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ABSTRACT 

 

AN EXPLORATION OF THE RELATIONSHIPS AMONG CATTELL-HORN-CARROLL 

(CHC) THEORY-ALIGNED COGNITIVE ABILITIES AND MATH FLUENCY  

 

 

 

By 

Katherine D. Piselli 

December 2017 

 

Dissertation supervised by Ara J. Schmitt, Ph.D. 

 Math fluency, which refers to the ability to solve single digit arithmetic problems quickly 

and accurately, is a foundational mathematical skill. Recent research has examined the role of 

phonological processing, executive control, and number sense in explaining differences in math 

fluency performance in school-aged children. Identifying the links between these cognitive 

abilities and math fluency skills has important implications for screening, assessment, and 

intervention efforts in schools. As extant mathematics research in the context of Cattell-Horn-

Carroll (CHC) theory has evaluated either broad mathematics performance or math calculation 

skills, little is known about the specific relationships between math fact fluency and broad and 

narrow cognitive abilities. The present study investigated the relationships among Math Fact 

Fluency performance and the CHC theory-aligned broad and narrow cognitive abilities using a 

child-age subset of the Woodcock Johnson IV standardization sample. Results of the path 
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analyses indicated that General Intellectual Ability (GIA) exhibited significant direct and indirect 

effects on Math Fact Fluency performance. With regard to broad cognitive abilities, Processing 

Speed had the greatest direct effect on Math Fact Fluency. Likewise, in the narrow abilities 

model, Perceptual Speed was most related to Math Fact Fluency, after accounting for GIA. 

Contrary to initial hypotheses, Working Memory, Phonetic Coding, and Attentional Control did 

not significantly contribute to Math Fact Fluency. Finally, the inclusion of Math Problem 

Solving within the cognitive abilities model resulted in a moderate direct effect on Math Fact 

Fluency performance. These findings are discussed in terms of directions for future research as 

well as implications for clinicians and educators.  
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CHAPTER I 

INTRODUCTION 

Recent research has shown that early math abilities at school entry are highly predictive 

of future academic performance (Claessens, Duncan, & Engle, 2009; Duncan et al., 2007). 

Students who demonstrate knowledge of early math concepts in kindergarten are more likely 

achieve math proficiency in later years. However, more than half of American students fail to 

demonstrate math proficiency in fourth grade, with even greater numbers of students performing 

below proficiency in eighth and twelfth grade (NCES, 2013). As math concepts are learned in a 

hierarchical sequence, it is important for students to have a strong foundational knowledge of 

math calculation. Fluency with basic math facts allows students to devote more attention to 

higher-order math calculation and problem solving skills.  

Significance of the Problem 

Math fluency refers to the ability to use efficient and accurate methods to solve simple 

calculations (NCTM, 2010). Math fact fluency, also referred to as computational fluency, is 

often assessed using timed tests of simple arithmetic problems. For example, the Math Facts 

Fluency subtest of the Woodcock Johnson IV Tests of Achievement (WJ IV ACH; Schrank, 

Mather, & McGrew, 2014a) is comprised of single-digit addition, subtraction, and multiplication 

problems. The student is given three minutes to complete as many problems as possible.  

 The National Mathematics Advisory Panel (2008) identified math fluency as a 

foundational skill for the development of more complex mathematic skills. Students with math 

fact retrieval deficits receive lower scores on mathematical measures and are more error-prone 

than typically achieving peers. Math fact fluency also appears to be linked to future performance 

in mathematics, including the undertaking of interdisciplinary tasks that involve math. Students 
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who are fluent in retrieving math facts are more likely to engage in math activities than students 

who have not yet developed fluency (Skinner, Pappas, & Davis, 2005). Additionally, fluent 

students are less likely to report frustration or anxiety related to math calculations (Cates & 

Rhymer, 2003).  

Cognitive Correlates of Math Fluency 

Children who exhibit a discrepancy between his or her cognitive ability and mathematical 

achievement are often characterized as students with a Math Learning Disability (MLD). Much 

of the research on math fact retrieval deficits focuses on this subset of students; however, studies 

have recently included children with low achievement in math fluency. Like children with MLD, 

children with low achievement also have at least low average intelligence and exhibit deficits in 

math achievement, although the achievement deficits are less severe than those seen in children 

with MLD. David Geary’s research (e.g., 2004, 2010, 2011a) on the patterns and characteristics 

of math disabilities has identified a subset of children with particular difficulty in the fluent 

retrieval of math facts.  

 Geary (2011a) has proposed three mechanisms underlying math fact retrieval deficits. 

The first has been characterized as a semantic deficit. In this model, it is hypothesized that 

weakness in phonological processing tasks that measure skills including phonemic awareness 

and rapid automatized naming (RAN) is related to difficulty quickly and accurately retrieving 

math facts from memory. Given that phonological processing is a known correlate of reading 

fluency (e.g., Melby-Lervåg, Lyster, & Hulme, 2012), and that both tasks involve retrieval of 

semantic information from long-term memory, investigators have sought to understand the 

relationship between phonological processing abilities and math fluency. Recent research has 

suggested that children with phonological deficits have impaired performance in math fluency 
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(Chong & Siegal, 2008; Vukovic, Lesaux, & Siegel, 2010). Fuchs and colleagues (2005, 2006) 

have found that phonological processing measures are predictive of performance on math 

fluency tasks. Additionally, research has established a link between performance on RAN tasks 

and math fluency measures in children with MLD and low achievement (Geary, Hoard, & 

Bailey, 2012; Mazzocco & Grimm, 2013). 

 Geary’s (2011a) second proposed mechanism of math fact retrieval deficits is 

characterized by a weakness in executive functioning, or the ability to efficiently allocate 

attention and cognitive resources. Specifically, Geary has hypothesized that a deficit in inhibition 

is related to impaired math fluency. Inhibition refers to an individual’s ability to block irrelevant 

information from entering working memory (Geary, 2011a). In the extant literature, working 

memory tasks have been used to approximate this skill. Research conducted with students with 

math fact retrieval deficits revealed that these students have depressed performance on working 

memory tasks, which involve retaining and manipulating information in short-term memory 

(Geary et al., 2012; Geary, Hoard, & Nugent, 2012). In addition, research on general 

mathematical skills suggests a link between working memory and math ability in general 

populations (Bull, Espy, Wiebe, Sheffield, & Nelson, 2011; Kroesbergen, Van Luit, Van 

Lieshout, Van Loosbroek, & Van de Rijt, 2009).  

 Third, Geary (2011a) has proposed that weakness in numerical representation is related to 

deficits in math fact retrieval. Numerical representation, which may also be referred to as number 

sense or early numeracy, represents a domain of early math skills, including understanding of the 

number line, quantity representation, and determining relationship between numbers. In support 

of this hypothesis, Geary (2011b) was able to predict significant variance in math achievement 

using numerical representation tasks. Locuniak and Jordan (2008) found that math fluency in 
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second grade was related to performance on early numeracy tasks, even after controlling for 

general intelligence.  

 The above research illustrates the complexity of the cognitive processes underlying math 

fact retrieval, and that there are multiple psychoeducational abilities that may contribute to an 

individual’s performance on these measures. It may be helpful to consider all of these individual 

abilities within a broader theory of cognitive ability. Simultaneously considering distinct 

cognitive abilities could uncover patterns of strengths and weaknesses related to math fact 

fluency performance. Further, it may help in identifying the most salient abilities in the 

prediction of math fact retrieval deficits.   

CHC Theory 

 The Cattell-Horn-Carroll (CHC) theory of cognitive ability is the result of many years of 

research and collaboration between prominent intelligence theorists. Contemporary CHC theory 

is a reflection of Carroll’s (1993) work expanding Cattell and Horn’s theory of fluid (Gf) and 

crystalized (Gc) intelligence into three stratums representing general intellectual ability, broad 

cognitive factors, and narrow abilities (McGrew, 2005). At present, CHC theory is the most 

researched and empirically validated model of intelligence (Flanagan, Ortiz, & Alfonso, 2013).  

 Stratum three of the CHC framework represents overall intellectual ability, or g. Beneath 

g, stratum two encompasses seven broad cognitive factors including the following: fluid 

intelligence (Gf), crystalized intelligence (Gc), long-term retrieval (Glr), short-term working 

memory (Gsm), visual processing (Gv), auditory processing (Ga), and processing speed (Gs). 

Stratum one is comprised of more than 70 narrow abilities subordinate to the broad abilities. 

These narrow abilities represent a variety of component skills, for example perceptual speed (Gs-

P) reflects a specific skill within the general processing speed (Gs) ability. 
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Math Research using CHC-oriented Assessment Tools 

 The Woodcock Johnson Tests of Cognitive Abilities, Third Edition (WJ III COG; 

Woodcock, McGrew, & Mather, 2001a) is an assessment based on CHC theory. Together with 

the Woodcock Johnson Tests of Achievement, Third Edition (WJ III ACH; Woodcock, McGrew, 

& Mather, 2001b), this battery is used by practitioners to identify an individual’s cognitive 

strengths and weaknesses and how this pattern relates to his or her profile of academic 

achievement. Research comparing subtests on the Woodcock Johnson cognitive and achievement 

tests has provided insight into the relationships among various cognitive factors and academic 

skills. Three studies have focused specifically on math achievement using the WJ III 

standardization sample.  

 Floyd, Evans, and McGrew (2003) used multiple regression analyses to investigate the 

link between cognitive factors and performance on math calculation and math problem solving 

clusters. The Math Calculation Cluster, which is comprised of an untimed math calculation 

subtest and a timed math fluency subtest, had a strong relationship with processing speed and 

crystalized intelligence in elementary and middle school students. Moderate relationships 

between math calculation and auditory processing and long-term retrieval were evident in early 

elementary age children’s scores.  

A second study regarding the cognitive predictors of math calculation performance was 

conducted by Proctor, Floyd, and Shaver (2005). This study compared the profiles of low 

achieving math calculation students in comparison to typically achieving peers. No significant 

differences were found across cognitive measures, leading the researchers to hypothesize that 

students who are low achievers in math calculation are likely a heterogeneous group. 
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 Using structural equation modeling, Taub, Floyd, Keith, and McGrew (2008) examined 

the relationships between math achievement and cognitive factors. Crystalized intelligence, fluid 

reasoning, and processing speed were significantly related to overall math ability. However, as 

math calculation and problem solving skills were combined into one composite, it is unclear 

which abilities are specifically related to math calculation and/or math fluency skills. 

 McGrew and Wendling’s (2010) analysis summarized the results of the aforementioned 

studies in addition to others that investigated the relationships between cognitive abilities and 

achievement in the context of CHC theory. Consistent with Taub et al.’s (2008) findings, 

crystalized knowledge, fluid reasoning, and processing speed were surmised to be most related to 

math calculation skills. Further analysis parsed out the narrow abilities, the discrete skills that 

comprise the broad factors. Both perceptual speed (Gs-P) and working memory (Gsm-MW) were 

strongly related to math calculation performance for children of all ages. For children ages 6-13, 

phonological processing (Ga-PC) had a moderate relationship with calculation skills. Of note, 

two of these narrow abilities (Gsm-MW and Ga-PC) were implicated in the relationship between 

cognitive abilities and math calculation, although the corresponding broad factors were not (Gsm 

and Ga).  

Problem Statement 

 Despite research identifying the cognitive correlates for overall math achievement, no 

studies have examined the relationship between cognitive abilities and math fluency as an 

isolated skill. Recent literature suggesting that fluent math fact retrieval is a specific area of 

weakness for some children warrants further research investigating the cognitive correlates of 

these difficulties. Studies demonstrating a link between math fluency deficits and phonological 

processing, executive control, and number sense have revealed a complex array of factors that 
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may contribute to such deficits. Understanding the relationship between cognitive abilities 

measured by the Woodcock Johnson, Fourth Edition (Schrank, McGrew, & Mather, 2014) and 

math fact fluency has important implications for the identification and remediation of math fact 

retrieval deficits.  

Research Questions and Hypotheses 

1. Within the child age subset of the standardization sample, which broad cognitive abilities 

display significant effects on the Math Facts Fluency performance? 

a. Hypothesis 1: It is hypothesized that fluid reasoning will have a direct effect on 

Math Facts Fluency. 

b. Hypothesis 2: It is predicted that comprehension-knowledge will have a direct 

effect on Math Facts Fluency. 

c. Hypothesis 3: Working memory is hypothesized to have a direct effect on Math 

Facts Fluency. 

d. Hypothesis 4: Processing speed is predicted have a direct effect on Math Facts 

Fluency. 

e. Hypothesis 5: It is hypothesized that General Intellectual Ability will have an 

indirect effect on Math Facts Fluency performance. 

2. Which narrow abilities have significant effects on performance on the Math Facts 

Fluency subtest? 

a. Hypothesis 1: It is hypothesized that perceptual speed will have a direct effect on 

Math Facts Fluency. 

b. Hypothesis 2: Number facility will have a direct effect on Math Facts Fluency. 

c. Hypothesis 3: Phonetic coding will have a direct effect on Math Facts Fluency. 



 

 8 

d. Hypothesis 4: It is predicted that naming facility will have a direct effect on Math 

Facts Fluency. 

e. Hypothesis 5: It is hypothesized that attentional control will a direct effect on 

Math Facts Fluency. 

3. What relationship will math problem solving abilities have with math fluency 

performance? 

a. Hypothesis 1: It is hypothesized that performances on the Math Problem Solving 

cluster will have a direct effect on performance on Math Facts Fluency. 

  



 

 9 

CHAPTER II 

LITERATURE REVIEW 

Economists predict that the science, technology, engineering, and math industries will 

continue to grow at almost twice the national average, playing a vital role in the overall growth 

of the U.S. economy (Langdon, McKittrick, Beede, Khan, & Doms, 2011). However, the 

majority of U.S. students lack proficiency in the requisite math skills needed to succeed in these 

fields. According to the National Center for Education Statistics’ 2013 Nation’s Report Card, 

proficiency in mathematics was obtained by only 26% of 12th graders in 2013. Even in 

elementary and middle school, the majority of students are not performing at the Proficient level, 

with only 42% of fourth grade and 35% of eighth grade students obtaining at least Proficiency 

status on state assessments (NCES, 2013). These figures indicate that less than half of all 

students are able to consistently apply procedural knowledge and math reasoning skills to solve 

grade-level math problems. These data evidence a decreasing trend in the number of students 

meeting state standards in mathematics throughout the grade levels.   

Duncan et al.’s (2007) seminal study on the early childhood predictors of academic 

achievement highlighted the importance of early math skills for later success. Specifically, 

Duncan and colleagues found that math skills at school entry predicted later elementary and 

middle school achievement better than measures of early reading, attention, behavior problems, 

and social skills. Similarly, Claessens, Duncan, and Engle (2009) found that kindergarten math 

ability predicted fifth-grade achievement in both reading and mathematics. 

 Early mathematical knowledge appears to be the strongest predictor or future math 

achievement. Recent research has focused on assessing children’s “number sense.” Although it 

has been defined in a number of different ways, number sense generally refers to the ability to 
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understand the meaning of numbers and the relationships of numbers with each other (Berch, 

2005).  Though the definition of number sense may vary by researcher, there appears to be more 

of a consensus on the types of skills young children should possess. Generally, math measures 

for young children focus on number identification, counting, quantity discrimination, and 

understanding of the number line. 

Longitudinal research has demonstrated the relationship between number sense and later 

math achievement. Jordan, Kaplan, Locuniak, and Ramineri (2007) tracked children’s 

achievement in kindergarten and first grade and found a significant (.70) correlation between fall 

kindergarten assessments of number sense and end of first grade math achievement. In analyzing 

predictors of first grade math achievement, background variables, such as reading achievement, 

income status, gender, and age, did not add any predictive value over number sense in 

kindergarten. A continuation of this study, measuring the mathematics achievement of these 

students in third grade, showed that kindergarten number sense skills continued to be predictive 

of math achievement in third grade (Jordan, Kaplan, Ramineri, & Locuniak, 2009). 

In order to enhance the development of mathematical skills in young children, educators 

and researchers must understand children’s cognitive development and capacity for mathematical 

reasoning. Mathematical skills are obtained in a hierarchical sequence; therefore, a foundational 

knowledge of numerical principles and math calculation is necessary before more complex skills 

can be learned (NCTM, 2000). An understanding of the cognitive correlates for discrete math 

skills is needed to ensure accurate assessment and remediation for math achievement deficits. 

Math Development 

Given that preschool children can quantitatively think and reason (Resnick, 1989), much 

research on the development of mathematical skills in early childhood has focused on how to 
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foster children’s inherent mathematical understanding and encourage interest in applying 

mathematical concepts. The National Council of Teachers of Mathematics (NCTM) first 

incorporated pre-kindergarten education standards in the 2000 publication of Principles and 

Standards for School Mathematics (NCTM, 2000). The Principals and Standards for School 

Mathematics provide recommendations for high-quality mathematics education in pre-K through 

grade 12 classrooms. The organization emphasizes that curricula should be correctly aligned 

with the known progression of mathematical skills.  

 The Principles and Standards for School Mathematics identifies five areas of knowledge 

that students should develop to be proficient in mathematics. The five content areas include: (a) 

number and operations, (b) algebra, (c) geometry, (d) measurement, and (e) data analysis and 

probability. In the area of number and operations, young students should develop the ability to 

count objects, label how many objects, and answer simple addition and subtraction questions 

(NCTM, 2010). In the area of algebra, students should be given opportunities to recognize and 

re-create patterns of objects. In terms of geometry, young students should develop the ability to 

name shapes, use shapes to create a picture, understand simple maps, and use spatial words to 

describe relationships between objects. For the development of measurement, pre-K and early 

elementary age children should improve in the ability to use words to label object qualities (e.g., 

heavy, long) and compare objects using non-standard measuring tools, like cups or strings. 

Finally, student development in the area of data analysis and probability includes sorting 

objects, comparing groups, and utilizing simple graphical representations. 

 Although NCTM defines mathematical concepts into these five areas, educational 

research has primarily focused on math achievement in terms of calculation and problem solving.  

This distinction is reflected in the current definition of a Specific Learning Disability as outlined 
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by the 2004 Reauthorization of Individuals with Disabilities Education Act (IDEA), which 

categorizes math disabilities in terms of mathematics calculation or mathematics problem 

solving. In terms of NCTM’s content areas, mathematics calculation is most closely aligned to 

the domain of numbers and operations.  

 With respect to the area of numbers and operations, the three primary goals for pre-k 

through grade 12 students include: (a) understanding numbers, (b) understanding meanings of 

operations, and (c) computing fluently. The NCTM lists expectations for students across grade 

levels for pre-K through grade 2, grade 3 through 5, grade 6 through 8, and grade 9 through 12. 

For example, children in pre-K through grade 2 should demonstrate understanding of numbers 

through counting and recognizing “how many?” for a group of objects. In these grades, students 

should also show comprehension of words describing position or magnitude. In terms of 

operations, students must understand the meaning of addition and subtraction and their 

relationship to each other. Finally, young students should develop fluency with simple addition 

and subtraction problems. That is, students should be able to quickly and efficiently solve simple 

math problems. The developmental sequences for counting, subitizing, and calculation, three 

areas of growth during pre-K and elementary school years, are described below. 

Counting 

Within the math developmental sequence, a three year-old child can correctly count up to 

the number four (National Association for the Education of Young Children; NAEYC, 2010). 

Between ages three and four, most children are able to count up to four objects using a one-to-

one correspondence. Children of this age understand that counting involves assigning only one 

number to one object and also begin to understand that numbers are sequenced in a fixed order. 

For example, the number three always comes before four. Children at age four are generally able 
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to understand that the last number counted for a series of objects represents the total number of 

objects, which is referred to as cardinality (Clements & Sarama, 2009). By age five, most 

children are able to count up to 10 objects, although rote counting ability may extend to numbers 

in the 20s and 30s, or beyond. 

Counting is a fundamental skill, and the inability to count is linked to subsequent math 

disabilities. Geary and colleagues have shown that difficulties with understanding the order of 

numbers and the process of counting objects is related to math disabilities, controlling for the 

effects of IQ and reading ability (Geary, Bow-Thomas, & Yao, 1992; Geary, Hamson, & Hoard, 

2000). Some differences between children with math learning disabilities’ (MLD) knowledge of 

counting principles and typically achieving peers appear to be present. Geary et al. (1992) found 

that that MLD children were less likely to recognize that when counting a set of objects, one 

could begin at either ends of the set, and that the objects could be counted in any order. 

Subitizing  

Subitizing has recently been considered a core facet of children’s number sense (Geary, 

2010). Research has implicated subitizing in the development of counting proficiency in 

kindergarten (Kroesbergen et al., 2009), as well as math achievement in the elementary years 

(Geary, 2011a).  Subitizing is defined as the ability to quickly recognize a quantity through visual 

discrimination, rather than counting each object (Kaufman, Lord, Reese, & Volkmann, 1949). At 

age three, children can automatically answer “how many?” questions involving one to three 

objects. Four year old children are automatically able to recognize when four objects are present, 

while five year old children can recognize when five objects are present. For example, a five year 

old can immediately identify the number of dots when presented with a picture of five dots 

(Clements & Sarama, 2009). At this age, children also begin to understand that addition and 
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subtraction can occur between groups of subitized quantities (e.g., recognizing two groups of 

three objects and determining that there are six total).  

Calculation  

At age two or three, children demonstrate the emerging ability to count small groups of 

objects to determine a sum. For example, a child this age is able to correctly name how many 

total blocks are present after seeing a third block added to a group of two blocks (Clements & 

Sarama, 2012). At age four, children develop the ability to use language to solve addition 

problems under five digits. This child would be able to use a counting-all strategy to answer a 

simple addition problem; that is, the child would count each object in order to determine how 

many are present in all. Children at this age can use their fingers to count, understanding that 

each finger represents one object. At age four and five, children begin to understand small digit 

subtraction problems, where he or she separates objects that are taken away and counts how 

many objects are remaining.  

School age children begin to utilize a counting-on strategy to solve basic addition 

problems. Using this strategy, a student would start counting after the number of the first digit, 

rather than starting at number one, and then count the additional numbers being added on to that 

digit. For example, in the equation 4 + 3, the child would count “ 5, 6, 7” to arrive at the answer 

of 7. In addition to solving problems that require finding the sum, students may also solve 

missing addend problems, or “how many more” problems. Similar to counting-on, the counting-

up-to strategy can be used to find how many more digits are needed to reach the total sum. 

Another more sophisticated strategy, decomposition, is used obtain an answer to a calculation 

problem by recalling answers to similar calculations (Geary, 2011a). For example, in the 
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calculation 5 + 6 = 11, a student may recall 5 + 5 = 10 and that 6 is 1 more than 5, leading to the 

determination that the answer is 10 + 1, or 11. 

Math Disabilities 

 Within the mathematics literature, students with calculation deficits are often described as 

students with Math Learning Disability (MLD) or low achievement. In the context of IDEA 

(2004), a student with a MLD must have a significant discrepancy between his or her intelligence 

and math achievement. In research studies, students who score at or below the 10th percentile in 

math are generally included within the MLD category, given an intelligence score at or above the 

15th percentile is present (Geary, 2011a). Students with low achievement are characterized as 

having math scores within the 11th to 25th percentile and also possess at least low average 

intelligence (15th percentile or greater).  

In terms of calculation, students with MLD continue to use less efficient strategies 

(Geary, 2011a). Students with typical achievement begin to exhibit more sophisticated 

calculation strategies in the early elementary years, while students with MLD continue to count 

using their fingers or by counting-all for both digits in the equation. Students with low 

achievement in math also show this delay relative to typically achieving peers; however, low 

achieving students show less significant delays than students with MLD. 

Math Fluency 

Math fluency refers to the ability to quickly solve simple calculations, for example 

single-digit addition problems. The National Mathematics Advisory Panel (2008) determined 

that math fluency, also referred to as computational fluency, is an important precursor for the 

development of higher order math skills. Math fluency is typically measured by giving a student 

a set of arithmetic problems to solve in a set time period. Examples include the Math Fluency 
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subtest on the WJ IV ACH and the Addition Fact Fluency and Subtraction Fact Fluency subtests 

(Fuchs, Hamlett, & Powell, 2003). Measures differ by length of time and the operations 

included. For example, the Math Fluency subtest on the WJ IV ACH battery includes addition, 

subtraction, and multiplication problems and is given a three minute time limit, while Addition 

Fact Fluency includes only one operation and has a one minute time limit.  

Students with math fluency or math fact retrieval deficits receive lower scores on these 

measures and are more error-prone than typically achieving peers. These students more often 

make errors resulting from intrusions of counting string associates (Geary et al., 2000; Geary et 

al., 2012). Counting string associates refer to any number that is directly above or below one of 

the digits in the equation. For example, in the problem 5 + 3, an incorrect answer of 6 would 

represent an intrusion of the number above 5 in the number sequence. Likewise, an incorrect 

answer of 4 would represent an intrusion associated with the number 3. Further, elementary 

students with deficits in math fact fluency tend to have growth rates similar to typically 

achieving peers, resulting in a maintained gap in performance (Chong & Siegel, 2008). 

Conversely, students with procedural deficits in math tend to have higher growth rates allowing 

them to “catch up” to their typical peers on procedural tasks. Given the importance of math fact 

retrieval skills in becoming proficient in more complex mathematics, recognizing and 

intervening for math fluency deficits is a fundamental goal. 

Recently, researchers have sought to understand math fluency as a distinct mathematical 

skill. Indeed, twin studies have found that math fluency skills indeed have a unique genetic 

origin. Hart, Petrill, Thompson, and Plomin (2009) found that although math fluency shares 

genetic overlap with reading fluency, it has unique genetic influences independent of math 

calculation and general cognitive ability. After accounting for performance on untimed math 
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measures, reading comprehension, and reading fluency, approximately two thirds of the variance 

in math fluency remained unexplained (Petrill et al., 2012). Recent research involving the study 

of the cognitive correlates of mathematics achievement also reflects this distinction between 

math fact fluency and untimed math ability. Geary (2010) suggests that a subset of children with 

Math Learning Disability (MLD) and low achievement have distinct and severe deficits in the 

ability to efficiently retrieve basic math facts. 

Characteristics of Math Fact Retrieval Deficits 

 David Geary’s (1993) theory on the subtypes of math learning disabilities originally 

proposed a distinction between children with procedural, semantic memory, and visuospatial 

profiles of MLD. Children with math fact retrieval deficits were proposed to have the semantic 

memory subtype. This subtype is characterized by difficulty answering basic arithmetic 

problems, slow response times on math fluency measures, and frequent errors in math fact 

retrieval. This subtype is frequently associated with comorbid reading disabilities. Geary (2004) 

hypothesized that these children have deficits in phonetic and semantic representations in long-

term memory. 

 More recently, Geary (2011a) proposed three mechanisms of retrieval deficits that may 

result in problems with math fact fluency for children with MLD and low achieving children.  

The first represents the semantic memory hypothesis, discussed in his early work. The second is 

related to an inhibition deficit, in which the individual fails to inhibit irrelevant number 

associations when attempting to retrieve a math fact from memory. The counting string 

intrusions, discussed previously, are one such example. Others include “table-related” intrusions, 

where the student recalls a number next to the correct answer on the multiplication table, or 

cross-operation intrusions, where the student recalls an answer to a problem using a different 
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operation (e.g., solving as an addition problem instead of a subtraction problem). Third, Geary 

proposed a deficit in number processing, or the ability to understand numerical representations of 

small and large quantities. Research aligned with these three subtypes is discussed below. 

Phonological Processing 

 Phonics. Simmons and Singleton’s (2008) review of research investigating the link 

between reading disabilities (RD) and math fact retrieval suggests that students with reading and 

math disabilities possessed phonological processing deficits underlying their difficulties in 

decoding words and retrieving math facts. Both children with MLD and RD were found to have 

deficits in retrieving answers to simple addition problems (Geary et al., 2000). In addition, 

children with RD that did not have MLD had lower scores on arithmetic measures than typical 

peers.  

A recent study by Vukovic et al. (2010) compared the math achievement of children with 

RD with phonological deficits (dyslexia), children with reading comprehension difficulties 

absent phonological deficits, and a group of typically achieving children. Results showed that 

students with phonological deficits were more likely to have deficits on the WJ III ACH Math 

Fluency measure than the reading comprehension group or the comparison group. However, this 

study was limited by a small sample size, and three of the 18 students with phonological deficits 

showed no deficit in math fluency. A longitudinal study by Chong and Siegel (2008) also found 

support for deficient phonological processing skills associated with poor math fact fluency. 

Students with MLD and low achievement in math fluency both showed deficits in phonological 

processing on Word Attack, a pseudoword decoding task that requires one to use phonics skills 

rather than recall known sight words, as compared to typical children. Deficits in phonological 
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processing were evident in second, third, fourth, and fifth grades for the students with MLD and 

low achievement. 

Further support for the link between phonological processing and math fluency has been 

identified in studies of typically achieving students. Fuchs et al. (2006) assessed third grade 

students on cognitive and math achievement measures. Using path analysis, the researchers 

found that performance on Word Attack was a significant predictor of performance on addition 

and subtract fact fluency measures. Another study by Fuchs and colleagues (2005) investigated 

the relationship between phonological processing and math fluency using a large sample of first 

grade students. Phonological processing was measured using a composite of two subtests: a 

sound matching subtest and a rapid digit naming subtest. Multiple regression showed that 

performance on this phonological processing composite was uniquely predictive of addition fact 

fluency beyond reading achievement and other cognitive variables.  

Rapid Automatized Naming. Rapid digit naming, as stated above, is often considered a 

measure of phonological processing. However, it is also often included as a measure of 

processing speed. Rapid letter, number, and color naming tasks are often referred to as measures 

of rapid automatized naming (RAN). These tasks assess an individual’s ability to efficiently 

retrieve the label associated with a pictorial representation. For example, on a rapid letter naming 

task, an individual is asked to read a set of letters as quickly as possible within a time limit. 

Research on the link between RAN and reading fluency is well established (e.g., Norton & Wolf, 

2012). Less work has been done on the relationship between RAN and math disabilities. As a 

measure of phonological processing and processing speed, RAN would appear by theory to be 

linked to math fluency; however, results of recent research appear mixed.  
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Geary et al.’s (2012) longitudinal study of MLD and low achieving students with severe 

and mild fact retrieval deficits examined the relationship between math fact fluency and other 

cognitive and achievement measures relative to typically achieving peers. Results from 

assessments in second, third, and fourth grade showed that RAN letter and number performance 

reflected significantly longer completion times for children with MLD than the typical or mild 

math deficits group. As expected, mean response times for the severe deficit group showed that 

they were slower than the typically achieving and mild deficit group. The children in the MLD 

group had the slowest naming speed. With respect to younger students, Georgiou, Tziraki, 

Manolitsis, and Fella (2013) assessed the relationships among rapid color and object naming 

tasks in kindergarten and math fluency in first grade. Although RAN performance was a 

significant predictor of reading fluency, it did not significantly predict math fluency performance 

in the first grade. However, research on RAN tasks within the reading literature has shown that 

performance on rapid naming tasks using alphanumeric symbols (i.e., letters or numbers), rather 

than object or colors, has proven to be most predictive of reading ability (Savage & 

Frederickson, 2005). This difference in task demand could relate to the lack of significant 

relationship between math fluency and RAN color and object tasks.  

Additional research has been conducted investigating the relationship between RAN and 

overall math ability. Mazzocco and Grimm (2013) assessed the performance of students with 

MLD, low achievement, and typical achievement in kindergarten through grade eight on rapid 

letter, number, and color naming tasks. Results showed that children with MLD and low 

achievement in math were significantly slower on all tasks than typically achieving peers in 

kindergarten. In grade eight, children with MLD were again significantly slower when naming 

letters and colors compared to typically achieving peers. Low achieving students were 
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significantly slower than typically achieving peers on color naming only. Interestingly, children 

with MLD did not differ from typically achieving peers on the rapid number naming task in 

grade eight. Students with low achievement did not differ from typical students on letter or 

number naming, but did perform slower on the color naming task. A second longitudinal study 

investigating various math skills in kindergarten found that performance on RAN color, object, 

and number naming tasks did not contribute any predictive value in the identification of MLD in 

second and third grade after accounting for other formal (e.g., number identification) and 

informal (e.g., quantity discrimination) skills (Mazzocco & Thompson, 2005).  

Based on these results, it appears that the relationship between phonological processing, 

rapid automatized naming, and math fluency may depend on the severity of math fact retrieval 

deficit, the age of the child, and the type of task employed. Additionally, Geary’s proposed 

subtypes for math fact retrieval deficits suggest that children with these deficits are not a 

heterogeneous group.  

Executive Control 

Geary’s second proposed mechanism underlying math fact retrieval deficits focuses 

specifically on a deficit in inhibiting irrelevant information intruding in working memory (Geary, 

2011a). Geary et al. (2012) used two unique measures for assessing addition facts in elementary 

school students in second, third, and fourth grade. The first was a choice task, where the student 

was asked to solve simple addition problems as quickly as possible without paper and pencil. 

The response time was measured between presentation of the problem and the child’s response. 

The student was also asked to describe how he or she arrived at the answer.  The second measure 

was forced addition fact retrieval. This task was similar to the first, except that children were 

instructed to try to answer each problem from memory without counting or using other problem 
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solving strategies. Students were also assessed on the Working Memory Test Battery for Children 

(WMTB-C; Pickering & Gathercole, 2001), a battery of nine subtests in which a child is assessed 

using the following: three dual-task measures, whereby the child must manipulate information in 

working memory to produce an answer (referred to as central executive tasks); four recall tasks 

utilizing phonological memory; and two visuospatial memory tasks. Results showed that children 

with MLD had lower scores on all three working memory tasks than typically achieving 

children. Further, low achieving children with severe fact retrieval deficits had significantly 

lower scores on the central executive tasks than typical children, although the groups did not 

differ on phonological or visuospatial tasks. Low achieving children with mild fact retrieval 

deficits had lower scores on all working memory tasks, but did not differ significantly from 

typically achieving peers. However, all children with fact retrieval deficits showed errors on 

addition tasks that suggested intrusions of unrelated information. The authors suggest that this 

inhibition difficulty is a specific facet of working memory ability that may not be tapped by 

traditional working memory measures.  

Geary, Hoard, and Nugent (2012) used similar measures to assess a group of children 

from first to fourth grade. First grade students with better performance on central executive tasks 

were found to perform better on addition fact retrieval tasks than children with lower scores on 

these working memory tasks. Although central executive measures were less predictive of fact 

fluency in later years, the measures did predict the development of more efficient strategies. That 

is, children with better performance on central executive tasks were observed to use the 

decomposition strategy for solving addition problems before lower performing peers.  

 Another function related to executive control, attention, has recently been linked to math 

fluency in elementary school children. The Geary et al. (2012) study used teacher-rated 
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inattentive behaviors. Results showed that children’s attentive behavior predicted their use of 

more efficient calculation strategies. Similarly, Fuchs and colleagues (2006, 2008) found that 

ratings of attention predicted third graders’ performance on basic calculation fluency. 

Interestingly, Fuchs et al. (2008) found that inattentive behaviors were distinct predictors of 

calculation fluency deficits but not math problem solving deficits, suggesting this relationship 

was not simply a reflection of teacher’s perception of low achieving students in the classroom.  

 Research has also focused on the contribution of executive functions on general math 

ability in young children. Using various measures assessing kindergarten and first grade age 

children’s planning, updating, and inhibition skills, Kroesbergen et al. (2009) found that these 

skills contributed a significant amount of variance to these children’s counting skills. Updating, 

which the authors define as “monitoring and coding of information relevant to the task and 

replacing nonrelevant information with new input,” was measured using a digit span backward 

test, where an individual must listen to, reorder, and recite lists of increasing long digit sequences 

(Kroesbergen et al., 2009, p. 227). Performance on this task was determined to be the best 

predictor of the variance in children’s early math skills. Although referred to in this study as an 

executive functioning skill, digit span backward is often included as a measure of working 

memory or central executive capacity. Regardless of how it is defined, digit span backward 

appears to have a significant relationship with early math skills (e.g., Geary et al., 2009; Geary, 

2011a; Geary et al., 2012; Locuniak & Jordan, 2008). Finally, research on the contributions of 

executive functioning in preschoolers’ emergent math ability suggests that these skills are unique 

predictors independent of the effects of crystalized (verbal) intelligence (Bull et al., 2011). 
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Number Sense 

A third deficit in math fact retrieval proposed by Geary (2011b) involves weaknesses in 

numerical representations. In support of this theory, researchers employing measures tapping the 

broad domain of “number sense” have found that performance in this domain can predict math 

fluency in elementary school children. Locuniak and Jordan (2008) assessed a sample of 

kindergarteners on counting, number recognition, knowledge of the number line, nonverbal 

calculation (using manipulatives), addition and subtraction story problems, and number 

combinations, which were orally presented addition and subtraction problems using phrases such 

as “how much is x plus y?” Calculation fluency was measured in second grade using addition 

and subtraction timed subtests. Results showed that children’s number sense performance in 

kindergarten was predictive of second grade calculation fluency even after controlling for other 

variables, such as intelligence and reading achievement. Digit span backward was the only 

cognitive measure that contributed additional variance when number sense was included in 

regression models.  

 Geary’s (2011b) longitudinal study assessing general math ability in a general sample of 

elementary school children found that skill on tasks assessing subitizing, or the ability to quickly 

recognize small quantities without counting, and quantity representation added unique variance 

in predicting math achievement. Using a sample of MLD and low achieving children, Geary et 

al. (2012) included number sets and number line measures to assess their representation of 

numerical quantities. The number sets measure was hypothesized to assess subitizing, the 

number line task was proposed to tap the ability to understand magnitude. Children in the low 

achieving group appeared to have deficits in these areas; however, these differences were not 

significant when including other measures of cognitive abilities. The authors note that these 



 

 25 

measures may not have truly measured the concept of numerical representation. Indeed, one of 

the barriers in assessing number sense abilities is the lack of consensus on how number sense is 

defined (see Berch, 2005) and a lack of standardized instruments tapping these abilities. At 

present, it is unclear the degree in which deficits in math fluency can be predicted using 

measures of children’s understanding of numerical representation.  

CHC Theory 

Contemporary CHC theory is the manifestation of John Carroll (1993) expanding 

Raymond Cattell and John Horn’s theory of fluid (Gf) and crystalized (Gc) intelligence into three 

stratums representing general intellectual ability, broad cognitive factors, and narrow abilities 

(McGrew, 2005). In contemporary CHC theory, general intellectual ability, or g, represents the 

third stratum. A singular construct representing overall ability has predominated over a century 

of intelligence research, stemming from the early work of Charles Spearman. Spearman’s 

research was later expanded by Karl Holzinger and colleagues to include additional factors of 

intelligence. This groundwork eventually led to Cattell’s Gf-Cc theory, which entails a 

hierarchical two-factor theory of intelligence with associated lower-order abilities (Schneider & 

McGrew, 2012). Cattell’s collaboration with Horn over the latter half of the 20th century 

continued to parse out individual factors of intellectual ability utilizing factor-analytic 

techniques. Carroll’s (1993) work reviewing existing theories and research reconciled the notion 

of a singular g ability with the multi-factored abilities discovered in Cattell and Horn’s research 

into a three stratum hierarchy. This theory continues to be recognized as the most comprehensive 

and psychometrically evaluated intelligence theory, with research continuing to clarify and 

delineate broad and narrow cognitive abilities (Schneider & McGrew, 2012).  
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Broad Abilities 

 Schneider and McGrew (2012) conducted a review of contemporary CHC theory that 

included 16 broad factors in the second stratum encompassed under the umbrella of g. These 

factors were described as fluid intelligence (Gf), comprehension-knowledge (Gc; formerly 

referred to as crystallized intelligence), long term retrieval (Glr), short term memory (Gsm; 

presently referred to as working memory Gwm), visual processing (Gv), auditory processing 

(Ga), and processing speed (Gs), reading and writing (Grw), quantitative knowledge (Gq), 

domain-specific knowledge (Gkn), tactile abilities (Gh), kinesthetic abilities (Gk), olfactory 

abilities (Go), psychomotor abilities (Gp), psychomotor speed (Gps), and reaction and decision 

speed (Gt). The authors provide groupings according to the degree by which abilities cluster 

together by function, producing an acquired knowledge group (Gc, Grw, Gq, Gkn), memory 

group (Gsm, Glr), general speed group (Gs, Gps, Gt), and a motor group (Gk, Gp). Additionally, 

a conceptual grouping was made for sensory abilities (Ga, Gv, Gh, Go), in additional to 

conceptual groupings of sensory-motor domain-specific abilities (sensory and motor abilities), 

cognitive efficiency (memory and general speed abilities), and domain-independent general 

capacities (Gf, memory, and general speed).   

Although the second stratum currently encompasses 16 broad abilities, existing 

intelligence batteries do not necessarily provide measures of each ability. Newton and McGrew 

(2010) at the time reported that intelligence measures typically include measures of fluid 

reasoning (Gf), comprehension-knowledge (Gc), long term retrieval (Glr), short term memory 

(Gsm), visual processing (Gv), auditory processing (Ga), processing speed (Gs), and quantitative 

knowledge (Gq). Specifically, Keith and Reynolds (2010) conducted a review of common 

intelligence measures that found that tests with fewer factors were the norm, with the Kaufman 
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Assessment Battery for Children (KABC-II; Kaufman & Kaufman, 2004) evidencing five factors 

(Gc, Gv, Gf, Glr, and Gsm), the Stanford Binet, Fifth Edition (SB-V; Roid, 2003) reflecting five 

factors (Gf, Gc, Gf-RQ, Gv, and Gsm), and the Wechsler Intelligence Scale for Children, Fourth 

Edition (WISC-IV; Wechsler, 2003) measuring four factors (Gc, Gsm, Gs, and Gf/Gv). The 

Woodcock Johnson Fourth Edition Tests of Cognitive Abilities (WJ IV COG; Schrank et al., 

2014) provides measures of seven broad abilities (Gc, Gf, Gwm, Gs, Ga, Glr, Gv), which the 

authors state reflects the status of the most substantial research on CHC theory at the time of its 

development (McGrew, LaForte, & Schrank, 2014). The seven broad abilities encompassed by 

the WJ IV COG are described in Table 1 below. 

Table 2.1 

Descriptions of CHC Broad Abilities 

Gc Comprehension-Knowledge 
Represents the ability to activate and access 

acquired, declarative knowledge 

Gf Fluid Reasoning 

Measures novel problem solving ability; 

Requires induction, categorization, and 

identifying and switching rules 

Gwm Short-Term/Working Memory 

Refers to the capacity to keep stimuli in 

immediate awareness, recode the information, 

and produce an output  

Gs Processing Speed 

The ability to utilize attentional control to 

perform speeded visual perception and 

discrimination tasks 

Ga Auditory Processing 

Represents the ability to analyze and 

discriminate acoustic elements; activate and 

retrieve semantic information 

Glr 
Long-Term Storage and 

Retrieval 

Involves the construction of representations in 

long-term memory and the ability to retrieve this 

information 

Gv Visual Processing 

Involves mental manipulation and rotation of 

visual images and retrieval of visual 

representations from memory 
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Narrow Abilities 

 The narrow abilities subsumed by CHC theory comprise the most fluid of the three 

stratums, with narrow abilities continually being added, refined, or removed as the result of an 

evolving body of research. Over 70 narrow abilities have been proposed within stratum one 

(Newton & McGrew, 2010). In their 2012 chapter, Schneider and McGrew included a discussion 

of 81 well-supported narrow abilities falling beneath the 16 broad abilities. The narrow abilities 

that comprise the seven broad abilities measured by the WJ IV COG are briefly discussed below. 

Comprehension-knowledge. Six narrow abilities fall within the scope of 

comprehension-knowledge (Schneider & McGrew, 2012). General Verbal Information (K0) 

refers to the store of knowledge obtained through cumulative exposure to information across 

various domains. Language Development (LD) refers broadly to the comprehension and 

application of language for expressive and receptive communication. Next, Lexical Knowledge 

(VL), refers specifically to vocabulary knowledge as an isolated skill. Similarly, Listening 

Ability (LS) refers to the ability to understand speech as a discrete ability, whereas 

Communication Ability (CM) is described as the ability to utilize expressive language effectively 

to communicate one’s thoughts. Finally, Grammatical Sensitivity (MY) is reserved for the ability 

to understand morphological and syntactic principles and apply grammatical knowledge.  

 Fluid reasoning. Three narrow abilities are considered well-supported by the current 

empirical literature (Schneider & McGrew, 2012). The first is Induction (I). Induction refers to 

the ability to utilize logical reasoning for the purpose of identifying an organizing principle or 

rule. Second, General Sequential Reasoning (RG) refers to the ability to utilize deductive 

reasoning to apply known rules or principles to problem solve a through a task. Finally, 
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Quantitative Reasoning (RQ) describes the ability to reason using basic mathematical 

knowledge, including basic computation and numerical reasoning. 

Short-term memory/working memory. The broad ability of Gsm or short-term memory 

has recently been re-conceptualized in light of neuropsychological and cognitive research in the 

domain of working memory. While Schneider and McGrew (2012) use the term short-term 

memory in their discussion of CHC theory, within the WJ IV manual, McGrew et al. (2014) 

update the broad factor by naming it short-term working memory (Gwm). The new 

conceptualization of short-term memory continues to include the narrow abilities previous 

identified, Memory Span (MS) and Working Memory Capacity (MW). Memory span is defined 

as the ability to attend to, maintain, and reproduce information from memory immediately 

following its presentation. Working memory capacity also includes the ability to attend to and 

maintain information, but reflects the capacity for mental manipulation of information before 

producing a response. Schneider and McGrew (2012) also note that it involves simultaneously 

inhibiting distracting information and performing controlled searches for additional information 

for memory. The shift from incorporating working memory into a broad, rather than narrow 

factor recognizes the higher-order function of working memory, which broadly encompasses 

tasks involving various levels of processing in the memory system (McGrew et al., 2014). A 

second update included in the WJ IV technical manual is the addition of Attentional Control 

(AC) as a narrow ability (McGrew et al., 2014). Attentional control refers to the ability to 

allocate attention efficiently to focus on a task, while ignoring irrelevant stimuli. The authors 

note that this ability has been referred to using various terms included focal attention, focus, 

control of attention, executive controlled attention, or executive attention. The addition of this 

ability reflects substantial research in the cognitive and neuropsychological literature.  
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 Processing speed. Within the domain of processing speed, Schneider and McGrew 

(2012) outline five narrow abilities. Perceptual Speed (P) is described as the keystone ability of 

processing speed, involving visual scanning and discriminating for identical visual figures. In 

fact, the authors note that perceptual speed may qualify as an intermediate stratum ability, 

comprised by four lower-order abilities including pattern recognition, scanning, memory, and 

complex. The second narrow ability is Rate of Test-Taking (R9). This ability is described as the 

rate at which one can complete simple, overlearned tasks. Speed in completing learned tasked is 

divided into three categories. Number Facility (N) is described as the ability to rapidly perform 

basic arithmetic computations with accuracy. Reading Speed (RS) is defined as the ability to 

read text for comprehension fluently and automatically. Finally, Writing Speed (WS) refers to 

the rate at which one can copy or compose words or sentences.  

 Auditory processing. In the domain of auditory processing, Schneider and McGrew 

(2012) list eight narrow abilities. The first narrow ability, Phonetic Coding (PC) is perhaps the 

most frequently assessed by psychologists. In fact, the authors state, “…psychologists are more 

interested in a narrow ability (phonetic coding) than in the broad ability” (p. 132). Whereas 

auditory processing refers to the ability to recognize and process all auditory information (e.g. 

music, sound), phonetic coding refers specifically to the ability to recognize distinct phonemes. 

In the academic literature, this skill has been also been referred to as phonemic awareness or 

phonological processing. A similar but distinct skill, Speech Sound Discrimination (US), refers 

to the ability to the awareness of non-phonemic aspects of speech (e.g. tone, timbre, and pitch). 

A third ability is called Resistance to Auditory Stimulus Distortion (UR). This ability refers to 

one’s capacity for understanding speech in the presence of background noise or other distortion. 

The fourth narrow ability, Memory for Sound Patterns (UM) includes a memory load and refers 
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to the ability to retain auditory information within short-term memory. The following three 

abilities are particularly pertinent to music. These abilities include Maintain and Judging Rhythm 

(U8), the ability to distinguish and maintain a musical beat; Musical Discrimination and 

Judgment (U1 U9), the ability to analyze tonal qualities of music, including harmony and 

complexity; and Absolute Pitch (UP), the ability identify musical pitch with perfect accuracy. 

The last narrow ability, Sound Localization (UL), refers to the ability to identify the location of 

sounds in space.  

Long-term storage and retrieval. A vast array of narrow abilities fall under the domain 

of long-term storage and retrieval. Twelve abilities are listed as well-supported by Schneider and 

McGrew (2012), with limited research supporting a previously hypothesized 13th ability, 

Learning Abilities (Newton & McGrew, 2010). The narrow abilities have been conceptually 

grouped into the categories of learning efficiency and retrieval fluency, to represent abilities 

related to the processes of storage and retrieval, respectively. Within the category of learning 

efficiency, Associative Memory (MA) is defined as the ability to recall pairs of items without 

any meaningful relationship (e.g., wall and hat). In contrast, Meaningful Memory (MM) refers to 

the ability to recall information in the context of meaningful relationships (e.g., a cohesive story). 

A third memory ability, Free-Recall Memory (MA6) represents the ability to recall information 

presented in a discrete list (e.g., 12 unrelated words).  

 The following nine abilities involve the retrieval of learned information from memory. 

Schneider and McGrew (2012) organized these abilities conceptually in terms of retrieval of 

ideas, words, or figures. Ideational Fluency (FI) refers to the ability to generate as many verbal 

responses related to a word, idea, or phrase as possible. Likewise, Associational Fluency (FA) is 

related to the ability to generate responses to words, ideas, or phrases, but the quality of content 
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is evaluated, rather than simply the quantity of responses (Newton & McGrew, 2010). 

Expressional Fluency (FE) is the ability to express of the same information in unique ways (e.g., 

generate various phrases that mean you feel tired). In a more applied context, the Sensitivity to 

Problems/Alternative Solution Fluency (SP) ability is described as the ability to produce 

alternative solutions to a particular problem (e.g., name ways a person can save money on 

everyday expenses). Relatedly, the Originality/Creativity ability (FO) requires the ability to 

produce flexible and unique responses to a given situation or task. This ability has been related to 

the broad construct of creativity. Two word-related retrieval skills has been identified. The first 

is Naming Facility (NA), which refers to the ability to rapidly retrieve the name of an object, 

color, or letter. The authors note that this task has been referred to as Rapid Automatic Naming 

(RAN) within academic literature. The second word-related retrieval skill is Word Fluency 

(FW). Word fluency refers to the ability to generate words by phonemic, structural, or 

orthographic characteristics (Newton & McGrew, 2010). Finally, the two figure related retrieval 

abilities consist of Figural Fluency (FF), the ability to draw as many unique figural marks as 

possible in response to a visual stimulus, and Figural Flexibility (FX), the ability to create unique 

visual solutions that require adherence to specific criteria.   

 The WJ IV battery names an additional narrow ability, Speed of Lexical Access (LA; 

McGrew et al., 2014). This skill is defined as the ability to quickly retrieve information from 

one’s lexicon, or verbal store. Although mentioned as a discrete skill from Naming Facility 

(NA), the definition of NA also includes the term speed of lexical access. A possible distinction 

is whether the task involves visual stimuli (NA) or not (LA).  

 Visual processing. Eleven narrow abilities are considered empirically well supported 

(Schneider & McGrew, 2012). The first ability, Visualization (VZ), is described as the most 
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dominant visual processing ability. It refers to the utilization of mental manipulation, such as 

rotation or transformation, in order to imagine how figures or patterns may appear. This skill is 

contrary to the second ability, Speeded Rotation or Spatial Relations (SR), in that it is not a 

measure of fluency. SR, then, refers to the ability to mentally rotate figures with speed and 

accuracy. Closure Speed (CS) is described as the ability to recognize visual stimuli that is 

incomplete is some aspect. The fourth ability, Flexibility of Closure (CF) refers to the skill 

whereby an individual is able to recognize a pattern of object by ignoring extraneous visual 

information. Similar to auditory processing, visual processing contains a narrow ability with a 

memory component, named Visual Memory (MV). MV is defined as the ability to store a 

complex visual image in memory and recall or recognize it after a short delay. The sixth ability, 

Spatial Scanning (SS) is the ability to visualize a route out of a maze or visual field. The seventh, 

Serial Perceptual Integration (PI) refers to the ability to recognize a complete object after pieces 

of the object are presented in rapid order. The next three abilities are relatively straightforward: 

Length Estimation (LE) is simply the ability to visually estimate or judge the length of an object; 

Perceptual Illusions (IL) is the ability to resist visual illusions; and Perceptual Alternations (PN) 

is the rate at which one can switch between alternating visual perspectives, rather than becoming 

fixed on one perspective. The final narrow ability, Imagery (IM) refers broadly to the ability to 

mentally visualize complex visual images and spatial location.  

The Woodcock Johnson Battery 

  As stated previously, contemporary measures of intelligence have demonstrated 

alignment with multiple broad abilities (Keith & Reynolds, 2010). The Woodcock Johnson Tests 

of Cognitive Abilities is unique in that it has been developed and evaluated within the context of 

CHC theory since the second edition of the instrument, the Woodcock-Johnson Psycho-
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Educational Battery-Revised (WJ-R; Woodcock, Johnson, & Mather, 1989). Much previous 

research has been conducted on the subsequent edition, the Woodcock Johnson Tests of 

Cognitive Abilities, Third Edition (WJ III; Woodcock et al., 2001). The fourth edition of the 

instrument, published in 2014, provides factor analytic validation to support its adherence to 

contemporary CHC theory. The subtests of the WJ IV COG and the associated broad and narrow 

abilities are outlined in Table 2 below. Additionally, the relevant broad and narrow abilities are 

provided for the Woodcock-Johnson IV Tests of Oral Language, a cognitive lingusitc battery (WJ 

OL; Schrank, Mather, & McGrew, 2014b; see Table 3). In viewing the associations between 

cognitive subtests and CHC abilities, two important conclusions can be made. First, despite the 

theoretically-based nature of the battery, not all hypothesized narrow abilities are represented in 

this comprehensive intelligence test. Second, the overlap between distinct narrow abilities, and 

even broad abilities, is apparent for a variety of tasks.  

Table 2.2 

WJ IV COG Subtests and Abilities 

Subtest Name Broad Ability Narrow Ability 

1. Oral Vocabulary Gc Lexical Knowledge (VL) 

Language Development (LD) 

2. Number Series Gf Quantitative Reasoning (RQ) 

Induction (I) 

3. Verbal Attention Gwm Working Memory Capacity (WM) 

Attentional Control (AC) 

4. Letter-Pattern Matching Gs Perceptual Speed (P) 

5. Phonological Processing Ga Phonetic Coding (PC) 

Word Fluency (Glr-FW) 

Speed of Lexical Access (Glr-LA) 

6. Story Recall Glr Meaningful Memory (MM) 

Listening Ability (Gc-LS) 

7. Visualization Gv Visualization (Vz) 

8. General Information Gc General Information (K0) 

9. Concept Formation  Gf Induction (I) 

10. Numbers Reversed Gwm Working Memory Capacity (WM) 

Attention Control (AC) 
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11. Number-Pattern Matching Gs Perceptual Speed (P) 

12. Nonword Repetition Ga Phonetic Coding (PC) 

Memory for Sound Patterns (UM) 

Memory Span (Gwm-MS) 

13. Visual-Auditory Learning Glr Associative Memory (MA) 

14. Picture Recognition Gv Visual Memory (MV) 

15. Analysis-Synthesis Gf General Sequential Reasoning (RG) 

16. Object-Number Sequencing Gwm Working Memory Capacity (WM) 

17. Pair Cancellation Gs Perceptual Speed (P) 

Spatial Scanning (Gv-SS) 

Attentional Control (Gwm-AC) 

18. Memory for Words Gwm Memory Span (MS) 

 

Table 2.3 

WJ IV OL Subtests and Abilities 

Subtest Name Broad Ability Narrow Ability 

1. Picture Vocabulary Gc Lexical Knowledge (VL) 

Language Development (LD) 

2. Oral Comprehension Gc Listening Ability (LS) 

3. Segmentation Ga Phonetic Coding (PC) 

4. Rapid Picture Naming Glr Naming Facility (NA) 

Speed of Lexical Access (LA) 

5. Sentence Repetition Gwm 

Gc 

Memory Span (MS) 

Listening Ability (LS) 

6. Understanding Directions Gwm 

Gc 

Working Memory Capacity (WM) 

Listening Ability (LS) 

7. Sound Blending Ga Phonetic Coding (PC) 

8. Retrieval Fluency Glr Speed of Lexical Access (LA) 

Ideational Fluency (FI) 

9. Sound Awareness Ga Phonetic Coding (PC) 

 

One benefit of a theoretically-based test of cognitive abilities is that it facilitates research 

identifying the cognitive correlates that underlie various academic skills (Schrank, Miller, 

Wendling, & Woodcock, 2010). Research comparing subtests on the Woodcock Johnson Tests of 

Achievement, Third Edition (WJ III ACH; Woodcock et al., 2001) and the cognitive battery has 
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provided insight into the relationships between various cognitive factors and academic skills. 

Research focusing specifically on math achievement is discussed below. 

Math Achievement Using Versions of the WJ COG and ACH 

Floyd et al. (2003) investigated the relationship between cognitive variables and math 

achievement using the WJ III standardization sample. The analysis focused on identifying the 

cognitive abilities related to math calculation and math reasoning skills using multiple regression 

analyses. The Math Calculation composite on the WJ III consists of two subtests, Math Fluency 

(a timed test of simple math facts) and Calculation (an untimed test of simple and complex 

computations). Results showed that math calculation had a strong relationship with processing 

speed (Gs) from age 7 to 15. Moderate relationships were found with auditory processing (Ga) 

from ages 6 to 7, long term retrieval (Glr) from ages 6 to 8 and crystalized intelligence (Gc) 

between ages 10 and 19. These results may reflect the transition between early years where math 

facts are not yet automatized, but are counted out or solved by recalling newly learned strategies, 

to later years when children have committed math facts to memory.  

A second study using the Math Calculation composite of the WJ III was conducted by 

Proctor et al. (2005). This study examined the differences between the cognitive profiles of 68 

school-age low achievers in math (children with standard scores below 85) and typically 

achieving peers (standard scores above 90). Interestingly, there were no significant differences 

between the cognitive profiles of children in the low achieving group and children in the typical 

group. The researchers commented that the low achieving children represented a diverse group, 

with half of the children exhibiting one deficit in a cognitive domain with no clear pattern. The 

researchers also hypothesized that these findings may be related to non-cognitive factors 
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resulting in poor achievement, the exclusion of low achievers in math who were also low 

achievers in reading, or due to the true heterogeneity of low achieving students as a group. 

 More recently, Taub et al. (2008) utilized structural equation modeling to compare the 

relationships between cognitive abilities and math achievement. Math achievement was 

represented by the Quantitative Knowledge composite, a score derived from performance on the 

Math Calculation and Applied Problems subtests. Direct effects of fluid reasoning (Gf), 

crystalized intelligence (Gc), and processing speed (Gs) were observed across all age groups. 

However, as math skills were combined into one composite, unclear is the extent to which 

abilities are specifically related to math calculation and/or math fluency skills.  

 McGrew and Wendling (2010) summarized the extant research on cognitive and 

achievement relationships in the context of CHC theory. Based on an analysis of this research, 

the authors determined the following broad abilities have medium significance in the prediction 

of math calculation skill: comprehension knowledge (Gc), fluid reasoning (Gf) and processing 

speed (Gs). In terms of narrow abilities, phonological processing (Ga-PC) had a medium 

significance for children ages 6-13, and perceptual speed (Gs-P) had a high level of significance 

for all ages, as did working memory (Gsm-MW). As mentioned previously, the significance of 

phonological processing impacting math calculation in young children may reflect the role of 

counting in early computational skills. The authors note that the process of counting requires the 

retrieval of phonological codes. The perceptual speed finding was hypothesized to reflect a skill 

in subitizing or in instantly recognizing the value of numbers. Finally, working memory as a 

predictor of calculation ability is consistent with results of previous research both using the WJ 

and other measures of working memory.  
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 One key conclusion from this summary was the importance of further research 

demonstrating the relationship between narrow cognitive abilities and achievement. The results 

of this study show that narrow abilities may sometimes be significant, even when the broad 

ability is not (e.g., a significant finding for Ga-PC, but not Ga). Understanding the relationships 

among narrow abilities and areas of achievement is also beneficial for both practitioners and 

researchers in determining tasks that can accurately assess for areas of particular strength and 

weakness.  

Proposed Study 

At present, there are no published studies using the Woodcock Johnson assessment 

battery that have investigated the relationship between cognitive abilities and math fact fluency. 

The theoretically and psychometrically improved WJ IV assessment battery provides the 

opportunity to examine this academic skill in the context of contemporary CHC theory. Given 

that recent research has identified math fact retrieval as a specific area of weakness for some 

students, it is important to understand the cognitive correlates associated with this skill to inform 

assessment and intervention. With the increasing popularity of academic and cognitive screening 

measures in schools to identify children for targeted services, it is important that educators are 

selecting measures that assess the fundamental cognitive predictors of later academic 

performance. Screening instruments that reflect known cognitive correlates of academic 

difficulties are necessary to improve the accuracy in which children are identified for services 

and to ensure that assessment practices are time and cost efficient. Furthermore, understanding 

the abilities related to math fluency can inform the development of evidence-based interventions 

by tailoring the skills taught in order to remediate specific weaknesses. With knowledge of the 
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relationships among cognitive abilities and achievement, interventions may also be designed to 

teach students alternative strategies that circumvent areas of weakness.  

Studies demonstrating a link between math fluency deficits and phonics, rapid 

automatized naming, and executive control have revealed a complex array of factors that may 

contribute to such deficits. Using a child-aged subgroup of the standardization sample, the 

proposed research will utilize path analysis to examine the relationships between broad and 

narrow cognitive abilities and math fact fluency. The math fact fluency test of the WJ IV ACH 

assesses an individual’s ability to quickly and accurately answer simple addition, subtraction, 

and multiplication problems within a three minute time period. This research seeks to clarify the 

relationships between math fluency and fluid reasoning, crystalized intelligence, working 

memory, and processing speed, as well its relationship with perceptual speed, number facility, 

phonetic coding, naming facility, and attentional control. A hypothesized relationship between 

math problem solving abilities and math fact fluency performance will also be evaluated.  



 

 40 

CHAPTER III 

 METHODS 

Sample and Participants 

Data Source 

 A formal request to obtain the WJ IV COG, OL, and ACH standardization data was 

submitted to Houghton Mifflin Harcourt. The request included information regarding the name 

and purpose of the study and the proposed method. Following approval, the primary 

investigators signed a licensing agreement outlining the conditions of use. Subsequent to 

Duquesne University Institutional Review Board (IRB) approval, an electronic SPSS file 

containing the de-identified data was transmitted to the primary investigator. 

The WJ IV technical manual (McGrew et al., 2014) details the normative sample, which 

represents a large, geographically diverse stratified sample aligned with demographics of the 

2010 U.S. census. The sampling process was stratified based on the following variables: census 

region, sex, country of birth, race, ethnicity, community type, parent education, type of school 

(K-12 sample), type of college (college sample), educational attainment (adult sample), and 

employment status (adult sample). Data were collected from 7,416 individuals aged 24 months to 

90 years. Within this group, there were 3,891 students from kindergarten through grade 12. The 

authors note that the school-age sample was purposefully denser than other age groups, as 

childhood and adolescence represent a time of growth in cognitive and academic skills.  

Procedures Used to Collect the Standardization Data 

 Data for the standardization sample were collected over 25 months. The assessment 

batteries were administered by recruited examiners who demonstrated proficiency during 

training on the administration of the WJ IV battery. Completed protocols were reviewed by 
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project staff for completion and accuracy. Due to the lengthy nature of the battery, which 

included 18 cognitive tests, nine oral language test, 20 achievement tests, and four research tests, 

a planned incomplete data collection design was used. Specifically, the authors utilized a 

Multiple Matrix Sampling (MMS) design. The use of MMS in large-scale data collection is 

prevalent across educational, health, and business research and has more specifically been 

evaluated in terms of cognitive assessment (Rhemtulla & Little, 2012). The normative study 

employed a partial matrix sampling plan, which involved the administration of a core group of 

subtests to each participant along with an additional set of subtests administered only to certain 

groups of participants. McGrew et al. (2014) report that 18 tests were chosen for the core group 

based on previous WJ-R and WJ III research indicating strong representativeness of the broad 

CHC cognitive factors, and the academic areas of reading, math and writing. Complete records 

for each participant were generated by a statistical software program utilizing a Bayesian 

Multiple Imputation method. Ten complete data sets were generated, and one was randomly 

chosen as normative sample. 

From here, weights were added for individual examinees to correct for differences 

between the sample and the demographic characteristics of the U.S. population. The construction 

of test norms utilized a bootstrap resampling procedure. Simply stated, this procedure involves 

the computerized generation of additional samples to the original pool in order to estimate the 

population distribution. The authors state that 250 resamples were generated for the norming 

process. Using this data, percentiles were calculated and norm curves were generated, allowing 

for the calculation of standard scores and percentile ranks.  

Participants 

For the present study, a total of 4,212 children and adolescents aged 6:0 to 19:11 were 
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included in this study’s analyses. This age group was chosen for the purpose of comparing the 

current investigation to previous research utilizing the same age range (e.g., McGrew & 

Wendling, 2010). Additionally, this age group would allow comparison of the current results to 

those presented in the WJ IV technical manual (McGrew et al., 2014).  

Measures 

The WJ IV battery is a comprehensive assessment system used to measure the cognitive 

abilities, oral language, and academic achievement of individuals ages 2 to 90+ years old. The 

fourth edition of the Woodcock Johnson system was created to reflect updates to the most 

current theory of overall intelligence according to contemporary CHC theory. Improvements to 

the new edition of the WJ IV COG include increased cognitive complexity on subtests, higher 

correlations with ability scores on the WISC-IV, and a revised theoretical basis for the inclusion 

of working memory and memory of sound patterns as cognitive constructs (McGrew et al., 

2014). The WJ IV ACH also underwent revisions to the structure of the battery, with new 

subtests and clusters representing an increased breadth of content.  

Another major revision of the WJ IV battery is the addition of a separate battery 

assessing language specific abilities, the WJ IV Tests of Oral Language. The OL measure is 

comprised of language-based tasks formerly found on the WJ COG and ACH, as well as newly 

adopted tasks. The battery can be used to provide diagnostic information about specific 

cognitive-linguistic abilities as well as achievement in expressive language and listening 

comprehension. The reliability and validity of these batteries is discussed below. 

Reliability 

 Standard error of measurement (SEM) values and reliability coefficients were reported 

for all subtest and cluster scores within the WJ IV battery. In the context of Classical Test 
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Theory, reliability coefficients (r11) represent the ratio of true score variance to observed score 

variance (Raykov & Marcoulides, 2011). Reliability coefficients are reported as decimals 

between 0 and 1, with values closer to 1 representing more precise measurement. The reliability 

coefficient for each non-timed test is reported for each age group (for each age 2-19 individually 

and groups of 10 thereafter; e.g., 20-29, 30-39, etc.), in addition to the test’s median reliability 

coefficient. Thirty-eight of the 39 non-timed tests of the WJ IV had median reliability 

coefficients above the desired .08 cutoff. Reliability coefficients ranged from .74 to .97 

(McGrew et al., 2014), with Picture Recognition (WJ COG 14; r11 = .74) representing the only 

test to fall below .80. For eight of the timed tasks of the WJ IV, test-retest reliability was 

calculated (r12). The reliability coefficients ranged from .76 to .95, with six of the eight tests 

above .08. Notably, the test-rest reliability of the Rapid Picture Naming subtest fell just below 

the .80 threshold, with a value of .79.  

 The WJ IV battery provides a number of cluster scores that can be obtained representing 

general cognitive ability (General Intellectual Ability, Brief Intellectual Ability, Gf-Gc 

Composite), broad abilities (Gc, Gc-extended, Gf, Gf-extended, Gwm, Gwm-extended, Gs, Ga, 

Glr, Gv), as well as several other narrow abilities, conceptual groupings, and academic clusters 

(e.g., perceptual speed, cognitive efficiency, reading comprehension). Reliability coefficients of 

the cluster scores ranged from .86 to .99, with the majority of coefficients exceeding .90.  

Alternate forms reliability was reported for the speeded tests on each of the three 

alternate WJ ACH forms. Alternate forms reliability coefficients across all speeded tasks ranged 

from .76 to .96. The Math Facts Fluency subtest had reliability coefficients equal to .95 and .97, 

in a sample of students aged 7-11 and 14-17, respectively. A second evaluation of the speeded 

ACH tests was conducted to ensure that item difficulty was equivalent across the three forms. 
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The three forms of Math Facts Fluency subtest was administered in counterbalanced order to a 

group of students in grades 3 and 4 and a group of students in grades 9 through 12. The 

correlations among forms ranged from .94-.95 in the younger grades and .92-.94 in the older 

grades. An examination of the Sentence Reading Fluency subtest with these age groups revealed 

correlations that ranged from .85-.88. The non-speeded tests of the WJ IV ACH were 

systematically evaluated for equivalent item content and difficulty across three alternate forms.   

Validity 

The WJ IV technical manual (McGrew et al., 2014) provides evidence for the content, 

internal, and concurrent validity of the assessment. As mentioned above, the WJ IV battery was 

developed in the context of contemporary CHC theory in a manner similar to its predecessors 

(WJ III, WJ-R). Subtests were designed to measure a single narrow ability, and clusters were 

constructed by combining subtests measuring distinct narrow abilities to provide sufficient 

coverage of the theoretical broad ability. While the WJ COG and OL tap the seven broad 

abilities named previously (Gc, Gf, Gwm, Gs, Ga, Glr, Gv), the ACH battery measures the broad 

abilities of quantitative knowledge (Gq), reading and writing (Grw), and domain specific 

knowledge (Gkn), with the goal of providing broad coverage of academic skills relevant to needs 

of individuals conducting psychoeducational assessment. McGrew et al. (2014) state that many 

of the WJ IV subtests that appeared in the WJ III have been supported through independent 

evaluations in the context of CHC theory.  

Content Validity. For the WJ IV, the authors conducted multidimensional scaling 

(MDS) analyses to demonstrate the content validity of the constructs measured by the battery. 

Using the correlations among 51 WJ IV subtests (including research tests), the authors utilized a 

Guttman Radex two-dimensional MDS procedure for the analysis of six different age groups (3-
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5, 6-8, 9-13, 14-19, 20-39, 40-90+). A summary of these analyses revealed that the constructs 

tended to cluster similarly to the organization of the three batteries. The ACH battery fell into 

Grw and Gq domains in the upper right quadrant, while the OL battery fell into an auditory-

linguistic grouping in the upper left. The COG battery spanned the lower left and right quadrants 

(figural-visual and cognitive efficiency speed), in addition to the upper left quadrant (auditory-

linguistic). Interestingly, while speeded academic measure fell into the same conceptual 

grouping as the processing speed measures (the speed-fluency group), the academic fluency 

measures clustered separately within the upper right quadrant along with the other ACH 

measures. 

Internal Validity. To demonstrate the internal structure of the WJ IV, the test authors 

generated the intercorrelations among all tests and clusters, again using the six age ranges 

described previously. Correlations were higher among tests that fall into related CHC domains 

(e.g., one Gc test is more highly correlated with a second Gc test than a Gs test). The same 

pattern was found for areas of achievement that fall in similar compared to dissimilar domains.  

Second, the authors completed a three-step psychometric evaluation of the internal 

structure of the WJ IV utilizing exploratory and confirmatory factor analysis. The first step 

involved a split-sample random sample generation. Again dividing the sample into six age 

ranges, the groups were randomly split in half. The first group was named the model 

development group. This group served as the sample for the exploratory analyses. The first 

exploratory analysis was a cluster analysis (CA). The authors utilized Ward’s hierarchical 

minimum variance CA, which is a technique that sorts highly correlated variables (i.e., tests), 

which are then merged into larger groups. Groupings aligned with the CHC framework, with all 

seven broad cognitive factors and two achievement factors (Gq and Grw) present. Just as in the 
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MDS analysis, the ACH fluency measures once again fell in the broad cognitive domain of Gs, 

however, they were organized in a distinct group from the Gs-COG tests.  

Next, an exploratory principle components analysis (PCA) was conducted with the model 

development age groups. The authors state that varimax rotation was chosen due to the high 

degree of multicolinearity existing amongst the tests, in addition to other complicating factors of 

oblique solutions, including the potential removal of tests in the final solution (McGrew et al., 

2014). The number of components extracted ranged from six to 10, which was informed by the 

results of the CA. The 8, 9, and 10 factor solutions were determined to be most interpretable. In 

summary of all the analyses, the broad cognitive factors of Gc, Gs, and Gwm appeared 

throughout. Additionally Gf appeared in a mixed COG-ACH factor alongside Gq. Finally, Grw 

appeared as a standalone ACH factor. The broad cognitive ability Ga appeared in the nine and 10 

factor solutions, while the remaining broad abilities Glr and Gv appeared in varying forms across 

the solutions, either combined with a other broad abilities or represented by subsumed narrow 

abilities (e.g., Glr-Retention abilities, Gv-MV/MA).  

A third exploratory analysis was conducted on the model development groups using 

MDS. The results of this analysis are similar to those described above in regards to content 

validity. Using the results of these three exploratory analyses, three models to be used in 

confirmatory analysis (CFA) were generated. The first model was a single factor model 

representing the latent factor g. The second model was a top-down model including g as a higher 

order factor and the broad cognitive and achievement abilities Gc, Grw, Gf, Gs, Gq, Gv, Glr, 

Gwm, and Ga. The third model was a bottom-up model including three tiers: narrow abilities, 

broad abilities, and g. Narrow abilities that were not supported were removed in favor of the 

related broad ability. Four narrow abilities were included in the final model: Verbal Language-
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Based Reasoning (Gf-Vbl), Quantitative Reasoning (Gf-RQ), Associative Memory (Glr-MA), 

and Speed of Lexical Access (Glr-LA). Results indicated that model one did not fit the data as 

well as model two or three. All parameters in models two and three were deemed positive, 

significant, and meaningful (McGrew et al., 2014).  

The third stage involved conducting a CFA using the model cross-validation samples to 

compare to the model development samples. Both samples demonstrated very similar fit 

statistics. Model fit indices were provided for models two and three across all six age groups 

using both samples. The authors concluded that model two and three demonstrated comparable 

fit for all ages 6 and above (McGrew et al., 2014). In terms of fit, the models resulted in RMSEA 

(Root Mean Squared Error of Approximation) values ranging from 0.115 to 0.123 across age 

groups, which is higher than desired (.05 or below). Additionally, the TLI (Tucker-Lewis non-

normed fit index) values ranged from 0.607 to 0.684, which is lower than desired (.90 or above). 

However, both of these fit indices are reliant on maximum-likelihood estimation, which is 

sensitive to violations of assumptions, including multivariate normality and multicollinearity. As 

the data violates these assumptions, scale-free least squares (SFLS) fit indices were calculated. 

The Adjusted Goodness of Fit Index (AGFI) calculated using SFLS resulted in acceptable fit 

values (.956-.984).  

Concurrent Validity. An investigation of the concurrent validity of the WJ IV battery 

was conducted using various cognitive, oral language, and achievement measures. In an 

evaluation of 174 students, correlations between the WJ IV COG and the WISC-IV demonstrated 

a strong (.86) relationship between the overall intelligence as measured by the two assessments. 

In addition, high correlations were found between general intellectual ability on the WJ COG 

and the equivalent metric on the KABC-II (.77) and the SB-V  (.80). Validation of the WJ OL 
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was performed with two commonly used language measures, the Clinical Evaluation of 

Language Fundamentals, Fourth Edition (CELF-4; Semel, Wiig, & Secord, 2003), and the 

Peabody Picture Vocabulary Test, Fourth Edition (PPVT-4; Dunn & Dunn, 2007). In general, 

the clusters available on the WJ OL demonstrated moderate to high correlations (.60 to .70) with 

the CELF-4 composites. However, exclusions were noted for the working memory composite, 

which had low correlations with all measures in the older children group (10-18), and the speed 

of lexical access domain. The authors note that the CELF-4 does not have comparable measure 

on the latter ability. The correlations between the OL and the PPVT-4 resulted in a similar 

pattern of generally moderate to high correlations. In terms of achievement, correlations among 

the WJ ACH and the Wechsler Individual Achievement Test, Third Edition (WIAT-III; Wechsler, 

2009) show moderate to strong relationships between related academic clusters (.60 or above). 

The math fluency composite of the WIAT-III was highly correlated (.85) with the math 

calculation cluster on the WJ ACH.  

Research Questions and Hypotheses 

Research Question 1  

Within the child age subset of the standardization sample, which broad cognitive abilities 

display significant effects on Math Facts Fluency performance? 

 Hypothesis 1: It is hypothesized that fluid reasoning will have a direct effect on Math 

Facts Fluency. 

 Hypothesis 2: It is predicted that comprehension-knowledge will have a direct effect on 

Math Facts Fluency. 

 Hypothesis 3: Working memory is hypothesized to have a direct effect on Math Facts 

Fluency. 
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 Hypothesis 4: Processing speed is predicted to have a direct effect on Math Facts 

Fluency. 

 Hypothesis 5: It is hypothesized that General Intellectual Ability will have an indirect 

effect on Math Facts Fluency performance. 

Research Question 2 

 Which narrow abilities have significant effects on performance on the Math Facts 

Fluency subtest? 

Hypothesis 1: It is hypothesized that perceptual speed will have a direct effect on Math 

Facts Fluency. 

 Hypothesis 2: Number facility will have a direct effect on Math Facts Fluency. 

 Hypothesis 3: Phonetic coding will have a direct effect on Math Facts Fluency. 

 Hypothesis 4: It is predicted that naming facility will have a direct effect on Math Facts 

Fluency. 

 Hypothesis 5: It is hypothesized that attentional control will a direct effect on Math Facts 

Fluency. 

Research Question 3  

 What relationship will math problem solving abilities have with math fluency 

performance? 

 Hypothesis 1: It is hypothesized that performances on the Math Problem Solving cluster 

will have a direct effect on Math Facts Fluency performance. 

Data Analysis 

 This study used path analysis, a statistical technique that falls in the Structural Equation 

Modeling (SEM) family. Path analysis is unique to other SEM techniques in that it may be used 
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evaluate only manifest or observed variables (i.e., variables that have been directly measured), 

rather than observed and latent variables (Kline, 2011). However, path analysis has the primary 

benefit of allowing the investigation of direct and indirect effects, which is lacking in other 

manifest variable techniques, such as multiple regression. A second benefit of SEM techniques, 

including path analysis, is the ability to revise and reevaluate the hypothesized model to ensure 

the closest fit to the data.  

 Two models were evaluated using path analysis. The first model included the broad 

cognitive factors hypothesized to have effects on math fact fluency performance, as well as 

General Intellectual Ability representing a high-order ability. This model is depicted in Figure 1. 

The subtests comprising the broad cognitive factors of the WJ IV COG are displayed in Table 4. 

Data included all broad ability composite scores, which were utilized in the analysis.  

Table 3.1 

Tests Included in the Broad Abilities 

Broad Ability Test Number  Associated Test Name 

Fluid Intelligence (GF) COG 2 Number Series 

COG 9 Concept Formation 

Comprehension-Knowledge (GC) COG 1  Oral Vocabulary 

COG 8 General Information 

Short-Term Working Memory (GWM) COG 3 Verbal Attention 

COG 10 Numbers Reversed 

Cognitive Processing Speed (GS) COG 4 Letter-Pattern Matching 

COG 17 Pair Cancellation 

Auditory Processing (GA) COG 5 Phonological Processing 

COG 12 Nonword Repetition 

Long-Term Retrieval (GLR) COG 6 Story Recall 

COG13 Visual-Auditory Learning 

 

The second path analysis model evaluated included the narrow abilities thought to be 

related to math fact fluency. This second model is shown in Figure 2. The composition of the 

narrow abilities is provided in Table 5. Composite scores for Perceptual Speed (PERSPD), 
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Number Facility (NUMFAC), and Phonetic Coding (PHNCOD) were all provided within the 

dataset. The hypothesized narrow ability called Rapid Picture Naming (RPCNAM) was 

measured by just one subtest; therefore this subtest was used to represent this narrow factor. No 

composite for Attention Control (ATTCRL) is currently available. However, according to the WJ 

IV manual, three subtests: Verbal Attention, Numbers Reversed, and Pair Cancellation, measure 

this narrow ability. For the current study, an Attention Control composite score was created 

using the subtests Verbal Attention and Pair Cancellation. The Numbers Reversed subtest was 

excluded, as it appears in the Number Facility (NUMFAC) factor. The Attentional Control 

composite is therefore a mean of the two aforementioned subtests. Although this process resulted 

in decreased variance as compared to the other composite scores, it allowed all variables to exist 

on a common standard score scale. In order to answer the final research question, the Math 

Problem Solving cluster, which is comprised of the applied problem and number matrices 

subtests on the WJ ACH, was added to the best fitting model.   

Table 3.2 

Tests Included in the Narrow Abilities 

Narrow Ability Test Number Associated Test Name 

Perceptual Speed (PERSPD) COG 4 Letter-Pattern Matching 

COG 11 Number-Pattern Matching 

Number Facility (NUMFAC) COG 10 Numbers Reversed 

COG 11 Number-Pattern Matching 

Phonetic Coding (PHNCOD) OL 3 Segmentation 

OL 7 Sound Blending 

Rapid Picture Naming (RPCNAM) OL 4 Rapid Picture Naming 

Attention Control (ATTCRL) COG 3 Verbal Attention 

COG 17 Pair Cancellation 

 

  Data were first imported into SPSS Version 24 for preliminarily analyses. The dataset 

was first analyzed for missing data. Cases with missing data on any of the variables within the 
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models were excluded from analysis. All variables within the dataset are provided as standard 

scores, with a mean of 100 and a standard deviation of 15. As described below, data were 

examined for univariate and multivariate normality, as well as univariate outliers. Additionally, 

data were inspected for collinearity and homoscedasticity. Next, the dataset was imported into 

the R Studio program, running R version 3.1.2 along with the lavaan 0.5-17 package (Yves 

Rosseel, 2012).  

Estimation Method 

 Within structural equation modeling techniques, the estimation method refers to the 

algorithm used to generate parameter estimates. The Maximum Likelihood (ML) method is 

suitable for most studies and is the default method in R (Kline, 2011). However, ML has strict 

requirements. First, it is a full-information method, meaning that all parameter estimates are 

calculated simultaneously; therefore, ML requires a complete dataset, absent of missing data. 

The ML method also assumes that all variables are continuous variables that are normally 

distributed. According to Kline (2011), ML may result in inaccurate estimates if variables are 

standardized. Therefore, an alternative estimation method was chosen for this study. Fully 

Weighted Least Squares (WLS) estimation is a family of methods that provide alternatives to 

ML. Within the lavaan package, alternative methods include Generalized Least Squares (GLS), 

Weighted Least Squares (WLS), Diagonally Weighted Least Squares (DWLS), and Unweighted 

Least Squares (ULS). Additionally, robust variations can be used that correct for non-normal 

standard errors. Given the standardized scores within the dataset, the WLSMVS (Weighted Least 

Squares with robust standard errors and a Mean and Variance adjusted test statistic). This 

method uses the Satterthwaite approach, which does not assume equal variances (Satterthwaite, 

1946). In R, fit statistics are provided using a Diagonally Weighted Least Squares (DWLS) 
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partial-information method as well as the robust formula that accounts for mean and variance 

adjustments. The latter corrects for bias in the fit statistics inherent in utilizing a partial-

information method (Li, 2016).  

Alternative Models 

 After accepting a final model, one must consider the possibility that an alternative model 

may explain the data equally well. Models that produce equivalent fit indices are referred to as 

equivalent models (Kline, 2011). It is incumbent on the researcher to identify equivalent models 

and provide an argument for the theoretical model. However, near-equivalent models, those that 

produce a similar, but different, covariance matrix may just as easily prove a threat to the 

proposed model (Kline, 2011). The first alternative model considered aligns with the Catell and 

Horn theory of intelligence, which posits that Fluid Reasoning (GF) and Comprehension-

Knowledge (GC) are at the crux of general ability. Although the Cattell-Horn-Carroll aligns 

other broad abilities, such as Working Memory and Processing Speed, on the same stratum of 

ability, some remnants of this theory remain. For example, the most recent iteration of the 

WISC-V continues to put the greatest weight on Verbal Comprehension and Fluid Reasoning 

when calculating the Full Scale IQ (Wechsler, 2014). Therefore, the first alternative model 

identified Comprehension Knowledge and Fluid Reasoning as higher-level abilities between 

General Ability and Working Memory and Processing Speed. Paths remained between Math 

Facts Fluency and all other variables (see Figure 3).  

 A second alternative model was created by changing the directionality between GIA and 

the broad factors. This model was generated to test the theory that GIA is the most important 

predictor of math fluency performance. Within this model, the broad variables were positioned 

as higher-order variables that contribute to general ability (see Figure 4).  
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CHAPTER IV 

RESULTS 

Preliminary Statistics 

Missing Data and Outliers 

As stated previously, the purpose of this study was to investigate relationships among 

cognitive abilities and math fact fluency performance in a child sample. The sample provided 

contained 4,212 cases, which is the number of children aged 6 through 19 within the normative 

sample. Of this sample, 23 cases contained missing data on at least one of the variables within 

the study and were removed from the dataset. Next, the data were examined for univariate and 

multivariate outliers in SPSS. Multivariate outliers were identified in a regression analysis by 

calculating the Mahalanobis Distance statistic for each case. Because of the large sample size (n 

> 500), a chi-square distribution was used to determine the cut-off value of 32.910 (p = .001). 

Forty-nine cases were determined to be significant multivariate outliers and were excluded from 

the sample. Data were also analyzed for univariate outliers. Each variable contained extreme 

values (absolute value of 3 SD greater than the mean), representative of a standard score less 

than 55 or above 145. However, when these cases were removed, a visual analysis of the q-q 

plots indicated that the variables deviated from normal at the extreme ends of the distribution. 

Therefore, these cases were included in the final sample. For all analyses, the sample size was 

4,140. The mean age of final sample was 12.32 years (SD = 3.98). 

Normality and Homoscedasticity  

 All variables were examined for univariate normality. Significant skew was characterized 

by any variable that exceeded 3.0 on the ratio of the skewness statistic to the standard error 

statistic (Kline, 2011). General Intellectual Ability (GIASTD) showed a significant negative 
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skew (-5.00), as did Perceptual Speed (PERSPD; -3.32). Additionally, the Perceptual Speed 

variable somewhat was somewhat leptokurtic (kurtosis ratio = 8.38); however, this values falls 

below 10.0, which has been described as a conservative metric (Kline, 2011). All other variables 

had acceptable skewness and kurtosis values. Because the estimation method used in this study is 

robust to violations of normality, variables evidencing significant skew were not transformed. 

Additionally, the retention of the current distribution allows for comparison between variables, 

which all contain standard scores. Means and standard deviations for all variables in the study 

are presented in Table 6.  

Table 4.1  

Descriptive Statistics for All Variables  
 

 Mean Std. 

Error 

Std. 

Deviation 

Variance 

General Intellectual 

Ability (GIASTD) 
99.922 .239 15.393 236.946 

Comprehension-

Knowledge (GC) 
100.290 .240 15.437 238.302 

Fluid Reasoning  

(GF) 
99.881 .240 15.435 238.247 

Short-Term Working 

Memory (GWM) 
100.787 .239 15.374 236.355 

Cognitive Processing 

Speed (GS) 
99.796 .236 15.167 230.040 

Number Facility 

(NUMFAC) 
100.310 .242 15.566 242.314 

Perceptual Speed 

(PERSPD) 
99.834 .240 15.427 238.005 

Attentional Control 

(ATTCRL) 
100.295 .190 12.194 148.691 

Phonetic Coding 

(PHNCOD) 
100.334 .243 15.628 244.229 

Rapid Picture Naming 

(RPCNAM) 
100.189 .238 15.329 234.975 

Math Problem Solving 100.591 .238 15.335 235.161 
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(MTHPRB) 

Math Facts Fluency 

(MTHFLU) 
99.994 .246 15.798 249.562 

 

Finally, to examine homoscedasticity, two linear regressions were conducted using the 

variables associated with the broad and narrow models. Within these analyses, normality 

probability plots of the standardized residuals both showed a linear pattern of distribution. 

Additionally, frequency charts of the standardized residuals both followed a normal distribution.   

Correlation Analysis 

 Bivariate correlations were calculated for all variables included within the study (see 

Table 7). All correlations were significant at the p = .001 level. As expected, Number Facility 

(NUMFAC) and Perceptual Speed (PERSPD), which both contained the Number-Pattern 

Matching subtest, were highly correlated (.851). Within the narrow factors model, this 

collinearity was accounted for by a covariance path between the two variables. Additionally, 

Processing Speed (GS) and Perceptual Speed were also highly correlated (.843). Both variables 

also share a common subtest (Letter Pattern Matching). These variables were not within analyzed 

within the same model, as one represents a broad factor and the other represents a narrow factor. 

Finally, Working Memory (GWM) also exhibited strong correlations with Number Facility 

(.738) and Attentional Control (.727). Again, both narrow factors contain a shared subtest with 

the broad factor (Numbers Reversed and Verbal Attention, respectively), although collinearity 

was avoided by separating broad and narrow factors into separate models.  

General Intellectual Ability (GIASTD) had strong correlations with Fluid Reasoning 

(GF), Working Memory, Number Facility, Attentional Control, and Math Problem Solving 

(MTHPRB), as well as moderate correlations with all other variables. This is consistent with 

CHC theory, which posits that General Intellectual Ability is a higher-level ability that 
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encompasses all broad and narrow abilities. Notably, although Math Problem Solving was 

strongly correlated with General Intellectual Ability and Fluid Reasoning, Math Fluency was 

only moderately correlated with these variables. In fact, Math Facts Fluency was moderately 

correlated with all variables included in the study, with the exception of Phonetic Coding 

(PHNCOD; .201) and Rapid Picture Naming (RPCNAM; .314).  

Table 4.2 

 

Bivariate Correlations for All Study Variables  
 

 1   2  3  4  5  6  7  8  9  10  11  12 

1. GIASTD 1 .678 .807 .735 .622 .703 .682 .719 .559 .374 .775 .629 

2. GC  1 .486 .470 .327 .366 .314 .434 .404 .288 .577 .436 

3. GF   1 .536 .406 .557 .474 .474 .462 .299 .768 .513 

4. GWM    1 .419 .738 .469 .727 .414 .337 .552 .445 

5. GS     1 .656 .843 .754 .291 .384 .430 .550 

6. NUMFAC      1 .851 .643 .373 .352 .529 .584 

7. PERSPD       1 .619 .304 .352 .436 .615 

8. ATTCRL        1 .373 .437 .537 .496 

9. PHNCOD         1 .218 .446 .201 

10. RPCNAM          1 .250 .314 

11. MTHPRB           1 .593 

12. MTHFLU            1 

Note: GIASTD = General Intellectual Ability - Standard; GC = Comprehension-Knowledge; GF = Fluid Reasoning; 

GWM = Working Memory; GS = Processing Speed; NUMFAC = Number Facility; PERSPD = Perceptual Speed; 

ATTCRL = Attention Control; PHNCOD = Phonetic Coding; RPCNAM = Rapid Picture Naming; MTHPRB = 

Math Problem Solving; MTHFLU = Math Fact Fluency. 

All correlations are significant at the p < .001level. 

 

Results for Research Question 1 

The aim of the first model was to examine which broad cognitive abilities exhibit 

significant effects on Math Fluency performance. The data set (N = 4,140) was imported into R 

version 3.1.2 running the lavaan 0.5-17 package. Given the large sample size, all analyses have 

sufficient power (.80) to detect a close-fit (RMSEA <.05; MacCallum, Brown, & Sugawara, 

1996). For Model 1, which is depicted in Figure 1, the robust chi-square value, Χ2 = 98.755, df = 
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3.967, was significant (p = .000), indicating that the model is statistically discrepant from the 

covariance matrix (Kline, 2011). Additionally, the results using the DWLS method also resulted 

in a significant chi-square, Χ2 = 19.941, df = 6, p = .003. For the broad factor model, the Root 

Mean Square Error of Approximation (RMSEA) exceeded the .05 threshold for the close-fit 

hypothesis, with an RMSEA = .076. The robust Comparative Fit Index (CFI) of .960 indicates 

acceptable fit (Kline, 2011), but is below the optimal value for rejecting a misspecified model, 

given the large sample size (Sivo, Fan, Witta, & Willse, 2006). The Standardized Root Mean 

Square Residual (SRMR) value of .017 indicates that the correlated residuals suggest an 

adequate fit (Hu & Bentler, 1999), with values closer to 0 denoting better fit. Among the 

correlated residuals, General Intellectual Ability (GIASTD) and Processing Speed (GS) had the 

greatest disturbance (.056). However, all values fell below the .100 threshold, which is 

representative of a significance discrepancy between the model and the sample correlation 

(Kline, 2011).  

In order to improve the model fit, the residuals were examined in order to determine 

where covariance paths could be added. As noted above, the largest correlated residual values 

occurred between General Intellectual Ability and the broad ability factors, which were already 

specified with a direct path from GIA to the individual factors. An examination of the remaining 

variables led to an addition of covariance paths between Processing Speed and Comprehension 

Knowledge (GC; -.037) and Processing Speed and Fluid Reasoning (GF; -.024). The resulting 

model is discussed below.  

The adjusted broad model resulted in a decrease in the robust chi-Square value, X2 = 

47.510, df = 2.951). Again, the robust chi-square p value was significant (p = .000), although the 

value computed using the DWLS method was not (X2 = 6.381, df = 4, p = .172). Within this 
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model, the RMSEA = .060. The CFI value improved to an acceptable level (.981). Additionally, 

the SRMR value decreased slightly to .010. An examination of the correlated residuals again 

indicated all values fell well below .100. The greatest magnitude was now between General 

Intellectual Ability and Fluid Reasoning (.038).   

Path estimates for the final broad factors model are displayed in Table 8. With regard to 

indirect effects, General Intellectual Ability had significant positive effects on all broad abilities. 

Strong relationships with GIA were exhibited for Fluid Reasoning (B = .760) and Working 

Memory (B = .700). General Intellectual Ability evidenced moderate effects on Comprehension-

Knowledge (B = .648) and Processing Speed (B = .587). Finally, GIA exhibited a weak, but 

significant positive direct effect on Math Facts Fluency performance (B = .281). In terms of 

significant direct effects from the broad abilities to Math Facts Fluency, Processing Speed had a 

moderate effect (B = .310), Fluid Reasoning had a weak effect (B = .134), and Comprehension-

Knowledge had a significant, but weak effect (B = .090). The path from Working Memory to 

Math Fluency was not significant (B = .007).  

Table 4.3 

 

Path Estimates for the Final Broad Factor Model 

 

Path B SE β 

GIASTD - GC .648* .012 .655 

GIASTD - GF  .760* .010 .769 

GIASTD - GWM .700* .011 .711 

GIASTD - GS .587* .013 .605 

GC - MTHFLU .090* .015 .088 

GF - MTHFLU .134* .017 .131 

GWM - MTHFLU .007 .017 .007 

GS - MTHFLU .310* .015 .297 

GIASTD - MTHFLU .281* .022 .278 

*p < .01 
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Results for Research Question 2 

The purpose of the second model was to examine which narrow cognitive abilities exhibit 

significant effects on Math Fluency performance. Using the dataset from the previous model, the 

theoretical model shown in Figure 2 was analyzed. For this model, the robust chi-square value, 

Χ2 = 284.873, df = 5.296, was significant (p = .000) as was the DWLS value, Χ2 = 90.566, df = 9, 

p = .000. Fit indices indicated poorer fit than the broad model, with a robust RMSEA value of 

.113 and a CFI of .883. However, the SRMR was still relatively low (.030) and all correlated 

residual values fell below .100.  

As with the first model, modifications were made to the narrow model by examining the 

correlated residuals for areas where covariance paths could be added to improve overall model 

fit. Covariance paths were added incrementally, until all residual correlations values fell below 

.020. The resulting model included covariance paths between Perceptual Speed and all three 

remaining narrow variables, Attentional Control, Phonetic Coding, and Rapid Picture Naming. 

Note that a covariance path between Perceptual Speed and Number Facility was specified in the 

original narrow model. Additionally, covariance paths were added between Number Facility and 

Attentional Control, Number Facility and Rapid Picture Naming, and Attentional Control and 

Rapid Picture Naming.  

For the adjusted narrow model, the robust chi-Square value dropped significantly, X2 = 

7.647, df = 2.365 and was no longer significant at the p < .01 level (p = .031). Additionally, the 

DWLS solution resulted in a non-significant p value (X2 = 2.094, df = 3, p = .553). The model 

evidenced good fit according to the robust RMSEA of .023 and the robust CFI of .998. Finally, 

the SRMR also decreased to .004.   

Path estimates for the final narrow factors model are displayed in Table 9. Consistent 



 

 61 

with the broad factors model, General Intellectual Ability had significant positive effects on all 

narrow abilities within the model. The indirect effects of GIA were moderate ranging from B = 

.699 (Number Facility) to B = .376 (Rapid Picture Naming). Within this model, GIA also had a 

moderate direct effect on Math Fluency (B = .481). The narrow factors all exhibited weak or 

negligible effects on Math Fluency. Significant positive effects were present for Perceptual 

Speed (B = .266), Number Facility (B =.091), and Rapid Picture Naming (B = .054). In contrast, 

Phonetic Coding had a significant negative effect on Math Fluency (B = -.179). Finally, the 

relationship between Attentional Control and Math Fluency was not significant (B = -.011). 

Given the positive correlations identified previously, it is likely that effects of these variables are 

suppressed. The latter relationship is unsurprising, given the results of the first research question 

and the similarity between the Working Memory and Attentional Control clusters.  

Table 4.4 

 

Path Estimates for the Final Narrow Factor Model 

 

Path B SE β 

GIASTD - NUMFAC .699* .013 .695 

GIASTD - PERSPD .677* .012 .679 

GIASTD - ATTCRL .557* .010 .707 

GIASTD - PHNCOD .552* .015 .546 

GIASTD - RPCNAM .376* .015 .379 

NUMFAC - MTHFLU .091* .026 .090 

PERSPD - MTHFLU .266* .024 .260 

PHNCOD - MTHFLU -.179* .014 -.177 

RPCNAM - MTHFLU .054* .014 .053 

ATTCRL - MTHFLU -.011 .025 -.009 

GIASTD - MTHFLU .481* .022 .471 

*p < .01 

 

Results for Research Question 3 

 After the effects of broad and narrow factors on math fact fluency were explored, the 

final research question was proposed to examine the relationship between Math Problem Solving 
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(MTHPRB) and Math Facts Fluency. For this investigation, the best fitting model was chosen. 

Although the broad model was most parsimonious, the adjusted narrow model exhibited the best 

fit according to the RMSEA and CFI. Additionally, it was the only model that passed the robust 

chi-square significance test. Therefore, the Math Problem Solving variable was added to this 

model for analysis. This model is depicted in Figure 7.  

 The resulting model failed the robust chi-square test (X2 = 70.203, df = 4.849, p = .000), 

although the DWLS value was not significant (X2 = 18.664, df = 8, p = .017). Compared to the 

narrow factors model, the new model fit was relatively poorer according to both the RMSEA 

(.057) and the CFI (.975). The SRMR increased slightly to .012, but was still well within the 

acceptable range. As with the previous models, the correlated residuals were examined to 

determine areas where covariance paths could be added. Based on this information, it was 

determined that a covariance path could be added between Math Problem Solving and Perceptual 

Speed (-.040).  

 The following fit statistics describes the math problem solving model given this 

adjustment. The robust chi-square value decreased, but remained significant (X2 = 29.380, df = 

4.849, p = .000). Again, the DWLS value was not significant (X2 = 7.968, df = 7, p = .335). The 

RMSEA of .037 suggested good fit, as did the CFI (.990) and the SRMR (.007).  

 Path estimates for the final model are displayed in Table 9. As expected, GIA had a large 

positive effect on Math Problem Solving (B = .759). When examining the direct effects, 

Perceptual Speed (B = .374) and Math Problem Solving (B = .361) both exhibited moderate 

positive effects on Math Facts Fluency. In contrast to the preceding model, GIA now showed a 

weak positive effect on Math Facts Fluency (B = .187). Additionally, the Number Facility path 

was no longer significant (B = .016). The paths from Phonetic Coding, Rapid Picture Naming, 
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and Attention Control maintained the same directionality and approximately the same 

magnitude.  

Table 4.5 

 

Path Estimates for the Final Math Problem Solving Model 

 

Path B SE β 

GIASTD - NUMFAC .693* .013 .690 

GIASTD - PERSPD .674* .012 .677 

GIASTD - ATTCRL .551* .010 .701 

GIASTD - PHNCOD .561* .015 .557 

GIASTD - RPCNAM .356* .015 .360 

GIASTD - MTHPRB .795* .011 .767 

NUMFAC - MTHFLU .016 .025 .016 

PERSPD - MTHFLU .374* .024 .366 

PHNCOD - MTHFLU -.176* .013 -.174 

RPCNAM - MTHFLU .059* .013 .057 

ATTCRL - MTHFLU -.017 .023 -.013 

GIASTD - MTHFLU .187* .025 .184 

MTHPRB - MTHFLU .361* .018 .350 

*p < .01 

 

Alternative Models 

 Two alternative models were generated to compare to the final broad model. The broad 

model was chosen for comparison, as it was the most parsimonious and has the greatest 

theoretical support. As stated previously, the first alternative model posited that GF and GC 

mediated the relationship between GIA and the remaining broad abilities, GWM and GS (see 

Figure 3). Fit indices indicated the model was misspecified. The model resulted in large, 

statistically significant chi-square values (Robust X2 = 1036.416, df = 2.638, p = .000; DWLS X2 

= 13176.529, df = 15, p = .000). The RMSEA value of .308 indicates extremely poor fit, as does 

the CFI value of .563; the SRMR was still within the acceptable range (.051). An examination of 

the parameter estimates indicated that model generated a moderate negative effect of Fluid 

Reasoning on Math Facts Fluency, which further supports the conclusion that the model is 
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misspecified.  

A second alternative model was generated to test the theory that General Intellectual 

Ability was the sole contributor to Math Facts Fluency performance. Within this model, it was 

proposed that GIA mediated the relationship between Fluid Reasoning, Comprehension 

Knowledge, Working Memory, and Processing Speed (see Figure 4). The robust chi-square 

value, X2 = 260.680, df = 3.124, was statistically significant (p = .000), as was the DWLS chi-

square value, X2 = 44.664, df = 4, p = .000. The robust RMSEA of .141 indicated a poor fit. 

Similarly, the CFI value of .890 fell below the desired level. Again, the SRMR was acceptable 

(.024). An examination of the parameter estimates identified that all paths were significant and 

positive as expected. However, given the poor fit statistics, the model was rejected in favor of the 

broad factor model outlined in the first research question.  
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CHAPTER V 

DISCUSSION 

 Math fact fluency, which refers to the accuracy and speed with which one can perform 

simple arithmetic, is a foundational skill for the development of more complex, high-order 

mathematic calculations. Research has linked math fact retrieval deficits with lower scores on 

mathematic assessments, a reluctance to engage in mathematical activities, as well as increased 

frustration and anxiety related to performing mathematical calculations. Given that mathematical 

skills build in a hierarchical sequence, it is important that deficits are accommodated or 

remediated early. When schools use cognitive and academic screening measures to identify 

children for targeted services, it is also important that these measures assess the fundamental 

cognitive predictors of later academic performance. As such, the present study was the first of its 

kind to utilize the Woodcock Johnson IV assessment battery to investigate the relationship 

between cognitive abilities and math fact fluency. 

 Because no existing studies have evaluated math fact fluency performance in the context 

of the Catell-Horn-Carroll theory of intelligence, the present study relied on CHC research 

identifying the cognitive predictors of general mathematic achievement as well as individual 

studies assessing math fact fluency performance with narrow-band cognitive measures. The 

following discussion highlights the findings of the present study in the context of this research 

and generates general conclusions and implications for practice. Additionally, the study’s 

limitations are outlined, in addition to avenues of future research.  

Findings Regarding Broad Abilities 

The first aim of this study was to identify the relationships among General Intellectual 

Ability, broad cognitive abilities, and Math Facts Fluency performance. Previous research has 
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revealed that Crystalized Intelligence (Comprehension-Knowledge), Fluid Reasoning, Short-

Term Memory, and Processing Speed have the strongest relationships with overall mathematics 

achievement. A preliminary correlational analysis showed that GIA and these four broad abilities 

all were moderately correlated with Math Facts Fluency. When the abilities were analyzed 

together, GIA, Comprehension-Knowledge, Fluid Reasoning, and Processing Speed all exhibited 

positive direct effects on Math Facts Fluency performance, consistent with the hypotheses. As 

expected, GIA had moderate to strong effects on all broad abilities. The largest direct effect on 

Math Facts Fluency was evident for Processing Speed, which had a moderate positive effect. In 

comparison, GIA, Fluid Reasoning, and Comprehension Knowledge all had weak direct effects. 

Contrary to the hypothesis, Working Memory did not display a significant direct effect on Math 

Facts Fluency.   

 Overall, results of the broad abilities analysis are consistent with the findings of Taub et 

al. (2008) that utilized the WJ III battery and found that Crystalized Intelligence, Fluid 

Reasoning, and Processing Speed were most related to mathematics achievement. In addition, 

McGrew and Wendling’s (2010) meta-analysis concluded that these three broad abilities were 

most related to math calculation skills. The present findings are in contrast to McGrew and 

Wendling’s conclusions that Working Memory (which was categorized as a narrow ability in the 

WJ III battery) was related to math calculation skills at all ages. Hypotheses for this discrepancy 

are discussed below.   

 When comparing the results of this study to previous research, one must be cognizant of 

the fact that the Working Memory domain is new to the WJ IV battery. Previously, this factor 

was named Short-Term Memory and was derived from a working memory task and a relatively 

simple Short-Term Memory task (Memory for Words). The current cluster is comprised of two 
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subtest measuring Working Memory, which is characterized by the manipulation of information 

within immediate awareness. Although as noted previously, Taub et al. (2008) did not find 

significant effects of Short-Term Memory on mathematics performance, it was hypothesized that 

Working Memory ability would have a significant effect, in line with the results of McGrew and 

Wendling’s (2010) meta-analysis. Although Working Memory has a moderate bivariate 

correlation with math fact fluency, it has no significant direct effect on Math Facts Fluency when 

GIA and the other broad abilities are taken into account. This would suggest that the correlation 

between Working Memory and Math Facts Fluency is actually representative of a third, 

mediating variable. This mediating variable is likely GIA, given its strong correlation with 

Working Memory.  

 The absence of a direct effect from Working Memory in the broad abilities model of 

Math Facts Fluency is also theoretically plausible, given the assertion that math fact fluency 

skills represent rote retrieval within this study. Whereas Working Memory is understandably 

important for more complex, multi-step calculations, which require one to sequence the order of 

operations and process information simultaneously, it appears less so for this relatively simple 

task. To the extent that executive functioning skills, such as inhibiting and shifting, are potential 

predictors of Math Facts Fluency is unknown in this model, as there are no such executive 

function measures in the WJ battery. However, it can be tentatively concluded that Working 

Memory ability is less important than initially hypothesized when considering the Math Facts 

Fluency performance of children and adolescents.   

Unsurprising is that GIA contributed indirectly and directly to Math Facts Fluency 

performance, given the wealth of research that has shown general intelligence to be predictive of 

academic achievement. As GIA is composite of a broad array of cognitive skills, it is 
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hypothesized that the direct relationship to math fact fluency is an artifact of the presence of 

other abilities not measured within the model. Given the power of intelligence to predict 

achievement, it is also fitting that Fluid Reasoning, which is the broad ability most highly related 

to GIA, is also a significant predictor of Math Facts Fluency. Additionally, Fluid Reasoning has 

repeatedly demonstrated a strong relationship with math achievement (e.g., Floyd et al., 2003; 

Proctor et al., 2005; Taub et al., 2008). Within the correlational analysis employed in this study, 

the Math Problem Solving cluster had a strong relationship with Fluid Reasoning, similar in 

magnitude to its relationship with GIA. In this study, it was hypothesized that Math Problem 

Solving would serve as a representation of early numeracy in young children, given that the 

content of these problems involves comparing quantities and determining the relationships 

between numbers. If Math Facts Fluency performance is indeed related to early numeracy and 

number sense, then it is logical that children with stronger Fluid Reasoning skills, and thereby, 

stronger math reasoning skills, would perform better on math fluency measures.  

 As stated previously, Processing Speed had the greatest direct effect on Math Facts 

Fluency performance. The importance of Processing Speed on Math Facts Fluency performance 

is largely absent in the framework of math fact retrieval deficits proposed by David Geary, with 

the exception of Rapid Automatized Naming (RAN), which falls under the Phonological 

Processing subtype (Geary, 2011a). However, important to consider are the effects of age in 

comparing the two theories. Geary and others investigating the relationships between cognitive 

abilities and academic performance (e.g., Fuchs, et al., 2006; Geary et al., 2012; Jordan et al., 

2007) have largely focused on the early elementary age, where skills are emerging and 

intervention is most fruitful. However, this study utilized a 6-19 population, with a mean age of 

just over 12 years. As such, the majority of individuals in this study are in late elementary or 
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beyond, when skills such as Math Facts Fluency have moved from the acquisition phase to the 

fluency and generalization phase. Therefore, it is prudent to conclude that Processing Speed is 

moderately related to Math Facts Fluency performance in individuals who have automatized the 

skill.  

 Given the previous conclusion that the majority of individuals within this study have 

automatized math facts, then it follows that the ability measuring crystalized knowledge would 

be related to Math Facts Fluency. Although crystalized intelligence has been renamed and 

restructured in the WJ IV battery as Comprehension-Knowledge, the results of the present study 

suggest that this area continues to have a significant effect on math performance. A potential 

hypothesis for this relationship is that Math Facts Fluency requires the fluent retrieval of 

information stored within long-term memory, which is also required for the vocabulary and 

general knowledge tasks within the Comprehension-Knowledge domain. This proposed 

relationship would lend credence to the semantic deficit subtype of math fact fluency weakness, 

which posits that some children have a specific weakness in the fluent retrieval of information 

from memory. This hypothesis is further discussed when considering the results of the narrow 

factors model.   

 Before exploring the second model, it is worth mentioning that the broad abilities model 

discussed previously was mathematically superior to both alternative models generated. The first 

model, which identified Fluid Reasoning and Comprehension-Knowledge as mediating variables 

between GIA and the other broad abilities, Working Memory and Processing Speed, exhibited 

extremely poor fit. Thus, the current research supports contemporary CHC theory, which 

organizes Fluid Reasoning, Comprehension-Knowledge, Working Memory, and Processing 

Speed as broad abilities falling under the umbrella of general ability. The second model reversed 
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the relationships between GIA and the narrow abilities; in this alternative model, the narrow 

abilities exhibited direct effects on GIA, which in turn had a direct effect on Math Facts Fluency. 

Although better than the first alternative model, the second alternative model also showed poor 

fit. Therefore, the theoretical broad factor model was chosen as the representation of the current 

data.  

Findings Regarding Narrow Abilities 

The second goal of this study was to identify the relationships among General Intellectual 

Ability, narrow cognitive abilities, and Math Facts Fluency performance. McGrew and 

Wendling’s (2010) meta-analysis suggested that Perceptual Speed, Working Memory, and 

Phonological Processing were most related to math calculation performance. Support for the 

importance of Phonological Processing, including Rapid Automatized Naming (RAN), and 

Working Memory has also been found elsewhere within the literature (e.g., Bull et al., 2011; 

Chong & Siegal, 2008; Kroesbergen et al., 2009; Mazzocco & Grimm, 2013; Vukovic et al., 

2010). Therefore, Perceptual Speed, Phonetic Coding, and Rapid Picture Naming were included 

in the narrow model. Within CHC theory, narrow abilities are numerous and still evolving. 

Within the updated Working Memory composite, WJ IV authors proposed that Attentional 

Control was a contributing narrow ability (McGrew et al., 2014). However, as no narrow-band 

composite is provided within the battery, one was created for this study. It was anticipated that 

this narrow ability would approximate executive control. Another new addition to the WJ IV is 

the Number Facility cluster, which is a narrow ability that measures skills with numbers across 

the domains of Working Memory and Processing Speed.  

In the correlational analysis, moderate positive correlations with Math Facts Fluency 

were present for Number Facility, Perceptual Speed, and Attentional Control. In contrast, 
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Phonetic Coding and Rapid Picture Naming displayed weak positive correlations with Math 

Facts Fluency. When analyzed within the model, GIA had moderate positive effects on all 

narrow abilities. Additionally, GIA had a moderate direct effect on Math Facts Fluency, which 

suggests that GIA accounted for a sizeable amount of variance not explained by the narrow 

factors within the model. Indeed, all of the positive direct effects of the narrow abilities were 

weak. Of these narrow abilities, the greatest relationship was found between Perceptual Speed 

and Math Facts Fluency, followed by Number Facility, then Rapid Picture Naming. Phonetic 

Coding had a significant negative impact on Math Facts Fluency. Finally, Attentional Control 

had a negative, though non-significant, effect on Math Facts Fluency.   

 The results of the narrow factors analysis partially supported extant research. The 

positive direct relationship from Perceptual Speed to Math Facts Fluency supports findings from 

the meta-analysis regarding the WJ III (McGrew & Wendling, 2010). Additionally, the positive 

direct relationship from Number Facility to Math Facts Fluency supports the assertion that this 

narrow ability is responsible for “the speed at which basic arithmetic operations are performed 

accurately” (McGrew et al., 2014, p. 246). Finally, the small, but significant effect of Rapid 

Picture Naming on Math Facts Fluency supports research linking RAN and math fact fluency 

(Geary et al., 2012). However, the absence of a positive direct effect of Phonological Coding on 

Math Facts Fluency is at odds with Geary and others’ hypothesis that phonological processing 

weaknesses underlie a math fact retrieval deficit. Lastly, although the lack of relationship 

between Attentional Control and Math Facts Fluency is expected given the results of the broad 

factor model, it stands in contrast with research suggesting an executive functioning deficit 

responsible for a weakness in math fact fluency performance (Geary et al., 2012).   
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 When considering the results of the broad factor model, it is fitting that Perceptual Speed, 

a narrow ability underlying Processing Speed, had the strongest relationship with Math Facts 

Fluency of all the narrow abilities. In terms of bivariate correlations, Perceptual Speed had the 

second strongest relationship with Math Facts Fluency, preceded only by GIA. Both Perceptual 

Speed and Processing Speed share a subtest (Letter Pattern Matching), but they differ on the 

demands of the second subtest. Whereas Perceptual Speed contains a second alphanumeric 

matching task (Number Pattern Matching), Processing Speed’s second task requires the 

identification of a pair of pictures in an array (Pair Cancellation). Apparently, the speed at which 

one can identify alphanumeric symbols (i.e., letter and numbers) is of primary importance in 

Math Facts Fluency performance. Therefore, important to keep in mind when examining the 

weak relationship between Rapid Picture Naming and Math Facts Fluency is that a stronger 

relationship may have been present had the rapid naming task involved letters or numbers. This 

hypothesis is in line with research regarding rapid naming and reading fluency (Savage & 

Frederickson, 2005).    

When considering the significant, yet smaller effect of Number Facility on Math Facts 

Fluency, likely is that this cluster also somewhat represents the positive effect of Number Pattern 

Matching. Although the Numbers Reversed subtest also involves the use of numbers, the 

fundamental skill employed in this task is Working Memory. Indeed, this subtest is a component 

of the broad Working Memory factor, which had a non-significant relationship with Math Facts 

Fluency in the broad model. The narrow factors model replicated the broad factors model in the 

relative unimportance of Working Memory tasks on Math Facts Fluency. Of note, the 

Attentional Control composite in this study included both a Working Memory task (Verbal 

Attention) and a Processing Speed task (Pair Cancellation); however, the seemingly positive 
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weight of the Processing Speed task was not enough to generate a significant relationship with 

Math Facts Fluency. One hypothesis for this finding is that Pair Cancellation is a cognitively 

complex task that requires inhibition and interference control. In contrast, other speeded 

processing tasks lack this executive control component. As stated previously, the findings of this 

research is in direct contrast to the executive functioning type of math fact fluency deficit 

(Geary, 2011a). However, it is worth repeating that the present study utilized a sample of 

participants across childhood and adolescence and that the importance of particular cognitive 

abilities in acquiring math fact fluency may not continue through the fluency and generalization 

stage. Consistent with this hypothesis, Geary et al. (2012) acknowledged that central executive 

measures were less predictive of fact fluency in fourth grade.  

 Perhaps the most surprising finding resulting from the second model was the significant 

negative relationship between Phonetic Coding and Math Facts Fluency. This finding stands in 

opposition to previous research using the WJ III battery as well as independent studies 

identifying phonological processing measures as predictive of math fact fluency (e.g., Fuchs et 

al., 2005; Fuchs et al., 2006). Although suppression from other narrow abilities is likely the 

cause of the negative relationship within the model, the bivariate correlation between Phonetic 

Coding and Math Facts Fluency indicates that the two are only weakly positively correlated. 

Again, it is important to consider that the effect of Phonetic Coding in acquiring Math Facts 

Fluency may be relatively diminished by late elementary and thus would be masked within the 

current sample. This hypothesis is supported by a similar trend in reading fluency performance; 

although phonemic awareness is strongly related to reading acquisition in young children, its 

importance declines across time, when reading fluency is better established (Phillips & Torgesen, 

2006). Second, it is important to note that the Phonetic Coding cluster provided in the WJ IV is 
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distinct from the WJ III Phonological Processing cluster, given the restructuring of the battery 

and the addition of the Tests of Oral Language, and may measure slightly different abilities. The 

phonological processing tasks in the Phonetic Coding cluster, Segmentation and Sound 

Blending, are both measures of one’s ability to manipulate phonemes. However, other tasks 

measuring alphabetic principle (sound-symbol associations) could also fall under the umbrella of 

phonological processing. Thus, there may be important distinctions between tasks given the same 

general classification.  

Findings Regarding Math Problem Solving 

 A third aim of this study was to investigate the relationship between an achievement 

cluster, Math Problem Solving and Math Facts Fluency performance. Math Problem Solving was 

hypothesized to have a significant direct effect on Math Facts Fluency, given the evidence 

supporting the hypothesis that a number sense weakness is present in children with math fact 

fluency deficits (Geary, 2011b; Locuniak & Jordan, 2008). Given the previous finding that Math 

Problem Solving is strongly correlated with Fluid Reasoning, the narrow factors model was used 

to explore the relationship between Math Facts Fluency and Math Problem Solving.  

 As expected, the Math Problem Solving cluster had a significant positive effect on Math 

Facts Fluency performance. When this variable was included within the model, other 

relationships shifted slightly. The direct path from GIA to Math Facts Fluency remained 

significant, although decreased to a weak positive effect. Similarly, the effect of Number Facility 

on Math Facts Fluency decreased and was no longer significant. In contrast, the direct effect of 

Perceptual Speed increased in magnitude and exhibited the strongest direct effect on Math Facts 

Fluency. The effects of Phonetic Coding and Rapid Picture Naming were relatively unchanged.   
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 In line with the previous statement that Fluid Reasoning and Math Problem Solving are 

highly correlated, Math Problem Solving exhibited a positive direct effect on Math Facts 

Fluency. However, within the narrow factors model, Math Problem Solving took on relatively 

stronger importance than Fluid Reasoning did in its respective model. Well established from 

longitudinal research is that early math achievement is predictive of future achievement (Duncan 

et al., 2007). The current findings suggest that performance on an applied mathematics 

achievement measure may be more predictive of Math Facts Fluency than other measures of 

cognitive abilities in children and adolescents. The exception, of course, is Processing 

Speed/Perceptual Speed, which have proven to be the most important individual cognitive ability 

within this sample of students. Nonetheless, to the degree that Math Problem Solving measures 

an underlying number sense, the current research lends support to the theory that number sense is 

predictive of math fact fluency performance.   

Study Limitations 

 One of the foremost limitations evident when discussing the results of this study is the 

large age range of students within the sample. Although the purpose of the study was to make 

broad conclusions regarding the relationships between cognitive abilities and math fact fluency 

in school-age children and adolescents, these results may not accurately reflect the dynamic 

importance of particular cognitive abilities when considering cross-sections of students. Previous 

research (e.g., Floyd et al., 2003) has demonstrated the differential impact of cognitive abilities 

across the development academic skills. Thus, it is important to be cognizant of this fact if these 

results are to be applied to inform assessment or screening practices in young children.  

 Second, although this study provided evidence of a moderate relationship between math 

problem solving and math fact fluency, it was beyond the scope of the study to determine the 
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predictive value of other measures of academic achievement. Given that all data within this study 

was collected at a single point in time, no generalizations can be made to the use of math 

problem solving to predict future math fact fluency performance. Additionally, quite possible is 

that other inter-achievement relationships may exist within the battery, for example, between 

reading fluency and math fluency. Further research is needed to address these questions.  

 A final, practical limitation concerns the nature of the data used within this study. Many 

of the subtests that create the narrow and broad composites are cognitively complex tasks that 

span various abilities. For example, the Pair Cancellation task is thought to involve three narrow 

abilities: Perceptual Speed, Spatial Scanning, and Attentional Control (McGrew et al., 2014). 

Therefore, when used as a predictor, it is difficult to determine which narrow ability is most 

salient in determining the outcome variable. Although it is worth exploring the narrow abilities 

in order to isolate specific areas of weakness, it is to be expected that a high degree of similarity 

may be present across these tasks and their corresponding broad abilities. For example, the broad 

ability Processing Speed and the narrow ability Perceptual Speed both share a common subtest; 

similarly, the narrow ability Number Facility shares a common subtest with the Processing Speed 

and Working Memory broad ability clusters. Given the degree of overlap between subtests 

comprising the broad and narrow abilities, a model exploring the relationships among broad and 

narrow factor concurrently would contain significant multicollinearity. Therefore, broad and 

narrow abilities were analyzed separately for this study. The difficulty with parsing out 

theoretical narrow abilities in an assessment instrument is not inherent to the WJ IV. When 

considering the input, processing, and output demands of any assessment task, it is likely one 

will be able to identify multiple underlying abilities. Therefore, it is imperative that the findings 

be viewed in the context of the task demands produced within the assessment battery. One 
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should take caution in generalizing these findings to other assessment batteries with distinct 

measures.  

Future Directions of Study 

 The aforementioned limitations of the current research provide logical areas of future 

research. It is recommended that future research examine the applicability of the current model 

of Math Facts Fluency performance in age-defined subsamples. Future research may find that the 

abilities contributing to math fact fluency should be conceptualized differentially in the 

acquisition stage of the learning process (ages 6-10) than in the in fluency stage (ages 11+). In 

contrast, research comparing students in the acquisition phase versus the fluency, regardless of 

age, may be the best suited for uncovering true differences in the importance of cognitive 

abilities throughout the learning process. As mentioned previously, the relationship between 

math fluency and reading and writing fluency was not explored within this study. It is likely that 

future research regarding both the shared and distinct mechanisms for identifying fluency deficits 

using the WJ IV battery would prove useful for clinicians.  

 As the WJ IV battery is still a relatively new instrument, potential areas of future research 

with this instrument are abundant. Replication studies examining the relationships between the 

narrow and broad cognitive abilities and general mathematics achievement would be valuable in 

determining the potential effects of the restructured cognitive tasks. This information would 

provide an important context for analyzing the results of the current study. Further, as previous 

WJ research has typically examined Math Calculation Skills, which combines the assessment of 

Math Calculation and Math Facts Fluency, it remains to be seen which relationships with Math 

Calculation are most important when Math Facts Fluency is removed from the equation.  
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Implications for Practice 

 This is the first known study to use the Woodcock Johnson battery to examine the 

cognitive abilities related to math fact fluency as an isolated skill. As such, the results of the 

present study provide a comprehensive analysis of math fluency within the framework of the 

most empirically validated theory of intelligence. From here, further research is needed to clarify 

the ability of cognitive measures to predict math fact fluency performance across the learning 

process. Nonetheless, some implications for practice are provided. 

 First, the current research supports the assertion that assessment of one’s general 

cognitive ability can provide information about his or her expected achievement, even with a 

relatively straightforward task such as completing single-digit computations. When assessing 

broad domains of functioning, it appears that measuring processing speed performance would be 

most important in identifying students with potential difficulty in the area of math fact fluency, 

regardless of age. If a student exhibits a deficit in processing speed, clinicians are urged to 

consider an accommodation that would bypass this area of weakness.  

In determining the most appropriate accommodation for a student, clinicians must 

consider the student’s pattern of performance on a math fluency task. Students who are slow but 

accurate in their computation skills may benefit from extended time. In terms of 

accommodations, extended time is widely used and easy to implement in the classroom (Bolt & 

Thurlow, 2004). Students who are inaccurate in their computation skills would likely benefit 

from the use of a calculator. This accommodation is appropriate in instances where math fact 

fluency is not the primary skill being measured by the assessment. For example, on a 

comprehensive mathematics exam, the use of the calculator may allow the examiner to measure 

the student’s performance on higher-level math skills involved in solving algebraic equations.  
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In addition to considering appropriate accommodations for students with math fact 

fluency deficits, clinician and educators should also be familiar with empirically supported 

interventions that can be used to remediate these deficits. Cover-Copy-Compare (CCC) is a drill-

and-practice intervention that can be administered individually or in a group, which has 

demonstrated sustained increases in math fact fluency relative to control conditions or a 

constructivist-oriented intervention (Poncy, McCallum, & Schmitt, 2010; Skinner, Turco, Beatty, 

& Rasavage, 1989). Additionally, the Taped Problems intervention is a second drill-and-practice 

method for increasing fact fluency in the classroom setting (McCallum, Skinner, Turner, & 

Saecker, 2006). A comparison of the two interventions revealed that both were effective in 

increasing the math fact fluency of an elementary student with impaired cognitive functioning 

(Poncy, Skinner, & Jaspers, 2007). The authors noted that Taped Problems was more efficient in 

terms of times spent implementing the intervention; however, both interventions were 

implemented in fewer than 10 minutes per day. Thus, the research supports the use of targeted 

interventions to increase the math fact fluency of students, which have proven to be efficacious 

and relatively low-burden for educators.  

 Second, the results of this research have implications for universal screening practices. 

Previous research has shown that early academic skills, such as early numeracy or number sense, 

can predict later math achievement. In accordance with this finding, the present research showed 

that math problem solving skills were moderately predictive of math fact fluency performance. 

Although comprehensive assessment is certainly warranted in some cases, educators may be able 

to simplify their universal screening process by using a mathematical reasoning measure to 

identify children at-risk for mathematical difficulties. Whereas calculation and math fact fluency 

are learned throughout elementary school, research suggests that young children possess 
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mathematical reasoning abilities upon entering formal schooling. Relatedly, processing speed 

tasks are relatively simple and can be administered to young children before math fluency skills 

are solidified. Given the results of this study, educators may be able to use these measures to 

identify children who may go on to develop math fact fluency deficits. With this information, 

these children can be targeted with early intervention to support their future academic 

achievement.     

Summary 

The purpose of this research was to explore the relationships among the Cattell-Horn-

Carroll (CHC) Theory-Aligned Cognitive Abilities and Math Fact Fluency performance using 

the Woodcock Johnson IV standardization sample. Using path analysis, the broad and narrow 

abilities thought to influence Math Fact Fluency performance were modeled. The broad ability 

model revealed that General Intellectual Ability exhibited significant direct and indirect effects 

on Math Fact Fluency. With regard to the broad factors, Processing Speed had a moderate direct 

effect on Math Fact Fluency, followed by weak direct effects from Fluid Reasoning and 

Comprehension Knowledge. Contrary to the initial hypothesis, Working Memory did not have a 

significant direct effect on Math Fact Fluency. Within the narrow factors model, Perceptual 

Speed, Number Facility, and Rapid Picture Naming all exhibited weak positive direct effects. In 

contrast, Phonetic Coding and Attentional Control were not positively related to Math Fact 

Fluency. Inclusion of the Math Problem Solving composite revealed that Math Problem Solving 

had a moderate direct effect on Math Fact Fluency, which was similar in magnitude to Perceptual 

Speed. Overall, the current research points to general ability, speed of processing, and math 

reasoning abilities as the most important contributors to Math Fact Fluency performance. As 

previous research with the WJ battery has studied general mathematics achievement, the current 
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findings shed light on the unique relationships among cognitive abilities and Math Fact Fluency, 

with implications for clinicians and educators.  
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Figure 1. Theoretical broad factor model. 
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Figure 2. Theoretical narrow factor model. 
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Figure 3. First alternative broad factor model.  
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Figure 4. Second alternative broad factor model. 
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Figure 5. Final broad factor model with parameter estimates.  
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Figure 6. Final narrow factors model with parameter estimates.  
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Figure 7. Final math problem solving model with parameter estimates.   

 

 

 

 

 


	Duquesne University
	Duquesne Scholarship Collection
	Fall 1-1-2017

	An Exploration of the Relationships Among Cattell-Horn-Carroll (CHC) Theory-Aligned Cognitive Abilities and Math Fluency
	Katherine D. Piselli
	Recommended Citation


	DISSERTATION OR THESIS TITLE

