression of diffraction events from the component being isolated.  
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The method was, therefore, modified to account for covariance between the “noise” 

component(s) and the component of interest by creating a second scaling matrix: 

IRRd R +'=∑ 2
R   (3.4) 

where R is an m × n matrix of the reference material (i.e. a pure component diffraction 

pattern of the constituent of interest) and the remaining variables are defined above.  The 

scaling matrix, ΣR, was used to suppress angular variables in the noise matrix, which are 

covariate with the component of interest as follows: 

)∑(•∑=∑FIN RL inv   (3.5) 

  (3.6) )∑(= 1/2
FINinvT

where T is substituted back into Equation 3.3.  By compensating for angular variables 

(2θ) of the noise matrix that are covariate with those of the constituent of interest, a more 

accurate separation is obtained.  All data manipulations in this study were performed 

using programs written in-house in the Matlab programming environment (v7.1, 

MathWorks, Natick, MA). 

3.2.3 Pair Distribution Function (PDF) 

 The PDF is a total scattering method that exploits the Fourier relationship 

between X-ray diffraction intensity and the real-space arrangement of atoms, given 

appropriate data treatment.  This method has received extensive attention in the inorganic 

literature;39,43,44,110 however, few pharmaceutical applications have been reported.48,51,52  

In the present work, the PDF was calculated for (a) compacts formed from pure 

components, and (b) mathematically isolated diffraction attributable to a single 

component, detected from PXRD patterns of binary compacts.  This provided a sensitive 
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method to assess the structure-specific compaction behavior of theophylline, individually 

as well as in a consolidated mixture.  The PDF, G(r), is defined as: 

[ ]oρrρrrG -)(π4=)(   (3.7) 

where ρ(r) and ρo are the local and average atomic number densities, respectively, and r 

is the inter-atomic separation distance.111  The PDF calculates the probability of finding 

atom pairs separated by a distance r, and is obtained by transformation of the reciprocal 

space structure function, S(Q), according to: 

[ ] dQQrS(Q)QrG )sin(1-
π
2

=)( ∫
max

0

Q

  (3.8) 

where S(Q) is obtained from a diffraction experiment, and Q is the magnitude of the 

scattering vector.41  The term Qmax is the resolution of the diffraction experiment, which 

is dependent on the wavelength of radiation used and the maximum diffraction angle (°2θ) 

of data collection.  Corrections were made to the intensity data to obtain a structure 

function normalized to the total-scattering cross-sectional area, consistent with the 

assumptions of Egami and Billinge.38   

 For a crystalline material, a theoretical PDF may be calculated from a solved 

crystal structure.  The mathematical corrections applied to a theoretical PDF, including 

compensations for limited Q-resolution and broadening of probability peaks as a result of 

thermal motion are detailed elsewhere.38,47  Theoretical modeling of the PDF, G(r)c, for a 

crystalline material is achieved by: 

orρrr
f

ff
r

rG πδ 4-)-(
1

=)( nm,
n

2
nm

m
c ∑∑   (3.9) 

where fm and fn are the atomic form factors for the individual atoms, ‹f› is the mean 

atomic form factor for the structure, and rm,n is the separation distance between atoms m 
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and n (from the crystal structure), where the delta function is assessed out to a user-

defined radial distance rmax.  

 Reviews of the PDF, both experimental and theoretical, are found elsewhere.38,111  

All intensity corrections and PDF calculations were performed using software developed 

in-house in the Matlab programming environment based on published equations.  

Theoretical PDF patterns for anhydrous theophylline were calculated using the solved 

Cambridge Structural Database (CSD) crystal structure, (refcode: BAPLOT01). 

3.2.4 Principal Components Analysis (PCA) 

 PCA is a multivariate, bilinear decomposition technique used to identify the 

orthogonal basis set, which explains the maximum amount of variance in a data matrix, X; 

where X is n observations of an m-dimensional vector.  PCA decomposes data into 

loadings and scores, where loadings represent the weight of each variable for a given 

principal component (PC), and scores represent the weight of the PC for each sample.  

Vectors comprising a data matrix, X, possessing comparable score values for a given PC 

are similar; dissimilar score values indicate differences between vector features.  Reviews 

of principal components analysis may be found elsewhere in the literature.99,112  PCA 

models were calculated in the Matlab programming environment using the PLS_Toolbox 

(v3.0, Eigenvector Research, Manson, WA). 

 Traditional comparison of PDF transforms have involved calculation of a 

weighted agreement factor, Rwp, between the properly scaled sample PDF and a reference, 

albeit a theoretically calculated or empirically derived pattern.38  In this study, PCA was 

used to assess variations among PDF patterns as an alternative to the weighted agreement 

factor commonly employed for this purpose.  This method may be preferable to the Rwp 
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calculation when there are a large number of PDFs to compare, as in this study. PCA is 

also applicable when a reference pattern is not available or comparison to a reference 

pattern is inappropriate for a given analysis.   

3.3 Results 

3.3.1 Pure Theophylline Compaction 

 In Figure 3.1, the PXRD patterns (average of 3 samples) for theophylline 

compacted at 67 MPa and 503 MPa are shown as blue and red solid lines, respectively.  

The original patterns were normalized and were corrected for absorption, Laue 

monotonic scattering, Compton scattering, etc.38 to remove physical artifacts (i.e., sample 

thickness and solid fraction).  The red and blue dashed lines in Figure 3.1 respectively 

represent one standard deviation (n=3) for diffraction from theophylline compacts 

prepared at 67 MPa and 503 MPa.  The Bragg peak positions of samples compacted at 

higher pressures occur at the same diffraction angle (°2θ) relative to the sample 

compacted at 67 MPa, indicating low probability of uniform residual strain.  Moreover, 

additional PXRD peaks, which would be indicative of a polymorphic conversion, are not 

observed.  One noticeable difference between the patterns, however, is increasing diffuse 

scatter over the 23-30 º2θ range for samples compacted at higher pressures.     

 Figure 3.2 (solid lines) shows the average PDF pattern (n=3) for each of the 

corresponding samples in Figure 3.1.  The dashed lines represent one standard deviation 

as calculated from the three replicates.  At lower radial distances in the PDF (r < 30 Å), 

peak positions and intensities are highly correlated, irrespective of compaction pressure.  

In contrast, the Figure 3.2 inset, which focuses on r > 40 Å, shows a dampening of the 
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probability peaks, as well as peak shifts, which become significant with increased 

compaction pressure.   

 

Figure 3.1. Mean PXRD patterns (average of n=3) for anhydrous theophylline 
compacted at 67 MPa (blue, solid line) and 503 MPa (red, solid line).  The red and blue 
dashed lines correspond to 1 standard deviation from the mean of samples compacted at 
67 MPa and 503 MPa, respectively. 
 
 In an attempt to arrive at a possible materials-based explanation for the alterations 

observed in the PDF of anhydrous theophylline upon compaction at high pressures, 

simulations based on reverse Monte Carlo39,113 refinement were performed.  Briefly, as 

unit cell translation and expansion was calculated from the crystal structure solution, 

spatial permutations were applied to randomly selected atomic coordinates.  These 
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permutations included linear deviations from periodicity, as well as alterations to axial 

orientation (e.g., the molecule may be rotated 120° with respect to the c-axis). The fully 

translated model, calculated to a defined rmax, therefore contained a certain percentage of 

atomic coordinates that varied from their original positions defined by the average 

structure.  PDF patterns for computationally altered structures were subsequently 

calculated, and the data were mathematically compared with experimentally derived PDF 

patterns using an agreement factor. 

 

Figure 3.2. Mean PDF patterns (average of n=3) of theophylline compacted at 67 MPa 
(blue, solid line) and 503 MPa (red, solid line). The red and blue dashed lines correspond 
to 1 standard deviation from the mean of samples compacted at 67 MPa and 503 MPa, 
respectively.  
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 When simulating atomic displacements from average structure, it is important to 

define the proper constraints to yield physically-meaningful simulations.  One of the 

constraints incorporated in the models calculated for this study was the rigid body 

assumption; i.e, the molecule was held rigid such that permutations to atomic coordinates 

could not result in changes to intra-molecular bond distances, angles, or conformations.  

An additional constraint prevented atomic overlap of coordinates resulting from 

simulated displacements.  The final constraint allowed only atomic coordinates residing 

at r values comprising long-range order (r > 40 Å) to be randomly selected for 

permutation, as this region defines the marked differences between the PDFs presented in 

Figure 3.2. 
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Figure 3.3.  (a) Experimental PDF pattern for theophylline compacted at 67 MPa (black), calculated PDF pattern from the crystal 
structure (blue circles), and the difference plot (green, below); (b) Experimental PDF pattern for theophylline compacted at 503 MPa 
(red), a simulated PDF pattern from reverse Monte Carlo refinement (blue circles), and the difference plot (green, below).



 The experimentally derived PDF pattern for theophylline compacted at 67 MPa 

(blue line) and the PDF pattern calculated from the crystallographic structure of 

theophylline (black circles) are shown in Figure 3.3a.  Generally speaking, the difference 

plot indicates pattern similarity, especially at longer r values.  This result is expected as 

the compaction pressure is insufficient to induce large deviations from the average 

crystallographic structure.   

 Recall from Figure 3.2 that the PDF of the high pressure sample shows 

dampening and shifts in peak position relative to the lower pressure sample at r > 40 Å.  

An acceptable fit between the PDF of the sample compacted at high pressure and the 

theoretical PDF will require alterations to the original calculated PDF to accommodate 

the probability peak aberrations.  Figure 3.3b shows the experimentally derived PDF for 

theophylline compacted at 503 MPa (red line), a refined PDF from the Monte Carlo 

simulation (black circles), and the difference between the two PDFs (green line, shown 

below Figure 3.3b).  The simulated PDF shows the same probability peak shifts and 

dampening as the experimental PDF of the sample compacted at a high pressure.  The 

goodness of fit between the calculated PDF and the experimental PDF can be seen in the 

difference plot (green) shown below Figure 3.3b.  The simulated PDF was modeled by 

pseudo-randomly selecting molecules in the defined spherical volume (radius = 60 Å) 

and inducing a deviation from the average crystallographic structure.  The number of 

molecular permutations was converted to a percentage of total molecules probed in the 

simulation.  Therefore, the simulated PDF in Figure 3.3b (black circles) differs from the 

calculated PDF in Figure 3.3a (black circles) as a result of 0.928% of the molecules 

deviating from the defined average structure.   
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3.3.2 PDF of Mathematically Isolated Theophylline 

 Figure 3.4a shows the PXRD pattern of a sample (blue, circles) comprised of 

25% w/w theophylline and 75% w/w MCC, compacted at 118 MPa.  Diffraction data 

attributable only to theophylline (red) are superimposed over the diffraction pattern of the 

aforementioned sample.  Most of the diffuse scatter observable in the diffraction pattern 

of the original binary sample (blue, circles) is absent when theophylline diffraction was 

isolated (red data).  In Figure 3.4b, the PDF transform of the mathematically isolated 

theophylline (red) is shown superimposed with the calculated theoretical PDF pattern for 

theophylline (black, circles).   
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Figure 3.4.  (a) PXRD pattern (zoomed) of a compact containing 75% MCC and 25% 
theophylline (sample3) compressed at 67 MPa (blue, circles) and the isolated diffraction 
attributable to theophylline (red); (b) The calculated pair distrubtion function of 
anhydrous theophylline (crystal structure ref: BAPLOT01) (black, circles), the pair 
distribution function of isolated theophylline from sample 3 (red), and the difference 
between the calculated and experimental (green). 
 
 Figure 3.5a shows the diffraction pattern of a sample (blue, circles) containing 

25% w/w theophylline and 75% w/w lactose, compacted at 118 MPa.  Mathematically 

isolated theophylline diffraction (red) is superimposed over the total diffraction data from 

this sample.  Many of the Bragg diffraction peaks observed in the original sample pattern 
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(blue, circles), which are strictly attributable to lactose, are absent from the isolated 

theophylline diffraction pattern.  In Figure 3.5b, the PDF transform of the isolated 

theophylline (red) is shown with the calculated PDF pattern for theophylline (black, 

circles). 

3.3.3 PCA of PDF Transformed Data 

  As introduced, PCA is a bilinear decomposition method, where principle 

components (PCs) are calculated in a manner to explain the maximum amount of 

variance such that PCn and PCn+1 are orthogonal.  Similar PDF patterns will have similar 

scores for a given PC, while dissimilar PDF patterns will have drastically different score 

values for the same PC.  Examples employing PCA score cluster analysis to ordinary 

PXRD patterns are found in the pharmaceutical literature;45,114 however, the authors are 

unaware of the existence of previous applications of PCA cluster analysis to PDF data. 

 

 91



 

Figure 3.5.  (a) PXRD pattern of a compact containing 75% lactose and 25% 
theophylline (sample 19) compressed at 67 MPa (blue, circles) and the isolated 
diffraction attributable to theophylline (red); (b) The calculated PDF pattern for 
anhydrous theophylline (crystal structure ref: BAPLOT01) (black, circles), the PDF 
pattern for isolated theophylline from sample 19 (red), and the difference between the 
calculated and experimental (green). 
 
 Three different PCA models were calculated, where each varied in the 

number/type of samples included.  The first analysis incorporated PDF patterns for pure 

theophylline and theophylline mathematically isolated from binary mixtures with MCC.  

The resulting scores plot is shown in Figure 3.6.  First, in the dimension of the first PC, 
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where 36.28% of the overall variance is explained, the score values for pure theophylline 

samples compacted at low pressures are drastically different than those for samples 

compacted at high pressures.  The variance explained by the first PC, therefore, is 

weighed differently in PDF patterns for samples compacted at low pressures relative to 

samples compacted at high pressures.  Secondly, PDF patterns for theophylline data 

mathematically isolated from binary samples containing MCC compacted at low 

pressures had similar score values for the first PC relative to those calculated for pure 

theophylline compacted at low pressures.  This indicates that PDF patterns of samples 

compacted at low pressures were similar in the dimension of the first PC, regardless of 

MCC concentration.  Additionally, all samples containing MCC compacted at higher 

pressures had score values similar to pure theophylline compacted at high pressures in the 

dimension of the first PC.  Overall, it was observed that scores of PDF data from samples 

compacted at low pressures formed one general cluster, while those from samples 

compacted at higher pressures formed another cluster. 
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Figure 3.6.  PCA scores plot corresponding to the first and second principal components 
for analysis of PDF patterns from pure theophylline samples (black, closed symbols) and 
PDF patterns from theophylline mathematically isolated from binary compacts containing 
MCC (blue, open symbols).  Black, dashed line circles surround the replicate samples. 
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Figure 3.7.  PCA scores plot corresponding to the first and second principal components 
for analysis of PDF patterns for pure theophylline samples (black, closed symbols) and 
PDF patterns for theophylline mathematically isolated from binary compacts containing 
lactose (red, open symbols). Black, dashed line circles surround the replicate samples. 
 
 The second PCA performed incorporated PDF data obtained from theophylline 

mathematically isolated from binary mixtures containing lactose, as well as pure 

theophylline compacts.  The PCA scores plot for these data is shown in Figure 3.7, 

where the dimension of the first PC explained 46.88% of the overall variance.  Score 

values for PDF patterns from pure theophylline samples compacted at low pressures were 

considerably different relative to PDF patterns from pure theophylline compacted at high 

pressures.  Samples compacted at low pressures tended to cluster together, regardless of 

lactose content; as did samples compacted at high pressures.  A particularly interesting 
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sample was the compact containing 75% w/w lactose compacted at 268 MPa, which 

clustered with the samples compacted at low pressures.  These data indicate that the PDF 

pattern resulting from the isolated theophylline diffraction data of this sample is more 

similar to PDF data for samples compacted at low pressures than samples compacted at 

high pressures. 

 

Figure 3.8.  PCA scores plot corresponding to the first and second principal components 
for analysis of all samples, including: PDF patterns for pure theophylline samples (black, 
closed symbols), PDF patterns for theophylline mathematically isolated from samples 
containing MCC (blue, bold open symbols), and PDF patterns for theophylline 
mathematically isolated from samples containing lactose (red, un-emboldened open 
symbols).  
 
 The final PCA performed incorporated data from PDF patterns obtained from all 

samples in the circumscribed central composite experimental design, resulting in the 
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scores plot shown in Figure 3.8.  In Figures 3.6 and 3.7, scores of samples compacted at 

low pressures formed one cluster while samples compacted at high pressures formed a 

separate cluster in the dimension of the first PC.  In Figure 3.8, delineation between 

score values is not as obvious, and merit further explanation.  Beginning with the pure 

theophylline compacts (filled symbols), the score values in the dimension of the first PC, 

where 33.89% of the overall variance is explained, are drastically different for samples 

compacted at low pressures versus those compacted at high pressures.  The scores in the 

dimension of the first PC of PDF data from samples containing MCC (blue, unfilled 

symbols) again tended to cluster with pure theophylline samples compacted at similar 

pressures, irrespective of MCC concentration.  Contrary to the previous analyses of PDF 

data for samples containing lactose, a clear-cut boundary delineating clusters of similarly 

compacted samples in the dimension of the first PC is not observed.  Interestingly, almost 

all samples containing lactose (red, unfilled symbols) resulted in PDF patterns having 

score values (in the first PC) that were most similar to all other samples compacted at low 

pressures.  The score values for all lactose samples compacted at the intermediate 

pressure (268 MPa) clustered around samples compacted at low pressures.  Further, a 

lactose-containing sample compacted at 419 MPa clustered in the same area.   

3.4 Discussion 

3.4.1 Pure Theophylline Compaction 

 The PXRD patterns of pure theophylline compacted at different pressures exhibit 

an increase in diffuse scatter over the 23-30 º2θ range.  With a median particle size of 90 

μm, it is anticipated that the effects on pattern features and further mathematical 

manipulations will be minimal, as peak broadening and increased diffuse scatter tend to 
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occur for particle sizes in the nanometer scale.  Replicate samples (n=3) of pure 

theophylline compacted at 67 and 503 MPa were analyzed to estimate contributions of 

sample variability to the PXRD patterns.  At both compaction pressures, the standard 

deviation intervals (Figure 3.1, dashed lines) indicate that the increase in diffuse scatter 

is not attributable to random sample variations, as the magnitude of the standard error is 

not sufficient to explain the scattering deviations between the PXRD patterns of the 

samples compacted at two different pressures (Figure 3.1, solid lines).   

 The previously discussed pattern distortion can be associated with many different 

physical and structural anomalies;45,111 however, a discussion of each is beyond the scope 

of this manuscript.  Rather, it is proposed that the introduction of disorder into a 

crystalline material may result in the alterations observed in the average diffraction 

patterns (solid lines) in Figure 3.1.  The PDF method is relatively sensitive to instances 

where materials exhibit long-range order; however, significant structural distortions may 

also be present that would not be representative of the average crystallographic structure.  

These “crystallographically challenged materials” result in dampened PDF features as a 

function of increasing radial distances relative to their pure crystalline counterparts.39  It 

may, therefore, be suggested that the features observed as a function of increasing 

compaction pressure in Figure 3.2 are the result of increasing deviations from the 

average crystallographic structure of anhydrous theophylline.  Replicate samples at each 

compaction pressure were carried through the PDF transformation to assess the effect of 

sample variability on the resulting PDF patterns.  As shown by the standard deviation 

intervals (Figure 3.2, dashed lines), the probability peak dampening and shifting can not 

be adequately explained by sample-to-sample variability, as the magnitude is not 
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sufficient to justify the pattern distortions.  This is further supported by data in Figure 3.3.  

Key features in the experimental PDF and the pattern generated by simulating distortions 

to 0.928% of the molecules from their defined average position (Figure 3.3b), agree well 

with one another. This agreement further supports the observation that compaction-

related structural distortions resulted in the types of probability peak changes observed in 

Figure 3.2. 

 It is worthwhile to note that the PDF is a one-dimensional representation of a 

three- dimensional structure; therefore, multiple simulated models may result in the same 

one-dimensional PDF representation.  Though the simulations in this study were properly 

constrained to prevent physically meaningless solutions, other random structure 

permutations may give an acceptable or better answer than the one yielded in Figure 

3.3b.  The proposed model is presented only to show that the PDF differences associated 

with compaction are consistent with compaction-induced disorder. 

3.4.2 PDF of Mathematically Isolated Theophylline 

 The significant disorder of MCC presents a potential problem with respect to 

separation of diffuse scatter specifically attributable to MCC from the diffuse scatter from 

theophylline introduced as a result of compaction.  The green difference plot in Figure 

3.4b shows that theophylline diffraction data mathematically isolated from the 

theophylline:MCC mixtures agrees well with the theoretical PDF of theophylline.  Given 

the low compaction pressure used to prepare the samples for Figure 3.4b, significant 

changes to the anhydrous theophylline structure were not anticipated, and accurate 

mathematical isolation of theophylline diffraction was, therefore, expected.   
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 Different issues with isolation of scattering from theophylline:lactose compacts 

occurs owing to the crystallinity of the excipient.  Specifically, isolation of theophylline 

diffraction from regions in the PXRD pattern where both components have  peak overlap 

may result in multiple anomalies with the isolated pattern, including inaccurate peak 

intensity values, peak shape distortions, and/or the disappearance of theophylline peaks 

altogether.  The green difference plot in Figure 3.5b shoes that PDF-transformed 

theophylline diffraction data mathematically isolated from the theophylline:lactose 

mixtures agrees well with the theoretical PDF of theophylline.  Again, considering the 

low pressure used to prepare compacts for Figure 3.5b, significant structural changes to 

anhydrous theophylline were not anticipated.   

3.4.3 PCA of PDF Transformed Data 

 The circumscribed central composite design of experiments used in the present 

work directly built sample variability into each model through replication of the center 

point (n=5), which corresponded  to a compaction pressure of 268 MPa and an excipient 

concentration of 48% w/w.  The variance in the PDF attributable to sample variation is 

therefore susceptible to explanation by PCA.  In the dimension of the first PC, however, 

the replicate samples are observed to cluster together (dashed circles in Figures 3.6, 3.7), 

thereby precluding sample variability from acting as the sole contributor to the data 

segregation observed in each plot.   

 The data-segregation correlated to compaction pressure observed in Figure 3.6 

occurred regardless of the concentration of MCC present.  As described above, long-

range atomic correlation dampening (r ≥ 40 Å) was concluded to be most likely 

attributable to structural differences arising from compaction.  Ultimately, these data 
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strongly support that the variance explained by the first PC is correlated to the probability 

peak dampening observed in PDF data (Figure 3.2).   

 The same data segregation observed in the first analysis (Figure 3.6) was also 

observed in the second PCA model (Figure 3.7), which suggests that clustering 

corresponds with the same probability peak dampening explained above.  Recall that the 

point representing the binary sample containing 75% w/w lactose compacted at 268 MPa 

clustered with the samples compacted at low pressures.  Interpretation of this behavior 

suggests that the presence of this much lactose may provide some degree of “protection” 

against the theophylline structural changes interpretable from the PDF; however, this 

warrants further investigation.   

 Almost all samples containing lactose (Figure 3.8, red, unfilled symbols) had 

PDF patterns with score values (in the dimension of the first PC) that were most similar 

to all other samples compacted at low pressures.  The score values for all lactose samples 

compacted at 268 MPa clustered around samples compacted at low pressures, as did a 

lactose-containing sample compacted at 419 MPa.  The clustering of this particular 

sample with others compacted at low pressures may not seem intuitive given that the 

remaining two lactose samples (containing less % w/w lactose) compacted at a high 

pressure did not.  When sample composition is taken into consideration, however, a trend 

in the dimension of the first PC is observable.  At a compaction pressure of 419 MPa, as 

the amount of lactose is decreased (Figure 3.8, red triangles), the sample score values 

became increasingly similar to the rest of the samples compacted at high pressure.  

Overall, every sample containing lactose (with the exception of the two compacted at 419 

MPa having low % w/w concentrations), resulted in PDF patterns similar to all samples 
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compacted at low pressures.  These PDF data, therefore, did not exhibit the probability 

peak dampening displayed by PDF-transformed data of (a) pure theophylline samples 

compacted at high pressures, and (b) PDF-transformed data of mathematically isolated 

theophylline from samples containing MCC compacted at high pressures.  Hence, the 

samples containing > 50% w/w lactose did not demonstrate any detectable structural 

modifications as a function of compaction pressure in the range investigated. 

3.5 Conclusion 

 In this study, the effects of powder consolidation on solid structure were 

examined.  Simulated data suggest that the compaction-related changes observed in real-

space analyses (PDF) of theophylline are primarily attributable to molecular deviations 

from average crystalline order.  The analysis of pharmaceutically relevant, intact 

consolidated systems was performed using PXRD, which afforded structure-sensitive 

capabilities without the introduction of artifacts arising from traditional sample 

preparation (e.g. subsequent grinding to revert to powder samples).  The application of 

the PDF transform to an individual constituent, in the presence of an excipient, was 

successfully accomplished as a result of a novel, accurate mathematical pattern separation 

technique.  Ultimately, this permitted practical real-space structural analysis of a single 

component in the presence of another material, thereby enabling the investigation of 

compound consolidation effects (i.e. the affect a material has on the compaction behavior 

of another).  The use of PCA as an alternative to the weighted agreement factor for 

comparing multiple PDF patterns was successfully demonstrated.  Relative to binary 

compacts formed with microcrystalline cellulose, structural changes to theophylline in 

the presence of α-lactose monohydrate were not observed (except in the two samples 

 102



compacted with the least amount of lactose).  This suggests the inclusion of lactose 

provides protection to theophylline from structural changes that would otherwise occur at 

high pressures.  Further exploration of this particular conclusion, however, deserves 

additional attention and will be the focus of future experiments. 
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Chapter 4:  Structural Interpretation in Composite Systems 
Using Powder X-ray Diffraction: Applications of Error 
Propagation to the Pair Distribution Function 
 
4.1 Introduction 

 Advanced analytical techniques used to characterize pharmaceutically-relevant 

materials properties are becoming increasingly sensitive to changes in short-range order 

of material structure.  At the forefront of these advancements is a total scattering powder 

X-ray diffraction (PXRD) method adapted from the inorganic materials science literature, 

commonly referred to as the atomic pair distribution function (PDF).  The PDF transform 

exploits the Fourier relationship between powder diffraction intensity and the real space 

arrangement of atomic species.  It has been used extensively to study crystalline, 

nanocrystalline, and amorphous inorganic materials, and its application in the 

pharmaceutical literature has increased substantially in the last decade. 

 Recent applications of the PDF in the pharmaceutical literature include the 

investigation of dehydration mechanisms in excipients,51 phase differentiation,48,115 

assessing structural changes during pharmaceutical manufacturing,116,117 and 

characterization of solid dispersions.52,118,119  An unfortunate occurrence in recent 

analyses incorporating PDF transforms involves drawing subjective conclusions with 

little to no statistical support.  Additionally, errors made to pre-Fourier transformed 

intensities manifest as pattern anomalies oftentimes mistaken for structural phenomena, 

thereby further detracting from the merit of the study.  Deriving an error estimate for a 

PDF pattern would largely increase the value of PDF-related conclusions. 

 Experimental errors in the PXRD experiment may arise from quantum counting 

inefficiencies, experimental imprecision, sample inhomogeneities, etc. and should be 

 104



propagated and accounted for when interpreting PDFs.  In addition to uncertainties in the 

PXRD experiment, the lack of infinite momentum transfer resolution, as well as 

inaccurate data corrections applied to intensity data affect the degree of uncertainty in the 

resulting PDF.  The inherent artifacts incurred as a result of Fourier transforming lower 

energy X-ray source data to real-space representation are well known and when treated 

appropriately41 are less significant contributors to errors in the PDF.  An appropriate 

estimate of error at the outset of the experiment and subsequent propagation through the 

entire mathematical transformation would significantly aid in drawing meaningful 

conclusions from PDF studies. 

 The use of error propagation methods in assessing the fit between a theoretical 

PDF calculated from a known crystal structure and experimental PDF has been developed 

and applied in the materials sciences literature.120,121  As it is becoming routine to 

compare two experimentally derived PDFs (i.e. two individual components versus 

composite materials), a question arises as to appropriate treatment of each individual 

error source in combined comparisons.  In this study, the propagation of initial PXRD 

error estimates through the PDF transform is presented.  Monte Carlo simulations were 

performed to assess the validity of applying traditional error propagation algorithms to 

accurately estimate uncertainty in the resulting PDF.  The propagated error estimates for 

individual experimentally-derived PDFs were mathematically combined to define 

uncertainty intervals around difference plots.  Statistical hypothesis inferences were 

drawn from these intervals to aid in identifying differences between experimental PDF 

patterns attributable to structure as opposed to those resulting from random error.  The 

aforementioned principles were applied to co-solidified products in an attempt to assess 
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drug:excipient miscibility, an area where differentiation between structural information 

and error in the PDF is of the utmost importance. 

4.2 Materials and Methods 

 Ketoconazole was purchased from Spectrum Chemicals (New Brunswick, NJ), 

polyvinyl pyrrolidone:vinyl acetate (PVPva) was purchased from BASF (Ludwigshafen, 

Germany), terfenadine was purchased from Sigma-Aldrich (St. Louis, MO) and  

felodipine was purchased from Tecoland (Edison, NJ).  Molecular structures for the 

compounds used in this study are shown in Figure 4.1. 

 

Figure 4.1. Molecular structures for felodipine, ketoconazole, terfenadine, and PVPva. 

4.2.1 Solid Dispersion Preparation  

 Co-solidified products were prepared using the melt-quench method.66  Briefly, 

the powdered components were physically mixed in a scintillation vial and added to a 
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crucible heated in a silicone oil bath at a temperature sufficient to melt the mixture.  The 

molten mixture was held isothermally for 30 minutes.  The molten mixture was quenched 

using an ice water bath.  Individual amorphous phases were produced by holding the 

sample above the melting temperature for 10 minutes followed by quenching in an ice 

bath.  All samples were removed from the bottom of the crucible intact for analysis. 

4.2.2 Powder X-ray Diffraction (PXRD) 

 The PXRD data were collected in transmission geometry using an X’Pert Pro 

MPD system (PANalytical B.V., Almelo, the Netherlands) equipped with a copper anode 

(λ = 1.5406 Å), an auxiliary elliptical mirror, and X’CeleratorTM detector.  The 

operational voltage and amperage were set to 45.0 kV and 40.0 mA, respectively.  

Diffraction patterns were acquired on intact samples, sandwiched between two layers of 

Kapton® film and subsequently placed on a spinning vertical sample stage (16 rpm).  

Experimental parameters include an irradiation time of 51.04 seconds per step and an 

angular step size of 0.02° 2θ over a 2-100° 2θ range.   

4.2.3 Differential Scanning Calorimetry (DSC) 

 Glass transition temperatures (Tg) were measured using a Q100 DSC (TA 

Instruments, New Castle, DE) under constant nitrogen purge (~50mL/min).  A three-

point enthalpy and temperature calibration was performed at 20 °C/min using o-terphenyl, 

indium, and tin standards.  In an attempt to avoid artifacts arising from grinding samples, 

approximately 5 mg intact “sample chips” were hermetically sealed in aluminum pans.  

To normalize thermal history, samples were first heated at 20 °C/min to 105 °C, held 

isothermally for 2 minutes, and subsequently cooled to -20 °C at 20 °C/min.  Samples 

were then cycled through Tg at 20 °C/min for temperature determination.  Ideal glass 
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transition temperatures for drug:polymer amorphous molecular solid dispersions were 

calculated using the Couchman-Karasz equation85 and are listed in Table 4.1. 

Table 4.1. Summary of DSC and PDF analyses.   
 DSC Analysis PDF Analysis  
 

Ideal Tg 
(°C) Tg (°C) R value 

Drug 
Conc. 
(w/w) 

Polymer 
Conc. 
(w/w) Conclusion 

felodipine:PVPva 62.1 66.9 (0.015) 0.2126 0.81 0.19 miscible 
terfenadine:PVPva 77.48 60.7 (0.21) 0.0864 0.73 0.27 phase-separate 

 

4.2.4 Pair Distribution Function (PDF) 

 The PDF is a total scattering method that exploits the Fourier relationship 

between X-ray diffraction intensity and the real-space arrangement of atoms, given 

appropriate data treatment.38,111  This method has received extensive attention in the 

inorganic literature with an increasing number of pharmaceutical applications reported 

recently.  The PDF, G(r), is defined as: 

[ ]orrrG ρ)(ρπ=)( -4  (4.1)  

where ρ(r) and ρo are the local and average atomic number densities, respectively, and r 

is the inter-atomic separation distance.  The PDF calculates the probability of finding 

atom pairs separated by a distance r, and is obtained by Fourier transform of the 

reciprocal space structure function, S(Q), according to: 
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where S(Q) is the structure factor obtained from a diffraction experiment and Q is the 

magnitude of the scattering vector.  The term Qmax is the momentum transfer resolution of 

the diffraction experiment, which is dependent on the wavelength of radiation used and 

the maximum diffraction angle (°2θ) of data collection.  Corrections consistent with those 
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outlined by Egami and Billinge38 were made to the measured diffraction data leading to 

the calculation of the structure function.  All intensity corrections (e.g. background due to 

Kapton® film scattering, absorption, etc.) and PDF calculations were performed using 

software developed in-house in the Matlab programming environment (v7.1, MathWorks, 

Natick, MA) based on published equations.  The PDF transforms were optimized using 

the Glow quality criteria introduced by Peterson, et al.41   

4.2.5 Error Propagation 

 The method of error propagation through the PDF transform has been derived and 

applied in previous work.38,121  If it is assumed that the measurement of each individual 

observation is statistically independent of all others (i.e. the count intensity at a given 

diffraction angle is independent of all others), the covariance between observations is 

eliminated.  It is worthwhile to note that the aforementioned assumption is appropriate in 

PXRD experiments provided the mathematical manipulations to the raw diffraction 

pattern do not introduce statistical correlation among individual data points (i.e. 

windowed smoothing, interpolation).  When a quantity T is the sum of two independent 

observations, X1 and X2, each having their own error estimate, σ(X1) and σ(X2), the 

estimated error σ(T) is: 

2
2

2
1 ))((+))((=)( XXT σσσ  (4.3) 

The quantity T calculated from the product of a constant value, c, and X has an estimated 

error given by, 

)(•=)( XcT σσ   (4.4) 

When a quantity T is the product of two independent observations, X1 and X2, each 

having their own error estimate, σ(X1) and σ(X2), the estimated error σ(T) is: 
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 Error propagation was performed by setting up two data vectors.  The first data 

vector contained the raw PXRD intensity values for a given powder pattern.  The second 

vector contained the initial error estimates for each intensity value.  The vectors were 

propagated side-by-side through to the calculation of the structure function using the 

principles outlined in Equations 4.3, 4.4, and 4.5 for the mathematical manipulations to 

the error vector. 

 The final step of the PDF method involves the sine Fourier transform of the 

structure function, S(Q), into real-space representation.  Given accurate propagation of 

error up through calculation of the structure factor and no introduction of statistical 

correlation among the independent scattering events, a good estimate of the standard 

uncertainty in the PDF, σ(G(r)), is given by: 
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where σ(S(Q)) is the error estimate of the structure function. 

4.2.6 Monte Carlo Simulation 

 The term Monte Carlo refers to a broad class of methods that employ generation 

of random numbers as a starting point for solving a complicated numerical problem. 

Monte Carlo methods are often used to simulate physical and mathematical systems. 

They are especially useful for modeling phenomena having significant uncertainty. The 

simulation typically begins with defining a distribution of possible inputs. An input 

generated from the distribution is used to perform deterministic computations to obtain an 
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individual result. Finally, the results from individual computations are compiled and 

interpreted.122  

 The raw PXRD counts go through a number of mathematical manipulations when 

transformed using the PDF algorithm; oftentimes optimized according to specific quality 

criteria.41  In order to confirm the appropriate propagation of an initial raw count error 

estimate, Monte Carlo simulations were employed.  The simulations began with a defined 

distribution of intensity values at each °2θ.  The distribution at each specific scattering 

angle (°2θ) was formed by using the raw intensity (i.e. counts) as the distribution mean 

and the error estimate as the spread.  Simulated PXRD patterns were formed by randomly 

selecting an intensity value from the previously defined distributions at each °2θ angle. 

Each simulated PXRD pattern was subsequently transformed into real-space 

representation using the PDF. After ten-thousand iterations, a matrix of PDF patterns 

spanning the variance of the simulated PXRD patterns was formed.  The minimum and 

maximum G(r) at each r-value in the PDF was compared to the error vector calculated 

using the previously defined equations. 

4.3 Results 

 The count of scattered intensity within a given time interval obtained from the 

PXRD experiment is subject to an unavoidable, random uncertainty due to statistical 

variation in quantum counting.123  This stochastic variation best follows a Poisson 

probability density function a discrete distribution that possesses unique statistical 

properties.  Assuming that n counts occur in a specific time interval, the distribution 

possesses a mean and variance equal to n, when n is a positive integer.38  The standard 
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deviation for n counts at the scattering angle x° 2θ is, therefore, equal to the square-root 

of n and will serve as the initial error estimate.   

 Figure 4.2a shows the diffraction pattern for amorphous ketoconazole (black, 

solid line) and ±3 standard deviations (blue, solid line).  The subsequent PDF transform 

of the PXRD pattern is shown in Figure 4.2b (zoomed, black, solid line).  To confirm the 

appropriate propagation of error through the transform, Monte Carlo simulations were 

performed as previously described.  The calculated error (blue, dashed lines) and 

simulated error (red, dashed lines) is shown as intervals in Figure 4.2b and as absolute 

error values in Figure 4.2c. 

 

Figure 4.2.  (a) The diffraction pattern for amorphous ketoconazole (black, thick line) 
and ±3σ (blue, thin line); (b) the PDF transform of (a) (black, thick line), calculated ±3σ 
(blue, dashed line), and simulated ±3σ (red, dashed line); (c) absolute representation of 
calculated 3σ (blue) and simulated 3σ (red). 
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 It is common practice to compare an experimentally obtained PDF to one 

calculated from a structural model.  Previous studies have illustrated the advantages of 

error propagation to this particular application.  Recently, an increasing interest to 

compare multiple experimental PDFs has emerged.  Difference plots with error intervals 

calculated from experimental PDFs may assist in delineating random errors from true, 

structural variations.  Figure 4.3a shows the PDF transform of a 50 wt% physical 

mixture of amorphous felodipine and PVPva (black, solid line) with an overlay of a linear 

combination of PDFs from amorphous felodipine and PVPva (blue, line with circles).  

Figure 4.3b shows the difference plot (black, solid line) obtained from the two traces in 

Figure 4.3a.  Additionally, the estimated combined error contribution (±3σ) calculated 

from the propagation through each transform is also shown as an interval around the 

difference (red, dashed lines).  That is to say, an interval calculated from the combination 

of the two amorphous component PDFs comprising the blue trace and the physical 

mixture PDF represented by the black trace. 
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Figure 4.3. (a) The PDF of a 50 wt% physical mixture of amorphous felodipine and 
PVPva (black) and the refined linear combination of the amorphous component PDFs 
(blue, circles); (b) the difference between the PDFs (black) and ±3σ (red, dashed line). 
 
 To illustrate the potential to differentiate random error from true structural 

differences, the error propagation principles were applied to the method outlined by 

Newman et al.52 that was proposed to identify miscibility between a drug and excipient.  

Briefly, the PDF of a co-solidified product is compared to the linear combination of the 

PDFs obtained from the amorphous components comprising the mixture.  The scaling 
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constants serve as concentration estimates for each amorphous phase in the co-solidified 

mixture.  If the linear combination of the PDF for each amorphous component describes 

the PDF of the co-solidified sample, it is reasonable to conclude that the system is at least 

partially phase-separated as the short-range order (i.e. the static local structure) of the co-

solidified product can be described by the intrinsic distances found in the amorphous API 

and polymer.  Substantial differences between the PDF calculated from linear 

combination of the individual amorphous component PDFs and the PDF of the co-

solidified sample are indicative of short-range order not presented in the individual 

components, (i.e. that of a unique packing pattern).  Figure 4.4a shows the PDF 

transform (black, solid line) for a 75 wt% felodipine and PVPva co-solidified product.  

The superimposed trace (blue, circles and line) is the best refined linear combination of 

the amorphous component PDFs.  Figure 4.4b shows the difference between the two 

PDFs (black, solid line) with the calculated ±3σ error estimates. 
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Figure 4.4.  (a) The PDF of a 75 wt% co-solidified product of felodipine and PVPva 
(black) and the refined linear combination of the amorphous component PDFs (blue, 
circles); (b) the difference between the PDFs (black) and ±3σ (red, dashed line), where 
the green dots are indicative of the error interval not containing zero. 
 
 As a point of comparison, Figure 4.5a contains the PDF (black, solid line) for a 

75 wt% terfenadine and PVPva co-solidified product.  Superimposed is the best refined 

linear combination of the amorphous component PDFs.  Figure 4.5b shows the 

difference between the two PDF traces (black, solid line) with the calculated ±3σ error 

estimates.  The Tg for the co-solidified products in Figure 4.4 and Figure 4.5 are shown 

in Figure 4.6 and Figure 4.7, respectively.  In both products, a single Tg event is 
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observed (middle traces in Figure 4.6 and 4.7) intermediate to the Tg observed for the 

pure components (top and bottom traces in Figure 4.6 and 4.7).  Table 4.1 summarizes 

the DSC and PDF results. 

 

Figure 4.5. (a) The PDF of a 75 wt% co-solidified product of terfenadine and PVPva 
(black) and the refined linear combination of the amorphous component PDFs (blue, 
circles); (b) the difference between the PDFs (black) and ±3σ (red, dashed line). 
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Figure 4.6. The DSC thermograms for felodipine:PVPva systems (as labeled). 
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Figure 4.7.  The DSC thermograms for terfenadine:PVPva systems (as labeled). 
 
4.4 Discussion 

 The PXRD experiment is traditionally regarded as robust.  Fluctuations in 

scattering intensity attributable to experimental geometry (Lorentz factor) and radiation 

polarization are assumed to be insignificant contributors to the overall variance due to 

their precision.23,123  The uncertainty due to statistical variation in quantum counting, 

therefore, serves as an appropriate initial error estimate (Figure 4.2a).  Although this 

estimate does not contain all possible sources of error, it does enable the ability to rule 

out changes that are too small to be taken seriously.   

 By randomly selecting scattering intensities spanning the defined error interval for 

each scattering angle (°2θ) over ten-thousand iterations, the Monte Carlo simulation 

creates a matrix of diffraction patterns that possess the overall variance contained within 
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the initial uncertainty estimate.  The simulated patterns were individually transformed 

using the PDF algorithm.  Since the simulated PXRD patterns span the total variance of 

the estimated uncertainty in reciprocal space, the resulting PDF patterns span that same 

variance in real-space.  The propagated PDF uncertainty interval (Figure 4.2b, blue, 

dashed lines) is in good agreement with the simulated PDF uncertainty interval (Figure 

4.2b, red, dashed lines).  For a point of reference, the absolute PDF errors derived from 

propagation and simulation are given in Figure 4.2c.  The agreement between simulated 

and propagated errors confirms the appropriate propagation of the initial error estimate 

through the PDF transform. 

 Comparisons and modeling between multiple experimentally obtained PDFs is 

becoming increasingly common.  Similar to comparing an experimental PDF to a 

calculated PDF from a structural model, the premise in these analyses is to identify 

correlations between PDFs while maintaining the ability to differentiate pattern 

dissimilarities attributable to structural differences from those attributable to random 

error.  To do this, it is proposed that error intervals are estimated for the difference plot 

calculated between experimental PDFs of interest.  In Figure 4.3a, the PDF transform of 

a PXRD pattern obtained from a 50 wt% physical mixture of amorphous felodipine and 

PVPva is represented by the black, solid line.  The blue line with circles in Figure 4.3a 

represents the refined linear combination of amorphous component PDFs.  The difference 

between the calculated and physical mixture PDF is given in Figure 4.3b (black, solid 

line).  The uncertainty interval around the difference plot was obtained from the 

combined propagated error of the two PDF patterns.  The PDF transform of a PXRD 

pattern of an amorphous felodipine:PVPva physical mixture would be expected to be the 

 120



same as a linear combination of a PDF transform of a PXRD pattern of pure amorphous 

felodipine and a PDF transformed of a PXRD pattern of pure PVPva.  This expectation is 

founded on the principle that a physical mixture of two amorphous materials would not 

alter the short-range order intrinsic to the two materials comprising the blend.   

 A null hypothesis may be formed stating that the difference between the two 

PDFs is equal to zero (ho: μa – μb = 0).  The alternative to the null hypothesis states the 

difference between the two PDFs is not equal to zero (hA: μa – μb ≠ 0).  If, at any value of 

r, the ±3σ interval around the difference plot contains zero, then the null hypothesis is 

accepted.  If, however, the ±3σ interval at a value r does not contain zero, then the 

difference between the two PDFs can not be explained simply by random error and the 

null hypothesis is rejected.  The ±3σ interval shown in Figure 4.3b contains zero for 

every value of r, and therefore, reflects that all differences between the two PDFs is 

attributable to random error.  Defining a threshold below ±3σ would lead to conclusions 

of structural differences between the two PDFs, as the entire range of r would not contain 

zero.  As a result of this finding, ±3σ difference plot intervals that do not include zero are 

assumed to be indicative of statistically significant structural dissimilarities between 

experimental PDFs for the remainder of this manuscript. 

 It is worthwhile to point out that the aforementioned conclusion concerning the 

±3σ threshold is not universal; rather, it is dependent on the PXRD experimental 

parameters.  Longer irradiation times or different experimental geometries may result in 

better counting statistics, hypothetically producing relative initial error estimates orders 

of magnitude less than the ones illustrated herein.  The principles surrounding error 

propagation and the conclusions drawn from statistical hypotheses testing outlined 
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previously, however, are valid and warrant application when drawing inferences from 

differences between multiple analytical results. 

 The DSC data for 75 wt% felodipine and PVPva co-solidified product, as well as 

75 wt% terfenadine and PVPva co-solidified product are shown in Figure 4.6 and 4.7, 

respectively.  From Table 4.1, the calculated ideal Tg for a 75 wt% felodipine:PVPva 

amorphous molecular solid dispersion is 62 °C.  The experimentally determined Tg for 

the co-solidified product, cycled through the event three times, was 67 ± 0.02 °C and in 

good agreement with the ideal value.  The ideal Tg for a 75 wt% terfenadine:PVPva 

(Table 4.1) is 77 °C. The experimentally determined Tg for the co-solidified product was 

60 ± 0.2 °C.  In both instances, a single Tg intermediate to the individual amorphous 

phase Tg that remains constant upon cycling was observed for the co-solidified products 

(Figures 4.5 and 4.6).  From purely thermal analyses, both co-solidified products may be 

classified as amorphous molecular solid dispersions due to the presence of only a single 

Tg intermediate to the pure amorphous phase Tg events.   

 In Figure 4.4a, the PDF of the PXRD pattern for the felodipine:PVPva co-

solidified product (black, solid line) is shown with the refined linear combination of the 

amorphous component PDFs.  The scaling constant-derived concentrations of 81 % and 

19 % drug and polymer, respectively (Table 4.1) deviate substantially from the 

theoretical values of 75 % drug and 25 % polymer.  The sum-of-squares agreement factor 

(R) shows an error estimate of 21 % between the calculated PDF and the co-solidified 

product PDF.  From the difference plot in Figure 4.4b, variations between the two 

patterns are observed within the range of 6 – 9Å that are not explained by random error 

as indicated by portions of the error interval not encompassing zero (green dots).  As 
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previously suggested, this result would be indicative of a true amorphous molecular solid 

dispersion, as the product would have short-range order (i.e. nearest neighbor and next 

nearest neighbor interatomic distances) not explained by either pure component PDF. 

 The PDF for the terfenadine:PVPva co-solidified product (black, solid line) is 

shown with the calculated PDF in Figure 4.5a.  The scaling constant-derived 

concentrations of 73 % and 27 % drug and polymer, respectively (Table 4.1) are close to 

the theoretical values of 75 % drug and 25 % polymer.  The sum-of-squares agreement 

factor (R) shows an error estimate of only 8 % between the calculated PDF and the co-

solidified product PDF (Table 4.1).  Upon inspection of the difference plot uncertainty 

interval in Figure 4.5b, it was found that zero is contained within the ±3σ interval over 

the entire range of r.  The short-range order displayed in the PDF of the co-solidified 

product is well explained by that found in the individual amorphous components and 

thereby negates formation of a unique packing pattern.  The terfenadine:PVPva 

dispersion product, therefore, is phase-separated. 

 A plausible explanation as to why a second Tg was not observed for the 

terfenadine co-solidified product was extrapolated from Newman, et al.52  Close 

inspection of Figure 4.7 shows the Tg of the dispersion product to be nearly equal to the 

Tg of amorphous terfenadine.  Since terfenadine represents the major phase of the 

dispersion (75%), PVPva only constitutes 1.25 mg of a 5 mg sample.  As the 

concentration of the PVPva amorphous domain decreases with respect to that of the 

amorphous terfenadine, the heat capacity change at the PVPva glass transition becomes 

so subtle relative to that of amorphous drug that it is not detectable using standard DSC.  
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4.5 Conclusion 

 The successful propagation of an initial error estimate through the PDF transform 

enabled statistically-based conclusions to be drawn from multiple pattern comparisons.  It 

was found that difference plots calculated from linear combinations of amorphous phase 

PDFs and co-solidified product PDFs could be used to differentiate between phase-

separated systems and amorphous molecular solid dispersions.  The calculation of error 

intervals on the difference plot assisted this classification scheme by providing statistical 

thresholds to define structural dissimilarities as opposed to subjective interpretation.  

Though this study does not define a universal threshold for differentiation of random 

errors and structural dissimilarities, the principles developed herein may be adapted and 

applied accordingly. 
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Chapter 5: Informatics Calibration of a Molecular Descriptors 
Database to Predict Solid Dispersion Potential of Small 
Molecule Organic Solids 
 
5.1 Introduction 

 The aqueous solubility of a small molecule organic (SMO) solid is one of the 

principle physicochemical properties considered when evaluating the developability of a 

new chemical entity (NCE) for pharmaceutical use.  Although a number chemical- and 

physical-based approaches are available for enhancing the apparent aqueous solubility of 

active pharmaceutical ingredients (API), it is still estimated that more than 40% of highly 

potent compounds fail to reach clinical trials due to the inability to overcome poor 

aqueous solubility.15  It is proposed that this statistic is somewhat inflated, not necessarily 

due to the inefficacy of available methods, but rather the raw material requirements 

associated with empirically assessing the potential of each.  Formulation scientists are 

ultimately forced to investigate only a fraction of the existing technology, where 

unsuccessful outcomes may deem a therapeutically efficacious API undevelopable.  The 

development of predictive models to optimize these methods in an attempt to preserve 

early stage raw material supplies is thus imperative. 

 Stabilization of an API as an amorphous solid phase through the formation of 

binary amorphous molecular solid dispersions has received increasing attention yielding 

up to a four-fold enhancement of apparent aqueous solubility relative to the crystalline 

form.58  Binary amorphous molecular solid dispersions are created through the rapid co-

solidfication of an API and a pharmaceutically acceptable excipient, such as a polymer, at 

loadings sufficient to achieve a physically stable amorphous API.  Due to the kinetic 

nature of the formation, spray drying,69 super-critical fluid processing,76 lyophilization,63 
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and hot-melt extrusion72 have all been successfully implemented in the preparation of 

amorphous molecular solid dispersions.  Successful formation has been attributed to the 

presence of specific and/or nonspecific adhesive interactions,62,83 as well as 

antiplasticization effects intended to reduce molecular mobility.81   

 Predictive models for API:polymer miscibility have been introduced and are 

largely derived from solution thermodynamics.  Lattice based solution models, such as 

Flory-Huggins theory, can be used to assess miscibility in API:polymer blends.  In 

addition to developing methods for estimating the Flory-Huggins interaction parameter, 

Marsac et al.89 developed a model that predicted the solubility of an API in a polymer 

based on a combination of interaction variables and Flory-Huggins theory.  Janseens et 

al.73 applied the similar theory to model solid dispersion preparation method effects on 

the solubility of API in polymer.  Friesen et al.68 showed physical properties of APIs, 

such as hydrophobicity (i.e. log P), thermodynamic parameters (e.g. melting temperature) 

and kinetic parameters (e.g. glass transition temperature) to provide insight concerning 

formulation strategies for solid dispersion systems.  In addition to ionic interactions, 

when applicable, Yoo et al.124 also observed a correlation between hydrophobicity values 

of APIs and miscibility with a given polymer.  Despite the recent advances, explicit 

universal criteria for API:polymer miscibility are still lacking. 

 Quantitative structure property relationships (QSPR) were derived from the 

fundamental concept that a compound’s behavior is a result of its chemical structure.  In 

QSPR models, molecular descriptors, single integer indices that encode specific structural 

information for a given compound, are typically regressed against some physical, 

chemical, or mechanical property.  Applications of molecular descriptors in QSPR 
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modeling include predicting pharmacokinetic performance,125 describing physical 

properties of alkanes,126 and prediction of soil sorption coefficients of pesticides.127  

Coupled with characterization techniques to classify the co-solidified composites 

containing a given API, molecular descriptors have the potential to provide insight to 

API:polymer miscibility using a materials informatics approach. 

 In this study, 12 model compounds were prepared by a melt-quench procedure 

using polyvinylpyrrolidone:vinyl acetate (PVPva) copolymer as a stabilizing agent with 

useful thermoplastic properties and the potential (i.e. miscibility) for generating an 

amorphous molecular solid dispersion.  Each co-solidified sample was characterized by 

thermal analysis, powder X-ray diffraction (PXRD). and a pair distribution function (PDF) 

method recently introduced into the literature.52  Rather than attempting to quantify the 

extent of miscibility between API and polymer to afford a continuous dependent variable, 

each sample was classified as a successful formation (i.e. completely miscible) or an 

unsuccessful formation (i.e. partially miscible or immiscible) based upon conclusions 

drawn from the analyses.  Molecular descriptors were calculated for each of the 12 model 

compounds comprising the library and tested for correlation to dispersion potential using 

logistic regression.  A univariate model was created that predicted solid dispersion 

potential from a single molecular descriptor and challenged using three compounds not 

included in the calibration. 

 At the outset, it should be noted that the model developed herein is not proposed 

to be universally applicable across all SMO compounds nor is it predictive of the time 

course of physical instability (i.e. devitrification).  Rather, a significant portion of the 

discussion will attempt to highlight the limitations associated with the model and define 
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the pertinent variance space for its applicability.  The central objective of this work was 

to illustrate the potential of in silico calculations to create models that may one day 

provide the means for intelligent selection of stabilizing agents in the design of 

amorphous molecular solid dispersions.  This possibility is ultimately afforded by the 

ability to classify co-solidified samples to compliment the interpretation that is possible 

from solid-state characterization methods alone. 

5.2 Materials and Methods 

 Cloperastine, terfenadine, propranolol, chlorpropamide, nifedipine, melatonin, 

and quinidine were all purchased from Sigma-Aldrich (St. Louis, MO).  Ketoconazole 

and itraconazole were purchased from Spectrum (Gardena, CA).  Indomethacin, 

cimetidine, and tolbutamide were purchased from MP Biomedicals (Solon, OH).  

Felodipine was purchased from Tecoland Corporation (Edison, NJ), sulfanilamide was 

purchased from Acros Organics (Geel, Belgium), bicalutamide was purchased from Altan 

(Orange, CT), and Kollidon VA64 (PVPva) was a gift from BASF (Ludwigshafen, 

Germany).  All model and test compounds are shown in Table 5.1. 
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Table 5.1. Molecular structures and Cambridge Structural Database Codes for 
compounds used in this study. 
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5.2.1 Solid Dispersion and Amorphous Phase Preparation 

 Solid dispersion samples were manufactured using a melt-quench method.66  

Briefly, each API and PVPva was weighed and dispensed into a scintillation vial at 75 

wt% API loading.  The powders were physically mixed for a period of 5 minutes by 

manual agitation.  To avoid sub-sampling, the entire mixed sample was added to a 

crucible heated in a silicone oil bath.  The oil bath was maintained at a temperature equal 

to the fusion temperature of the API (Tf,API) + 10°C.  In the instance where Tf,API was less 

than 150 °C (e.g. the temperature at which PVPva liquefies), the mixture was held 

isothermally at 160 °C.  The isothermal hold time was between 10-20 minutes to provide 

sufficient time for mixing.  The hold time was determined using thermogravimetric 

analysis and was defined as the time (at a given preparation temperature) where ≥2% 

weight loss occurred.  The molten mixture was subsequently quenched in an ice water 

bath.  Amorphous samples of each component were produced by holding the crystalline 

API above its melting temperature for approximately 10 minutes followed by quenching 

in an ice bath.  The melt-quench samples were removed from the crucible intact and 

examined.  All preparations were repeated twice (n=3). 

5.2.2 Differential Scanning Calorimetry (DSC) 

 Glass transition temperatures (Tg) for amorphous preparations of each model 

compound, PVPva, and the co-solidified samples were measured using a Model Q100 

DSC (TA Instruments, New Castle, DE) under constant nitrogen purge (~50 mL/min).  A 

three-point enthalpy and temperature calibration was performed at 20 °C/min using o-

terphenyl, indium, and tin standards.  In an attempt to reduce artifacts arising from 

sample preparation procedures (i.e. grinding), approximately 5 mg intact “sample chips” 
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were hermetically sealed in aluminum pans.  To normalize thermal history, samples were 

first heated at 20 °C/min to 105 °C, held isothermally for 2 minutes, and subsequently 

cooled to -20 °C at 20 °C/min.  Samples were then cycled from -20 °C to 120 °C at 20 

°C/min for Tg determination. 

 The expected Tg assuming an intimate mixture was calculated using the 

Couchman Karasz85 equation given by: 

pAPI

gpgAPI

g Kww

TKwTw
T pAPI

+

+
=  (5.1) 

where wAPI and wp and the weight fractions of API and polymer, respectively, TgAPI and 

Tgp are the glass transition temperatures of amorphous API and polymer, respectively, 

and K = ΔCpAPI/ΔCpp, where ΔCpAPI and ΔCpp are the heat capacity step change through 

the glass transition region of the API and polymer, respectively.  Experimental Tg values 

were determined from the measured DSC heat flow signal as the onset of the step change 

in heat capacity. 

5.2.3 Powder X-ray Diffraction (PXRD) 

 The PXRD data were collected in transmission geometry using an X’Pert Pro 

MPD system (PANalytical B.V., Almelo, the Netherlands) equipped with a copper anode 

(λ = 1.5406 Å), an auxiliary elliptical mirror, and X’CeleratorTM detector.  The 

operational voltage and amperage were set to 45.0 kV and 40.0 mA, respectively.  

Diffraction patterns were acquired on intact samples, sandwiched between two layers of 

Kapton® film and subsequently placed on a spinning vertical sample stage (16 rpm).  

Experimental parameters include an irradiation time of 51.04 seconds per step and an 

angular step size of 0.017° 2θ over a 2-100° 2θ range. 
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5.2.4 Pair Distribution Function 

 The PDF is a total scattering method that exploits the Fourier relationship 

between X-ray diffraction intensity and the real-space arrangement of atoms, given 

appropriate data treatment.38,111  The PDF gives the probability of finding atom pairs 

separated by a distance r, and is obtained by Fourier transform of the reciprocal space 

structure function, S(Q), according to: 

[ ]∫ -
max

)sin()(
π

=)(
Q

dQQrQSQrG
0

1
2

 (5.2) 

where S(Q) is the structure function obtained from a diffraction experiment and Q is the 

magnitude of the scattering vector.  The term Qmax is the momentum transfer resolution of 

the diffraction experiment, which is dependent on the wavelength of radiation used and 

the maximum diffraction angle (°2θ) of data collection.  Corrections consistent with those 

outlined by Egami and Billinge38 were made to the measured diffraction data leading to 

the calculation of the structure function.  All intensity corrections (e.g. background due to 

Kapton® film scattering, absorption, etc.) and PDF calculations were performed using 

software developed in-house in the Matlab programming environment (v7.1, MathWorks, 

Natick, MA) based on published equations.38,111  The PDF transforms were optimized 

using the Glow quality criteria introduced by Peterson, et al.41

 The PDF has been shown to be useful in characterizing co-solidified composite 

samples in differentiating phase-separated from completely miscible systems.52,118  

Briefly, the PDF transform for a co-solidified sample is compared to the linear 

combination of the PDF transforms obtained for each amorphous component comprising 

it.  Scaling coefficients are multiplied by the amorphous component PDFs and serve as 

estimates of each component concentration in the co-solidified product.  If the linear 
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combination of the PDF for each amorphous component describes the PDF of the co-

solidified sample, it is reasonable to conclude the system is at least partially phase-

separated, as short-range order (i.e. the static local structure) of the co-solidified product 

can be described by the intrinsic distances found in the amorphous API and polymer.  

Large deviations between the calculated PDF determined by linear combination of the 

PDFs for the individual amorphous components and the PDF of the co-solidified sample 

are indicative of short-range order not presented in the individual components, (i.e. that 

of a unique packing pattern).  A statistically-founded protocol based on principles of error 

propagation has recently been introduced to aid in drawing conclusions from the 

aforementioned method (Chapter 4).  A sum-of-squares difference, R, between the 

calculated PDF and PDF of co-solidified sample was also determined for comparative 

purposes.123  

5.2.5 Molecular Descriptors 

 The term molecular descriptor refers to a broad class of indices calculated under 

the principal objective of representing a 3-dimensional molecule as a simple number(s).  

Their successful use in QSPR studies, relating the structure of a compound to how it 

behaves, provides impetus to modeling amorphous molecular solid dispersion potential.  

By employing graph theory,128 a branch in discrete mathematics dealing with the way 

objects are connected and the consequences of connectivity, single integer indices may be 

calculated that encode structural information for a given molecule.  Molecular graphs are 

a 2-dimensional depiction of molecules, where atoms are represented by vertices and 

bonds by edges.   Two molecular graphs are isomorphic if there is a one-to-one 

correspondence between their vertex sets and edge sets.  For a given molecular graph, U, 
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a graph invariant is a quantity that has the same value for any graph that is isomorphic 

with U.128   

 From the molecular graph, important theoretical matrices may be calculated.  The 

vertex-adjacency matrix is a square symmetric matrix having off-diagonal values of one 

for adjacent vertices and zero for non-adjacent vertices.  Similarly, the edge-adjacency 

matrix is a square symmetric matrix having off-diagonal values of one for adjacent edges 

and zero for non-adjacent edges.  The distance matrix is a square symmetric matrix 

having off-diagonal values describing the shortest topological distance between two 

vertices.  Single integers may be obtained from the mathematical manipulation of these 

matrices, thereby generating a class of molecular descriptors called topological indices.  

These indices are graph invariants and do not possess atom identities, thereby lacking 

heteroatom differentiation and stereochemical features of the molecule.126

 To combat this issue, indices are calculated from weighted graph invariants, 

where atomic mass, atomic number, van der Waals volumes, and atomic polarization 

constants have all been implemented.  These descriptors are much more powerful and 

have seen an increasing exposure to structure-property relationships studies.  In this study, 

molecular descriptors were calculated using the EDRAGON online program.129-131  

Three-dimensional coordinates and atom connectivity was obtained from the Cambridge 

Structural Database (CSD),132,133 where the CSD code for each model and test compound 

are listed in Table 5.1. 

5.2.6 Logistic Regression 

 The intent of this study was to introduce a novel method for modeling the 

potential of a compound to successfully form an amorphous molecular solid dispersion 
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with PVPva using a common method of preparation.  Attempting to define and quantify 

the extent of miscibility between API compounds and PVPva would likely confound the 

results of the analysis, as errors in this determination would propagate into the regression 

modeling.  Therefore, the response in this analysis is a discrete, dichotomous variable 

taking a value of 1 for successful formation of an amorphous molecular solid dispersion 

(i.e. completely miscible) or a value of 0 for unsuccessful formation (i.e. partially 

miscible or immiscible) based upon conclusions drawn from the analyses.  The inclusion 

of a dichotomous dependent variable unfortunately violates many of the assumptions of 

general linear regression.134  Logistic regression was, therefore, used for modeling 

purposes in this study. 

 Logistic regression was performed using maximum likelihood (ML) estimation to 

calculate the regression coefficient for each molecular descriptor. Initial regression 

coefficients are estimated and the ML is calculated.  The regression coefficient is 

iteratively adjusted until the maximum value of the ML (Equation 5.3) is achieved.  To 

avoid multiplication of probabilities, the natural logarithm of the ML function is used and 

given by: 

∑ -1-1+= )]ln(*)[(]ln*[)ln( iiii PYPYML  (5.3) 

where Yi is the observed value (i.e. 0 or 1) and Pi is the estimated probability as obtained 

by: 
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where b0 + b1Xi is the general linear model.134-136  The effect of individual variables on 

model significance was tested by comparing the change in deviance (D), which is 
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Equation 5.3 multiplied by -2.  The likelihood ratio (LR) test statistic, corresponds to the 

arithmetic difference between the deviance values for two models (e.g., with and without 

a particular variable included), and follows a χ2 distribution. The significance of the 

calculated regression coefficient for each molecular descriptor was evaluated by 

comparing the reduction of deviance value of the full model against using only the model 

intercept. 

 The error of cross-validation was assessed using the leave-one-out (LOO) method.  

Briefly, one of the compounds comprising the calibration library was removed from the 

data set.  The remaining compounds were used to construct a calibration and a 

subsequent prediction on the compound removed from the library was performed.  This 

was iteratively repeated for all compounds, where the sum of the total error was reported. 

5.3 Results 

5.3.1 Co-solidified product characterization 

 Amorphous molecular solid dispersions are formed as a result of the miscibility 

between the components comprising the sample.  To enable model estimation, DSC and 

PDF analyses were used to characterize and classify the co-solidified samples according 

to the extent of miscibility.  To achieve this, both DSC and PDF analyses were employed.  

To support the implementation of multiple characterization methods, three examples will 

be examined.  The first example will illustrate a co-solidified sample categorized as an 

amorphous molecular solid dispersion, the second will detail identification of a phase-

separated system according to both DSC and PDF results, and the final will showcase a 

phase-separated system identified by PDF results.  A compilation of calculated 

parameters associated with each example are given in Table 5.2. 
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Table 5.2. DSC and PDF analyses results. 

 DSC Analysis PDF Analysis  

 
Ideal 

Tg 
(°C) 

Tg1 
(°C) 

Tg2 
(°C) 

R 
value 

Drug 
Conc. 
(w/w) 

Polymer 
Conc. 
(w/w) 

Conclusion 

felodipine:PVPva 63.4 64.9 -- 0.213 0.81 0.19 miscible 

quinidine:PVPva 76.8 59.7 81.9 0.069 0.73 0.27 phase-
separated 

terfenadine:PVPva 77.2 60.6 -- 0.086 0.73 0.27 phase-
separate 

 

 The DSC thermogram for amorphous felodipine, PVPva, and the 75 wt% co-

solidified sample is shown in Figure 5.1a.  A single Tg at 64.9 ºC was observed for the 

co-solidified sample.  The PDF analysis and respective difference plot for this system is 

shown in Figure 5.1b.  From Table 5.2, the calculated Tg for an ideal 75 wt% mixture is 

63.4 ºC, which is in good agreement with the experimentally determined 64.9 ºC shown 

in Figure 5.1a.  The difference plot for the PDF analysis (Figure 5.1b) exhibits regions 

in r where the confidence intervals do not contain zero.  An R of 0.2126 (Table 5.2) 

corresponds to 21% error between the two PDF patterns.  Refined API and polymer 

concentrations (scaling coefficients) of 0.81 and 0.19 (Table 5.2) deviate substantially 

from theoretical concentrations of 0.75 and 0.25, respectively.  Based on a single Tg and 

the large deviations between the calculated and measured PDF of the co-solidified sample, 

the system is an amorphous molecular solid dispersion. 



 

138 

Figure 5.1. (a) DSC thermogram for amorphous felodipine (blue), PVPva (red), and 75 wt% co-solidified product (black); (b) PDF 
analysis (as labeled). 
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Figure 5.2. (a) DSC thermogram for amorphous quinidine (blue), PVPva (red), and 75 wt% co-solidified product (black); (b) PDF 
analysis (as labeled).
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 The DSC thermogram for amorphous quinidine, PVPva, and the 75 wt% co-

solidified sample is shown in Figure 5.2a.  Glass transition events at 59.7 ºC and 81.9 ºC 

were observed for the co-solidified sample.  Although the DSC results alone provide 

conclusive evidence of phase-separation, the PDF analysis was performed and is shown 

in Figure 5.2b.  The difference plot (Figure 5.2b) for the PDF analysis shows confidence 

intervals that contain zero through the entire r region.  In addition to this, a satisfactory R 

value of 0.0689 and refined API and polymer concentrations of 0.73 and 0.27 (Table 5.2), 

respectively, were also observed.  The system is phase-separated based on evidence of 

two Tg events and the agreement between the calculated and measured PDF for the co-

solidified sample.
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Figure 5.3. (a) DSC thermogram for amorphous terfenadine (blue), PVPva (red), and 75 wt% co-solidified product (black); (b) PDF 
analysis (as labeled).



 The DSC thermogram for amorphous terfenadine, PVPva, and the 75 wt% co-

solidified sample is shown in Figure 5.3a.  A single Tg event at 60.6 ºC was observed for 

the co-solidified sample, albeit relatively close to the Tg observed for the amorphous 

terfenadine.  The difference plot (Figure 5.3b) for the PDF analysis shows confidence 

intervals that ultimately contain zero through the entire r region.  In addition to this, a low 

R and refined concentration values (Table 5.2) that are close to the theoretical 

concentrations were also observed.  It is concluded that the system is phase-separated as a 

result of a single, Tg value near that of the amorphous API and the good agreement 

between the calculated and measured PDF for the co-solidified sample. 

 The final results of the co-solidified sample analyses are listed in Table 5.3.  Of 

the 12 compounds comprising the calibration library, DSC and PDF analyses revealed six 

successfully formed an amorphous molecular solid dispersion (i.e. miscible with PVPva) 

and six formed phase separated systems.  Propranolol, cloperastine, and sulfanilamide all 

exhibited Bragg diffraction peaks (PXRD analysis), a clear indication of phase separation, 

following preparation.  Nifedipine and terfenadine both displayed a single Tg but were 

shown to be phase-separated using the PDF analyses. 
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Table 5.3. Calibration library generation results. 

Compound Miscible? Comments
Felodipine YES -- 

Indomethacin YES -- 
Ketoconazole YES -- 
Itraconazole YES Could not obtain amorphous itraconazole; No PDF test 
Tolbutamide YES -- 

Chlorpropamide YES -- 
Nifedipine NO PDF confirmation only; crystallinity day 1 for repeats 
Quinidine NO Detectable phase separation from DSC and PDF 

Propranolol NO Detectable crystallinity (PXRD) on day 1 
Cloperastine NO Detectable crystallinity (PXRD) on day 1 
Terfenadine NO PDF confirmation only; crystallinity day 1 for repeats 

Sulfanilamide NO Detectable crystallinity (PXRD) on day 1 
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5.3.2 Calibration 

 Univariate logistic regression was performed by estimating regression coefficients 

for each of the calculated molecular descriptors.  Subsequently, a model containing the 

regression coefficient for a given molecular descriptor was compared with a model 

containing only the mean using the LR test statistic.  From this metric, the significance of 

the descriptor was determined.  Molecular descriptors with a significance ≥ 0.999 (i.e. α 

= 0.001) were retained for further analysis.  The results of the univariate screening are 

given in Table 5.4.  Along with the regression equation, deviance, LR, and error of cross-

validation are shown.  From each of these parameters, the atomic mass-weighted third-

order R autocorrelation index, R3m, appears to be the most significant.  Other significant 

molecular descriptors include the topological distance between oxygen and chlorine 

atoms (T(O…Cl)), the sum of the eigenvalues of an atomic number-weighted distance 

matrix (SEigZ), the sum of the eigenvalues of an atomic mass-weighted distance matrix 

(SEigm), first-order H autocorrelation weighted by atomic mass (H1m), the total H 

autocorrelation weighted by atomic mass (HTm), and the maximum of the fourth-order R 

autocorrelation weighted by atomic mass (R4m+).  The R3m index will be described in 

detail later; however, an explanation of other indices is beyond the scope of the paper and 

interested readers are directed elsewhere.137  
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Molecular 
Descriptor Regression Equation Deviance LR LOO CV

T(O..Cl) logit P(Y) = -1.927 + 0.208T(O…Cl) 6.513 10.86 0.3841 

SEigZ logit P(Y) = -12.33 + 7.37SEigZ 4.889 12.49 0.4208 

SEigm logit P(Y) = 12.57 + 7.50SEigm 4.813 12.56 0.4199 

H1m logit P(Y) = -17.78 + 12.31H1m 6.314 11.06 0.3964 

HTm logit P(Y) = -13.25 + 1.14HTm 5.992 11.39 0.3720 

R3m logit P(Y) = -88.54 + 135.18R3m 0.039 17.34 0.0565 

R4m+ logit P(Y) = -15.2 + 346.22R4m+ 3.253 14.12 0.2637 

Table 5.4. Model parameters for the seven best univariate models. 
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 Following univariate screening, both forward and backward elimination 

multivariate screening were performed at a significance level of 0.8 (i.e. α = 0.2).  The 

R3m index was the only remaining variable, and therefore, served as the final model.  

Predicted probabilities of amorphous molecular solid dispersion potential using the R3m 

model are shown graphically in Figure 5.4.  The results from testing the R3m model with 

three compounds not used in the calibration are shown schematically in Figure 5.5.  A 

description of the R3m index and explanation of its potential significance will be 

addressed in the discussion section.
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Figure 5.4. Predicted dispersion potential probabilities for each of the 12 model compounds.  Red indicates a correct prediction for 
unsuccessful formation and blue indicates a correct prediction for successful formation. 
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Figure 5.5. Predicted dispersion potential probabilities for each of the three test compounds.  Red indicates a correct prediction for 
unsuccessful formation and blue indicates a correct prediction for successful formation.



 

 

5.4 Discussion 

 As stated in the introduction, the central objective of this research was to illustrate 

the potential of using in silico molecular calculations to create predictive models for 

assessing miscibility between a compound and polymeric material, afforded by the ability 

to classify co-solidified samples using advanced solid-state characterization methods.  A 

further interpretation of this hypothesis states that some underlying molecular property is 

responsible for its ability to form a unique phase when intimately mixed with a carrier 

material.  It is assumed that API:polymer miscibility is represented by the formation of 

short range order possessing physical, structural, and other intrinsic properties distinct 

from either individual amorphous component.  It is further assumed that a completely 

miscible system will need to undergo phase separation as a pre-requisite to crystallization.   

 The extent of miscibility between a given compound and polymer is sensitive to 

many different variables.  The method of preparation, drug loading, and environmental 

factors may all affect the outcome of this determination.  The process of heating the 

materials to prepare co-solidified may introduce chemical impurities into the system.  As 

shown elsewhere,138 the presence of impurities can provide resistance to crystallization in 

co-solidified products by itself.  This is recognized as a potential confounding factor to 

the analysis presented herein, where TGA impurity assessment limits quantification to 

volatile degradants only.  It is assumed that the identification of miscible co-solidified 

products is a result of the compatibility between the API and polymer and not a 

consequence of thermal degradation.  Therefore, conclusions concerning miscibility in 

this study will be with reference to the melt-quench method used, the fixed concentration 
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range interrogated, and assumptions derived from direct observation of characterization 

data. 

5.4.1 Co-solidified product characterization 

 The purpose of showing the three examples was to illustrate the requirement for 

using multiple solid-state characterization techniques in order to classify the co-solidified 

samples.  Although the two techniques are often complimentary, instances occur when 

results are contradictory.  In the first example, a single Tg (Figure 5.1a, black line) 

intermediate to each of the amorphous component Tg events was observed for the co-

solidified felodipine:PVPva sample.  Since the experimental Tg of 64.9 ºC is relatively 

close to the predicted 63.4 ºC (Table 5.2), this may support classification as an 

amorphous molecular solid dispersion on its own accord.   

 Instances arise where DSC may not be sensitive to the presence of multiple Tg 

events.  Possible explanations include convolution of two Tg events into a single Tg, the 

magnitude of the heat capacity change associated with an additional phase(s) is below the 

sensitivity of the instrument, the Tg event is superimposed over some other thermal 

transition, or the glass transition event unexpectedly occurs outside of the temperature 

range interrogated.  In addition, heating the sample during the measurement may 

consequently force miscibility in a phase separated system.  Each instance warrants the 

application of an alternative characterization technique, such as the PDF method using 

error propagation estimates, to examine the co-solidified sample.   

 For the felodipine:PVPva co-solidified sample, the high R value of 21.26%, 

concentrations inconsistent with theoretical values, and the presence of confidence 

intervals for r-values not containing zero (Figure 5.1b and Table 5.2)  all serve as 

 150



 

indicators that the co-solidified product exhibits a packing pattern different than that 

produced by the local structure of each individual amorphous component.  From Figure 

5.1b, the difference plot indicates a significant difference between the calculated PDF 

and the co-solidified PDF around 8-9Å.   

 From Equation 5.2, the integration of the PDF is taken to Qmax, which ostensibly 

serves as the resolution of the calculation.   In this study, Cu Kα radiation was used as the 

source in the PXRD experiments, which produces a Qmax of approximately 7Å-1.  Fully 

resolved PDFs require a Qmax much greater than 7Å-1, often achieved using synchrotron 

radiation sources.  Due to the limited Q-resolution afforded by laboratory source X-ray 

data, each probability peak in the PDF represents a convolution of many different delta 

peaks.  With infinite Q-resolution, the formation of a new phase in the co-solidified 

sample would result in the appearance of unique delta peaks representing newly formed 

interatomic distances.  The limitations imposed by using Cu Kα radiation call for 

considering the distributions of delta peaks in the convoluted probability peaks.  

Distribution changes manifest as alterations to the shape of the probability peak, as 

observed for the felodipine:PVPva co-solidified sample (Figure 5.1b, black line) relative 

to the combine amorphous components (Figure 5.1b, blue circles).  It may be concluded 

that this sample has unique interatomic distances formed around 8-9Å not found in either 

amorphous component, and therefore, is an amorphous molecular solid dispersion.  This 

conclusion is consistent with those found elsewhere.79

 In the second example, the thermogram of the quinidine:PVPva co-solidified 

sample (Figure 5.2a, black line) displays a Tg event near that of the amorphous quinidine 

(Figure 5.2a, blue line) and a second intermediate to each amorphous component.  Given 
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the detection of two Tg events, it is reasonable to conclude that the co-solidified sample 

has phase-separated.  In an effort to illustrate an instance where the PDF method supports 

the conclusions drawn from DSC, an analysis was performed on the quinidine:PVPva 

system.  From Figure 5.2b, agreement between the calculated PDF and the co-solidified 

sample was obtained as evidenced in the difference plot.  The inclusion of zero 

throughout the entire r range, low R value, and experimentally determined concentration 

values close to theoretical (Table 5.2) all support the conclusion of phase separation. 

 The final example is unique due to the disagreement in conclusions drawn from 

each characterization technique.  In Figure 5.3a, the thermogram for the 

terfenadine:PVPva co-solidified sample (black line) shows a single detectable Tg of 60.6 

ºC close to the Tg of 59.8 ºC for amorphous terfenadine (blue line).  Although this is 

likely indicative of the presence of amorphous terfenadine, unfortunately, a definitive 

conclusion is not readily available.  Deeming this analysis as inconclusive, an additional 

characterization technique is required.   

 In Figure 5.3b, the linearly combined amorphous component PDF patterns are 

superimposed over the co-solidified sample PDF.  From the difference plot, it is shown 

that the confidence intervals include zero throughout the entire range of r values.  

Additionally, the refined concentration values and low R value (Table 5.2) indicate a 

good fit between the two PDF patterns.  The aforementioned PDF data supports the 

conclusion that the terfenadine:PVPva co-solidified sample is phase-separated. 

 Table 5.3 summarizes miscibility determination between the 12 model 

compounds comprising the calibration library and PVPva, where a few noteworthy points 

deserve some discussion.  Propranolol, cloperastine, and sulfanilamide all exhibited 
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Bragg diffraction peaks in PXRD patterns obtained following co-solidification, thereby 

indicating phase separation.  Nifedipine and terfenadine were identified as phase-

separated using the PDF method, where their respective co-solidified sample 

thermograms displayed single Tg events.  This conclusion was indirectly confirmed when 

the repeat co-solidification samples were analyzed.  In their subsequent preparations, 

PXRD patterns from both compounds displayed Bragg diffraction peaks immediately 

following sample preparation, thereby corroborating the previous conclusions.   

 Itraconazole was deemed to successfully form an amorphous molecular solid 

dispersion.  From Table 5.3, amorphous itraconazole was not obtained thereby 

preventing the PDF analysis; a definite shortcoming of the PDF method.  It may be 

expected that making conclusions solely on DSC data increases the probability of a 

misclassification.  In the previous discussion, terfenadine and nifedipine were classified 

as phase separated by PDF analysis. It was shown that subsequent preparations were 

prone to different levels of devitrification as evidenced in PXRD analyses.  The inability 

to procure amorphous itraconazole was attributable to the tendency for instantaneous 

crystallization upon quench cooling.  Given this characteristic, phase-separated 

itraconazole would be expected to instantaneously crystallize upon quenching.  Three 

different itraconazole:PVPva preparations consistently produced a single Tg event with 

PXRD patterns lacking any detectable Bragg diffraction.  The combination of all 

information supports a classification of complete miscibility between itraconazole and 

PVPva, which is further founded on conclusions drawn elsewhere.139

 

 

 153



 

5.4.2 Calibration 

  From Table 5.4, the most promising molecular descriptor appears to be the R3m 

index.  Deviance is the natural logarithm of the likelihood value multiplied by negative 

two and serves as an estimate of error.  As the deviance is minimized (approaches zero), 

therefore, the predictions approximate experimental values and the model becomes more 

significant.  With a deviance of 0.039 for the R3m model, it is two orders of magnitude 

lower than that of the next best index.  The LR approximates a χ2 statistic, where a larger 

value is indicative of greater significance.  The R3m index has the greatest LR value for 

all molecular descriptors tested.  Finally, the error of cross-validation (LOO CV) is a 

metric for determining the robustness of the model.  By iteratively removing a compound 

from the library, creating a calibration, make a prediction on the compound removed, and 

calculating the error, the extent to which each sample influences the calibration is 

assessed.  The LOO CV for the R3m is an order of magnitude less than that of the next 

best value, thereby confirming the robustness of the R3m model.   

 It is important to consider the possibility of over-saturating a model constructed 

from only 12 samples.  With this in mind, multivariate logistic regression at a 

significance level of α = 0.2 was performed.  Both forward- and backward-elimination 

yielded the same conclusion; the R3m index was the single most significant descriptor.  

Shown in Figure 5.4 are the R3m predicted probabilities for each calibration sample with 

an estimated confidence interval in bar graph form.  Interestingly, 10 of the 12 

compounds were predicted perfectly, while quinidine and tolbutamide only slightly 

deviated.  The estimated confidence intervals (α = 0.05) for all 12 predictions indicated 

the predictions are reliable. 
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 The R3m index is part of a class of molecular descriptors known as GETAWAY 

(Geometry, Topology, and Atom-Weights AssemblY).140,141  The GETAWAY indices 

link 3-D geometry to atom relatedness, while retaining specific chemical information.  

The first part of calculating any GETAWAY descriptor is to calculate the molecular 

influence matrix, H, given by: 

M'•M)inv(M'M•=H  (5.5) 

where M is the molecular matrix comprised of A rows (number of atoms in molecule) 

and three columns (Cartesian atomic coordinates).  The molecular influence matrix is 

equivalent to a leverage matrix, ostensibly describing the Euclidean distance of atoms 

from the geometric center of the molecule.  The diagonal elements of H, hii, are called 

leverages and represent the “influence” of each atom in determining the whole shape of 

the molecule.  Interestingly, lower leverages are found for atoms in molecules of 

spherical shape, while higher leverages for atoms in more linear compounds.  Each off-

diagonal element of H represents the accessibility of the ith atom to interactions with the 

jth atom, where negative elements represent a low degree of accessibility.  From the 

molecular influence matrix, various R-GETAWAY descriptors can be calculated, 

including the w-weighted kth order autocorrelation index, Rk(w) , given by: 
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where h is the element of the molecular influence matrix, r is the geometric interatomic 

distance, w is the chemical weighting, k is the path length, d is the topological interatomic 

distance, and δ is equal to 1 when k = d and 0 when k ≠ d.  From this equation, the R3m 
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descriptor may be interpreted as follows: “R”-GETAWAY “3rd”-order autocorrelation 

index weighted by the atomic mass, “m”.140  

 A direct physical interpretation of the correlation between the R3m index and 

amorphous molecular solid dispersion potential is not readily apparent.  From equation 

5.6, some key conceptual attributes of this index are evident.  Larger values are obtained 

for two peripheral atoms (i.e. further from the geometric center of the molecule) that are 

in close proximity to each other (rij).  Additionally, as the atomic masses of the two atoms 

increase, so does the index; ultimately attributable to a larger number of electronegative 

atoms (i.e. oxygen, sulfur, chlorine) in SMO compounds.  In this study, it was observed 

that as the index increases, the probability of successful solid dispersion formation 

increases, as well.  From the previous discussion of the R3m index, it is reasonable to 

state that a molecule having electronegative atoms along its periphery that are 

conformationally positioned such that their interatomic distances are minimized results in 

an increased probability of dispersion formation.   

 One of the most intriguing comparisons is that of felodipine and nifedipine.  

Commonly prescribed calcium channel blockers, their structural similarities are readily 

apparent in Table 5.1.  It has been previously reported that the nucleation rate in 

amorphous nifedipine, both as a pure phase and as a 3 wt% amorphous molecular solid 

dispersion with PVP, is substantially greater than that of felodipine in the equivalent 

state.142  In this study, felodipine was shown to be completely miscible with PVPva, 

whereas the co-solidified product of nifedipine and PVPva exhibited detectable phase 

separation.  The benzene flanking the dihydropyridine in nifedipine contains a nitro 

group, where the same benzene contains two chlorine atoms in felodipine (Table 5.1).  
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This substituent change causes a marked increase in the R3m index from 0.579 for 

nifedipine to 0.813 for felodipine. 

 Since the R3m includes specific information concerning 3D molecular geometry 

provided by the molecular influence matrix, atom relatedness by molecular topology, and 

chemical information by using the atomic mass weighting scheme, it’s difficult to 

simplify the relationship between this sophisticated index and the mechanism of 

API:polymer miscibility.  The mere increase in the R3m index can be attributable to 

multiple molecular features (i.e. increasing amount of electronegative atoms, large 

number of atoms distant to the geometric center, or intramolecular interactions three 

topological units apart).  Any further extrapolation, at present, concerning this correlation 

would be unfounded and is the subject of ongoing research. 

 The R3m model was challenged with three compounds not used in the calibration.  

The results are shown in Figure 5 as a bar plot.  Both cimetidine and melatonin were 

accurately predicted to not form an amorphous molecular solid dispersion with PVPva.  

Bicalutamide, however, was accurately predicted and identified to be completely miscible 

with the polymer.  It was important, when selecting compounds to test the model, that 

molecular attributes did not exceed the variance space of the molecules used to construct 

the calibration.  For example, the fusion temperature for compounds included in the 

calibration fell in the range of 120-180°C.  Predictions for molecules with fusion 

temperatures substantially deviating from this range tended to be incorrect.   

 As with any materials informatics calibration, the power of the model increases 

with the variance spanned by the samples comprising it.  Since this calibration only 

contained 12 compounds, it may seem apparent that the variance space is relatively small.  
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It is anticipated that as more compounds are added to this library, predictions will 

become more accurate over a wider range of molecular attributes.  Additionally, an 

expanded library may identify different/additional molecular descriptors that are 

correlated to dispersion potential.  This may shed further light onto the specific structural 

properties responsible for the correlation to dispersion potential.  

5.5 Conclusion 

 The ability to identify phase-separated co-solidified samples was afforded by 

implementing a combination of standard DSC and PDF transforms of PXRD patterns.  

Classification of co-solidified samples based on extent of miscibility enabled construction 

of a 12 compound library to model amorphous molecular solid dispersion potential.  

Logistic regression analysis of a molecular descriptor database identified a GETAWAY 

index highly correlated to solid dispersion potential.  When the model was tested with 

external compounds possessing materials-properties spanning an appropriate variance 

space, successful predictions were made.  The model developed herein is not universally 

applicable across all SMO compounds.  The methodology presented outlines a novel 

approach to solving the complex issues surrounding API:polymer miscibility, where 

pharmaceutical sectors having large compound libraries at their disposal are poised to 

benefit from these materials-based models.  Future work aims to increase interpretability 

of molecular indices to aid in understanding the complex phenomena associated with 

API:polymer miscibility requirements. 
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Chapter 6: Summary 

 The plethora of recent pharmaceutical literature devoted to the topic of solid 

dispersion technology is a testament to its appeal for enhancing aqueous 

solubility/dissolution rate of poorly soluble NCEs.  Despite the large amount of work 

focused on the miscibility between a drug and polymer, there remains a lack of consensus 

concerning specific properties underlying this phenomenon.  As an alternative to case-by-

case studies of specific intermolecular interactions to arrive at an explanation for 

miscibility, it was hypothesized that some structural characteristic(s) of a compound may 

be indicative of dispersion potential, when the polymer, concentration, and 

manufacturing method are all held constant.  The approach to testing this hypothesis, 

calibrating a material informatics database of molecular descriptors, is novel to the best 

of the author’s knowledge. 

 One of the central themes to this dissertation work, mentioned in the introduction, 

states that “innovation in the areas of pharmaceutical pre-formulation and formulation 

development are often precluded by advancements in materials characterization.”  As 

illustrated in this work, the types of materials used as/in medicinal products and inherent 

issues surrounding their implementation in pharmaceutical dosage forms are becoming 

increasingly complex.  Although PXRD as an analytical method serves as the mainstay 

for assessing material structure, traditional data processing techniques neglect to benefit 

from the information in the entire diffraction pattern and, therefore, are unable to provide 

the scale of scrutiny required for analyzing highly disordered systems. 

 To accommodate sensitivity to “local” environments, full pattern PXRD 

techniques have emerged.  Total scattering analysis coupled with multivariate 
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chemometric linear modeling was successfully shown to provide enhanced quantitative 

selectivity to multiple amorphous/disordered components in composite samples over 

traditional univariate diffraction-absorption processing.  Additionally, the selection of 

transmission geometry, combined with multivariate modeling, further enabled a reduction 

in calibration size with little effect on standard error of prediction. 

 The pertinence of using PDF transformed PXRD data to study short-range 

structure in complex materials was described in great detail.  The sensitivity of PDF 

transforms of laboratory PXRD data to local order of material structure deviations in 

composite pharmaceutical materials was successfully investigated.  It was shown that 

high-energy input processing, such as powder compaction, induced structural alterations 

to average crystallographic molecular location and orientation relative to the raw 

crystalline material as evidenced by changes in PDF transforms.  Additionally, these 

structural modifications were modeled using reverse Monte Carlo simulations and were 

shown to be consistent with deviations to long range order.  Further, composite 

diffraction data was accurately separated permitting PDF transform of component-

specific isolated diffraction.  The conclusions drawn from this work are significant 

because they show the minor PXRD pattern aberrations resulting from subtle structural 

changes manifest as substantial modifications to interatomic correlations.  Ultimately, 

this was important in supporting the use of our X-ray data to study solid dispersion 

systems, as low-frequency features in PXRD patterns of amorphous/disordered 

pharmaceutical materials that may not be interpretable as-is, become considerable in the 

PDF transform. 
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 The published method for using PDF transforms to detect phase-separated co-

solidified products was scientifically rigorous in its inception; however, it failed to 

provide a statistically-robust approach for drawing conclusions.  As the actual PDF 

transform itself was adapted from the inorganic materials science literature, principles of 

error propagation using initial error estimates from the PXRD experiment were, as well.  

The novelty of the approach is the application of these algorithms to comparing multiple 

experimental PDF patterns.  By developing a characteristic threshold to distinguish 

significant differences between experimental PDF transforms from insignificant, the 

conclusions drawn from analyses were consistent. 

 An alternative to circumvent one of the aforementioned limitations to the PDF 

method is possible.  As previously described, the requirement of producing an amorphous 

standard of the drug substance to use in the analysis can be a difficult task.  With the 

increasing power of structural simulations, akin to those used in some of the preceding 

work, and the knowledge of local structure in disorder systems, a simulated amorphous 

PDF transform for drug substances may be possible to model.  This would be 

advantageous as it would bypass the difficulty in producing an amorphous phase of the 

drug, as well as decrease the raw material supplies associated with the task. 

 The final segment of this work tied together all of the analytical development to 

support a study to predict solid dispersion potential from in silico modeling.  Given the 

ability to identify phase-separated co-solidified systems from true amorphous molecular 

solid dispersions, a compound library was generated for calibration.  The ability to 

calculate molecular descriptors from the 3-dimensional coordinates of the atoms 

comprising the compound affords a wealth of information with no raw material costs.  
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The implementation of a material informatics calibration for correlating dispersion 

potential to structural attributes (via molecular descriptors), to the best of the author’s 

knowledge, is the first attempt at this approach.  A significant correlation between 

dispersion potential and the R3m GETAWAY index was observed.  A direct physical 

meaning of the correlation between R3m and dispersion potential, however, was not 

readily identifiable or interpretable. 

 The informatics calibration largely suffered from an inadequate sample size, as 

accuracies in screening a large number of multi-scale independent variables increase as 

the sample size increases.  The addition of compounds to the library that span further 

variance space may result in other selected significant molecular indices.  These 

additional molecular descriptors may further provide information into structural 

characteristics responsible for dispersion potential.  Analysis of molecular-level 

interactions, as by vibrational spectroscopy, may supplement some of the conclusions 

drawn from future work.  Coupling structural features with information pertaining to 

local interactions may yield a complete picture of these complex systems. 

 The ability to optimize NCE properties, dosage form selection, and formulation 

characteristics using little-to-no raw material supplies is highly imperative to decreasing 

escalating development costs.  The principles outlined throughout this dissertation may 

be adapted within the pharmaceutical setting, where the large libraries of drug compound 

information and advanced technological capabilities render them imminent.  With the 

push for complete product understanding by the Food and Drug Administration, 

pharmaceutical companies are set to benefit from adapting and applying these 

computational methodologies to their standard development programs. 
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Appendix A: Eutectics 

 The distinction between solid dispersions and eutectics is important, as the 

structural, physicochemical, and other intrinsic properties are vastly different.   A large 

number of pharmaceutical references inappropriately use these terms interchangeably; 

therefore, the following sections develop the materials properties of eutectics and how 

they limit preparation methods, enhance physicochemical performance, and induce 

physical instability. 

A.1 Structure 

 A eutectic solid is a condensed phase formed when a specific composition (χe) of 

two miscible liquid phases is co-solidified at a specific temperature (Te), resulting in a 

crystalline microstructure that has a lower melting temperature relative to that of either 

pure constituent.  For eutectic solidification to occur, the components must be mutually 

miscible as liquids.  From a molecular perspective, this implies that the NBIs between 

unlike components must be similar to interactions between like components, in the liquid 

phase.   

 Binary eutectic crystallizations typically proceed as first-order phase transitions, 

which mechanistically advance through several stages (i.e. appearance of nuclei, nuclei 

growth without replication, Ostwald ripening, etc.).143 Eutectic solid products are, 

therefore, crystalline materials.  Further, eutectics possess a microstructure-level 

component of periodicity different than that of either pure crystalline phase.  Without the 

microstructural element, the system cannot be accurately classified as a eutectic.  This 

particular concept is often neglected in the pharmaceutical literature, where accounts of 
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eutectic formation are reported without proper supporting thermal and structural 

characterization.144-147

 An important part of the aforementioned definition of a eutectic surrounds the 

newly-formed eutectic microstructure.  The effective entropy change and the volume 

fraction of the eutectic phase are inter-related during solidification, where the relationship 

between them may be used to characterize the microstructure (neglecting kinetics).148  

According to Hunt and Jackson,149 the entropy of fusion of the individual pure 

components controls the resulting eutectic microstructure.  When two materials possess 

equivalent entropy of fusion values, both phases grow simultaneously behind a planar 

solid/liquid interface resulting in a normal eutectic microstructure (Figure A.1).  In 

contrast, large differences in entropy of fusion result in faceted growth, producing an 

anomalous structure.  In normal structures, the phases appear as alternating lamellae or 

rods of one phase embedded in the other; anomalous structures, however, exhibit many 

variants.16

 

Figure A.1.  A schematic of lamellar growth for a binary eutectic behind a near-planar 
solid-liquid interface (from Porter and Easterling, 1981, with modifications). 
 
A.1.1 Structural Interpretation of Physicochemical Benefits 

 The enhanced aqueous solubility gained through eutectic formation is often 

attributed (in the pharmaceutical literature) to the lower temperature of fusion of the 
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solidified material.150  A more fundamental reason for this lower fusion temperature, and 

the resulting increased aqueous solubility, exists.  In Figure A.1, a schematic 

representation of normal eutectic solidification is shown.  As the saturated α phase 

(composed of component A) and β phase (composed of component B) solidify, excess B 

and A diffuse laterally to the tips of the β phase and α phase, respectively, promoting 

further growth.  In this figure, λ represents the interlamellar spacing between the α-phase 

and the β-phase and is directly related to the rate of growth (i.e., rapid growth rate results 

in small λ).  The unique eutectic solid microstructure, which results in incoherent 

interphase boundaries (the line between the α-phase and β-phase in Figure A.1), provides 

a less thermodynamically stable interface relative to the normal coherent interactions that 

comprise the individual crystalline phases.  This boundary possesses a higher free energy 

because its structural makeup consists of NBIs between different molecules (i.e., a drug 

and its carrier, or two different drugs) where these interactions are typically not 

energetically equivalent to those between like molecules.  Further, the number of 

unfulfilled bonds at the interphase boundary is greater relative to either pure component 

phase, and the NBIs formed between unlike molecules are not as stable relative to those 

involved in maintaining the pure component crystal lattice resulting in an increase in 

internal energy.  These bonds are, therefore, energetically easier to overcome.   

A.2 Manufacture 

 Application of the fusion technique in the production of eutectics151-156 requires 

that a mixture of the two components be heated above the melting temperature of the 

highest melting component.  The two miscible liquids are mixed until homogenous, and 

controlled solidification is facilitated by cooling the liquid mixture through Te.  The 
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resulting solid may be further processed (e.g. sizing, blending) depending upon the 

specific downstream application.  Although the fusion method is commonly applied, 

additional consideration to temperature must be given when using with pharmaceutically 

relevant materials.  The temperature at which the onset of thermal degradation occurs 

relative to the fusion temperature must be taken into account, as alternative methods of 

preparation exist for thermally labile drugs and carriers.  Further, the molten state of the 

component having the lower melting temperature may adversely affect the fusion kinetics 

of the other material.  In particular, non-specific and specific interactions between the 

molten state of one material and the solid state of the other material during the fusion 

process may lead to effective dissolution of the higher melting component in the lower 

melting material’s molten phase.157

 Solvent-mediated co-precipitation is most commonly used to manufacture 

pharmaceutical eutectic solids, serving as the choice for temperature-sensitive 

products.158-160  In this process two components are dissolved at the eutectic composition 

either in a single medium in which they are mutually soluble, or in separate media that 

are eventually mixed together in proportions representing the eutectic composition.  The 

solvent is then removed in either a controlled or uncontrolled fashion, and the co-

precipitated solid is subjected to further processing as above.    

 Although common, solvent-mediated co-precipitation has several practical 

disadvantages.  Given a candidate NCE having sufficient hydrophobicity to merit 

exploration of solubilization strategies such as eutectic formation, and a second 

hydrophilic component, it is may be difficult to find a common solvent capable of 

dissolving both solutes.  Many organic solvents are highly toxic to humans, imposing 
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additional concern with residual solvent levels following precipitation and processing.  

Further, the amount of solvent required to perform such a process on a commercial scale 

poses a tremendous production cost.  Additionally, the method and rate of evaporation 

both have implications on the resulting solid microstructure, which may, therefore, alter 

product performance.  Finally, the amount of time required to evaporate the solvent to 

acceptable levels places a constraint on the efficiency of this application.  Given these 

impracticalities, the fusion method seems to hold an apparent advantage relative to the 

solvent technique.   

 Eutectic growth velocity holds considerable influence on the mechanical 

properties of the resulting binary solid material,161 which is of concern particularly if the 

eutectic is to be formulated as part of a solid oral dosage form.  During growth of a 

phase-pure single crystal, the principal faces governing morphology will grow at the 

slowest rate, and correspond with planes having the highest intraplanar density and 

greatest interplanar spacing (i.e. lowest Miller indices).162  A crystalline lattice is often 

weakest coplanar with one of its largest faces, as high d-spacing correlates with weak 

interplanar bonding, establishing these as the most likely sites for plastic deformation to 

occur.163  The interphase boundary in a eutectic solid represents the source of its weakest 

intermolecular interactions.  If it is assumed that the interphase boundary has comparable 

mechanical implications to weak interplanar bonding in single crystal systems, then these 

interphase regions become likely sites for mechanical failure to occur.  If it is further 

assumed that this boundary becomes weaker as the interlamellar spacing (λ) increases, 

then experimental parameters affecting the interlamaller spacing also affect the 
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mechanical properties of the material.  A binary system co-solidified at its eutectic 

composition will display a growth rate (v): 
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where λ is the interlamellar spacing, k2 is a proportionality constant, D is the liquid 

diffusivity, λ*  is the minimum possible lamellar spacing and ΔT is the degree of 

undercooling below Te.16 Therefore, exacting control over the temperature at which a 

eutectic solid is grown holds implications for the interlamellar spacing and mechanical 

properties of the material. 

 As addressed above, the eutectic composition (χe) represents the specific 

mole/mass fraction concentrations of two mutually miscible liquids at which co-

solidification without prior phase separation will result in a microstructure that melts at a 

lower temperature than the Tm of either pure component.  In Figure A.2, a typical 

temperature-composition (T-χ) binary phase diagram is shown.  Compositions falling to 

the left or right of χe will result in a product having a mixed microstructure, where the 

excess phase, will solidify prior to cooling below Te (Figure A.2b).    In order to 

maximize predictable physicochemical benefits afforded by the unique microstructure, 

explicit control of growth parameters at χe and Te is essential, although not easily 

established.   
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Figure A.2.  A T–χ diagram for a mixture of two mutually miscible liquids α and β. a) 
Cooling the homogeneous mixture along this trajectory results in eutectic solidification 
below Te, resulting in lamellar microstructure (1). b) For χ≠χe, cooling the 
homogeneous liquid mixture (2) along the trajectory indicated results in precipitation of β 
(3). Continued cooling allows growth of crystalline β (4). At T≤Te, the remaining liquid 
(χ=χe) solidifies as eutectic (5) resulting in a mixed microstructure 
 
 Currently, χe for simple binary systems is determined empirically, first requiring 

assessment of the compatibility of the two components.  Eutectic formation requires 

complete miscibility of the two components in the liquid state and immiscibility in the 

solid state.  In the traditional method employed for χe determination, samples spanning 

the entire concentration range of the two materials are co-solidified, employing the 

fusion-based method discussed above.  Samples are subjected to thermal analysis (i.e., 

DSC, hot stage microscopy, etc.,) and the fusion temperature(s) of the co-solidified 

mixture is determined and plotted as a function of composition, thereby creating the T- χ 

phase diagram.  This is where prior characterization of thermal interactions becomes 
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critical, as this may affect the accuracy in determination of the true melting 

temperature.164  The thermal interactions between components upon heating may 

complicate the signal from thermal analysis of mixtures, thus warranting care when 

interpreting data.  Further, phase-purity must be considered, as this will also affect the 

fusion temperature.     

 Two problematic issues associated with eutectic composition determination via T- 

χ phase diagram construction are anticipated: (1) the process of creating a T- χ phase 

diagram is laborious and (2) phase diagram construction requires the sacrifice of 

relatively large amounts of both components.  Considering the amount of material 

typically available during the early stages of investigating a NCE, determining the 

eutectic point via phase diagram is often prohibitive.  As a result, a great deal of current 

research focuses on the development of methods aimed at determining eutectic 

compatibility and eutectic composition in few-to-no experiments.   

 Law et al.,165 developed a dimensionless index (Ic) used as a screening tool for 

predicting PEG-drug eutectic composition based on the van’t Hoff equation: 
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where Td
f
 is the fusion temperature of the drug, Tp

f is the fusion temperature of the 

polymer, R is the ideal gas constant, and ΔHd
f is the enthalpy of fusion of the drug.  

Though the authors claim to have successfully predicted the eutectic composition for 

eight model drug compounds, the index only provided an estimate of χe ± 10-15%.  

Further, this index does not consider racemization, phase transitions, decomposition, 

incompatibility, etc., as these characteristics would affect the co-solidification process.  
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Approximation of χe is, however, not without merit.  First, the approach adopted by Law 

et al.,165 accurately predicted whether or not a eutectic would form between two 

components.  During eutectic development, T- χ phase diagrams are created for two 

components which occasionally are not able to form a eutectic.  The index, therefore, 

prevents this costly and time-consuming event from occurring.  Also, when the 

approximate eutectic point is known, an abbreviated T- χ phase diagram may be prepared, 

thereby decreasing initial material requirements.   

 Two additional details concerning the aforementioned index deserve some 

attention: (1) the order of material structure of the carrier PEG and (2) applications of the 

van’t Hoff equation.  Much of the pharmaceutical literature reports the formation of 

eutectics between a drug and the water soluble, synthetic polymer PEG, as is the case in 

this example.  From a structural standpoint, the formation of a classic eutectic 

microstructure between these two components may be difficult to envision, owing to the 

fact that the long-chain PEG molecules do not crystallize in the rigorous sense of the 

word.  Furthermore, the considerable size difference between PEG and any small 

molecule is expected to result in significant dimensional mismatch.  To visualize the 

formation of a eutectic microstructure between PEG and a small molecule drug 

compound, PEG needs to be considered in terms of both micro- and macroscopic 

structural features.  In the solid state PEG molecules are arranged as repeating lamellar 

units bridged by tie molecules (molecules arranged in a disordered state).  Therefore, 

PEGs exhibit a defined Tg due to the tie molecules, as well as having repeating ordered 

regions, termed spherulites, which may be conceptualized as a crystalline.  Consequently, 

PEGs are considered “semicrystalline,” where the relative amount of crystallinity is 
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determined by the molecular weight of the PEG chain.166  The crystal lattice for PEG is 

often defined as encompassing only portions of the polymeric chains, where the unit cell 

dimensions are proportional to that of medicinal organic molecular crystals.   

 The second issue identified above considers that the index is constructed using the 

van’t Hoff equation as its foundation.  Models incorporating this equation are typically 

bounded by assumptions that may not be rigorously true for real systems (i.e., equivalent 

interactions, no change in volume, etc.).  The highly idealized assumption of equality of 

interactions is invalidated when the incoherent phase boundaries between layers of the 

eutectic structure are considered.  These boundaries are less thermodynamically stable 

relative to bulk lattice regions, specifically due to the difference in interactions between 

unlike components across the solid-solid interface.  These difficulties may ultimately 

detract from the practicality of such tools, limiting their universal application.   

 The financial and raw material resources required to determine the eutectic 

composition appear to represent deterrents of eutectic application in pharmaceutical 

systems.  Therefore, a key avenue for future eutectics research should include 

development of methods designed to decrease the amount of experimentation necessary 

for determination of χe and Te, as well as moving towards accurate, predictive 

determination of these parameters.  Analytical tools used to characterize drug:carrier 

compatibility and models designed to predict compatibility are paramount to minimizing 

experimental consumption of API, thereby making this strategy more attractive as an 

early development tool.  Further, as a better understanding of the relationship between 

eutectic microstructure and material function is gained, more efficient methodologies for 

predicting eutectic composition may result.  Characterization of the incoherent 
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boundaries formed in eutectics may aide in achieving a better understanding of the 

aforementioned relationship.  Through characterization, some questions concerning this 

boundary need to be investigated: 1) What is the composition at this boundary (i.e. a 

single layer of molecules of each phase, multiple, interspersed layers)? 2) Is the boundary 

both macroscopically and microscopically isotropic, or does anisotropy exist? and 3) 

Does the boundary become increasingly isotropic as the eutectic composition is 

approached?  If these interfacial boundaries can be modeled structurally through defining 

specific intermolecular orientations and interactions, it may enable the macroscopic 

composition to be determined theoretically.   

A.3 Physical Stability 

 Eutectics are the most thermodynamically stable of the binary composite 

materials covered in this dissertation.  Structurally, eutectics are crystalline; the increased 

free energy, enthalpy, and entropy are manifestations of the incoherent phase boundaries 

formed upon solidification.  At χe, the number of incoherent, higher energy regions is 

maximized.  As explained previously, this is the source from which the enhanced 

aqueous solubility of these materials is derived.  These high energy regions also result in 

the decreased melting temperature that is observed relative to those of each individual 

component.  If Te is close to ambient temperatures, a limit of physical stability is 

represented where the system disproportionates into a mixture of individual phases (i.e., 

phase separation).  On the contrary, a lower temperature limit of stability may also be 

observed in eutectic solids.  In this case, eutectics held at temperatures well below the 

eutectic temperature decompose into a mixture of the two phases.167  This most likely 

results from the higher energy associated with the interphase boundaries.  These regions, 
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over a period of time, are likely to proceed from a metastable state to a more ordered 

phase.  As a result, the eutectic decomposes into a mixture of the two individual phases.  

Both sources of physical instability may ultimately alter the physicochemical properties 

of the product, thereby negating the enhanced aqueous solubility that provided the 

impetus to engineer the eutectic at the outset of development.  Unfortunately, there is a 

paucity of literature sources pertaining to the stabilization of eutectics, which may be due 

to: (1) the increased thermodynamic stability of eutectics relative to other solid binary 

composite systems results in rare occurrences of the aforementioned routes of instability, 

(2) traditional stabilizing methods are not applicable to eutectics and alternative 

techniques do not exist, (3) research concerning eutectic-based pharmaceutical 

formulations is limited relative to their solid-dispersion counterparts, or (4) a combination 

of the preceding points. 
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Appendix B: PXRD and PDF Analyses 

 All powder X-ray diffraction (PXRD) patterns were obtained using an X’Pert Pro 

MPD system (PANalytical B.V., Almelo, the Netherlands) equipped with a copper anode 

(λ = 1.5406 Å), an auxiliary elliptical mirror, and X’CeleratorTM detector.  The 

operational voltage and amperage were set to 45.0 kV and 40.0 mA, respectively.  

Diffraction patterns were acquired on intact samples, sandwiched between two layers of 

Kapton® film and subsequently placed on a spinning vertical sample stage (16 rpm).  

Experimental parameters include an irradiation time of 51.04 seconds per step and an 

angular step size of 0.017° 2θ over a 2-100° 2θ range.  From raw powder patterns, if co-

solidified products displayed Bragg diffraction peaks, no PDF analysis was carried out 

due to the obvious indication of partial crystallinity.  Indexed PXRD patterns only are 

shown for compounds exhibiting this level of phase separation. 

 A number of corrections are made to raw diffraction data to obtain a structure 

function consistent with those outlined by Egami and Billinge.38  All intensity corrections 

and PDF calculations were performed using software developed in-house in the Matlab 

programming environment (v7.1, MathWorks, Natick, MA) based on published equations.  

The PDF transforms were optimized using the Glow quality criterion introduced by 

Peterson, et al.41
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Figure B.1. The PDF assessment for felodpine:PVPva co-solidified product; left three graphs are corrected PXRD patterns for: (top to 
bottom) drug, polymer, and co-solidified product; center three graphs are the respective PDF transformations; right portion of 
illustration is the actual analysis, as labeled.  Due to the lack of agreement between the calculated PDF and co-solidified product PDF 
as evidenced by the high R-value, drug and polymer concentration values that deviate from theory, and the regions in r where zero is 
not contained in the confidence interval, felodipine and PVPva are concluded to be completely miscible. 
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Figure B.2. The PDF assessment for indomethacin:PVPva co-solidified product; left three graphs are corrected PXRD patterns for: 
(top to bottom) drug, polymer, and co-solidified product; center three graphs are the respective PDF transformations; right portion of 
illustration is the actual analysis, as labeled.  Due to the lack of agreement between the calculated PDF and co-solidified product PDF 
as evidenced by drug and polymer concentration values that deviate from theory and the regions in r where zero is not contained in the 
confidence interval, indomethacin and PVPva are concluded to be completely miscible. 
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Figure B.3. The PDF assessment for ketoconazole:PVPva co-solidified product; left three graphs are corrected PXRD patterns for: 
(top to bottom) drug, polymer, and co-solidified product; center three graphs are the respective PDF transformations; right portion of 
illustration is the actual analysis, as labeled.  Due to the lack of agreement between the calculated PDF and co-solidified product PDF 
as evidenced by the high R-value, drug and polymer concentration values that deviate from theory, and the regions in r where zero is 
not contained in the confidence interval, ketoconazole and PVPva are concluded to be completely miscible.
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Figure B.4.  Raw powder X-ray diffraction pattern for the itraconazole:PVPva co-
solidified product.  Black delta peaks are indicative of the referenced Bragg intensity 
values for itraconazole (CSD reference code: TEHZIP).  The PXRD pattern of the co-
solidified product does not contain any Bragg peaks attributable to crystalline 
itraconazole.  Since the PDF analysis was not performed due to inability to produce 
amorphous itraconazole, conclusions were made from PXRD and DSC data (Appendix 
C) only. Itraconazole was concluded to be completely miscible with PVPva due to lack 
of detectable crystallinity in PXRD data and a single detectable Tg from DSC. 
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Figure B.5. The PDF assessment for tolbutamide:PVPva co-solidified product; left three graphs are corrected PXRD patterns for: (top 
to bottom) drug, polymer, and co-solidified product; center three graphs are the respective PDF transformations; right portion of 
illustration is the actual analysis, as labeled.  Due to the lack of agreement between the calculated PDF and co-solidified product PDF 
as evidenced by the high R-value and the regions in r where zero is not contained in the confidence interval, tolbutamide and PVPva 
are concluded to be completely miscible. 

 



 
Figure B.6. The PDF assessment for chlorpropamide:PVPva co-solidified product; left three graphs are corrected PXRD patterns for: 
(top to bottom) drug, polymer, and co-solidified product; center three graphs are the respective PDF transformations; right portion of 
illustration is the actual analysis, as labeled.  Due to the lack of agreement between the calculated PDF and co-solidified product PDF 
as evidenced by the high R-value, drug and polymer concentration values that deviate from theory, and the regions in r where zero is 
not contained in the confidence interval, chlorpropamide and PVPva are concluded to be completely miscible.
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Figure B.7. Raw powder X-ray diffraction pattern for the nifedipine:PVPva co-solidified 
product.  Blue delta peaks are indicative of the referenced Bragg intensity values for 
crystalline nifedipine (ICDD reference code: 00-052-2175).  As shown, detectable partial 
crystallinity attributable to crystalline nifedipine is present in the co-solidified product.
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Figure B.8. The PDF assessment for quinidine:PVPva co-solidified product; left three graphs are corrected PXRD patterns for: (top to 
bottom) drug, polymer, and co-solidified product; center three graphs are the respective PDF transformations; right portion of 
illustration is the actual analysis, as labeled.  Due to the agreement between the calculated PDF and co-solidified product PDF as 
evidenced by the low R-value, drug and polymer concentration values that are close to theory, and confidence intervals that contain 
zero for all values of r, quinidine and PVPva are concluded to be phase-separated.
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Figure B.9.  Raw powder X-ray diffraction pattern for the propranolol:PVPva co-
solidified product.  Black delta peaks are indicative of the referenced Bragg intensity 
values for dl-propranolol hydrochloride (ICDD reference code: 00-051-2107).  As shown, 
detectable partial crystallinity attributable to crystalline propranolol is present in the co-
solidified product. 
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Figure B.10.  Raw powder X-ray diffraction pattern for the cloperastine:PVPva co-
solidified product.  Black delta peaks are indicative of the referenced Bragg intensity 
values for crystalline cloperastine hydrochloride (ICDD reference code: 00-046-1967).  
As shown, detectable partial crystallinity, although not indexed to the crystal structure 
shown,  is present in the co-solidified product.
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Figure B.11. The PDF assessment for terfenadine:PVPva co-solidified product; left three graphs are corrected PXRD patterns for: 
(top to bottom) drug, polymer, and co-solidified product; center three graphs are the respective PDF transformations; right portion of 
illustration is the actual analysis, as labeled.  Due to the agreement between the calculated PDF and co-solidified product PDF as 
evidenced by the low R-value, drug and polymer concentration values that are close to theory, and confidence intervals that contain 
zero for all values of r, terfenadine and PVPva are concluded to be phase-separated.

 

 

186 



 

 187

 

 

Figure B.12. Raw powder X-ray diffraction pattern for the sulfanilamide:PVPva co-
solidified product.  Black delta peaks are indicative of the referenced Bragg intensity 
values for α-sulfanilamide (ICDD reference code: 00-038-1709) and blue delta peaks are 
for γ-sulfanilamide (ICDD reference code: 00-038-1710).  As shown, detectable partial 
crystallinity attributable to crystalline sulfanilamide is present in the co-solidified product.

α-form 
γ-form 



 

188 

 
Figure B.13.  The PDF assessment for cimetidine:PVPva co-solidified product; left three graphs are corrected PXRD patterns for: (top 
to bottom) drug, polymer, and co-solidified product; center three graphs are the respective PDF transformations; right portion of 
illustration is the actual analysis, as labeled.  Although the larger R-value and regions in r where zero is not contained in the 
confidence interval may indicate a poor fit between the calculated PDF and co-solidified product PDF, the portion of the PDF likely to 
contain information pertaining to structure (i.e. r ≥ 5Å) exhibits a good fit between the two PDFs and therefore leads to the conclusion 
that terfenadine and PVPva are phase-separated. 
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Figure B.14.  The PDF assessment for melatonin:PVPva co-solidified product; left three graphs are corrected PXRD patterns for: (top 
to bottom) drug, polymer, and co-solidified product; center three graphs are the respective PDF transformations; right portion of 
illustration is the actual analysis, as labeled.  Due to the agreement between the calculated PDF and co-solidified product PDF as 
evidenced by the low R-value, drug and polymer concentration values that are close to theory, and confidence intervals that contain 
zero for all values of r, melatonin and PVPva are concluded to be phase-separated. 
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Figure B.15. The PDF assessment for bicalutamide:PVPva co-solidified product; left three graphs are corrected PXRD patterns for: 
(top to bottom) drug, polymer, and co-solidified product; center three graphs are the respective PDF transformations; right portion of 
illustration is the actual analysis, as labeled.  Due to the lack of agreement between the calculated PDF and co-solidified product PDF 
as evidenced by the high R-value, drug and polymer concentration values that deviate from theory, and the regions in r where zero is 
not contained in the confidence interval, bicalutamide and PVPva are concluded to be completely miscible.
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Appendix C: DSC Analyses 
 
 Glass transition temperatures (Tg) for amorphous pure components and co-

solidified samples were measured using a TA Q100 DSC (TA Instruments, New Castle, 

DE) under constant nitrogen purge (~50mL/min).  A three-point enthalpy and 

temperature calibration was performed at 20°C/min using o-terphenyl, indium, and tin 

standards.  In an attempt to avoid artifacts arising from grinding samples, approximately 

5 mg intact “sample chips” were hermetically sealed in aluminum pans.  To normalize 

thermal history, samples were first heated at 20 °C/min to 105 °C, held isothermally for 2 

minutes, and subsequently cooled to -20°C at 20 °C/min.  Samples were then cycled 

through Tg events at 20 °C/min for temperature determination.  In each of the following 

thermograms, the Tg event for each pure component and Tg for the co-solidified product is 

shown.  For the co-solidified products, only a single cycle is shown, unless otherwise 

noted.  The ideal Tg as calculated using the Couchman-Karasz equation,85 Tg,CK, is given 

in the figure captions where applicable.
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Figure C.1. The DSC thermograms of felodpine:PVPva systems showing the glass transition event for the individual components and 
co-solidified product (as labeled), where Tg,CK = 63.4 °C.  The presence of a single Tg in the co-solidified product is indicative of 
miscibility between felodpine and PVPva. 

 



 

 

193 

Figure C.2.  The DSC thermograms of indomethacin:PVPva systems showing the glass transition event for the individual components 
and co-solidified product (as labeled) , where Tg,CK = 66.9 °C.  The presence of a single Tg in the co-solidified product is indicative of 
miscibility between indomethacin and PVPva.
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Figure C.3.  The DSC thermograms of ketoconazole:PVPva systems showing the glass transition event for the individual components 
and co-solidified product (as labeled) , where Tg,CK = 63.4 °C.  The single, detectable Tg in the co-solidified product is similar to that 
of amorphous ketoconazole and therefore, not definitively interpretable. 
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Figure C.4. The DSC thermograms of itraconazole:PVPva systems showing the glass transition event for the individual components 
and co-solidified product (as labeled) , where Tg,CK = 72.2 °C.  The single, detectable Tg in the co-solidified product is similar to that 
of amorphous itraconazole and therefore, not definitively interpretable.  Due to the inability to perform a PDF analysis, the 
repeatability of the Tg across three preparations combined with the lack of detectable Bragg peaks in PXRD patterns provides basis for 
concluding miscibility between itraconazole and PVPva.

 



 

 

196 

Figure C.5.  The DSC thermograms of tolbutamide:PVPva systems showing the glass transition event for the individual components 
and co-solidified product (as labeled) , where Tg,CK = 34.0 °C.  The presence of a single, detectable Tg in the co-solidified product is 
indicative of miscibility between tolbutamide and PVPva. 
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Figure C.6.  The DSC thermograms of chlorpropamide:PVPva systems showing the glass transition event for the individual 
components and co-solidified product (as labeled) , where Tg,CK = 41.7 °C.  The presence of a single, detectable Tg in the co-solidified 
product is indicative of miscibility between chlorpropamide and PVPva. 
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Figure C.7.  The DSC thermograms of nifedipine:PVPva systems showing the glass transition event for the individual components 
and co-solidified product (as labeled) , where Tg,CK = 65.4 °C.  The presence of a single, detectable Tg in the co-solidified product is 
indicative of miscibility between chlorpropamide and PVPva; however, the PXRD pattern of the co-solidified product (Appendix B) 
revealed detectable crystallinity attributable to nifedipine. 
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Figure C.8. The DSC thermograms of quinidine:PVPva systems showing the glass transition event for the individual components and 
co-solidified product (as labeled) , where Tg,CK = 76.8 °C.  The presence of two Tg  events in the co-solidified product is indicative of 
phase separation. 
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Figure C.9.  The DSC thermograms of propranolol:PVPva systems showing the glass transition event for the individual components 
and co-solidified product (as labeled) , where Tg,CK = 60.5 °C.  The lack of a detectable Tg in the co-solidified product is indicative 
undetectable amorphous phase. 
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Figure C.10. The DSC thermograms of cloperastine:PVPva systems showing the glass transition event for the individual components 
and co-solidified product (as labeled) , where Tg,CK = 53.6 °C.  The lack of a detectable Tg in the co-solidified product is indicative 
undetectable amorphous phase. 
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Figure C.11. The DSC thermograms of terfenadine:PVPva systems showing the glass transition event for the individual components 
and co-solidified product (as labeled) , where Tg,CK = 77.2 °C.  The single, detectable Tg in the co-solidified product is similar to that 
of amorphous terfenadine and therefore, not definitively interpretable. 
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Figure C.12. The DSC thermograms of sulfanilamide:PVPva systems showing the glass transition event for the individual 
components and co-solidified product (as labeled) , where Tg,CK = not obtainable.  A thermogram for amorphous sulfanilamide is not 
shown due to the inability to produce the amorphous phase.  The two Tg events in the co-solidified product is indicative of phase 
separation in the amorphous component of the system.  Additionally, detectable crystallinity indexed to sulfanilamide was observed in 
the PXRD pattern (Appendix B) of the co-solidified product. 
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Figure C.13.  The DSC thermograms of cimetidine:PVPva systems showing the glass transition event for the individual components 
and co-solidified product (as labeled) , where Tg,CK = 69.9 °C.  The single, detectable Tg in the co-solidified product is similar to that 
of amorphous cimetidine and therefore, not definitively interpretable. 
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Figure C.14.  The DSC thermograms of melatonin:PVPva systems showing the glass transition event for the individual components 
and co-solidified product (as labeled) , where Tg,CK = 47.6 °C.  The single, detectable Tg in the co-solidified product is similar to that 
of amorphous melatonin and therefore, not definitively interpretable 

 



 

 
Figure C.15.  The DSC thermograms of bicalutamide:PVPva systems showing the glass transition event for the individual 
components and co-solidified product (as labeled) , where Tg,CK = 70.3 °C.  The single, detectable Tg in the co-solidified product is 
similar to that of amorphous bicalutamide and therefore, not definitively interpretable
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