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ABSTRACT

A GENETIC PROGRAMMING APPROACH TO SOLVING OPTIMIZATION

PROBLEMS ON AGENT-BASED MODELS

By

Anthony Garuccio

May 2016

Thesis supervised by Dr. Rachael Miller Neilan

In this thesis, we present a novel approach to solving optimization problems that

are defined on agent-based models (ABM). The approach utilizes concepts in genetic

programming (GP) and is demonstrated here using an optimization problem on the

Sugarscape ABM, a prototype ABM that includes spatial heterogeneity, accumulation

of agent resources, and agents with different attributes. The optimization problem

seeks a strategy for taxation of agent resources which maximizes total taxes collected

while minimizing impact on the agents over a finite time. We demonstrate how our

GP approach yields better taxation policies when compared to simple flat taxes and

provide reasons why GP-generated taxes perform well. We also look at ways to

improve the performance of the GP optimization method.
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Chapter 1

Agent-Based Models

1.1 What is an Agent-Based Model (ABM)?

An agent based model (ABM) is a computational model that simulates the local

interactions of autonomous individuals (or agents) and their environment. Generally,

ABMs are comprised of one or more types of agents and an environment containing

parameters exogenous to the agents. The agents are given an internal set of attributes

and a set of rules that determine their behavior as they interact with each other and

the environment. ABMs can be run many times under different controlled conditions,

allowing for researchers to observe system-level dynamics and test hypotheses.

Researchers in nearly all domains use ABMs to investigate how the behaviors of

a complex systems arise from the characteristics and interactions of its individual

components. Some examples of emergent behaviors described by ABMs are listed

here.

• Brown et al. used an ABM to determine the effects of heterogeneity in residen-

tial preferences on urban sprawl. The ABM approach allowed them to study

the effects of heterogeneity among agents on the overall system behavior to find

that heterogeneity significantly affects aggregate patterns of urban sprawl and
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clustering [2].

• Mi et al. used an ABM approach to model healing of diabetic foot ulcers to test

the expected effectiveness of three treatments. They found that the expected

effect of administering (1) a neutralizing anti-TNF antibody, (2) an agent that

would increase the activation of endogenous latent TGF-β1, or (3) latent TGF-

β1 all would have similar effects [11].

• Castella et al. used an ABM in combination with GIS data to understand land-

use changes in the northern mountains of Vietnam based on the interactions

between local farmer’s decisions and institutional policies on resource use. This

allowed them to identify geographic regions with similar trajectories and predict

the effects on the natural resource base [3].

ABMs are becoming increasingly popular because they do not require “simplifi-

cation” of model assumptions like traditional mathematical models. Equation-based

mathematical models are limited in the complexity of the systems they describe due

to the need for the equations to be solved analytically or by numeric approximation.

For example, ordinary differential equation models often assume the environment is

homogeneous and rates of change are uniform among groups of individuals. In con-

trast, ABMs can accommodate individuals that are different from one another and

individual attributes can change with time or adapt to the environment. ABMs can

simulate heterogeneous environments and allow for the environment to be modified by

inhabiting agents. Therefore, ABMs are particularly attractive for describing complex

system-level dynamics that evolve as the result of the agent level actions.

There is no particular programming language essential to the simulation of an

ABM. It is possible to write an ABM in any language, including C, Fortan, and

Python. However, programming languages specific to agent-based modeling exist and

are widely used. Most notably, NetLogo [12] is the most commonly used because of its
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accessibility to programmers of all abilities and its graphical interface. Constructing

an ABM in non-agent-based programming language, such as Python, often requires

more model development time, but it can lead to shorter simulation time and the

ability to incorporate non-standard features [18].

1.2 The Sugarscape ABM

The agent-based model (ABM) that we use in our study is a modified version Epstein’s

Sugarscape ABM [6] that is described in detail in Oremland and Laubenbacher [14].

The model follows individual agents, called ants, as they move between patches on a

two-dimensional spatial domain collecting and metabolizing sugar (i.e., wealth). Ants

may be viewed as rational economic agents with the simple objective to maximize

their personal sugar wealth. Taxation is included in the Sugarscape ABM such that

a percentage of wealth is taken from each ant on a regular basis. If an ant’s sugar

wealth is depleted (through either metabolism or taxation), the ant dies.

Along with initial placement and initial wealth, there are two intrinsic attributes,

vision and metabolism, that determine an ant’s ability to accumulate sugar wealth

over time.

1. Vision. An ant’s vision indicates the number of spatial patches the ant can

see in any direction from its current patch. Vision defines the ant’s ability to

relocate to an area with greater resources. The higher the ant’s vision, the more

likely it is that the ant will see and move to a patch with a higher sugar content.

2. Metabolism. An ant’s metabolism is equal to the amount of sugar consumed

by the ant each time step. Ants with high metabolism values will lose more sugar

than ants with low metabolism values, thus making it less likely to accumulate

sugar wealth over time and more likely to die.
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Figure 1.1: Spatial Domain. Ants are located on 48 × 48 patch grid and move
between patches based on sugar availability. Regions 1, 2, 3, 4 describe amount of
sugar available to inhabiting ants.

The spatial domain is a 48 × 48 patch grid on which each patch has a specified

amount of sugar available to inhabiting ants. The Sugarscape ABM presented in

Oremland and Laubenbacher [14] assumes the spatial domain is divided into four

equal, vertical sections describing the amount of sugar available to inhabiting ants.

As seen in Figure 1.1, the vertical regions (each of size 12 × 48) are arranged from

least sugar on the left to most sugar on the right. Ants move independently at each

time step to a patch within their vision that has the most sugar. Upon moving to

a patch, an ant collects the full amount of sugar available. Sugar within a patch is

never depleted and multiple ants may occupy one patch at a time. Ants may not

cross the vertical and horizontal boundaries of the spatial domain.
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Values of parameters used in the Sugarscape ABM are provided in Table 1.1.

Each simulation begins with an initial population of 400 ants. Each ant is initialized

by randomly selecting values for the ant’s vision, metabolism, and initial sugar (see

possible values in Table 1.1). An ant’s metabolism and vision values remain the same

throughout the simulation. The initial location of each ant is randomly selected from

one of the 48× 48 patches. The taxation rates to be applied to each ant are specified

at initialization.

Figure 1.2 is an overview of the rules applied at each time step, or tick, during

simulation of the Sugarscape ABM. Ants are randomly ordered at the beginning of

each tick. The following rules are then applied to all ants, one at a time. The ant’s

status (dead or alive) is determined by checking if the ant’s sugar wealth is greater

than 0. If the ant is dead, no further action is taken on the ant. If the ant is alive,

then the ant moves to a patch within its vision with the highest sugar content. If there

are multiple patches with the highest sugar value, then the ant chooses one randomly.

After the moving stage, the ant collects the sugar from its current patch, i.e. updates

its sugar wealth by adding the sugar value of the patch to it is current sugar wealth.

Next, the ant metabolizes sugar, i.e. updates its sugar wealth by subtracting the ant’s

metabolism value from its current sugar wealth. The ant’s status (dead or alive) is

again determined by checking if the ant’s sugar wealth is greater than 0. If so, a

Table 1.1: Model Parameters. Values used in our ABM

Variable Description Value
Population size Initial number of ants 400
Final time Final tick of the simulation. The tick variable

starts at 0.
4

Initial sugar Possible initial sugar wealth for each ant {1, 2, . . . , 10}
Vision Possible vision values for each ant {1, 6}
Metabolism Possible metabolism values for each ant {2, 4}
Tax Rate Proportion of sugar removed from an agent

each tick
[0, 1]
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percentage of the ant’s sugar wealth is collected as a tax. The tax rate applied to

each ant is a value between 0 and 1, inclusively. The simulation continues for 5 ticks

or until all ants are dead. Note that the simulation runs for 5 ticks, so the value of

the tick variable will be {0, 1, 2, 3, 4}.
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Randomly select ant

Is sugar
> 0?

Move to patch
in vision with
greatest sugar

Collect sugar
from patch

Metabolize sugar

Is sugar
> 0?

Collect tax

More
ants?

Update tick

yes

yes

no

yes

no

no

Figure 1.2: Model Overview. Diagram of rules applied to individual ants during
each time step
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Chapter 2

Optimization for Agent-based

Models

2.1 An Optimization Problem for the Sugarscape

ABM

Taxation of individual ant wealth is considered a control variable in the Sugarscape

ABM. The model can accommodate a vast array of taxation policies. For instance, we

can implement a simple flat tax (e.g., all ants are taxed 10%) or a complex taxation

policy that depends on an ant’s individual properties such as location, metabolism,

vision, current wealth, etc. There are infinitely many tax policies that one can im-

plement within the Sugarscape ABM.

The optimization problem posed in this study is to determine a taxation policy

to be applied to ants in the Sugarscape ABM that will maximize the total sugar tax

collected and the average lifespan of the ants in the population. Further, we want to

keep the population-wide average tax rate low. The components of our objective are

inversely related with respect to the control, i.e. taxation. Higher tax rates can yield

a larger total tax collected, but can decrease the average lifespan of the population.
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Lower tax rates generally lead to less tax collected, but result in a longer average

lifespan of the population.

Formally, we express our optimization problem in terms of the quantity

J = C1 AT + C2

T∑
i=0

Ai∑
j=1

Taxi,j − C3

[
T∑
i=0

Ai

]−1 T∑
i=0

Ai∑
j=1

[(TaxRatei,j)
n] (2.1)

where T is the final tick in the simulation, Ai is the number of ants alive at the

ith tick, and Taxi,j is the total amount of sugar collected via taxation from the jth

ant during tick i. The term (TaxRatei,j)
n is the tax rate (between 0 and 1) of the

jth ant during tick i raised to the nth power (n ≥ 1). The value of n defines the

relationship between the penalty of taxation and the rate of taxation. For n = 1,

the relationship is linear such that a small increase in tax rates results in the same

penalty increase regardless of the tax rate. For n > 1, the relationship is strictly

convex such that small increases in tax rates lead to larger increases in the penalty

term for larger tax rates. In equation (2.1) the final term is equivalent to taking the

average of (TaxRatei,j)
n over all ticks (i = 0...T ) and all ants alive during each tick.

Parameters C1, C2, and C3 are balancing coefficients used to weight the three terms

in the objective.

Since the Sugarscape ABM is stochastic, under any given tax structure the vari-

ables Ai, Taxi,j, and AvgTaxRatei,j in equation (2.1) are not deterministic values, but

rather random variables. Therefore the quantity J is also a random variable. Since

ranking two random variables is not possible, we use the mean value of J obtained

over a large number of simulations whenever we compare the performance of multiple

controls. The optimization problem can be written as

max
tax

J̄ (2.2)

where the maximum is taken over all possible tax structures and J̄ is the mean value
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of J obtained from 10 simulations of the ABM.

2.2 Previous work

There is no standard framework for solving optimization problems described by

ABMs, such as the one in Section 2.1. Simulation and evaluation of all possible

controls is often impractical or impossible. Several previous attempts at constructing

optimal controls for an ABM have been made [4, 7, 8, 13, 14]. These approaches

rely on the use of an equation-based approximation model. In this technique, the

average temporal or spatiotemporal dynamics of the ABM are approximated by a

system of mathematical equations (e.g., differential equations, polynomials). Control

variables are included in the equations to mimic control in the ABM. Known opti-

mization techniques and mathematical theory are applied to the equation model to

construct controls that optimize the objective function as it is written in terms of the

equation model. The resulting optimal control (generated by the equation model)

is then transformed for implementation within the ABM and evaluated within the

framework of the ABM.

Examples of equation-based approximation models and methods of optimization

include

• Hinkelmann et al. [8] describe a framework for translation of ABM rules into

polynomial dynamical systems. The polynomial dynamical system is optimized

using known algebraic optimization methods.

• Federico et al. [7] approximate a predator-prey ABM using ordinary differen-

tial equations (ODEs) and apply optimal control theory to the ODE model to

estimate optimal predator harvesting rates. The same ABM is approximated

by Oremland et al. [13] using difference equations and Pareto optimization is

applied to construct optimal controls.
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• Christley et al. [4] approximate the Sugarscape ABM with a system of partial

differential equations (PDE). The PDE accounts for movement of ants across

the spatial environment and accumulation of sugar wealth over time. Optimal

control theory is applied to the PDE model to construct optimal tax rates.

The technique of using an approximation model has been shown to work for some

simple ABMs, but has failed to work when complex features are included in the ABM.

Specifically, errors can occur when attempting to implement optimal controls from

the approximation model within the ABM. For example, when spatial heterogeneity

is added to the predator-prey ABM, the approximation model in [7] fails to yield

an accurate representation of ABM dynamics essential to the optimization problem.

Optimal controls from the approximation model are no longer near optimal when

implemented in the ABM. Similarly, when the spatial domain of the Sugarscape

ABM is modified from the one pictured in Figure 1.1, the methods of Christley et

al. [4] fail becuse construction of the PDE approximation model relies heavily on

the simple sugar landscape. In general, complex ABMs cannot be approximated well

by closed-form equations. In fact, one of the main reasons that ABMs are chosen

to model a system is that the rules governing the system are too complicated to be

expressed using other, non-simulation based, classical techniques.

The main motivation for our research is to develop and explore a

simulation-based optimization technique that can be applied to a broad

range of ABMs. Our approach uses genetic programming and is demonstrated

in this thesis on the optimization problem for the Sugarscape ABM (Section 2.1).

Sugarscape is an excellent prototype ABM because it includes agents with different

attributes and a heterogeneous environment. As far as we know, this is the first

attempt at using genetic programming for constructing optimal controls for an opti-

mization problem described by an ABM.
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Chapter 3

A Novel Solution Approach

3.1 What is Genetic Programming (GP)?

Genetic programming is a metaheuristic for constructing computer programs for the

goal of optimizing a given fitness landscape. By mimicking the processes of biological

evolution and natural selection, genetic programing evolves a population of computer

programs to produce one or more programs with optimal (or near optimal) fitness.

Each individual (i.e. computer program) in the population is an expression tree

constructed from a set of values and a set of operations to be applied to the values.

An individual computer program can be thought of a tree comprised of non-leaf (i.e.

non-terminal) nodes from the set of operations and leaf (i.e. terminal) nodes from

the set of values.

Once a population is formed, each individual in the population is evaluated in

terms of its fitness. In this context, fitness is a real-valued measure of how well an

individual performs with respect to a given optimization problem. After forming a

population and evaluating individual fitness values, a tournament-like step creates a

new population from the old such that the probability of an individual advancing to

the new population is dependent upon its fitness. In other words, individuals with
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better fitness values are more likely to remain in the population whereas individuals

with worse fitness values are more likely to be eliminated.

Once a new population is formed, genetic operations are applied to evolve indi-

viduals within the new population. These operations can include the following.

1. Expression Mutation. A subtree of the individual is selected and replaced

by a new, randomly generated subtree.

2. Mating (Crossover). Two individuals are selected, then within each a random

node is selected. The two subtrees with the selected nodes as roots are swapped

between the individuals.

After applying genetic operations, the process of evaluating, selecting, and evolv-

ing a new population is repeated until a specified stopping criteria has been met.

Algorithm 1 displays psuedo-code for genetic programming. Our implementation

of genetic programming is performed using Distributed Evolutionary Algorithms in

Python (DEAP). Specific details regarding the DEAP package are provided in Section

3.2.

Genetic programming, like most metaheuristics for solving non-convex problems,

Algorithm 1 Genetic Programming

initialize population
while not stopping-criteria do

for individual in population do
evaluate individual fitness

end for
for i < population-size do

randomly select 4 individuals from population
copy best individual to new-population
increment i

end for
population ← new-population
apply crossover operation
apply mutation operation

end while

13



must balance the tasks of moving towards better known solutions while avoiding

being trapped in local optima. This task is accomplished using a probabilistic tour-

nament feature in which all individuals have a positive probability of moving on

to the next generation, with larger probabilities assigned to individuals with better

fitness. While the tournament method moves the population towards known local

optima, the genetic operations–such as mutation–introduce new genetic material so

that the metaheuristic can explore different parts of the global search space. Mating,

or crossover, is a unique way to explore the search space, where parts of existing, well-

performing individuals are spliced together with the possibility that effective pieces

from each will combine into an individual that is greater than either parent.

Genetic programming is increasingly used for optimization in many disciplines.

For example, optimization of database query can be performed using genetic pro-

gramming, and this method is preferred over alternative optimization methods, like

combinatorial search, due to its robustness and efficiency [17]. Construction of equa-

tions that mimic biological processes is another another application of genetic pro-

gramming. In [16], the authors model a gene regularity network using a system of

ordinary differential equations in which the right-hand sides were inferred from time-

series data using genetic programming. Genetic programming is even used in the

arts. One user constructed a genetic programming algorithm to replicate the Mona

Lisa using polygons evolved to mimic the real image [9] .

Despite its growing popularity, genetic programming has yet to be employed for

the construction of optimal controls in an agent-based model. In the next section,

we describe a novel approach to solving the Sugarscape optimization problem using

genetic programming. We use the Sugarscape ABM and optimization problem as a

benchmark for testing our approach, but the approach can be easily adapted for the

optimization of other ABMs.
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3.2 Application to the Sugarscape Optimization

Problem

3.2.1 Defining the Population

The goal of the Sugarscape ABM optimization problem is to construct a tax structure

that maximizes the total sugar tax collected and the average lifespan of the ants in

population, while minimizing the average tax rate. In the context of genetic pro-

gramming, each possible tax structure is an individual that may be included in the

population. An individual (i.e. tax structure) can be viewed as a string of functions

or as an expression tree for better visualization. For example, consider the tax struc-

ture that suggests each ant with a metabolism equal to 2 be taxed 20% of its current

sugar wealth; otherwise, do not tax the ant. This individual can be represented by

the string if-then-else(eq(metabolism,2), 0.2, 0) or visualized as the tree depicting in

Figure 3.1.

if-then-else

eq

metabolism 2

0.2 0.0

Figure 3.1: Expression tree for the tax structure that applies a 20% tax rate to all
agents with metabolism equal to 2 and no taxation of all other agents.

Individuals are formed from the set of all possible operators and the set of all

possible terminal nodes defining a tax structure. These two sets define the functional

space, i.e. domain, that the genetic programming algorithm will search for a tax

structure. Table 3.1 lists the set of all nodes used in our simulations, while Table 3.2

lists the set of all operators used in our simulations.
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Table 3.1: Terminal Set All possible terminal nodes for tax structures in the Sug-
arscape ABM

Variable Description
sugar Current sugar-wealth of the ant
vision Vision value of the ant
metabolism Metabolism value of the ant
x Horizontal value of the patch the ant is occupying
y Vertical value of the patch the ant is occupying
patchSugar Amount of sugar on the patch the ant is occupying
tick Time-step of the simulation
Constant Constant selected from {0, 0.1, 0.2, ..., 0.9, 1, 2, 3, ..., 6}

Table 3.2: Operator Set All possible operators for tax structures in the Sugarscape
ABM

Operator Description Arguments Return
add simple addition [float, float] float
sub simple subtraction [float, float] float
mul simple multiplication [float, float] float
protectedDiv division, return 1 if denominator is 0 [float, float] float
gt True if first argument greater than the

second
[float, float] bool

lt True if first argument less than the sec-
ond

[float, float] bool

eq True if first argument equals the second [float, float] bool
and True if both arguments are True, oth-

erwise False
[bool, bool] bool

or True if either argument is True, other-
wise False

[bool, bool] bool

not negates input boolean [bool] bool
if-then-else returns first argument if true, otherwise

returns second argument
[bool, float, float] float

16



An individual is applied to the Sugarscape ABM by applying the tax structure

at each time step to all living ants, as described in Section 1.2. During taxation, an

additional step is taken to ensure the tax rate generated by the individual is in the

interval [0, 1]. It is possible that a randomly generated individual will produce a tax

rate outside of [0, 1], so we apply the following min-max operation to each tax rate

when it is applied to an agent

taxRatei,j = min(1,max(0, individual(antj, ticki)))

This allows our genetic programing algorithm to work on an unconstrained space

of all expression trees formed from our terminal and operator node sets, since all

possible generated tax structures will be valid.

3.2.2 Initializing the Population

To initialize the population, we randomly generate a set of individuals from our

operator set (Table 3.2) and terminal node set (Table 3.1). There are two well known

methods used to generate an individual for the initial population [10]. These methods

are referred to as “full” and “grow”.

Using the full method, we randomly draw from the operator set until we reach a

tree depth of one less than the maximum tree depth, then we draw from the terminal

set to fill in the leaves. This results in trees with the property that all leaves (terminal

nodes) are at the same depth. The grow method, on the other hand, creates trees by

randomly drawing from either the terminal or operator set until the tree is complete

or until the tree depth is one less than the depth limit, then after that point, further

selections are made only from the terminal set. While the full method produces

mostly symmetric trees of exactly the maximum depth limit, the grow method tends

to produce much smaller, less symmetric trees.
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Used individually, the full and grow methods produces a population with little

variation in tree shapes and sizes. Therefore, we use a combination of the two methods

called ramped-half-and-half. Ramped-half-and-half uses a variety of max tree depths

and creates the population by using the grow method half the time and the full

method the other half of the time. This combination approach has been shown to

create a population with a variety of tree shapes and sizes, which is necessary to

properly explore the search space [10]. In our implementation we used max tree

depths ranging from 1 to 4.

3.2.3 Evaluation and Selection

During the evaluation step, we calculate the fitness of each individual in the popula-

tion with respect to the optimization goal of the Sugarscape ABM. The fitness of an

individual is calculated as

Fitness = J̄ (3.1)

where J is defined in equation (2.1) and J̄ is the mean taken over 10 simulations of

the ABM.

Many implementations of genetic programming only reevaluate the fitness of the

individual if the individual is changed in some way, such as through mutation. This

can save significant computation time, since only a portion of the population has

its fitness reevaluated at each iteration of the genetic programing algorithm. How-

ever, due to the fact that our fitness function is stochastic rather than deterministic,

we reevaluated the fitness of every individual during each iteration of the genetic

programming algorithm.

After evaluating the fitness of each individual in the population, a tournament

selection is applied to determine which individuals in the population should move

on to the new population. To implement this, t = 4 individuals from the current
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population are randomly selected and the one with the best fitness value is copied to

the new population. A copy of the selected individual remains in the old population.

This procedure is repeated until the new population is the same size as the old

population, having 250 individuals.

It should be noted that when a larger number individuals are chosen each round for

the tournament, the likelihood of getting many copies of the current best individuals

in the new population increases. To illustrate this, consider two extreme cases. If we

only choose one individual each round, then the state of the population will not evolve

towards containing individuals with better fitness. On the other hand, if we choose all

of the individuals in the population each time, then the new population will contain

only copies of the current best performing individual. In our implementations, we use

4 individuals selected for each tournament because this quantity balances the goals

of evolving the population toward better performers and keeping genetic diversity

present in each new population.

Blickle and Thiele [1] define the reproduction rate, R̄(f) as the expected ratio of

the number of individuals with a certain fitness value, f , before and after the selection

step. They calculate the reproduction rate for a tournament selection to be

R̄(f) = t

(
S̄(f)

N

)t−1

(3.2)

Where S̄(f) is the number of individuals with fitness value f or worse, t is the number

of individuals selected during each tournament, and N is the population size.

Using our chosen tournament size of t = 4 and our population size of 250, the

reproduction rate for our implementation is

R̄(f) = 4

(
S̄(f)

250

)3

(3.3)

Figure 3.2 shows that our chosen tournament size will create more copies of better
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Figure 3.2: Expected reproduction rate for each rank in our population with rank
250 being the best and rank 1 being the worst. It is assumed no ties are present

performing individuals and less copies or worse performing individuals, moving the

population as a whole to better solutions.

As mentioned above, while evolving toward better solutions, it is also important to

not lose genetic diversity in the population too quickly or the algorithm will converge

on local optima rather than exploring the search space for the global optima. To

measure this effect Blickle and Thiele [1] define the loss of diversity, pd as the expected
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proportion of individuals that will not be selected into the new population after an

application of the tournament selection procedure.

pd = t−
1

t−1 − t−
t

t−1 (3.4)

Where t is the number of individuals selected during each tournament. Using our

tournament size value of t = 4, we find pd = 0.47. So, after each tournament selection

step, we expect 47% of the current population to not move on to the next iteration.

3.2.4 Genetic Operations

Crossover

To apply the crossover operation, we define Pcross as the probability that individuali

and individuali+1 will mate. Then we loop over our population and nominate each

pair of individuals for crossover with probability Pcross. Once nominated, we choose a

random node in each of the individual trees as our crossover point. Then we take the

two subtrees with the crossover points as the roots and swap them. We then continue

looping through the population until we nominate another pair or reach the end of

the population. In our implementation, we chose Pcross = 0.3 as was chosen in several

of the examples in the DEAP software documentation [5].
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mul
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Individuali+1 (after)
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Figure 3.3: Individuals i and i+ 1 (top row) are nominated for crossover. A subtree
from Individual i (green) and a subtree from Individual i + 1 (yellow) are randomly
selected. Two new individuals (bottom row) are created using the crossover operation
by swapping the green and yellow subtrees.

Expression Mutation

To apply the expression mutation operation, we need to first define Pmut which will

be the probability that a mutation will occur on any given individual. Once we have

defined Pmut then we will loop through the population and nominate each individual

for mutation with probability Pmut . Once nominated, a random node of the individual

tree is chosen and the subtree with that node as the root is replaced by a new tree

that was generated using the ramped-half-and-half method. We then continue looping

through the population until we nominate another individual or reach the end of the

population. For our implementation, we used Pmut = 0.2. This value was used in

several of the examples in the DEAP software documentation [5].
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Figure 3.4: Individual i (left) is nominated for expression mutation. A subtree from
Individual i (green) is randomly selected and a new subtree (yellow) is grown using
ramped-half-and-half method. A new individual (right) is created using the mutation
operation by replacing selected subtree (green) with newly grown subtree (yellow)

3.2.5 Stopping Criteria

The genetic programming algorithm can be made to stop by various criteria. For ex-

ample we could stop after a fixed number of iterations or we could stop once our best

fitness is within ε of some known best fitness value. We chose to have the genetic pro-

gramming algorithm terminate when the same individual remains the most optimal

(compared to the current population) for a sufficiently long number of evolutionary

cycles. For our implementations, we assumed 10 cycles was sufficient for establishing

convergence to the optimal result. Upon termination, the algorithm outputted the

optimal individual and its fitness.
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Chapter 4

Results

4.1 Parameters

We present the results of our approach to solving the Sugarscape optimization prob-

lem using the parameters in Table 4.1. The coefficients C1 and C2 in equation (2.1)

were chosen so that nearly equal weight was placed on maximizing the number of

ants alive at the final time and maximizing the total taxes collected. The value

of C3 in equation (2.1) depends on n, the parameter defining the relationship be-

tween the penalty of taxation and the rate of taxation in the optimization prob-

lem. The relationship C3 = −2500(2n−1) was chosen to ensure the penalty term

C3

[
T∑
i=0

Ai

]−1 T∑
i=0

Ai∑
j=1

[(TaxRatei,j)
n] in equation (2.1) is equivalent for all values of

n when the Tax Rate is 0.5 for all ants at all times. Figure 4.1 illustrates the value of

the penalty term for different values of n assuming all ants incur the same constant

tax rate.
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Figure 4.1: Curves show the relationship between the penalty term (third term in
equation (2.1)) and tax rates for n = 1, 2, 3. Here it is assumed that a tax rate is
applied to all ants at every tick.

Table 4.1: Parameters used equation (2.1) defining the Sugarscape optimization
problem.

Parameter Description Value
C1 Coefficient of the term describing the

number of ants alive at the final tick
10

C2 Coefficient of the term describing the
total tax collected

1

C3 Coefficient of the term penalizing high
tax rates

−2500(2n−1)

n Exponent on tax rates in penalty term 1,2, or 3
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4.2 Baseline Simulations

To create a baseline against which we can compare the output of our genetic pro-

gramming algorithm, we first simulate the Sugarscape ABM using constant tax rates

ranging from 0% to 90% by increments of 10%. Figure 4.2 shows the distribution of

fitness values for each of the flat taxes for n = 1, 2, and 3.

As expected, for each value of n, fitness values demonstrate a parabolic shape

with high and low tax rates performing poorly. The parabolic shape is the result of

the two main components of the fitness function. When the tax rate is low, the term

measuring the number of ants alive at the end of the simulation is a strong positive

contributor to the fitness function while the term measuring the total taxes collected

is relatively small. Conversely, when the tax rate is high, many ants will die and

therefore the term measuring the number of ants alive at the end of the simulation

is very small, but the total taxes collected is a large positive value. The value of

n affects the third and final term of the fitness function which adds a penalty to

high tax rates. For higher values of n, a larger penalty is associated with tax rates

approaching 100%. In the n = 1 case, the series of box plots are roughly symmetric,

with both very low and very high rate performing equally poorly. For n = 2 and 3,

a dramatic decrease in the performance of the higher tax rates is observed. This is

a result of the heavy penalty that is associated with high values of the average tax

rate.

In all three cases (n = 1, 2, 3), the best performing flat tax is 30%. In the next

section, the 30% flat tax is used as a comparison for the best performing taxes gener-

ated from genetic programming algorithm. This comparison provides us with a sense

of well the generated tax structures perform in comparison to basic solutions.
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Figure 4.2: Box plots of 1,000 runs of the Sugarscape ABM under the different flat
tax controls from 0% to 90% for n = 1, 2, 3.
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4.3 Optimal GP results

After multiple applications of our genetic programming algorithm, Table 4.2 summa-

rizes the three best performing tax structures discovered by the algorithm in each

of the n = 1, 2, 3 cases. Included in the table is a string representation of the tax

structure along with the average value of each component of our fitness function, J ,

computed over 1000 ABM simulations. In the following sections, we will examine

these different control structures and the strategies they use to maximize the fit-

ness function to find emergent behavior across the different controls and across the

different values of n.

4.3.1 Tick-Based Control Strategy

For each value of n, one of the three best performing controls was based solely on

the value of the tick variable. The general structure, or strategy, of the tick-based

controls is to start with a very low tax rate at the beginning of the simulation and

Table 4.2: GP Output Tax structures generated by our genetic programming algo-
rithm for n = 1, 2, 3 with baseline flat tax of 0.3 for comparison
n Function Ants

Alive
(C1 Term)

Total Tax
(C2 Term)

Penalty
(C3 Term)

Fitness

1 0.3 2424.20 1946.29 -750.00 3620.49

1 0.015 ∗ (tick3) 2723.81 2350.05 -664.12 4409.74
1 0.07 ∗ sugar 2416.74 1989.75 -649.70 3756.79
1 0.8/metabolism 2507.26 2037.97 -798.48 3746.75

2 0.3 2426.92 1949.80 -450.00 3926.72
2 (0.4/3) ∗ tick 2648.94 1935.45 -474.52 4109.87
2 0.04 ∗ sugar 2640.15 1632.66 -207.98 4064.83
2 patchSugar/(6 ∗metabolism) 2744.01 1636.90 -234.60 4146.31

3 0.3 2428.63 1945.02 -270.00 4103.65
3 0.1 ∗ tick 2722.70 1622.81 -176.73 4168.78
3 0.7/metabolism 2555.89 1909.82 -277.52 4188.19
3 patchSugar/(5 ∗metabolism) 2678.30 1819.90 -219.27 4278.93
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increase the rate as time progresses. The tick-based tax performs well because low

initial tax rates allow ants to collect as much wealth as possible during the first few

ticks of the simulation, causing very little additional death than what would have

occurred naturally. As the time progresses, tax rates increase quickly to collect as

much tax as possible. In this way, the strategyy maximizes both the number of ants

alive as well as the total amount of tax collected. The tick-based control performs

the best by a large margin in the n = 1 scenario. From Table 4.2 you can see that

not only does this control have the best overall fitness, it also dominates all the other

controls in the ants-alive term as well as the tax-term. See Table 4.3 for the values

of the tax rate as the tick progresses throughout the simulation for the n = 1 case.

Table 4.3: Tax rate table for (0.015 ∗ tick3)

Tick Tax Rate
0 0.000
1 0.015
2 0.120
3 0.405
4 0.960

When n = 2, the tick-based strategy is still better than the baseline flat tax.

However, it no longer performs better than all the other controls generated by the

genetic programming algorithm. This is due to the fact that when we increase n to 2,

we remove a key component of the strategy that the previous tick-based control was

exploiting. Recall from the baseline simulations that flat tax rates above 50% are hit

with a severe penalty term in the n = 2 and n = 3 cases, so the strategy that the

previous tick based control used where we tax very low in the beginning and then tax

very high at the end no longer works due to the high tax rate penalty. See Table 4.4

for the values of the tax at each tick.

Finally, in the n = 3 case, the tick-based strategy becomes the least effective of

the three strategies. Table 4.5 shows the tax rates for each tick. Notice that as n
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Table 4.4: Tax rate table for (0.4/3) ∗ tick

Tick Tax Rate
0 0.000
1 0.133
2 0.267
3 0.400
4 0.533

increases, the average tax rate over all the ticks decreases as well as the highest tax

rate imposed on tick 4. This is because as we increase the penalty of high tax rates

(i.e. increase n) the benefit of high taxes collected at the end times is offset by the

penalty term.

Table 4.5: Tax rate table for 0.1 ∗ tick

Tick Tax Rate
0 0.000
1 0.100
2 0.200
3 0.300
4 0.400

4.3.2 Sugar-Based Control Strategy

For both the n = 1 and n = 2 cases, a control structure emerged in which individual

tax rates are proportional to an ant’s current sugar wealth. This structure makes sense

because taxing the ants with the highest amount of sugar allows us to maximize the

amount of tax collected while also minimizing deaths of ants with lowest sugar.

A positive linear relationship between taxes collected and sugar wealth is pre-

sented in the sugar-based strategy. As we would expect, the slope, or proportionality

constant, decreases from the n = 1 to the n = 2 case. This is again due to increased

penalty for high tax rates with larger values of n. The sugar-based control strategy

does not appear in the n = 3 case. This is likely do to the fact that some ants with
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high sugar wealth would be taxed close to 100% with the sugar-based control and

that would result in a steep penalty and make the strategy less optimal for large n.

4.3.3 Metabolism-Based Control Strategy

The last control strategy that emerged in all three of our n cases was a metabolism-

based control in which ants are taxed at a rate inversely proportional to metabolism.

The general strategy of the metabolism-based controls is to tax the ants with lower

metabolism more because they are most likely to gain the most sugar over time (and

therefore least likely to die). Recall that ants in the Sugarscape ABM have two possi-

ble metabolism values, 2 or 4. Therefore, in the n = 1 case, the metabolism-based con-

trol (0.8/metabolism) taxes the low metabolism ants at 40% and the high metabolism

ants at 20%. In the n = 3 case, the metabolism-based control (0.7/metabolism), taxes

the low metabolism ants at 35% and the high metabolism ants at 17.5%.

Also included in this group of metabolism-based controls are the controls that

utilizes the patchSugar variable in addition to metabolism. These controls account

for both the income and consumption rates of the ants and apply the highest tax rates

to those who collect the most and consume the least each tick. The best performing

control in the n = 2 case, (patchSugar/(6∗metabolism)), is an example. This control

is proportional to patchSugar (i.e. the more sugar collected by an ant, the higher the

tax rate) and inversely proportional to metabolism (i.e. the more sugar lost by an

ant through metabolism, the lower the tax rate). Table 4.6 summarizes the tax rates

for each possible combination of patch sugar and metabolism for this control. In the

n = 3 case, the best performing control overall was (patchSugar/(5 ∗ metabolism))

and Table 4.7 summarizes the tax rates for each possible combination of patch sugar

and metabolism for this control.
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Table 4.6: Value table for patchSugar/(6 ∗metabolism) when n = 2

metabolism
patchSugar 2 4

1 0.083 0.042
2 0.167 0.083
3 0.250 0.125
4 0.333 0.167

Table 4.7: Value table for patchSugar/(5 ∗metabolism) when n = 3

metabolism
patchSugar 2 4

1 0.100 0.050
2 0.200 0.100
3 0.300 0.150
4 0.400 0.200

4.4 Improving GP Performance

There are several strategies that can be employed to enhance the performance of the

genetic programming algorithm. One such technique is to seed the population with

good performing individuals found in previous runs of the algorithm. The hope is

that by seeding the population with good candidates, the algorithm will take the best

performing aspects of the individuals and combine them to create an even better can-

didate. Alternatively, if a better solution is not created by cross-breeding the seeded

individuals, then there is still a possibility that, through mutation, the algorithm will

modify and improve an already well performing individual.

Another strategy for improving the performance of the genetic programming al-

gorithm is to modify the tournament size, t. As described in detail in Section 3.2.3,

the tournament size has a strong influence over how quickly our population converges

upon the best individual. The previously used tournament size of t = 4 would result

in the algorithm converging quickly to one of the best performing individuals in a
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seeded population. To ensure appropriate time is provided for new genetic material

to combine and improve upon the seeded population, a decrease in tournament size

is needed.

We demonstrate how to modify the genetic programming algorithm for the n = 2

case, and evaluate the results compared to those in the previous section. To seed

the population, ten copies of each of the three best individuals from the n = 2

case (Table 4.2) are placed in the initial population for the genetic programming

algorithm. With the seeded initial population, the genetic programming algorithm

runs as previously described in Chapter 3. All parameters specific to the Sugarscape

optimization problem and genetic programming algorithm remain the same, with the

exception of the tournament size, t. The tournament size is now set at t = 3.

4.4.1 Results for n = 2

By seeding the population and decreasing the tournament size, the genetic program-

ming algorithm converged to a new solution that performed better than any of the

previous controls obtained for n = 2 in Section 4.3. The new control is defined

as (tick/4) ∗ (patchSugar/(3 ∗metabolism)) and its performance is compared to the

previous set of best solutions for n = 2 in Table 4.8 and Figure 4.3.

It is interesting that this new solution is a combination of the tick-based control

strategy from Section 4.3.1 and the metabolism-based control strategy from Section

4.3.3. By combining both strategies into a single control is performs better than

each strategy on its own. Table 4.9 shows the actual tax rates for every possible

combinations of tick, metabolism, and patchSugar.
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Table 4.8: GP Output with Seeding Tax structure generated by our genetic pro-
gramming algorithm for n = 2 when seeded with the best performing results from
Table 4.2. Included for comparison are the previous results and the baseline flat tax
of 0.3.

Function Ant Term Tax Term Rate Term Fitness
(tick/4) ∗ (patchSugar/(3 ∗metabolism)) 2797.94 1827.04 -356.61 4268.37
0.3 2426.92 1949.80 -450.00 3926.72
(0.4/3) ∗ tick 2648.94 1935.45 -474.52 4109.87
0.04 ∗ sugar 2640.15 1632.66 -207.98 4064.83
patchSugar/(6 ∗metabolism) 2744.01 1636.90 -234.60 4146.31
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Figure 4.3: Box plots of 1000 runs of the the tax structure generated by our genetic
programming algorithm for n = 2 when seeded with the best performing results from
Table 4.2. Included for comparison are the previous results and the baseline flat tax
of 0.3.
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Table 4.9: Tax rate values for (tick/4) ∗ (patchSugar/(3 ∗metabolism)) when n = 2

metabolism: 2 metabolism: 4
patchSugar: 1 2 3 4 1 2 3 4

ti
ck

0 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000
1 0.042 0.083 0.125 0.167 0.021 0.042 0.063 0.083
2 0.083 0.167 0.250 0.333 0.042 0.083 0.125 0.167
3 0.125 0.250 0.375 0.500 0.063 0.125 0.188 0.250
4 0.167 0.333 0.500 0.667 0.083 0.167 0.250 0.333

35



Chapter 5

Discussion and Conclusions

In this thesis, we examined a new approach to solving optimization problems for

agent-based models (ABM). Our approach was demonstrated here using the Sug-

arscape ABM because this ABM is a prototype ABM that includes important ABM

features such as spatial heterogeneity, accumulation of agent resources, agents with

different attributes, and emergent behavior from interactions between agents and the

environment. The Sugarscape ABM optimization problem seeks a strategy for taxa-

tion of agent resources which maximizes total taxes collected while minimizing impact

on the agents over a finite time. Our solution approach utilizes the metaheuristic of

genetic programming (GP) to evolve controls (i.e. taxation strategies) based directly

on their fitness as solutions to the optimization problem.

5.1 Positive Outcomes

The fitness function in our optimization problem included three terms (1) maximize

total ants alive, (2) maximize taxes collected and (3) minimize a penalty for high

average tax rates. An exponent n was included in the penalty term to describe the

convex relationship between taxes and penalty. For all values of n = 1, 2, 3, our

GP approach produced controls that performed better than any constant tax rate
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from our baseline simulations. The GP-generated controls were functions of tick,

metabolism, patchSugar, and/or sugar. The non-constant controls provided insight

into some of the strategies that could be used to develop optimal taxation policies

on the Sugarscape ABM. By comparing results for the different n values, we gained

insight into which strategies became more (or less) optimal when increased emphasis

was placed on penalizing high tax rates.

Further simulations of the GP were performed to gain a better understanding of

parameters specific to the GP algorithm itself, namely the tournament size t. We

seeded the population in the GP from previous results in the n = 2 case in an

effort to generate an improved control. However, seeding the population required

us to decrease the tournament size to allow more evolutionary time. By seeding the

population and decreasing the tournament size, the GP algorithm was able to produce

a new solution that performed better than any of the previous ones in the n = 2 case.

5.2 Drawbacks

While our GP-based approach did produce interesting solutions that performed bet-

ter than the baseline constant controls, we have no way of knowing if there exists

solutions that with better fitness. This drawback is inherent in all simulation-based

metaheuristics. The issue is that, on any finite time scale, there is no guarantee that

the solution found by the GP algorithm is a globally optimal solution.

Another drawback of this method is that results can be inconstant and not easily

reproduced due to the stochastic nature of the GP algorithm. The results shown in

Table 4.2 were a collection of the best performing solutions over multiple simulations

of the GP algorithm, but there is no way to guarantee which (if any) of the best

performing individuals will be reported by the GP algorithm on a single run. This

makes reproducing the exact same solutions from the GP algorithm, without the help
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of seeding, impossible.

Finally, the controls produced by our GP algorithm tended to be simple expres-

sions. One reason for this is inherent in the way we chose to represent solutions to the

optimization problem as functions, or expressions trees. Another approach to solve

this optimization problem with a similar technique would be to represent a solution

as a vector of tax rates of length M ∗ V ∗ P ∗ . . . , where M is the number of possible

metabolism values, V is the number of possible vision values, P is the number of

possible patchSugar values, and so on for every parameter in the Sugarscape ABM.

The optimal vector of rates can then be found using a genetic algorithm. Genetic al-

gorithms are very similar to genetic programming except that individuals are vectors

of values rather than computer programs. This approach has the ability to produce

solutions that perform very well for our optimization problem. However, by using

this method, we would lose the ability to gain insight into the strategies that the

solutions are employing (as suggested by function forms).

5.3 Reasons to Use This Method

The major appeal of using the GP approach to solve an optimization problem for

an ABM is that it does not require an equation-based approximation model. The

GP algorithm builds solutions that are compatible with the ABM and then uses

the ABM to test the fitness of each solution. By eliminating the approximation

model, we eliminate issues created by transforming solutions from the ABM to the

approximation and vice versa. The process of performing these conversions can create

result in solutions that are not truly optimal for either model.

Another benefit to using the GP approach is that it imposes very little constraints

on the types of possible solutions. The GP algorithm can generate a solution that

is any combination of values in the terminal and operator sets. The operator set
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we used contained basic mathematical functions, but it can be extended to include

complex functions at the agent level that are challenging to define mathematically

but are easy to represent in the ABM. The terminal set we used contained many

attributes of the ant that were all either Float objects or Boolean objects, but it can

contain any object defined in the simulation. For example, in a more complex ABM

where agents have attributes that are themselves or other agents, the terminal set

can contain those agents and the operator set can contain functions that act upon

agents.

Finally, since the controls generated by the GP algorithm are functions, or pro-

grams, they can provide both a qualitative and quantitative understanding of optimal

strategies for control. For example, in our prototype Sugarscape ABM, the tick-based

controls that emerged from the GP indicated that tax rates should increase over

time. The sugar-based controls indicated that wealthier individuals should be taxed

at higher rates whereas the metabolism-based controls indicated that low metabolism

ants should be taxed less than high metabolism ants. These controls could be com-

bined to inform adhoc construction of other, well performing, controls.
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