
Duquesne University
Duquesne Scholarship Collection

Electronic Theses and Dissertations

Spring 5-11-2018

Designing A Calibration Set in Spectral Space for
Efficient Development of An NIR Method For
Tablet Analysis
Md Anik Alam

Follow this and additional works at: https://dsc.duq.edu/etd

Part of the Analytical Chemistry Commons, Design of Experiments and Sample Surveys
Commons, Multivariate Analysis Commons, and the Pharmaceutics and Drug Design Commons

This One-year Embargo is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact
phillipsg@duq.edu.

Recommended Citation
Alam, M. (2018). Designing A Calibration Set in Spectral Space for Efficient Development of An NIR Method For Tablet Analysis
(Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1430

https://dsc.duq.edu?utm_source=dsc.duq.edu%2Fetd%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/132?utm_source=dsc.duq.edu%2Fetd%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/821?utm_source=dsc.duq.edu%2Fetd%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/821?utm_source=dsc.duq.edu%2Fetd%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/824?utm_source=dsc.duq.edu%2Fetd%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/733?utm_source=dsc.duq.edu%2Fetd%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd/1430?utm_source=dsc.duq.edu%2Fetd%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:phillipsg@duq.edu


 
 

 

 

DESIGNING A CALIBRATION SET IN SPECTRAL SPACE FOR EFFICIENT 

DEVELOPMENT OF AN NIR METHOD FOR TABLET ANALYSIS 

 

 

 

 

A Dissertation 

Submitted to the Graduate School of Pharmaceutical Sciences 

 

 

 

Duquesne University 

 

In partial fulfillment of the requirements for  

the degree of Doctor of Philosophy 

 

By 

Md Anik Alam 

 

May 2018 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Md Anik Alam 

 

2018



 

iii 

 
 

 
DESIGNING A CALIBRATION SET IN SPECTRAL SPACE FOR EFFICIENT 

DEVELOPMENT OF AN NIR METHOD FOR TABLET ANALYSIS 

 
 
 

 
 

By 
 

Md Anik Alam 
 
Approved April 12, 2018 
 
 
________________________________ 
Carl A. Anderson, PhD 
Associate Professor of Pharmaceutics 
Duquesne University 
(Committee Chair) 
 
 
 
 
 
 

________________________________ 
James K. Drennen, III, PhD 
Associate Professor of Pharmaceutics 
Duquesne University 
(Committee Member) 

 
________________________________ 
Peter L.D. Wildfong, PhD 
Associate Professor of Pharmaceutics 
Duquesne University 
(Committee Member) 
 
 
 
 

 
________________________________ 
Ira S. Buckner, PhD 
Associate Professor of Pharmaceutics 
Duquesne University 
(Committee Member) 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
________________________________ 
Dongshen Bu, PhD 
Senior Research Investigator 
Bristol-Myers Squibb 
 

 
 
________________________________ 
David Johnson, PhD 
Professor of Pharmacology 
Duquesne University 

  
 

  (Committee Member) 

 

  



 

iv 

ABSTRACT 

 

DESIGNING A CALIBRATION SET IN SPECTRAL SPACE FOR EFFICIENT 

DEVELOPMENT OF AN NIR METHOD FOR TABLET ANALYSIS 

 

 

 

By 

Md Anik Alam 

May 2018 

 

Dissertation supervised by Carl A. Anderson 

Designing a calibration set is the first step in developing a spectroscopic calibration 

method for quantitative analysis of pharmaceutical tablets. This step is critical because 

successful model development depends on the suitability of the calibration data. For 

spectroscopic-based methods, traditional concentration based techniques for designing 

calibration sets are prone to have redundant information while simultaneously lacking 

necessary information for a successful calibration model. The traditional method also 

follows the same design approach for different spectroscopic techniques and different 

formulations, thereby lacks the optimizing capability to be technique and formulation 

specific.  

A method for designing a calibration set in the Near Infrared (NIR) spectral space was 

developed for quantitative analysis of tablets. The pure component NIR spectra of a tablet 
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formulation were used to define the spectral space of that formulation. This method 

minimizes sample requirements to provide an efficient means for developing multivariate 

spectroscopic calibration.  

Multiple comparative studies were conducted between commonly employed experimental 

design approaches to calibration development and the newly developed spectral space 

based technique. The comparisons were conducted on single API (Active Pharmaceutical 

Ingredient) and multiple API formulation to quantify model drugs using NIR 

spectroscopy. Partial least squares (PLS) models were developed from respective 

calibration designs. Model performance was comprehensively assessed based on the 

ability to predict API concentrations in independent prediction sets. Similar prediction 

performance was achieved using the smaller calibration set designed in spectral space, 

compared to the traditionally designed large calibration sets. An improved prediction 

performance was observed for the spectrally designed calibration sets compared to the 

traditionally designed calibration sets of equal sizes. Spectral space was also used to 

incorporate physico-chemical information into the calibration design to provide an 

efficient means of developing robust calibration model. Robust calibration model is 

critical to ensure consistent model performance during model lifecycle. A weight 

coefficient based technique was developed for selecting loading vector in PLS model to 

aid in building robust calibration model.  

It was also demonstrated that the optimal structures of calibration sets are different 

between NIR and Raman spectroscopy for the same tablet formulation. The optimum 

calibration structures are also different between two APIs for the same spectroscopic 

technique, indicating the criticality of the calibration design to be formulation and 
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technique specific. This study demonstrates that a calibration set designed in spectral 

space provides an efficient means of developing spectroscopic multivariate calibration for 

tablet analysis. This study also provides opportunity to design formulation and technique 

specific calibration sets to optimize calibration capability. 
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1 Chapter 1: Introduction 

1.1 Statement of the Problem 
NIR spectroscopy (NIRS) is a well-established analytical tool in the pharmaceutical 

industry for quantitative analysis of tablets [1-5]. NIRS offers substantial advantages in 

terms of time and cost compared to the wet chemical methods. However, successful 

application of this technology depends on an appropriate calibration method, and an 

appropriate calibration method is built upon appropriate calibration sample design. 

Typical steps to develop a NIR quantitative calibration method for pharmaceutical tablets 

are: calibration design, sample set preparation, spectral data collection, reference 

analysis, and model development [2]. Defining the calibration sample set is the first step 

for calibration model development. There are a number of requirements for an 

appropriate calibration set for tablet analysis; examples include spanning the 

concentration range for an active pharmaceutical ingredient (API) and excipients, 

multiple lots of raw materials, different processing conditions, mutually independent 

samples, etc [6]. A proper calibration set is a pre-requisite for generating appropriate 

spectral data and achieving desirable predictive performance from NIRS. Therefore, the 

size and direction of the calibration spectral subspace  is of critical importance for 

successful quantitative model development [7]. 

Other elements of NIR method development have been the subject of many 

comprehensive reviews and continuous advancements (e.g. pretreatment techniques, 

regression methods). Yet, analysis of calibration set design and its effect on model 

performance has received far less attention in the literature and regulatory guidelines. 

There is no standardized reference method for developing spectroscopic calibration sets 
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for quantitative analysis of tablets. Practical approaches used for designing calibration 

sets include experimental design entirely in concentration space (e.g. full-factorial design, 

central composite design)  [8-11], calibration sample selection form large data set based 

on a selection algorithm [12-16], preparation of sample set that spans target 

concentrations and anticipated variance (including physical sources of variance) over the 

product lifecycle [17-21]. The objective of these techniques is to generate an appropriate 

calibration set that contains ‘sufficient’ information about the system to develop a 

successful quantitative model. As sufficient information is challenging to define, the 

general idea is to incorporate as much variance as possible in an effort to ensure that all 

future variance is captured in the calibration set [22]. This idea often leads to the creation 

of a large calibration set. The reported numbers of calibration samples for NIR 

quantitative methods are typically large for pharmaceutical tablets, such as 500 [23], 450 

[24], 414 [25], 297 [26] and 276 [27]. Preparation of such large calibration sets is costly, 

especially in the product development phase when API is expensive. It is also very time 

consuming to perform the reference analysis (typically HPLC) of such large calibration 

sets. A small calibration set with desired predictive performance would be helpful to save 

time and cost associated calibration method development for tablet analysis using NIRS. 

Ironically, the traditionally developed large and expensive calibration sets typically 

contain redundant information. Redundant information is not necessary for developing a 

successful quantitative model. However, samples containing redundant information are 

typically identified in posterior analysis from their spectral responses. An analysist often 

ends up preparing and analyzing samples that are unnecessary for the intended purpose. 

Currently, there is no published technique to identify the redundant samples at the outset 
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of calibration development. Such a technique would be helpful to reduce the efforts in 

preparing redundant calibration samples and save considerable time and cost associated 

with calibration development. 

It is also possible to miss the critical samples in the large calibration sets leading to a lack 

of robustness of the method despite specific efforts to the contrary. A calibration set may 

simultaneously contain redundant spectral information and lack the necessary 

information to provide model robustness. Current approaches for calibration development 

do not provide opportunity to identify the most critical calibration samples at the outset of 

calibration development. Such a technique is useful to identify the smallest possible 

calibration set with desired predictive performance.  

Information about critical sample requirements of a calibration set is most useful at the 

outset of method development to design a small and efficient NIR calibration set for 

tablet analysis. This requirement is formulation specific and is dependent on the spectral 

response of the individual constituent. Current strategies for designing NIR calibration 

sets do not account for variations in pharmaceutical formulations and their spectral 

responses. Regulatory guidelines and general rules of thumb are usually followed for all 

types of formulations resulting in similar concentration ranges, levels and number of 

samples for all types of calibration sets. However, an optimal calibration design for one 

formulation can be sub-optimal for a different formulation. Different NIR responses 

produced by different formulations should be considered during the selection of 

calibration range, size, concentration levels and variance information. Variation of the 

spectrally similar components might give redundant information and need not to be 

varied simultaneously in the calibration set. Concentration of a component with relatively 
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weak spectral response might not need to be varied extensively whereas the component 

with dominant spectral features might require wide variation in the calibration set to 

develop a successful calibration model. Non-linearity between the concentration and 

spectral response can be highly dependent on the formulation and analytical technique of 

interest. The same calibration designs of different formulations can be mapped differently 

into the spectral space of an analytical technique, generating redundant information for 

one formulation while lacking necessary information for the other. A formulation specific 

calibration strategy should be developed to best utilize NIR capability for quantitative 

analysis of tablets. 

A calibration set should also be specific to analytical technique. Currently, little or no 

differences are usually found between NIRS and other spectroscopic calibration designs. 

The same calibration design of the same formulation can perform differently depending 

on the analytical technique. Practically, there is no best calibration design that works for 

all purposes. A great deal depends on the method requirements and resource availability 

[28]. The traditional practices for developing calibration sets are inefficient in utilizing 

the available resources and minimizing redundant information. The calibration strategies 

are also too generalized to account for formulation variability and variation in spectral 

responses. A formulation and technique specific calibration strategy is required to make 

the calibration process efficient and optimize the calibration performance.  

This dissertation demonstrates a strategy for designing a calibration set in spectral space 

for quantitative analysis of tablets using NIRS. This strategy requires fewer calibration 

samples to achieve desired prediction performance of the calibration model. This strategy 
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also offers a formulation and technique specific calibration experiments for calibration 

method development.  

1.2 Hypothesis and Objectives 
The central hypothesis of this dissertation is that designing experiments in spectral space 

provides a more efficient means compared to current practices for developing 

spectroscopic calibrations for quantitative analysis of pharmaceutical tablets. 

Given the central hypothesis, the objectives of this dissertation work were, 

1. Develop a strategy to design NIR calibration sets in spectral space for 

pharmaceutical tablets  

a. Calibration design for a model drug product containing one API. 

b. Calibration design for a model drug product containing multiple API. 

2. Evaluate calibration performance between spectral calibration sets and traditional 

calibration sets for quantitative analysis of tablets using NIR 

a. Comparative studies between calibration strategies for single API. 

b. Comparative studies between calibration strategies for multiple API. 

3. Develop a strategy to incorporate physical information into the spectral design of 

NIR calibration set 

a. Develop strategy to incorporate physical information into the spectral 

space 

b. Evaluate calibration model robustness between spectral calibration sets 

and traditional calibration sets  
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4. Compare optimized calibration sets of NIR and Raman spectroscopy for 

quantitative analysis of pharmaceutical tablets 

1.3 Literature Survey 
The first calibration set development and quantitative analysis of pharmaceutical 

components using NIRS was reported in 1961 [29]. A series of reports followed later on 

the quantification of amine salts (first application in a solid system) [30], 

allylisopropylacetureide and phenacetin [31], meprobamate [32], carisoprodol [33] and 

water content [34] in pharmaceutical compounds using NIRS1. Since then, application of 

this technology has been exponentially expanding due to advancements in computational 

power, multivariate statistics and also information contained in the spectral range [35]. 

The pharmaceutical industry has adapted NIRS due to its potential to offer fast, easy and, 

most importantly, non-invasive and non-destructive analysis technique. However, an 

appropriate calibration set is required to deal with complex and overlapping features of 

NIR spectra and non-specificity inherent to the technique [36]. An appropriate calibration 

set is also critical to ensure consistent calibration performance during product life cycle. 

Any change in the formulations, physical properties of the components or manufacturing 

unit operations may cause the validated NIR method to become unusable [37]. 

Current strategies for developing calibration sets suffer from the redundancy of 

unnecessary information and the inadequacy of critical information in the calibration 

design. Redundancy of the calibration set and appropriateness of the calibration designs 

are critical factors that need to be considered during NIR calibration development. Bondi 

et al. demonstrated improved accuracy of full factorial and I-optimal designs over other 
                                                           
1 Calibration development for these reported methods used a univariate approach 
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types of factorial and optimal designs for NIR calibration development [9]. Although the 

I-optimal design was a subset of the full factorial design, the difference in predictive 

performance was statistically insignificant. This work suggests the presence of redundant 

information in the full factorial calibration design. Xiang et al. analyzed the effect of 

correlated design on the selectivity and robustness of the calibration models [38]. They 

demonstrated that the model selectivity and robustness of a randomized design was 

superior to that of a correlated design. Low correlation in the randomized design was 

critical to avoid fitting of the partial least squares (PLS) model to the non-selective 

correlation between spectra and excipient concentration. Naes et al. compared five 

mixture designs for developing calibration models and concluded that similar variation 

was required between the calibration and the prediction sets for successful model 

development [9, 39]. The same author also demonstrated the tendency of traditional 

calibration methods to contain redundant information in a subsequent paper; similar 

prediction performance was achieved with  20 samples out of 114 samples from the 

calibration set [40]. All of these examples demonstrate that a calibration set may 

simultaneously contain redundant spectral information and lack the necessary 

information to provide calibration model robustness. However, this information is 

available only in retrospective analyses, after considerable time and effort has been spent 

on the calibration development.  

The current strategies for developing NIR calibration set need significant improvement to 

make the calibration process efficient and optimize calibration performance. 

Optimization of the calibration strategy requires an in-depth understanding about the 

requirements of an appropriate calibration set and the effects of calibration structure on 
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calibration model performance. This understanding can be helpful to identify the 

necessary information for a calibration set and challenge the current philosophy of 

incorporating all possible variances into the calibration set. The current recommendation 

of a large calibration set can be replaced by an efficient strategy for developing NIR 

calibration set to quantitatively analyze pharmaceutical tablets.  

This chapter is aimed at reviewing the general requirements for an NIR calibration set 

designed to quantitatively analyze pharmaceutical formulations, current strategies for 

developing calibration sets and their effects on calibration model performances based on 

the published literature and regulatory guidelines. This discussion is particularly focused 

on the calibration sets designed to use inverse least squares regression techniques (partial 

least squares, principal component regression), considering their wide applicability and 

most frequent usage for quantitative analysis of pharmaceutical formulation. 

1.3.1 Calibration set requirements 

There are several requirements for an appropriate NIR calibration set. Blanco et al. 

indicated wide concentration variation and physico-chemical variability as critical 

requirements [41]. Mutual independence of samples was added to this list by other groups 

[6, 38]. Naes et al. discussed these requirements in terms of calibration spectral space and 

associated eigenvectors due to inherent collinearity of the NIR spectra [39]. Presence of 

all relevant eigenvectors, wide spanning of the eigenvector’s directions and even spread 

of the spectral space over the eigenvector subspace were considered necessary parameters 

for NIR calibration set. However, calibration set requirements can be further discussed in 

terms of range and level of concentration, number of samples and variance information. 
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1.3.1.1 Range and levels of concentration 

An appropriate concentration range and variability in calibration set is necessary to 

ensure NIR method robustness [42]. The concentration range must be selected 

appropriately to cover the anticipated concentration range in the routine samples. An 

extrapolation due to inappropriate calibration range is detrimental to calibration model 

performance. The effect of extrapolation is more critical to multivariate NIRS method 

compared to univariate counterpart [43]. Although a wide concentration range is 

encouraged, there are limitations in terms of time and resources available to develop a 

large calibration set. The typical production samples do not cover wide concentration 

range as the Pharmacopoeias often allow 5% deviation of the nominal content for the API 

[42]. Synthetic samples are often prepared in lab to extend the concentration range. 

International Conference on Harmonisation (ICH) suggests a range of ±20% of the 

nominal content of API for the assays method and ±30% for the content uniformity 

method [44]. The concentration range can be further extended by the inclusion of pure 

component (100%) or placebo tablets (0%) [45]. However, extreme points have high 

leverage during calibration development. High leverage samples can significantly change 

model direction and affect prediction performance in the concentration range of interest. 

Although a wide concentration range is considered to increase model robustness, it can 

introduce non-linearity. Good fit is almost guaranteed for a small set with narrow region. 

However, the predictions outside this small range are of little value considering the 

samples being outside of the validated range of the method [46]. Multiple ranges of a 

single calibration set are also used for different prediction samples [47]. A prediction 

sample at the calibration center is predicted by a narrow calibration range samples (local 
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calibration) whereas, prediction samples at the edge are predicted by a broad calibration 

range samples (global calibration). This technique is known as bracketing. Bracketing 

can also be performed by selecting an optimal subset from global calibration set [48]. 

Optimal subset can be changed each time a new test sample encountered. 

There is no guideline reported for excipient concentration range in the calibration set. 

Scheibelhofer et al. considered the variation of API more critical than the small deviation 

of the excipients from the target [49]. However, all possible variations in excipient 

concentrations were recommended to be included into the calibration set [49].  

Components having common spectral features were emphasized in this aspect. A 

regulatory guideline for excipient variation would be helpful in designing an appropriate 

calibration set with desired predictive performance. 

The concentration levels of a calibration set are also critical to develop appropriate 

calibration model. Uniform distribution of the concentration levels is favored over 

Gaussian or normal distribution [50, 51]. High leverage samples in the normal 

distribution are considered undesirable during model development. The ICH Guideline 

recommends at least five concentration steps to prove linearity [44]. Several samples 

should be available per source of variance in NIR calibration set [47, 51]. The link 

between API concentration range and clinical performance has not been discussed either 

in literature or in guidelines. The calibration range is selected primarily based on 

acceptable API range in the final dosage forms. A risk-based approach for defining the 

range would be advantageous to bridge the gap between acceptable API range, 

calibration range and clinical performance [52]. 
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1.3.1.2 Number of samples 

Appropriate number of calibration samples is critical to calibration model performance 

[53]. ‘Appropriate number’ has been defined as the number providing sufficient chemical 

and physical variability resulting in appropriate spectral variability [54]. The number is 

formulation, method and technique dependent and usually decided based on experience. 

A set of 20–30 calibration points was considered sufficient for model accuracy by several 

groups [47, 55, 56]. Agelet et al. recommended 100 samples for a robust NIR calibration 

[50]. This requirement can be smaller for homogeneous samples. ASTM recommends 

multiplying the number of principal component (PC) by a factor of 6 to determine 

appropriate sample number [57]. However, a priori data set is a prerequisite to calculate 

the PCs. Mathematical approaches have been reported to determine the number of 

calibration samples [49]. For a mixture system having “P” levels for each chemical 

component, the appropriate number of calibration sample ‘N’ can be calculated as, 

 𝑁𝑁 =
1
2
∗ 𝑝𝑝 ∗ (𝑝𝑝 + 1) (1.1) 

Li et al. used full factorial approach to determine the number of calibration samples for a 

system containing “C” chemical components, each at “P” level, using following equation 

[58]. 

 𝑁𝑁 = 𝑃𝑃𝐶𝐶−1 (1.2) 

A degree of freedom is lost due to the mixture constraint. Such approaches give general 

direction for calibration sample number. However, these strategies require each varying 

component to have same number of levels, which may not always be feasible.  
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The appropriate numbers of calibration samples are also determined by splitting the 

available data into calibration and test set. Alvarenga et al. suggested that, the calibration 

should not be smaller than the 2/3 of the data set [59]. A smaller set is preferred to save 

time and cost, however, a minimum number must set to meet the statistical requirement. 

A two-points (extreme) calibration set was also reported during NIRS method 

development [60], for which statistical validity was questionable. 

1.3.1.3 Variance information 

The information content of the calibration set and quality of the calibration samples are 

considered to be more important than the number of calibration samples [22, 61]. A large 

variation in all directions at the region of interest is a critical requirement for an 

appropriate calibration set [59]. The information should include variation due to 

concentrations as well as physical properties, moisture contents [51, 62] of the samples 

and other factors that are bound to influence NIR spectra [63]. The calibration samples 

should have a wider range of variation than the production samples to ensure model 

robustness [19]. The wider range samples can be prepared at the laboratory scale or by 

spiking (under-dosing/over-dosing) the production samples with appropriate amount of 

API and/or excipients. However, lab-engineered samples were criticized due to its 

potential to introduce greater than nominal variances and increase prediction errors [62]. 

A calibration model has the potential to fail during the prediction of future samples 

having different interference information such as temperature effects, season to season 

variation, different tablet for the same active component, and batch effects in industrial 
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production processes [64-67]. The structure and information content of the calibration set 

are critical for achieving appropriate representation of the future samples [46]. 

Several requirements are reported and they provide a general guideline for NIR 

calibration set development. However, many of the calibration requirements can be 

method specific and can vary depending on method requirements. Instead of a general 

calibration design guideline, a standard method specific protocol is essential to meet the 

calibration requirements. It is also critical to establish appropriate metrics to ensure the 

fulfillment of calibration set requirements. 

1.3.2 Strategies for developing calibration set 

The main objective of developing a NIR calibration set is to represent routine production 

samples and aid in developing a successful predictive model. Routine samples should not 

be used alone to develop calibration set as these samples contain API and excipients in 

amounts very close to the target composition, which precludes spanning a wide enough 

concentration range for calibration set [41, 63, 68]. Several strategies are used to develop 

calibration sets. Sarraguca et al. reported four strategies [63] for developing calibration 

set using: 

1) Production samples with a wide concentration range [24, 69, 70]  

2) Production samples spiked with API/excipients [71-73] 

3) Designed laboratory samples [73, 74] 

4) Combined set of production and laboratory samples [42]  
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Blanco et al. discussed similar strategies and recommended a combined approach [75]. 

The author also demonstrated a strategy using laboratory samples with a calculated 

process spectrum to explain the spectral difference between laboratory and production 

samples [41]. Spiking production samples and designing laboratory samples are the two 

most common strategies. These strategies were found to be similar in terms of model 

performance [63, 72, 73, 75]. Spiked samples usually match with the routine production 

samples in terms of physical properties offering additional advantages [73]. However, a 

high correlation between component’s concentrations in spiked samples can lead to poor 

model specificity. Experimental design of the laboratory samples can be used to reduce 

the correlation between component concentrations [42]. Another widely used strategy 

involves the selection of calibrations set samples from a large data using different 

selection techniques [74]. In this report, strategies are classified into three major 

categories based on the techniques used for developing NIR calibration set: 

A. Use of design of experiment to prepare a calibration set 

B. Use of sample selection techniques to select a calibration set 

C. Under dosing/over dosing (spiking) production samples to prepare a calibration 

set 

1.3.2.1 Use of design of experiment to prepare calibration set 

Design of experiments (DoE) is a statistical tool to design a controlled and limited 

number of experiments to gain in-depth understanding about the relationship between 

factors and responses of an underlying system. In the field of multivariate calibration 

(MVC), DoE is used to design calibration samples to define the relationship between 
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concentration and spectral response. The implementation of DoE is challenging in MVC 

due to the inconsistency between the theory and practical application. In the calibration 

design, the concentrations are considered as factors and spectra are considered as 

response. In contrast, in the model system (regression) the concentration and spectral 

response act as response and factors, respectively. Although this inconsistency has been 

previously addressed [76], a practical solution is yet to be introduced. There are several 

types of experimental designs employed to develop NIR calibration set. 

1.3.2.1.1 Full Factorial Design 

During spectroscopic calibration development, a full factorial design is used to prepare 

calibration set using all possible combinations of the varying components. The details of 

full factorial design can be found elsewhere [77]. Although this design is intended to 

provide orthogonality, it is not possible to attain complete orthogonality in calibration 

design of a pharmaceutical system due to the mixture constrain (total is 100%), especially 

in solid samples. Therefore, the orthogonality between API and major excipients are 

emphasized over the minor excipients. Complete orthogonality can be achieved using 

sample solutions. A full factorial orthogonal design was created to build NIR calibration 

dataset for predicting human serum albumin, gamma-globulin and glucose in control 

serum and phosphate buffer solution [78, 79]. However, the calibration set was developed 

by randomly selected 80 samples out of 125. Thus, the orthogonality of the design was 

not maintained in the calibration set. The effect of randomized selection on calibration 

model performance was not analyzed. 
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Selection of design factors and levels are critical during calibration development. In most 

cases, the API and major excipients are considered as the factors of the design, because 

the primary objective of the calibration design is to develop mathematical relationship 

between API concentration and spectral response. The variations in the major excipients 

are required to train the calibration model against non-specific variation in the spectral 

response. Other excipients usually act as fillers to fulfill the constraint. For multiple API, 

only the APIs can act as factors [80]. A component ratio can also act as a factor of the 

calibration design. Using a ratio as factor helps to reduce the number of design points 

while maintaining wide range of concentration. Igne et al. considered API concentration 

and major excipient’s ratios as two factors of the design during the development of a 

calibration set for blend monitoring [81, 82]. The first calibration set contained spectra 

from different time points of blending runs whereas the second set contained spectra at 

the end of the blending runs assuming that the blend reached homogeneity. 

Aside from the compositions, external factors such as moisture content, batch, day, 

operator and collection temperature can also be included in the design to introduce 

external variance into the calibration set [83]. Inclusion of the external factors usually 

leads to a robust calibration model. However, it can also affect model accuracy due to 

spectral sensitivity to the external factors. Kamran et al. included the API concentration, 

particle size distributions (PSD) and compression pressures as the design factors during 

the quantification of ibuprofen in tablets [84]. The calibration performance was found to 

be sensitive to PSD variation. The model performance was improved by developing the 

calibration set on uniform PSD of API and filler. In this study, the sample set was 

randomly split into calibration and validation set. An independent validation set should 
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have been used to retain the orthogonality of the design in calibration set. Such validation 

set was used to assess calibration performance during the quantification of red iron oxide 

in tablets [85]. The calibration model was found to be sensitive to the thickness variation 

built into the calibration design. A uniform distribution of the tablet thicknesses in 

calibration set would be helpful to make the model robust against thickness variation.  

Full factorial design can be combined with a fractional factorial design during calibration 

set development. Cogdill et al. used a combination of full factorial (in production scale) 

and fractional factorial design (in lab scale) during API quantification in tablets [23]. The 

common design factors were the source of API and Magnesium stearate, granules’ 

moisture content and compression force. Additionally, in the fractional factorial design, 

API content was varied at ±30% of the nominal content. The use of a fractional design 

helped to reduce the number of design points. The calibration model was demonstrated to 

be robust against source, time, and compaction pressure variation. Another calibration set 

was developed for predicting Radial Tensile Strength (RTS) of the tablet. Compression 

force was varied in the calibration set to produce tablets with different RTSs. 

1.3.2.1.2 D-Optimal Design 

D-optimal design is widely used for developing calibration set with optimum number of 

samples when the classical symmetrical designs cannot be used because of the large 

number of design points or the irregular shape of the experimental region [86]. This 

technique is used to maximize the information content of a design by maximizing the 

determinant (D) of the information matrix (X’X). The details of the design can be found 

elsewhere [87]. 
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Karande et al. used a D-optimal design to develop a NIR calibration set for blend 

monitoring [88]. A set of 24 design points was created by D-optimal design strategy out 

of which, 3 design points were removed for the test set leaving 21 design points for the 

calibration development. These 21 design points might not be the optimum set of 21 

points that had maximum determinant. It would be ideal to create a separate design for 

the test set to maintain optimality of the calibration set. In this study, the calibration range 

was 2-6 % and the resulting calibration model was used for predicting a full blend run 

where API concentration outside the range was expected to be encountered during the 

blending process. Prediction outside the calibration range should have been considered 

with limited confidence. D-optimal design was also used to create a calibration set for 

monitoring a five component blending run [89]. 

Tomuta et al. used D-optimal design strategy to develop a calibration set for quantitative 

analysis of API and excipients in meloxicam tablets [90]. The ranges of variation were 

kept ± 20% from the target composition for all components and levels of variation were 

different for different components. The calibration model was able to predict meloxicam 

and isomalt concentration accurately, but unable to predict sodium starch glycolate and 

magnesium stearate due to low concentration. However, meloxicam and sodium starch 

glycolate had similar concentrations (6.25% and 5%) but different levels of variation in 

the calibration design. The effect of level variations on prediction performance was not 

analyzed. In another study, D-optimal design was used to prepare a set of placebo 

samples during the determination of ibuprofen content in production granules, tablet 

cores and coated tablets [91]. The calibration samples were prepared by mixing different 

levels of API with randomly selected placebo matrix and compressing them at different 
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pressures. The randomization of the placebo mixture helped to mitigate the possibility of 

compositional correlation in the calibration design. 

D-optimal design was also used to create a calibration set during flow property analysis 

of pharmaceutical powder [92]. A sample set with compositional variations was designed 

to cause variation in flow properties e.g., angle of repose, compressibility index and 

hausner ratio. A similar approach was taken to analyze the PSD of a pharmaceutical 

powder system [93]. Compositional variation was designed and assumed to create 

variation in the PSD of the final formulation. The use of a D-optimal design ensured 

maximum concentration variation with given number of design points. However, it did 

not ensure maximum variation in the PSD with the given design points. D-optimal design 

was also used to prepare a calibration set during the determination of simvastatin and 

excipients in lyposomes [94], diacetylmorphine, Caffeine and Acetaminophen [95] and 

cetirizine dihydrochloride in powder samples [96]. 

1.3.2.1.3 Binary Design 

In the statistical literature, binary design refers to a certain type of block design [97]. In 

this report, binary design is defined as a “design having high correlation between 

concentrations of two/multiple components in the calibration set”. The correlation is 

termed as chance correlation in the literature [38]. Although there is poor model 

specificity associated with this design due to the presence of correlation, it is the most 

widely used design in multivariate calibration development.  
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Patel et al. used binary design to create a NIR calibration set for sulfamethoxazole (SMZ) 

form I prediction in binary polymorphic mixtures and multi-component mixtures [98]. 

Because of the concentration correlation between two forms of SMZ, model predictive 

performance for SMZ form I was depended on signals from both forms of SMZ, leading 

to poor model specificity. Although sample mass has been reported to affect NIR baseline 

[47], sample mass variation between the binary samples (300mg) and multicomponent 

samples (330 to 6000mg) were not considered during the assessment of model 

performance. In the multicomponent mixtures, the diluent concentration was kept 

constant. A mixture design would be appropriate to allow different levels of the diluent 

concentrations with same number of design points. Binary design was used to prepare a 

calibration set for predicting two polymorphs of carbamazepine in bilayer tablets [99]. 

 

Figure 1-1. TNIR spectra of double-layered tablet consisting of various ratios of 
forms I and III CBZ (A) and Model regression vector (B) [100] 

  

A B 
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The calibration set was prepared by varying the ratio of two polymorphs. The spectral 

changes were highly correlated between two polymorphs due to their perfectly correlated 

concentrations as shown in Figure 1-1. 

A positive regression co-efficient explained the appearance of form I (also disappearance 

of form III) and negative regression co-efficient explained the opposite scenario. A 

similar approach was taken to vary crystalline and amorphous cephalexin in a calibration 

set for pharmaceutical powder [101]. Although these studies reported acceptable model 

performance, the effect of chance correlation on model specificity was overlooked in the 

analysis. If the amount of one form were changed while keeping the concentration of the 

other form constant or vice versa, the model would fail in predicting any of the forms 

accurately. An appropriate calibration design without correlation could be helpful to 

overcome this limitation. 

Binary design was used during the comparison between reflectance and transmission 

mode of NIRS based on the ability to predict Theophylline anhydrous concentration in 

tablets [102]. This design was also used to prepare the calibration sets for determining 

meloxicam [103], bromazepam and clonazepam [104] and riboflavin [18] content in 

pharmaceutical preparations. In these studies, several factors such as non-uniform 

distribution of API, tablet weight variation should have been investigated besides the 

chance correlation due to their potentials to affect NIR calibration performance. 

Introducing a small amount of random variation using replication in the design can 

reduce the effect of correlation on model specificity. Varying the excipient mixtures 

instead of an excipient as one factor can also minimize this effect. The correlation 
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between API and excipient mixtures can be less detrimental to model specificity due to 

relatively small changes in a particular component concentration. Replication and 

excipient mixture method was used during a calibration set development for NIR content 

uniformity method [105]. Model specificity can also be improved by selecting 

wavelengths that are unique to the analyte of interest [106]. However, this technique can 

affect model accuracy. In the binary design, full wavelength selection usually provides 

improved accuracy due to all types of correlated signals. Specificity is an important 

figures of merit and should always be assessed since it is the underlying chemistry basis 

for the method [105]. 

Binary design was also used to prepare a calibration set for quantitative analysis of 

mixtures containing components of similar or different PSD [60]. Only the two extreme 

point calibration samples were demonstrated to be sufficient for quantitative analysis of 

components having similar PSD. However, statistical validity of the two-point calibration 

is questionable. A larger sample set was required for components with different PSD. 

Lack of specificity was observed which might be the result of binary calibration design. 

A similar calibration approach was undertaken to monitor powder mixing between two 

components of different PSD [107]. Binary design can be less detrimental to a mixing 

analysis compared to the quantitative analysis of a single component. For a mixing 

analysis, it is desired for the method to be sensitive to all components of the system 

whereas for quantitative analysis it should be sensitive to the analyte of interest only. 

A calibration set can also contain compositional correlation due to the processing of the 

calibration samples. For instance, a NIR method was developed to quantify drug content 
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during a continuous blending process of API, granules and lubricant [108]. Concentration 

of the API was varied by varying the API flow rates whereas flow rates for the granules 

and lubricant were kept constant. However, their concentrations must have been changed 

in the volume of sample scanned by the spectrometer. This change might be directly 

correlated with the API concentration thus introduced binary structure in the calibration 

set.  

1.3.2.1.4 Mixture Design 

Mixture design is also widely used to develop calibration set for NIR method. Mixture 

design reduces the number of calibration samples while applying constraint on mixture 

composition using an optimality criterion. The details of the design can be found 

elsewhere [109].  

A mixture design was used to prepare a calibration set during simultaneous determination 

of chondroitin, glucosamine and ascorbic acid in capsule powder [110] and 

acetylsalicylic acid, ascorbic acid and Caffeine monohydrate in powder mixtures [96]. 

Shi et el. used a mixture design to develop a calibration and prediction sets while 

quantifying Theophylline, MCC and Lactose in tablets [111]. A ternary diagram was used 

to generate six design points as shown in Figure 1-2. The three outmost points were not 

included in the calibration because of their lack of leverage for other components. As the 

same calibration set was used for all components, this led to extrapolated prediction 

outside the calibration range for MCC and Lactose. Component specific calibration set 

would be helpful to avoid extrapolation of prediction range.   
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Figure 1-2. Tablet chemical composition. Squares were the calibration data points, 
and circles were the prediction data points [111] 

Short et el. also used mixture design to develop a calibration set for quantifying 

Theophylline in tablets [11]. A set of 29 calibration sample was designed to cover all 

concentration ranges of a four-component system. The same design was used during the 

prediction of crushing strength and density of tablets using NIR reflectance [112] and 

imaging[113]. Ozdemir et al. used mixture design to develop a calibration set for 

quantitative analysis of a complex mixture [114]. A set of 21 design points was created 

and three sets of samples were prepared at the same composition resulted a total of 63 

samples. Two calibration sets were developed, one using the first set of 21 samples (set 

A) and the other using the first and second set of 21 samples (total 42 samples in set B), 

both predicting the third set of 21 samples (set C). Better model accuracy was observed 

from set A compared to set B. This was contra-indicatory to the statement that more 

number of calibration samples helps to minimize model prediction error [48, 115]. 

Calibration performance does not solely depend on the sample size. 
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Alexandrino et al. used a combined approach of a mixture and D-optimal designs to 

develop a calibration set for quantitative analysis of polymer thin films [116]. An 

experimental domain of polymer mixture was generated by a mixture design with 

constraints on concentration range. Subsequently a D-optimal design was used to 

generate a set of 17 design points inside the domain. Different amounts of API were 

randomly assigned to each design point. Subsequent splitting of the design points into 

calibration and test was performed. This procedure might not generate the optimum 

calibration set with appropriate variance. A straightforward approach would be to use a 

D-optimal design with concentration range constraint. This would allow systematic 

variance of API along with the excipients.  

1.3.2.1.5 Correlation Design 

Correlation design is used to assess the correlation between different variables. Although 

the objective of calibration design is far from finding the correlation between API and 

excipient concentrations, the correlation between component concentrations is critical to 

the specificity of the calibration model. Calibration sets have been designed to reduce 

correlation between component concentrations in NIR calibration set. In this report, such 

designs are termed as correlation designs. Khan et al. used a correlation design to develop 

a calibration set for on line monitoring of pharmaceutical blends [117]. The formulation 

contained API with three major excipients resulted six pairs correlation statistics. A set of 

21 design points was selected from 10,000 simulations based on the minimization of the 

sum of square of six pair correlations. Equal flexibility was given to each component in 

terms of allowable concentration variation. The resulting ranges of concentration 
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variations were different for different components, API being the third in descending 

order. As API concentration variation is more critical than the excipients concentration 

variation [49], large variation in the API concentration and small variation in the 

excipients concentration would be advantageous. In another study, the ranges of 

concentration variations were set higher (70-130%) for the API compared to the 

excipients (90-110%) [118]. The API and excipients were varied such that all correlation 

coefficients were below 0.5. The ranges of variation can also be set according to the 

target concentrations. Correlation design was also used to develop a calibration set for 

monitoring powder blend [17]. The blend contained 7 chemical components including 

two APIs. In the design, concentration variations for the most and least concentrated 

components were ±10% and ±80%, respectively. However, the effect of these range 

variations on NIR model performance was not discussed in any of the studies. 

1.3.2.1.6 Other Designs 

Several other designs have been used to prepare calibration sets for NIR method. Ito et al. 

used a central composite design to develop an NIR calibration set while predicting 

Acetaminophen and Caffeine concentrations in bi-layer tablets [26]. Shi et al. used a 

Placket-Burman design to develop a calibration set for quantitative analysis of powder 

mixture [119] and for blend monitoring [120]. Blend monitoring was also performed 

using an extreme vertices design [121] and a simplex lattice design [122]. A simplex 

lattice design of 5 degree and 21 mixture points was used to generate a set of 126 

calibration samples varying each component at 6 levels. The same design (excluding mg 

stearate) was carried out for determining chlorpheniramine concentration in tablets [123]. 
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Alcala et al. used a multivariate design approach for developing a calibration set during 

API prediction in tablets [124]. The main difference between multivariate design and 

other conventional designs lies in the data structure and subsequent chemometric analysis 

(3-way vs 2-way, respectively). The multivariate designs are analyzed through extended 

modeling techniques (multiway PLS), whereas conventional designs are analyzed 

through traditional PLS. Osorio et al. used a science based calibration technique where a 

small calibration set was demonstrated to be sufficient for monitoring a powder blending 

process [125]. Although a high correlation between component concentrations was 

present in the calibration design, specificity was assured by selecting unique peak of API 

and developing an univariate prediction model. 

1.3.2.2 Use of sample selection techniques to select calibration set 

Calibration sets for a NIR method can also be developed by selecting samples with or 

without constraints from a given dataset. A random selection process without constraint 

was performed during the determination of ginsenosides in pharmaceutical tablets [126]. 

A set of 93 production samples was randomly selected from the manufacturing site for 

method development. Subsequent randomization was performed to split the data into 

calibration and test set. Calibration set selection without constraints usually have limited 

applications. Certain constraints are usually applied during the selection process to ensure 

regulatory compliance, appropriate concentration range, widespread variance and 

sufficient representability of the future dataset.  

Moffat et al. used a random selection method with constraints to prepare a calibration set 

for Acetaminophen tablets [74]. The calibration set was selected from fifteen production 
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and five development batches to include scale variations as well as concentration 

variation into the calibration model. A similar randomized approach was used to prepare 

calibration set ranging 80-120% of the nominal API content [21]. Meza et al. prepared a 

calibration set by randomly selecting samples from specific concentration levels of 

ibuprofen during tablet quantitation [127]. A randomized approach was also used for 

splitting compositionally varying dataset into calibration and test set during the 

quantification of propranolol hydrochloride in powder mixture [128]. 

The random selection method can be combined with an experimental design to develop a 

calibration set. Ferreira et al. selected a set of calibration samples randomly from a 

designed sample set of powder mixtures during hydrochlorothiazide (HCTZ) 

quantification in powder mixtures and tablets [129]. Certain constraints were applied 

during the selection step to ensure homogenous distribution of HCTZ in the calibration 

set. The developed model was used to predict three sets of pharmaceutical samples: 

powder samples before compression, intact tablets and powder samples obtained by 

grinding tablets. Tablet prediction had the least accuracy among three sample sets due to 

the density difference between tablet and powder mixture (calibration samples). This 

study indicated the criticality of the physico-chemical properties of the calibration 

samples. However, high correlation (r2~0.99) between HCTZ and MCC concentrations 

was overlooked during specificity analysis. A similar method was used to prepare two 

calibration sets for the quantification of multiple API and tablet RTS [130]. Certain 

constraints were applied to ensure uniform distribution of APIs and tablet RTS. 

The calibration samples can also be selected via different selection algorithms. The 

Kennard-Stone algorithm was used to select a set of representative calibration samples 
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for determining amoxicillin content in suspension [131]. Kennard stone algorithm is a 

widely-used technique for selecting a representative subset from a large dataset. The 

selection algorithm provides uniform coverage over the dataset by selecting the most 

separated samples at successive iterations. The algorithm provides unique solution, 

thereby results in the same representative set for all iterations. The details of the Kennard 

stone algorithm can be found elsewhere [132]. Li et al. used this algorithm to select the 

calibration set during azithromycin quantification in tablets of different colors and shapes 

prepared by different manufacturers [133]. Four different calibration sets were selected 

from four data sets containing spectra of coated tablets, powdered tablets, uncoated 

tablets and powdered uncoated tablets. Among the four calibration sets, prediction errors 

in descending order were coated tablets, powdered coated tablets, uncoated tablets and 

powdered uncoated tablets. Spectral interference from coating component decreased 

model’s prediction performance. The Kennard Stone algorithm was also used to select a 

set of representative samples from calibration set for developing a calibration transfer 

method [134]. 

Principal Component Analysis (PCA) can also be used to select calibration samples based 

on the variance information of individual sample [135]. Blanco et al. performed PCA on 

a dataset containing laboratory and production samples spanning concentration as well as 

physical variability [136]. Samples that showed large variability in the first two PCs, 

were included into the calibration set to incorporate maximum spectral variance. 

However, maximum spectral variance may not always indicate concentration variation. In 

such scenario, PCA based selection should be performed on the PCs that primarily 

explain concentration information. Some other physico-chemical parameters along with 
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PCA analysis can also be used to select the calibration set. Alvarenga et al. prepared a 

calibration set based on PCA and group statistics on API content, water content and tablet 

hardness [59]. Samples having wider variability were included into the calibration set to 

develop a robust calibration model. Shi et al. used PLS scores for selecting the process 

samples to include into the calibration set during content uniformity analysis of tablets 

[137]. This selection strategy was compared with a random selection process. The mean 

difference between two sampling approaches was found insignificant. PLS score based 

selection strategy was found to be cost and time effective. Selecting samples from PCA 

or PLS scores space should be performed carefully, as this can exclude samples with 

extreme concentrations and narrow the concentration range leading to undesired 

extrapolation. 

Feng et al. used a classification technique to select a calibration set during the 

determination of roxithromycin and erythromycin in tablets from different manufacturers 

[27]. The initial calibration set contained samples from random manufacturers. The 

resulting calibration model failed to predict the concentration of APIs in tablets prepared 

by manufacturers that were not included into the calibration set. A cluster analysis was 

performed on average spectra of each batch based on wards algorithm. Samples from 

different clusters were selected for the calibration set such that, uniform distribution of 

API content and manufacturer was maintained. Calibration models were demonstrated to 

be accurate, robust, specific, linear, and transferrable. However, the validity of this 

method was challenged by Bleye et al. due to inappropriate prediction interval [138].  
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Figure 1-3. Accuracy profiles obtained from the work of Feng and Hu [27] for the 
quantification of Roxithromycin (A) and Erythromycin ethylsuccinate (B) using 
different NIRS equipment. Dotted horizontal lines (black): ±5% acceptance limits; 
dotted and dashed horizontal lines (green): ±15% acceptance limits; dashed lines 
(blue): 95% prediction intervals; dots (black): relative predicted concentrations of 
the corresponding NIRS methods [138] 
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Although having low prediction errors, this method was demonstrated unfit for the 

intended purpose, because the 95% prediction intervals were outside the acceptable range 

as shown in Figure 1-3 for two different NIR instruments. The prediction interval should 

be included in the list of figures of merit for assessing model performance. 

1.3.2.3 Under dosing / over dosing (spiking) production samples 

Calibration sets can also be prepared by spiking (under dosing / overdosing) production 

samples. Spiking is performed to extend the concentration range of production samples 

that are typically prepared at target concentration. Moes et al. used spiking strategy to 

prepare two calibration sets for analyzing blend uniformity of powder and content 

uniformity of tablet cores, respectively [139]. A high correlation between the API and 

excipients concentrations was present in both calibration sets. Along with the high 

correlation, calibration samples for content uniformity had uneven distribution of API 

concentration levels and were compressed at different compaction pressures compared to 

the validation samples. Poor prediction performance was observed during the prediction 

of tablets compressed at compaction pressures that were not included into the calibration 

set. Blanco et al. spiked production samples (64.5% amorphous miokamycin) with 

amorphous/crystalline miokamycin and excipients to prepare a calibration set for 

determining crystalline and total miokamycin content in tablets [140]. Different levels of 

PSD were included into the calibration set to make the model robust against particle size 

variations. Calibration design for determining one polymorph in presence of another 

polymorph is challenging. High correlation between the concentrations of different 

polymorphs can diminish calibration model specificity. In this study, the selectivity of the 
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calibration model was demonstrated qualitatively by using spectral correlation co-

efficient method.  

A similar approach was undertaken to develop a calibration set for quantifying Caffeine 

in tablets [141]. Due to the presence of high correlation in calibration set, model 

specificity was assessed by band assignment for Caffeine and comparing spectral features 

of Caffeine with first loading vector. A set of spiked samples was also used to prepare a 

calibration set during ranitidine quantification at different steps of tablet manufacturing 

process; in granules for compression, in tablet cores and in coated tablets [19]. The effect 

of high correlation between ranitidine and excipients was minimized by selecting 

appropriate wavelengths. Sarraguca et al. used spiked samples to prepare multiple 

calibration sets for quantifying Acetaminophen, acetylsalicylic acid, folic acid and 

neomycin in respective tablet formulation [142]. The correlation co-efficient between Net 

Analyte Signal and pure API spectrum was used as a metric for model specificity. 

Specificity was found to be low for all formulations due to the high correlation between 

API and excipients concentrations. A high correlation between API and excipients 

concentrations is usually found after spiking the production samples. The correlation can 

be minimized by using multiple placebo mixtures and randomly select one at a time for 

spiking production samples [135].  
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Figure 1-4. Improvement in calibration performance as a function of the number of 
production sample included into the calibration set with optimized latent variables 
numbers (A) and fixed latent variable numbers (B). Each symbol represents a 
different sequence of sample addition [62].  

The inclusion of production samples in the calibration set can mitigate the difference 

between calibration and routine samples in terms of physical properties. The calibration 

set prepared by spiking the production samples was found to perform better than the 

calibration set prepared from laboratory sample during quantification of commercial 

tablets [143]. Spiking was performed with randomly selected placebo samples form a set 

of placebo mixtures to reduce the correlation between API and excipients concentrations. 

A set of production samples can also be combined with the laboratory samples into the 

calibration set and improve calibration model performance [62, 144].  

B A 
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Figure 1-4 shows the improvement in calibration performance as a function of the 

number of production samples included into the calibration set while predicting otilonium 

bromide in production tablets [62].  

Production samples were also used to develop a calibration set for moisture content 

determination of tablets [145]. The samples were stored in humidity chamber to vary the 

moisture content. The samples were also varied in terms of different APIs, excipients, 

and shapes to develop a global calibration model for moisture content determination. 

Model developed from tablets of API I failed to predict moisture content of tablets 

containing different APIs. The most robust model was found by including tablets from all 

three APIs into the calibration set. However, the effect of uneven distribution of APIs, 

moisture contents and tablet shapes was not investigated.  

A combined strategy of using production and laboratory samples into the calibration set 

can be helpful, because production samples introduce physical variances whereas 

laboratory samples extend the calibration concentration range. Calibration sets containing 

both laboratory and production samples was used for successful quantification of 

tianeptine in coated tablets [146], Acetaminophen in production tablets [68], 

hydrocortisone in pharmaceutical powders [147] and isoniazid and rifampicin in capsules 

[86]. In the last study, production samples from several months were used to introduce 

possible changes in sample composition, suppliers, process changes or variations in 

storage conditions. Placebo samples were also used as calibration samples to deduce the 

interference structure for respective APIs.  
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A similar preparation method between laboratory and production samples can enhance 

the performance of the calibration model developed from laboratory samples only. 

During the determination of dexketoprofen in laboratory and production granules [148], 

model developed from laboratory powder failed due to differences between granules and 

powders in terms of physical properties. Although inclusion of production granules into 

the calibration set improved the prediction performance, the most accurate model was 

developed from laboratory granules that were prepared using similar process of 

production granules. This was due to the wider concentration range of laboratory 

granules compared to production granules. Preparation of laboratory samples 

encompassing similar physical variability of production samples at wider concentration 

range was found to be an effective strategy for developing calibration set with desired 

predictive performance. 

Cardenas et al. used process spectra instead of production sample spectra to introduce 

physical variance into the calibration set during cetirizine quantification in different 

stages of tablet manufacturing process; blending, compaction and coating [149]. The 

calibration set was initially developed with powder samples for blend prediction and 

optimized with process spectra at later stages for core and coated tablet prediction. The 

process spectrum was calculated as the spectral difference between lab scale powder and 

industrial samples (core and coated tablets) following the idea developed by Blanco et al 

[41]. Although this approach offers some advantages for reducing the sample size for 

calibration, some associated assumptions might have been violated during the calibration 

development. The addition of a process spectrum assumes that the extent of the effect of 

physical variation on the spectra remains consistent for all concentration ranges. It also 
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assumes that the physical effect and chemical effect on NIR spectra are orthogonal. These 

assumptions are not often true as the physical properties of the samples can vary with 

compositional variation. The process spectrum approach was compared with 

conventional approaches for preparing calibration set with laboratory, production and 

spiked samples [15]. Although similar model performance was achieved, the new 

strategy was favored for its time and cost effectiveness and simplicity. 

Blanco et al. compared different strategies for developing calibration set while predicting 

nimesulide content in pharmaceutical granulate [75]. Laboratory samples, spiked samples 

and production samples were used for developing the calibration sets. A calibration 

model built from spiked samples predicted the production samples with acceptable 

accuracy; however, model from lab samples failed in the prediction. Prediction 

performances of both models were improved by including production samples into the 

calibration sets. 

 

The discussion on different strategies for calibration set development is summarized in 

Table 1-1 in terms of advantages and disadvantages of each strategy. 
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Strategies for 
developing NIR 
calibration set 

Advantages Disadvantages 

Use of design of 
experiment 

• Generates systematic 
variance into the calibration set. 

• Can be used to minimize 
the effect of chance correlation. 

• Can be optimized to meet 
regulatory requirements in terms 
of calibration range, levels. 

• Usually requires 
large calibration set. 

• Can introduce greater 
than nominal variance 
leading to reduced accuracy. 

• Usually employed 
with laboratory samples 
which leads to poor 
robustness against scale 
variation. 

Use of sample 
selection techniques  

• Can be employed with any 
existing dataset. No prior 
requirements for designing data 
generation. 

• Constraints can be applied 
to meet regulatory requirements.  

• Model performance 
is sensitive to the selection 
techniques. It can be difficult 
to select the appropriate 
combination of selection 
technique and constraints. 

• Appropriate samples 
can be missing in the dataset 
leading to poor model 
performance. 

Under dosing/over 
dosing (spiking) 
production samples  

• Similar physical 
properties of calibration samples 
compared to the routine 
production samples, which leads 
to improved model robustness. 

• Calibration transfer is 
comparatively easier due to 
similarity in physical 
characteristics across scales and 
manufacturing plants.   

• Can introduce chance 
correlation in the calibration 
set leading to poor model 
specificity. 

• Requires more time 
and cost to implement in the 
production floor due to the 
requirements of sample 
preparation (production 
samples and calibration 
samples must be treated in 
the same way). 

 

Table 1-1. Advantages and disadvantages of different strategies for NIR calibration 
set development 
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1.3.3 Effects of calibration set on model performance 

A calibration set has significant effects on NIR model performance. These effects can be 

discussed from three perspectives as the effects of the calibration design structure, effects 

of calibration factors and effects of calibration sample properties. 

1.3.3.1 Effect of calibration design structure 

The structure and parameters of the calibration design can significantly affect NIR model 

performance. The effect of several parameters including distribution of design points, 

absence of relevant information and simulation of natural population on NIR model 

performance were investigated [39]. Although the study did not include pharmaceutical 

samples, it investigated the general aspects of NIR calibration set, that were applicable 

for pharmaceutical materials. Even span and all possible combinations of constituents 

were shown to be necessary for successful model performance. Appropriate experimental 

design was demonstrated to be a prerequisite for accurate estimation of regression co-

efficient and adequate predictability. Prediction in the center and corners of the design 

depended on the sample distribution and overall variance of the design. More samples 

near the center point gave better prediction performance in the center point compared to 

evenly spread sample distribution; a finding similar to that of Araujo et al [28]. This trend 

was opposite while predicting samples outside the center points.  

Chance correlation of the calibration design has been pointed out as a limiting factor of 

multivariate calibration by several researchers [150-154]. Chance correlation can be 

presented in the calibration set due to inappropriate experimental design, sample 

properties and the condition underlying the spectroscopic measurement. Xiang et al. 
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assessed the effect of chance correlation on an NIR model performance [38]. The 

correlation between API and excipients was set high and low in correlated and 

randomized calibration set, respectively. The correlated design performed better than the 

randomized design during calibration development. However, the former design failed 

during cross-prediction of tablets with excipient and density variations. The randomized 

design succeeded in cross-prediction indicating that the predictability achieved with the 

correlated design was dependent on correlated signals not specific to the API. The effect 

of chance correlation on model specificity is often overlooked due to the traditional 

practice of univariate model development using HPLC where specificity is achieved by 

the experimental technique itself.  

The interference structure of a calibration set was demonstrated to be critical during NIR 

calibration development [46]. A poor prediction performance was observed in the 

validation set containing different interference structure. A priori information about the 

component’s pure spectrum and/or interference structure helped to improve the 

calibration model performance. Li et al. compared the performance between two 

calibration sets having different levels of API but same levels of excipients [58]. Model 

performances were similar between the two calibration sets. Quantifications of the minor 

excipients were more accurate compared to the major excipients and API. It was 

concluded that the variation of API and major excipients were used during the 

quantification of the minor excipients leading to improved accuracy. During the 

quantification of API and major excipients, variability of the minor excipients was not 

usable due to low concentration leading to biased prediction. However, prediction using 

other component’s concentration profile might have led to poor model specificity. A 
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modification of the same scheme was used to predict Acetaminophen content in powder 

blends [155]. Following the previous scheme a set of 625 design points was generated 

and 50 most distant points in the PCA scores were selected for the calibration set. 

 

Figure 1-5. Relative residuals (%) plots obtained from the prediction of four 
external sample sets, using also four calibration models with different concentration 
ranges (%, w/w, API). Vertical lines indicate the MDL/MQL for each model. Four 
predictions are shown for calibration ranges: (a) 0–5.00%, (b) 0–2.00%, (c) 0–
0.25%, and (d) 0–0.10% (w/w) [156] 

The concentration range of the calibration set can be critical to model’s predictive 

performance in terms of multivariate detection limit (MDL) and quantification limit 

(MQL) and should be selected based on the prediction set property [156]. The relative 

prediction errors, MDLs and MQLs of four calibration models with different 

concentration ranges are given in Figure 1-5. 
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A narrow range of concentrations should be used for predicting low drug concentration 

and the range should be updated according to the prediction range. Although no 

explanation was provided, mathematically it can be explained from the equation used for 

calculating MDL and MQL. As the concentration range decreased, calibration error 

(SEC) decreased, which in turn decreased the MDL and MQL. Concentration range can 

also affect the calibration structure. In a calibration set for Theophylline prediction, 

Theophylline and Magnesium stearate were varied orthogonally and cellactose was 

considered as filler [157]. However, variation in cellactose concentration had high 

correlation (0.99) with variation in Theophylline concentration due to its larger range 

compared to Magnesium stearate concentration. This undesired chance correlation might 

have led to poor model specificity. Uniform distribution of concentration levels in the 

calibration set is usually encouraged [50, 51]. However, a similar predictive performance 

was observed between similar and random distribution of concentration levels [55]. 

Bondi et al. analyzed the effect of experimental design on the predictive performance of 

NIR calibration model [9]. The five level full factorial and I-optimal models were 

statistically similar and had the lowest errors, followed by the CCD, D-optimal and three 

level full factorial models, respectively. The model generated from the I-optimal design 

was superior considering the balance between performance and efficiency due to low 

sample requirement. A more comprehensive assessment was reported by Scheibelhofer et 

al [49]. Four types of experimental design each with two subtypes were used to develop 

NIR calibration sets. Model performances in increasing order of prediction error were: 

five level factorial < extended CCC < simplex centroid < simplex lattice < CCF < I-

Optimal with center < three level factorial < I-optimal < D-optimal. A calibration set with 
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a regular spread between different concentration levels was preferred. It was also 

concluded that, the similarity between calibration and test structure improves prediction 

performance. However, as crude pre-processing techniques were used for all designs and 

the same model was used for all three components, the results might not be the optimum. 

Araujo et al. also analyzed the effect of experimental design on calibration model 

performance as shown in Figure 1-6 and found that number of unique experimental run is 

more important than the number of replicates, so that the calibration can span a wide 

range of variance [28]. Lorber et al. assessed these effects in terms of a vector “hun”, 

where “hun” is dependent on the orthogonality in the calibration space. In a poorly 

designed calibration set, the reduced orthogonality decreases the net concentration signal 

(orthogonal concentration), which in turns increases “hun” and prediction error [48]. 
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Figure 1-6. Prediction errors of five calibration designs (first column) predicting 
three prediction sets (first row). The asterisks indicate experimental or predicted 
areas [28] 

1.3.3.2 Effect of calibration samples properties 

Different properties of calibration samples can significantly affect NIR calibration model 

performance. The effect of spectral collection state and scale of calibration set samples on 

calibration model performance was assessed during blend monitoring [158]. A calibration 

set was initially developed by collecting spectra at static state. Model performance was 

improved by incorporating dynamic spectra into the calibration set. Dynamic data from 

same scale as prediction set was found to improve model performance in a greater extent 
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compared to the dynamic data from different scale. Sarraguca et al. demonstrated scale 

and physical characteristics of the calibration set as critical to NIR quantitative method 

[42]. Calibration set developed from the lab scale powder failed to predict API 

concentration in the pilot scale powder and tablet due to the scale and physical state 

difference. Variation in scales and physical attributes were also found to affect calibration 

model performance during the determination of mirtazapine [135] and ibuprofen [91, 

131]. A calibration set developed on one set of tablet thickness and shape, was found to 

be spectrally different from other set of tablet thickness and shape for reflectance and 

transmission NIR as shown in score plots in Figure 1-7. This effect was minimized by 

extending the calibration design to include tablets of different thicknesses, shapes and 

embossing. Although inclusion of physical variations into a calibration set increases 

model robustness, it can also affect model accuracy. Model accuracy was found to be 

decreased upon the inclusion of tablet thickness variations into a calibration set [26]. 

Accuracy of a model developed on pilot scale samples was affected upon the inclusion of 

laboratory and production samples of different dosage units into the calibration set [159]. 

These findings demonstrate that, the current philosophy of including as much variation as 

possible into the calibration set, can be detrimental to calibration performance. These 

effects were minimized by bracketing where a local calibration set near the mean tablet 

thickness [26] and calibration set specific to dosage units [159] were developed. Absence 

of variation due to size, shape, thickness, as well as narrow concentration range in the 

local calibration sets helped to improve prediction performances of the respective models. 

Similar to bracketing, selection of an optimal subset from large calibration set was 
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proposed by Lorber et al [48]. However, bracketing or subset selection techniques were 

criticized for causing narrow concentration range and poor robustness of calibration [28]. 

 

Figure 1-7. Score plot from second derivative reflectance (A) and transmittance (B) 
spectra by principal component analysis. Open symbols—calibration set: (○) flat-
faced tablets with various content; closed symbols—prediction set: (●) flat-faced 
tablets with various thickness, (∆) flat beveled edge tablet, (□) convex tablet. The 
numbers by the data points correspond to the batch no [160] 

Granules PSD and hardness of calibration tablets were found critical and recommended 

to be included into the NIR calibration set [25]. However, effects of these factors were 

not analyzed independently. In another study, the effect of PSD was found to be low 

compared to that of hardness on calibration model performance [38]. Pan et al. 

independently assessed the effect of variations in tablet hardness, granules PSD and 

relative humidity on calibration model performance [161]. NIR predictions were found to 

change up to 10% due to 16% variation in tablet hardness between calibration and 

predictions sets. For a 20% increase in RH, the change was around 10-20%. No 

correlation between PSD of granules and NIR predictions were found within the range 

investigated. However, in another study, PSD of calibration samples was found to be 

B A 
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critical to model performance due to its ability to cause variation in tablet hardness [162]. 

Reflectance NIR was found to be more sensitive to tablet hardness and packing density 

compared to transmission NIR [69].  

Pieters et al. assessed the effect of intra and inter batch variability of a calibration set on 

calibration model performance [163]. The presence of these variations in the calibration 

set helped to improve model performance. The performance was further improved by 

augmenting the calibration set with noise matrix calculated from net analyte 

preprocessing. The prediction performance for samples having moisture variation was 

improved by updating the calibration set with samples having different moisture contents. 

Mainali et al. assessed the effect of calibration set complexity during the prediction of 

water content in tablets. The complexity was introduced by using multiple API and tablet 

shapes into the calibration sets [145]. Slight increase in prediction error was observed 

with increased complexity. The most complex calibration set (III) was preferred over 

others due to its increased robustness against API and tablet shape variation. Effect of 

nonhomogeneous distribution of different APIs and tablet shapes in the calibration set II 

and III were not discussed.  

1.3.3.3 Effect of calibration factors 

Although it is recommended to include all factors into the calibration set for developing a 

robust calibration model [51], this approach requires large sample set, which can be 

inconvenient on particular instances [164]. Factors that do not affect NIR spectra should 

be excluded to reduce the size of the calibration set. Factors such as processing 

parameters, temperature, moisture content, raw material variations etc. can have a 
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detrimental effect on NIR prediction performance. Tablet moisture content can vary 

during different steps of the manufacturing process, storage and analysis [165] and 

excipients variation can occur between batches [163]. All these relevant factors should be 

included into the calibration set. A small prediction error can be obtained by including 

relevant information in the calibration set [66]. However, it may not always be possible 

for the calibration set to contain all relevant factors that can occur in the industrial scales 

[166], making the models less robust and requiring frequent updates. Inclusion of non-

relative information into the calibration set can increase model complexity and affect 

mode performance [163].  

Roggo et al. demonstrated process changes as the critical factors for calibration set during 

dissolution study [167]. Four types of process related changes were included into the 

calibration. The changing parameters were time and temperature changes during melt 

granulation, compaction pressure, coating formulation and coating times. Riley et al. 

assessed the effect of number of varying components in the calibration set on calibration 

model performance [168]. An increase in the number of varying components from 2 to 6 

and 2 to 10, increased the error by approximately 50% and 340%, respectively. However, 

a calibration set containing higher number of varying components could be useful for 

predicting complex samples. El-Hagrasy et al. assessed the effect of environmental factor 

such as blend storage time on calibration model performance [169]. The NIR spectra 

were collected immediately after blend preparation and after storing for a week to 

develop two calibration sets, respectively. The predicted blend profiles were significantly 

different between two sets. As the environmental factor was found to be critical for 

developing calibration set for blend monitoring, a D-optimal design was used to vary 
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relative humidity along with concentrations to develop a calibration set in later studies 

[170, 171]. The effects of NIR calibration set on model performance is summarized in 

terms of affected validation characteristics and analytical figures of merit in Table 1-2. 

1.3.4  Conclusion 

There are several strategies for developing NIR calibration sets for tablet analysis. The 

selection of right strategy is critical to model performance, however, less emphasized 

during calibration development. An in-depth understanding about the calibration set 

requirements, interaction between calibration structure and model performance, and a 

formulation and NIRS specific outlines can be helpful for developing an appropriate NIR 

calibration set. Appropriate calibration set is a prerequisite for successful model 

performance and must be designed carefully at the outset of calibration development to 

ensure efficient and maximum utilization of NIRS capability in pharmaceutical analysis. 

  

Calibration set properties Affected calibration metrics 

Calibration design and structure Accuracy, specificity, range, linearity, 
robustness, detection limit and quantitation 
limit. 

Calibration samples properties Accuracy, specificity, robustness and 
linearity. 

Calibration factors Accuracy, specificity, robustness and 
linearity. 

Table 1-2. Advantages and disadvantages of different strategies for NIR calibration 
set development 
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2 Chapter 2: Method development of designing calibration set in spectral space 

In this study, a method was developed to use the pure component spectra of a tablet to 

identify the critical samples necessary for an efficient calibration set development. The 

principal difference between current techniques and the proposed technique lies in the 

space used for designing a calibration set. Calibration sets are typically designed in 

concentration space where orthogonality between component concentrations is imposed 

to minimize collinearity and maximize model specificity. In the proposed method, a 

calibration set is designed in spectral space in order to create orthogonality of the spectral 

response. 

 

 

Figure 2-1. Concentration space of a ternary system 

2.1 Theory 
Concentration space: Concentration space is a multi-dimensional space used to describe 

the composition of a composite structure. The structure of the composite system is 

described by relative positions and directions along each of the dimensions in 
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concentration space coordinates. For example, Figure 2-1 illustrates a concentration space 

describing two composite structures of a ternary system containing A, B and C 

components at [0.2, 0.1, 0.7] and [0.6, 0.3, 0.1] concentration levels. 

 

Figure 2-2. Spectral data (direct spectral space (A)) presented in PCA score space 
(factor space (B)) 

Spectral space: Spectral space is a multi-dimensional space to describe the spectral 

response of a system. The spectral response at each wavelength/frequency is described 

along each dimension of the spectral space coordinates. This space has higher order 

dimensions, typically on the order of 100 to 10,000 depending on the analytical technique 

of interest. Therefore, spectral space is often decomposed to a lower dimensional 

orthogonal subspace using chemometric techniques such as orthonormalization, principal 

component analysis (PCA), singular valued decomposition, eigen value decomposition 

etc. Principal component analysis efficiently describes the spectral variance, revealing the 

maximum variance in the first principal component (PC) and remaining orthogonal 

variance in each succeeding PC in descending order [172]. The scores (projection of each 
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spectrum) on the PCs are used to represent the high-dimensional spectral space into a 

much lower dimensional score space. For example, a typical series of 45 NIR spectra 

(4200 data points in each spectrum) representing 45 Acetaminophen tablets can be 

represented in three dimensional score space instead of 4200 dimensional spectral space 

without losing any significant spectral information as illustrated in  

Figure 2-2 (99.18 % of total spectral variance is explained by 3 PCs). 

The use of pure component spectra during calibration set development follows the 

fundamental theory of spectroscopic multivariate calibration and experimental design. A 

spectroscopic calibration model is developed to predict the chemical/physical properties 

of a sample from its respective spectrum using regression equation. For a system with 

“m” samples and “n” spectral variables (wavelengths), the regression equation is as 

follows, 

 𝐲𝐲�𝐦𝐦∗𝟏𝟏 = 𝐗𝐗𝐦𝐦∗𝐧𝐧 ∗ 𝐛𝐛𝐧𝐧∗𝟏𝟏 (2.1) 

Where 𝐲𝐲� is the predicted chemical/physical properties, X is the spectral data matrix and b 

is the regression vector. Concentration will be considered as an example of physico-

chemical property in rest of the chapter. The regression equation (2.1) can be expanded as 

follows,  

 ŷ𝑖𝑖=1..𝑚𝑚
𝑖𝑖 = 𝑏𝑏0 +  𝑥𝑥1𝑖𝑖 × 𝑏𝑏1 + 𝑥𝑥2𝑖𝑖 × 𝑏𝑏2 + ⋯+ 𝑥𝑥𝑛𝑛𝑖𝑖 × 𝑏𝑏𝑛𝑛 (2.2) 

To approximate the relationship between concentrations (y) and spectral variables (x) by 

estimating the regression coefficients bi, the theory of design of experiments indicates 

that the spectral responses (x1..n) should vary orthogonally and the output concentrations 

(y1…m) measured. Orthogonal variation in the independent variable (spectral response) 
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would allow better estimation of regression coefficients with minimum number of 

samples/ experiments. 

Currently, there is no published technique available for orthogonally varying the spectral 

responses. The conventional approach to multivariate calibration is to vary concentrations 

orthogonally in the concentration space and assume that this orthogonality translates to 

the spectral space. For a system with “k” components, “m” samples and “n” spectral 

variables using C for the concentration of samples, P as the pure component spectra, and 

X for the matrix of spectral responses, the current design follows the equation below, 

 𝐂𝐂𝐦𝐦∗𝐤𝐤 ∗ 𝐏𝐏𝐤𝐤∗𝐧𝐧  →  𝐗𝐗𝐦𝐦∗𝐧𝐧 (2.3) 

 

 Figure 2-3. Hypothetical pure component spectra (A) and respective spectral space 
(B) 

This does not necessarily create orthogonal variance in the spectral space due to external 

factors other than concentrations affecting the spectral signals. Moreover, depending on 

the pure component spectra and their relative contribution to the sample spectrum, 

experimental design points created in a concentration space can result in highly redundant 
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and/or inadequate spectral information. A hypothetical scenario is illustrated for a three 

component system (A, B and C) analyzing with a spectroscopic technique of 3 

wavelength channels (1000 nm, 1100 nm and 1200 nm).  

 Figure 2-3 represents the hypothetical pure component spectra of A, B and C and their 

respective projections on the spectral space. The spectrum of any sample mixture 

containing A, B and C should fall in the triangular plane (shaded region) formed by A, B 

and C in the spectral space due to mixture constraint (sum of A, B and C is always 1). 

 

 

 

Figure 2-4. Hypothetical concentration space (left) and respective spectral space 
(right) 

Experimental design points created in the concentration space should retain its structure 

and linearly mapped in this hypothetical plane. However, this does not occur 

experimentally due to non-linearity between concentration and spectral response, 
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different spectral contribution of each component into the mixture spectrum, physico-

chemical properties of the samples etc.  

Figure 2-4 shows a hypothetical scenario where experimental design points in the 

concentration space (Figure  2-4 (left)) fall outside the hypothetical plane (green) in the 

spectral space (Figure  2-4 (right)). Thus, an orthogonal design in the concentration space 

might lose its orthogonality in the spectral space, provide redundant information as well 

as lack in critical information in the calibration design. 

The proposed approach is an attempt to create the orthogonal variations in the spectral 

space. Orthogonal variation in the spectral space helps to minimize the sample 

requirement by identifying a set of critical samples necessary to develop a successful 

calibration model. For instance, compositional variation in the spectrally similar 

excipients will have unidirectional variation in the orthogonal spectral space. Designing 

calibration samples in that direction by varying either of them would give sufficient 

spectral variation to model against the concentration of API and reduce the calibration 

sample size by a factor of two. Moreover, orthogonal spectral space helps to identify the 

most spectrally dissimilar samples to be included into the calibration set to cover the 

maximum possible spectral variation. Training a model against such variation is critical 

to develop a robust calibration model at the outset of calibration development. The most 

spectrally dissimilar samples are often different from the most compositionally dissimilar 

samples. Building calibration set with compositionally different samples and training a 

model against large compositional variation may not always be successful in developing 

a calibration model that is robust against future spectral variation. 
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However, in NIR spectroscopy, spectral responses at each wavelength cannot be varied 

orthogonally due to highly correlated signals. Alternatively, the correlated spectral 

responses can be decomposed into orthogonal directions using different techniques such 

as Orthonormalization, Principal Component Analysis (PCA), Partial Least Square (PLS), 

Singular Valued Decomposition (SVD) etc. In the proposed method, the pure component 

spectra of a formulation are used to determine the spectral space for that formulation and 

Orthonormalization technique is used to decompose the pure component spectral 

response into orthogonal directions. The spectral projections onto the orthogonal 

directions are termed as “scores”. The score is used as a metric of spectral variance in the 

orthogonal spectral space of the formulation. Designing experiments by varying the 

scores is considered equivalent to the design in orthogonal spectral space. In this study, 

pure component spectra were acquired by compressing the pure components into tablets 

and scanning with NIR instrument. When the pure component tablets are difficult to 

prepare, pure component powders can be used (adjustments for spectral differences may 

be necessary).  

After defining the orthogonal spectral space of a formulation using pure component 

spectra, a model tablet is compressed at the target formulation and an NIR spectrum is 

acquired. The spectrum of the model tablet is projected onto the orthonormal basis 

vectors of the pure component tablet spectra. The projections are termed as “model tablet 

scores.” Scores of the ‘model tablet’ are calculated based on the following equation 

 𝐭𝐭𝟏𝟏∗𝐫𝐫𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌l 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 = 𝐱𝐱𝟏𝟏∗𝐧𝐧𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 ∗  𝐖𝐖𝐧𝐧∗𝐫𝐫
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛    (2.4) 
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Where, t is the scores of the “model tablet” for “r” factors, x is the spectrum of the 

“model tablet” and W is the orthonormal basis of the pure component spectra. 

The idea behind the model tablet score is to design a calibration set such that the scores 

of the calibration samples are centered around the model tablet scores. This ensures the 

calibration model to be centered at the target formulation. An in silico full factorial design 

is created to achieve this objective. In the design, the numbers of factors are kept equal to 

the number of chemical components. We assume that the signal from each component 

contains orthogonal features with respect to other components. Thus, full chemical rank 

is achieved by creating a design where the number of factors is equal to the number of 

components. The numbers of levels in the design are selected to balance between 

computational burden and simulation of spectral variance. Simulation of spectral variance 

is required to select the calibration candidates from a large dataset. Addition of one level 

can significantly increase the design points and subsequent simulation time. For 

instances, five levels for each factor in a five-factor design will result in (55) = 3125 

design points. An increase by one in the number of levels will result (65) = 7776 design 

points. The effect of number of levels is minimal as long as it is kept equal for all the 

factors to prevent any confounding effect and generate all the possible spectral variation 

during simulation.  

The center of the in-silico design is then set equivalent to the model tablet scores t and all 

other design points are scaled from the center. The transformed design is defined as the 

‘target score design’. Centering the design around model tablet scores ensures that the 

target scores span the space around the model drug. The proposed approach centers the 

regression model at the target composition (“model tablet”) and then creates balanced 
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spectral variance around this center. The spectra corresponding these score values vary 

orthogonally (or very nearly so), because the target score design is built from a full 

factorial orthogonal structure. Figure 2-5 shows the procedure for designing scores 

around the model tablet scores. Use of scores as the calibration design factors can also be 

justified from chemometric point view. A mathematical description is given in Appendix 

A.  

Figure 2-5. Procedure for designing scores around the model tablet scores in 
spectral space 

However, the challenge remains to find the compositional requirements for the sample 

from which the spectrum is collected and scores are derived. Although the calibration 

samples are designed in the spectral space, the design must be carried out in the 

concentration space to prepare those samples. 
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 𝐂𝐂𝐦𝐦∗𝐤𝐤
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∗  𝐏𝐏𝐤𝐤∗𝐧𝐧

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 =   𝐗𝐗𝐦𝐦∗𝐧𝐧
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬  (2.5) 

The relationship between the compositional points and the spectra can be expressed by 

equation 2.5. However, this relationship is not always true due to different physical and 

chemical contributions to the spectral features in the NIR region. A rotation matrix “R” is 

introduced in the above expression to explain all other contributions on spectral features 

except concentration. The rotation matrix rotates the estimated spectra towards the actual 

spectra. “R” is calculated based on equation 2.7 (the detail derivation is given in 

appendix B). Where, U is the left singular values, S is the singular values and V is the 

right singular values for the concentration matrix, X is the spectral matrix containing the 

pure component tablets and model tablet spectra and P is the pure component tablets 

spectra. 

 𝐂𝐂𝐦𝐦∗𝐤𝐤
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∗ 𝐑𝐑𝐤𝐤∗𝐤𝐤

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 ∗  𝐏𝐏𝐤𝐤∗𝐧𝐧
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 =   𝐗𝐗𝐦𝐦∗𝐧𝐧

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬  
  

(2.6) 
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= 𝐕𝐕𝐤𝐤∗𝐤𝐤
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𝐒𝐒𝐒𝐒𝐧𝐧𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠�

′
∗  �𝐔𝐔𝐦𝐦∗𝐦𝐦

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬�
′
∗  𝐗𝐗𝐦𝐦∗𝐧𝐧

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

∗ �𝐏𝐏𝐧𝐧∗𝐤𝐤
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜�

′

∗ {�𝐏𝐏𝐤𝐤∗𝐧𝐧
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜� ∗  �𝐏𝐏𝐧𝐧∗𝐤𝐤

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜�
′
}−𝟏𝟏 

(2.7) 
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The effect of rotation matrix in simulating spectral response is demonstrated in Figure 

2-6.  

Figure 2-6. Effect of rotation matrix in spectral simulation 

 

Equation 2.8 is solved for “C” to calculate the compositional requirements using a global 

optimization technique, assuming that the variation in pure component spectra dictates 

the primary spectral variation in the model, (the detail derivation is given in appendix C). 

Where, C is the compositional matrix for the targeted score design having sample size 

“u”, R is the rotational matrix, T is the target design in the score space, P is the pure 

component spectra, W is the basis vector set and r = k (number of latent variables = 

number of components). Two constraints are applied during the solution by the 

optimization technique. The first one is, for all “u”, ∑ Cik
i=1 = 1. This is a general 

constraint for formulation, since the sum of the concentrations of all the components in 

each design point must always be 1. The second constraint is set to each constituent 

individually to meet the appropriate concentration range criteria for a feasible tablet 

preparation and regulatory guidelines. For instances, API concentration ranges should 

vary at a range around 70-130 % w/w of the label claim and the lubricant concentration 
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must be limited to a very small range of concentration. Each row of the resultant matrix 

“C” provides the compositional requirements (concentrations) of a sample that has been 

designed in the orthogonal spectral space. This approach is referred to as spectral design 

throughout the rest of this article. 

 

 

𝐂𝐂𝐮𝐮∗𝐤𝐤
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∗ 𝐑𝐑𝐤𝐤∗𝐤𝐤

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑n

= 𝐓𝐓𝐮𝐮∗𝐫𝐫
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

∗ (𝐏𝐏𝐤𝐤∗𝐧𝐧
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ∗ 𝐖𝐖𝐧𝐧∗𝐤𝐤

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛)−𝟏𝟏 

With the constraint: for all “u”,  ∑ Cik
i=1 = 1 

   (2.8) 

 

After determining the compositional requirements of the design points, a small 

representative subset is selected from the design points as the calibration candidates. 

Different selection strategies can be employed to select the calibration samples such as 

the Kennard stone algorithm, orthogonal rotation, maximum distance in the score space 

etc. 
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2.2 Spectral calibration set for single API formulation 
The spectral space strategy was used to design a NIR calibration set for quantitative 

analysis of a model drug containing Acetaminophen as Active Pharmaceutical Ingredient 

(API) and Microcrystalline cellulose (MCC), spray dried Lactose, Hypromellose and 

Magnesium stearate as excipients. The spectral design was created based on the theory 

discussed in section 2.1. 

 

Figure 2-7. Pure component spectra and respective basis vectors 

The pure component powders were collected from different sources, Acetaminophen 

(Mallinckrodt Inc., Raleigh, NC, USA), Hypromellose (HPMC; Pharmacoat 606, Shin-

Etsu Chemical Co. LTD, Tokyo, Japan), Lactose (modified spray-dried; Foremost Farms 

USA, Rothschild, WI, USA), Microcrystalline cellulose (MCC; Avicel PH 200, FMC 

Biopolymer, Mechanicsburg, PA, USA) and Magnesium stearate (MgSt; Fisher 

Scientific, Waltham, MA, USA). The pure component powders were compressed using a 

Carver Automatic Tablet Press (Model 3887.1SD0A00, Wabash, IN, USA) at 5000 lb 

force using a 13 mm die and flat-faced punches. The target tablet weight was 700 mg. 

The target formulation was set as Acetaminophen (27.3% w/w), MCC (34.15% w/w), 

Lactose (34.15% w/w), HPMC (3.9% w/w) and MgSt (0.5% w/w). A model tablet was 
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prepared at the target formulation. All these 6 tablets (5 pure component tablets and one 

model tablet) were scanned using a bench top NIR instrument (XDS Rapid Content 

Analyzer, FOSS NIRSystems, Inc) in reflectance mode. Spectral data were collected at 

0.5 nm increment over a range of 400 nm – 2499.5 nm with 32 co-adds per spectrum. 

Spectra from both faces of each compact were averaged to produce a single 

representative spectrum. 

                 

Figure 2-8. A full factorial design around the model tablet score in the orthogonal 
spectral space 

The pure component spectra were orthonormalized to determine the basis vector of the 

pure components. Figure 2-7 shows the pure component spectra and basis vector. These 

basis vectors are orthonormal (orthogonal and unit vector) to each other. The basis 

vectors define the orthogonal spectral space of the pure component. Instead of the 
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orthonormalization technique, PCA can be done on the unscaled pure component spectra 

and the principal component of the PCA would give the exact same vector as the basis 

vectors. The model tablet spectrum was projected on the basis vector set of the pure 

components. The resulted scores are termed as target scores. 

A 5-factor full factorial design with 5 levels per factor was calculated in the orthogonal 

spectral space where the “model tablet” scores were set as the center of the design as 

shown in Figure 2-8 for the first 3 basis vectors. This resulted in a 3125 (55) design 

points. A rotation matrix was calculated from the pure component and model tablet 

spectra. The rotation matrix, pure component spectra and orthonormal basis were used to 

calculate the required composition for the 3125 design points based on equation (2.2.8). 

A sample selection technique was employed to select a small representative subset of 

maximum spectral variance within the full design. NIR spectra were simulated for all the 

3125 design points using the concentrations, rotation matrix and pure component spectra 

following equation (2.6) without adding additional noise. Principal component analysis 

was performed and a 3-dimensional score space was created using scores on PC1, PC2 

and PC3. A set of 3 PCs was able to explain all the variation in the spectra. Delaunay 

triangulation was used to create a convex hull around the calculated score space. A 

straight line through the center was rotated orthogonally and the two most distant samples 

from center along the line were selected to capture maximum possible variance. Figure 

2-9 shows the orthogonal rotation of the line in the PCA score space and selected design 

points. 
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A calibration set composed of 10 design points was selected using this technique. The 

target composition along with the 10 design points provided 11 compositional points for 

the spectral design as indicated in Table 2-1. This design was labeled as the ‘spectral 

design’ and was used to develop a quantitative calibration method. 

Design 
# 

Acetaminophen 

(% w/w) 

Hypromellose 

(% w/w) 

Lactose 

(% w/w) 

Microcrystalline 
cellulose 

(% w/w) 

Magnesium 
Stearate 

(% w/w) 

1 32.02 4.42 31.43 31.95 0.19 

2 20.67 1.00 42.36 35.79 0.19 

3 40.13 7.95 21.66 29.53 0.73 

4 35.17 0.94 36.06 27.63 0.20 

5 30.90 8.05 26.60 33.65 0.80 

6 24.30 4.90 31.11 38.97 0.71 

7 38.02 2.43 33.15 26.17 0.23 

8 21.62 1.01 37.93 39.22 0.21 

9 39.85 8.03 26.77 25.13 0.23 

10 24.17 1.03 42.04 32.54 0.23 

11 27.30 3.90 34.15 34.15 0.50 

Table 2-1.  Composition of the spectral calibration et for single API 
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Figure 2-9. Orthogonal rotation in spectral space to select calibration candidates 

 

The spectral design samples were prepared by direct compression. All the components 

(Acetaminophen, MCC, Lactose, HPMC and MgSt) for each design point were weighed 

and placed in a 10 ml scintillation vial according to Table 2-1. The ingredients were 

mixed by rotating the scintillation vial. Tablets were compressed on a Carver Automatic 

Tablet Press (Model 3887.1SD0A00, Wabash, IN, USA) at 5000 lb force using a 13 mm 

die and flat-faced punches. The target tablet weight was 700 mg. This tablet set was 

defined as the ‘spectral calibration set’. 

All the tablets were scanned using a bench top NIR instrument (XDS Rapid Content 

Analyzer, FOSS NIRSystems, Inc) in reflectance mode. Spectral data were collected at 

0.5 nm increment over a range of 400 nm – 2499.5 nm with 32 co-adds per spectrum. 
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Spectra from both faces of each compact were averaged to produce a single 

representative spectrum. Spectral calibration set and their respective spectra were used to 

develop a quantitative NIR calibration model to quantify the amount of Acetaminophen 

in tablets of interest. 

2.3 Spectral calibration set for multiple API formulation 
The spectral design strategy was also used to create a calibration set for quantitative 

analysis of multiple API tablets. The multiple API tablets contained two APIs as 

Acetaminophen (Acetaminophen; Mallinckrodt Inc., Raleigh, NC, USA) and Caffeine 

anhydrous (Spectrum Chemical Mfg. Corp., New Brunswick, NJ, USA). The excipients 

were Microcrystalline cellulose (MCC; Avicel PH 200, FMC Biopolymer, 

Mechanicsburg, PA, USA), Lactose (modified spray-dried; Foremost Farms USA, 

Rothschild, WI, USA), Crosscarmellose sodium (Crosscarmellose Na, Spectrum 

Chemical Mfg. Corp., New Brunswick, NJ, USA) and Magnesium stearate (MgSt; Fisher 

Scientific, Waltham, MA, USA). The target formulation was set as Acetaminophen 

(31.25% w/w), Caffeine (4.05% w/w), MCC (37.32% w/w), Lactose (24.89% w/w), 

Crosscarmellose Na (2% w/w) and MgSt (0.5% w/w). All the materials were stored in 

room temperature and relative humidity. Anhydrous caffeine was reported to be stable 

under 75% RH for 7 weeks [173]. No hydration and anhydrous caffeine was expected 

considering lower room RH (~60%) and shorter storage time and analysis. 
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The spectral design was created based on the theory discussed in section 2.1. Initially, the 

pure component tablets (six tablets) and one model tablet at the target composition were 

compressed at 5000 lb using a Carver Automatic Tablet Press. The tablets were stored for 

two weeks for viscoelastic relaxation based on a previous study on similar formulation 

[174]. After the viscoelastic relaxation, tablets were scanned using a bench top NIR 

instrument (XDS Rapid Content Analyzer, FOSS NIRSystems, Inc) in reflectance mode. 

Spectral data were collected at 0.5 nm increment over a range of 400 nm – 2499.5 nm 

with 32 co-adds per spectrum. Spectra from both faces of each compact were averaged to 

produce a single representative spectrum. 

Figure 2-10. Pure component spectra and respective basis vectors 

The pure component spectra were orthonormalized to derive the basis vector of the 

spectral space. Figure 2-10 shows the pure component spectra and basis vector. The 

model tablet spectrum was projected on the basis vector to calculate model tablet scores 

on the orthonormal basis of pure component spectra. A 6-factor full factorial design with 

5 levels per factor was calculated in the orthogonal spectral space where the “model 
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tablet” scores were set as the center of the design. This resulted a total of 15625 (56) 

design points. 

  

Figure 2-11. PCA scores of the simulated spectra and selected calibration candidates 
by KNN 

 

A rotation matrix was calculated from the pure component and model tablet spectra to 

help explaining spectral variance coming from sources other than the spectra of the pure 

components. The rotation matrix, pure component spectra and orthonormal basis vectors 

were used to calculate the compositional requirements for the 15625 target design points 

based on eq. 2.8. 

After determining the compositional requirements of the target design, the target design 

spectra were simulated using the compositional requirements, the pure component spectra 

and the rotation matrix using equation 2.6. A PCA analysis was performed on the 

simulated spectra to determine the principal component scores. 

  

Scores on PC 1 (82.81%)

-1.5 -1 -0.5 0 0.5 1 1.5 2

S
co

re
s 

on
 P

C
 2

 (1
1.

13
%

)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Simulated scores

Selected scores

Scores on PC 3 (4.15%)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

S
co

re
s 

on
 P

C
 4

 (1
.4

0%
)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Simulated scores

Selected scores



 

70 
 

 

Acetaminophen 
(% w/w) 

Caffeine 
(% w/w) 

MCC 
(% w/w) 

Lactose 
(% w/w) 

Crosscarmellose 
Na (% w/w) 

MgSt 
(% w/w) 

34.25 3.79 36.77 21.99 2.40 0.80 
19.17 0.81 38.31 37.40 3.50 0.80 
43.75 7.29 30.17 15.64 2.95 0.20 
30.93 0.81 27.89 38.97 1.20 0.20 
27.88 0.81 51.96 15.49 3.08 0.78 
39.60 7.29 23.23 28.89 0.80 0.20 
24.39 7.29 32.90 31.13 3.50 0.80 
36.59 0.81 24.85 35.74 1.81 0.20 
34.31 7.29 38.61 15.49 3.50 0.80 
24.52 0.81 51.96 21.41 0.50 0.80 
40.49 0.81 24.38 30.62 3.50 0.20 
28.34 7.29 47.58 15.49 0.50 0.80 
35.11 7.29 23.23 33.07 0.50 0.80 
32.39 0.81 39.48 24.52 2.60 0.20 
43.62 1.95 35.83 15.49 2.32 0.80 
24.59 0.81 32.54 37.75 3.50 0.80 
41.67 7.29 34.25 15.49 0.50 0.80 
28.03 2.57 41.25 27.45 0.50 0.20 
41.42 0.81 41.58 15.49 0.50 0.20 
29.53 7.29 27.82 33.43 1.73 0.20 
29.99 7.29 42.93 15.49 3.50 0.80 
33.22 7.29 29.42 26.37 3.50 0.20 
31.08 2.32 46.37 15.93 3.50 0.80 
26.15 5.46 47.05 19.03 1.51 0.80 
43.75 7.29 24.29 23.96 0.51 0.20 
36.55 0.81 31.15 27.79 3.50 0.20 
34.56 0.81 30.85 32.48 0.50 0.80 
41.38 3.23 31.13 23.56 0.50 0.20 
35.95 0.81 43.29 16.25 3.50 0.20 
21.71 4.18 35.95 33.86 3.50 0.80 

 
Table 2-2. Composition of the spectral calibration set for multiple API 
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The Kennard Stone algorithm was used to select 30 design points in the PCA score space 

of the target design spectra (Spectral design). Kennard stone algorithm is a widely-used 

technique for selecting a representative subset from a large dataset. The selection 

algorithm provides uniform coverage over the dataset by selecting the most separated 

samples at successive iteration. The details of the Kennard stone algorithm can be found 

elsewhere [132]. Figure 2-11 shows the simulated scores of the 15625 points and selected 

scores of 30 points by Kennard stone algorithm. The composition of the selected 30 

points is given in Table 2-2.The target forumaltion was compressed at 3 different 

compaction forces resulting in total 33 compositional points for the spectral design.  

The 33 tablets of the spectral design were prepared by direct compression on a Carver 

Automatic Tablet Press using a 13 mm die and flat-faced punches. The target tablet 

weight was 700 mg. The compression forces range was 4000 lb to 6000 lb. The 

compression force for each design point was selected such that the correlation between 

compression force variation and concentration variation of each component is minimal 

and variance in comapction force is maximal.  

Table 2-3 provides the correlation co-efficient between compression force variation and 

concentration variation. This tablet set was defined as the ‘spectral calibration set’. All 

the tablets were scanned using a bench top NIR instrument (XDS Rapid Content 

Analyzer, FOSS NIRSystems, Inc) in reflectance mode. Spectral data were collected at 

0.5 nm increment over a range of 400 nm – 2499.5 nm with 32 co-adds per spectrum. 

Spectra from both faces of each compact were averaged to produce a single 

representative spectrum. 
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2.4 Conclusion 
A method was developed to design calibration set in spectral space using pure component 

spectra. Two calibration sets were designed in spectral space, one for a single API 

formulation and the other for multiple API formulation. The spectral calibrations sets for 

single API and multiple API were used to developed quantitative NIR methods for 

respective APIs. The performances of the methods were compared with traditional 

calibration strategies. The details of the method development and comparative results are 

discussed in the following chapter. 

 

Copyright ©: Part of this chapter has been reprinted from [175]. Copyright clearance is 

provided at the end the dissertation.  

 Acetamino-
phen Caffeine MCC Lactose 

Cross 
carmellose 

Na 
MgSt Force 

Acetamino-
-phen 1.00 0.13 -0.46 -0.35 -0.27 -0.48 0.00 

Caffeine 0.13 1.00 -0.23 -0.22 -0.13 0.14 0.02 

MCC -0.46 -0.23 1.00 -0.60 0.10 0.45 0.00 

Lactose -0.35 -0.22 -0.60 1.00 0.01 -0.16 -0.01 

Cross 
carmellose 

Na 
-0.27 -0.13 0.10 0.01 1.00 0.12 0.00 

MgSt -0.48 0.14 0.45 -0.16 0.12 1.00 0.03 

Force 0.00 0.02 0.00 -0.01 0.00 0.03 1.00 

Table 2-3. Correlation co-efficient between composition and compression force 
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3 Chapter 3: Comparison between the model performance of spectral calibration 

and traditional calibration sets 

3.1 Introduction 
The first step in developing NIR quantitative method for tablet analysis is to design the 

calibration set. The performance of the NIR method depends on the suitability of the data 

generated from the calibration set. Calibration sets are traditionally designed in 

concentration space using experimental design plan. Traditional calibration sets are prone 

to have redundant samples while simultaneously lacking necessary samples for a 

successful calibration model. Traditional calibration sets are also developed based on 

generic design. Similar calibration designs are followed for different spectroscopic 

techniques and different formulations. Such a calibration strategy lacks the optimizing 

capability to be technique and formulation specific. A new calibration strategy was 

developed for designing an NIR calibration set for quantitative analysis of tablets. 

Following this strategy, NIR calibration sets were designed in spectral space instead of 

concentration space. The pure component NIR spectra of a tablet formulation were used 

to define the spectral space of that formulation. The performance of this strategy was 

compared with commonly employed experimental design approaches to calibration 

development. The comparisons were conducted on single API (Active Pharmaceutical 

Ingredient) and multiple API formulation to quantify model drugs using NIR 

spectroscopy. 

In the single API formulation, the comparison was based on a system to quantify a model 

drug, Acetaminophen, in pharmaceutical compacts using NIRS. A 2-factor full factorial 
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design (Acetaminophen with 5 levels and MCC:Lactose with 3 levels) was used for 

calibration development as an example of traditional calibration design. Three replicates 

at each design point resulted in a total of 45 tablets for the calibration set. Using the 

newly developed spectral based method, 11 tablets were prepared for the calibration set. 

Partial least squares (PLS) models were developed from respective calibration sets. 

Model performance was comprehensively assessed based on the ability to predict 

Acetaminophen concentrations in multiple prediction sets. One prediction set contained 

similar information to calibration set while the other prediction sets contained different 

information from calibration set in order to assess the model accuracy and robustness. 

In multiple API formulation, NIRS was used to develop a quantitative method for a 

model drug containing two APIs as Acetaminophen and Caffeine. The traditional 

calibration design was developed in the concentration space using concentration-based 

approach. A full factorial design of experiment was used to vary the APIs concentrations, 

each at five levels and excipient concentration ratio at 3 levels. Each tablet was 

compressed at three compaction pressures resulting in a total of 225 tablets in the 

calibration set. Three other calibration sets were also developed using traditional optimal 

experimental designs (central composite, D-Optimal and I-Optimal designs). A 

calibration set of 33 design points was developed from each experimental design. 

Another calibration set containing 33 samples was developed in the spectral space 

following the spectral space based method. Partial Least Square (PLS) models were 

developed from the respective calibration sets to predict APIs concentrations in an 

independent test set. This chapter aims at comparing the performance of the spectral 
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calibration sets with traditionally developed calibration sets. The experimental details and 

results of these comparative studies are provided in the following sections. 

3.2 Single API formulation 
The single API formulation described in chapter 2 was used for this study. The single API 

formulation contained a model drug Acetaminophen and four excipients such as 

Microcrystalline cellulose (MCC), spray dried Lactose, Hypromellose and Magnesium 

stearate. The target formulation was set as Acetaminophen (27.3% w/w), MCC (34.15% 

w/w), Lactose (34.15% w/w), HPMC (3.9% w/w) and MgSt (0.5% w/w). A traditional 

full factorial calibration design and a spectral calibration design were used to develop 

quantitative NIR method for this formulation to predict Acetaminophen concentration in 

pharmaceutical tablets. The prediction performances of the respective calibration models 

were compared to evaluate the utility of the spectral design strategy. 

3.2.1 Material and Methods 

3.2.1.1 Full factorial Calibration  
The traditional calibration design was a 5 by 3 level, 2-factor full factorial design. 

Samples were prepared in the laboratory. The composition of these samples is provided in 

Table 3-1. The factors were Acetaminophen concentration (% w/w) and MCC to Lactose 

ratio. Each design point was replicated three times (45 samples total). The use of a full 

factorial design of experiment for the calibration set provided orthogonality between the 

active ingredient and the excipient ratios.  
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Granules of Acetaminophen (Mallinckrodt Inc., Raleigh, NC, USA), Hypromellose 

(HPMC; Pharmacoat 606, Shin-Etsu Chemical Co. LTD, Tokyo, Japan) and intra-

granular Lactose (modified spray-dried; Foremost Farms USA, Rothschild, WI, USA) 

were manufactured using a fluid bed processor (model WSG 5, Glatt, Binzen, Germany). 

Granules, Microcrystalline cellulose (MCC; Avicel PH 200, FMC Biopolymer, 

Mechanicsburg, PA, USA) and Lactose (modified spray-dried; Foremost Farms USA,  

Design 
# Acetaminophen Hyprome

-llose 

Intra-
granular 
Lactose 

Micro-
crystalline 
cellulose 

Extra-
granular 
Lactose 

Magnesium 
Stearate 

1 19.11 2.73 5.46 51.77 20.43 0.50 

2 23.21 3.32 6.63 48.65 17.70 0.50 

3 27.30 3.90 7.80 45.53 14.97 0.50 

4 31.40 4.49 8.97 42.41 12.24 0.50 

5 35.49 5.07 10.14 39.29 9.51 0.50 

6 19.11 2.73 5.46 38.83 33.37 0.50 

7 23.21 3.32 6.63 36.49 29.86 0.50 

8 27.30 3.90 7.80 34.15 26.35 0.50 

9 31.40 4.49 8.97 31.81 22.84 0.50 

10 35.49 5.07 10.14 29.47 19.33 0.50 

11 19.11 2.73 5.46 25.89 46.31 0.50 

12 23.21 3.32 6.63 24.33 42.02 0.50 

13 27.30 3.90 7.80 22.77 37.73 0.50 

14 31.40 4.49 8.97 21.21 33.44 0.50 

15 35.49 5.07 10.14 19.65 29.15 0.50 

Table 3-1.  Composition (% w/w) of the full factorial calibration set 
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Rothschild, WI, USA) were mixed in a bin blender for 15 min. Magnesium stearate 

(Fisher Scientific, Waltham, MA, USA) was added to this blend and blended for an 

additional 2 min. Tablets were compressed at lab scale on a Carver Automatic Tablet  

Press (Model 3887.1SD0A00, Wabash, IN, USA) at 5500 lb force using a 13 mm die and 

flat-faced punches. The target tablet weight was 700 mg. The manufacturing steps were 

tested to produce reliable tablets and reported in a previous study [174]. 

3.2.1.2 Spectral Design 
The preparation method of the spectral design is described in section 2.2 in chapter 2. The 

spectral calibration set contained 11 tablets. The composition of these 11 tablets is given 

in Table 2-1 in chapter 2. The spectral design samples were prepared by direct 

compression. All the components, Acetaminophen, MCC, Lactose, HPMC and Mg 

stearate for each design point were weighed and placed in a 10 ml scintillation vial. The 

ingredients were mixed by rotating the scintillation vial. The intra tablet homogeneity 

was less of a concern due to the large spot size (~10 mm) of the NIR instrument. Tablets 

were compressed on a Carver Automatic Tablet Press (Model 3887.1SD0A00, Wabash, 

IN, USA) at 5000 lb force using a 13 mm die and flat-faced punches. The target tablet 

weight was 700 mg. 

3.2.1.3 Prediction sets 
Multiple prediction sets (3 sets) were used to evaluate the performance of the traditional 

calibration design and spectral calibration design. The first prediction set tablets were 

prepared at lab scale whereas the other two prediction sets were prepared at the 

manufacturing scale. 
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3.2.1.4 Lab scale prediction 
The first prediction set (prediction set 1) was developed using the same full factorial 

design as used for the traditional calibration set; containing 45 samples at five levels of 

Acetaminophen and 3 levels of MCC:Lactose ratio. These samples were prepared using 

the same method as calibration set. Granules of Acetaminophen, Lactose and HPMC 

were prepared and then compressed with MCC and MgSt at lab scale on a Carver 

Automatic Tablet Press (Model 3887.1SD0A00, Wabash, IN, USA) at 5000 lb force using 

a 13 mm die and flat-faced punches. The target tablet weight was 700 mg. 

3.2.1.5 Manufacturing scale prediction 
The second and third prediction sets were prepared at manufacturing scale. Prediction set 

2 was prepared by varying the Acetaminophen concentration at 3 levels and keeping the 

MCC:Lactose ratio constant. A set of 20 tablets was collected from each Acetaminophen 

level, yielding 60 tablets for this set. Four batches of tablets were prepared using this 

design, resulted in 240 tablets. A total of 239 samples were used in subsequent analysis, 

after the accidental destruction of one tablet. Intentional variation resulting from 

manufacturing scale was introduced in prediction set 2 to challenge the calibration set in 

presence of unexpected variance. The target composition was used to create two 

additional batches for the prediction set 3. Tablets were compressed on a weekly basis for 

8 weeks at the target composition. A set of 20 tablets were collected each week yielding 

160 tablets for prediction set 3. These tablets served as the real time prediction samples.  

At the manufacturing scale, after the granulation and blending steps described in the full 

factorial design section, tablets were compressed on a 38-station rotary tablet press 

(Elizabeth-Hata International, Inc., North Huntingdon, PA, USA) using round beveled 
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punches, 3/8 in. (9.5 mm) in diameter. The target tablet weight was 350 mg and the target 

breaking force was 8 kp. 

3.2.1.6 Spectral collection and reference measurements 
NIR reflectance measurements for both sides of each compact were collected using a 

bench top scanning monochromator instrument (XDS Rapid Content Analyzer, FOSS 

NIR Systems, Inc., Laurel, MD, USA) after tablets reached stable dimensions 

(viscoelastic relaxation). Spectra corresponding to each side of a compact were averaged 

to give one spectrum per compact. Acetaminophen reference values for compacts from all 

data sets except the spectral design were determined using High Pressure Liquid 

Chromatography (Waters Alliance 2790, Milford, MA, USA), followed by UV detection 

(Waters 2487). Gravimetric measurement was used as reference for the spectral design 

compacts. 

3.2.1.7 Modeling strategy 
Two calibration models were developed, one from the 45 tablets of the full factorial 

design and another from the 11 tablets of the spectral design. Both calibration models 

were developed from the lab scale tablets only. To compare calibration model 

performance between the full factorial set designed in concentration space and the set 

designed in spectral space, model performance was assessed for lab (prediction set 1 

containing similar information as calibration) and manufacturing scale predictions 

(prediction sets 2 and 3 containing different information from calibration). 

Principal Component Analysis (PCA) was used for spectral investigation and Partial 

Least Squares (PLS) regression was used to develop the calibration models. The NIPALS 

algorithm was employed. All calculations were performed with MATLAB 2011a (The 
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Mathworks, Natick, MA, USA) equipped with the PLS_Toolbox v. 7.9.3 (Eigenvector 

Research Inc., Wenatchee, WA, USA). 

3.2.1.8 Model evaluation and design comparison parameters 
Comparison of the performance of different calibration designs requires the evaluation of 

the resulting models. The full factorial and spectral design were compared based on their 

model predictive performance. Root mean squared error (RMSE) was used to evaluate 

the model predictive performance in the calibration (RMSEC) and prediction sets 

(RMSEP). The RMSEPs were separated into bias and Standard Error of Prediction (SEP). 

The bias and SEPs of the two models (one from full factorial and the other from spectral 

design) were compared using 95% t confidence interval around the bias difference and 

ratio of SEPs respectively; following the method outlined by Fearn et al. and adapted by 

Bondi et al [9, 176]. The 95% confidence interval was calculated based on the following 

equation 

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1 −  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2  ±   𝑡𝑡𝑛𝑛−1,0.025 ∗  𝑆𝑆𝑒𝑒 (3.1) 

Where, 𝑆𝑆𝑒𝑒 is the standard error of estimated difference and calculated based on the 

following equation, 

 𝑆𝑆𝑒𝑒 =  �
∑ (𝑑𝑑𝑖𝑖 − 𝑑̅𝑑)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 ∗  (𝑛𝑛 − 1)

 (3.2) 

Here, 𝑑𝑑𝑖𝑖 represents the difference in residuals for sample “i” estimated by models being 

compared and 𝑑̅𝑑 represents the mean difference in residuals for two models. The biases 

between two models were considered significantly different only if the confidence 
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interval for bias difference did not contain zero. The confidence interval for SEP ratio 

was calculated based on equation (3.3) [9, 176], 

 

 
𝑆𝑆𝑆𝑆𝑆𝑆1
𝑆𝑆𝑆𝑆𝑆𝑆2

×
1
𝐿𝐿

  𝑎𝑎𝑎𝑎𝑎𝑎 
𝑆𝑆𝑆𝑆𝑆𝑆1
𝑆𝑆𝑆𝑆𝑆𝑆2

× 𝐿𝐿 
(3.3) 

Where, 

 
𝐿𝐿 = �K + �(𝐾𝐾2 − 1) 

(3.4) 

and, 

 
K = 1 +  

2 (1 −  𝑟𝑟2) ∗  𝑡𝑡𝑛𝑛−2,0.025
2

𝑛𝑛 − 2
 

(3.5) 

Here, r represents the correlation co-efficient between the residuals. The SEPs between 

two models were considered significantly different only if the confidence interval of SEP 

ratio did not contain one. The prediction performances between the two models were 

considered significantly different if the bias, or SEPs, or both were significantly different 

between the models being compared. 
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Figure 3-1. Raw data for two calibration sets, solid line (-) represents the full 
factorial design calibration samples and broken line (--represents the spectral design 
calibration samples. 

 

3.2.2 Results  

3.2.2.1 Spectral investigations  
Figure 3-1 illustrates the raw NIR spectra of the two calibration sets, traditional full 

factorial and spectral design calibration set. Prediction sets prepared at the manufacturing 

scale (prediction set 2 and 3) exhibited a baseline shift compared to the lab scale samples 

(data not shown). The observed differences in baseline were attributed to shape, density 

and hardness differences between the lab and manufacturing samples. Density differences 

in the samples are known to cause baseline shift in NIR spectra [177, 178]. Figure 3-2 

illustrates the score plots of PCA analysis of the preprocessed spectra from two 

calibration sets and three prediction sets (total 500 spectra). Multiplicative scatter 

correction (MSC) followed by Savitzky Golay 1st derivative in a second order polynomial 

fit over a window size 19 was used as the spectral processing technique. Other 
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preprocessing methods showed similar results in the PCA analysis. The 95% confidence 

interval was dominated by the prediction set samples (444 out 500 tablets). Full factorial, 

spectral design and prediction set 1 had similar variance explained by PC1 and PC2 and 

were grouped together by PC scores except for the fact that the full factorial design and 

prediction set 1 tablets had wider range of variance compared to the spectral design 

tablets. The full factorial design and prediction set 1 tablets were prepared at the exact 

same design points and showed similar projections in the PC space. Their wider spectral 

variance was attributed to the wider range of the excipient concentrations and physical 

variance compared to the spectral design tablets. The prediction sets prepared at the 

manufacturing scale (prediction set 2 and 3) grouped separately in the scores plot due to 

differences in the physical properties such as density, hardness, surface texture and mass.  

 

Figure 3-2. Projection of the full factorial calibration, spectral calibration and three 
prediction sets samples on the PC1 and PC2 of the combined PC space. 
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The different ranges of score values between the two calibration designs and the separate 

group of scores for manufacturing scale prediction sets were largely spanned in PC2 

whereas all the samples had similar score values in PC1. It is critical for the calibration 

and prediction samples to have similar score values in the principal components that 

explain analyte concentration variation to achieve acceptable predictive performance. In 

this study, PC1 primarily explained the concentration variation of Acetaminophen (the 

absolute correlation co-efficient between Acetaminophen concentration and scores on 

PC1 was 0.9125). The different projections on PC2 did not affect the prediction at a large 

extent due to poor correlation with the Acetaminophen concentration (the absolute 

correlation co-efficient between Acetaminophen concentration and scores on PC2 was 

0.2525). 
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Figure 3-3. Measured vs predicted plot of Acetaminophen concentration for full 
factorial calibration and prediction set 1 (upper panel). Measured vs predicted plot 
of Acetaminophen concentration for spectral calibration and prediction set 1 (lower 
panel). 

3.2.2.2 Model optimization 
 

Models developed from each calibration design were independently optimized. The range 

of the wavelength used was 1100-2500 nm for both calibration designs. The pre-

processing and model optimization focused on maximizing the potential to predict 
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samples manufactured at different scales. Multiplicative Scatter Correction (MSC) 

followed by Savitzky-Golay first derivative (window size 19 and second polynomial 

order) and mean centering was used as the optimized preprocessing technique. Other 

preprocessing methods were also tried, but scatter correction followed by derivatives 

provided better predictive performance for the calibration models. This preprocessing 

technique minimized the baseline shift caused by scale variation in the tablet preparation 

methods between calibration and prediction sets. However, the spectral difference could 

not be completely removed as evident by the different projections of calibration and 

predictions sets (after applying same preprocessing technique) on the PC score space in 

Figure 3-2. Selection of the latent variables is critical for PLS model performance. A 

minimum number of latent variables with acceptable prediction performance was 

selected. The optimum numbers of latent variables for the spectral and full factorial 

calibration design sets were two (spectral) and three (full factorial), respectively.  

3.2.2.3 Prediction performance 
The calibration models from the full factorial and spectral design were used to predict the 

Acetaminophen concentrations in prediction sets. Prediction set 1 samples were prepared 

at the lab scale; and samples for prediction sets 2 and 3 were prepared at the 

manufacturing scale.  

3.2.2.4 Lab scale prediction 
Figure 3-3 shows the reference vs prediction plot for full factorial and spectral designs. 

The model developed from the full factorial design predicted Acetaminophen in 

prediction set 1 with RMSEC and RMSEP value of 1.13% and 1.34%, respectively.  
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Figure 3-4. Measured vs predicted plot of Acetaminophen concentration for full 
factorial calibration and prediction set 2 (upper panel). Measured vs predicted plot 
of Acetaminophen concentration for spectral calibration and prediction set 2 (lower 
panel). 

The model developed from the spectral design had a lower RMSEC of 0.89% but higher 

RMSEP of 2.70 %. The improved prediction performance for the full factorial design was 

due to the chemical and physical similarity between prediction set 1 samples and the full 

factorial design. The spectral design samples had compositional and physical 

dissimilarities from prediction set 1 that include composition and preparation method. 
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The full factorial design and prediction set 1 samples were prepared using wet 

granulation method whereas the spectral design samples were prepared using dry mixing 

method. 

3.2.2.5 Manufacturing scale prediction 
Robustness was tested for models developed from the full factorial and spectral designs. 

Samples with new sources of variation (manufacturing scale) were predicted using the 

models developed at the calibration step (lab scale) to test the robustness. Figure 3-4 

shows the reference vs prediction plot of Acetaminophen concentrations in prediction set 

2 for both models. The model developed from the full factorial design had a RMSEP of 

4.68 % compared to the RMSEP of 2.21 % for the model developed from spectral design.  

A bias is observed in the prediction of samples at the top figure of Figure 3-4 for the full 

factorial design model. The bias was due to an interference introduced by the scale of the 

sample preparation method. No significant bias was observed while predicting these 

samples by the model developed from spectral design as shown at the bottom of Figure 

3-4. 

Figure 3-5 shows the reference vs prediction plots of prediction set 3, containing 160 

tablets. This prediction set was prepared at the target concentration to mimic routine 

production. Full factorial design model had a higher RMSEP of 5.05 % compared to the 

RMSEP of 1.68 % of the spectral design model. Table 3-2 shows the prediction results 

for both full factorial and spectral design. 
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Figure 3-5. Measured vs predicted plot of Acetaminophen concentration for full 
factorial calibration and prediction set 3 (upper panel). Measured vs predicted plot 
of Acetaminophen concentration for spectral calibration and prediction set 3 (lower 
panel). 

3.2.2.6 Design comparison 
The predictive performances of the optimized models from the traditional concentration 

based full factorial design and the spectral design were compared. Figure 3-6 shows the 

confidence intervals for bias and SEP comparison between the optimized models. The 
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two models were significantly different in terms of both bias and SEP. Full factorial 

design predictions had a lower bias for the lab scale samples (prediction set 1) and  

higher bias for the 

manufacturing scale samples 

(prediction set 2 and 3), 

compared to the spectral 

design model. While 

comparing SEPs, full 

factorial design had lower 

SEP for prediction set 1 and 

3 compared to the spectral 

design. For prediction set 2, 

the spectral design had a 

lower SEP. Although full 

factorial design had a lower 

SEP, it had a higher RMSEP 

due to the higher bias in the 

prediction sets. For all the manufacturing scale predictions, full factorial design always 

had a higher RMSEP compared to the spectral design. The spectral design approach was 

found to be more robust than the traditional full factorial design in spite of having fewer 

calibration samples. 

 

Calibration Design Spectral design Full factorial design 

No. of samples 11 samples 45 samples 

No. of latent variable 2 LV 3 LV 

RMSEC % (w/w): 0.889 1.133 

RMSECV % (w/w): 1.625 1.288 

Prediction Set 1   

RMSEP % (w/w): 2.701 1.342 

Prediction Bias 1.270 0.071 

SEP 2.384 1.340 

Prediction Set 2 

  RMSEP % (w/w): 2.212 4.682 

Prediction Bias -0.578 -3.938 

SEP 2.135 2.531 

Prediction Set 3 

  RMSEP % (w/w): 1.676 5.046 

Prediction Bias -0.786 -4.882 

SEP 1.480 1.274 

Table 3-2.  Model performance comparison between 
two methods of experimental design; spectral and full 
factorial 
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Figure 3-6. Confidence interval for bias (A) and standard error of prediction (B) 
comparison between full factorial design and spectral design for prediction sets 
analysis. 

3.2.2.7 Discussion 
The main objective of this project was to develop and test a spectral design method and 

compare it with a traditional full factorial design method for NIR spectroscopic 

multivariate calibration. The use of a traditional design, such as full factorial, in 

concentration space is a common practice for calibration sample preparation. However, 

this practice is inefficient and includes redundant information in the calibration model. 

The spectral design approach offers an efficient enhancement for NIR calibration 

development by using pure component spectra. Information about the pure component 

spectra was used to define an orthogonal spectral space for the formulation and identify a 

set of critical samples necessary for successful calibration model development.  

Designing a calibration sample set in this orthogonal spectral space was found to be an 

efficient approach for developing an NIR calibration method for pharmaceutical tablets. 

Fewer samples were required when this approach was used. A reduction of 75% in raw 

material requirement was demonstrated (11 vs 45) while achieving similar (if not 

improved) predictive performance compared to the traditional full factorial design. 
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Considering the RMSEPs in manufacturing scale samples, the spectral design was found 

to be more robust than the full factorial design. The full factorial design was very 

sensitive to latent variable selection, scale variation and prone to biased prediction. The 

sensitivity of this concentration based design was due to the information that is unique to 

the calibration set and not always exists in the prediction sets. Fitting this information 

into the model introduced biased predictions in the presence of new information (lack of 

robustness). Biased corrected prediction performance (SEP) of the full factorial design 

were found to be similar to the spectral design for manufacturing samples. 

The spectral calibration set showed similar SEP to the full-factorial calibration set due to 

similar span of Acetaminophen concentration between two calibration sets. The full-

factorial calibration set contained wider range of excipient variation compared to the 

spectral calibration set, however, such information was redundant for calibration 

performance. The limited excipient variation in the spectral calibration set was 

representative of the additional excipient variation in the full factorial calibration set. 

Prediction results at lab scale emphasized the similarity between the calibration and 

prediction samples. For the full factorial design, calibration and lab samples came from 

the same exact design points and were prepared using the same methodology. As 

expected, the calibration model was very accurate in predicting this set of samples. In 

spectral design method, errors from the lab scale predictions based on the spectral design 

model were within errors observed in other prediction sets due to the inherent robustness 

of the design. 

Selection of the latent variables is critical to model performance. However, in practice, 

this selection process occurs only during model development. Once the model is 
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developed and optimized, further investigations of predictive performance are conducted 

based on that optimized model only. The number of latent variable does not change 

during the assessment of prediction performance. Following this practice, the 

comparative analyses were performed between the optimized models with fixed latent 

variables from respective designs. 

3.2.3 Conclusion 

A technique for designing a calibration set using pure component spectra for NIR 

spectroscopic calibration method was described and tested for quantitative analysis of 

pharmaceutical tablets. This technique was found to be efficient in terms of sample 

requirements compared to the traditional (full factorial) concentration based technique. A 

reduced number of calibration samples yielded a model with improved predictive 

capabilities for this individual system. In particular, a calibration model developed in 

spectral space demonstrated improved robustness in presence of variation introduced by a 

change of manufacturing scale, with respect to a model developed using full factorial 

design. 

Calibration model performance can be highly system specific. The improved prediction 

performance of the spectral calibration set is not expected for every formulation.   

However, it is expected that the spectral calibration set will provide equivalent prediction 

performance with fewer number of samples while comparing with traditional calibration 

sets. It is also expected that the spectral calibration set will provide improved prediction 

performance with an equal number of calibration samples while comparing with 

traditional calibration sets. In general, spectral calibration is expected to be efficient in 
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sample number compared to the traditional calibration sets.  Such efficiency is more 

critical for multiple API formulation, since the traditional calibration sets for multiple 

API requires larger calibration sets compared to the single API. The following section 

describes a comparative study conducted on multiple API system to assess the 

performance of spectral calibration set and compare with traditional calibration sets.
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3.3 Multiple APIs formulation 
The utility and performance of the spectral calibration technique was assessed for a multiple API 

formulation. The performance of the spectral calibration set (33 calibration samples) was 

compared with traditional full factorial calibration set of larger size (225 calibration samples) as 

well as traditional optimal calibration sets of similar sizes (33 calibration samples) to further 

investigate the applicability of the newly developed spectral calibration strategy. The multiple 

API formulation described in section 2.3 in chapter 2 was used for this study. The multiple API 

formulation contained two model drug Acetaminophen (Acetaminophen) and Caffeine and four 

excipients such as Microcrystalline cellulose (MCC), spray dried Lactose, Crosscarmellose Na 

and Magnesium stearate. A full factorial calibration design and three optimal calibration designs 

were used as examples of traditional calibration set. A spectral calibration design was used to 

develop another calibration set. All these calibration sets were used to develop quantitative NIR 

methods for this formulation to predict Acetaminophen and caffeine concentration in 

pharmaceutical tablets. The prediction performances of the respective calibration models were 

compared to evaluate the utility of the spectral design strategy. 

3.3.1 Material and Methods 

3.3.1.1 Full factorial Calibration  
The model drug product contained two APIs as Acetaminophen (Mallinckrodt Inc., Raleigh, NC, 

USA) and anhydrous Caffeine (Spectrum Chemical Mfg. Corp., New Brunswick, NJ, USA), and 

four excipients as Microcrystalline cellulose (MCC; Avicel PH 200, FMC Biopolymer, 

Mechanicsburg, PA, USA), Lactose (modified spray-dried; Foremost Farms USA, Rothschild, 

WI, USA), Crosscarmellose sodium (Crosscarmellose Na, Spectrum Chemical Mfg. Corp., New 

Brunswick, NJ, USA) and Magnesium stearate (Fisher Scientific, Waltham, MA, USA). The 
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target formulation was set as Acetaminophen (31.25% w/w), Caffeine (4.05% w/w), MCC 

(37.32% w/w), Lactose (24.89% w/w), Crosscarmellose Na (2% w/w) and MgSt (0.5% w/w). 

The traditional calibration design was developed using a 4-factor full factorial design. The 

factors were Acetaminophen concentration, Caffeine concentration, MCC: Lactose ratio and 

compaction force. Each of the APIs (Acetaminophen and Caffeine) concentrations was varied at 

five levels and other two factors (MCC: Lactose ratio and compaction force) were varied at three 

levels resulting in 225 design points in the traditional full factorial calibration set. A test set was 

developed by varying all the factors except MCC: Lactose ratio, each at three levels resulting in 

total 27 design points. Table 3-3 provides the details of the full factorial calibration and test 

design. 

Tablets were individually prepared by direct compression. All the components for a single design 

point were weighed using a digital weighing machine (Data Range, Model No. AX504DR, 

Mettler Toledo) and placed in a 10 ml scintillation vial. The ingredients were mixed in a bin 

 Design Factors Design Levels 

Calibration Design 
(5x5x3x3) 

225 
samples 

Acetaminophen 
(%) 

L.C.-
40% 

L.C.-
20% L.C. L.C.+20% L.C.+40% 

Caffeine (%) L.C.-
80% 

L.C.-
40% L.C. L.C. 

+40% L.C.+80% 

MCC/Lac 1 1.5 2 

Force (lb) 4000 5000 6000 

Test Design 
(3x3x3) 

27 
samples 

Acetaminophen 
(%) L.C.-35% L.C. L.C.+35% 

Caffeine (%) L.C.-70% L.C. L.C.+70% 

Force (lb) 4000 5000 6000 

MCC/Lac 1.5 
Table 3-3. Full-factorial calibration design and test set 
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blender (L.B. Bohle LLC, Warminster, PA, USA) for 10 mins followed by a high shear mixing 

using a vortex machine (Vortex-2 Genie, Model G-560, Scientific Industries, IN, USA). The final 

mixing was done in the bin blender before compression. Additional blending steps were included 

in the process to ensure well mixing of the low dose caffeine. Tablets were compressed on a 

Carver Automatic Tablet Press (Model 3887.1SD0A00, Wabash, IN, USA) at respective 

compression forces (4000/ 5000/ 6000 lb) using a 13 mm die and flat-faced punches. The target 

tablet weight was 700 mg. 

3.3.1.2 Optimal calibration designs 
Three optimal calibration designs were developed in this study as examples of traditional 

calibration designs. The factors of the designs were Acetaminophen concentration, Caffeine 

concentration, MCC: Lactose ratio and compaction force. The CCD design was developed by 

creating a CCD structure containing 11 design points in the concentration space and varying the 

compaction force at three levels for each design point resulting a total of 33 design points in the 

calibration set. The D-Optimal and I-Optimal designs were developed using JMP (v. 12, SAS, 

Cary, NC, USA). A set of 33 design points was selected from a full factorial space such that the 

determinant of the information matrix is maximized (D-Optimal) and average prediction 

variance is minimized (I-Optimal). All the calibration design tablets were subsets of the full-

factorial design described earlier. 
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Figure 3-7. Experimental procedures for designing a calibration set in spectral space 

3.3.1.3 Spectral Design 
The preparation method of the spectral design of multiple API is described in section 2.3 in 

chapter 2. Figure 3-7 illustrates the procedure for designing a calibration set in the spectral space. 

In summary, the pure component tablets (six tablets) and one tablet at the target composition 

were compressed at the middle compression force (5000 lb) using a Carver Automatic Tablet 

Press. A spectrum at the target composition was used for calculating model tablet scores (target 

scores) on the orthonormal basis of pure component spectra. A 6-factor full factorial design with 

5 levels per factor was calculated in the orthogonal spectral space where the “model tablet” 

scores were set as the center of the design. The full factorial structure resulted a total of 15625 

(56) design points. The compositional requirements for the target design were calculated using 

eq. 3.6 (same as equation 2.8). 
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𝐂𝐂𝐮𝐮∗𝐤𝐤
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∗ 𝐑𝐑𝐤𝐤∗𝐤𝐤

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑n

= 𝐓𝐓𝐮𝐮∗𝐫𝐫
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ∗ (𝐏𝐏𝐤𝐤∗𝐧𝐧

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ∗ 𝐖𝐖𝐧𝐧∗𝐤𝐤
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛)−𝟏𝟏 

 

(3.6) 

Here, C is the compositional matrix for the targeted score design having sample size “u”, R is the 

rotational matrix, T is the target design in the score space, P is the pure component spectra, W is 

the basis vector set and r = k (number of latent variables = number of components). 

After determining the compositional requirements ‘C’ of the target design, the target design 

spectra were simulated using the compositional requirements, the pure component spectra and 

the rotation matrix. The Kennard Stone algorithm was used to select 30 design points in the PCA 

score space of the target design spectra (Spectral Design) [132]. The composition of these 30 

design points is provided in Table 2-2 in section 2.3 of chapter 2. The target formulation was 

replicated 3 times resulting in 33 design points in the spectral design. The 33 tablets of the 

spectral design were prepared by direct compression on Carver Automatic Tablet Press using a 

13 mm die and flat-faced punches. The target tablet weight was 700 mg. The compression forces 

were selected such that the correlation between compression force variation and concentration 

variation of each component is minimal and variance in compaction force is maximal. 

3.3.1.4 Experimental control 
Intra homogeneity of the tablets can be critical in case the respective spectrum represents only a 

portion of the tablet. The blending was performed in three steps in a bin blender followed by 

high shear mixing and subsequent blending to avoid inhomogeneity of the tablet. The intra 

homogeneity of the tablet was analyzed to test the appropriateness of the blending process. A set 

of 15 tablets were selected from the 225 calibration samples. NIR images of these tablets were 
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collect by NIR chemical imaging system (MatrixNIR, Malvern Inc., MD) with 0.5× objective 

lens (field of view 1.72 cm × 2.15 cm). An integration time of 256 ms and a count of 16 co-adds 

were utilized throughout the image collection of all 15 tablets. The wavelength range was from 

1050 to 1620 nm with a 5 nm interval. A typical Classical Least Square approach was used to 

develop a quantitative method for image analysis. 

All the materials were stored in room temperature and relative humidity. Anhydrous caffeine was 

reported to be stable at 75% RH for 7 weeks [173]. No hydration and anhydrous caffeine was 

expected considering lower room RH (~60%) and shorter storage time and analysis. The tablets 

were stored for 2 weeks to allow viscoelastic relaxation. Two weeks duration was set based on a 

previous study [174]. 

Solid fraction of each of the 225 tablets was calculated based on the following equation  

to test the appropriateness of the compaction force range. A wide range of solid fraction was 

expected as a result of compaction force variation. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�  (3.7) 

 

3.3.1.5 Spectral collection and reference measurements 
NIR reflectance measurements for both sides of each compact were collected using the bench top 

scanning monochromator instrument (XDS Rapid Content Analyzer, FOSS NIRSystems, Inc., 

Laurel, MD, USA) after tablets reached stable dimensions (viscoelastic relaxation). Spectra 

corresponding to each side of a compact were averaged to give one spectrum per compact. 

Gravimetric measurement was used as reference for all tablets. 
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In the gravimetric method, all the weights of the individual chemical components at each design 

point were recorded from digital weighing machine (Data Range, Model No. AX504DR, Mettler 

Toledo). The tablet weights were recorded after compression using the same digital weighing 

machine. The concentrations % (w/w) were calculated for APIs from the respective individual 

weights and tablet weights, and used as reference values for model development. 

3.3.1.6 Modeling strategy and optimization 
Quantitative models were developed using Partial Least Squares (PLS) modeling technique in 

MATLAB 2015a environment (The Mathworks, Natick, MA, USA) using PLS_Toolbox v. 7.9.3 

(Eigenvector Research Inc., Wenatchee, WA, USA). Data independent spectral preprocessing 

techniques were used to optimize model performance. Two calibration models were developed 

for each API, one from the 225 tablets of the full factorial design and another from the 33 tablets 

of the spectral design. Models developed from each calibration design were independently 

optimized for each API. The processing techniques and loading vectors were selected 

independently. Selection of the loading vector is critical for PLS model performance. Latent 

variables were chosen based on a parsimonious approach. A minimum number of latent variables 

with an acceptable performance level was selected. Model performance was assessed based on 

the prediction of Acetaminophen and Caffeine concentration in calibration and test set tablets. 

3.3.1.7 Model evaluation and design comparison parameters 
Comparison of the performance of different calibration designs requires the evaluation of the 

resulting models. Root mean squared error (RMSE) was used to evaluate the model predictive 

performance in an independent test sets (RMSEP). A two-way analysis of variance (ANOVA) 

test was performed to compare the prediction errors of the full factorial and spectral calibration 

designs for each API [22]. The underlying model for the ANOVA analysis was following, where 
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index ‘i’ refers to the calibration model and index ‘j’ refers to the sample number. The symbol 𝛼𝛼𝑖𝑖 

and 𝛽𝛽𝑗𝑗 refer to the effect of model number i and sample number j on prediction error, 

respectively.  

 (𝑦𝑦�𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)2 =  𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝑒𝑒𝑖𝑖𝑖𝑖 (3.8) 

The calibration models are considered significantly different in terms of prediction performance, 

if the calibration model parameter 𝛼𝛼 is found to be significant in the ANOVA analysis.  

Robustness of the calibration models from respective calibration designs were tested based on 

cross design prediction. During cross design prediction, calibration model was developed from 

spectral calibration set and used to predict the API concentration in traditional calibration sets. 

Subsequently, calibration models were developed traditional calibration sets and used to predict 

the API concentration in spectral calibration set. The objective was to assess the prediction 

performance of a calibration model in presence of new test structure. Robustness of the 

calibration model was tested for both Acetaminophen and Caffeine PLS model. 
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Figure 3-8. Quantitative predictions of NIR images of tablet at target formulation and 
center compaction force.   

 

3.3.2 Results and Discussion 

3.3.2.1 Experimental control 
Figure 3-8 shows the quantitative predictions of APAP and caffeine at both sides of the tablet 

prepared at the target formulation and center compaction force. The quantitative results were 

obtained from the NIR images of the tablet and CLS model of the pure component images. It was 

shown that the APAP and caffeine were homogeneously distributed in the tablet. The red circle 

shows the spot size (10 mm) of the NIR diffuse reflectance measurement. It was shown that the 

NIR diffuse reflectance measurement reflects majority of the tablets due to large spot size. The 

criticality of the intra tablet homogeneity was minimized by such large spot size. 
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Figure 3-9. Solid fraction of tablets compressed at different compaction forces.   

Figure 3-9 shows the solid fraction measurements of 75 tablets at each compaction force. The 

compaction force range (4000 lb-6000 lb) results in a wide range of solid fraction (0.83-0.92). 

This range of solid fraction was able to produce wide range of spectral variation related to tablet 

density.  

3.3.2.2 Calibration design comparison between full factorial and spectral calibration sets 
Figure 3-10 shows the tablet compositions for the traditional full factorial calibration design, 

spectral calibration design and test design. The resultant compositions from the spectral design 

approach contained similar ranges of Acetaminophen and Caffeine concentrations. Spectral 

design had wider range of excipient variation compared to the traditional full factorial design. 

The wider excipient ranges were the result of distant design points in the target score space, that 

could only be obtained by large variation in the excipient concentrations. Although wide 

concentration range is considered to increase calibration model robustness, it can introduce non-

linearity and affect prediction performance. Good fit is almost guaranteed for a small set with 

Compaction force (lb)

4000 4500 5000 5500 6000

S.
F.

0.82

0.84

0.86

0.88

0.9

0.92

0.94
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narrow region. Moreover, a typical production batch is manufactured at the target composition 

and large excipient variation is not expected. So, it is recommended to use two calibration sets, 

one for coarse prediction of concentration (global calibration set) and the other for precise and 

accurate prediction in the critical range (local calibration set). This technique is known as 

bracketing [47]. However, maintaining two calibrations and selecting which one to use is 

challenging. A single robust calibration capable of predicting at the critical range would be 

advantageous over the bracketing technique. In this study, spectral calibration set containing 

large excipient variation was tested for the critical range prediction around target composition. 

Successful model performance from the spectral calibration set would offer a single calibration 

set with sufficient robustness and accuracy. 

 

 

Figure 3-10. Tablet compositions of the traditional full factorial calibration, the spectral 
calibration and the test set. 
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3.3.2.2.1 Prediction performance 
The calibration models from the full factorial and spectral design were used to predict the 

Acetaminophen and Caffeine concentrations in the prediction set. 

3.3.2.2.1.1 Acetaminophen prediction 
 

 

Figure 3-11. Calibration model performance for traditional full factorial design during 
Acetaminophen prediction 

Figure 3-11 shows the calibration performance of the traditional full factorial design for 

Acetaminophen prediction in the calibration and test set. Figure 3-11 (right) shows the projection 

of the calibration and test samples on the first two loading vectors of the PLS model. The 

calibration set and test set had similar spectral variance as indicated by their similar projections 

on the first two loading vectors. The calibration set had wider range of scores on LV2 compared 

to the test set. This effect was attributed to the wide excipient variation present in the calibration 

set.  
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Figure 3-12. Calibration model performance for spectral design during Acetaminophen 
prediction 

The RMSEP for the traditional Acetaminophen calibration was around 1% (w/w) and no 

significant bias was observed during prediction. Figure 3-12 shows the calibration performance 

of the spectral design for Acetaminophen prediction in the calibration and test set. The score plot 

(Figure 3-12 (right)) shows similar projections of the calibration and test set on LV1 and 

different projections on the LV2. However, this difference in the scores on LV2 did not affect the 

prediction performance due to compensating effect of LV4 on the opposite direction (data not 

shown). The information in LV2 and LV4 was majorly attributed to the wide range of excipient 

variation in spectral calibration set. The RMSEP was 0.83% (w/w) and no significant bias was 

observed. The prediction errors of the full factorial and spectral calibration design for 

Acetaminophen prediction was found to be similar in the ANOVA analysis (p value 0.1968). 

Table 3-4 provides the details of the calibration models developed from traditional full factorial 

and spectral design. 
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3.3.2.2.1.2 Caffeine prediction 
Figure 3-13 shows the calibration performance of the traditional full factorial design for Caffeine 

prediction in the calibration and test set. The calibration set and test set had similar spectral 

variance; indicated by their similar projections on the first two loading vectors as shown in 

Figure 3-13 (right). The score ranges were similar in both latent variable directions as opposed to 

the scenario in the Acetaminophen prediction model. 

 
Traditional 

(225 samples) 
Spectral 

(33 samples) 

Preprocessing techniques 
X block 
Y block 

 
MSC*, Auto scale 

Auto scale 

 
MSC*, SG (15,2,1)**, Auto scale 

Auto scale 

LV 6 4 

RMSEC (% w/w) 0.829 1.092 

RMSECV (% w/w) 0.867 1.336 

RMSEP (% w/w) 0.982 0.832 

Bias (% w/w) 0.221 0.115 

R2 Calibration 0.991 0.973 

R2 Prediction 0.989 0.991 

p values (ANOVA)  0.1968 

Table 3-4.  Model performance comparison between full factorial and spectral 
calibration design for quantitative analysis of Acetaminophen 
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Figure 3-13. Calibration model performance for traditional full factorial design during 
Caffeine prediction 

This effect was attributed to the similar ranges of APIs (Acetaminophen and Caffeine) 

concentrations between the calibration and test set. The first two loading vectors primarily 

explained the direction of variation in Caffeine concentrations even at low dose, due to 

maximization of covariance between spectra and Caffeine concentrations. These loading vectors 

also explained the direction of variation in Acetaminophen concentrations due to its unique 

spectral feature and relatively large dose. The RMSEP for the traditional Caffeine calibration was 

0.41% (w/w) and no significant bias was observed during prediction. Figure 3-14 shows the 

calibration performance of the spectral design for Caffeine prediction in the calibration and test 

set. Similar trend in the score plot Figure 3-14 (right)) was observed as compared to the 

traditional calibration design. The first two loading vectors primarily explained the direction of 

the variation in APIs concentrations. The RMSEP was 0.41% (w/w) and no significant bias was 

observed. The prediction errors of the full factorial and spectral calibration design for Caffeine 

prediction were found to be similar in the ANOVA analysis (p value 0.9527). Table 3-5 provides 

the details of the calibration models developed from traditional full factorial and spectral design. 
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Figure 3-14. Calibration model performance for spectral design during Caffeine prediction. 

3.3.2.2.2 Discussion 
The main objective of this project was to develop and test a spectral design method and compare 

it with a traditional full factorial design method for NIR spectroscopic multivariate calibration 

for multiple API system. The use of a traditional design such as full factorial in concentration 

space is a common practice for calibration sample preparation. However, this practice is 

inefficient and provides redundant information to the calibration model. This effect is 

exacerbated for the tablets containing multiple API. The spectral design approach offers an 

efficient enhancement for NIR calibration development by using pure component spectra. 

Information about the pure component spectra defined an orthogonal spectral space for the 

formulation and was used to identify a set of critical samples with necessary compositional 

variation for successful calibration model development. 
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Variation in the physico-chemical properties of the tablet (tablet density) was also added into this 

study as a potential source of variation for NIR analysis of tablets. The objective was to test the 

performance of the spectral calibration design technique in presence of physical variation. 

Physical variation was added into the spectral design by minimizing correlation between 

composition and compaction pressure to maximize design orthogonality. Physical variation can 

also be added into the spectral space by compressing pure components using different 

compaction forces. While this effort helps to build robustness against density variation, effect of 

 
Traditional 

(225 samples) 
Spectral 

(33 samples) 

Preprocessing techniques 
X block 
Y block 

 
MSC*, Auto scale 

Auto scale 

 
MSC*, SG (15,2,1)**, Auto 

scale 
Auto scale 

LV 6 6 

RMSEC (% w/w) 0.394 0.261 

RMSECV (% w/w) 0.410 0.473 

RMSEP (% w/w) 0.406 0.411 

Bias (% w/w) 0.087 0.232 

R2 Calibration 0.971 0.991 

R2 Prediction 0.976 0.979 

p values (ANOVA)  0.9527 

Table 3-5.  Model performance comparison between full factorial and spectral 
calibration design for quantitative analysis of Caffeine 
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tablet density variation on NIR spectra were also minimized by preprocessing techniques (scatter 

correction and derivatives). Both spectral and traditional calibration models were found to be 

robust against density variation. However, density variation was added more efficiently in the 

spectral design technique (minimizing correlation) compared to the traditional full factorial 

technique (replicating each design at different compaction forces). 

Designing a calibration sample set in spectral space was found to be an efficient approach for 

developing a NIR calibration method for tablets containing multiple API. Fewer samples were 

required when this approach was used. A reduction of 85% in raw material requirement was 

demonstrated (33 vs 225 samples) while achieving similar predictive performance compared to 

the traditional full factorial design. 
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Figure 3-15. Tablet compositions of the spectral and traditional calibration designs (filled 
circles), and the test set (open circles) 

3.3.2.3 Calibration design comparison between optimal and spectral calibration sets 
Figure 3-15  shows the tablet compositions for the spectral and traditional designs along with the 

test set compositions. The CCD design had maximum resemblance with the test set design. The 

other designs have wider range of excipient variation compared to the CCD and test design. The 

wide excipient range in the spectral design and traditional optimal designs (D-Optimal and I-

Optimal) were incorporated to maximize the spectral variance and concentration variance, 

respectively. 

3.3.2.3.1 Prediction performance 
The calibration models from the optimal designs and spectral design were used to predict the 

concentration of Acetaminophen and Caffeine in the prediction set. 
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3.3.2.3.1.1 Acetaminophen prediction 
 

Figure 3-16. Calibration model performance of the spectral design and traditional designs 
during Acetaminophen prediction. 

 

Figure 3-16 shows the calibration performance of the traditional and spectral calibration designs 

for Acetaminophen prediction in the calibration and test set. The traditional calibration sets 

(CCD, D-Optimal and I-Optimal) and test set had similar spectral variance as indicated by their 

similar projections on the first two loading vectors. For the spectral design, the score plot shows 

similar projections of the calibration and test set on LV1 and different projections on the LV2. 

Large excipient variation in the spectral design could contributed to the score differences. 

However, this difference in the scores on LV2 did not affect the prediction performance due to 

its small weight coefficients and minimal contribution to the regression vector and prediction. 
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The ascending order of the prediction error of Acetaminophen (RMSEP) was Spectral design < 

CCD < D-Optimal < I-Optimal. 

 

Figure 3-17. Calibration model performance of the spectral design and traditional designs 
during Caffeine prediction. 

3.3.2.3.1.2 Caffeine prediction 
Figure 3-17 shows the calibration performance of the traditional and spectral calibration designs 

for Caffeine prediction in the calibration and test set. All the calibration sets and the test set had 

similar spectral variance as indicated by their similar projections on the first two loading vectors. 

The score ranges were similar in both latent variable directions as opposed to the scenario in the 

Acetaminophen prediction model. This effect was attributed to the similar range of APIs 

(Acetaminophen and Caffeine) concentrations between the calibration and test sets. The first two 
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loading vectors primarily explained the direction of variation in Caffeine concentrations even at 

low dose, due to maximizing the covariance between spectra and Caffeine concentrations. These 

loading vectors also explained the direction of variation in Acetaminophen concentrations due to 

its unique spectral feature and relatively large dose. The ascending order of the prediction error 

of Caffeine (RMSEP) was CCD < Spectral design < D-Optimal < I-Optimal. 

 

Figure 3-18. Cross design performance of acetaminophen model (left) and caffeine model 
(right) 

  

1 2 3 4

R
M

S
E

P
 (%

 w
/w

)

0

0.5

1

1.5

2

2.5

3

Spectral predicting traditional

Traditional predicting spectral

1 2 3 4

R
M

S
E

P
 (%

 w
/w

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Spectral predicting traditional

Traditional predicting spectral

Spectra/ 
D-Opt 

Spectra/ 
FFT 

Spectra/ 
I-Opt 

Spectra/ 
CCD 

Spectral/ 
D-Opt 

Spectral/ 
FFT 

Spectral/ 
I-Opt 

Spectral/ 
CCD 



 

 117  

3.3.2.3.1.3 Assessment of model robustness 
Model robustness was assessed by cross design prediction. The calibration model developed 

from spectral calibration set was found to be more robust than the calibration models developed 

from optimal calibration sets. The robustness between spectral and full factorial calibration set 

was found to be similar. Figure 3-18 shows the results of the cross design prediction for both 

Acetaminophen (left) and Caffeine (right). The blue bars indicate the prediction errors of the 

spectral calibration model while predicting API in traditional calibration sets. The yellow bars 

indicate the prediction errors of the traditional calibration model while predicting API in spectral 

calibration. The spectral calibration model showed prediction errors similar to the full factorial 

calibration model in spite of having fewer sample number (33 vs 225). The full factorial 

calibration model was trained with larger sample size resulting in a robust calibration model. The 

prediction error was relatively low when a different test structure (spectral calibration set) was 

presented in front of the calibration model. The spectral calibration set was robust due to its wide 

range of spectral variation built into the calibration set. The CCD and I-optimal calibration 

models showed poor prediction performance for both Acetaminophen and Caffeine when a 

different test structure (spectral calibration set) was presented. D-optimal calibration model 

showed poor prediction performance while predicting Caffeine concentration in spectral 

calibration set. The spectral calibration model showed reasonable prediction performance while 

predicting Acetaminophen and Caffeine in all of the traditional calibration sets (Full factorial 

(FFT), CCD, I-optimal and D-optimal) indicating model robustness against different types of test 

set structure as shown in Figure 3-18. 
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3.3.2.3.2 Discussion 
The main objective of this project was to develop and test a spectral design method and compare 

it with traditional calibration design methods for NIR spectroscopic multivariate calibration for 

multiple API system. Table 3-6 provides the calibration performances of the spectral and 

traditional designs for Acetaminophen and Caffeine. Spectral design and CCD were found to 

outperform the optimal designs in terms of prediction performance. The use of a traditional 

design in concentration space is a common practice for calibration sample preparation. However, 

this practice is inefficient and provides redundant and deleterious information to the calibration 

model as seen in the case of D-Optimal and I-Optimal design.  

 
Acetaminophen prediction Caffeine prediction 

 
Spectral CCD D-

Opt 
I- 

Opt Spectral CCD D-
Opt 

I- 
Opt 

RMSEC 1.092 1.187 0.758 0.611 0.260 0.286 0.335 0.368 

RMSECV 1.336 1.381 1.004 0.882 0.473 0.345 0.456 0.513 

RMSEP 0.832 0.893 1.050 1.110 0.410 0.379 0.463 0.481 

Bias 0.115 0.259 0.085 0.484 0.232 0.090 0.084 0.174 

R2 Cal 0.973 0.967 0.993 0.995 0.991 0.971 0.977 0.974 

R2 Pred 0.991 0.991 0.987 0.988 0.979 0.977 0.967 0.975 

Table 3-6. Calibration performance of spectral and traditional calibration designs 
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The optimality in the concentration space does not guarantee optimality in the spectral space. 

This effect is exacerbated for the tablets containing multiple API. In multiple API formulation, 

two individual APIs might have respective optimal design spaces that are very different from 

each other. However, in the optimal concentration based design, the optimality is defined in a 

single compositional space and same weightages are used for all chemical components including 

APIs and excipients to generate the optimality criterion (e.g. levels 1,2,3… to calculate D-

optimal or I-optimal criterion). The resultant design points of concentration based optimal design 

are only indicative of optimal compositional structure but lack critical information specific to 

APIs. 

The improved performance of the CCD calibration set compared to the other optimal calibration 

sets emphasizes the importance of similarity between calibration and prediction set structures. 

The calibration model provides improved prediction performance when it encounters known 

information in the prediction set. The CCD calibration model was trained on the information that 

was available in the prediction set, resulting in improved performance. However, such similarity 

is not always guaranteed. The calibration model from CCD calibration set showed poor 

prediction performance when a different test structure (spectral calibration set) was presented 

during cross design prediction for both Acetaminophen and Caffeine. Although the 

recommendation is to include all anticipated variations into the calibration set, there is always a 

possibility for the calibration set to encounter new information in the prediction set during model 

life cycle. It is advantageous to practice robust modelling technique instead of anticipating 

similarity between calibration and prediction set during calibration development. 
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3.3.3 Conclusion 

A technique for designing a calibration set for NIR spectroscopic calibration method for tablets 

containing multiple API was described and tested. The pure component spectral information of 

the tablet was used to develop a spectral design method to design the critical calibration samples 

necessary for desired prediction performance. The spectral design strategy was found to be 

efficient in terms of sample requirements compared to the traditional full factorial technique. A 

reduced number of calibration samples yielded a model of similar predictive capabilities for both 

APIs. The spectral design strategy was found to provide better performance compared to the 

traditional optimal designs such as D-optimal and I-optimal designs. The spectral design strategy 

was found to provide similar prediction performance compared to the CCD design. Overall, the 

spectral design approach offers an efficient enhancement for the NIR calibration development for 

pharmaceutical tablets. 

This approach has the potential to be useful for other tablet formulations and spectroscopic 

techniques. Infrared, Raman and THz spectroscopy have been used frequently to develop 

quantitative method for pharmaceutical tablets. Spectral design strategy can be useful to 

minimize the calibration sample requirements for such techniques.  

PLS modeling technique was used in all comparatives studies. Selecting the appropriate number 

of loading vector is a critical step during PLS model development. Appropriate number of 

loading vector is critical to define the model variance space. The current strategies for selecting 

the appropriate number of loading vector include cross-validation and total variance techniques. 

However, these techniques were unable to select the appropriate number of loading vector for 

traditional PLS model in section 3.2.1 for single API formulation. The poor model performance 

was due to inappropriate number of loading vector in the PLS model.  A new strategy was 



 

 121  

developed to select the appropriate number of loading vector based on weight co-efficient 

technique. This strategy was tested on multiple NIR dataset. The details of the new method and 

its performance are provided in the next chapter.  

An improved prediction performance with lower RMSEPs was achieved from the traditional PLS 

model for single API formulation following the new method of loading vector selection 

(RMSEP2: 2.21 vs 4.68 and RMSEP3: 1.43 vs 5.05). The improved performance was found to 

be similar to the spectral design calibration model (RMSEP2: 2.21 vs 2.21 and RMSEP3: 1.43 vs 

1.68). Spectral design was considered to be efficient considering its fewer sample requirement 

(11 vs 45) compared to the traditional calibration design.  

Selecting the appropriate number of loading vector was critical to find the optimum calibration 

models and compare the respective calibration strategies. The weight based co-efficient 

technique was found to be an efficient alternative to the current loading vector selection 

techniques. The following chapter discusses this technique in further details. 
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4 Chapter 4: Selecting loading vector for PLS model during quantitative analysis of 

tablets using NIRS 

4.1 Introduction 
NIR spectroscopy is a well-established analytical tool in the pharmaceutical industry for 

quantitative analysis of tablets [1-3, 5]. It is fast, non-destructive and requires little or no sample 

preparation. However, successful implementation of this technique requires analytical insight 

and chemometric tools to analyze the complex dataset. The broad overtones and combination 

vibrations in the NIR region are very difficult to assign to a specific chemical feature. Besides, 

NIR spectra are very sensitive to both physical and chemical properties of the samples [47, 135, 

178, 179]. A quantitative model developed to extract the chemical information from the tablet 

spectrum is often affected by different sources of variations such as physical, chemical, scale, 

instrumental and environmental variations during tablet analysis. Batch-to-batch variation in the 

raw material properties such as particle size distribution of the granules and excipients, different 

vendors of the same excipient leading lot to lot variation, polymorphic conversion of the API and 

excipients during the manufacturing steps, all serve as potential sources of physico-chemical 

variation in the samples affecting NIR model performance. Environmental variations such as 

differences in relative humidity between different batches also affect NIR model performance. 

Difference in the scales of tablet preparation is a very common source of variation in the NIR 

spectra. It is quite possible for the analyst to develop a calibration model at one scale during the 

product development phase and intent to predict samples throughout the product life cycles from 

a different scale. A robust NIR model is critical to encounter such scale variations. In addition to 

table manufacturing scale, relative tablet density of the tablet have significant impact on NIR 

spectra [112]. Variation in the tablet density serves as a potential source of spectral variance. It is 
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also possible for the API in tablets to undergo degradation and produce degradants during its 

shelf life. The presence of a new chemical entity such as a degradant in the sample, can affect 

NIR model performance. Similar spectral features of the API and degradant can have detrimental 

effect on model selectivity. All these types of variation have the potentials to affect spectral 

shapes and thereby NIR model performance. So, model robustness has long been discussed as a 

critical merit during quantitative analysis using NIR spectroscopy [38, 54].  

Special pre-processing techniques and multivariate calibration methods are often employed to 

develop robust modeling technique and extract desired information from the NIR spectra [180-

182]. Besides, the analyst seeks to include as much variance as possible in the calibration step to 

train the model against all possible variances within defined scopes of drug product, NIR 

instrument and measurement environment that are forthcoming [183]. While, it is often 

impossible to forecast all the possible variances at the outset of calibration development, 

updating a calibration model with the newly encountered variance is a well-established practice 

[184]. Calibration update is a slow process and requires re-validation. Moreover, it is often 

difficult to get modification of an already approved method from the regulatory agencies [185]. 

So, it is desired to undertake the most robust modeling approach at the outset of calibration. 

Partial Least Squares (PLS) is a widely used chemometric modeling technique used for 

quantitative analysis. PLS is used to develop a quantitative model in the calibration step that can 

be used to predict any future samples. A critical step during PLS model development is the 

selection of optimum number of loading vectors (model components) [186]. A parsimonious 

approach is frequently undertaken for this purpose. The minimum number of loading vector with 

acceptable model performance is selected to mitigate the model complexity and prevent over 
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fitting of the calibration model. Cross-validation technique is mainly employed to indicate the 

model over fitting and select the optimum number of loading vectors for the model development 

[187]. In addition to the cross-validation error, the amount of spectral and concentration variance 

explained by each loading vector is also considered during the selection process.    

There are various cross-validation techniques including random subset, venetian blinds, 

contiguous blocks etc. However, all these techniques describe the error rate only in the 

calibration subspace. These techniques cannot anticipate model predictive ability in any future 

data set bringing new information to the calibration. The current techniques of cross-validation 

may fail to indicate the optimum number of loading vector to develop the most robust model at 

the outset of calibration development.  In this study, a new method using the weight coefficient 

of each loading vector is proposed during calibration development of a pharmaceutical tablet. 

This method was tested to develop a calibration model robust against scale variation, 

environmental variation, physico-chemical variation, chemical variation and raw material 

variation. The robustness of the calibration model was compared with a traditionally built 

calibration model using current cross-validation techniques. The new weight coefficient based 

method was demonstrated to be more efficient than the current cross-validation techniques to 

develop the most robust model at the outset of calibration development.  

4.2 Theory 
A quantitative spectroscopic calibration model is developed to quantify physico-chemical 

properties of a sample from its respective spectrum using regression model. For a system with 

“m” samples and “n” spectral variables (wavelengths), the regression model is as follows, 

 𝐲𝐲�𝐦𝐦∗𝟏𝟏 = 𝐗𝐗𝐦𝐦∗𝐧𝐧 ∗ 𝐛𝐛𝐧𝐧∗𝟏𝟏 (4.1) 
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Here, “𝒚𝒚�” is the predicted physico-chemical property, “X” is the spectral data matrix and “b” is 

the regression vector. Concentration will be considered as an example of physico-chemical 

property in rest of the chapter. 

In PLS, spectral data (X) and concentration data (y) are decomposed into scores and loading 

vectors. The loading vectors describe the covariance structure between the spectra and 

concentration. The scores serve as a metric for spectral variance of the individual sample in the 

direction of the respective loading vectors. The details of the PLS theory is discussed elsewhere 

[188]. 

 𝐗𝐗𝐦𝐦∗𝐧𝐧 = 𝐓𝐓𝐦𝐦∗𝐤𝐤 ∗ 𝐏𝐏𝐧𝐧∗𝐤𝐤′  (4.2) 

 𝐘𝐘𝐦𝐦∗𝐮𝐮 = 𝐔𝐔𝐦𝐦∗𝐤𝐤 ∗ 𝐐𝐐𝐮𝐮∗𝐤𝐤
′  (4.3) 

Here, “T” and “U” are the scores of the spectral matrix “X” and concentration matrix “Y” 

respectively and “k” is the number of loading vectors and weight vectors to be included into the 

model. “P” and “Q” are the loading vectors for “X” and “Y” as well. For a single predictor, the 

concentration matrix “Y” is a vector and does not need to be decomposed.  

NIPALS is a widely used algorithm in PLS model development [189]. In NIPALS, the loadings 

and scores are iteratively solved. The first loading “P” indicates the primary direction of 

covariance between spectra and concentrations, and the first set of scores “T” indicates the 

projections of samples into that “P” direction. The second loading vector indicates the direction 

of maximum covariance between the residual spectra and residual concentration after spectral 

reconstruction with the first loading vector. The third loading vector indicates the same after 

spectral reconstruction with the first and second loading vector. Once the number of loading 
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vector is fixed, the regression model of Eq (4.1) is developed by calculating the regression vector 

as follows,[190] 

 

 𝐛𝐛𝐧𝐧∗𝟏𝟏 = 𝐖𝐖𝐧𝐧∗𝐤𝐤 ∗ (𝐏𝐏𝐤𝐤∗𝐧𝐧′ ∗ 𝐖𝐖𝐧𝐧∗𝐤𝐤)−1 ∗ (𝐓𝐓𝐤𝐤∗𝐦𝐦′ ∗ 𝐓𝐓𝐦𝐦∗𝐤𝐤)−1 ∗ 𝐓𝐓𝐤𝐤∗𝐦𝐦′ ∗  𝐲𝐲𝐦𝐦∗𝟏𝟏 (4.4) 

 

Here, “W” is the weight vectors expressing both the “positive correlation” between spectral 

matrix “X” and concentration matrix “Y” and the “compensation correlation” needed to predict 

“Y” from “X” clear from the secondary variation in “X” [191]. In the PLS toolbox from 

Eigenvector Research Inc., the weight vector “W” is expressed as “W*”, 

 𝐖𝐖𝐧𝐧∗𝐤𝐤
∗ = 𝐖𝐖𝐧𝐧∗𝐤𝐤 ∗ (𝐏𝐏𝐤𝐤∗𝐧𝐧′ ∗ 𝐖𝐖𝐧𝐧∗𝐤𝐤)−1 (4.5) 

which provides the same information as “W”. So, Eq 4.5 can be written as, 

 𝐛𝐛𝐧𝐧∗𝟏𝟏 =  𝐖𝐖𝐧𝐧∗𝐤𝐤
∗ ∗ (𝐓𝐓𝐤𝐤∗𝐦𝐦′ ∗ 𝐓𝐓𝐦𝐦∗𝐤𝐤)−1 ∗ 𝐓𝐓𝐤𝐤∗𝐦𝐦′ ∗  𝐲𝐲𝐦𝐦∗𝟏𝟏 (4.6) 

 

 𝐛𝐛𝐧𝐧∗𝟏𝟏 =  𝐖𝐖𝐧𝐧∗𝐤𝐤
∗ ∗ 𝐬𝐬𝐤𝐤∗𝟏𝟏 (4.7) 

Here, “s” is considered as the weight coefficients and “k” is the number of loading vector to be 

included in the PLS model. The same weight coefficient is also used in the prediction equation as 

follows (replacing “b” in Eq 4.1, 

 𝐲𝐲�𝐦𝐦∗𝟏𝟏 = 𝐓𝐓𝐦𝐦∗𝐤𝐤 ∗ 𝐬𝐬𝐤𝐤∗𝟏𝟏 (4.8) 

In a PLS model, each weight vector, its associated loading vector and scores are associated with 

a weight coefficient which can serve as a metric for its contribution in regression vector 

calculation (Eq (4.7)), as well as in prediction equation (Eq (4.8)). 
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Optimum selection of the loading vector number “k” is critical for model performance. 

Traditional methods for selecting “k” involve either one of the two approaches or both: 

1. Root Mean Squared Error of Calibration (RMSEC) and Root Mean Squared Error of 

Cross Validation (RMSECV) at each loading vector and weight vector inclusion into 

the model. 

2. Variance explained by each loading vector during the model development. 

However, these two techniques have the potential to fail in selecting the appropriate number of 

loading vectors to develop a robust PLS model at the outset of calibration development. The new 

method uses the weight coefficients “s” as the basis for selecting appropriate number of loading 

vector “k” to be included into the model. It uses the weight coefficients ‘s’ for isolating loading 

vectors that explain a small percent of the spectral and concentration variance while having high 

influence (high weight coefficient) in the regression vector calculation and prediction equation. 

Inclusion of such loading vectors can be detrimental to the model performance, because such 

inclusion tends to over fit the model towards a direction that explains minimal spectral and 

concentration variations. Overfitting model towards irrelevant information can affect model 

specificity and prediction performance.  

According to the new weight coefficient based method, any weight coefficient larger than the co-

efficient of the maximum variance explaining loading vector (often the first one) was considered 

inappropriately high and PLS model was developed with the preceding loading vectors. If ‘nth’ 

weight co-efficient is higher than the co-efficient of the maximum variance explaining loading 

vector, the optimum number of loading vectors was considered to be “n-1” according to the 

weight coefficient based method. 



 

 128  

In the traditional method, PLS models were developed following the current two techniques for 

selecting the optimum number of loading vector. In the new weight coefficient based method, 

PLS model was developed using the weight coefficient along with the associated percent of 

variance explained by each loading vector. The performances of the new and old methods were 

compared in selecting the optimum number of loading vectors and developing the most robust 

PLS model at the outset of calibration development. 

4.3 Material and Methods 
Five different datasets were used to test the NIR model robustness against different types of 

critical variations including scale variation, environmental variation, physical variation, chemical 

variation and raw material variation. The details of the dataset are given below  

4.3.1 Scale Variation 

The scale variation test was designed to analyze and compare model performance between the 

traditional method and new weight coefficient based method while predicting Acetaminophen 

concentrations in tablets prepared at different scales. The calibration set was prepared at 

laboratory scale while the prediction set was prepared at manufacturing scale. The calibration 

design was a 5 by 3 level, 2-factor full factorial design to make 45 tablets. The prediction set was 

prepared over consecutive eight weeks at the label claim. 20 tablets collected from every week’s 

run resulted in a total of 160 tablets in prediction set. These samples are the same samples as 

traditional calibration set and prediction set 3 for single API. The details of the experimental 

method are described in section 3.2.1.1 (calibration set) and 3.2.1.5 (prediction set). 
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4.3.2 Environmental Variation 

The environmental variation test was designed to analyze and compare model performance 

between the traditional method and new weight coefficient based method while predicting 

Acetaminophen concentrations in tablets prepared in different environmental conditions. The 

calibration set was prepared in the winter (November, 2012) whereas the prediction set was 

prepared in the summer in 3 consecutive months (May, June and July 2013).  

The same calibration set mentioned in the scale variation test was used for calibration model 

development. A 3 by 1 level full factorial design was used to generate the monthly prediction 

sets. The factors of the design were kept same as in the calibration and the levels were inside the 

calibration range. A set of 20 tablets at each design point resulted in a total of 60 tablets for each 

month’s prediction set. The tablets were prepared at the manufacturing scale in the same fashion 

described in the scale variation section in section 4.3.1. 

 

4.3.3 Physical Variation (Density) 

The density variation test was designed to analyze and compare model performance between the 

traditional method and new weight coefficient based method while predicting Theophylline 

concentrations in tablets of different densities. The capability of these two methods in selecting 

the optimum number of loading vector were compared during calibration development and 

calibration update. A previously published dataset was used for this purpose [112]. 

A fully balanced, quaternary mixture design comprising of Theophylline anhydrous, Lactose 316 

Fast Flo Monohydrate, Microcrystalline cellulose and soluble starch was generated. A set of 29 

design points was chosen to cover a wide range of all constituents. At each design point, five 
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tablets were compressed at five compaction pressures (67.0, 117.3, 167.6, 217.8, and 268.1 MPa) 

on a Carver Automatic Tablet Press (Model 3887.1SD0A00, Wabash, IN, USA) using a 13-mm 

die and flat-faced punches. One additional tablet was also compressed at each design point, with 

a compaction pressure chosen pseudo-randomly from the five levels resulted in a total of 174 

tablets. This calibration set was divided into five groups (Cal 01 to Cal 05) based on the 

compaction pressure levels. The first group contained samples compacted at 67.0 MPa, while the 

second group contained samples compacted at both 67.0 and 117.3 MPa, and subsequently, the 

fifth group contained samples compacted at all five compaction pressures. The primary 

calibration was developed only using samples compacted at 67.0 MPa and then the calibration 

set was updated by samples compacted at different compaction levels.  

The same quaternary design was used to create a test set. At each design point, two tablets were 

compressed at two randomly chosen compaction pressure out of five (67.0, 117.3, 167.6, 217.8, 

and 268.1 MPa) using a Carver Automatic Tablet Press. A total of 58 samples were prepared in 

the test set and used for assessing the prediction performance of all the models prepared in the 

calibration step. Tablet density was measured for each compact and solid fraction was calculated. 

A wide range of solid fraction (0.8 – 0.98) was reported along the range of the compaction forces 

[112]. 

The performance of the traditional method and new weight coefficient based method were 

compared in selecting the appropriate number of loading vectors for the models developed from 

these five calibration sets (primary and updated sets).  
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4.3.4 Chemical Variation (Degradant) 

The chemical variation test was designed to analyze and compare the model performance 

between the traditional method and new weight coefficient based method while predicting 

Niacinamide concentration in tablets prepared with and without its degradant Niacin. The 

calibration set was prepared using samples containing Niacinamide and excipients including 

starch, Microcrystalline cellulose (MCC), Di-tab and Magnesium stearate. The prediction set was 

prepared using samples containing Niacinamide, Niacin and excipients including starch, 

Microcrystalline cellulose (MCC), Di-tab and Magnesium stearate. 

The Niacinamide concentration was varied at 7 levels in the calibration set while keeping the 

excipients ratios (starch:MCC:Di-tab) constant. The concentration of Magnesium stearate was 

kept constant at 1%. The nominal target tablet weight was 500 mg. 

At each design point, 5 gm samples mixture was prepared and placed in a 15 ml scintillation vial. 

The samples were mixed by placing the vial in a bin blender and rotating for 15 minutes. At each 

design point, three tablets were compressed from the same mixture on a Carver Automatic Tablet 

Press (Model 3887.1SD0A00, Wabash, IN, USA) at 5000 lb. using a 13-mm die and flat-faced 

punches.  

A 3 by 3 levels, two-factor full factorial design was used to prepare the test set. The factors were 

Niacinamide concentration and Niacin concentration. At each design point, 3 tablets were 

compressed in the same fashion as mentioned earlier. Out of the total of 27 tablets, tablets from 

one design point were damaged leaving 24 tablets in the test set. The test set was subdivided into 

three sets based on the degradant (Niacin) concentration.  
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4.3.5 Raw Material Variation 

The raw material variation test was performed on a previously published dataset to analyze and 

compared model performance between the traditional method and new weight coefficient based 

method while predicting Theophylline concentration in tablets prepared with different raw 

material properties [164]. The calibration set was prepared with a specific polymorph of API as 

Theophylline anhydrous, a specific particle size distribution of Lactose as 100 microns and a 

specific source of starch as EMD Chemicals. The prediction set was prepared using a different 

polymorph of API as Theophylline monohydrate, different particle size distribution of Lactose as 

50 micron and different vendor of starch as Acros Organics.  

A fully balanced, quaternary mixture design comprising of Theophylline anhydrous, Lactose 316 

Fast Flo Monohydrate, Microcrystalline cellulose and soluble starch was generated. A set of 29 

design points were chosen to cover a wide range of all constituents. At each design point, 2 

tablets were compressed at 2 randomly selected pressures out of five (67.0, 117.3, 167.6, 217.8 

and 268.1 MPa) on a Carver Automatic Tablet Press (Model 3887.1SD0A00, Wabash, IN, USA) 

using a 13-mm die and flat-faced punches. In total, 58 tablets were compressed for calibration set 

with a target weight of 800 mg. 

A 2 by 2 by 3 levels, three-factor full factorial design was used to prepare the test set at a single 

composition inside the calibration range. The factors were selected as API polymorphs, sources 

of starch and Lactose particle size distributions to ensure different types of raw material 

variability in the test set. All the tablets were compressed at 167.6 MPa using the same setup as 

calibration. At each design point, 3 tablets were compressed, resulted in a total of 36 tablets. 
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The test set was subdivided into three sets based on the difference with calibration set in raw 

material properties. The first set was comprised of all the samples containing Theophylline 

monohydrate, second set comprised of all the samples containing Lactose of 50 microns particle 

size distribution and third set comprised of all the samples containing starch from vendor 2 

(Acron Organics).   

4.3.6 Spectral collection 

NIR reflectance measurements for both sides of each compact were collected using a bench top 

scanning monochromator instrument (XDS Rapid Content Analyzer, FOSS NIRSystems, Inc., 

Laurel, MD, USA).  Spectra were collected over the wavelength range of 400 – 2,500 nm at 0.5-

nm increments, averaging 32 co-adds per spectrum.   Spectra corresponding to each side of a 

compact were averaged to give one representative spectrum per compact. 

4.3.7 Modeling strategy 

All calculations were performed with MATLAB 2015a (The Mathworks, Natick, MA, USA) 

equipped with a PLS Toolbox v. 7.9.4 (Eigenvector Research Inc., Wenatchee, WA, USA). 

4.3.8 Cross validation 

PLS Toolbox was used to implement 3 different cross-validation techniques as random subset, 

contiguous block and venetian blind. For each technique, the data set was divided into 3 different 

ways to remove the aliasing effect between data subset and cross-validation error. The details of 

the cross-validation technique using PLS toolbox can be found elsewhere [192]. 
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4.3.9 Model evaluation and design comparison parameters 

The root mean squared error (RMSE) was used to evaluate model predictive performances in the 

calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP) sets.  

 RMSE =  �
∑ (ŷ − 𝑦𝑦)2𝑛𝑛
1

𝑛𝑛
 ;    (4.9) 

 

 

 

 
 

Figure 4-1. RMSECs and random subset (left), contiguous block (middle) and 
venetian blind (right) RMSECVs during calibration development for scale 
variations. 

  

4.4 Results 

4.4.1 Scale Variation 
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cross-validation techniques such as random subset (left), contiguous block (middle) and venetian 

blinds (right). The no. of splits was also changed as the optimization parameter as shown in the 

figures. All the techniques (except contiguous block with 2 splits) showed a plateau between 

RMSEC and RMSECV at fifth loading vector and there was no significant reduction in cross-
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validation errors after that. A PLS model was developed using five loading vectors as per current 

technique for selecting optimum number of loading vectors for model development. 

Figure 4-2 shows the cumulative percent of variances explained after the addition of each 

loading vector into the model. Besides RMSECV, this metric was also used for selecting 

appropriate number of loading vectors. It was shown that, most of the variances in spectral 

matrix (X) and concentration matrix (Y) were explained by five loading vectors, indicating five 

as the optimum number of loading vectors for model development.  

 

Figure 4-2. Cumulative variances explained at each loading vector during calibration 
development for scale variations. 
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Figure 4-3. Weight co-efficient and percent of variances explained by each loading vector 
during calibration development for scale variations. 

Figure 4-3 shows the percent of variances explained by each loading vector and its respective 

weight coefficient. It was found that, the third loading vector had a much higher weight 

coefficient than first two loading vectors. High weight coefficient of the third loading vector 

indicated its large influence on the regression vector calculation and prediction equation 

compared to the first and second loading vector. However, only a small portion of the total 

variances was explained by the third loading vector indicating that, inclusion of this loading 

vector could over fit model using irrelevant information and affect model performance in the 
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future samples. Two loading vectors were considered optimum according to the new weight 

coefficient based method and a PLS model was developed using first and second loading vector. 

Another PLS model was also developed with three loading vectors to analyze the effect of 

including third loading vector into the model. These three PLS models were developed on lab 

scale tablets and used to predict tablet set prepared at manufacturing scale for eight consecutive 

weeks. The RMSEPs served as a metric for the model performance and robustness.  

 

Figure 4-4. RMSEPs of models predicting Acetaminophen in weekly runs prepared at 
different scale. 

Figure 4-4 shows the RMSEPs for models developed according to traditional method (5 LV 

model), new weight coefficient based method (2 LV model) and model showing the effect of 

third loading vector inclusion (3 LV model). The model developed using the new weight 

coefficient based method was found to be more robust against scale variation and more accurate 

through eight weeks compared to the traditional method. Inclusion of the third loading vector 

affected the mode performance as anticipated during model development. 
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Figure 4-5. RMSEPs of models predicting Acetaminophen in monthly runs prepared at 
different environment. 
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compared to other two models.  
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A total of 5 calibration sets were prepared. For each calibration set, two PLS models were 

developed following the traditional and new weight coefficient based method, respectively. The 

calibration models were used to predict the test set containing samples made at five different 

compaction forces. This analysis compared the performance of the traditional method and new 

weight coefficient based method in selecting optimum number of loading vectors during 

calibration development and calibration update. 

In the traditional method, the optimum number of loading vectors for each of the five models 

was selected based on RMSEC and RMSECV plots and the percent of variances explained by 

each loading vector. In the new weight coefficient based method, weight coefficient of each 

loading vector was used to select the optimum number of loading vectors to be used during 

model development. 
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Figure 4-6. Weight co-efficient of each loading vector during calibration development for 
density variations. 

Figure 4-6 shows the weight coefficient of each loading vector for five calibration models. The 

red arrows indicate the number of loading vectors used during model development following the 

new weight coefficient based method. For “Cal 01”, four loading vectors were used, because the 

fifth loading vector had higher weight coefficient than the previous four, indicating its large 

influence on the regression vector calculation and prediction equation with very little information 
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on the spectral and concentration variance. This approach was followed for the rest of the 

calibration sets (Cal 02 to Cal 05). 

Calibration 
set 

Sample 
no. 

Sample Force 
Included (MPa) 
in Calibration 

Set 

Loading Vector RMSEP % (w/w) 

Traditional 
Method 

New 
Weight 

Coefficient 
Based 

Method 

Traditional 
Method 

New 
Weight 

Coefficient 
Based 

Method 
Cal 01 35 67.0 7 4 3.48 2.82 
Cal 02 70 67.0, 117.3 8 4 3.31 2.37 

Cal 03 105 67.0, 117.3, 
167.6 9 4 2.94 2.26 

Cal 04 139 67.0, 117.3, 
167.6, 217.8 5 6 2.39 2.26 

Cal 05 174 
67.0, 117.3, 
167.6, 217.8, 

268.1 
6 6 2.23 2.23 

Table 4-1. Calibration for Density variation 

Table 4-1 provides a summary of the calibration sets, the respective number of loading vectors 

used by the traditional method and new weight coefficient based method and the RMSEPs of the 

respective models. Figure 4-7 shows the RMSEPs of the calibration models developed by the 

traditional method and new weight coefficient based method. The models developed by the new 

weight coefficient based method were found to be more robust and accurate compared to the 

models developed by the traditional method while predicting the same test set having density 

variation. For the global set “Cal 05”, that contained samples prepared at all compaction forces, 

both methods indicated the same optimum number of loading vector thereby providing equal 

RMSEP. It was found that, with a fewer samples, the model developed using the new weight 

coefficient based method was able to achieve similar prediction performance compared to the 

global model (new method for Cal 03 (105 samples) vs traditional method for Cal 05 (174 
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samples)). This indicated that, the new weight coefficient based method of model development 

has the potential to reduce the burden of calibration update. 

 

Figure 4-7. RMSEPs of models predicting Theophylline in tablets with density variations. 
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Figure 4-8. RMSECs and random subset (right), contiguous block (middle) and venetian 
blinds (left) RMSECVs during calibration development for chemical variations. 

4.4.4 Chemical Variation (Degradant) 

Model robustness against chemical variation was tested by introducing a new chemical entity in 

the prediction set. A degradant of the API was included in the prediction samples whereas the 

calibration model was developed using samples without the degradant.  shows the RMSEC and 

RMSECVs of each loading vector calculated by different cross-validation techniques during 

calibration development. For all these techniques, RMSEC and RMSECV reached a plateau at 

second loading vector. A PLS model was developed using two loading vectors as per the 

traditional method of model development. 

Figure 4-9 shows the cumulative percent of variances explained after the addition of each 

loading vector into the model. Five loading vectors explained most of the variances and no 

significant variance was added after that. Another PLS model was developed using five loading 

vectors as per the traditional method of model development. 
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Figure 4-9. Cumulative variances explained at each loading vector during calibration 
development for chemical variations 

Figure 4-10 shows percent of variances explained by each loading vector and its respective 

weight coefficient. It was found that, the second loading vector had higher weight coefficient 

than the first loading vector indicating its higher influence on the regression vector calculation 

and prediction equation. However, it explained a small portion of the X and Y variance 

compared to the first loading vector. Inclusion of the second loading vector was expected to over 

fit the model towards a direction that explained a small portion of the spectral and concentration 

variances. A third PLS model was developed using only one loading vector as per the new 

weight coefficient based method. 

Two models developed by the traditional method and one model developed by the new weight 

coefficient based method were used to predict Niacinamide concentration in test samples 

containing different amount of Niacin. The RMSEPs served as a metric of the model 

performance and robustness in presence of chemical variation coming from the Niacin as a 

degradant of the API. Figure 4-11 shows the RMSEPs for all three models predicting 
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Niacinamide concentration in samples containing 2%, 5% and 10% w/w of Niacin. It was found 

that, for all concentrations of Niacin samples, the model developed by the new weight coefficient 

based method was more robust and accurate in comparison to the other two models developed by 

the traditional methods. As expected, all model performances deteriorated as the Niacin content 

increased in the test samples. 

 

Figure 4-10. Weight co-efficient and percent of variances explained by each loading vector 
during calibration development for chemical variation 

4.4.5 Raw Material Variation 

Model robustness was tested against raw material variation. The calibration models were 
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EMD Chemicals. The models were used to predict the samples containing different polymorph 

of API, different particle size distribution of one excipient and different vendor of the other 

excipient. 

 

Figure 4-11. RMSEPs of models predicting Niacinamide in presence of chemical variations 
(Niacin) 
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variances individually, they were kept into the model due to their smaller weight coefficients 

compared to the first loading vector. 

 

Figure 4-12. Weight co-efficient and percent of variances explained by each loading vector 
during calibration development for raw material variation 

Figure 4-13 shows the cumulative percent of variances explained at each successive loading 

vector addition into the model. It was found that, after the third loading vector inclusion, no 

significant variance was explained with the addition of a new loading vector. So, three loading 

vectors were used for model development as per one of the traditional techniques. 
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Figure 4-13. Cumulative variances explained at each loading vector during calibration 
development for raw material variation 

Figure 4-14 shows the RMSEPs of the two models developed by one of the traditional methods 

(3 LV model) and the new weight coefficient based method (5 LV) for predicting Theophylline 

concentration in test set containing new variances coming from different polymorph of API 

(Theophylline monohydrate), different particle size distribution (Lactose 50 micron) and 

different source (Starch vendor 2).  
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the most robust PLS model at the outset of calibration. Upon such failure, it is usually assumed 

that the working model is the best case in place and model update is necessary. This is often not 

the case as shown in this paper. Moreover, it is also shown that, calibration update might not 

even be necessary at some points (density variation) following the new weight coefficient based 

method. This can be helpful in saving time and cost associated with calibration model update. 

 

Figure 4-14. RMSEPs of models predicting Theophylline in presence of raw material 
variations. 

During PLS model development, the goal is to maximize co-variance between the spectra and 
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to improve the model performance in the calibration space. However, outside the calibration 

space, it is often possible that the new samples show different projections on the direction of the 

later loading vectors for being different in terms of any of the blended information explained. 

This might be detrimental, especially when the particular loading vector has high influence (high 

weight co-efficient) in the regression vector calculation and the prediction equation. In that case, 

the regression vector will be sensitive to the information that might not be related with the 

concentration. The prediction can also be biased by the difference in sample scores on that 

loading vector. Exclusion of these loading vectors is expected to prevent the model from poor 

predictability for new samples and improve model robustness as demonstrated in this study. The 

weight coefficient based method is mostly applicable when certain loading vector has high 

weight coefficient but explains little spectral and concentration information. This method can 

identify and eliminate such loading vector from model space. If no such latent variable exists in 

the model space, the weight coefficient based method and current cross validation technique 

would provide similar solution to the loading vector selection problem. 

4.6 Conclusion 
Model robustness is very critical for successful implementation of NIR method. Different 

sources of variation can be present during product lifecycle and affect the NIR model 

performance. It is best practice to develop the most robust model at the outset of calibration 

development. Optimum number of loading vectors selection is necessary for indicating the most 

robust model. A new method using the weight coefficient was found to be more effective in 

selecting the optimum number of loading vectors and developing the most robust model 

compared to the current techniques of cross-validation and  

variance calculation. 
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5 Chapter 5: Method development for incorporating physico-chemical variation into the 

spectral calibration set 

5.1 Introduction 
The NIR spectral response of a pharmaceutical tablet is affected by its physico-chemical 

properties such as PSD of the API and excipients, tablet density, tablet hardness, moisture 

content etc [26, 42, 159]. These physico-chemical properties are critical factors for calibration 

design due to their effects on NIR spectra [25, 161, 162]. A calibration model typically shows 

poor accuracy in quantifying tablets with new physico-chemical properties that were not built 

into the calibration set. A calibration set should contain variation in the physico-chemical 

properties of the tablets in order to develop a robust calibration model. In the previous chapters, 

calibration sets were not controlled for certain critical factors such PSD of the API and raw 

materials. Calibration sets were also used to predict samples with different physico-chemical 

properties (lab scale vs manufacturing scale). The objective was to test and compare spectral 

calibration strategy with traditional calibration strategy in presence of new information in the test 

set. It was found that the presence of new information showed similar impacts on the spectral 

calibration set and traditional calibration set. Thus, the spectral calibration strategy was 

considered efficient due to its fewer sample requirements. However, the best practice for 

calibration set development is to incorporate the critical physico-chemical information into the 

calibration set. The current approach for incorporating physico-chemical variation into the 

calibration set is to allow a systematic variation of the respective factors in the calibration design 

[164]. This approach often leads to a large calibration set with redundant information; a 

limitation observed during the incorporation of compositional variation as well. Designing 

calibration set in the spectral space minimizes redundancy and offers an efficient strategy to 
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incorporate compositional variation into the calibration set. However, it is also critical for the 

spectral space calibration strategy to efficiently incorporate physico-chemical variation into the 

calibration set to build a robust calibration model. Incorporation of physico-chemical variation 

into the spectral calibration set requires the spectral space to contain physico-chemical 

information. The NIR spectral signature of the physico-chemical properties of the samples can be 

utilized to incorporate such information into the spectral space. A spectral space containing 

physico-chemical information provides the basis for selecting a small set of calibration samples 

with critical physico-chemical information. Such small calibration set would be efficient in 

sample requirement to develop a robust calibration model for quantitative analysis of 

pharmaceutical tablets.  

 

Figure 5-1. Effects of tablet density and hardness on reflectance and transmission NIR 
[193]. 
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In this study, a method was developed to incorporate physico-chemical variation into the spectral 

calibration design strategy. Tablet density was selected as an example of critical physico-

chemical property of the tablet. Tablet density variation affects the NIR spectral signal due to the 

changes in air-particle interfaces associated with density variation [11]. As the tablet density 

increases, the number of air-particle interfaces inside the tablet decreases. Air-particle interface 

acts as a scattering center for NIR light. As the number of air-particle interface decreases, the 

extent of scattering also decreases, causing the NIR light to penetrate deeper into the sample and 

resulting in an increased absorbance. The opposite effect is also observed when the tablet density 

decreases. Reflectance NIR method was found to be affected more by the tablet density 

compared to the transmission method [69]. Figure 5-1 shows the effect of tablet density and inter 

particle interface on the reflectance and transmission NIR spectra. 

It is critical for the calibration set to contain information regarding table density variation in 

order to build a robust calibration model. Tablet density variation is usually incorporated into the 

calibration set by compressing calibration samples at different compaction forces to prepare 

tablets of different densities. In the spectral calibration design strategy, tablet density variation 

was incorporated into the calibration set by selecting calibration samples from a spectral space 

that contained information regarding tablet density variation. Tablet density variation was 

incorporated into the spectral space by compressing pure component tablets at different 

compaction forces. The pure components tablet spectra were used to simulate spectra of 

compositionally varying tablets at different densities. The simulated tablet spectra of different 

densities were decomposed to derive the spectral space for selecting calibration samples. The 

covariance between spectra and API concentration was maximized prior to spectral 
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decomposition in order to incorporate compositional variation besides the tablet density variation 

into the spectral space.  

  

Figure 5-2. Spectral calibration strategy for incorporating tablet density variation into the 
spectral space 

The Kennard Stone algorithm was used to select a representative subset of samples as calibration 

candidates from the spectral space. This strategy was tested to quantify API in tablets with 
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different densities. This strategy was also compared with the current strategy for incorporating 

density variation into the calibration set. The following diagram depicts the spectral calibration 

strategy for incorporating tablet density variation into the spectral space. 

5.2 Material and method 

5.2.1 Incorporation of physico-chemical information 

 

Figure 5-3. Effect of compression force on the pure component tablet spectra 

The multiple API formulation was selected for this study. The multiple API tablets contained 

two APIs as Acetaminophen (Mallinckrodt Inc., Raleigh, NC, USA) and Caffeine anhydrous 

(Spectrum Chemical Mfg. Corp., New Brunswick, NJ, USA). The excipients were 

Microcrystalline cellulose (MCC; Avicel PH 200, FMC Biopolymer, Mechanicsburg, PA, USA), 
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Lactose (modified spray-dried; Foremost Farms USA, Rothschild, WI, USA), Crosscarmellose 

sodium (Crosscarmellose Na, Spectrum Chemical Mfg. Corp., New Brunswick, NJ, USA) and 

Magnesium stearate (MgSt; Fisher Scientific, Waltham, MA, USA). The target formulation was 

set as Acetaminophen (31.25% w/w), Caffeine (4.05% w/w), MCC (37.32% w/w), Lactose 

(24.89% w/w), Crosscarmellose Na (2% w/w) and MgSt (0.5% w/w). The pure component 

tablets and a tablet at target formulation were compressed at three different compaction forces 

(2000, 4000 and 6000 lb) on a Carver Automatic Tablet Press using a 13 mm die and flat-faced 

punches. The target tablet weight was 700 mg.  

The experiments were controlled for tablet homogeneity and viscoelastic relaxation as described 

in section 3.3.1.4 in chapter 3. All the materials were stored in room temperature and relative 

humidity. Anhydrous caffeine was reported to be stable at 75% RH for 7 weeks [173]. No 

hydration and anhydrous caffeine was expected considering lower room RH (~60%) and shorter 

storage time and analysis. After a viscoelastic relaxation period of two weeks, tablets were 

scanned using a bench top NIR instrument (XDS Rapid Content Analyzer, FOSS NIRSystems, 

Inc) in reflectance mode. Spectral data were collected at 0.5 nm increment over a range of 400 

nm – 2499.5 nm with 32 co-adds per spectrum. Spectra from both faces of each compact were 

averaged to produce a single representative spectrum. Figure 5-3 shows the pure component 

tablet spectra at different compaction forces. The pure component spectra showed consistent 

increases in absorbance with increases in compaction pressure except the two cases of 

Crosscarmellose Na and MgSt. Crosscarmellose Na and MgSt were very difficult to compress, 

leading to some inconsistent behavior between compaction pressures and spectral responses. 

However, this spectral effect was expected to be insignificant in the matrix tablet due to very 

small concentration of Crosscarmellose Na and MgSt in the target formulation tablet.  
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Figure 5-4. Effect of compression pressure on the tablet of target formulation 

Figure 5-4 shows the target tablet spectra at three different compaction pressures. A consistent 

increase in absorbance with the increase in compaction force was observed in the target tablet 

formulation.  A full-factorial experimental design was created to vary the concentration of 

Acetaminophen, Caffeine and MCC:Lactose ratio. The Acetaminophen and Caffeine 

concentrations were varied at 5 levels and MCC:Lactose ratio was varied at 3 levels resulting in 

a total of 75 design points. The details of the design is given in Table 5-1 

 Design factors Factor levels 

Calibration 

(5x5x3) 

75 samples 

Acetaminophen (%) L.C.-40% L.C.-20% L.C. L.C.+20% L.C.+40% 

Caffeine (%) L.C.-80% L.C.-40% L.C. L.C. +40% L.C.+80% 

MCC/Lac 1 1.5 2 

Table 5-1. Full factorial calibration design 
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Figure 5-5. Effect of residual spectra on the simulation of spectral response 

The spectra of these 75 design points were simulated using equation 5.1. The pure component 

spectra of each compression force were used during the simulation, resulting in 3 sets of 

simulated spectra for 3 compression forces (2000, 4000 and 6000 lb). 

Significant differences were observed between the simulated spectral response and actual 

spectral response of the target tablet formulation at all three compaction forces. The spectral 

difference was calculated between the actual and simulated spectral response of the target 

formulation for each compaction force. These residual spectra (3 residual spectra from 3 

compaction forces) were added to the respective simulated spectral responses. Figure 5-5 shows 

the actual and simulated spectral responses of the compaction pressure 2000 lb with and without 

the contribution from the residual spectrum. The actual spectral response were obtained by 

preparing 75 actual tablets at the compositional points and collecting NIR spectra following the 

method described in section 2.3 in chapter 2. In total, there were 225 simulated spectra (5 levels 
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of Acetaminophen, 5 levels of Caffeine, 3 Levels of MCC : Lactose, and 3 levels of compaction 

forces). Figure 5-6 shows the simulated spectra of 225 design points. 

 

Figure 5-6. Simulated spectral response of 225 design points 

The spectral data was truncated from 1100-2499.5 nm. A Principal component analysis was 

performed on the simulated data using MATLAB 2015a (The Mathworks, Natick, MA, USA) 

equipped with the PLS_Toolbox v. 7.9.3 (Eigenvector Research Inc., Wenatchee, WA, USA). 

 

Figure 5-7 shows the score plot of first two principal components. In the PCA score space (left), 

the in-silico samples are separated based on the compaction forces indicating that the majority of 

the simulated spectral variation was generating from different compaction forces.  
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Figure 5-7. Principal component analysis of the simulated spectra of 225 design points. 
Left: Color coded based on compaction forces (2000, 4000 and 6000 lb), Right: Color coded 
based on Acetaminophen concentration levels (18.75%, 25%, 31.25%, 37.5% and 43.75% 
w/w) 

The later principal components also explained variation related to composition as shown in  

Figure 5-7 (right) (Acetaminophen), Figure 5-8 (left) (Caffeine) and Figure 5-8 (right) 

(MCC:Lactose ratio). However, the spectral variation was dominated by compaction force 

variation. The PC1 that explained 97.60% of the total spectral variation, clearly separated the in-

silico samples based on the compaction forces. The objective of this study was to incorporate 

physico-chemical information into the calibration design by selecting the calibration candidates 

from a score space (aka spectral space) that contained information related to physico-chemical 

properties. In this score space, such selection would be dominated by compaction force 

information only. The selected calibration design points would represent insufficient information 

related to compositional variation. However, the compositional variation is also critical to 

calibration set, since the primary objective of the calibration set development is to build a 

Scores on PC 1 (97.60%)

-8 -6 -4 -2 0 2 4 6 8

S
co

re
s 

on
 P

C
 2

 (2
.0

2%
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Force 2K

Force 4K

Force 6K

95% Confidence Level

-5

Scores on PC 1 (97.60%)

0

5

Scores on PC 4 (0.08%)

0.2

0.1

0

-0.1

-0.1

-0.05

0

0.05

0.1

-0.2

Sc
or

es
 o

n 
PC

 5
 (0

.0
3%

)

Scores on PC 4 (0.08%)

18.75

25

31.25

37.5

43.75



 

 161  

quantitative calibration model for compositional analysis. A balance between compositional and 

physico-chemical variation is desired to develop a robust calibration model. 

 

Figure 5-8. Principal component analysis of the simulated spectra of 225 design points. 
Left: Color coded based on Caffeine concentration, Right: Color coded based on MCC to 
Lactose ratio 

Signal preprocessing technique can be utilized to minimize the spectral effect due to compaction 

force and offer a balance between physico-chemical and compositional variation. Multiple 

scattering corrections were applied to minimize the baseline variation caused by the compaction 

force variation. A PCA analysis was performed on the preprocessed spectra. The PCA analysis 

showed that the information related to compaction force variation was minimized after 

preprocessing.  

Figure 5-9  shows the PCA score plots after applying MSC correction on the spectral data. No 

dominance of a single source of spectral variation was observed (no separation in the first two 

PCs). However, it was also critical for the relevant information to be present in the spectral space 
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for guiding the calibration candidate selection. A comprehensive PCA analysis was performed. 

Figure 5-10 shows the PCA score plots generated from subsequent PCs. 

 

Figure 5-9. Principal component analysis of the MSC corrected simulated spectra of 225 
design points. Left: Color coded based on compaction forces, Right: Color coded based on 
Acetaminophen concentration 

 Figure 5-10 (left) and Figure 5-10 (right) show that the spectral data set contained information 

related to compaction force and Acetaminophen concentration variation. Figure 5-11 shows that 

the spectral response also contained information related to the MCC to Lactose ratio of the in-

silico samples. The simulated spectra of in-silico samples were found to contain both physical 

and chemical variation and it was possible to incorporate a balance between these two sources of 

spectral variation by implementing an appropriate preprocessing technique. 
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Figure 5-10. Principal component analysis of the MSC corrected simulated spectra of 225 
design points. Left: Color coded based on compaction forces, Right: Color coded based on 
Acetaminophen concentration 

5.2.2 Selection of calibration candidates 

The next step was to find the calibration candidates for developing quantitative methods for 

Acetaminophen and Caffeine. It was assumed that the optimum calibration sets are different for 

different APIs. In other words, the optimum calibration set for Acetaminophen is different from 

the optimum calibration set for Caffeine (this assumption was tested and the result is shown in 

the next chapter). However, selecting the calibration candidates in the PCA score space would 

result the same calibration design points for Acetaminophen and Caffeine. It was also observed 

that the PCA score space contained little/no information regarding the variation of Caffeine 

concentration. Selecting the calibration candidates in the PCA score space would result a 

calibration set without appropriate variation in Caffeine concentration. It is critical to select the 

calibration candidates from a score space that contains information regarding the variation in the 

respective API concentration. In PLS, the covariance between respective API (Acetaminophen / 
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Caffeine) and spectral response is maximized to generate the score space. Therefore, PLS 

technique was used to generate separate score spaces that are specific to Acetaminophen and 

Caffeine. 

 

Figure 5-11. Principal component analysis of the MSC corrected simulated spectra of 225 
design points. Figure is color coded based on MCC to Lactose ratio 

 

5.2.2.1 Calibration candidates for Acetaminophen 

PLS model was developed from the in-silico samples to maximize the covariance between 

Acetaminophen concentration and simulated spectral variation. MSC and mean centering were 

used as the preprocessing techniques for spectral data as indicated by the PCA analysis. Auto 

scaling was used to preprocess the concentration data. The resultant score space from PLS model 

is shown in Figure 5-12. It was observed that, the first set of LVs explained spectral variation 

related to Acetaminophen concentration due to the maximization of covariance between 
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Acetaminophen concentration and spectral response. The spectral variation related to compaction 

force and excipient variation was also explained by other LVs (LV 3 and LV5) as shown in  

Figure 5-13. 

 

Figure 5-12. Score plot from the PLS model. The figure is color coded based on 
Acetaminophen concentration level 

From this score space, a set of 60 design points was selected as the calibration candidates for 

Acetaminophen calibration model using the Kennard Stone algorithm. Kennard Stone algorithm 

selected a representative sub set of in-silico samples from the large dataset based on Euclidian 

distances. The details of the Kennard stone algorithm can be found elsewhere [132]. Figure 5-14 

shows the selected points using Kennard stone algorithm in the score space. It was shown in the 

score plot that, calibration candidates were selected from all potential sources of variation during 

the selection process. All levels of Acetaminophen concentrations, MCC:Lactose ratios and 

compaction forces were included into the selected calibration candidates. It is critical to include 

all sources of variation into the calibration set to make a robust calibration model against all 

potential sources of variation. The current strategy to incorporate such variation is to create a 

wide range of systematic variation in all sources of variation during calibration design. 
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Following such strategy, the traditional method of incorporating compaction force variation 

would be to prepare tablets at 3 compaction forces for each of the 75 compositional design 

points, resulting in a total of 225 calibration points in the calibration set. This traditional 

calibration set will be referred as ‘global calibration set’ throughout the rest of the chapter. The 

global calibration set may contain redundant information since tablets of all three compaction 

forces at each compositional design point might not be necessary to incorporate sufficient 

amount of spectral variation into the calibration set. The selection of calibration candidates in the 

simulated score space would allow the incorporation of compaction force variation into the 

calibration set using limited number of samples. 

 

Figure 5-13. Score plot from the PLS model. Left: Color coded based on compaction force. 
Right: Color coded based on MCC:Lactose ratio 

The set of 60 calibration candidates had critical sources of spectral variation including 

Acetaminophen concentration variation, Caffeine concentration variation, MCC:Lactose ratio 

and compaction force. In the traditional calibration design approach, the variation of such critical 

factors is not guided by a priori information and largely depends on user choice (e.g. no of levels 
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for each factor). However, in the spectral design strategy, such variations in the calibration set 

were guided by the spectral information from each individual factor and their interaction.  

 

Figure 5-14. Selection of calibration candidates (indicated by black circle) in the PLS score 
space. The figures are color coded based on compaction force (Left), Acetaminophen 
concentration level (upper right) and MCC:Lactose ratio (bottom right) 

 

Scores on LV 1 (80.44%)

-1.5 -1 -0.5 0 0.5 1

Sc
or

es
 o

n 
LV

 2
 (1

0.
96

%
)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
18.75

25

31.25

37.5

43.75

data1

Press a number key to create sub-plots.
Scores on LV 1 (80.44%)

-1.5 -1 -0.5 0 0.5 1

Sc
or

es
 o

n 
LV

 2
 (1

0.
96

%
)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Force 2K

Force 4K

Force 6K

Scores on LV 3 (3.45%)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Sc
or

es
 o

n 
LV

 5
 (1

.7
8%

)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Force 2K

Force 4K

Force 6K

Scores on LV 3 (3.45%)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Sc
or

es
 o

n 
LV

 5
 (1

.7
8%

)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
1.0

1.5

2.0



 

 168  

The selection of the calibration candidates was also guided by maximizing the covariance 

between Acetaminophen concentration and spectral variation. The effect of this guided selection 

strategy was investigated by analyzing the distribution of different critical factors such as 

Acetaminophen concentration, Caffeine concentration, MCC:Lactose ratio and compaction force 

variation  in the selected calibration candidates. 

 

Figure 5-15. Distribution of Acetaminophen in global calibration set and spectrally selected 
calibration set 

Figure 5-15-17 shows the distribution of the critical factors in the global calibration set (225 

samples) and in the selected calibration set (60 samples). In the global calibration set (225 design 

points), all five concentration levels were presented at 45 occurrences (5x45=225) as shown in 

Figure 5-15 in red bars. In the spectral calibration set, a set of 60 design points was selected in 

which all the concentration levels were homogeneously distributed and occurred around 12 times 

for each concentration level as shown in Figure 5-15 in blue bars. 
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Figure 5-16. Distribution of Caffeine in global calibration set and spectrally selected 
calibration set 

The Caffeine concentrations in the selected design points were mostly distributed at the extreme 

levels to make the calibration model robust against Caffeine concentration variation as shown in  

Figure 5-16. Mid-level concentration points were mostly excluded as the sensitivity to Caffeine 

concentration was not critical for the calibration performance during Acetaminophen prediction. 

Also, the low dose of Caffeine was not able to contribute a significant portion of the spectral 

variation after the preprocessing and maximization of covariance between spectra and 

Acetaminophen concentration. The extreme design points were sufficient to cover such small 

spectral contribution from the Caffeine concentration. The excipient concentrations (MCC and 

Lactose) were widely distributed in the selected design points as shown in Figure 5-17. Excipient 

variation contributed to a significant portion of spectral variation as shown in the score plots. 

Excipient variation also causes variation in the physical properties such as density, porosity, 

hardness, moisture content of the tablets. An even distribution of excipient variation in the design 

points is critical to cover such variation in the calibration set. 
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Figure 5-17. Distribution of MCC (left) and Lactose (right) in global calibration set and 
spectrally selected calibration set 

The objective of this study was to incorporate physico-chemical information such as variation in 

tablet density into the calibration set. The compaction force is usually varied to introduce 

variation in the tablet density into the calibration set. Traditionally, compaction force is varied 

comprehensively without any prior direction or optimization in the calibration set. In this study, 

the spectral effect of the compression force was analyzed and a small representative subset was 

selected based on the spectral effect of the compression force.  The distribution of the 

compaction forces in the traditional global calibration set and in the spectrally selected 

calibration set is shown in Figure 5-18. A large number of design points were selected in the low 

compaction force region compared to the high compaction force region. A lower compaction 

force causes wider distribution of solid fractions in the tablet set compared to the high 

compaction force. As the solid fraction affects the NIR spectral response, it was assumed that, 

more design points were required / selected at the low compaction force region to cover wider 

distribution of solid fractions and associated spectral responses. 
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Figure 5-18. Distribution of compaction forces in global calibration set and spectrally 
selected calibration set 

5.2.2.2 Calibration candidates for Caffeine 

A similar strategy was used to select calibration candidates for developing a quantitative method 

for Caffeine. A PLS model was developed from the simulated spectral response of the in-silico 

tablets and respective Caffeine concentration. A set of 60 design points was selected from the 

PLS score space using the Kennard stone algorithm. The distribution of critical factors such as 

Caffeine concentration and Acetaminophen concentration in the global calibration set (225 

samples) and selected calibration set (60 samples) are shown in  

Figure 5-19. In this calibration set, a homogeneous distribution of Caffeine concentration was 

observed; contrary to the calibration set of Acetaminophen. A homogeneous distribution of 

Caffeine concentration was selected from the latent variable score space due to maximization of 

covariance between Caffeine concentration and spectral variance. Such distribution of Caffeine 

concentration was critical to make the model sensitive to Caffeine concentration. 
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Figure 5-19. Distribution of Acetaminophen (left) and Caffeine (right) concentration in 
global calibration set and spectrally selected calibration set 

Similar distributions of MCC and Lactose concentration were observed in the calibration set of 

Caffeine compared to the calibration set of Acetaminophen. The distribution of MCC and 

Lactose concentrations in the global (225 design points) and selected calibration set (60 design 

points) are shown in Figure 5-20. A wide distribution of excipients was critical to ensure 

calibration model robustness against excipient variation. Figure 5-21 shows the distribution of 

compaction forces in the selected calibration set for Caffeine. This calibration set also contained 

more design points at low compaction force compared to the high compaction force. 

 

Figure 5-20. Distribution of MCC (left) and Lactose (right) concentration in global 
calibration set and spectrally selected calibration set 
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Justification of low compaction force 

It was assumed that more design points were selected at the low compaction force due to wide 

range of spectral variation and solid fraction. These tablet design points were in-silico tablets and 

its spectra were simulated from actual pure component and target tablets at different compression 

forces. It was assumed that, tablets prepared at low compaction forces had wider spectral 

variation compared to the tablets prepared at high compaction forces. And the wide spectral 

variation was caused by wide range of solid fraction usually seen at low compaction forces. 

 

 

Figure 5-21. Distribution of compaction forces in global calibration set and spectrally 
selected calibration set 

Actual tablets were prepared at different compression forces to test this assumption. The solid 

fraction of each tablet was measured by the following equation 5.2. Figure 5 22 (left) shows the 

tablet solid fractions at each compaction force. At low compaction force, a wider range of solid 

fraction was present as expected. The spectral variances were calculated at each wavelength in 

the simulated spectral set of each compaction force. Figure 5 22 (right) shows the spectral 
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variance at each wavelength for all three compaction forces of in-silico tablets.  In contrast to the 

initial assumption, it was found that the wide distribution of solid fractions did not cause wide 

range of spectral variation. 

The spectral variation was minimum at the low compaction force in-silico tablets. The spectral 

variation was maximum at the high compaction force in-silico tablets. It was further investigated 

to understand the cause behind the selection of more design points from low compaction force 

in-silico tablets associated with smaller amount of spectral variation. 

 

Figure 5-22. Solid fraction of tablets at different compaction forces (A). Spectral variation 
of the tablet sets prepared at different compaction forces (B). 

 

It was expected to have more design points at high compaction force in the selected calibration 

set due to the large spectral variance observed at high compaction force. However, after the MSC 

correction of the spectral data during PLS model development, more spectral variance was 

observed at low compaction force as shown in  Figure 5-23. It might be due to the greater extent 

of non-linearity caused by the wider distribution of solid fractions at the low compaction force. 
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MSC preprocessing technique corrects for linear scattering effect. The non-linear scattering 

effect could not be corrected by MSC preprocessing, resulting in wide range of spectral variation 

in the preprocess data at low compaction force. Such wide range of spectral variation resulted in 

wide distribution of scores in the PLS score plots as shown in Figure 5-24. 

 

 

 

 

 

 

 

 

 

 Figure 5-23. Spectral variation before (A) and after MSC correction of the spectral data.  

The area inside the box represents the range of score distribution for each respective compression 

force. The distribution of scores was wider for low compaction force tablets compared to the 

high compaction force tablets.  This wider distribution of scores of low compaction force tablets 

resulted in higher k-nearest neighbor (KNN) distance scores. Since, the Kennard stone algorithm 

selects samples based on inter sample distances and the highly distant samples are included in 

the selected subset, more samples were selected from the low compaction force during the 

selection of calibration candidates.  

Figure 5-25 shows the KNN distance scores of tablets at three different compaction forces for 

both Acetaminophen and Caffeine. For both APIs, the higher KNN distances of low compaction 
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force tablets resulted in large number of low compaction design points in the selected calibration 

candidates. 

 

Figure 5-24. PLS scores of first two loading vectors at three different compaction forces  

 

5.2.3 Spectral calibration set for Acetaminophen 

A set of 60 design points was selected to develop the calibration set for Acetaminophen 

prediction. Actual tablets at the selected design points were prepared by direct compression. The 

required amounts of Acetaminophen, Caffeine, MCC, Lactose, Crosscarmellose Na and MgSt at 

each design point were weighed and placed in a 10 ml scintillation vial. The ingredients were 

mixed by rotating the scintillation vial. Tablets were compressed on a Carver Automatic Tablet 

Press (Model 3887.1SD0A00, Wabash, IN, USA) at respective compaction force using a 13 mm 
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die and flat-faced punches. The target tablet weight was 700 mg. This tablet set was defined as 

the ‘spectral calibration set’ for Acetaminophen. 

 

Figure 5-25. KNN distance scores of samples at three different compaction forces for PLS 
models of Acetaminophen (A) and Caffeine (B)  

All the tablets were scanned using a bench top NIR instrument (XDS Rapid Content Analyzer, 

FOSS NIRSystems, Inc) in reflectance mode. Spectral data were collected at 0.5 nm increment 

over a range of 400 nm – 2499.5 nm with 32 co-adds per spectrum. Spectra from both faces of 

each compact were averaged to produce a single representative spectrum. Spectral calibration set 

and their respective spectra were used to develop a quantitative NIR calibration model to 

quantify the amount of Acetaminophen in tablets of interest. 

5.2.4 Traditional calibration set for Acetaminophen 

The traditional calibration set was developed using the 4-factor full factorial design previously 

used to simulate the spectral response. The factors were Acetaminophen concentration, Caffeine 
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compaction force) were varied at three levels resulting in 225 (5x5x3x3) design points in the 

traditional full factorial calibration set. The calibration design is different from the design in 

chapter 3 in that, the levels of compaction forces are 2000, 4000 and 6000 lb in the current 

design contrary to 4000, 5000 and 6000 lb in the earlier design. 

Each of the 225 tablets was individually prepared by direct compression. All the components for 

a single design point were weighed using a digital weighing machine (Data Range, Model No. 

AX504DR, Mettler Toledo) and placed in a 10 ml scintillation vial. The ingredients were mixed 

in a bin blender (L.B. Bohle LLC, Warminster, PA, USA) for 10 mins followed by a high shear 

mixing using a vortex machine (Vortex-2 Genie, Model G-560, Scientific Industries, IN, USA). 

The final mixing was performed in the bin blender before compression. Tablets were compressed 

on a Carver Automatic Tablet Press (Model 3887.1SD0A00, Wabash, IN, USA) at respective 

compression forces using a 13 mm die and flat-faced punches. The target tablet weight was 700 

mg. 

All the tablets were scanned using a bench top NIR instrument (XDS Rapid Content Analyzer, 

FOSS NIRSystems, Inc) in reflectance mode. Spectral data were collected at 0.5 nm increment 

over a range of 400 nm – 2499.5 nm with 32 co-adds per spectrum. Spectra from both faces of 

each compact were averaged to produce a single representative spectrum. Traditional calibration 

set and their respective spectra were used to develop a quantitative NIR calibration model to 

quantify the amount of APPA in tablets of interest. 

5.2.5 Spectral calibration set for Caffeine 

The spectral calibration set for Caffeine was developed using the similar strategy as used for 

spectral calibration set for Acetaminophen. A set of 60 design points was selected as the 
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calibration candidates from the PLS scores of Caffeine calibration model of in-silico samples. 

Only 29 design points were found to be common between the selected design points of 

Acetaminophen and Caffeine. Actual tablets at these design points were prepared by the direct 

compression technique described earlier. The NIR spectra of these tablets were collected using 

the same instrument and method described earlier. This calibration set was described as ‘spectral 

calibration set’ for Caffeine. Spectral calibration set and their respective spectra were used to 

develop a quantitative NIR calibration model to quantify the amount of Caffeine in tablets of 

interest. 

 Design Factors Design levels 

Test 1 

(5x5x3x1) 

75 samples 

 

Acetaminophen (%) L.C.-40% L.C.-20% L.C. L.C. +20% L.C. +40% 

Caffeine (%) L.C.-80% L.C.-40% L.C. L.C. +40% L.C. +80% 

MCC/Lac 1 1.5 2 

Force (lb) 5000 

Test 2 

(3x3x1x4) 

36 samples 

Acetaminophen (%) L.C.-35% L.C. L.C.+35% 

Caffeine (%) L.C.-70% L.C. L.C.+70% 

MCC/Lac 
 

1.5 
 

Force (lb) 2000 4000 5000 6000 

Table 5-2.  Design of the two test sets 
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5.2.6 Traditional calibration set for Caffeine 

The same full factorial calibration set for Acetaminophen (225 samples) was used to develop a 

traditional calibration method for Caffeine prediction. 

5.2.7 Test sets to evaluate model performance 

Two test sets were used to evaluate the performance of the calibration designs. The first test was 

developed by varying Acetaminophen and Caffeine concentration at five levels and MCC to 

Lactose ratio at 3 levels resulting in 75 design points. In the first test set, the compaction force 

was kept constant. The second test set was developed by varying Acetaminophen and Caffeine 

concentration at three levels and compaction force at four levels resulting in total 36 design 

 

Figure 5-26. Selection and preparation method of spectral calibration set and test set for 
Acetaminophen and Caffeine  
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points. In the second test set, the excipient ratio was kept constant. Table 5-2 describes the 

structure of the two test sets.  The method for preparing calibration and test set is depicted in 

Figure 5-26. 

5.2.8 Quantitative model development 

Quantitative models were developed using Partial Least Squares (PLS) modeling technique in 

MATLAB 2015a environment (The Mathworks, Natick, MA, USA) using PLS_Toolbox v. 7.9.3 

(Eigenvector Research Inc., Wenatchee, WA, USA). Data independent spectral preprocessing 

techniques were used to optimize model performance. Two calibration models were developed 

for each API (Acetaminophen and Caffeine), one calibration model from the 225 actual tablets of 

the full factorial design and another calibration model from the 60 actual tablets of the spectral 

design. Models developed from each calibration design were independently optimized for each 

API. The preprocessing techniques and loading vectors were selected independently. Selection of 

the loading vector is critical for PLS model performance. Latent variables were chosen based on 

a parsimonious approach. A minimum number of latent variables with acceptable performance 

were selected. Model performance was assessed based on the prediction of Acetaminophen and 

Caffeine concentration in calibration and test set tablets. 

The effect of the incorporation of physico-chemical information into the spectral calibration sets 

was analyzed by evaluating calibration model performance and comparing it with the global 

calibration model performance. Root mean squared error (RMSE) was used to evaluate the 

model predictive performance in the two independent test sets (RMSEP). A two-way analysis of 

variance (ANOVA) test was performed to compare the prediction errors of the full factorial and 

spectral calibration sets for each API [22]. The underlying model for the ANOVA analysis is 
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described in equation 5.3, where index ‘i’ refers to the calibration model and index ‘j’ refers to 

the sample number. The symbol 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑗𝑗refer to the effect of calibration model ‘i’ and sample 

number ‘j’ on prediction error, respectively.  

 (𝑦𝑦�𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)2 =  𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝑒𝑒𝑖𝑖𝑖𝑖 (5.3) 

The calibration models are considered significantly different in terms of prediction performance, 

if the calibration model parameter 𝛼𝛼 is found to be significant in the ANOVA analysis. 

5.3 Results and discussion 

5.3.1 Prediction of Acetaminophen 

A PLS model was developed from the traditional calibration set (225 samples). The 

preprocessing techniques were selected as MSC and mean centering for spectral data and auto 

scaling for concentration data. A set of 6 loading vectors was selected for model development. 

Figure 5-27 shows the performance of the traditional calibration set for predicting 

Acetaminophen in the first test set (75 samples). The score plot shows that the spectral variation 

in the test set was covered by the calibration set. The calibration, cross validation and prediction 

errors were found to be similar (~1% w/w). A reasonable prediction performance was achieved 

due to similar spectral variation between calibration and test set samples. 
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Figure 5-27. PLS model performance of the global calibration set predicting 
Acetaminophen in test set 1   

 

Another PLS model was developed from the spectral calibration set for Acetaminophen 

prediction. Same preprocessing techniques (MSC and mean centering for spectral data and auto 

scaling for concentration data) were found to be optimum for this model. A set of 6 loading 

vector was selected for model development. Figure 5-28 shows the performance of the spectral 

calibration set for predicting Acetaminophen in the first test set. The calibration samples had 

similar and wider spectral variation compared to the test set samples. Similar prediction 

performance (RMSEP ~ 1% w/w) was achieved by the spectral calibration set compared to the 

traditional calibration set in spite of having fewer samples (60 vs 225). 
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Figure 5-28. PLS model performance of the spectral calibration set predicting 
Acetaminophen in test set 1   

The same calibration models of traditional calibration set and spectral calibration set were used 

to predict the concentration of Acetaminophen in the second test set. In the second test set (36 

samples), the prediction errors of the two models were slightly higher compared to the first test 

set (RMSEPs ~ 1.2 % w/w). The higher error was caused by the compaction force variation in 

the test set samples. The prediction performances between the two calibration models were found 

to be equivalent. Figure 5-29 shows the score plot and reference vs prediction plot for two 

calibration models predicting Acetaminophen in the second test set. 
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Figure 5-29. PLS model performance of the traditional (A) and spectral calibration sets (B) 
predicting Acetaminophen in test set 2   

5.3.2 Prediction of Caffeine 

A PLS model was developed from the traditional calibration set (225 samples) to predict 

Caffeine concentration in the first test set (75 samples). The preprocessing techniques were 

MSC, Savitzky-Golay derivative (window size 15, second order polynomial, first derivative) and 

mean centering for spectral data and auto scaling for the concentration data. A set of 5 loading 

vectors was selected for model development. Figure 5-30 shows the score plot and reference vs 

prediction plot for the calibration model. Similar ranges of spectral variation were observed 
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between traditional calibration and first prediction set. The RMSEC and RMSEP were 0.35% 

w/w and 0.46% w/w, respectively. 

 

Figure 5-30. PLS model performance of the traditional calibration set predicting Caffeine 
in test set 1   

 

Another PLS model was developed from the spectral calibration set (60 samples) of Caffeine. 

The preprocessing techniques were MSC, Savitzky-Golay derivative (window size 15, second 

order polynomial, first derivative) and mean centering for spectral data and auto scaling for the 

concentration data. A set of 5 loading vectors was selected for model development. Figure 5-31 

shows the score plot and reference vs prediction plot for the calibration model. Similar ranges of 

spectral variation were observed between the calibration and prediction sets. The prediction 

performance of the spectral calibration set (RMSEP 0.46% w/w) was found to be similar to the 

traditional calibration set in spite of having fewer calibration samples (60 vs 225). 
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Figure 5-31. PLS model performance of the spectral calibration set predicting Caffeine in 
test set 1   

The same calibration models of the traditional and spectral calibration sets were used to predict 

the concentration of Caffeine in the second test set (36 samples). The prediction performances 

for both calibration models were improved in the second calibration set. The extents of 

improvement were similar between the traditional and spectral calibration sets. The RMSEPs for 

both calibration models were ~ 0.35% w/w. Figure 5-32 shows the score plot and reference vs 

prediction plots for the two calibration models of traditional and spectral calibration sets. 
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Figure 5-32. PLS model performance of the traditional (A) and spectral calibration sets (B) 
predicting Caffeine in test set 2   

5.4 Conclusion 
The spectral calibration sets (60 samples) were found to provide equivalent prediction 

performances compared to the traditional calibration set (225 samples) for both Acetaminophen 

and Caffeine. Equivalent prediction performances were observed in both test sets containing 

compositional and physico-chemical variation. The summary of the prediction performances is 

given in Table 5-3. The spectral calibration sets were designed by using prior information about 

the spectral effect of physico-chemical information. This information was utilized to efficiently 

design a small calibration set to incorporate wide range of information. Such incorporation was 
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successful in building a robust calibration model against compositional and physico-chemical 

variation. 

 
Acetaminophen model Caffeine model 

 
Full factorial 

design Spectral design Full factorial 
design Spectral design 

No. of Samples 225 60 225 60 

RMSEC (% w/w) 0.983 0.907 0.351 0.271 

RMSECV (% w/w) 1.032 1.148 0.365 0.309 

R2 Calibration 0.988 0.990 0.977 0.987 

RMSEP1 (% w/w) 1.001 0.996 0.457 0.459 

Prediction Bias 1 
(% w/w) -0.472 -0.338 0.087 0.062 

R2 Prediction 1 0.990 0.989 0.963 0.962 

RMSEP2 (% w/w) 1.171 1.202 0.351 0.347 

Prediction Bias 2 
(% w/w) 

-0.101 -0.014 -0.069 -0.084 

R2 Prediction 2 0.984 0.983 0.982 0.982 

Table 5-3. Summary of the calibration model performance of the traditional and spectral 
calibration set 
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6 Chapter 6: Optimum calibration structure for pharmaceutical formulation and 

spectroscopic techniques  

6.1 Introduction 
Calibration structure is a critical factor for ensuring desired performance of the spectroscopic 

method for quantitative analysis of pharmaceutical formulation. The optimum calibration 

structure depends on the sample formulation and spectroscopic technique. An optimum 

calibration structure for an NIR method can be sub-optimum for a different spectroscopic method 

such as Raman or THz spectroscopy due to inherent differences in spectral responses. An 

optimum calibration structure for one formulation can also be sub-optimum for another 

formulation. This is the fundamental concept leading to the development of spectral design 

strategy for calibration development. In the traditional strategy, same set of samples designed in 

the concentration space is usually used for both NIR and Raman calibration method 

development. These samples are designed to allow wide concentration and physical variation to 

follow the traditional concept of incorporating as much variance as possible into the calibration 

set. However, all the variance information in the calibration set may not be relevant to the 

particular technique of interest. For instance, a NIR method can be sensitive to a particular type 

of physical variation that needs to be incorporated into the calibration set to develop a robust 

quantitative model, whereas the same physical variation may not affect Raman spectra and be 

unnecessary to incorporate into the Raman calibration set. 

Spectral design strategy allows optimization of the calibration structure depending on the 

formulation and technique. Since the strategy utilizes pure component spectral information, the 

resultant calibration structure depends on the interaction between formulation and spectroscopic 
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technique. A unique calibration set is developed for each formulation and spectroscopic 

technique. However, the criticality of having unique calibration structure to ensure optimum 

calibration performance has not been investigated. In this study the optimum calibration structure 

between NIR and Raman were compared. The optimum calibration structures between two APIs 

(Acetaminophen and Caffeine) were also compared. This study also provided the basis for 

utilizing spectral design strategy to design a formulation and technique specific calibration set. 

6.2 Material and Method: 

6.2.1 Calibration and test set 

The multiple API formulation was selected for this study. The multiple API tablets contained two 

APIs as Acetaminophen (Acetaminophen; Mallinckrodt Inc., Raleigh, NC, USA) and Caffeine 

anhydrous (Spectrum Chemical Mfg. Corp., New Brunswick, NJ, USA). The excipients were 

Microcrystalline cellulose (MCC; Avicel PH 200, FMC Biopolymer, Mechanicsburg, PA, USA), 

Lactose (modified spray-dried; Foremost Farms USA, Rothschild, WI, USA), Crosscarmellose 

sodium (Crosscarmellose Na, Spectrum Chemical Mfg. Corp., New Brunswick, NJ, USA) and 

Magnesium stearate (MgSt; Fisher Scientific, Waltham, MA, USA). The target formulation was 

set as Acetaminophen (31.25% w/w), Caffeine (4.05% w/w), MCC (37.32% w/w), Lactose 

(24.89% w/w), Crosscarmellose Na (2% w/w) and MgSt (0.5% w/w). 

A full-factorial experimental design was created to vary the concentration of Acetaminophen, 

Caffeine, MCC:Lactose ratio and compaction force of the tablets. The Acetaminophen and 

Caffeine concentration was varied at 5 levels and MCC : Lactose ratio and compaction force 

were varied at 3 levels resulting in a total of 225 design points. A test set was developed by 

varying all the calibration factors except MCC: Lactose ratio, each at three levels resulting in a 
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total of 27 design points. Table 6-1 provides the details of the full factorial calibration and test 

design. 

Each tablet of the calibration and test design points was individually prepared by direct 

compression. All the components for a single design point were weighed using a digital weighing 

machine (Data Range, Model No. AX504DR, Mettler Toledo) and placed in a 10 ml scintillation 

vial. The ingredients were mixed in a bin blender (L.B. Bohle LLC, Warminster, PA, USA) for 

10 mins followed by a high shear mixing using a vortex machine (Vortex-2 Genie, Model G-560, 

Scientific Industries, IN, USA). The final mixing was performed in the bin blender before 

compression. Tablets were compressed on a Carver Automatic Tablet Press (Model 

3887.1SD0A00, Wabash, IN, USA) at respective compression forces using a 13 mm die and flat-

faced punches. The target tablet weight was 700 mg. 

 Design Factors Design Levels 

Calibration Design 
(5x5x3x3) 

225 
samples 

Acetaminophen 
(%) 

L.C.-
40% 

L.C.-
20% L.C. L.C.+20% 

L.C.+40% 

Caffeine (%) L.C.-
80% 

L.C.-
40% L.C. L.C. 

+40% 
L.C.+80% 

MCC/Lac 1 1.5 2 

Force (lb) 4000 5000 6000 

Test Design 
(3x3x3) 

27 
samples 

Acetaminophen 
(%) L.C.-35% L.C. L.C.+35% 

Caffeine (%) L.C.-70% L.C. L.C.+70% 

Force (lb) 4000 5000 6000 

MCC/Lac 1.5 
Table 6-1. Calibration and test design 
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NIR reflectance measurements for both sides of each compact were collected using a bench top 

scanning monochromator instrument (XDS Rapid Content Analyzer, FOSS NIRSystems, Inc., 

Laurel, MD, USA) after tablets reached stable dimensions (viscoelastic relaxation). Spectra 

corresponding to each side of a compact were averaged to give one spectrum per compact. 

Gravimetric measurement was used as reference for all tablets. 

  

Figure 6-1. NIR (A) and Raman (B) spectra of the calibration sets 

Raman measurements for both sides of each compact were collected using a PhAT System 

spectrometer coupled with a probe head (HoloGRAMS version 4.0, Kaiser Optical Systems, Inc, 

Ann Arbor, MI). The laser excitation wavelength was 785 nm. The PhAT System samples a spot 

size of ~6 mm. The integration time and co-adds were 15 seconds and 3, respectively. Spectra 

corresponding to each side of a compact were averaged to give one spectrum per compact over 

the range of 150 to 1890 cm–1 at a 0.2 cm–1 increment. The NIR and Raman spectra of the 

tablet are given in Figure 6-1.  

All the analyses were performed in MATLAB 2015a environment (The Mathworks, Natick, MA, 

USA). Quantitative models were developed using Partial Least Squares (PLS) modeling 

A B 



 

194 
 

technique using PLS_Toolbox v. 7.9.3 (Eigenvector Research Inc., Wenatchee, WA, USA). Data 

independent spectral preprocessing techniques were used to optimize the model performance. 

 

Figure 6-2. NIR PLS model for Acetaminophen from traditional calibration set 

 

6.2.2 Quantitative model development 

6.2.2.1 NIR infrared spectroscopy 

6.2.2.1.1 Acetaminophen prediction 

A PLS model was developed for predicting Acetaminophen concentration in calibration and test 

set tablets. During PLS model development, the optimum preprocessing techniques were found 

to be SNV and mean centering for the spectral data and auto scaling for the concentration data. 

The optimum number of loading vector (6) was selected from a routine cross validation step. The 

projected scores of the calibration and test samples on the first four loading vectors are given in 

Figure 6-2. Similar projections were found between calibration and test set tablets indicating 

similar types of spectral variations on the loading vectors direction. A lower prediction error in 
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both calibration (0.97% w/w) and test (1.04% w/w) set ensured reasonable model performance. 

The reference vs prediction plot is given in Figure 6-3. 

This calibration structure was designed from a full factorial template without any prior 

information. The calibration structure was neither optimized for Acetaminophen, nor for NIR 

spectroscopy. The optimality of the calibration structure and calibration performance was 

unknown. Although the NIR method provided reasonable prediction performance, the best 

possible prediction performance with available resources was unknown. A mathematical search 

was performed to find the optimum calibration set that provided the best prediction performance 

(lowest prediction error) for the test set. It must be noted that the optimum calibration structure 

depends on the test set structure. A different calibration set could provide the best performance 

for a different test set. The search for the optimum calibration set followed the steps provided 

below: 

 

 

 

 

 

 

 

Figure 6-3. Reference vs prediction plot of Acetaminophen from traditional calibration set 
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Figure 6-4. Search for optimum calibration set 
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Figure 6-5. Prediction performance of randomly selected calibration sets and optimally 
selected calibration set 

Initially a PLS calibration model was developed using all the calibration samples (global 

calibration set) and used for predicting Acetaminophen concentration in the test set. The 

calibration set was set as ‘Optimum calibration set’ and resultant RMSEP was set as 

‘RMSEP_TARGET’. Then a second PLS model was developed using randomly selected 3 

calibration samples (initial calibration set) and used for predicting Acetaminophen concentration 

in the same test set. The resultant RMSEP was set as ‘RMSEP_INITIAL’. Then another 

randomly selected calibration sample was added to the initial calibration set, a PLS model was 

developed using the updated calibration set and used to predict Acetaminophen concentration in 

the test set. The resultant RMSEP was set as ‘RMSEP_MODEL’. If RMSEP_MODEL was 

found to be lower than ‘RMSEP_INITIAL’, the newly added sample was kept in the updated 

calibration set, otherwise discarded from the updated calibration set. The RMSEP of the updated 

calibration set was set as ‘RMSEP_INITIAL’ (for sample inclusion it would change (lowered), 
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for sample exclusion it would remain same). Then another randomly selected calibration sample 

was added to the updated calibration set and effect of its inclusion on the prediction performance 

of the test set was calculated. It was kept in case it helped to improve the prediction performance, 

otherwise discarded. This process was iterated until all the calibration samples were tested for 

their effects on the prediction performance. A subset of calibration samples was found after the 

iteration. The RMSEP of the calibration subset (RMSEP_MODEL) was compared with RMSEP 

of the global calibration set (RMSEP_TARGET). If the RMSEP_MODEL was found to be lower 

than RMSEP_TARGET, a set of better calibration candidates was found by sample inclusion 

strategy. The algorithm then went to the next phase to analyze the effect of sample exclusion on 

the prediction performance. If RMSEP_MODEL was found to be higher than 

RMSEP_TARGET, the algorithm started from the beginning by randomly selecting a different 

initial set and calibration candidates. 

 

Figure 6-6. NIR PLS model for Acetaminophen from optimum calibration set 

In the next phase, a randomly selected sample was excluded from the updated calibration set, a 

PLS model was developed and used to predict Acetaminophen concentration in the test set. The 
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sample was excluded in case the exclusion lowered the RMSEP, otherwise it was kept in the 

updated calibration set. In the next step, another randomly selected sample was tested for 

exclusion criteria. This process was iterated until all the samples were individually tested to 

analyze the effect of their exclusion on the prediction performance. A calibration subset 

containing better calibration candidates was found at the end. All these calibration samples were 

tested for both inclusion and exclusion criteria and found to improve the prediction performance. 

The RMSEP of the updated calibration set (RMSEP_MODEL) was calculated and compared 

with the RMSEP_TARGET. If RMSEP_MODEL was found to be lower than the 

RMSEP_TARGET, the RMSEP_MODEL was set as the new RMSEP_TARGET. The updated 

calibration set was stored and set as the ‘Optimum calibration set’. If RMSEP_MODEL was 

found to be higher than the RMSEP_TARGET, the RMSEP_TARGET and ‘Optimum 

calibration set’ remained same. This whole process was repeated iteratively, until 

RMSEP_TARGET (lowest RMSEP at hand) was found to be lower than the RMSEP_MODEL 

for five consecutive iterations. It indicated that the search algorithm found the ‘Optimum 

calibration set’ that provided the best calibration performance (lowest RMSEP). The 

performance of this guided search algorithm was compared with multiple randomized search 

algorithms. The resultant RMSEPs of the search algorithms are shown in Figure 6-5 with the 

calibration sample number. The guided search algorithm was able to find the calibration set that 

provided the best model performance. Following the guided search, the optimum calibration set 

for Acetaminophen was found to contain 35 calibration samples. 

 A PLS model was developed from this optimum calibration set. The preprocessing techniques 

were SNV and mean centering for the spectral data and auto scaling for the concentration data, 

respectively. A set of 6 loading vectors was selected for model development. The scores of the 
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calibration and test samples on the first four loading vectors are given in Figure 6-6. It was found 

that, the small optimum calibration set was able to explain similar spectral variation as the test 

set. An improved prediction performance (RMSEC 0.49 % w/w and RMSEP 0.69% w/w) was 

observed from the optimum calibration set as compared to the global calibration set. The 

reference vs predicted concentration for calibration and test sample is given in Figure 6-7. 

 

Figure 6-7. Reference vs prediction plot of Acetaminophen from optimum calibration set 

6.2.2.1.2 Caffeine prediction 

A PLS model was developed from all the 225 samples to predict the concentration of Caffeine in 

the test set. The optimal preprocessing techniques were SNV and mean centering for spectral 

data and auto scaling for concentration data. A set of 6 latent variables was selected for model 

development. The scores of the calibration and test samples on the first four loading vectors are 

given in Figure 6-8. The calibration and test samples were found to span similar spectral 

variation on the loading vector directions. 

 

Y Measured 1

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Y 
Pr

ed
ic

te
d 

1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fit

1:1

Calibration

Test



 

201 
 

 

 

Figure 6-8. NIR PLS model for Caffeine from traditional calibration set 

Similar projections of calibration and test samples ensured reasonable prediction performance of 

the calibration model. The resultant RMSEC and RMSEP were 0.40% w/w and 0.43% w/w, 

respectively. The reference vs predicted concentration for calibration and test sample is given in 

Figure 6-9. 

 

Figure 6-9. Reference vs prediction plot of Caffeine from traditional calibration set 
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Figure 6-10. NIR PLS model for Caffeine from optimal calibration set 

A guided search was performed following the previously described algorithm to find the 

optimum calibration set for Caffeine prediction. The optimum calibration set of Caffeine was 

selected based on the prediction performance on the test set. The resultant optimized calibration 

set contained 37 samples. A PLS model was developed from the optimum calibration set. The 

preprocessing techniques were SNV and mean centering for the spectral data and auto scaling for 

the concentration data. A set of 6 loading vectors was selected.   

Figure 6-10 shows the calibration and test sample scores on the first four loading vectors. It was 

found that, the small optimum calibration set spanned the entire range of spectral variation of the 

test set samples. Such spectral coverage ensured improved model performance compared to the 

global calibration set in spite of having fewer sample number. The resultant RMSEC and 

RMSEP were 0.19% w/w and 0.28% w/w, respectively. The reference vs prediction plot is given 

in Figure 6-11. A small optimum calibration set was able to provide better model performance 

compared to the global calibration for both Acetaminophen and Caffeine. These optimum 

calibrations sets were found by the search algorithm. The optimum calibration sets between 
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Acetaminophen and Caffeine were different. Only 8 samples were found to be common between 

the optimum calibration set for Acetaminophen (35 samples) and Caffeine (37). 

 

Figure 6-11. Reference vs prediction plot of Caffeine from traditional calibration set 

6.2.2.2 Raman spectroscopy 

The same dataset was scanned with Raman spectroscopy. Quantitative PLS models were 

developed from Raman spectra to predict the concentrations of Acetaminophen and Caffeine in 

the test set. 

 

Figure 6-12. Raman PLS model for Caffeine from traditional calibration set 
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6.2.2.2.1 Acetaminophen prediction 

A PLS model was developed to predict the concentration of Acetaminophen in the test set using 

Raman spectra. The optimum preprocessing techniques were SNV, normalization and mean 

centering for the spectral data and auto scaling for the concentration data. A set of 4 latent 

variables were selected for the model development. Figure 6-12 shows the projection of the 

calibration and test samples on the first four loading vectors. The first two loading vectors 

grouped the calibration (5 groups) and test samples (3 groups) based on the Acetaminophen 

concentration. It was also observed that the calibration and test samples spanned similar ranges 

of spectral variation. A reasonable prediction performance was achieved. The RMSEC and 

RMSEP were 1.02 % w/w and 1.09 % w/w, respectively.  

 

Figure 6-13. Reference vs prediction plot of Acetaminophen from traditional calibration set 

The reference vs prediction plot is shown in Figure 6-13. An optimum subset was selected from 

225 samples using the search algorithm described earlier. The resultant optimum calibration set 

contained 71 samples. A PLS model was developed from the selected 71 samples. The 

preprocessing techniques were SNV, normalization and mean centering for the spectral data and 



 

205 
 

auto scaling for the concentration data. A set of 4 latent variables was selected for model 

development. 

  

Figure 6-14. Raman PLS model for Acetaminophen from optimal calibration set 

  

Figure 6-14 shows the projections of the calibration and test samples on the first four loading 

vectors. Similar to the global calibration set (225 samples), calibration and test samples were 

grouped based on the Acetaminophen concentration on the first two loading vectors. The extents 

of variation explained by the first two loading vectors were also similar to that of global 

calibration set. The calibration and test samples had similar projection on the loading vector. An 

improvement in the prediction performance was observed from the optimum calibration set 

compared to the global calibration set. The RMSEC and RMSEP were 1.05 % w/w and 0.79 % 

w/w, respectively. The reference vs prediction plot is shown in Figure 6-15. 
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Figure 6-15. Reference vs prediction plot of Acetaminophen from optimum calibration set 

6.2.2.2.2 Caffeine prediction 

A PLS model was also developed to predict the concentration of Caffeine in the test set using 

Raman spectra. The optimum preprocessing techniques were SNV and mean centering for the 

spectral data and auto scaling for the concentration data. A set of 4 latent variables was selected 

for model development. Figure 6-16 shows the projections of the calibration and test samples on 

the first four loading vectors. No clear grouping based on the Caffeine concentrations was 

observed in the score plot. The first four loading vectors explained convoluted information from 

Caffeine concentrations and other sources of spectral variation. The Caffeine concentration was 

not a dominant factor due to low concentration in the tablets. 
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The calibration and test samples had similar ranges of spectral variation. A reasonable prediction 

performance was achieved from the global calibration set. The RMSEC and RMSEP were 0.59 

% w/w and 0.55 % w/w, respectively. The reference vs prediction plot is shown in Figure 6-17. 

 

Figure 6-16. Raman PLS model for Caffeine from traditional calibration set 

 

An optimum subset was selected from 225 samples using the search algorithm described earlier. 

The resultant optimum calibration set contained 58 samples. A PLS model was developed from 

this optimum calibration set. The preprocessing techniques were SNV and mean centering for the 

spectral data and auto scaling for the concentration data. A set of 4 latent variables was selected 

for model development. 
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Figure 6-17. Reference vs prediction plot of Caffeine from traditional calibration set.  

Figure 6-18 shows the calibration and test scores on the first four loading vectors. No grouping 

based on Caffeine concentration was observed in the score plot. The calibration and test set had 

similar ranges of spectral variation as shown in the score plot. An improved prediction 

performance was observed from the optimum calibration set as compared to the global 

calibration set. The RMSEC and RMSEP were 0.38 % w/w and 0.46 % w/w, respectively. The 

reference vs prediction plot is shown in Figure 6-19. 

 

Figure 6-18. Raman PLS model for Caffeine from optimum calibration set 

The optimum calibration sets with fewer sample numbers were able to provide better model 
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Acetaminophen and Caffeine. The optimum calibration sets between Acetaminophen and 

Caffeine were found to be different. Only 24 samples were found common between the optimum 

calibration sets for Acetaminophen (71 samples) and Caffeine (58 samples). This scenario was 

similar to the scenario in NIR spectroscopy. 

 

Figure 6-19. Reference vs prediction plot of Caffeine from optimum calibration set.  

 

6.3 Results and discussion 

6.3.1 Comparison between optimum calibration sets of NIR and Raman spectroscopy 

The optimum calibration sets between NIR and Raman spectroscopy were different for both 

Acetaminophen and Caffeine. The comparison of the optimum calibration sets are discussed in 

the following sections. 
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6.3.1.1 Optimum calibration sets of Acetaminophen 

The optimum calibration set of NIR spectroscopy required fewer samples compared to the 

optimum calibration set of Raman spectroscopy (35 vs 71) during the prediction of 

Acetaminophen in the test set. The optimum structures of the calibration sets were different from 

each other. Only 14 samples were common between the two calibration sets.  

 Figure 6-20 shows the compositional points between full global calibration set, optimum NIR 

and Raman calibration sets. The optimum NIR calibration set had lower prediction error 

compared to that of optimum Raman calibration set (RMSEP 0.69% w/w vs 0.79% w/w) in spite 

of having fewer sample number. However, a significant test was performed following the 

method described in section 5.2.8 in chapter 5 and no significant difference were found between 

their prediction performances. 

 

 Figure 6-20. Compositional points between full global, NIR optimized and Raman 
optimized calibration sets for Acetaminophen.  

 

The distribution of Acetaminophen concentration in optimum calibration sets of NIR and Raman 

is provided in Figure 6-21. The NIR calibration set required fewer samples compared to the 
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Raman set, especially at low concentration of Acetaminophen. These samples were selected from 

traditional full factorial calibration set. The traditional full factorial calibration structure was not 

fully orthogonal. In the calibration structure, there was a correlation between Acetaminophen 

concentration and MCC concentration as shown in Figure 6-22. At low Acetaminophen 

concentration, the MCC concentration was usually high. MCC has a strong background features 

on Raman spectra due to fluorescence. Due to such strong spectral features of MCC, Raman 

calibration set required more samples at high MCC concentration to make the calibration set 

robust against fluorescence. 

 

Figure 6-21. Acetaminophen distribution between NIR and Raman optimized calibration 
sets   

MCC does not have any strong fluorescence like unique features on NIR spectra. So, high 

concentration of MCC at the low level of Acetaminophen did not direct the optimum calibration 

set to select higher number of samples. 
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Figure 6-22. Concentrations of Acetaminophen and MCC in full traditional, NIR optimized 
and Raman optimized calibration sets   

These two optimum calibration sets were also different in terms of excipient concentration. The 

distribution of MCC and Lactose between Optimum NIR and Raman calibration sets are shown 

in Figure 6-23. The optimum calibration for NIR required narrower distribution of excipients, 

especially for Lactose.  

 

Figure 6-23. MCC (left) and Lactose (right) distribution between NIR and Raman 
optimized calibration sets for Acetaminophen   

 

The overall required spectral variation from excipient was also small for NIR calibration set 
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responses between MCC and Lactose in NIR spectroscopy. MCC and Lactose has very similar 

NIRS response as shown in Figure 6-24. Due to such similarity, the excipients were not required 

to be varied simultaneously. Variance in MCC would provide necessary spectral variation in the 

calibration structure. As a result, the optimum calibration set provided good prediction 

performance without significant variation in the Lactose concentration. However, in the Raman 

spectroscopy MCC and Lactose have very different spectral responses as shown in Figure 6-24. 

The optimum Raman calibration set required variation in both MCC and Lactose concentration 

due to their unique information. This resulted in higher number of calibration samples in the 

optimum Raman calibration set compared to that of NIR spectroscopy. 

 

Figure 6-24. NIR (left) and Raman (right) spectra of MCC and Lactose 

6.3.1.2 Optimum calibration sets of Caffeine 

The optimum calibration structures of Caffeine were found to be different between NIR and 
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of Caffeine; a scenario similar to the Acetaminophen calibration set. Only 10 samples were 

common between the two calibration sets.  

 

Figure 6-25. Compositional points between full global, NIR optimized and Raman 
optimized calibration sets for Caffeine.  

 

Figure 6-25 shows the compositional points between global calibration set, optimum NIR and 

Raman calibration sets for Caffeine. The prediction performance of the optimum NIR calibration 

set was significantly better than the prediction performance of the optimum Raman calibration 

set (RMSEP 0.28% w/w vs 0.46% w/w). The significance test was performed following the 

method described in section 5.2.8 in chapter 5. 
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Figure 6-26. Caffeine distribution between NIR and Raman optimized calibration sets   

The distribution of Caffeine concentrations between the NIR and Raman calibration sets is 

shown in Figure 6-26. Similar distributions were observed between NIR and Raman spectra. The 

NIR calibration set did not require fewer calibration samples at low Caffeine concentration as it 

did for the optimum calibration set of Acetaminophen. No correlation between Caffeine and 

MCC concentration was found as shown in Figure 6-27. MCC concentrations were relatively 

similar at all levels of Caffeine concentration resulting in similar distribution of Caffeine 

between optimum calibration sets of NIR and Raman spectroscopy. 

The excipient distributions (MCC and Lactose) between two calibration sets are given in Figure 

6-28. The optimum NIR calibration set required fewer calibration samples due to similarity 

between the spectral response of MCC and Lactose. However, the optimum Raman calibration 

set required higher number of calibration samples due to unique information from both 

excipients. 
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Figure 6-27. Concentrations of Caffeine and MCC in full traditional, NIR optimized and 
Raman optimized calibration sets     

The optimum calibration sets of NIR and Raman spectroscopy were found to be significantly 

different from each other for both APIs due to inherent differences in the analytical techniques. 

However, the current practice of calibration design does not account for such variations in the 

analytical techniques. A similar strategy is followed for both techniques resulting in sub-optimal 

calibration performance. A study was performed to analyze the criticality of the calibration sets 

to be technique specific. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Full Calibration

NIRS Optimized

Raman Optimized

Caffeine   

M
C

C
   



 

217 
 

 

Figure 6-28. MCC (left) and Lactose (right) distribution between NIR and Raman 
optimized calibration sets for Caffeine 

In this study, a Raman calibration method was developed from the optimal calibration structure 

of NIR spectroscopy for both Acetaminophen and Caffeine. Similarly, an NIR calibration 

method was developed from the optimal calibration structure of Raman spectroscopy. For 

instance, during the prediction of Acetaminophen, the optimal calibration sets for NIR and 

 NIRS Raman 

Calibration set Global NIR 
Optimum 

Raman 
Optimum Global Raman 

Optimum 
NIR 

Optimum 
Sample no. 225 35 71 225 71 35 

LV 6 6 6 4 4 4 

RMSEC 0.97 0.49 1.01 1.02 1.05 0.78 

RMSECV 1.03 0.88 1.17 1.11 1.27 1.01 

RMSEP 1.04 0.69 1.13 1.09 0.79 1.13 

Bias 0.08 0.68 0.15 0.39 0.14 0.4 

SEP 1.04 0.13 1.12 1.02 0.77 1.05 
Table 6-2. Model statistics for global, optimum and cross calibration sets NIR and Raman 
during the prediction of Acetaminophen 
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Raman spectroscopy contained 35 and 71 calibration samples, respectively. A Raman method 

was developed from the optimal NIR calibration set that contained 35 samples and an NIR 

method was developed from the optimal Raman calibration set that contained 71 samples. This 

study was conducted for both Acetaminophen and Caffeine. PLS models were developed from 

the respective calibration sets. Model performances were compared with the optimal and global 

calibration performance. The results for Acetaminophen prediction are provided in Table 6-2. 

It was shown that, the prediction performance of the calibration set deteriorated when the 

optimal structure of a different spectroscopic technique was used. The RMSEP of the optimal 

NIR calibration set (35 samples) was 0.69 % w/w. The prediction performance was affected 

significantly (RMSEP 1.13% w/w) when the optimal structure of Raman calibration set (71 

samples) was used to develop a NIR calibration model to quantify the same API. The 

performance of this same calibration set was significantly better when it was used for Raman 

 NIRS Raman 

Calibration set Global NIR 
Optimum 

Raman 
Optimum Global Raman 

Optimum 
NIR 

Optimum 

Sample no. 225 37 58 225 58 37 

LV 6 6 6 4 4 4 

RMSEC 0.4 0.19 0.4 0.59 0.38 0.48 

RMSECV 0.42 0.27 0.52 0.63 0.49 0.62 

RMSEP 0.43 0.28 0.48 0.55 0.46 0.6 

Bias 0.15 0.02 0.14 0.09 0.02 0.05 

SEP 0.41 0.28 0.45 0.54 0.46 0.6 

Table 6-3. Model statistics for global, optimum and cross calibration sets NIR and Raman 
during the prediction of Caffeine 
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spectroscopy (RMSEP 0.79% w/w). And the prediction performance of the optimal NIR 

calibration set deteriorated significantly when it was used to develop a Raman calibration 

method (RMSEP 0.69% w/w vs 1.13% w/w). 

Similar results were obtained during the calibration model development for Caffeine prediction 

as shown in Table 6-3. When the optimum calibration set of Raman (58 samples) was used to 

develop an NIR method, the prediction error was significantly high (RMSEP 0.48% w/w) 

compared to the prediction error (RMSEP 0.28% w/w) of optimum calibration set of NIR (37 

samples). This optimum set of 37 samples was suitable specifically for NIR spectroscopy. When 

this optimum NIR set of 37 samples was used to develop a Raman calibration model, the 

prediction error was significantly high (RMSEP 0.6% w/w). 
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Table 6-4. Number of common samples between the optimum calibration sets of 
different techniques and different APIs 
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6.4 Conclusion 
The optimum calibration sets for NIR and Raman spectroscopy were found to be different from 

each other. Only a few common samples were found between two APIs and two spectroscopic 

techniques. Table 6-4 summarizes the results. These results indicated that the optimum 

calibration structure depends on the interaction between spectral responses and physico-chemical 

properties of the tablets. An optimum calibration set for one formulation and/or technique can be 

sub-optimum for another formulation and/or technique. A formulation and technique specific 

calibration set should be designed to maximize calibration performance of a spectroscopic 

system for quantitative analysis of pharmaceutical tablets. 
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7 Chapter 7: Summary 

The theory of experimental design is well established and NIR calibration have been widely used 

for wide range of applications, however there is a gap between the theory and practical 

implementation of experimental design during NIR calibration set development. Direct 

application of classical theory of experimental design is still missing in the problem of 

multivariate spectroscopic calibration [76, 194]. Bridging this gap can lead towards better 

understanding of the interaction between calibration structure and NIRS model performance. 

This understanding can be helpful to identify the necessary information for a calibration set and 

challenge the current philosophy of incorporating all possible variances into the calibration set. 

All possible variances may not always be necessary for desired model performance. Moreover, it 

requires a large calibration set to span all possible variances, which may not be an efficient 

approach in terms of time and available resources. Besides, it is almost impossible to anticipate 

and span all possible variances, especially at the early stage of product and process development. 

The current all-inclusive calibration strategy can be replaced by an efficient strategy for 

developing NIR calibration set using spectral space. 

It was demonstrated that, the pure component spectral response of a formulation can be utilized 

to define the spectral space of that formulation. The use of pure component spectral information 

results in a formulation and technique specific spectral space. Such specificity leads towards the 

development of a formulation and technique specific calibration set. The current strategies for 

designing NIR calibration sets do not account for such specificity towards formulations and 

analytical technique. Regulatory guidelines and general rules of thumb are usually followed for 

all types of formulations resulting in similar concentration ranges, levels and number of samples 
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for all types of calibration sets. However, an optimal calibration design for one formulation can 

be sub-optimal for a different formulation. Different NIR responses produced by different 

formulations should be considered during the selection of calibration structure, range, size, 

concentration levels and variance information. It was also demonstrated that the spectral space 

can be used to identify the critical calibration samples. Information regarding the critical sample 

requirement helps to design and prepare a small and efficient calibration set. This strategy was 

defined as the spectral space design strategy for calibration set development during NIR 

quantitative analysis of tablets. 

The spectral space design strategy was compared with the current calibration strategies of 

designing calibration sets. The current strategy is prone to have redundant information. It was 

demonstrated that, a traditionally designed calibration set contained redundant information 

whereas a spectrally designed calibration set identified and eliminated redundant information, 

thus requiring fewer calibration samples to provide similar calibration performance. Multiple 

comparative studies were conducted between commonly employed experimental design 

approaches to calibration development and the newly developed spectral space based technique. 

The comparisons were conducted on single API (Active Pharmaceutical Ingredient) and multiple 

API formulations to quantify drug tablet API using NIR spectroscopy. Partial least squares (PLS) 

models were developed from respective calibration designs. Model performance was 

comprehensively assessed based on the ability to predict API concentrations in independent 

prediction/validation sets. Similar prediction performance was achieved using the smaller 

calibration set designed in spectral space (11 for single API and 33 for multiple API tablets), 

compared to the traditionally designed large calibration sets (45 for single API and 225 for 

multiple API tablets). An improved prediction performance was observed for the spectrally 
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designed calibration sets (33 tablets for spectral design) compared to the traditionally designed 

calibration sets of equal sizes (33 tablets for D-Optimal, CCD and I-Optimal designs). It was 

demonstrated that a calibration set designed in spectral space provided an efficient means of 

developing spectroscopic multivariate calibration for tablet analysis. Such strategy provides 

opportunity to design formulation and technique specific calibration sets to optimize calibration 

capability. 

The spectral design strategy was built on the spectral space of a formulation. The spectral space 

was defined the by pure component spectral information. Initially the spectral space was used to 

identify only compositional design points that are critical to calibration performance. However, it 

is also critical for a calibration set to contain physico-chemical variation besides the 

compositional information to build a robust calibration model. The current strategy for 

incorporating physico-chemical variation into the calibration requires large calibration set. It was 

demonstrated that, spectral space can be used to develop an efficient strategy to incorporate 

physico-chemical information into the calibration set. The density of the tablet was identified as 

a critical physico-chemical information for the NIR calibration set. The pure component tablet 

spectra at different densities were utilized to define a latent variable spectral space containing 

both concentration and density information at different directions. A small set of critical samples 

was selected from the latent variable spectral space. These samples were designed to prepare a 

small calibration set containing both concentration and density information. The performance of 

this small calibration set was compared with the traditionally designed large calibration set 

during quantitative analysis of Acetaminophen and caffeine using NIR. The small calibration set 

provided similar prediction performance compared to the large calibration sets indicating the 
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efficiency of the spectral design strategy to incorporate physico-chemical information into the 

calibration set. 

The spectral design strategy can be generalized to develop efficient calibration sets for other 

formulations. However, it is critical to have pure component spectral information to define the 

spectral space of that formulation. In this study, pure component spectral information was 

collected from pure component tablets. Pure component powder can also be used to collect pure 

component spectra for uncompressible/less compressible powders. The spectral design strategy 

can also be generalized to incorporate other types of physico-chemical information such as 

moisture content, particle size distribution etc. However, it is critical to consider the effects of 

physico-chemical information in the pure component spectra and tablet spectra during such 

analysis. 

The spectral design strategy identifies the critical samples from spectral information whereas the 

current calibration design strategy assumes certain samples to be critical for the calibration set 

development from their compositional information. For instance, the full factorial design 

assumes the orthogonal compositional samples are most critical to calibration set, the D-optimal 

design assumes that the compositionally distant samples are most critical to calibration set. The 

advantage of having large sample set is that, it provides useful and critical information even 

when these assumptions are violated. Such information from a large calibration set can be used 

to develop a successful quantitative NIR method. The advantage of spectral calibration set is 

that, it provides similar performance with a smaller calibration set. It is very critical to consider 

that spectral design is expected to be ‘efficient’ not ‘better / more accurate’ compared to the 

current calibration approaches. 
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It is also critical to consider that the spectral design strategy utilizes a selection technique to 

identify critical calibration samples in the spectral space. Different selection techniques can 

result in slightly different calibration sets in the spectral space. In this study, multiple selection 

techniques (Kennard stone, orthogonal rotation, Euclidian distance) were used to identify critical 

samples and all of these sets gave similar prediction results due to similar spanning of spectral 

variation. Different spectral variation from different selection algorithm would have resulted 

differences in prediction performances. It is critical that the selection technique maximizes the 

variation in spectral space to find the calibration set with optimum performance. Such optimum 

performance can be obtained with the current calibration strategy in case the same samples 

maximize variation in the concentration space. Such case would require linear mapping between 

spectral and compositional spaces. 

In this study, it was also demonstrated that the optimal calibration structure depends on the 

formulation and spectroscopic technique. An optimal calibration set for one formulation can be 

sub-optimal for another formulation. An optimal calibration set for one spectroscopic technique 

can be suboptimal for another spectroscopic technique. The current calibration strategies do not 

allow optimization of calibration set based on formulation variation and specific spectral 

response. The same calibration design is used for different formulations and different techniques. 

This strategy does not provide optimum performance of the calibration efforts. The optimum 

calibration structures between NIR and Raman spectroscopy were compared during the 

quantitative analysis of Acetaminophen and Caffeine. The optimum NIR calibration set was 

found to be different from the optimum Raman calibration set for both APIs. The optimum 

calibration set for Acetaminophen was found to be different from the optimum calibration set for 



 

226 
 

Caffeine for both spectroscopic techniques. The common calibration designs between different 

formulations and different techniques do not provide optimal calibration performance.  

In the spectral design strategy, the use of pure component spectral information allows the 

calibration set to be formulation and technique specific. Such specificity would provide 

additional information to establish method suitability during method validation. However, it 

would not ease the validation steps or make it more difficult. The current validation steps require 

the calibration model to demonstrate accuracy, linearity, specificity, precision, range and 

robustness. The same requirements should be applied to the spectrally design calibration set. It is 

expected that, the spectrally design calibration set should pass the validation steps with fewer 

samples. 

In this study, Partial Least Square (PLS) was used as the modeling technique. It was 

demonstrated that robustness of the PLS calibration model is critical for successful 

implementation of an NIR quantitative method in the pharmaceutical industry. Different sources 

of variations such as scale variations, physical variations and chemical variations can affect the 

PLS model performance during product life cycle. A robust PLS model is required to be 

developed at the outset of calibration to encounter such variations and provide desired predictive 

performance thus avoiding the needs for recurrent model updates. Selecting the optimum number 

of model components (loading vectors) is critical to build a robust model with the available 

dataset. Cross-validation error along with the amount of model variance captured by each model 

component is currently used to select the optimum number of model components. A new method 

was developed to select the optimum number of model components based on weight co-efficient 

of each model component. The new weight coefficient based method was found to be more 
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effective in selecting the optimum number of model components and improving model 

robustness compared to the current selection technique. Several datasets possessing different 

types of critical variations to NIR PLS model were used in this study to demonstrate the 

efficiency of the new weight coefficient based method in selecting the optimum number of 

model components. 

PLS is the most frequently used modeling technique for calibration development. However, there 

are other modeling techniques such as Principal Component Regression, Multiple Linear 

Regression, Support Vector Machine, Artificial Neural Network etc. that can be used for 

calibration model development. The spectral design strategy was tested for PLS modeling 

technique considering its wide applicability. However, for other modeling techniques, the 

efficiency of the spectral design strategy is yet to be tested. This can be a direction of the future 

studies exploring spectral design strategy as an efficient alternative. 

In future, the strategy demonstrated in this dissertation can also be used for other spectroscopic 

techniques including Raman and terahertz spectroscopy to develop an efficient calibration 

strategy. Pure spectrum of each component should be used during the design/selection of the 

calibration set. Comprehensive studies in this direction can lead towards formulation specific 

calibration development and ensure optimal performance of each calibration set. Comparative 

studies are suggested to distinguish the interactions between calibration structures and different 

spectroscopic techniques. 

One of the challenges of the spectral design strategy is to calculate the compositional 

requirements of the spectrally designed samples. In this study, pure component and target tablet 

information was used to define the rotation matrix and calculate the compositional requirements 
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for spectrally designed samples. The rotation matrix was defined using target tablet since the 

calibration set was intended to center around target formulation. In other instances, when 

calibration sets are not intended to center around target formulation, the target tablet and pure 

component tablets might not be sufficient to calculate the rotation matrix. Additional sets of 

actual tablets might be necessary to calculate the rotation matrix and compositional requirements 

of the spectrally designed samples. Other challenge of the spectral design strategy is that, it 

utilizes optimization algorithm during the solution of compositional requirement calculations. 

All the optimization algorithms have the potentials to provide local minima solution. Multiple 

iterations are required to ensure global minima and expected solution.  

There is no best calibration design that works for all purpose. A great deal depends on the 

method requirements [28]. The traditional practices for developing calibration sets are too 

generalized. Spectral design approach offers an efficient and formulation specific alternative 

strategy to the current practices of NIR calibration design for quantitative analysis of 

pharmaceutical tablets. 
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Appendices 

Appendix A (Motivation for using scores as design factors for calibration) 

The motivation for using scores as calibration design factors comes from the multivariate 

regression equation itself. The regression equation 2.1 can be transformed into a linear model 

equation with the concentrations as a response and PLS scores (projection on the orthogonal 

spectral space of the PLS model) as input variables shown in equation 2.9 for the same system 

with “m” samples, “n” spectral variables and “r” eigen vectors/(selected latent variables in PLS) 

using y for the concentrations of samples, T for the score matrix of “r” latent variables and u for 

the regression vector between scores and concentrations 

𝐲𝐲�𝐦𝐦∗𝟏𝟏 = 𝐗𝐗𝐦𝐦∗𝐧𝐧 ∗ 𝐛𝐛𝐧𝐧∗𝟏𝟏 

𝐲𝐲�𝐦𝐦∗𝟏𝟏 = 𝐗𝐗𝐦𝐦∗𝐧𝐧 ∗ 𝐖𝐖𝐧𝐧∗𝐫𝐫  ∗ (𝐓𝐓𝐫𝐫∗𝐦𝐦′ ∗  𝐓𝐓𝐦𝐦∗𝐫𝐫 )−𝟏𝟏 ∗ (𝐓𝐓𝐫𝐫∗𝐦𝐦′ ∗  𝐲𝐲𝐦𝐦∗𝟏𝟏) [Here y� is the predicted 

concentration for new samples, y is reference concentration of the calibration samples. Please 

note that, the sample numbers do not have to be equal] 

𝐲𝐲�𝐦𝐦∗𝟏𝟏 = 𝐓𝐓𝐦𝐦∗𝐫𝐫  ∗  (𝐓𝐓𝐫𝐫∗𝐦𝐦′ ∗  𝐓𝐓𝐦𝐦∗𝐫𝐫 )−𝟏𝟏 ∗ (𝐓𝐓𝐫𝐫∗𝐦𝐦′ ∗  𝐲𝐲𝐦𝐦∗𝟏𝟏) 

Thus, the classical idea of design of experiments is best embodied by orthogonally varying the 

PLS scores and measuring the concentrations as response according to equation 2.10. These 

experiments are then used to approximate a linear model between concentrations (y) and scores 

(t) with a limited number of factors. The challenge for designing orthogonal PLS scores is not 

    𝐲𝐲�𝐦𝐦∗𝟏𝟏 = 𝐓𝐓𝐦𝐦∗𝐫𝐫 ∗  𝐮𝐮𝐫𝐫∗𝟏𝟏 (2.9) 

    ŷ𝑖𝑖=1..𝑚𝑚
𝑖𝑖 = 𝑡𝑡1𝑖𝑖 ∗ 𝑢𝑢1 + 𝑡𝑡2𝑖𝑖 ∗ 𝑢𝑢2 + ⋯+  𝑡𝑡𝑟𝑟𝑖𝑖 ∗ 𝑢𝑢𝑟𝑟 (2.10) 
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trivial. The designed scores need to be derived from a set of real pharmaceutical samples. The 

pure component spectra of the samples can be used to define the orthogonal spectral space of the 

PLS model assuming that, the primary model variance is dictated by the formulation variation 

after appropriate preprocessing technique has been applied. 

 

Appendix B (Derivation of equation 2.7) 

𝐂𝐂𝐦𝐦∗𝐤𝐤
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∗ 𝐑𝐑𝐤𝐤∗𝐤𝐤

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 ∗  𝐏𝐏𝐤𝐤∗𝐧𝐧
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 =   𝐗𝐗𝐦𝐦∗𝐧𝐧

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬  

𝐔𝐔𝐦𝐦∗𝐦𝐦
𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ∗ 𝐒𝐒𝐦𝐦∗𝐤𝐤

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∗  𝐕𝐕𝐤𝐤∗𝐤𝐤
𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝐬𝐬𝐬𝐬𝐬𝐬𝐠𝐠𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 ∗ 𝐑𝐑𝐤𝐤∗𝐤𝐤

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 ∗  𝐏𝐏𝐤𝐤∗𝐧𝐧
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 =   𝐗𝐗𝐦𝐦∗𝐧𝐧

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬  

𝐑𝐑𝐤𝐤∗𝐤𝐤
𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 

= 𝐕𝐕𝐤𝐤∗𝐤𝐤
𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬′ ∗ ��𝐒𝐒𝐤𝐤∗𝐦𝐦

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒�
′
∗ �𝐒𝐒𝐦𝐦∗𝐤𝐤

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒� ∗ �
−𝟏𝟏
∗  �𝐒𝐒𝐤𝐤∗𝐦𝐦

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒�
′

∗  �𝐔𝐔𝐦𝐦∗𝐦𝐦
𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬�

′
∗  𝐗𝐗𝐦𝐦∗𝐧𝐧

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ∗ �𝐏𝐏𝐧𝐧∗𝐤𝐤
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜�

′

∗ {�𝐏𝐏𝐤𝐤∗𝐧𝐧
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜� ∗  �𝐏𝐏𝐧𝐧∗𝐤𝐤

𝐏𝐏𝐮𝐮𝐫𝐫𝐫𝐫 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜�
′
}−𝟏𝟏 

 

Since, the “S” is a diagonal matrix, a simpler solution can be performed by taking the diagonal 

values and making an inverse of the diagonal elements. However, it would give the exact same 

solution. The readers are encouraged to use either of the solutions. 

Appendix C (Derivation of equation 2.8) 

Using the assumption that the variation in pure component spectra dictates the primary spectral 

variation in the model and resembles the weight factors in the PLS,     
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 𝐗𝐗𝐮𝐮∗𝐧𝐧
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ∗  𝐖𝐖𝐧𝐧∗𝐤𝐤

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 =  𝐓𝐓𝐮𝐮∗𝐫𝐫
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 

 𝐂𝐂𝐮𝐮∗𝐤𝐤
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∗ 𝐑𝐑𝐤𝐤∗𝐤𝐤

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 ∗  𝐏𝐏𝐤𝐤∗𝐧𝐧
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ∗  𝐖𝐖𝐧𝐧∗𝐤𝐤

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐦𝐦𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 =  𝐓𝐓𝐮𝐮∗𝐤𝐤
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 

𝐂𝐂𝐮𝐮∗𝐤𝐤
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ∗ 𝐑𝐑𝐤𝐤∗𝐤𝐤

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 = 𝐓𝐓𝐮𝐮∗𝐤𝐤
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ∗ (𝐏𝐏𝐤𝐤∗𝐧𝐧

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 ∗ 𝐖𝐖𝐧𝐧∗𝐤𝐤
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐛𝐛𝐛𝐛𝐛𝐛𝐢𝐢𝐬𝐬)−𝟏𝟏 
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