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ABSTRACT

AN APPLICATION OF SPECTRAL TRANSLATION AND SPECTRAL ENVELOPE

EXTRAPOLATION FOR HIGH-FREQUENCY BANDWIDTH EXTENSION OF

GENERIC AUDIO SIGNALS

By

Alexei Kontsevoi

August 2010

Thesis supervised by Dr. Stacey Levine

The scope of this work is to introduce a conceptually simple yet effective algorithm

for blind high-frequency bandwidth extension of audio signals, a means of improving

perceptual quality for sound which has been previously low-pass filtered or downsampled

(typically due to storage considerations). The algorithm combines an application

of the modulation theorem for discrete Fourier transform to regenerate the missing

high-frequency end of the signal spectrum with a linear-regression-driven approach to

shape the spectral envelope for the regenerated band. The results are graphically and

acoustically compared to those obtained with existing audio restoration software for a

variety of input signals. The source code and Windows binaries of the resulting algorithm

implementation are also included.

iv



ACKNOWLEDGEMENT

The author would like to thank the Department of Mathematics and Computer Science

faculty for patience and encouragement to render the present work as a thesis, and the

following online resources for providing materials used to complete the project:

• TheForce.netand Vidizen Films for Broken Allegiance, a fan-made Star

Wars-themed motion picture;

• Panic Struck Productionsfor Revelations, another fan-made motion picture set in the

Star Wars universe;

• MusOpen.comand US Navy Band for their rendition of Tchaikovsky’s Symphony

No. 4 Finale;

• Dance-Industries.comand Maurice Corbach (Dutch Dance Connection) for Ocean,

a free trance track with enough variation in percussion to be one of the test cases for

the project;

• Q Software Solutionsand Jacob Navia for LCC-Win32, a Windows C compiler free

for non-commercial use;

• Diamond Cut Productionsfor Diamond Cut Audio Restoration Tools, the most

versatile audio restoration software known to the author;

• Matteo Frigo and Steven G. Johnson forFFTW, a free and open-source Fast Fourier

Transform library for C and C++.

• Xiph.Org Foundationand Josh Coalson forFLAC, a free and open-source lossless

audio codec used to compress the audio samples included with this paper.

v

http://www.theforce.net/
http://www.panicstruckpro.com/revelations/
http://www.musopen.com/
http://www.dance-industries.com/
http://www.q-software-solutions.de/
http://www.diamondcut.com/
http://www.fftw.org/
http://www.xiph.org/
http://flac.sourceforge.net/


TABLE OF CONTENTS

Abstract iv

Acknowledgement v

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background 2

2.1 Discrete Fourier Transform. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Spectrogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Spectral Averaging, Spectral Plot, and Spectral Envelope. . . . . . . . . . 6

3 Existing Methods 8

3.1 Equalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Harmonic Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Available Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

3.4 Nearest-neighbor Resampling. . . . . . . . . . . . . . . . . . . . . . . . 14

4 Implementation Details 15

4.1 Spectral Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

4.2 Spectral Envelope Estimation. . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Further Improvements. . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

5 Comparative Results 32

5.1 Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

vi



5.2 Electronic Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

5.3 Symphonic Music. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

5.4 Speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

5.5 Mixed Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

6 Conclusion and Potential Improvements 46

References 49

A Source Code and Windows Binaries 50

vii



LIST OF TABLES

1 Parameters used for VVA and BandR processing, with BandR statistics

obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

2 Electronic music test signals. . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Symphonic music test signals. . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Speech test signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

5 Mixed audio test signals. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Attached program files. . . . . . . . . . . . . . . . . . . . . . . . . . . .50

viii



LIST OF FIGURES

1 Example of the spectrogram. . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Example of the spectral plot of a wide-band audio signal. . . . . . . . . . 7

3 Example of the spectral plot of a low-pass filtered audio signal. . . . . . . 8

4 Spectral plots of the band-limited signal in Figure3, processed with a

harmonic exciter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

5 Spectral plot of the signal in Figure3 following an application of raw

spectral translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

6 Possible results of fitting a least-squares line through log-scale spectral line

magnitudes in the short-term power spectrum. . . . . . . . . . . . . . . . 23

7 Histogram of the average log-scale DFT magnitude distribution at a single

frequency line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

8 Spectrograms of the electronic music test signal. . . . . . . . . . . . . . . 35

9 Long-term power spectra of the electronic music test signal. . . . . . . . . 36

10 Spectrograms of the symphonic music test signal. . . . . . . . . . . . . . 38

11 Long-term power spectra of the symphonic music test signal. . . . . . . . 39

12 Spectrograms of the speech test signal. . . . . . . . . . . . . . . . . . . . 41

13 Long-term power spectra of the speech test signal. . . . . . . . . . . . . . 42

14 Spectrograms of the mixed audio test signal. . . . . . . . . . . . . . . . . 44

15 Long-term power spectra of the mixed audio test signal. . . . . . . . . . . 45

ix



1 Introduction

With the advent of digital media and the wide availability of the Internet which promotes

its distribution, it is not uncommon to see the circulation of poor quality audio material.

One of the most common types of quality degradation is the low-pass filtering of a

given signal. Improperly chosen filters during mastering, poor frequency responses of

the underlying analog equipment, and especially low encoding bit rates for lossy audio

compression techniques such as various flavors of MPEG (owing to transfer rate or storage

space constraints) are among the most frequent causes. In audio material that has suffered

from low-pass filtering, practically all high-frequency information beyond a certain sharp

cutoff (e.g. 11 kHz) is completely obliterated. The resulting audio sounds characteristically

muffled. Research in this area is scarce (see [LL03], [LR04, §5], and [BN07]), and

worse yet, no commercially or freely available software (to author’s knowledge) exists

to effectively deal with the problem. This circumstance prompted the author to develop a

freely available program for dealing with such degraded audio. The scope of this paper is

to summarize the existing blind high-frequency bandwidth extension methods for generic

audio, and to explain and provide a working implementation of a new algorithm for dealing

with this problem, which offers a perceptual improvement over widely available methods

used in modern audio restoration software.

This work is structured as follows.§2 focuses on thediscrete Fourier transform,

the primary analysis and processing tool used in just about any digital signal processing

software, and introduces the essential frequency analysis methods used in the remainder of

the paper.§3 surveys the algorithms and implementations which already exist to deal with

the problem of high-frequency bandwidth extension.§4 provides a detailed description

of the proposed method, while§5 compares its effectiveness to that of other available

methods. §6 provides suggestions for further work to improve the proposed algorithm.

Finally, the attachments in AppendixA contain the source code and Windows binaries of

the algorithm’s implementation.
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2 Background

2.1 Discrete Fourier Transform

Digital audio tracks, in their basic form, are stored in computers as sequences of samples

representing values of the sound wave’s amplitude (or, in their electrical representation,

voltage) at successive and evenly spaced points in time. Such sequences are said to be in

the time domain. The human ear, however, does not perceive the amplitudes of the signal

at individual points in time; because of the way it is structured, it perceivesfrequencies

(tones) as they vary with time (see [LR04, §1.4] for an introduction to psychoacoustics

and further references). We would therefore like to have analysis tools and processing

algorithms mimic this property of the human ear.

The Fourier and related transforms are probably the most widely used techniques to

accomplish that. The discrete Fourier transform (DFT) is a functionF that takes anN -point

complex-valued finite sequence{xk} (where0 ≤ k ≤ N − 1) and returns anotherN -point

complex-valued sequence{Xj} (0 ≤ j ≤ N − 1) obtained from{xk} as follows:

Xj = F({xk})j =
1√
N

N−1∑
k=0

xk

(
cos

(
2πj

N
k

)
− i sin

(
2πj

N
k

))

=
1√
N

N−1∑
k=0

xke
−2πij

N
k. (1)

The DFT is invertible; that is, there exists an inverse transformF−1 which takes the

sequence{Xj} and returns the original sequence{xk}. The inverse DFT is defined as

xk = F−1({Xj})k =
1√
N

N−1∑
j=0

Xj

(
cos

(
2πk

N
j

)
+ i sin

(
2πk

N
j

))

=
1√
N

N−1∑
j=0

Xje
2πik

N
j. (2)

Essentially, the effect of the DFT is to represent the sequence{xk} as a sum of periodic
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waves with frequencies ranging from0 to N − 1 periods per sequence; the values of{Xj}

represent the amplitudes of these periodic waves at each frequency, and are necessary to

reconstruct the original signal{xk}. There are two equivalent forms for each transform

given above; the former (rectangular) form represents the signal as a sum of cosine and

sine waves of each frequencyj, where the amplitudes of cosine and sine waves are stored in

<Xj and=Xj respectively. The latter (polar) form, equivalent to the former by the Euler’s

formula eiφ = cos φ + i sin φ, conceptually represents each frequency pointj as having

a magnituderj =
√

(<Xj)2 + (=Xj)2 and aphase(argument) φj (an angle, normally

constrained between−π andπ or between 0 and2π, such that<Xj = rj cos φj and=Xj =

rj sin φj). The magnituderj thus represents the amplitude of the cosine wave at each

frequency pointj, and the phaseφj determines the initial value of that cosine wave at the

time pointk = 0. The DFT is normally computed in its rectangular form for practical

reasons, but a change to polar coordinates is often done afterwards because the polar form

may be more convenient for signal processing applications, including the one introduced

in §4 of this paper.

An important property of the DFT is that if the sequence{xk} is real-valued (as is the

case in audio processing), then the output sequence{Xj} is conjugate-symmetricabout its

center, that is, for all1 ≤ j ≤ bN/2c, X∗
j = XN−j (whereX∗

j ≡ <Xj − i=Xj), and

conversely, if for all1 ≤ j ≤ bN/2c, X∗
j = XN−j, then the inverse DFT of{Xj} is

a real-valued sequence. Firstly, this implies that for a DFT of real-valued sequences, the

upper portion of{Xj} (for j > bN/2c) mirrors the lower portion, and therefore needs not

be stored for practical applications (the firstbN/2c + 1 points of{Xj} are sufficient to

reconstruct{xk} via an inverse DFT). This gives rise to the so-calledreal-to-complexand

complex-to-realDFT types, which are used extensively in signal processing applications

including the one presented here, and some digital signal processing books like [Sm97]

rely on this kind of DFT almost exclusively. Essentially, the DFT ofN real-valued points

returnsbN/2c + 1 complex-valued points, which are then processed; the inverse DFT is
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then taken with the assumption that the upper portion of{Xj} would have been adjusted

accordingly to mirror the lower portion, resulting in a real-valued sequence. Secondly,

this property implies that in a sample with a given number of time-domain points, there

are only half as many frequency-domain points, and therefore for a given sampling rate,

the maximum meaningful frequency that can be contained in the sequence{xk} is half

that sampling rate (the Nyquist-Shannon theorem). For this reason most signal processing

software and literature (including this work) limit the frequency axis to half the sampling

rate of the source audio (theNyquist frequency) in all spectral analysis tools. This is also

the reason why resampling the audio to a lower sampling rate (as is often done to save

storage space) introduces the very kind of problem this work is going to address, namely

missing high-frequency components and the resulting muffled sound.

Finally, we need to address the normalization factor1/
√

N which appears in front of

the summation in the definitions of both forward and inverse Fourier transforms. Its choice

is somewhat arbitrary as long as the product of the factors in (1) and (2) is 1/N ; different

sources thus use different conventions [Sh95]. The factor1/
√

N is convenient because

with this choice of normalization, the root mean square magnitude of the source sequence

{xk} equals the root mean square magnitude of its Fourier transform{Xj}, that is,

N−1∑
k=0

|xk|2 =
N−1∑
j=0

|Xj|2, (3)

a property known as the Parseval’s theorem. This allows us to store the members of{Xj}

in the same power units as those of{xk}, the original waveform data.

2.2 Spectrogram

As evident from the above description, a sequence in the time domain can be represented

in the frequency domain by calculating its DFT. Calculating the DFT of the entire audio

signal, however, is both impractical and of limited use, firstly because the memory

4



requirements for that may be prohibitive, and secondly because by doing so, all the

temporal information in the signal will be hidden in the phase data (which is not easily

visualized or analyzed). Because human ear perceives frequencies as their magnitudes

change with time, it is often more accurate for analysis purposes to take the DFT over

small chunks of the audio signal, each of themN points long, compute the magnitudes of

the transformed sequence membersXj (normally referred to as thespectral linesof the

signal), and plot them against the time and frequency axes either as a surface, or more

frequently, as a grayscale or in pseudocolor. Such a plot therefore shows the magnitudes

of the cosine waves of different frequencies as they change with time; it is known as the

spectrogram. Figure1 shows an example of the spectrogram; thex axis is the time axis,

Figure 1: Example of the spectrogram

and they axis is the frequency axis. Darker regions represent greater magnitudes of the

spectral lines, while brighter regions represent lesser magnitudes (white being close to 0).

Additionally, because for typical audio there is usually a lot more energy in the lower

frequencies (closer to 0) than in the higher frequencies, the magnitudes are transformed to

a logarithmic scale before plotting. These conventions are followed throughout this work.
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2.3 Spectral Averaging, Spectral Plot, and Spectral Envelope

When assessing the general frequency versus magnitude characteristics of an audio signal,

however, it often makes sense to look at the plot of spectral line magnitudes over an entire

section of audio, where thex axis is the frequency axis and they axis is the magnitude

axis. Taking the DFT over the entire section of audio is often still impractical even for this

purpose, because asN increases, the noisy (jagged) nature of the resulting plot, in general,

remains [Sm10, §5.11]. A different approach is therefore used: the squared magnitudes

of the DFT lines are averaged over multiple successive DFTs taken over small chunks

(windows) of the source data, which can be either non-overlapping (Bartlett method) or

overlapping by half in the time domain (the more accurateWelch method). As more

windows are averaged, the noise is reduced in proportion to the square root of the number of

windows [Sm97, §9.1]. To increase the estimation accuracy even further, awindow function

(apodization function) is usually applied to the signal before its DFT is taken, resulting in

what is known as theshort-time Fourier transform. Typical window functions are a variety

of symmetric bell-shaped curves; they modulate (weight) the signal in such a way that the

points at the edges of a window receive less weight than the points close to the center.

In doing so, they reduce thespectral leakageassociated with the Fourier analysis, which

mainly arises because the Fourier transform (with its implicit treatment of any signal as

periodic in both time and frequency domains) is applied to pieces of aperiodic sequences

or sequences whose periodic components do not fit exactly into the chosen window size

(i.e. have a non-integer number of periods per window). High spectral leakage has the

effect of introducing into the spectral average non-zero magnitudes at frequencies where

the actual signal may have no energy at all, thus resulting inspectral biasand raising the

noise floorof the analysis (i.e. the minimum meaningful magnitude in the plot). Refer to

either [Sm10] or [Sm97] for more information on this subject.

Once the data is averaged over a sufficiently large number of windows, it is plotted. The

resulting plot is somewhat interchangeably referred to in different sources as thespectral

6



plot, the power spectrum, the spectral density, or theperiodogramof the signal. Along

with the spectrogram, it is one of the most frequently used tools in audio analysis. Just

as with the spectrogram, the averaged squared magnitudes are normally transformed to

the logarithmicdecibel(dB) scale before plotting, using the formulaLj = 10 log |Xj|2,

or equivalentlyLj = 20 log
√
|Xj|2 (the overline denotes averaging) if the software uses

linear (voltage) rather than quadratic (power) units internally. Thus, the scale of the spectral

plot in the dB units is usually consistent from one application to another. However, this is

not the case with the bias of the plot; different software packages bias the spectral plot

differently in the dB units (or equivalently, scale it differently in the linear or quadratic

units). The most straightforward approach is to leave the power spectrum in whatever units

it was in after taking the DFT; when the DFT is defined as (1) and the window function

integrates to 1 on its domain, these will also happen to be the units of the original waveform

(see (3) above). But frequently, before being transformed to the dB scale, the averages

are also normalized by the source audio’s sampling rate or the Nyquist frequency (and

sometimes also a factor of1
2π

) to give average power per unit of frequency (or angular

frequency), an estimate of thespectral power density(SPD) function. This is the case for

all spectral plots presented in this work as well. A sample spectral plot, averaged over a

time period of 5 seconds with 2048 samples per window, is shown in Figure2. Note that the
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-72

-66

-60

-54
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-42
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-24
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Figure 2: Example of the spectral plot of a wide-band audio signal
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plot is normally truncated at a certain minimum magnitude (in this case –96 dB) because

anything below that is usually spectral leakage and is not meaningful to the analysis.

When taken over a sufficiently long period of time or otherwise smoothed to eliminate

any random variation from the data, the spectral plot (or rather, the curve which would be

plotted) is referred to as thespectral envelopeof the signal—the primary factor which

affects the audio’s perceivedtimbre, especially in the higher-frequency hearing range

[LR04, §1.4.6]. Regenerating degraded signals in such a way that their spectral envelopes

mimic those of the original signals (or at least behave in a way that would be expected

for such signals)—more importantly in the long term but preferably in the short term as

well—is therefore important for high-frequency bandwidth extension applications.

3 Existing Methods

As a rule, the symptoms of absent high-frequency content in audio are readily visible on

the signal’s long-term spectral plot. Figure3 shows the power spectrum of the same signal

-96

-90
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-78

-72

-66

-60

-54

-48

-42

-36
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-24

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22
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kHz

Figure 3: Example of the spectral plot of a low-pass filtered audio signal

as in Figure2, but after it has been filtered with a brick-wall low-pass filter with a cut-off

of 13 kHz (a brick-wall filter is a filter with a very steep transition, such as what might

be applied during resampling to a lower sampling rate or by lossy encoders to minimize
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the noise in the remainder of the spectrum). Whereas in the original signal, the spectrum

extended all the way to 20 kHz, in the filtered signal there is essentially nothing beyond 13

kHz, which gives the resulting sound its dull and muffled quality. In this chapter, we survey

the existing and proposed methods for dealing with the problem of missing high-frequency

content.

3.1 Equalization

The first thing an audio engineer might be tempted to do with most audio restoration

software is to apply anequalizerto boost the high-frequency end of the spectrum in the

degraded signal. An equalizer (named so because it was originally developed to flatten

the spectral envelopes of signals) is a linear filter with a user-adjustable response curve;

sometimes it is convolution-based, sometimes DFT-based (since one of the DFT properties

is that circular convolution of one sequence with another in the time domain is equivalent

to pointwise multiplication of the sequences’ Fourier transforms in the frequency domain).

Essentially it scales parts of the signal’s spectral envelope based on a filter response

curve drawn by the user. Some of the commercially available implementations (such as

Elevayta FreEq Boy or Voxengo CurveEq) even offer as much as automatic matching of

the spectral envelope of one signal to a reference envelope computed from another signal.

But unfortunately, in a brick-wall-filtered signal there is not much content in the missing

frequency band to scale—whatever content was there is now reduced well below the noise

floor. Thus attempting to scale the missing frequency band magnitudes only introduces

irregular, uncorrelated or improperly correlated noise to the signal. Consequently, this

approach fails outright.

3.2 Harmonic Excitation

Another thing one might attempt to do is described in [LR04, §5.4]. This method is based

around the concept of aharmonic exciter. Typically, it is a non-linear function, such as

9



y = x2 or y = |x| (a full-wave rectifier), which takes the existing band-limited signal (or its

linearly filtered version) and generatesharmonics(i.e. integer multiples) of the frequency

lines still present in the band-limited signal. The output of the non-linear function is then

high-pass filtered (has its lower-frequency spectral lines removed) and mixed with the

band-limited signal to produce its enhanced version. To author’s knowledge, this method of

bandwidth extension, in one form or another, is used in all professional or semiprofessional

audio restoration software where bandwidth extension is offered, including Nero Wave

Editor version 5 (henceforth NWE, part of the Nero 9 package), Steinberg WaveLab

version 6 (its included Spectralizer plug-in), DiamondCut Audio Restoration Tools version

7 (henceforth DC-ART), and the open-source Crystality post-processing plug-in available

for various media players. Other surveyed software, including Sony Sound Forge version

10, did not appear to offer any bandwidth extension functionality out of the box, nor was

the author able to find any free or commercially available third-party VST plug-ins which

would offer any better functionality in this regard than what was already available in NWE,

DC-ART, or WaveLab. In the existing implementations, the user is able to adjust the

cut-off frequency (which in most software is documented to be the non-linear function

input cut-off frequency), the density (the amount of harmonics to generate), and the usual

wet/dry mix (the overall amount of effect to apply). Unfortunately, this set of controls

is largely inadequate for dealing with signals with abrupt cut-offs in the power spectrum,

such as the one in Figure3. Figure4(a)shows the spectral plot of the band-limited signal

in Figure3, processed with Steinberg’s Spectralizer plug-in with moderate settings (Input:

0 dB, Gain: 100.0, 2nd: 100.0, 3rd: 0.0, Mix: 25.0, Frequency: 6000, Density: 3). From

the plot we can see that while the software did regenerate the high end of the spectrum,

it did a poor job at extrapolating the spectral envelope of the signal, leaving a large jump

discontinuity at the original cut-off frequency. Furthermore, if we attempt more aggressive

settings to reduce that discontinuity and increase the Mix parameter to 75.0 (see Figure

4(b)), we see that while it does reduce the “step” in the spectrum, the side effect is that the

10
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Figure 4: Spectral plots of the band-limited signal in Figure3, processed with a harmonic
exciter

frequency lines significantlybelowtwice the specified harmonic exciter cut-off frequency

(12 kHz) gain roughly 6 dB, that is, increase in magnitude roughly two-fold. This is a

highly undesirable result, because firstly the algorithm distorts the spectral envelope of the

signal in the frequency range which the user did not even request the tool to process, and

secondly, this behavior indicates that the exciter is probably introducing a foreign signal

into that frequency range, which means that even if we were now to apply an equalizer
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to make the spectral envelope look like it should, the non-linear distortion introduced by

the harmonic exciter would remain audible. Auditory examination and comparing the

spectrograms of the band-limited and enhanced signals confirm this suspicion. Worse,

even if the controls were flexible enough to tailor this method to this and similar test cases,

by its design the algorithm would have only been capable of generating integer multiples of

the existing frequencies; for example, to regenerate missing spectral lines around 14 kHz,

it would have had to use the existing spectral lines around 7 kHz at best. Such a large gap

makes this approach inflexible by design; while the regenerated signal may have a “natural”

harmonic structure (i.e. frequencies only coming in multiples of one another, without which

the regenerated frequencies might be expected to sound “off key”)—due to the structure of

human ear and its fairly low sensitivity to pitch variation at high frequencies ([LR04, §1.4,

§6.3.5], and also in author’s personal experience)—the correct harmonic pattern for high

frequencies is not nearly as important as their proper temporal localization. And the more

distant the spectral lines are from one another in the frequency domain, in general, the

less correlated their magnitudes tend to be. Thus, for a signal where frequencies below 13

kHz are still readily available, it is likely that better estimates of the missing spectral line

magnitudes could be obtained from the lines located a lot closer, for example around 12

kHz, than those a whole octave away. But the algorithm does not allow the user to take

advantage of that.

Of all the software examined by the author, DC-ART seems to offer the best

implementation of the harmonic exciter model. In DC-ART version 7, it is implemented

as part of a tool called Virtual Valve Amplifier (VVA), which simulates the non-linear

characteristics of vintage vacuum tube rectifiers (and other tubes as well, at the user’s

discretion), allowing the user to vary parameters such as drive and operating point (thus

controlling the amount and type of harmonics generated), but more importantly, also

featuring a threshold control. This control only “switches on” the harmonic exciter when

the source signal is louder than the specified threshold, thus allowing high-frequency
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generation in louder sections without garbaging the spectrum during quiet passages (where

improperly generated harmonics can sound quite unpleasant). Test samples processed with

DC-ART are therefore included in§5 of this work.1

3.3 Available Research

Attempting to re-use some of the already available research on this topic also yields

only general ideas. Firstly, while a good deal of research has been done in the realm of

bandwidth extension forspeechsignals because of its most obvious application, telephony

(the entire [LR04, §6] is devoted to bandwidth extension for speech, with numerous

references to other sources), these methods (by the admission of the chapter’s author)

would be unlikely to work well with arbitrary audio [LR04, §6.10] because of very specific

model assumptions (not applicable to generic audio) that most of the speech bandwidth

extension systems rely on when it comes to spectral envelope extrapolation. While such

assumptions may be necessary in the realm of telephony, where the signals are severely

band-limited (normally with 3.4 kHz filter cut-off), less severe cases of audio degradation

(11–14 kHz cut-off), which the present work is tailored for, could benefit from a less

powerful but generally more robust spectral envelope estimation model. However, some

speech bandwidth extension techniques apart from envelope estimation (for example those

described in [LR04, §6.3]) can be (and are) reliably extended in this work to handle general

audio.

The idea or regenerating missing high-frequency spectral line magnitudes from lower

frequencies has also gained a widespread use in audio compression. The Spectral Band

Replication (SBR) has been developed as an add-on feature to popular extensible audio

compression formats such as MP3 (resulting in mp3PRO) and AAC (resulting in aacPlus)

1As this paper was being prepared, DC-ART version 8 was released which introduced a more traditional
harmonic exciter (named Overtone Synthesizer) as an alternative for high-frequency restoration. This
approach is similar to that implemented by NWE’s Band Extrapolation and Steinberg’s Spectralizer, and
is subject to much the same limitations including the mandatory one-octave range. In most cases it does not
outperform the VVA, which retained its exciter functionality without change in version 8.
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[DL02][Ek02]. While this technique does not work blindly—it requires certain metadata to

be present for envelope estimation, which is injected into the stream during encoding—and

consequently only works in tandem with an SBR-enabled encoder, it is actually listening to

aacPlus streams which gave the author the idea that something similar could be attempted

in the realm of audio restoration as well.

Despite that, so far as high-frequency bandwidth extension for general audio is

concerned, the research remains scarce, and the author found only two fairly recent works,

[LL03] and [BN07]. They suggest similar and in some respects more adaptive techniques

than those used in this work, but unfortunately the former was only discovered by the author

relatively recently (long after the project was initially implemented), while the latter was

not yet published at that time. To author’s knowledge, these techniques are yet to make

their way into mainstream audio restoration software, and moreover, the author was unable

to find any project or personal Web pages related to these works, or any other place where

implementations of these algorithms could be obtained. Thus, no comparative analysis can

presently be given for these techniques.

3.4 Nearest-neighbor Resampling

Lastly, one purely time-domain approach is worth attention here that is widely used in

Microsoft Windows multimedia engine for sampling rate conversions, and also by older

video games like Duke Nukem 3D. When a file is due to be upsampled to a new sampling

rate which is double the original (for instance, 44.1 kHz versus 22.05 kHz), Windows

multimedia engine simply copies the existing samples to the new data points, which results

in a step-like appearance of the waveform. This turns out to have approximately the

same effect as modulating the source signal by a cosine wave of the Nyquist frequency

(or equivalently, multiplying each sample by a constant with alternating sign, and then

adding the resulting signal with the original, an approach described asspectral folding

in [LR04, §6.3.3]); because of the modulation and periodicity properties of the DFT, this
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produces a reflection of the signal’s power spectrum about half the Nyquist frequency.

Nearest-neighbor resampling is somewhat more adaptive than spectral folding; intuitively,

the more high-frequency components there are in the original power spectrum (which

mean a lot of steep oscillations in the time domain), the more of them there will be in

the regenerated band (because the greater the “steps” are), while less high frequency in

the original means lesser steps and therefore less undesirable noise. This approach is

not without its issues—for example, it is prone to a similar integer factor limitation as

the algorithm described in§3.2, and somewhat prone to problems described in [LR04,

§6.3.3] as well, specifically the low-frequency content inappropriately folded into the

high-frequency range and the spectral gap between the original and regenerated bands.

But for its sheer simplicity, computational efficiency, and non-existent delay in streaming

applications, this technique achieves spectacular results. It is ironic that more sophisticated

resampling algorithms (those whichavoidfolding the spectrum) often produce perceptually

worse results. This method is therefore included among comparisons in§5 below.

4 Implementation Details

As demonstrated above, all the existing implementations available to the author have

generally failed to do an adequate job at dealing with missing high-frequency spectral

content. The goals set before the project was started were several:

• Unlike the existing harmonic excitation and nearest-neighbor resampling methods,

the final implementation must be flexible and configurable enough to allow

restoration of missing spectral content at other than whole-octave intervals;

• With a proper choice of parameters by the user, the program should not modify the

spectral contentbelow the cut-off frequency, i.e. in the region where the spectral

content is fine and no action needs to be taken;
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• In general, with a proper choice of parameters the algorithm should achieve

perceptually satisfactory results for most audio signals which have been

low-pass-filtered with a cut-off frequency no less than 12 kHz (which was the cut-off

frequency of the degraded audio which initially prompted the author to develop the

software);

• The program must be publicly releasable and usable by advanced users and audio

engineers for remastering purposes, not just by the author for experimentation.

Unlike most commercial implementations of audio processing algorithms, which are

essentially blackboxes and have only rudimentary documentation which does not

really explain what the tool does and exactly how it does that, this project needs to

be transparent to a competent user, which means being free (libre), open-source, well

documented, and conceptually simple (at least as much as it can be while remaining

effective).

In this chapter we focus on conceptually relevant details of the development process,

explaining the decisions made about the processing algorithm.

4.1 Spectral Translation

The first thing to be decided was what exact information should be used to restore the

high-frequency content, and how. This was answered based on the author’s prior experience

in the use of spectral analysis tools for audio restoration purposes. Firstly, there was an

observation that at least for the kind of audio the author had to deal with, there is a very high

amount of correlation between the magnitudes of spectral lines above approximately 6–8

kHz; for instance, observe the spectrogram in Figure1 above. Secondly, some experience

working with audio compression techniques (specifically with the source code ofLAME

MP3 encoder project and its then-current GPSYCHO psychoacoustic model) has provided

insight on the concept of tonality estimation. Thetonality of a signal (i.e. the quality of it
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being composed of one or several strong spectral lines versus having a uniform noise-like

distribution) is important in lossy audio compression because it determines how much

noise can be introduced by the encoder without it being perceptible by a listener—the

more tonal, the less noise can be introduced [Jo88][TH05]. On the other hand, GPSYCHO

stops tonality estimation at about 8.9 kHz by default, assuming frequency bands above that

to have a constant medium tonality, and this behavior does not significantly influence the

perceptual quality of audio output by the encoder. This assumption is also confirmed by

casual examination of most spectrograms and spectral plots. Thirdly, the usage of Spectral

Band Replication in modern compression algorithms (the very name of the technique)

suggested the idea of translating spectral lines from one location to another in the Fourier

spectrum. Thus to restore the missing high-frequency band, one might attempt to simply

take the DFT of the signal, define the start and end spectral liness and f delimiting

the frequency band immediately preceding the cut-off (f being the cut-off or close to

the cut-off), and then copy and juxtapose that frequency band beyond the cut-off, thus

extending the bandwidth of the signal fromf to f + (f − s) = 2f − s. To the present day

this remains the general principle of the program’s operation. This approach is identified as

spectral translationin [LR04, §6.3.3]; much like spectral folding (see§3.4), it is employed

for speech bandwidth extension, but only in tandem with speech-specific spectral envelope

estimation models.

One problem with this that can be thought of outright is that it would require an 8

kHz-wide band to fill the gap between the original 12 kHz cut-off and the highest frequency

a human ear can perceive, generally accepted to be around 20 kHz, which would require

s to be around 4 kHz, somewhat too low in the frequency range to be reliably temporally

correlated with spectral content higher up the frequency line. However, the author’s prior

experience in audio restoration confirmed that one needs not go that far; normally, a cut-off

of 16 kHz (and sometimes, depending on the audio, even 14 kHz) is quite adequate for

the resulting audio not to be perceived as “muffled.” In fact, due to internal MP3 stream
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format limitations, MP3 encoders routinely truncate or distort the spectral content above

16 kHz (when operating with the typical 44.1 kHz or 48 kHz sampling rate), even at higher

bit rates. This can be easily detected by looking at spectrograms, yet remains inaudible to

most people. For example, in the case of our low-pass filtered signal in Figure3, we might

chooses to be 10 kHz, andf to be 13 kHz. Copying and pasting this band beyondf would

allow us to extend the signal’s bandwidth to 16 kHz, as shown in Figure5.
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Figure 5: Spectral plot of the signal in Figure3 following an application of raw spectral
translation

To implement this approach practically, firstly the author needed to decide on the

programming language to use. Since the program is aimed towards general audience

rather than academics only and needs to be able to run on a typical computer without any

specialized packages, C was chosen instead of popular numerical computing environments

like MATLAB (or interpreted languages like Java) because of its portability, performance,

and native (rather than bytecode) compilation.

Secondly, the time scale of the Fourier transform needed to be decided, so that the

requirements for stream access routines could be set. As explained above in§2.2, taking the

DFT of the entire signal and processing that would most likely not yield any useful results,

because while manipulating the spectral content, the synchronicity of the regenerated

frequency bursts with the bursts of frequencies they were regeneratedfrom would likely
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be lost, so even though the spectral envelope of the signal would look right in the long

term, it most likely would not be correct in the short term. Thus it was immediately

decided to take the DFT piecewise in the time domain, applying the algorithm to each

piece successively, with a window size that can be changed by the user depending on the

nature of the source audio. The default window size is chosen to be around 5 ms (given the

audio’s sampling rate), but rounded to the nearest power of 2 for performance reasons. For a

common sampling rate of 44.1 kHz, this amounts to 256 samples (or 5.8 ms), which on one

hand provides an adequate time resolution (for comparison, the shortest MP3 transform

window is 192 samples (or 4.3 ms) for 44.1 kHz sampling rate), and on the other hand

allows adequate frequency resolution (about 170 Hz per spectral line) for algorithm’s needs

as well.

Because of some prior experience in manipulating the DFT, the author was already

aware that an overlap-add windowing mechanism was needed, where successive DFTs are

taken over windows which overlap by half; after processing, a weighted average for each

sample is computed to yield the output signal. The program has a selection of window

functions to apply to the signal before it is fed to the DFT engine (and unapply after the

processed signal is taken back to the time domain), including the well-known rectangular,

triangular, raised cosine (Hann), and Nuttall (see [Sm10, §3] or the source code in Appendix

A for definitions of various window functions). The default raised cosine in most cases does

an adequate job at minimizing the audible artifacts resulting from spectral leakage.

Lastly, the specific method for transferring spectral lines had to be chosen. The

similarity (scaling) theoremwas considered, which essentially states that compressing a

signal by a factor ofa in the time domain results in stretching it by the same factor ofa

in the frequency domain, but unfortunately, the theorem is applicable to continuous time

and frequency domains only and does not carry well into the discrete domains, because

eithera or 1/a is necessarily non-integer fora 6= 1. However, the DFT property which

can still be used to justify the approach of simply copying spectral lines is known as the
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modulation theorem. Modulation refers to pointwise multiplication of two sequences in the

time domain. In the form which is useful to us, the modulation theorem for the DFT can

be stated as follows: ifXj = F({xk})j and{hk} = cos(2πak/N) for 0 ≤ j ≤ N − 1 and

0 ≤ k ≤ N − 1, then

F({xkhk})j =
1

2
Xj−a +

1

2
Xj+a, (4)

where j − a and j + a are to be interpreted moduloN . Essentially, this means that

pointwise multiplying an arbitrary sequence{xk} by a cosine wave witha periods per

window splits the Fourier spectrum of the signal, shifting half of it upwards and half of it

downwards bya spectral lines. In our case, we are only interested in shifting the spectrum

upwards, so we would be concerned about thej − a shifted band overlapping with the

j + a shifted band. However, because in our casea = f − s and there is virtually no

spectral content beyondf with a proper choice of operating parameters, the shifted bands

do not overlap anywhere beyondf . Because DFT also has the property of beinglinear

(that is, for arbitraryN -point sequences{xk} and{yk} and arbitrary constantsc andd,

F({cxk + dyk})j = cF({xk})j + dF({yk})j), so far our frequency domain processing can

be equivalently represented in the time domain by low-pass filtering the original signal

at f (if necessary), modulating the signal by a cosine carrier wave witha periods per

window, scaling it by a factor of 2, high-pass filtering it atf , and then pointwise adding the

low-pass filtered and high-pass filtered versions. All this should result in a well-behaved

signal as the individual operations are known to be well-behaved when applied to audio; in

particular, the spectral content belowf is untouched, which was one of the requirements.

Additionally, we use a real-to-complex and complex-to-real DFT types for forward and

inverse transforms respectively, so we do not have to worry about adjusting anyXj beyond

the Nyquist frequency (see§2.1); this is done implicitly by the DFT engine.

However, it was discovered that this algorithm worked as expected in only half of the

cases, specifically where the amount of shifta = f − s waseven. To understand why it

didn’t work as expected for odda (instead producing nasty-sounding interference patterns),
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we observe that although amplitude modulationh(y) = y cos(2πat) is a linear operation

with respect toy (for arbitrary signalsy1(t) and y2(t) and arbitrary constantsγ and δ,

γh(y1) + δh(y2) = h(γy1 + δy2) at any fixed point in timet)—which is the property

that allows the windowed overlap-add method we employ to produce consistent results

in the first place—it is nottime-invariant, that is, if y(t) = y(t − τ), generally it isnot

the case thath(y(t)) = h(y(t − τ)), becauseh is itself a function oft. Luckily, in our

case it is a periodic function, so we only need to consider the specific amount of overlap

for our piecewise processing to fix the problem. For odda, we observe that the carrier

cosine wavecos(2πak/N) has an odd number of periods per window. Since windows

overlap by half, the carrier wave enters each window in a phase opposite to that in the

previous window, so failing to take that into account results in partial cancellation of the

modulated signal in the overlapping regions. We therefore need a more general version of

the modulation theorem than what we have in (4)—one that would allow us to vary the

initial phaseφ of the carrier wave, that is, assume{hk} = cos(2πak/N + φ), and tell us

what the frequency-domain representation of{xkhk} would be in that case. Manipulating

the Euler’s formulaeiφ = cos φ + i sin φ to getcos(φ) = (eiφ + e−iφ)/2, we can express

{hk} = (ei(2πak/N+φ) + e−i(2πak/N+φ))/2, and then do simple algebra on (1) to establish

F({xkhk})j =
eiφ

2
Xj−a +

e−iφ

2
Xj+a, (5)

which indicates that, as suspected, for odda and windows overlapping by half, we need

to addπ to the phases of the of the copied spectral lines (or equivalently, just flip the

signs of both real and imaginary components) in every other window, which corrects the

issue and allows the overlap-add method to work as expected. If in the future an option

is added to overlap windows by a different amount (as is sometimes done in other signal

processing applications), the amount of phase adjustment for each window will need to be

reconsidered again.
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4.2 Spectral Envelope Estimation

At this point, we have an approach to restore missing spectral content from existing

content. In author’s experience, this blind copying of spectral content already provides

decent perceptual results in many cases, especially after applying an equalizer to eliminate

the jump discontinuity in the long-term power spectrum at the former cut-off frequencyf

(which is very visible in Figure5, for instance). However, this is not fool-proof because

even though we can even out the power spectrum in the long term by applying filters with

appropriate parameters, the spectrum can still remain markedly discontinuous in the short

term. Therefore, in general we would like to have a more adaptive approach for connecting

the original and restored spectral bands together, preferably an algorithm that operates

on a window-by-window basis and thus provides better-shaped power spectra in the short

term. We start by making an observation that the power spectrum in Figure5, if taken

on the dB scale and the random noise is discounted, is overwhelmingly linear in terms of

frequency in the range betweens andf (which in this case correspond to 10 kHz and 13

kHz respectively when the sampling rate is taken into account). We may therefore attempt

to fit a simple least-square-error regression line through that range using a logarithmic scale

for spectral magnitudes (similar to the dB units used in the plot). Once the estimated slope

β of that line is known, the valueβ(f − s) may be added to each regenerated spectral

line magnitude on the logarithmic scale (or, equivalently and more intuitively, it can be

taken to the linear scale and used as a factor to scale the magnitude of each regenerated

spectral line). Because initially, the original and the copied frequency bands are identical

in magnitude and are placed side by side, this procedure is expected to create a smooth

transition between the bands. An example of such a good fit is shown in Figure6(a)(here,

s maps to 5.5 kHz andf maps to 9.5 kHz). A logarithmicfrequencyscale has also been

tried, but in general it did not yield any significant improvements, so a linear frequency

scale is presently used by the program.

However, it was quickly discovered that using short-term power spectra from each
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(a) The power spectrum is overwhelmingly linear in the fit range, and the resulting line fits accurately
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(b) Local peaks in the power spectrum prevent a meaningful fit

Figure 6: Possible results of fitting a least-squares line through log-scale spectral line
magnitudes in the short-term power spectrum

individual window was in most cases inadequate to obtain a good linear regression. Local

temporal variations in the spectrum will often prevent a meaningful fit, and the resulting

scale factor applied to the regenerated band will often only make spectral envelope shape

worse than it used to be (see e.g. Figure6(b)). The resulting estimates end up not only

exaggerated but unstable from window to window, giving the audio an unpleasant “hoarse”

characteristic.

23



Several measures were introduced to work around this problem. Firstly, the DFT

window size can be increased to span greater time segments, thus providing more points

for the fit, but while it does offer improvement, the side effects of doing so (normally in

the form of “breathing,” that is, temporal smearing of sharp transient signals) are often

unpleasant as well. As an alternative to that, a separate analysis pass was introduced to

the program; no data is output on this pass, and it is only used for envelope estimation. In

this pass, a running average of the power spectrum is computed for each window (using

the data from a user-adjustable number of neighboring windows), and the slope of the

regression line is determined based on this average. This stabilizes the fit significantly

while largely avoiding the “breathing” artifacts associated with larger window sizes, thus

yielding vastly improved perceptual quality compared to both per-window fit and blind

spectral translation. Greater number of windows to average the power spectrum over tends

to yield more stable but also more inert estimates of the spectral envelope slope, so that

both extremes can increase discontinuities in the short-term spectra. In the absence of a

user-specified parameter, the default averaging period is chosen to be approximately 0.1 s

(amounting to 34 overlapping windows at 44.1 kHz sampling rate), which yields acceptable

results in most cases.

Secondly, the program has an option to use a different set of points for envelope

estimation than the one used for spectral translation; they both share the end linef , but

the start line can be adjusted separately for each (from now on,s for spectral translation

and l for envelope estimation). Extending the fit range (and sometimes contracting it)

can improve the fit, especially if there is a marked non-linearity in the fit range, for

example long-term highly tonal signals (where increasing the window size or the number

of windows for the running average has little effect).

Thirdly, some numerical statistics for the regression line are displayed by the program

following the analysis phase to assist the user with choosing appropriate parameters

pertaining to the envelope slope estimation. The first statistic is the root mean square error
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(RMSE) of the log-scale magnitudes in the fit range, calculated as
√

TSSE
NcNw(n−2)

, where

TSSE is the sum of squared residuals after the fit over all windows and channels of the

audio file, Nc and Nw are the numbers of channels in the file and the number of DFT

windows per channel respectively, andn = f − l + 1 is the number of points that the lines

were fitted through (n−2 being the number of degrees of freedom for each). Generally, the

lower the RMSE, the more meaningful the fit is on the average; values less than 4.5 dB are

usually good, whereas greater values can indicate either unstable estimates, or significant

non-linearities present in the portion of the spectrum used for estimation, or both. In

the former case, increasing the number of windows in the running average can improve

quality, but if that doesn’t affect RMSE much, the user should attempt to revise the range

of frequencies for the envelope slope estimation (and probably for the spectral translation

as well) to use wider, narrower, or otherwise more linear regions of the spectrum.

The second statistic is thep-valueα0 for the null hypothesisβ = 0, or simply, the

likelihood that the spectral envelope estimation employed by the program is of no use for

that particular audio and that particular choice of parameters; the closer to 1, the more

likely. Note that this can be either due to not having low enough variance for a significant

fit (inadequate number of windows in the running average), or because there are significant

non-linearities present in the fit range, or because there was a meaningful fit, but the true

envelope slope is indeed 0 (as is the case for e.g. white noise, whose spectral envelope

is flat by definition). α0 is computed separately for each window (given the log-scale

spectral average through which the regression line is fitted) as a two-tail Studentt-test for

a regression line slope (see e.g. [KK98, §5.7]):

α0 = 2Tn−2

(
−

∣∣∣∣∣β
√

(n− 2)SSX

SSE

∣∣∣∣∣
)

,

whereβ is the estimated slope of the regression line,Tn−2(x) is the CDF of the Student’s

t-distribution withn− 2 degrees of freedom, SSE is the sum of squared residuals after the
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fit for a particular window, and

SSX =

f∑
j=l

(j − j)2 =

f∑
j=l

(
j − f + l

2

)2

=
(f − l)(f − l + 1)(f − l + 2)

12

=
(n− 1)n(n + 1)

12

since the frequency linesj are uniformly distributed. The results are placed into an array,

which at the end of the analysis is sorted, and the familiar minimum, 1st quartile, median,

3rd quartile, and maximum are displayed. These values are intended to give the user an

idea whether there weresectionsof audio where the fit was meaningful or not meaningful,

and whether using the envelope extrapolation feature (with the parameters provided) was

justified overall.

The computational accuracy ofα0 depends greatly on how well the linear model

assumptions are satisfied for a given sample. To assess that, we need to make repeated

measurements of the log-scale magnitude average at some specified spectral line, and then

compare the distributions of these measurements at different spectral lines. This is difficult

to do with any accuracy given a highly dynamic nature of audio signals; we can, however,

perform this exercise for a reasonably long sample of white noise. To that end, first we

need to consider the probability distributions of log-scale magnitudes at each spectral

line (which are the input to the regression). These variables are averages of magnitudes

coming from multiple DFT windows. Different successive power means been tried for

averaging these short-term magnitude spectra: the cubic meanM3, the quadratic mean

M2, the arithmetic meanM1, the geometric meanM0, and the harmonic meanM−1. M0,

M1 and M2 all perform approximately even; each works better for some samples than

others.M2 (the traditional Welch periodogram) seems to do best on the average in terms

of RMSE, but because the quadratic average is biased away from 0, the result is sometimes

an overestimated slope for windowsin the vicinity of a window with a large burst of

high-frequency energy. On the other hand, the geometric meanM0 is biasedtowards
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0 and thus is more resilient to such scenarios. But more importantly, it is equivalent

to the arithmetic mean on the logarithmic scale, which is not biased either towards or

away from 0 and gives us additional security in terms of the probability distributions of

the log-scale magnitudes fed to the regression model, because with the increasing number

of averaged windows, these distributions are expected to be asymptotically normal by the

Central Limit Theorem, regardless of what the probability distributions of each averaged

term are. Consequently, the geometric meanM0 is the one employed by the program for

averaging the short-term power spectra. Simple inspection shows that the distributions

of logarithmically averaged spectral line magnitudes taken on a sample of white noise

are indeed close to normal (the more windows are considered for the average, the closer

to normal, as is expected due to the Central Limit Theorem), and the variances of the

distributions at each frequency line are roughly equal, as assumed by the linear model (of

course, these variances depend on the number of windows averaged). Figure7 shows one
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Figure 7: Histogram of the average log-scale DFT magnitude distribution at a single
frequency line, taken on a sample of white noise, overlaid by the p.d.f. of a normal
distribution of equal mean and variance

such distribution, obtained from a 5-second sample of white noise with a sampling rate of

44.1 kHz, a window size of 256, and 34 windows per spectral average.

The next issue to address is independence of measurements in each spectral line, and
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here we have a slight problem in that the magnitudes of spectral lines are normally not

entirely independent of one another due to spectral leakage. Experimentation indeed shows

that the use or non-use of a window function has a pronounced effect on the values ofα0 and

RMSE, however, the use of a balanced window function that significantly reduces spectral

leakage at a lesser or greater expense of frequency resolution (Hann, Bartlett, Nuttall) yields

reasonably consistent values regardless of which exact function is used; compared to no

window function (i.e. rectangular window), the use of such function with otherwise equal

parameters perceptually improves the results as well (even though it generally increases

RMSE). Using a window function is therefore crucial for proper operation of the algorithm.

From this, we may conclude that the computation ofα0 and RMSE should behave

reasonably well with high-frequency bands for most samples (which for high-frequency

spectral content are mostly noise-like) with the default (Hann) window function and a

reasonable choice of window size, starting and ending lines for the fit. However, having a

statistically significant fit with e.g.α0 = 10−5 at each window still tells us nothing about

the variability of the envelope slope estimateacrosswindows, but practice shows that a

significant variability there usually results in bad perceptual quality regardless of how well

the line fits individually through each window. To address this issue, we compute and

output the third statistic, thep-valueαp for the null hypothesisβ = βp, whereβp is the

estimated envelope slope for theprior window:

αp = 2Tn−2

(
−

∣∣∣∣∣(β − βp)

√
(n− 2)SSX

SSE

∣∣∣∣∣
)

.

This is again output in a familiar box-and-whiskers fashion. As opposed toα0, it is

desirable that the value ofαp be high, that is, it is desirable for the value of the slope

estimateβ for each windownot to be significantly different from that of the prior window.

The target values depend on the window size, but for the default 5 ms, generally the

3rd quartile α0 of 0.2 or less combined with the 1st quartile αp of 0.75 or more yields
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perceptually stable spectral envelopes (according to author’s experience).

Increasing the number of windows to average tends to improve all three statistics at the

expense of the algorithm’s temporal resolution. If the guidelines cannot be satisfied with

any choice of parameters and no perceptually good results are obtained (indicating that

either the spectrum is mostly flat and does not need extrapolation, or that there is a lot of

highly non-linear regions), the envelope extrapolation feature can be turned off altogether

as a last resort.

4.3 Further Improvements

At this point we have an implementation that takes into account both short-term and

longer-term variations in the power spectrum, but a few inexpensive enhancements can

still be made to improve perceptual quality of the output.

Firstly, we need to account for the possibility that a cut-off in the low-pass filtered signal

may not be as abrupt as in e.g. Figure3; a more gradual cut-off is often introduced by the

filter because abrupt cut-offs tend to introduce ringing artifacts into the signal. Working

with such signal would have been inconvenient, because if we choose a cut-off frequency

f too low, aiming to have a good linear fit through the magnitudes, we will discard useful

data beyondf (and introduce ringing artifacts at the new cut-off), whereas if we choose

f too high, aiming to preserve the entire available spectrum, this may result in a poor fit;

worse, the resulting signal will have a spectral gap in it. To avoid this dilemma, instead

of transferring just the region between spectral liness andf , we transfer theentire region

aboves (whatever portion of it fits under the Nyquist frequency) to the new location starting

at f . If we now choosef to end in a linear region (even though there is data beyond it),

the algorithm will preserve the cut-off shape in the translated spectral band while avoiding

introducing a spectral gap, thus avoiding the problem. However,f should still be chosen

reasonably close to the cut-off frequency; firstly, we generally want as much of the original

spectral content as possible to remain in place, and secondly, if there is significant spectral
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content beyond2f − s, to get mathematically predictable results we can no longer ignore

one of the terms in the modulation theorem (5), and need to transfer the content beyond

2f − s downwardsin the spectrum as well as upwards; this is not currently done by the

implementation.

Secondly, as we have seen above in§4.2, the spectral envelope estimation algorithm is

based on statistics and therefore is not fool-proof. If despite all the precautions it does run

into a situation like in Figure6(b) due to some significant non-linearity of the regression

region, we would like a fail-safe which prevents creating a large step-like discontinuity

at the junction of the original and translated spectral bands. To that end, we introduce

a slight overlap of 3 spectral lines between the original content and the translated band,

where the spectral content is interpolated. Depending on the window size, unfortunately

this reduces the width of the translated band (and the new cut-off frequency); for the usual

window size of 256 at 44.1 kHz sampling rate, the reduction is about 0.5 kHz, but in general

this tweak does a good job at concealing otherwise problematic cases. Care needs to be

taken when averaging spectral content; one may be tempted just to perform vector addition,

but while it does determine the resulting phases in a meaningful way, the magnitude of a

vector average of two vectors is not, in general, an average of their magnitudes. Therefore,

after the vector addition is performed, the magnitude of the resulting spectral component

is computed separately as a weighted root mean square of the magnitudes of the averaged

vectors. This avoids creating a “dip” in an otherwise perfectly linear spectral envelope.

Thirdly, the phases of the spectral lines in the generated band may be adjusted. If

the source (s throughf ) spectral lines happen to contain signals that form sharp peaks

in the time domain due to a specific combination of their phases, this (often perceptually

undesirable) “click” quality is carried into the translated band as well. To combat that, the

program introduces a linear sweep into the phases of the translated lines, starting from one

value atf and linearly increasing to another value at2f − s. By scattering the phases

in this manner, the impulse noise embedded in the original band can be “chirped” over
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time (see e.g. [Sm97, §11.6]), reducing the “rough” quality of the sound which would

otherwise result. Other methods have been tried to accomplish the same as well, including

multiplying the phases by a proportion of the spectral shift for each line and adding random

(but constant for the duration of execution) numbers to the phase of each component; both

have been rejected because the former tends to introduce destructive interference due to

overlapping DFT windows, while the latter results in a non-repeatable output. Care needs

to be taken when using this feature as it tends to worsen spectral leakage artifacts, especially

in temporally sparse signals such as speech, so greater values may require longer windows.

The amount of phase sweep is therefore adjustable; the default range is from−π/2 to π/2

and appears to work well in most cases.

Lastly, based on a suggestion from [LL03] a limiting threshold ofβ ≤ 0 was introduced

to disallow increasing spectral envelope slope. Legitimate signals with a rising envelope

in the normal bandwidth extension range for this program (which is roughly 11 kHz and

up) are comparatively rare, whereas increasing envelopes below that frequency (where the

spectral lines are borrowed) are more common. If the envelope is blindly extended and

allowed to increase in the regenerated range as well, audible artifacts often result, most

typically in the form of hissing “s” sounds when applied to speech. However, instead

of blindly limiting the slope (which would result in a discontinuity at the junction of the

original and regenerated bands, the very issue we are trying to avoid), we sweep the scaling

factor across the regenerated band, using the usual scaling factor near the start and no

scaling close to the end of the band, which results in a flat envelope in that range while

not introducing a discontinuity at the junction. Unfortunately this sometimes introduces a

bias into the spectral envelope estimation, because random downward variations for a flat

(white-noise) spectrum are allowed whereas random upward variations are not. However,

with the recommended choice of parameters (such thatαp is 0.75 or more) and a 10.5 kHz

to 15 kHz bandwidth extension, the amount of long-term bias at the 15 kHz end does not

exceed 0.5 dB when measured on a white-noise sample, which is perceptually negligible.
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Additionally, signals with a flat spectral envelope in that range are very infrequent. On the

other hand, this safeguard further mitigates the undesirable consequences of algorithm’s

application to cases like in Figure6(b) and saves the user a lot of hassle involved in

hand-picking appropriate parameters to handle such cases (or applying external tools like

equalizers or dynamic processors to the program’s output to further adjust the spectral

envelope).

5 Comparative Results

In this chapter we present some visual and acoustical comparisons of the algorithm’s

performance with that of the methods available in some existing software. Since the

algorithm is claimed to be robust enough to handle most audio signals, its performance will

be tested on four different kinds of audio: electronic music, symphonic music, speech, and a

mixture of music, sound effects, and speech (a sample taken from a movie soundtrack). The

author has been routinely using the program to restore movie soundtracks, but additional

samples cannot be presented in this paper due to both space constraints and copyright

restrictions.

Each test case starts out as the original wide-band signal with a sampling rate of 44.1

kHz and an effective bandwidth of about 16 kHz. The signal is then downsampled to 22.05

kHz (as is frequently done to save space), which reduces the effective bandwidth to about

10.8 kHz, and then upsampled back to 44.1 kHz for processing, which further reduces

the bandwidth to about 10.5 kHz (due to the application of anti-aliasing filters during

resampling). The resulting signal is processed with three different methods, believed by the

author to do the best job so far: DC-ART’s Virtual Valve Amplifier (§3.2) with the choice

of parameters deemed optimal by the author; the nearest-neighbor resampling (§3.4); and

BandR, the program implementing the algorithm described in this paper (refer to Appendix

A for binaries, source code, and a detailed user manual). The audio files, including the
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originals, are provided here in a lossless format so that the process can be repeated by

an interested reader; they are compressed with FLAC to save space. If necessary, FLAC

decoders for all popular operating systems can be obtained athttp://flac.sourceforge.net/.

Since the only difference between 4 of the 5 samples in each of the 4 groups is the

spectral content above 10.5 kHz, in order to hear any difference between themat all,

they should either be listened on high-fidelity audio equipment at an adequate volume,

or by individuals younger than 40 years of age—preferably both. Considering that high

frequencies carry little energy in most audio signals compared to lower frequencies, poor

frequency response of the audio reproduction equipment coupled with the age-related

hearing loss—which for frequencies 8 kHz and higher tends to be very significant even for

middle-aged people (24–40 dB compared to an average 20-year-old [LR04, §1.4.4])—may

push any spectral content over 10.5 kHz well below the threshold of hearing. Generally,

using around-ear headphones is preferable to using earphones and speakers. Using a

hearing aid (if available) or appropriate equalizer/tone control settings to boost the treble

(compensating the attenuation due to poor transduction systems and hearing loss) can be

effective as well.

5.1 Parameters

Table 1 summarizes the parameters used for DC-ART VVA and BandR processing.

Nearest-neighbor resampling does not take any parameters other than the sampling rate,

which is always converted from 22.05 kHz to 44.1 kHz. For BandR parameters, only the

ones which were set by the user are specified, while the rest are implementation defaults.

For 44.1 kHz sampling rate the defaults are 256 (5.8 ms) for the window size, 34 (98.7

ms) for the number of windows to average power spectra over, raised cosine (Hann) for the

window function, and 0.5 (−π/2 . . . π/2) for the phase scatter factor.
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Sample Electronic
Music

Symphonic
Music

Speech Mixed

VVA
Parameters

Tube Type Exciter

Spectrum Sweet

Drive 100

Mix 100

Operating Pointa –100 100 55

Threshold 20 5 25

BandR
Parameters

Translation Start 5.5 kHz

Translation End 10.5 kHz

Averaged Windows 15 (44 ms) 19 (55 ms) 23 (67 ms)

BandR
Statistics

RMSE 3.3 dB 2.5 dB 3.2 dB 3.5 dB

3Qα0 2.7·10–6 5.4·10–10 0.073b 1.6·10–6

1Qαp 0.75c

a This parameter does not actually control the operating point of a vacuum tube in Exciter mode,
as it is not meaningful for a gridless rectifier diode which the algorithm simulates. Instead, it
controls the number of harmonics generated.

b The median and 1Qα0 for this test case are 0.0044 and 6.1·10–5 respectively, indicating that the
envelope slope estimation is still largely useful.

c The Averaged Windows parameter was chosen to be a minimum number which yields 1Qαp

of 0.75. With this choice of parameters, median and 3Qαp are approximately 0.86 and 0.94
respectively for all samples.

Table 1: Parameters used for VVA and BandR processing, with BandR statistics obtained

5.2 Electronic Music

Figures8 and 9 show the spectrograms and the long-term power spectra of the signal

in the following order: original, downsampled, processed with VVA, processed with

nearest-neighbor resampling, and processed with BandR. Table2 contains all five samples

used to produce the plots. VVA does a good job at plowing through the entire spectrum

here, but in doing so garbages it with noise (which can be readily heard). Nearest-neighbor

resampling produces a reasonably consistent spectrum (discounting the gap in the middle,

which is mostly due to an anti-aliasing filter applied during downsampling to 11 kHz), but

because it reflects the spectrum about half the Nyquist frequency, it ends up introducing

strong noise lines around 14–16 kHz. BandR does the best job, accurately extrapolating the
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Figure 8: Spectrograms of the electronic music test signal, top to bottom: original,
downsampled, processed with VVA, processed with nearest-neighbor resampling,
processed with BandR
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Figure 9: Long-term power spectra of the electronic music test signal, top to bottom:
original, downsampled, processed with VVA, processed with nearest-neighbor resampling,
processed with BandR
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short-term and long-term spectral envelopes, producing a spectrum that looks and sounds

closest to the original.

musicelecorig.flac Original

musicelecds.flac Downsampled

musicelecproc vva.flac Processed with VVA

musicelecproc nnr.flac Processed with nearest-neighbor resampling

musicelecproc bandr.flac Processed with BandR

Table 2: Electronic music test signals

5.3 Symphonic Music

musicsymphorig.flac Original

musicsymphds.flac Downsampled

musicsymphproc vva.flac Processed with VVA

musicsymphproc nnr.flac Processed with nearest-neighbor resampling

musicsymphproc bandr.flac Processed with BandR

Table 3: Symphonic music test signals

Figures10 and11 demonstrate the spectrograms and the power spectra of a sample

of symphonic music processed with various algorithms, and Table3 contains the relevant

audio samples. Once again, the VVA harmonic exciter extrapolates all the way to the

Nyquist frequency at the cost of introducing distortions in the range where no processing

was needed, although this sounds somewhat better than in the electronic music case because
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Figure 10: Spectrograms of the symphonic music test signal, top to bottom: original,
downsampled, processed with VVA, processed with nearest-neighbor resampling,
processed with BandR
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Figure 11: Long-term power spectra of the symphonic music test signal, top to bottom:
original, downsampled, processed with VVA, processed with nearest-neighbor resampling,
processed with BandR
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the symphonic music’s high dynamic range enables effective use of the Threshold control.

Nearest-neighbor resampling also sounds better this time, as it introduces no significant

noise into the audible range, but its spectral envelope from 10 kHz to 15 kHz is still very

distinct from the original, resulting in markedly different coloration of the sound. Once

again, BandR produces an output that both looks and sounds closest to the original, albeit

it underestimates the long-term spectrum in the 13.5–15 kHz range because the slope in

that range of the original was not quite the same as in the range below 10.5 kHz, which was

used for reconstruction.

5.4 Speech

speechorig.flac Original

speechds.flac Downsampled

speechproc vva.flac Processed with VVA

speechproc nnr.flac Processed with nearest-neighbor resampling

speechproc bandr.flac Processed with BandR

Table 4: Speech test signals

Figures12 and13 show the spectrograms and the long-term power spectra of a speech

signal processed with the compared algorithms, while Table4 contains the samples from

which the graphs were produced. The author could not find any good VVA parameters

which would both avoid considerable harmonic distortion and avoid a discontinuity in

the spectrum, so VVA gives the worst results here. With this sample we also observe

the main drawback of the spectral translation algorithm in BandR—the generated spectral

band can only be as good as the band it was generated from. As we can see, there is

a spectral gap around 6.5–7 kHz in the original audio, and this gets translated into the

40


Alexei Kontsevoi
speech_orig.flac


Alexei Kontsevoi
speech_ds.flac


Alexei Kontsevoi
speech_proc_vva.flac


Alexei Kontsevoi
speech_proc_nnr.flac


Alexei Kontsevoi
speech_proc_bandr.flac



Figure 12: Spectrograms of the speech test signal, top to bottom: original, downsampled,
processed with VVA, processed with nearest-neighbor resampling, processed with BandR
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Figure 13: Long-term power spectra of the speech test signal, top to bottom:
original, downsampled, processed with VVA, processed with nearest-neighbor resampling,
processed with BandR
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restored spectral band along with everything else. Although the algorithm again joins the

bands smoothly and does a good job at flattening the short-term spectral envelope where it

would have otherwise been extrapolated as rising (around the “s” sounds) and would have

caused audible artifacts, it does end up somewhat overestimating the long-term envelope,

and is outdone by nearest-neighbor resampling here in terms of both perceptual quality and

similarity to the original (at least in the hearable range). Still, BandR produces perceptually

stable results, and a listener who is unaware of the process would be unlikely to perceive

any artifacts in the BandR version that they wouldn’t also hear in the original.

5.5 Mixed Audio

mixed orig.flac Original

mixed ds.flac Downsampled

mixed proc vva.flac Processed with VVA

mixed proc nnr.flac Processed with nearest-neighbor resampling

mixed proc bandr.flac Processed with BandR

Table 5: Mixed audio test signals

Finally, Figures14 and15 display the spectrograms and the cumulative power spectra

of a movie sound track excerpt containing a mixture of music, sound effects, and speech

with some background hustle; Table5 contains the relevant samples. Again, with VVA

the author was not able to find settings which would avoid both a discontinuity in the

spectrum and a considerable distortion in the output. Nearest-neighbor resampling looks

and sounds decent, but again ends up coloring the sound due to significantly overestimating

the spectral envelope. BandR ends up somewhat underestimating the long-term envelope in

the 10.5–13 kHz range, but for the most part it again produces the sound which graphically
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Figure 14: Spectrograms of the mixed test signal, top to bottom: original, downsampled,
processed with VVA, processed with nearest-neighbor resampling, processed with BandR
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Figure 15: Long-term power spectra of the mixed test signal, top to bottom:
original, downsampled, processed with VVA, processed with nearest-neighbor resampling,
processed with BandR
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and acoustically most closely follows the original, with the exception of three explosions

which only extend up to about 10 kHz in the original, but end up being extended into higher

frequencies by BandR. However, a user who has not heard the original probably would not

be able to identify that as an artifact.

6 Conclusion and Potential Improvements

While the resulting algorithm for the most part is adjustable and robust enough to be

adequate for author’s purposes (which mostly consist of remastering poor quality music

and audio tracks), the following additional enhancements could be implemented to improve

the program.

• An option to replicate the selected band multiple times could be added, in order to

effectively tile the missing portion of the spectrum. This could allow the program

to handle more extremely low-pass filtered audio, as well as regenerate the spectrum

beyond the usual 15–16 kHz range (albeit extending the bandwidth further is largely

unnecessary in the overwhelming majority of cases). [LL03] suggests determining

the band used for reconstruction dynamically on a per-window basis; [BN07] also

suggests determining the cut-off frequencyf automatically. However, doing that

properly would prove challenging as the authors of the above papers do not go into

the details of how they dealt with the issue of getting the overlap-add windowing

method to work correctly in tandem with these techniques. In author’s experience,

doing just about anything with the spectral line phases that is inconsistent from

window to window results in often unpredictable destructive interference patterns

when the windowed sequences are taken back to the time domain and overlapped.

• Perhaps the linear fitp-value metricsα0 and αp could be used for automatically

deciding whether to apply spectral envelope shaping on a per-window basis.
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• Presently, the spectral envelope slope estimation is based on a number of windows

centeredon the target window; however, the human ear’s temporal resolution on the

rising transients (attacks) is a lot greater than on the falling transients (releases), and

because of this the ear noticespre-echomuch more readily thanecho(the “breathing”

artifacts resulting from inadequate temporal resolution of the algorithm). Perhaps

shortening the leading edge and extending the lagging edge of the running spectral

average window range used for envelope estimation could provide higher perceptual

quality.

• The implementation can probably be made a lot cleaner by using other sinusoidal

transforms than the DFT, particularly themodified discrete cosine transform(MDCT)

which is often employed in lossy audio compression. Firstly, discrete cosine

transforms, unlike discrete Fourier transforms, imply aneven (mirror image)

extension of a finite sequence, rather than aperiodic (tiling) extension. If the signal

is manipulated in the frequency domain in a way that causes it to spill over from the

wrong end of the window when the inverse transform is taken, discontinuities are a lot

less likely to be audible that way. Secondly, the MDCT has the overlap-add concept

built into it; the transform takes a2N -point real-valued sequence in the time domain

and returns anN -point real-valued sequence in the frequency domain; the inverse

transform takes anN -point sequence and returns a2N -point sequence which, when

overlap-added with such inverse transforms of the preceding and following windows,

yields the original signal. However, it remains to be seen how and whether the DFT

properties which allow the algorithm to work, in particular the modulation theorem,

can be adapted to work in the same way with the MDCT.

• Multithreading can easily be introduced to improve performance on most modern

systems by simply processing each channel of the audio in a separate thread.

Another screaming potential performance improvement involves combining the
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envelope analysis and spectral translation passes, but that would require significant

architectural changes to the program.

• The default parameters could probably use further tweaks. Command-line syntax

should be improved to read parameters by name rather than by position.

• A VST or DirectX plug-in with a front-end GUI should be written based on this

implementation, to allow the use of the algorithm directly from mainstream audio

mastering software such as Sony Sound Forge and Steinberg WaveLab.
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A Source Code and Windows Binaries

Table6 contains files which can be detached to get the complete source code, the Windows

executable, and the detailed user manual for version 1.2 of the program. Currently, the

project file is only provided for LCC-Win32, but the author believes the code is portable

enough to be compiled with minimal modifications on any little-endian platform by a

C99-compliant compiler. The latest version of the program is available on the author’s

Web site,http://pa3pyx.dnsalias.org/, BandR section.

bandr.c The bulk of the algorithm implementation

wave.c Access routines for manipulating WAVE files

wave.h Declarations for wave.c

fftw3.h Declarations for imports and data types from FFTW library

bandr.prj LCC-Win32 project definition

fftw3.def List of exported symbols of FFTW library, required to build
the project

gpl.txt The GNU General Public License (version 2) governing the
acceptable use of the program

readme.txt The operation manual supplied with the program

bandr.exe1 Windows 32-bit x86 executable build of the program

libfftw3f-3.dll 1 The FFTW dynamically linked library (to be placed in the
same directory as bandr.exe)

1 To enable saving of file attachments with certain file types in newer versions of
Adobe Reader with their overzealous security settings, Windows registry must be edited
to remove these file types from the black list; for Adobe Reader version 9, the
key to edit is “HKLM\Software\Policies\Adobe\Acrobat Reader\9.0\FeatureLockDown\
cDefaultLaunchAttachmentPerms\tBuiltInPermList” (setting it to an empty string is sufficient).

Table 6: Attached program files
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/*
    Copyright (C) 2006, 2010 Pa3PyX

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <float.h>
#include "wave.h"
#include "fftw3.h"

#ifdef WIN32
#include <windows.h>
#endif

// Default start and end frequencies to fit line
#define DEF_SFREQ 8000
#define DEF_FFREQ 12000
// Default FT window length (s)
#define DEF_WLEN 0.005f
// Default envelope estimation response time (s)
#define DEF_EQLEN 0.1f
// Default phase scatter factor
#define DEF_PSFAC 0.5f

// Window function types
#define FTWF_RCOS "rcos"
#define CFTWF_RCOS 0
#define FTWF_POW4 "pow4"
#define CFTWF_POW4 1
#define FTWF_POW4I "pow4i"
#define CFTWF_POW4I 2
#define FTWF_LIN "lin"
#define CFTWF_LIN 3
#define FTWF_CONST "const"
#define CFTWF_CONST 4
#define FTWF_NUTL "nutl"
#define CFTWF_NUTL 5

// Output sample formats
#define OSF_UINT8 "uint8"
#define OSF_INT16 "int16"
#define OSF_INT24 "int24"
#define OSF_INT32 "int32"
#define OSF_FLOAT "fp32"
#define OSF_DOUBLE "fp64"
#define OSF_INPUT "auto"

#define OUT_OF_MEMORY "Could not dynamically allocate %u bytes of memory\n"

// The least number of windows to transform to use FFTW_MEASURE (rather than
// FFTW_ESTIMATE) when initializing FFTW
#define FFT_MT 16

// Parameter and persistent data control structure
typedef struct rep_cp_s {
    unsigned long sline, fline, cline, numw, totalw, wsize, wfn;
    float psfac, sse, **attf, *pvalue, *ppvalue, ***rlines, *in, *out, *iwft;
    fftwf_complex *wft;
    fftwf_plan pl_d, pl_i;
    wavehead_t *wi, *wo;
} rep_cp_t;

// Prints error message and exits
void error(char *format, ...) {
    va_list argptr;

    printf("\nERROR: ");
    va_start(argptr, format);
    vprintf(format, argptr);
    va_end(argptr);
    exit(2);
}

// Allocates memory and returns only if successful
void *safe_malloc(unsigned long const size) {
    const void *const ptr = malloc(size);

    if (!ptr)
        error(OUT_OF_MEMORY, size);
    return ptr;
}

void *safe_calloc(unsigned long const nmemb, unsigned long const size) {
    const void *const ptr = calloc(nmemb, size);

    if (!ptr)
        error(OUT_OF_MEMORY, size);
    return ptr;
}

// Normalizes the Fourier transform of real data by a factor of 1/N^0.5 to have
// the FT coefficients in the same units as the data which produced them
static void fft_normalize(fftwf_complex *const dat, unsigned long const len) {
    unsigned long n;
    float const norm_inv = 1 / sqrtf(len);

    for (n = 0; n <= len / 2; n++) {
        dat[n][0] *= norm_inv;
        dat[n][1] *= norm_inv;
    }
}

// (x, y) -> (r, theta), -Pi <= theta <= Pi
inline static void to_polar(fftwf_complex dat) {
    float const x = dat[0], y = dat[1];

    dat[0] = sqrtf(x * x + y * y);
    if (x == 0)
        // Singularity
        if (y > 0)
            // On positive Y axis
            dat[1] = (float)M_PI / 2;
        else if (y < 0)
            // On negative Y axis
            dat[1] = -(float)M_PI / 2;
        else
            // At origin
            dat[1] = 0;
    else
        dat[1] = atan2f(y, x);
}

// (r, theta) -> (x, y)
inline static void to_cartesian(fftwf_complex dat) {
    float const r = dat[0], theta = dat[1];

    dat[0] = r * cosf(theta);
    dat[1] = r * sinf(theta);
}

// Evaluates the CDF of the beta(a, b) distribution (incomplete, normalized
// beta integral) as a continued fraction
static float beta_cdf(float a, float b, float x) {
    float ppp, pp = 1, p, ppq, pq = 0, q = 1, r, rp, re = INFINITY, rme = INFINITY, ai, bi, aplusm, aplus2m, mbminusmx;
    unsigned long m = 1, adjust = 0;

    if (x <= 0)
        return 0;
    else if (x >= 1)
        return 1;
    else if (x > a / (a + b)) {
        // Use the symmetry relation I(x; a, b) == 1 - I(1 - x; b, a) for
        // x beyond the distribution mean (the P/Q approximants converge
        // cleanly near 0 but tend towards inf/inf near 1)
        ai = a;
        a = b;
        b = ai;
        x = 1 - x;
        adjust = 1;
    }
    p = a * (a - (a + b) * x + 1) / (a + 1);
    r = p / q;
    do {
        ppp = pp;
        pp = p;
        ppq = pq;
        pq = q;
        rp = r;
        if (re < rme)
            rme = re;
        aplusm = a + m;
        aplus2m = aplusm + m;
        mbminusmx = m * (b - m) * x;
        ai = m + mbminusmx / (aplus2m - 1) + aplusm * (a - (a + b) * x + m * (2 - x) + 1) / (aplus2m + 1);
        bi = (aplusm - 1) * (aplusm + b - 1) * mbminusmx * x / ((aplus2m - 1) * (aplus2m - 1));
        p = ai * pp + bi * ppp;
        q = ai * pq + bi * ppq;
        r = p / q;
        if (!isfinitef(p) || !isfinitef(q) || !isfinitef(r)) {
            // Quit if we ran out of exponents in floating points
            r = rp;
            break;
        }
        re = fabsf(r - rp);
        m++;
        // Iterate until either the floating point precision is reached or the
        // sequence starts to diverge (indicating too much error accumulation)
    } while ((re > 2 * FLT_EPSILON * fabsf(rp)) && (re < 2 * rme) && (m <= 512));
    bi = expf(a * logf(x) + b * logf(1 - x) + lgammaf(a + b) - lgammaf(a) - lgammaf(b)) / r;
    return adjust ? (1 - bi) : bi;
}

// Cumulative density of Student's distribution with df degrees of freedom
static float student_cdf(float df, float x) {
    float incb;

    if (df <= FLT_EPSILON)
        // Asymptotic case
        return 0.5f;
    else if (df >= 1000)
        // Just use the standard normal CDF
        return 0.5f * erfcf(-(float)M_SQRT1_2 * x);
    else {
        // Express in terms of beta
        incb = 0.5f * beta_cdf(0.5f * df, 0.5f, df / (df + x * x));
        if (x < 0)
            return incb;
        return 1.0f - incb;
    }
}

// 20 * log(1/2^16) == -96.3 dB noise floor for 16-bit audio
// Adjusts depending on the source file bit depth?
#define bounded_log(x) (((x) < 1.0f / 65536) ? (float)(-16 * M_LN2) : logf(x))

// Min and max of two quantities
#define least(x, y) (((x) < (y)) ? (x) : (y))
#define greatest(x, y) (((x) > (y)) ? (x) : (y))

// Runs a linear regression through values at uniformly spaced points (offset by sline)
static float fit_line(float const *const dat, unsigned long const sline, unsigned long const len, float *const a, float *const b, float *const alpha, float const pa, float *const palpha) {
    unsigned long x;
    // x are uniformly distributed, so E(x) and E(x^2) depend only on the end points
    float const mx = 0.5f * (sline + sline + len - 1), ssx = (float)(len - 1) * (float)len * (float)(len + 1) / 12.0f;
    float my = 0, ssxy = 0, sse = 0, tmps;

    for (x = 0; x < len; x++)
        my += dat[x];
    my /= len;
    for (x = 0; x < len; x++)
        ssxy += ((x + sline - mx) * (dat[x] - my));
    *a = ssxy / ssx;
    *b = my - (*a) * mx;
    // Compute sum of squared residuals
    for (x = 0; x < len; x++) {
        tmps = (*a) * (x + sline) + (*b) - dat[x];
        sse += (tmps * tmps);
    }
    tmps = sqrtf((len - 2) * ssx / sse);
    // Compute the p-value for the null hypothesis a == 0
    *alpha = 2 * student_cdf(len - 2, -fabsf((*a) * tmps));
    // Compute the p-value for the null hypothesis a == (prior window a)
    *palpha = 2 * student_cdf(len - 2, -fabsf((*a - pa) * tmps));
    return sse;
}

// Functions to modulate the FT input (and demodulate iFT output) by, in order
// to reduce spectral leakage artifacts arising from toying with phase data.
// Domain is 0 .. 1; must integrate to 1 on the domain (FT coefficients are
// to be kept in the same energy units as waveform for the analysis pass)
#define ft_modulate(x, fn) \
    ((fn == CFTWF_RCOS) ? \
        (1 + cosf(2 * (float)M_PI * ((x) - 0.5f))) : \
    ((fn == CFTWF_NUTL) ? \
        (2.81082f * (0.355768f - 0.487396f * cosf(2 * (float)M_PI * (x)) + 0.144232f * cosf(4 * (float)M_PI * (x)) - 0.012604f * cosf(6 * (float)M_PI * (x)))) : \
    ((fn == CFTWF_LIN) ? \
        (4 * ((x) <= 0.5f ? \
            (x) : \
            (1 - (x)))) : \
    ((fn == CFTWF_POW4) ? \
        (80 * ((x) <= 0.5f ? \
            ((x) * (x) * (x) * (x)) : \
            (((x) - 1) * ((x) - 1) * ((x) - 1) * ((x) - 1)))) : \
    ((fn == CFTWF_POW4I) ? \
        (-20 * ((x) - 0.5f) * ((x) - 0.5f) * ((x) - 0.5f) * ((x) - 0.5f) + 1.25f) : \
        1)))))

// Function to call on a transformed FT window (modifies FT in place)
void (*fft_process)(unsigned short const ch, unsigned long const wnum, rep_cp_t *const cp);

// Replicates the user specified frequency band
static void apply_rep(unsigned short const ch, unsigned long const wnum, rep_cp_t *const cp) {
    unsigned long const posf = cp->fline - cp->sline - 2, fline = cp->fline;
    unsigned long j, k;
    fftwf_complex fl[3], *const ft = cp->wft;
    // If the number of shift lines is odd, the phases of regenerated spectral
    // lines in every other window must be adjusted by Pi (because the
    // modulating cosine wave, which has an odd number of periods per window,
    // will enter the next window in the opposite phase compared to current)
    float const blockps = ((posf & wnum & 1) ? (float)M_PI : 0), *const attf = (cp->cline ? cp->attf[ch] : 0);
    float const attfe = (attf ? expf(attf[wnum] * posf) : 1);
    float fac, tmag;

    // Save the value of the last three original spectral lines
    memcpy((void *)fl, (void *)(ft + fline - 2), 3 * sizeof(fftwf_complex));
    // Replicate spectral lines
    for (j = cp->wsize / 2; j >= fline - 2; j--) {
        ft[j][0] = ft[j - posf][0];
        ft[j][1] = ft[j - posf][1];
        to_polar(ft[j]);
        // If spectral envelope extraploation is enabled, apply the factor for
        // each replicated line in this window
        if (attf)
            if (attf[wnum] < 0)
                ft[j][0] *= attfe;
            else {
                // Do not allow an upward slope in the generated spectrum, as
                // this often results in artifacts (hissing sibilants and
                // fricatives in speech); instead adjust the band so that it
                // has a flat top
                ft[j][0] *= expf(attf[wnum] * (long)(posf + fline - 2 - j));
            }
        // Scatter the replicated line phases by -n*Pi to n*Pi across the band
        ft[j][1] += (blockps + cp->psfac * 2 * (float)M_PI * ((float)(j - fline + 2) / (float)(posf + 2) - 0.5f));
        to_cartesian(ft[j]);
    }
    // Cross-fade the original and translated bands by 3 lines. Resulting
    // phases are determined by plain vector addition; resulting magnitudes --
    // as RMS of the magnitudes of the constituent vectors
    for (j = 0; j < 3; j++) {
        fac = j + 1;
        k = fline - 2 + j;
        tmag = 0.25f * (fac * (ft[k][0] * ft[k][0] + ft[k][1] * ft[k][1]) + (4 - fac) * (fl[j][0] * fl[j][0] + fl[j][1] * fl[j][1]));
        ft[k][0] = fac * ft[k][0] + (4 - fac) * fl[j][0];
        ft[k][1] = fac * ft[k][1] + (4 - fac) * fl[j][1];
        tmag = sqrtf(tmag / (ft[k][0] * ft[k][0] + ft[k][1] * ft[k][1]));
        if (isfinitef(tmag)) {
            ft[k][0] *= tmag;
            ft[k][1] *= tmag;
        }
    }
    // For even window sizes, final line must be purely real (complex conjugate
    // of self), otherwise the inverse transform will not be real-valued
    if (!(cp->wsize & 1))
        ft[cp->wsize / 2][1] = 0;
}

// Performs analysis on each window of the source signal, taking into account
// the neighboring windows to determine the scale factor for the replicated
// frequency band so it transitions smoothly from the preceding spectrum, i.e.
// extrapolates the signal's spectral envelope for each window
static void analyze_eq(unsigned short const ch, unsigned long const wnum, rep_cp_t *const cp) {
    unsigned long const nlines = cp->fline - cp->cline + 1;
    unsigned long i, k, cwnum;
    long j;
    fftwf_complex *const ft = cp->wft;
    float x, y, *const currft = (float *)safe_malloc(nlines * sizeof(float));
    static float *tempft;

    // Save replicated lines of the magnitude spectrum for the current window
    cp->rlines[ch][wnum] = currft;
    for (j = 0; j < nlines; j++) {
        x = ft[cp->cline + j][0];
        y = ft[cp->cline + j][1];
        // Lower-bound the spectral values by the noise floor. Currently, the
        // noise floor estimate is very conservative -- it is approximately
        // equal to the per-unit sqrt(energy) change resulting from the change
        // of energy in time domain due to an increment of one value by a
        // single quantization step (FFT scaling factor is chosen in a way that
        // FFT and waveform coefficients have the same energy units). Spectral
        // leakage effects due to window analysis normally overshoot this
        // value many times. Coming up with a better noise floor estimate could
        // allow a better fit
        currft[j] = bounded_log(sqrtf(x * x + y * y));
    }
    if (!wnum)
        tempft = (float *)safe_malloc(nlines * sizeof(float));
    if (wnum >= (cp->numw - 1) / 2) {
        // We have advanced far enough in the stream to compute average
        // spectrum and stats for window wnum - (cp->numw - 1) / 2
        memset((void *)tempft, 0, nlines * sizeof(float));
        for (j = wnum - cp->numw + 1; j <= (long)wnum; j++) {
            for (k = 0; k < nlines; k++)
                // For the beginning of the stream, use the first block several
                // times if needed (i.e. compute a weighted average) in lieu of
                // out-of-bound access
                tempft[k] += (cp->rlines[ch][greatest(j, 0)][k] / cp->numw);
        }
        cwnum = wnum - (cp->numw - 1) / 2;
        cp->sse += fit_line(tempft, cp->cline, nlines, &x, &y, cp->pvalue + ch * cp->totalw + cwnum, cp->attf[ch][greatest(cwnum, 1) - 1], cp->ppvalue + ch * cp->totalw + cwnum);
        if (cwnum == 0)
            // For the first window we would test (current slope) == (current slope), so the p-value is 1
            cp->ppvalue[ch * cp->totalw] = 1;
        cp->attf[ch][cwnum] = x;
        // Free memory for window wnum - cp->numw + 1 (no longer needed)
        if (wnum + 1 >= cp->numw) {
            free((void *)cp->rlines[ch][wnum - cp->numw + 1]);
            cp->rlines[ch][wnum - cp->numw + 1] = 0;
        }
    }
    if (wnum == cp->totalw - 1) {
        // Compute statistics for the remaining windows (using the last block
        // several times if needed)
        for (i = wnum + 1; i <= wnum + (cp->numw - 1) / 2; i++) {
            memset((void *)tempft, 0, nlines * sizeof(float));
            for (j = i - cp->numw + 1; j <= (long)i; j++) {
                for (k = 0; k < nlines; k++)
                    tempft[k] += (cp->rlines[ch][least(greatest(j, 0), wnum)][k] / cp->numw);
            }
            cwnum = i - (cp->numw - 1) / 2;
            cp->sse += fit_line(tempft, cp->cline, nlines, &x, &y, cp->pvalue + ch * cp->totalw + cwnum, cp->attf[ch][greatest(cwnum, 1) - 1], cp->ppvalue + ch * cp->totalw + cwnum);
            if (cwnum == 0)
                cp->ppvalue[ch * cp->totalw] = 1;
            cp->attf[ch][cwnum] = x;
        }
        // Free any remaining memory allocated by this procedure
        for (j = greatest((long)(wnum - cp->numw + 2), 0); j <= wnum; j++) {
            free((void *)cp->rlines[ch][j]);
            cp->rlines[ch][j] = 0;
        }
        free((void *)tempft);
        tempft = 0;
    }
}

// Segments the source audio into windows and feeds them sequentually to a
// worker procedure. This is called twice -- once for spectral analysis pass
// (if enabled) and once for the final band replication pass
static void process_wavef(rep_cp_t *cp, unsigned long inverse) {
    float norm, normf, prev_n = -1;
    float const invnorm = 1 / sqrtf(cp->wsize);
    float *const out = cp->out, *const in = cp->in, *const iwft = cp->iwft;
    unsigned long const wfn = cp->wfn;
    long const wsize = cp->wsize;
    long i, j, wshft, rsize;
    unsigned short ch;

    for (ch = 0; ch < cp->wi->fmt.wChannels; ch++) {
        if (inverse)
            memset(out, 0, sizeof(float) * cp->wsize);
        for (i = 0; i < cp->totalw; i++) {
            // Print progress report if needed
            norm = 100.0f * (cp->totalw * ch + i) / (cp->totalw * cp->wi->fmt.wChannels);
            if (norm >= prev_n + 1) {
                // Only print whole percentages
                prev_n = roundf(norm);
                if (inverse)
                    printf("\rProgress:		%.0f%% (ch: %hu)...   ", norm, ch);
                else
                    printf("\rAnalyzing:		%.0f%% (ch: %hu)...   ", norm, ch);
            }
            // Read the next chunk of WAVE data into a buffer; start at
            // negative offset to allow overlap. Note about odd window sizes:
            // integer division is not quotient/remainder for negative numbers,
            // so we have to use an additive constant to make sure the first
            // transform is not off by one
            ReadWaveData(in, cp->wi, ch, -wsize + wsize / 2 + wsize * i / 2, wsize);
            // Apply the window function
            for (j = 0; j < wsize; j++)
                in[j] *= ft_modulate((float)j / (wsize - 1), wfn);
            // Take the Fourier transform
            fftwf_execute(cp->pl_d);
            fft_normalize(cp->wft, wsize);
            // Call the specified function on the FT
            fft_process(ch, i, cp);
            // Take the inverse Fourier transform
            if (inverse) {
                fftwf_execute(cp->pl_i);
                // Add the normalized output to the output buffer, weighted by
                // the triangle function (to reduce discontinuities in the
                // signal spilling over from the wrong end of the window during
                // Fourier domain processing)
                for (j = 0; j < wsize; j++) {
                    normf = (float)j / (wsize - 1);
                    out[j] += (iwft[j] * invnorm * ((normf <= 0.5f) ? normf : (1 - normf)));
                }
                // How many samples from the prior window are NOT in this window,
                // i.e. the offset of the prior window relative to this window. For
                // even window sizes, this is always -(wsize / 2). For odd window
                // sizes, it is wsize / 2 on an odd pass and wsize / 2 + 1 on
                // an even pass
                wshft = wsize / 2 + (((wsize % 2) && !(i % 2)) ? 1 : 0);
                // The first half of the buffer can now be written to the output.
                // For odd window sizes, half is wsize / 2 on an even pass and
                // wsize / 2 + 1 on an odd pass
                rsize = wsize / 2 + ((wsize % 2) & (i % 2));
                // Unapply the window function and the weighting function
                for (j = 0; j < rsize; j++) {
                    // Due to the current window
                    normf = (float)j / (wsize - 1);
                    norm = ft_modulate((float)j / (wsize - 1), wfn) * ((normf <= 0.5f) ? normf : (1 - normf));
                    // Due to the prior window
                    normf = (float)(j + wshft) / (wsize - 1);
                    norm += ft_modulate((float)(j + wshft) / (wsize - 1), wfn) * ((normf <= 0.5f) ? normf : (1 - normf));
                    out[j] /= norm;
                }
                WriteWaveData(out, cp->wo, ch, -wsize + wsize / 2 + wsize * i / 2, rsize);
                // Shift the data so that the second part of the current iFT data
                // is overlaid with the first part of the iFT data from the next
                // window
                memmove(out, out + rsize, sizeof(float) * (wsize - rsize));
                memset(out + (wsize - rsize), 0, sizeof(float) * rsize);
            }
        }
    }
    if (inverse)
        printf("\rProgress:		Complete         \n");
    else
        printf("\rAnalyzing:		Complete         \n");
}

// qsort callback
int flt_compare(void const *const p1, void const *const p2) {
    float const f1 = *(float *)p1, f2 = *(float *)p2;

    if (f1 < f2)
        return -1;
    else if (f1 > f2)
        return 1;
    return 0;
}

// Rounds an integer to its nearest power of 2
static unsigned long to_pow2(unsigned long const x) {
    unsigned long arg = x, pm = 0;

    while (arg) {
        arg = arg >> 1;
        pm++;
    }
    return ((1 << pm) - x < x - (1 << (pm - 1))) ? 1 << pm : 1 << (pm - 1);
}

int main(int argc, char **argv) {
    unsigned long sfreq, ffreq, cfreq, i;
    long num_threads = 1;
    char *sparm;
    wavehead_t wh, oh;
    rep_cp_t cp;
#ifdef WIN32
    void *msvc_handle;
    unsigned int (*setfpu)(unsigned int, unsigned int) = 0;
#endif
    if (argc < 3) {
        printf(
            "Pa3PyX's high frequency band replication tool v1.2\n\n"
            "Usage:\n"
            "bandr.exe <inf> <outf> [sfmt] [st] [lst] [end] [ws] [wfac] [wfn] [psfac] [thr]\n"
            "<inf>:    Input WAVE file\n"
            "<outf>:   Output WAVE file\n"
            "[sfmt]:   Output sample format (" OSF_UINT8 ", " OSF_INT16 ", " OSF_INT24 ", " OSF_INT32 ", " OSF_FLOAT ", " OSF_DOUBLE ", " OSF_INPUT ")\n"
            "[st]:     Start frequency of the replicated band, in Hz (%u)\n"
            "[lst]:    Start frequency of the spectral envelope extrapolation reference\n"
            "          band, in Hz (-1 to disable envelope extraploation; default = [st])\n"
            "[end]:    End of the reference band and start of replication, in Hz (%u)\n"
            "[ws]:     FT window size, in samples; 0 = auto (%.3g s), -1 = whole file\n"
            "[wfac]:   Number of windows to average spectral profile over; 0 = auto (%.3g s)\n"
            "          (averaging is used for spectral envelope extrapolation only)\n"
            "[wfn]:    FT window function (" FTWF_POW4 ", " FTWF_POW4I ", " FTWF_LIN ", " FTWF_RCOS " (default), " FTWF_NUTL ", " FTWF_CONST ")\n"
            "[psfac]:  Phase scatter factor to apply after translating the band. (0 means\n"
            "          disable phase scattering, 1 means 2*Pi; default %.3g)\n"
            "[thr]:    Number of threads to execute FFT in (default = %u)\n\n"
            "Input WAVE must be PCM (8, 16, 24, or 32 bps) or IEEE_FLOAT (32 or 64 bps).\n"
            "Each channel is processed separately. Low sampling rate files must be upsampled\n"
            "before they can store frequencies higher than half their sampling rate.\n",
            DEF_SFREQ, DEF_FFREQ, DEF_WLEN, DEF_EQLEN, DEF_PSFAC, num_threads
        );
        return 1;
    }
#ifdef WIN32
    // Set everything to single (float) precision
    msvc_handle = GetModuleHandle("CRTDLL.DLL");
    if (!msvc_handle)
        msvc_handle = GetModuleHandle("MSVCRT.DLL");
    if (msvc_handle)
        setfpu = GetProcAddress(msvc_handle, "_controlfp");
    if (setfpu)
        setfpu(_PC_24, _MCW_PC);
    // Determine the number of logical CPU's in the system
#endif
    memset(&cp, 0, sizeof(rep_cp_t));
    cp.wi = &wh;
    cp.wo = &oh;
    // Read main data file
    ReadWaveHeader(argv[1], &wh);
    // Parse command line parameters
    // Set window size; if not specified, use default depending on the processing mode
    cp.wsize = ((argc > 7) ? atol(argv[7]) : 0);
    if (cp.wsize == (unsigned long)-1 || cp.wsize > wh.len)
        cp.wsize = wh.len;
    // Window size of 6 gives us 6/2 + 1 == 4 points in Fourier transform. This
    // is the minimum size as DC line is never touched and the replicated band
    // must span at least 3 lines (to allow for cross-fade filter and error
    // estimation for spectral envelope linear regression)
    if (cp.wsize < 6) {
        cp.wsize = to_pow2((unsigned long)roundf(wh.fmt.dwSamplesPerSec * DEF_WLEN));
        if (cp.wsize < 6)
            cp.wsize = 6;
    }
    // Total number of windows to process: we need ceil(len / wsize) * 2 + 1
    // passes to account for overlap, initial fade-in, and final fade-out
    // (which are trimmed)
    cp.totalw = (wh.len / cp.wsize + ((wh.len % cp.wsize == 0) ? 0 : 1)) * 2 + 1;
    printf("FT window size:		%u (%.1f ms)\n", cp.wsize, 1000.0f * cp.wsize / wh.fmt.dwSamplesPerSec);
    // Set window function
    sparm = ((argc > 9) ? argv[9] : FTWF_RCOS);
    if (!strcmp(sparm, FTWF_POW4))
        cp.wfn = CFTWF_POW4;
    else if (!strcmp(sparm, FTWF_POW4I))
        cp.wfn = CFTWF_POW4I;
    else if (!strcmp(sparm, FTWF_LIN))
        cp.wfn = CFTWF_LIN;
    else if (!strcmp(sparm, FTWF_CONST))
        cp.wfn = CFTWF_CONST;
    else if (!strcmp(sparm, FTWF_NUTL))
        cp.wfn = CFTWF_NUTL;
    else {
        sparm = FTWF_RCOS;
        cp.wfn = CFTWF_RCOS;
    }
    printf("FT window function:	%s\n", sparm);
    // Enable threading support in FFTW if chosen by the user
    if (argc > 11)
        num_threads = greatest(atol(argv[11]), 1);
    if ((num_threads > 1) && fftwf_init_threads()) {
        fftwf_plan_with_nthreads(num_threads);
        printf("FT max threads:		%i\n", num_threads);
    }
    // Set phase scatter factor
    cp.psfac = ((argc > 10) ? atof(argv[10]) : DEF_PSFAC);
    if (!isfinite(cp.psfac))
        cp.psfac = DEF_PSFAC;
    printf("Phase scatter range:	%.3g*Pi..%.3g*Pi\n", -cp.psfac, cp.psfac);
    // Set limiting frequencies
    sfreq = ((argc > 4) ? atol(argv[4]) : 0);
    if (sfreq <= 0)
        sfreq = DEF_SFREQ;
    cp.sline = (unsigned long)roundf((float)cp.wsize * sfreq / wh.fmt.dwSamplesPerSec);
    if (cp.sline < 1)
        cp.sline = 1;
    if (cp.sline > cp.wsize / 2 - 2)
        cp.sline = cp.wsize / 2 - 2;
    sfreq = (unsigned long)roundf((float)cp.sline * wh.fmt.dwSamplesPerSec / cp.wsize);
    cfreq = ((argc > 5) ? atol(argv[5]) : 0);
    if (cfreq == (unsigned long)-1)
        cp.cline = 0;
    else {
        if (cfreq <= 0)
            cfreq = sfreq;
        cp.cline = (unsigned long)roundf((float)cp.wsize * cfreq / wh.fmt.dwSamplesPerSec);
        if (cp.cline < 1)
            cp.cline = 1;
        if (cp.cline > cp.wsize / 2 - 2)
            cp.cline = cp.wsize / 2 - 2;
        cfreq = (unsigned long)roundf((float)cp.cline * wh.fmt.dwSamplesPerSec / cp.wsize);
    }
    ffreq = ((argc > 6) ? atol(argv[6]) : 0);
    if (ffreq <= 0)
        ffreq = DEF_FFREQ;
    cp.fline = (unsigned long)roundf((float)cp.wsize * ffreq / wh.fmt.dwSamplesPerSec);
    if (cp.fline > cp.wsize / 2)
        cp.fline = cp.wsize / 2;
    if (cp.fline < cp.sline + 2)
        cp.fline = cp.sline + 2;
    if (cp.fline < cp.cline + 2)
        cp.fline = cp.cline + 2;
    ffreq = (unsigned long)roundf((float)cp.fline * wh.fmt.dwSamplesPerSec / cp.wsize);
    printf("Rep start line:		%u (%u Hz)\n", cp.sline, sfreq);
    printf("End line:		%u (%u Hz)\n", cp.fline, ffreq);
    if (cp.cline) {
        printf("EE ref start line:	%u (%u Hz)\n", cp.cline, cfreq);
        // Set window factor
        cp.numw = ((argc > 8) ? atol(argv[8]) : 0);
        if (cp.numw > (wh.len / cp.wsize + ((wh.len % cp.wsize == 0) ? 0 : 1)) * 2 + 1)
            cp.numw = (wh.len / cp.wsize + ((wh.len % cp.wsize == 0) ? 0 : 1)) * 2 + 1;
        if (cp.numw < 1) {
            cp.numw = (unsigned long)roundf(DEF_EQLEN * wh.fmt.dwSamplesPerSec * 2 / cp.wsize);
            if (cp.numw < 1)
                cp.numw = 1;
        }
        printf("EE windows (response):	%u (%.1f ms)\n", cp.numw, 500.0f * cp.wsize * cp.numw / wh.fmt.dwSamplesPerSec);
    }
    else
        printf("Envelope estimation:	Disabled\n");
    // Initialize target WAVE and set output sample format
    oh = wh;
    sparm = ((argc > 3) ? argv[3] : OSF_INPUT);
    if (!strcmp(sparm, OSF_UINT8)) {
        oh.fmt.wFormatTag = 1;
        oh.fmt.wBitsPerSample = 8;
    }
    else if (!strcmp(sparm, OSF_INT16)) {
        oh.fmt.wFormatTag = 1;
        oh.fmt.wBitsPerSample = 16;
    }
    else if (!strcmp(sparm, OSF_INT24)) {
        oh.fmt.wFormatTag = 1;
        oh.fmt.wBitsPerSample = 24;
    }
    else if (!strcmp(sparm, OSF_INT32)) {
        oh.fmt.wFormatTag = 1;
        oh.fmt.wBitsPerSample = 32;
    }
    else if (!strcmp(sparm, OSF_FLOAT)) {
        oh.fmt.wFormatTag = 3;
        oh.fmt.wBitsPerSample = 32;
    }
    else if (!strcmp(sparm, OSF_DOUBLE)) {
        oh.fmt.wFormatTag = 3;
        oh.fmt.wBitsPerSample = 64;
    }
    else
        sparm = OSF_INPUT;
    printf("Output sample format:	%s\n\n", sparm);
    WriteWaveHeader(argv[2], &oh);
    // Allocate FFT input and output arrays; initialize FFTW. Use FFTW malloc
    // to make sure pointers are 16-byte aligned (so FFTW can use SIMD
    // instructions if available)
    if (!(cp.in = (float *)fftwf_malloc(sizeof(float) * cp.wsize)))
        error(OUT_OF_MEMORY, sizeof(float) * cp.wsize);
    // Real-to-complex FFT only stores data up to Nyquist frequency (the rest
    // is conjugate symmetric and redundant)
    if (!(cp.wft = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * (cp.wsize / 2 + 1))))
        error(OUT_OF_MEMORY, sizeof(fftwf_complex) * (cp.wsize / 2 + 1));
    if (!(cp.out = (float *)fftwf_malloc(sizeof(float) * cp.wsize)))
        error(OUT_OF_MEMORY, sizeof(float) * cp.wsize);
    if (!(cp.iwft = (float *)fftwf_malloc(sizeof(float) * cp.wsize)))
        error(OUT_OF_MEMORY, sizeof(float) * cp.wsize);
    printf("Progress:		Starting FFTW...");
    // If there is less than a few transforms to do, using FFTW_MEASURE will
    // only slow things down
    cp.pl_d = fftwf_plan_dft_r2c_1d(cp.wsize, cp.in, cp.wft, FFTW_DESTROY_INPUT | ((cp.totalw * wh.fmt.wChannels >= FFT_MT) ? FFTW_MEASURE : FFTW_ESTIMATE));
    cp.pl_i = fftwf_plan_dft_c2r_1d(cp.wsize, cp.wft, cp.iwft, FFTW_DESTROY_INPUT | ((cp.totalw * wh.fmt.wChannels >= FFT_MT) ? FFTW_MEASURE : FFTW_ESTIMATE));
    if (cp.cline) {
        // Allocate arrays for spectral envelope analysis
        cp.attf = (float **)safe_malloc(wh.fmt.wChannels * sizeof(float *));
        for (i = 0; i < wh.fmt.wChannels; i++)
            cp.attf[i] = (float *)safe_calloc(cp.totalw, sizeof(float));
        cp.pvalue = (float *)safe_malloc(wh.fmt.wChannels * cp.totalw * sizeof(float *));
        cp.ppvalue = (float *)safe_malloc(wh.fmt.wChannels * cp.totalw * sizeof(float *));
        cp.rlines = (float ***)safe_malloc(wh.fmt.wChannels * sizeof(float **));
        for (i = 0; i < wh.fmt.wChannels; i++)
            cp.rlines[i] = (float **)safe_calloc(cp.totalw, sizeof(float *));
        // Analyze wave file and compute envelope factors for replicated range
        // in each window
        fft_process = &analyze_eq;
        process_wavef(&cp, 0);
        // Display fit statistics
        qsort((void *)cp.pvalue, wh.fmt.wChannels * cp.totalw, sizeof(float), &flt_compare);
        printf(
            "\nSpectral envelope estimation statistics:\n"
            "Root mean sq residuals:	%.3g dB\n"
            "p-value (slope==0):	MIN %.3g\n"
            "			1Q  %.3g\n"
            "			MED %.3g\n"
            "			3Q  %.3g\n"
            "			MAX %.3g\n\n",
            20 * (float)M_LOG10E * sqrtf(cp.sse / (wh.fmt.wChannels * cp.totalw * (cp.fline - cp.cline - 1))),
            cp.pvalue[0],
            cp.pvalue[wh.fmt.wChannels * cp.totalw / 4],
            cp.pvalue[wh.fmt.wChannels * cp.totalw / 2],
            cp.pvalue[3 * wh.fmt.wChannels * cp.totalw / 4],
            cp.pvalue[wh.fmt.wChannels * cp.totalw - 1]
        );
        qsort((void *)cp.ppvalue, wh.fmt.wChannels * cp.totalw, sizeof(float), &flt_compare);
        // First value at each channel is always 1 and is not meaningful to us
        i = wh.fmt.wChannels * (cp.totalw - 1);
        if (i > 0) {
            printf(
                "p-value (slope==prev):	MIN %.3g\n"
                "			1Q  %.3g\n"
                "			MED %.3g\n"
                "			3Q  %.3g\n"
                "			MAX %.3g\n\n",
                cp.ppvalue[0],
                cp.ppvalue[i / 4],
                cp.ppvalue[i / 2],
                cp.ppvalue[3 * i / 4],
                cp.ppvalue[i - 1]
            );
        }
        // Delete the data not needed past envelope estimation
        for (i = 0; i < wh.fmt.wChannels; i++)
            free((void *)cp.rlines[i]);
        free((void *)cp.rlines);
        cp.rlines = 0;
        free((void *)cp.pvalue);
        cp.pvalue = 0;
        free((void *)cp.ppvalue);
        cp.ppvalue = 0;
    }
    // Apply band replication
    fft_process = &apply_rep;
    process_wavef(&cp, 1);
    CloseWaveFile(&wh);
    CloseWaveFile(&oh);
    if (cp.cline) {
        // Free the remaining memory
        for (i = 0; i < wh.fmt.wChannels; i++)
            free((void *)cp.attf[i]);
        free((void *)cp.attf);
        cp.attf = 0;
    }
    // Delete all buffers
    fftwf_destroy_plan(cp.pl_d);
    fftwf_destroy_plan(cp.pl_i);
    fftwf_free((void *)cp.in);
    fftwf_free((void *)cp.wft);
    fftwf_free((void *)cp.out);
    fftwf_free((void *)cp.iwft);
    return 0;
}
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/*
    Copyright (C) 2006, 2010 Pa3PyX

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include "wave.h"

#define S24B_MAX 8388607
#define S24B_MIN -8388608

void error(char *format, ...);

void ReadWaveHeader(char const *const fn, wavehead_t *const wd) {
    unsigned long pos, ch;
    unsigned char found;
    short smp;

    memset(wd, 0, sizeof(wavehead_t));
    if (!(wd->wavef = fopen(fn, "rb")))
        error("Could not open %s for input\n", fn);
    // Locate the format header within the wave file
    pos = 0;
    found = 0;
    while (!feof(wd->wavef)) {
        fseek(wd->wavef, pos, SEEK_SET);
        fread(wd->fmt.chunkID, 4, 1, wd->wavef);
        if (!memcmp(wd->fmt.chunkID, WAVE_FMT_ID, 4)) {
            found = 1;
            break;
        }
        pos++;
    }
    if (!found)
        error("Could not locate format chunk in %s\n", fn);
    fseek(wd->wavef, pos, SEEK_SET);
    // FIXME: Big endian systems
    if (fread(&wd->fmt, sizeof(FormatChunk), 1, wd->wavef) < 1)
        error("Could not read format chunk in %s\n", fn);
    // Locate the data header within the wave file
    pos = 0;
    found = 0;
    while (!feof(wd->wavef)) {
        fseek(wd->wavef, pos, SEEK_SET);
        fread(wd->fmt.chunkID, 4, 1, wd->wavef);
        if (!memcmp(wd->fmt.chunkID, WAVE_DAT_ID, 4)) {
            found = 1;
            break;
        }
        pos++;
    }
    printf("fileName:		%s\n", fn);
    printf("wFormatTag:		%hu (%s)\n", wd->fmt.wFormatTag, (wd->fmt.wFormatTag == 1) ? "WAVE_FORMAT_PCM" : ((wd->fmt.wFormatTag == 3) ? "WAVE_FORMAT_IEEE_FLOAT" : "Unknown"));
    printf("wChannels:		%hu\n", wd->fmt.wChannels);
    printf("dwSamplesPerSec:	%u\n", wd->fmt.dwSamplesPerSec);
    printf("dwAvgBytesPerSec:	%u\n", wd->fmt.dwAvgBytesPerSec);
    printf("wBlockAlign:		%hu\n", wd->fmt.wBlockAlign);
    printf("wBitsPerSample:		%hu\n", wd->fmt.wBitsPerSample);
    if (!((wd->fmt.wFormatTag == 1 && (wd->fmt.wBitsPerSample == 8 || wd->fmt.wBitsPerSample == 16 || wd->fmt.wBitsPerSample == 24 || wd->fmt.wBitsPerSample == 32)) ||
          (wd->fmt.wFormatTag == 3 && (wd->fmt.wBitsPerSample == 32 || wd->fmt.wBitsPerSample == 64))))
        error("Not integer (8, 16, 24, or 32 bit) or floating point (32 or 64 bit) format\n");
    // FIXME: Big endian systems
    if (fread(&wd->hdr.chunkSize, sizeof(unsigned long), 1, wd->wavef) < 1)
        error("Could not read data chunk in %s\n", fn);
    wd->len = wd->hdr.chunkSize / ((wd->fmt.wBitsPerSample / 8) * wd->fmt.wChannels);
    printf("samplesPerChan:		%u\n", wd->len);
    printf("dataChunkSize:		%u\n\n", wd->hdr.chunkSize);
    wd->ds = ftell(wd->wavef);
}

void WriteWaveHeader(char const *const fn, wavehead_t *const wd) {
    unsigned long waveSize, i;
    char smp[8];

    if (!(wd->wavef = fopen(fn, "wb")))
        error("Could not open %s for output\n", fn);
    memcpy(wd->fmt.chunkID, WAVE_FMT_ID, 4);
    wd->fmt.chunkSize = sizeof(FormatChunk) - 8;
    wd->fmt.wBlockAlign = wd->fmt.wChannels * (wd->fmt.wBitsPerSample / 8);
    wd->fmt.dwAvgBytesPerSec = wd->fmt.dwSamplesPerSec * (unsigned long)wd->fmt.wBlockAlign;
    memcpy(wd->hdr.chunkID, WAVE_DAT_ID, 4);
    wd->hdr.chunkSize = wd->len * (wd->fmt.wBitsPerSample / 8) * wd->fmt.wChannels;
    waveSize = 4 + sizeof(FormatChunk) + sizeof(DataChunk) + wd->hdr.chunkSize;
    fwrite(RIFF_FMT_ID, 4, 1, wd->wavef);
    fwrite(&waveSize, sizeof(unsigned long), 1, wd->wavef);
    fwrite(RIFF_WAV_ID, 4, 1, wd->wavef);
    fwrite(&wd->fmt, sizeof(FormatChunk), 1, wd->wavef);
    fwrite(&wd->hdr, sizeof(DataChunk), 1, wd->wavef);
    // Fill the data chunk with zeroes
    if (wd->fmt.wFormatTag == 1 && wd->fmt.wBitsPerSample == 8)
        memset(smp, 128, sizeof(char) * 8);
    else
        memset(smp, 0, sizeof(char) * 8);
    for (i = 0; i < wd->len * wd->fmt.wChannels; i++)
        if (fwrite(smp, (wd->fmt.wBitsPerSample / 8), 1, wd->wavef) < 1)
            error("Unable to allocate output file (disk is full?)\n");
}

void ReadWaveData(float *buf, wavehead_t const *const wh, unsigned short const ch, long spos, long len) {
    unsigned long i, cps = (wh->fmt.wBitsPerSample / 8);
    unsigned char smp[8];

    // Negative offsets (due to FT windows) are to be zero padded
    if (spos < 0) {
        memset(buf, 0, ((-spos > len) ? len : -spos) * sizeof(float));
        len += spos;
        buf -= spos;
        spos = 0;
    }
    if (len < 0)
        return;
    if (ch >= wh->fmt.wChannels)
        error("Input WAVE contains %i channels, requested to read %i\n", (int)wh->fmt.wChannels, (int)ch + 1);
    if (!wh->wavef)
        error("Input file is not open (cannot read)\n");
    for (i = 0; i < len && (i + spos) < wh->len; i++) {
        fseek(wh->wavef, wh->ds + (i + spos) * cps * wh->fmt.wChannels + ch * cps, SEEK_SET);
        if (fread(smp, cps, 1, wh->wavef) < 1) {
            printf("WARNING: Read past EOF (truncated file?)\n");
            break;
        }
        else if (wh->fmt.wFormatTag == 1)
            if (cps == 1)
                buf[i] = (float)(*smp) * 2 / UCHAR_MAX - 1;
            else if (cps == 2)
                buf[i] = (float)(*(short *)smp) / SHRT_MAX;
            else if (cps == 3) {
                // Sign-extend to 32-bit
                smp[3] = ((*(int *)smp & 0x800000) ? 0xFF : 0);
                buf[i] = (float)(*(int *)smp) / S24B_MAX;
            }
            else if (cps == 4)
                buf[i] = (float)(*(int *)smp) / INT_MAX;
            else
                error("Input sample size not supported\n");
        else if (wh->fmt.wFormatTag == 3) {
            if (cps == 4)
                buf[i] = *(float *)smp * 2.0f;
            else if (cps == 8)
                buf[i] = (float)(*(double *)smp) * 2.0f;
            else
                error("Input sample size not supported\n");
            if (buf[i] > 1.0f)
                buf[i] = 1.0f;
            else if (buf[i] < -1.0f)
                buf[i] = -1.0f;
        }
        else
            error("Input format not supported\n");
    }
    // Reads past EOF (due to FT windows) are to be zero padded
    if (i < len)
        memset(buf + i, 0, sizeof(float) * (len - i));
}

void WriteWaveData(float const *buf, wavehead_t const *const wh, unsigned short const ch, long spos, long len) {
    unsigned long i, cps = (wh->fmt.wBitsPerSample / 8);
    float f;
    char smp[8];

    // Negative offsets (due to FT windows) are to be skipped
    if (spos < 0) {
        len += spos;
        buf -= spos;
        spos = 0;
    }
    if (len <= 0)
        return;
    if (ch >= wh->fmt.wChannels)
        error("Output WAVE contains %i channels, requested to write %i\n", (int)wh->fmt.wChannels, (int)ch + 1);
    if (!wh->wavef)
        error("Output file is not open (cannot write)\n");
    for (i = 0; i < len && (i + spos) < wh->len; i++) {
        fseek(wh->wavef, wh->ds + (i + spos) * cps * wh->fmt.wChannels + ch * cps, SEEK_SET);
        if (wh->fmt.wFormatTag == 1)
            // Integer
            if (cps == 1) {
                // Unsigned char
                f = (buf[i] + 1.0f) * UCHAR_MAX / 2;
                if (f < 0)
                    f = 0;
                else if (f > UCHAR_MAX)
                    f = UCHAR_MAX;
                *(unsigned char *)smp = (unsigned char)f;
            }
            else if (cps == 2) {
                // Signed short
                f = buf[i] * SHRT_MAX;
                if (f < SHRT_MIN)
                    f = SHRT_MIN;
                else if (f > SHRT_MAX)
                    f = SHRT_MAX;
                *(short *)smp = (short)f;
            }
            else if (cps == 3) {
                // Signed 24-bit
                f = buf[i] * S24B_MAX;
                if (f < S24B_MIN)
                    f = S24B_MIN;
                else if (f > S24B_MAX)
                    f = S24B_MAX;
                *(int *)smp = (int)f;
            }
            else if (cps == 4) {
                // Signed int
                f = buf[i] * INT_MAX;
                if (f < INT_MIN)
                    f = INT_MIN;
                else if (f > INT_MAX)
                    f = INT_MAX;
                *(int *)smp = (int)f;
            }
            else
                error("Output sample size not supported\n");
        else if (wh->fmt.wFormatTag == 3) {
            // Floating point
            f = buf[i] * 0.5f;
            if (f < -0.5f)
                f = -0.5f;
            else if (f > 0.5f)
                f = 0.5f;
            if (cps == 4)
                *(float *)smp = f;
            else if (cps == 8)
                *(double *)smp = (double)f;
            else
                error("Output sample size not supported\n");
        }
        else
            error("Output format not supported\n");
        if (fwrite(smp, cps, 1, wh->wavef) < 1)
            error("Unable to write file (disk is full?)\n");
    }
}

void CloseWaveFile(wavehead_t *const wh) {
    if (wh->wavef) {
        fclose(wh->wavef);
        wh->wavef = 0;
    }
}
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/*
    Copyright (C) 2006, 2010 Pa3PyX

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/
#define WAVE_FMT_ID "fmt "
#define WAVE_DAT_ID "data"
#define RIFF_FMT_ID "RIFF"
#define RIFF_WAV_ID "WAVE"

typedef struct FormatChunk_s {
    unsigned char chunkID[4];
    unsigned long chunkSize;
    unsigned short wFormatTag;
    unsigned short wChannels;
    unsigned long dwSamplesPerSec;
    unsigned long dwAvgBytesPerSec;
    unsigned short wBlockAlign;
    unsigned short wBitsPerSample;
} FormatChunk;

typedef struct DataChunk_s {
    unsigned char chunkID[4];
    unsigned long chunkSize;
} DataChunk;

typedef struct wavehead_s {
    FormatChunk fmt;
    DataChunk hdr;
    FILE *wavef;
    unsigned long len, ds;
} wavehead_t;

void ReadWaveHeader(char const *const fn, wavehead_t *const wd);
void WriteWaveHeader(char const *const fn, wavehead_t *const wd);
void ReadWaveData(float *buf, wavehead_t const *const wh, unsigned short const ch, long spos, long len);
void WriteWaveData(float const *buf, wavehead_t const *const wh, unsigned short const ch, long spos, long len);
void CloseWaveFile(wavehead_t *const wh);
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/*
 * Copyright (c) 2003, 2007-8 Matteo Frigo
 * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
 *
 * The following statement of license applies *only* to this header file,
 * and *not* to the other files distributed with FFTW or derived therefrom:
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/***************************** NOTE TO USERS *********************************
 *
 *                 THIS IS A HEADER FILE, NOT A MANUAL
 *
 *    If you want to know how to use FFTW, please read the manual,
 *    online at http://www.fftw.org/doc/ and also included with FFTW.
 *    For a quick start, see the manual's tutorial section.
 *
 *   (Reading header files to learn how to use a library is a habit
 *    stemming from code lacking a proper manual.  Arguably, it's a
 *    *bad* habit in most cases, because header files can contain
 *    interfaces that are not part of the public, stable API.)
 *
 ****************************************************************************/

#ifndef FFTW3_H
#define FFTW3_H

#include <stdio.h>

#ifdef __cplusplus
extern "C"
{
#endif /* __cplusplus */

/* If <complex.h> is included, use the C99 complex type.  Otherwise
   define a type bit-compatible with C99 complex */
#if !defined(FFTW_NO_Complex) && defined(_Complex_I) && defined(complex) && defined(I)
#  define FFTW_DEFINE_COMPLEX(R, C) typedef R _Complex C
#else
#  define FFTW_DEFINE_COMPLEX(R, C) typedef R C[2]
#endif

#define FFTW_CONCAT(prefix, name) prefix ## name
#define FFTW_MANGLE_DOUBLE(name) FFTW_CONCAT(fftw_, name)
#define FFTW_MANGLE_FLOAT(name) FFTW_CONCAT(fftwf_, name)
#define FFTW_MANGLE_LONG_DOUBLE(name) FFTW_CONCAT(fftwl_, name)

/* IMPORTANT: for Windows compilers, you should add a line
*/
#define FFTW_DLL
/*
   here and in kernel/ifftw.h if you are compiling/using FFTW as a
   DLL, in order to do the proper importing/exporting, or
   alternatively compile with -DFFTW_DLL or the equivalent
   command-line flag.  This is not necessary under MinGW/Cygwin, where
   libtool does the imports/exports automatically. */
#if defined(FFTW_DLL) && (defined(_WIN32) || defined(__WIN32__))
   /* annoying Windows syntax for shared-library declarations */
#  if defined(COMPILING_FFTW) /* defined in api.h when compiling FFTW */
#    define FFTW_EXTERN extern __declspec(dllexport) 
#  else /* user is calling FFTW; import symbol */
#    define FFTW_EXTERN extern __declspec(dllimport) 
#  endif
#else
#  define FFTW_EXTERN extern
#endif

enum fftw_r2r_kind_do_not_use_me {
     FFTW_R2HC=0, FFTW_HC2R=1, FFTW_DHT=2,
     FFTW_REDFT00=3, FFTW_REDFT01=4, FFTW_REDFT10=5, FFTW_REDFT11=6,
     FFTW_RODFT00=7, FFTW_RODFT01=8, FFTW_RODFT10=9, FFTW_RODFT11=10
};

struct fftw_iodim_do_not_use_me {
     int n;                     /* dimension size */
     int is;			/* input stride */
     int os;			/* output stride */
};

#include <stddef.h> /* for ptrdiff_t */
struct fftw_iodim64_do_not_use_me {
     ptrdiff_t n;                     /* dimension size */
     ptrdiff_t is;			/* input stride */
     ptrdiff_t os;			/* output stride */
};

/*
  huge second-order macro that defines prototypes for all API
  functions.  We expand this macro for each supported precision
 
  X: name-mangling macro
  R: real data type
  C: complex data type
*/

#define FFTW_DEFINE_API(X, R, C)					   \
									   \
FFTW_DEFINE_COMPLEX(R, C);						   \
									   \
typedef struct X(plan_s) *X(plan);					   \
									   \
typedef struct fftw_iodim_do_not_use_me X(iodim);			   \
typedef struct fftw_iodim64_do_not_use_me X(iodim64);			   \
									   \
typedef enum fftw_r2r_kind_do_not_use_me X(r2r_kind);			   \
									   \
FFTW_EXTERN void X(execute)(const X(plan) p);				   \
									   \
FFTW_EXTERN X(plan) X(plan_dft)(int rank, const int *n,			   \
		    C *in, C *out, int sign, unsigned flags);		   \
									   \
FFTW_EXTERN X(plan) X(plan_dft_1d)(int n, C *in, C *out, int sign,	   \
		       unsigned flags);					   \
FFTW_EXTERN X(plan) X(plan_dft_2d)(int n0, int n1,			   \
		       C *in, C *out, int sign, unsigned flags);	   \
FFTW_EXTERN X(plan) X(plan_dft_3d)(int n0, int n1, int n2,		   \
		       C *in, C *out, int sign, unsigned flags);	   \
									   \
FFTW_EXTERN X(plan) X(plan_many_dft)(int rank, const int *n,		   \
                         int howmany,					   \
                         C *in, const int *inembed,			   \
                         int istride, int idist,			   \
                         C *out, const int *onembed,			   \
                         int ostride, int odist,			   \
                         int sign, unsigned flags);			   \
									   \
FFTW_EXTERN X(plan) X(plan_guru_dft)(int rank, const X(iodim) *dims,	   \
			 int howmany_rank,				   \
			 const X(iodim) *howmany_dims,			   \
			 C *in, C *out,					   \
			 int sign, unsigned flags);			   \
FFTW_EXTERN X(plan) X(plan_guru_split_dft)(int rank, const X(iodim) *dims, \
			 int howmany_rank,				   \
			 const X(iodim) *howmany_dims,			   \
			 R *ri, R *ii, R *ro, R *io,			   \
			 unsigned flags);				   \
									   \
FFTW_EXTERN X(plan) X(plan_guru64_dft)(int rank,			   \
                         const X(iodim64) *dims,			   \
			 int howmany_rank,				   \
			 const X(iodim64) *howmany_dims,		   \
			 C *in, C *out,					   \
			 int sign, unsigned flags);			   \
FFTW_EXTERN X(plan) X(plan_guru64_split_dft)(int rank,			   \
                         const X(iodim64) *dims,			   \
			 int howmany_rank,				   \
			 const X(iodim64) *howmany_dims,		   \
			 R *ri, R *ii, R *ro, R *io,			   \
			 unsigned flags);				   \
									   \
FFTW_EXTERN void X(execute_dft)(const X(plan) p, C *in, C *out);	   \
FFTW_EXTERN void X(execute_split_dft)(const X(plan) p, R *ri, R *ii,	   \
                                      R *ro, R *io);			   \
									   \
FFTW_EXTERN X(plan) X(plan_many_dft_r2c)(int rank, const int *n,	   \
                             int howmany,				   \
                             R *in, const int *inembed,			   \
                             int istride, int idist,			   \
                             C *out, const int *onembed,		   \
                             int ostride, int odist,			   \
                             unsigned flags);				   \
									   \
FFTW_EXTERN X(plan) X(plan_dft_r2c)(int rank, const int *n,		   \
                        R *in, C *out, unsigned flags);			   \
									   \
FFTW_EXTERN X(plan) X(plan_dft_r2c_1d)(int n,R *in,C *out,unsigned flags); \
FFTW_EXTERN X(plan) X(plan_dft_r2c_2d)(int n0, int n1,			   \
			   R *in, C *out, unsigned flags);		   \
FFTW_EXTERN X(plan) X(plan_dft_r2c_3d)(int n0, int n1,			   \
			   int n2,					   \
			   R *in, C *out, unsigned flags);		   \
									   \
									   \
FFTW_EXTERN X(plan) X(plan_many_dft_c2r)(int rank, const int *n,	   \
			     int howmany,				   \
			     C *in, const int *inembed,			   \
			     int istride, int idist,			   \
			     R *out, const int *onembed,		   \
			     int ostride, int odist,			   \
			     unsigned flags);				   \
									   \
FFTW_EXTERN X(plan) X(plan_dft_c2r)(int rank, const int *n,		   \
                        C *in, R *out, unsigned flags);			   \
									   \
FFTW_EXTERN X(plan) X(plan_dft_c2r_1d)(int n,C *in,R *out,unsigned flags); \
FFTW_EXTERN X(plan) X(plan_dft_c2r_2d)(int n0, int n1,			   \
			   C *in, R *out, unsigned flags);		   \
FFTW_EXTERN X(plan) X(plan_dft_c2r_3d)(int n0, int n1,			   \
			   int n2,					   \
			   C *in, R *out, unsigned flags);		   \
									   \
FFTW_EXTERN X(plan) X(plan_guru_dft_r2c)(int rank, const X(iodim) *dims,   \
			     int howmany_rank,				   \
			     const X(iodim) *howmany_dims,		   \
			     R *in, C *out,				   \
			     unsigned flags);				   \
FFTW_EXTERN X(plan) X(plan_guru_dft_c2r)(int rank, const X(iodim) *dims,   \
			     int howmany_rank,				   \
			     const X(iodim) *howmany_dims,		   \
			     C *in, R *out,				   \
			     unsigned flags);				   \
									   \
FFTW_EXTERN X(plan) X(plan_guru_split_dft_r2c)(				   \
                             int rank, const X(iodim) *dims,		   \
			     int howmany_rank,				   \
			     const X(iodim) *howmany_dims,		   \
			     R *in, R *ro, R *io,			   \
			     unsigned flags);				   \
FFTW_EXTERN X(plan) X(plan_guru_split_dft_c2r)(				   \
                             int rank, const X(iodim) *dims,		   \
			     int howmany_rank,				   \
			     const X(iodim) *howmany_dims,		   \
			     R *ri, R *ii, R *out,			   \
			     unsigned flags);				   \
									   \
FFTW_EXTERN X(plan) X(plan_guru64_dft_r2c)(int rank,			   \
                             const X(iodim64) *dims,			   \
			     int howmany_rank,				   \
			     const X(iodim64) *howmany_dims,		   \
			     R *in, C *out,				   \
			     unsigned flags);				   \
FFTW_EXTERN X(plan) X(plan_guru64_dft_c2r)(int rank,			   \
                             const X(iodim64) *dims,			   \
			     int howmany_rank,				   \
			     const X(iodim64) *howmany_dims,		   \
			     C *in, R *out,				   \
			     unsigned flags);				   \
									   \
FFTW_EXTERN X(plan) X(plan_guru64_split_dft_r2c)(			   \
                             int rank, const X(iodim64) *dims,		   \
			     int howmany_rank,				   \
			     const X(iodim64) *howmany_dims,		   \
			     R *in, R *ro, R *io,			   \
			     unsigned flags);				   \
FFTW_EXTERN X(plan) X(plan_guru64_split_dft_c2r)(			   \
                             int rank, const X(iodim64) *dims,		   \
			     int howmany_rank,				   \
			     const X(iodim64) *howmany_dims,		   \
			     R *ri, R *ii, R *out,			   \
			     unsigned flags);				   \
									   \
FFTW_EXTERN void X(execute_dft_r2c)(const X(plan) p, R *in, C *out);	   \
FFTW_EXTERN void X(execute_dft_c2r)(const X(plan) p, C *in, R *out);	   \
									   \
FFTW_EXTERN void X(execute_split_dft_r2c)(const X(plan) p,		   \
                                          R *in, R *ro, R *io);		   \
FFTW_EXTERN void X(execute_split_dft_c2r)(const X(plan) p,		   \
                                          R *ri, R *ii, R *out);	   \
									   \
FFTW_EXTERN X(plan) X(plan_many_r2r)(int rank, const int *n,		   \
                         int howmany,					   \
                         R *in, const int *inembed,			   \
                         int istride, int idist,			   \
                         R *out, const int *onembed,			   \
                         int ostride, int odist,			   \
                         const X(r2r_kind) *kind, unsigned flags);	   \
									   \
FFTW_EXTERN X(plan) X(plan_r2r)(int rank, const int *n, R *in, R *out,	   \
                    const X(r2r_kind) *kind, unsigned flags);		   \
									   \
FFTW_EXTERN X(plan) X(plan_r2r_1d)(int n, R *in, R *out,		   \
                       X(r2r_kind) kind, unsigned flags);		   \
FFTW_EXTERN X(plan) X(plan_r2r_2d)(int n0, int n1, R *in, R *out,	   \
                       X(r2r_kind) kind0, X(r2r_kind) kind1,		   \
                       unsigned flags);					   \
FFTW_EXTERN X(plan) X(plan_r2r_3d)(int n0, int n1, int n2,		   \
                       R *in, R *out, X(r2r_kind) kind0,		   \
                       X(r2r_kind) kind1, X(r2r_kind) kind2,		   \
                       unsigned flags);					   \
									   \
FFTW_EXTERN X(plan) X(plan_guru_r2r)(int rank, const X(iodim) *dims,	   \
                         int howmany_rank,				   \
                         const X(iodim) *howmany_dims,			   \
                         R *in, R *out,					   \
                         const X(r2r_kind) *kind, unsigned flags);	   \
									   \
FFTW_EXTERN X(plan) X(plan_guru64_r2r)(int rank, const X(iodim64) *dims,   \
                         int howmany_rank,				   \
                         const X(iodim64) *howmany_dims,		   \
                         R *in, R *out,					   \
                         const X(r2r_kind) *kind, unsigned flags);	   \
									   \
FFTW_EXTERN void X(execute_r2r)(const X(plan) p, R *in, R *out);	   \
									   \
FFTW_EXTERN void X(destroy_plan)(X(plan) p);				   \
FFTW_EXTERN void X(forget_wisdom)(void);				   \
FFTW_EXTERN void X(cleanup)(void);					   \
									   \
FFTW_EXTERN void X(set_timelimit)(double);				   \
									   \
FFTW_EXTERN void X(plan_with_nthreads)(int nthreads);			   \
FFTW_EXTERN int X(init_threads)(void);					   \
FFTW_EXTERN void X(cleanup_threads)(void);				   \
									   \
FFTW_EXTERN void X(export_wisdom_to_file)(FILE *output_file);		   \
FFTW_EXTERN char *X(export_wisdom_to_string)(void);			   \
FFTW_EXTERN void X(export_wisdom)(void (*write_char)(char c, void *),	   \
                                  void *data);				   \
FFTW_EXTERN int X(import_system_wisdom)(void);				   \
FFTW_EXTERN int X(import_wisdom_from_file)(FILE *input_file);		   \
FFTW_EXTERN int X(import_wisdom_from_string)(const char *input_string);	   \
FFTW_EXTERN int X(import_wisdom)(int (*read_char)(void *), void *data);	   \
									   \
FFTW_EXTERN void X(fprint_plan)(const X(plan) p, FILE *output_file);	   \
FFTW_EXTERN void X(print_plan)(const X(plan) p);			   \
									   \
FFTW_EXTERN void *X(malloc)(size_t n);					   \
FFTW_EXTERN void X(free)(void *p);					   \
									   \
FFTW_EXTERN void X(flops)(const X(plan) p,				   \
                          double *add, double *mul, double *fmas);	   \
FFTW_EXTERN double X(estimate_cost)(const X(plan) p);			   \
									   \
FFTW_EXTERN const char X(version)[];					   \
FFTW_EXTERN const char X(cc)[];						   \
FFTW_EXTERN const char X(codelet_optim)[];


/* end of FFTW_DEFINE_API macro */

FFTW_DEFINE_API(FFTW_MANGLE_DOUBLE, double, fftw_complex)
FFTW_DEFINE_API(FFTW_MANGLE_FLOAT, float, fftwf_complex)
FFTW_DEFINE_API(FFTW_MANGLE_LONG_DOUBLE, long double, fftwl_complex)

#define FFTW_FORWARD (-1)
#define FFTW_BACKWARD (+1)

#define FFTW_NO_TIMELIMIT (-1.0)

/* documented flags */
#define FFTW_MEASURE (0U)
#define FFTW_DESTROY_INPUT (1U << 0)
#define FFTW_UNALIGNED (1U << 1)
#define FFTW_CONSERVE_MEMORY (1U << 2)
#define FFTW_EXHAUSTIVE (1U << 3) /* NO_EXHAUSTIVE is default */
#define FFTW_PRESERVE_INPUT (1U << 4) /* cancels FFTW_DESTROY_INPUT */
#define FFTW_PATIENT (1U << 5) /* IMPATIENT is default */
#define FFTW_ESTIMATE (1U << 6)

/* undocumented beyond-guru flags */
#define FFTW_ESTIMATE_PATIENT (1U << 7)
#define FFTW_BELIEVE_PCOST (1U << 8)
#define FFTW_NO_DFT_R2HC (1U << 9)
#define FFTW_NO_NONTHREADED (1U << 10)
#define FFTW_NO_BUFFERING (1U << 11)
#define FFTW_NO_INDIRECT_OP (1U << 12)
#define FFTW_ALLOW_LARGE_GENERIC (1U << 13) /* NO_LARGE_GENERIC is default */
#define FFTW_NO_RANK_SPLITS (1U << 14)
#define FFTW_NO_VRANK_SPLITS (1U << 15)
#define FFTW_NO_VRECURSE (1U << 16)
#define FFTW_NO_SIMD (1U << 17)
#define FFTW_NO_SLOW (1U << 18)
#define FFTW_NO_FIXED_RADIX_LARGE_N (1U << 19)
#define FFTW_ALLOW_PRUNING (1U << 20)
#define FFTW_WISDOM_ONLY (1U << 21)

#ifdef __cplusplus
}  /* extern "C" */
#endif /* __cplusplus */

#endif /* FFTW3_H */
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; Wedit project file. Syntax: Name = value
[BandR]
PrjFiles=5
UserCount=1
User1=ADMINISTRATOR
CmsDirectory=%BANDRPATH%\cms
PutOptions=4
GetOptions=0
FileOptions=0
LockOptions=1
UsersOptions=1
ProjectFlags=16
ExtraCmsFilesCount=0
Frame=24 24 640 480
StatusBar=0,0,0,0
Name=BandR
CurrentFile=
OpenFiles=0
ProjectPath=%BANDRPATH%
SourcesDir=%BANDRPATH%
Defines=
Includes=
Libraries=%BANDRPATH%\fftw3.lib
LinkerArgs=
ProjectTime=549728
MakeName=
MakeDir=%BANDRPATH%\lcc
Exe=%BANDRPATH%\lcc\bandr.exe
DebuggerArguments=
DbgExeName=%BANDRPATH%\lcc\bandr.exe
DbgDir=%BANDRPATH%\lcc
CompilerFlags=8650885
FortranFlags=0
Useframework=0
NumberOfBreakpoints=0
ErrorFile=
NrOfFileProcessors=0
UserName=ADMINISTRATOR
IncludeFilesCount=0
File1=wave.h
File2=wave.c
File3=fftw3.h
File4=fftw3.def
File5=bandr.c


Alexei Kontsevoi
bandr.prj


libfftw3f-3.dll
_fftwf_alignment_of
_fftwf_assertion_failed
_fftwf_bufdist
_fftwf_check_alignment_of_sse_pmpm
_fftwf_choose_radix
_fftwf_cleanup
_fftwf_cleanup_threads
_fftwf_codelet_e01_8
_fftwf_codelet_e10_8
_fftwf_codelet_hb2_16
_fftwf_codelet_hb2_20
_fftwf_codelet_hb2_25
_fftwf_codelet_hb2_32
_fftwf_codelet_hb2_4
_fftwf_codelet_hb2_5
_fftwf_codelet_hb2_8
_fftwf_codelet_hb_10
_fftwf_codelet_hb_12
_fftwf_codelet_hb_15
_fftwf_codelet_hb_16
_fftwf_codelet_hb_2
_fftwf_codelet_hb_20
_fftwf_codelet_hb_25
_fftwf_codelet_hb_3
_fftwf_codelet_hb_32
_fftwf_codelet_hb_4
_fftwf_codelet_hb_5
_fftwf_codelet_hb_6
_fftwf_codelet_hb_64
_fftwf_codelet_hb_7
_fftwf_codelet_hb_8
_fftwf_codelet_hb_9
_fftwf_codelet_hc2cb2_16
_fftwf_codelet_hc2cb2_20
_fftwf_codelet_hc2cb2_32
_fftwf_codelet_hc2cb2_4
_fftwf_codelet_hc2cb2_8
_fftwf_codelet_hc2cb_10
_fftwf_codelet_hc2cb_12
_fftwf_codelet_hc2cb_16
_fftwf_codelet_hc2cb_2
_fftwf_codelet_hc2cb_20
_fftwf_codelet_hc2cb_32
_fftwf_codelet_hc2cb_4
_fftwf_codelet_hc2cb_6
_fftwf_codelet_hc2cb_8
_fftwf_codelet_hc2cbdft2_16
_fftwf_codelet_hc2cbdft2_20
_fftwf_codelet_hc2cbdft2_32
_fftwf_codelet_hc2cbdft2_4
_fftwf_codelet_hc2cbdft2_8
_fftwf_codelet_hc2cbdft_10
_fftwf_codelet_hc2cbdft_12
_fftwf_codelet_hc2cbdft_16
_fftwf_codelet_hc2cbdft_2
_fftwf_codelet_hc2cbdft_20
_fftwf_codelet_hc2cbdft_32
_fftwf_codelet_hc2cbdft_4
_fftwf_codelet_hc2cbdft_6
_fftwf_codelet_hc2cbdft_8
_fftwf_codelet_hc2cbdftv_10
_fftwf_codelet_hc2cbdftv_12
_fftwf_codelet_hc2cbdftv_16
_fftwf_codelet_hc2cbdftv_2
_fftwf_codelet_hc2cbdftv_20
_fftwf_codelet_hc2cbdftv_32
_fftwf_codelet_hc2cbdftv_4
_fftwf_codelet_hc2cbdftv_6
_fftwf_codelet_hc2cbdftv_8
_fftwf_codelet_hc2cf2_16
_fftwf_codelet_hc2cf2_20
_fftwf_codelet_hc2cf2_32
_fftwf_codelet_hc2cf2_4
_fftwf_codelet_hc2cf2_8
_fftwf_codelet_hc2cf_10
_fftwf_codelet_hc2cf_12
_fftwf_codelet_hc2cf_16
_fftwf_codelet_hc2cf_2
_fftwf_codelet_hc2cf_20
_fftwf_codelet_hc2cf_32
_fftwf_codelet_hc2cf_4
_fftwf_codelet_hc2cf_6
_fftwf_codelet_hc2cf_8
_fftwf_codelet_hc2cfdft2_16
_fftwf_codelet_hc2cfdft2_20
_fftwf_codelet_hc2cfdft2_32
_fftwf_codelet_hc2cfdft2_4
_fftwf_codelet_hc2cfdft2_8
_fftwf_codelet_hc2cfdft_10
_fftwf_codelet_hc2cfdft_12
_fftwf_codelet_hc2cfdft_16
_fftwf_codelet_hc2cfdft_2
_fftwf_codelet_hc2cfdft_20
_fftwf_codelet_hc2cfdft_32
_fftwf_codelet_hc2cfdft_4
_fftwf_codelet_hc2cfdft_6
_fftwf_codelet_hc2cfdft_8
_fftwf_codelet_hc2cfdftv_10
_fftwf_codelet_hc2cfdftv_12
_fftwf_codelet_hc2cfdftv_16
_fftwf_codelet_hc2cfdftv_2
_fftwf_codelet_hc2cfdftv_20
_fftwf_codelet_hc2cfdftv_32
_fftwf_codelet_hc2cfdftv_4
_fftwf_codelet_hc2cfdftv_6
_fftwf_codelet_hc2cfdftv_8
_fftwf_codelet_hf2_16
_fftwf_codelet_hf2_20
_fftwf_codelet_hf2_25
_fftwf_codelet_hf2_32
_fftwf_codelet_hf2_4
_fftwf_codelet_hf2_5
_fftwf_codelet_hf2_8
_fftwf_codelet_hf_10
_fftwf_codelet_hf_12
_fftwf_codelet_hf_15
_fftwf_codelet_hf_16
_fftwf_codelet_hf_2
_fftwf_codelet_hf_20
_fftwf_codelet_hf_25
_fftwf_codelet_hf_3
_fftwf_codelet_hf_32
_fftwf_codelet_hf_4
_fftwf_codelet_hf_5
_fftwf_codelet_hf_6
_fftwf_codelet_hf_64
_fftwf_codelet_hf_7
_fftwf_codelet_hf_8
_fftwf_codelet_hf_9
_fftwf_codelet_n1_10
_fftwf_codelet_n1_11
_fftwf_codelet_n1_12
_fftwf_codelet_n1_13
_fftwf_codelet_n1_14
_fftwf_codelet_n1_15
_fftwf_codelet_n1_16
_fftwf_codelet_n1_2
_fftwf_codelet_n1_20
_fftwf_codelet_n1_25
_fftwf_codelet_n1_3
_fftwf_codelet_n1_32
_fftwf_codelet_n1_4
_fftwf_codelet_n1_5
_fftwf_codelet_n1_6
_fftwf_codelet_n1_64
_fftwf_codelet_n1_7
_fftwf_codelet_n1_8
_fftwf_codelet_n1_9
_fftwf_codelet_n1bv_10
_fftwf_codelet_n1bv_11
_fftwf_codelet_n1bv_12
_fftwf_codelet_n1bv_128
_fftwf_codelet_n1bv_13
_fftwf_codelet_n1bv_14
_fftwf_codelet_n1bv_15
_fftwf_codelet_n1bv_16
_fftwf_codelet_n1bv_2
_fftwf_codelet_n1bv_20
_fftwf_codelet_n1bv_25
_fftwf_codelet_n1bv_3
_fftwf_codelet_n1bv_32
_fftwf_codelet_n1bv_4
_fftwf_codelet_n1bv_5
_fftwf_codelet_n1bv_6
_fftwf_codelet_n1bv_64
_fftwf_codelet_n1bv_7
_fftwf_codelet_n1bv_8
_fftwf_codelet_n1bv_9
_fftwf_codelet_n1fv_10
_fftwf_codelet_n1fv_11
_fftwf_codelet_n1fv_12
_fftwf_codelet_n1fv_128
_fftwf_codelet_n1fv_13
_fftwf_codelet_n1fv_14
_fftwf_codelet_n1fv_15
_fftwf_codelet_n1fv_16
_fftwf_codelet_n1fv_2
_fftwf_codelet_n1fv_20
_fftwf_codelet_n1fv_25
_fftwf_codelet_n1fv_3
_fftwf_codelet_n1fv_32
_fftwf_codelet_n1fv_4
_fftwf_codelet_n1fv_5
_fftwf_codelet_n1fv_6
_fftwf_codelet_n1fv_64
_fftwf_codelet_n1fv_7
_fftwf_codelet_n1fv_8
_fftwf_codelet_n1fv_9
_fftwf_codelet_n2bv_10
_fftwf_codelet_n2bv_12
_fftwf_codelet_n2bv_14
_fftwf_codelet_n2bv_16
_fftwf_codelet_n2bv_2
_fftwf_codelet_n2bv_20
_fftwf_codelet_n2bv_32
_fftwf_codelet_n2bv_4
_fftwf_codelet_n2bv_6
_fftwf_codelet_n2bv_64
_fftwf_codelet_n2bv_8
_fftwf_codelet_n2fv_10
_fftwf_codelet_n2fv_12
_fftwf_codelet_n2fv_14
_fftwf_codelet_n2fv_16
_fftwf_codelet_n2fv_2
_fftwf_codelet_n2fv_20
_fftwf_codelet_n2fv_32
_fftwf_codelet_n2fv_4
_fftwf_codelet_n2fv_6
_fftwf_codelet_n2fv_64
_fftwf_codelet_n2fv_8
_fftwf_codelet_n2sv_16
_fftwf_codelet_n2sv_32
_fftwf_codelet_n2sv_4
_fftwf_codelet_n2sv_64
_fftwf_codelet_n2sv_8
_fftwf_codelet_q1_2
_fftwf_codelet_q1_3
_fftwf_codelet_q1_4
_fftwf_codelet_q1_5
_fftwf_codelet_q1_6
_fftwf_codelet_q1_8
_fftwf_codelet_q1bv_2
_fftwf_codelet_q1bv_4
_fftwf_codelet_q1bv_5
_fftwf_codelet_q1bv_8
_fftwf_codelet_q1fv_2
_fftwf_codelet_q1fv_4
_fftwf_codelet_q1fv_5
_fftwf_codelet_q1fv_8
_fftwf_codelet_r2cbIII_10
_fftwf_codelet_r2cbIII_12
_fftwf_codelet_r2cbIII_15
_fftwf_codelet_r2cbIII_16
_fftwf_codelet_r2cbIII_2
_fftwf_codelet_r2cbIII_20
_fftwf_codelet_r2cbIII_25
_fftwf_codelet_r2cbIII_3
_fftwf_codelet_r2cbIII_32
_fftwf_codelet_r2cbIII_4
_fftwf_codelet_r2cbIII_5
_fftwf_codelet_r2cbIII_6
_fftwf_codelet_r2cbIII_64
_fftwf_codelet_r2cbIII_7
_fftwf_codelet_r2cbIII_8
_fftwf_codelet_r2cbIII_9
_fftwf_codelet_r2cb_10
_fftwf_codelet_r2cb_11
_fftwf_codelet_r2cb_12
_fftwf_codelet_r2cb_128
_fftwf_codelet_r2cb_13
_fftwf_codelet_r2cb_14
_fftwf_codelet_r2cb_15
_fftwf_codelet_r2cb_16
_fftwf_codelet_r2cb_2
_fftwf_codelet_r2cb_20
_fftwf_codelet_r2cb_25
_fftwf_codelet_r2cb_3
_fftwf_codelet_r2cb_32
_fftwf_codelet_r2cb_4
_fftwf_codelet_r2cb_5
_fftwf_codelet_r2cb_6
_fftwf_codelet_r2cb_64
_fftwf_codelet_r2cb_7
_fftwf_codelet_r2cb_8
_fftwf_codelet_r2cb_9
_fftwf_codelet_r2cfII_10
_fftwf_codelet_r2cfII_12
_fftwf_codelet_r2cfII_15
_fftwf_codelet_r2cfII_16
_fftwf_codelet_r2cfII_2
_fftwf_codelet_r2cfII_20
_fftwf_codelet_r2cfII_25
_fftwf_codelet_r2cfII_3
_fftwf_codelet_r2cfII_32
_fftwf_codelet_r2cfII_4
_fftwf_codelet_r2cfII_5
_fftwf_codelet_r2cfII_6
_fftwf_codelet_r2cfII_64
_fftwf_codelet_r2cfII_7
_fftwf_codelet_r2cfII_8
_fftwf_codelet_r2cfII_9
_fftwf_codelet_r2cf_10
_fftwf_codelet_r2cf_11
_fftwf_codelet_r2cf_12
_fftwf_codelet_r2cf_128
_fftwf_codelet_r2cf_13
_fftwf_codelet_r2cf_14
_fftwf_codelet_r2cf_15
_fftwf_codelet_r2cf_16
_fftwf_codelet_r2cf_2
_fftwf_codelet_r2cf_20
_fftwf_codelet_r2cf_25
_fftwf_codelet_r2cf_3
_fftwf_codelet_r2cf_32
_fftwf_codelet_r2cf_4
_fftwf_codelet_r2cf_5
_fftwf_codelet_r2cf_6
_fftwf_codelet_r2cf_64
_fftwf_codelet_r2cf_7
_fftwf_codelet_r2cf_8
_fftwf_codelet_r2cf_9
_fftwf_codelet_t1_10
_fftwf_codelet_t1_12
_fftwf_codelet_t1_15
_fftwf_codelet_t1_16
_fftwf_codelet_t1_2
_fftwf_codelet_t1_20
_fftwf_codelet_t1_25
_fftwf_codelet_t1_3
_fftwf_codelet_t1_32
_fftwf_codelet_t1_4
_fftwf_codelet_t1_5
_fftwf_codelet_t1_6
_fftwf_codelet_t1_64
_fftwf_codelet_t1_7
_fftwf_codelet_t1_8
_fftwf_codelet_t1_9
_fftwf_codelet_t1buv_10
_fftwf_codelet_t1buv_2
_fftwf_codelet_t1buv_3
_fftwf_codelet_t1buv_4
_fftwf_codelet_t1buv_5
_fftwf_codelet_t1buv_6
_fftwf_codelet_t1buv_7
_fftwf_codelet_t1buv_8
_fftwf_codelet_t1buv_9
_fftwf_codelet_t1bv_10
_fftwf_codelet_t1bv_12
_fftwf_codelet_t1bv_15
_fftwf_codelet_t1bv_16
_fftwf_codelet_t1bv_2
_fftwf_codelet_t1bv_20
_fftwf_codelet_t1bv_25
_fftwf_codelet_t1bv_3
_fftwf_codelet_t1bv_32
_fftwf_codelet_t1bv_4
_fftwf_codelet_t1bv_5
_fftwf_codelet_t1bv_6
_fftwf_codelet_t1bv_64
_fftwf_codelet_t1bv_7
_fftwf_codelet_t1bv_8
_fftwf_codelet_t1bv_9
_fftwf_codelet_t1fuv_10
_fftwf_codelet_t1fuv_2
_fftwf_codelet_t1fuv_3
_fftwf_codelet_t1fuv_4
_fftwf_codelet_t1fuv_5
_fftwf_codelet_t1fuv_6
_fftwf_codelet_t1fuv_7
_fftwf_codelet_t1fuv_8
_fftwf_codelet_t1fuv_9
_fftwf_codelet_t1fv_10
_fftwf_codelet_t1fv_12
_fftwf_codelet_t1fv_15
_fftwf_codelet_t1fv_16
_fftwf_codelet_t1fv_2
_fftwf_codelet_t1fv_20
_fftwf_codelet_t1fv_25
_fftwf_codelet_t1fv_3
_fftwf_codelet_t1fv_32
_fftwf_codelet_t1fv_4
_fftwf_codelet_t1fv_5
_fftwf_codelet_t1fv_6
_fftwf_codelet_t1fv_64
_fftwf_codelet_t1fv_7
_fftwf_codelet_t1fv_8
_fftwf_codelet_t1fv_9
_fftwf_codelet_t1sv_16
_fftwf_codelet_t1sv_2
_fftwf_codelet_t1sv_32
_fftwf_codelet_t1sv_4
_fftwf_codelet_t1sv_8
_fftwf_codelet_t2_10
_fftwf_codelet_t2_16
_fftwf_codelet_t2_20
_fftwf_codelet_t2_25
_fftwf_codelet_t2_32
_fftwf_codelet_t2_4
_fftwf_codelet_t2_5
_fftwf_codelet_t2_64
_fftwf_codelet_t2_8
_fftwf_codelet_t2bv_10
_fftwf_codelet_t2bv_16
_fftwf_codelet_t2bv_2
_fftwf_codelet_t2bv_20
_fftwf_codelet_t2bv_25
_fftwf_codelet_t2bv_32
_fftwf_codelet_t2bv_4
_fftwf_codelet_t2bv_5
_fftwf_codelet_t2bv_64
_fftwf_codelet_t2bv_8
_fftwf_codelet_t2fv_10
_fftwf_codelet_t2fv_16
_fftwf_codelet_t2fv_2
_fftwf_codelet_t2fv_20
_fftwf_codelet_t2fv_25
_fftwf_codelet_t2fv_32
_fftwf_codelet_t2fv_4
_fftwf_codelet_t2fv_5
_fftwf_codelet_t2fv_64
_fftwf_codelet_t2fv_8
_fftwf_codelet_t2sv_16
_fftwf_codelet_t2sv_32
_fftwf_codelet_t2sv_4
_fftwf_codelet_t2sv_8
_fftwf_codelet_t3bv_10
_fftwf_codelet_t3bv_16
_fftwf_codelet_t3bv_20
_fftwf_codelet_t3bv_25
_fftwf_codelet_t3bv_32
_fftwf_codelet_t3bv_4
_fftwf_codelet_t3bv_5
_fftwf_codelet_t3bv_8
_fftwf_codelet_t3fv_10
_fftwf_codelet_t3fv_16
_fftwf_codelet_t3fv_20
_fftwf_codelet_t3fv_25
_fftwf_codelet_t3fv_32
_fftwf_codelet_t3fv_4
_fftwf_codelet_t3fv_5
_fftwf_codelet_t3fv_8
_fftwf_compute_tilesz
_fftwf_configure_planner
_fftwf_cpy1d
_fftwf_cpy2d
_fftwf_cpy2d_ci
_fftwf_cpy2d_co
_fftwf_cpy2d_pair
_fftwf_cpy2d_pair_ci
_fftwf_cpy2d_pair_co
_fftwf_cpy2d_tiled
_fftwf_cpy2d_tiledbuf
_fftwf_ct_applicable
_fftwf_ct_generic_register
_fftwf_ct_genericbuf_register
_fftwf_ct_uglyp
_fftwf_destroy_plan
_fftwf_dft_bluestein_register
_fftwf_dft_buffered_register
_fftwf_dft_conf_standard
_fftwf_dft_generic_register
_fftwf_dft_indirect_register
_fftwf_dft_indirect_transpose_register
_fftwf_dft_nop_register
_fftwf_dft_r2hc_register
_fftwf_dft_rader_register
_fftwf_dft_rank_geq2_register
_fftwf_dft_solve
_fftwf_dft_thr_vrank_geq1_register
_fftwf_dft_vrank_geq1_register
_fftwf_dft_zerotens
_fftwf_dht_r2hc_register
_fftwf_dht_rader_register
_fftwf_dimcmp
_fftwf_elapsed_since
_fftwf_estimate_cost
_fftwf_execute
_fftwf_execute_dft
_fftwf_execute_dft_c2r
_fftwf_execute_dft_r2c
_fftwf_execute_r2r
_fftwf_execute_split_dft
_fftwf_execute_split_dft_c2r
_fftwf_execute_split_dft_r2c
_fftwf_export_wisdom
_fftwf_export_wisdom_to_file
_fftwf_export_wisdom_to_string
_fftwf_extract_reim
_fftwf_factors_into
_fftwf_find_generator
_fftwf_first_divisor
_fftwf_flops
_fftwf_forget_wisdom
_fftwf_fprint_plan
_fftwf_free
_fftwf_get_crude_time
_fftwf_guru64_kosherp
_fftwf_guru_kosherp
_fftwf_hash
_fftwf_have_sse
_fftwf_hc2c_applicable
_fftwf_hc2hc_applicable
_fftwf_hc2hc_generic_register
_fftwf_iabs
_fftwf_iestimate_cost
_fftwf_ifree
_fftwf_ifree0
_fftwf_imax
_fftwf_imin
_fftwf_import_system_wisdom
_fftwf_import_wisdom
_fftwf_import_wisdom_from_file
_fftwf_import_wisdom_from_string
_fftwf_init_threads
_fftwf_is_prime
_fftwf_isqrt
_fftwf_ithreads_init
_fftwf_join_taint
_fftwf_kdft_dif_register
_fftwf_kdft_difsq_register
_fftwf_kdft_dit_register
_fftwf_kdft_register
_fftwf_kernel_free
_fftwf_kernel_malloc
_fftwf_khc2c_register
_fftwf_khc2hc_register
_fftwf_kr2c_register
_fftwf_kr2r_register
_fftwf_malloc
_fftwf_malloc_plain
_fftwf_many_kosherp
_fftwf_map_r2r_kind
_fftwf_mapflags
_fftwf_md5INT
_fftwf_md5begin
_fftwf_md5end
_fftwf_md5int
_fftwf_md5putb
_fftwf_md5putc
_fftwf_md5puts
_fftwf_md5unsigned
_fftwf_measure_execution_time
_fftwf_mkapiplan
_fftwf_mkplan
_fftwf_mkplan_d
_fftwf_mkplan_dft
_fftwf_mkplan_dftw
_fftwf_mkplan_f_d
_fftwf_mkplan_hc2c
_fftwf_mkplan_hc2hc
_fftwf_mkplan_rdft
_fftwf_mkplan_rdft2
_fftwf_mkplanner
_fftwf_mkprinter
_fftwf_mkprinter_file
_fftwf_mkproblem
_fftwf_mkproblem_dft
_fftwf_mkproblem_dft_d
_fftwf_mkproblem_rdft
_fftwf_mkproblem_rdft2
_fftwf_mkproblem_rdft2_d
_fftwf_mkproblem_rdft2_d_3pointers
_fftwf_mkproblem_rdft_0_d
_fftwf_mkproblem_rdft_1
_fftwf_mkproblem_rdft_1_d
_fftwf_mkproblem_rdft_d
_fftwf_mkproblem_unsolvable
_fftwf_mkscanner
_fftwf_mksolver
_fftwf_mksolver_ct
_fftwf_mksolver_ct_threads
_fftwf_mksolver_dft_direct
_fftwf_mksolver_dft_directbuf
_fftwf_mksolver_hc2c
_fftwf_mksolver_hc2hc
_fftwf_mksolver_hc2hc_threads
_fftwf_mksolver_rdft2_direct
_fftwf_mksolver_rdft_r2c_direct
_fftwf_mksolver_rdft_r2c_directbuf
_fftwf_mksolver_rdft_r2r_direct
_fftwf_mkstride
_fftwf_mktensor
_fftwf_mktensor_0d
_fftwf_mktensor_1d
_fftwf_mktensor_2d
_fftwf_mktensor_3d
_fftwf_mktensor_4d
_fftwf_mktensor_5d
_fftwf_mktensor_iodims
_fftwf_mktensor_iodims64
_fftwf_mktensor_rowmajor
_fftwf_mktriggen
_fftwf_modulo
_fftwf_nbuf
_fftwf_nbuf_redundant
_fftwf_next_prime
_fftwf_null_awake
_fftwf_ops_add
_fftwf_ops_add2
_fftwf_ops_cpy
_fftwf_ops_madd
_fftwf_ops_madd2
_fftwf_ops_other
_fftwf_ops_zero
_fftwf_pickdim
_fftwf_plan_awake
_fftwf_plan_destroy_internal
_fftwf_plan_dft
_fftwf_plan_dft_1d
_fftwf_plan_dft_2d
_fftwf_plan_dft_3d
_fftwf_plan_dft_c2r
_fftwf_plan_dft_c2r_1d
_fftwf_plan_dft_c2r_2d
_fftwf_plan_dft_c2r_3d
_fftwf_plan_dft_r2c
_fftwf_plan_dft_r2c_1d
_fftwf_plan_dft_r2c_2d
_fftwf_plan_dft_r2c_3d
_fftwf_plan_guru64_dft
_fftwf_plan_guru64_dft_c2r
_fftwf_plan_guru64_dft_r2c
_fftwf_plan_guru64_r2r
_fftwf_plan_guru64_split_dft
_fftwf_plan_guru64_split_dft_c2r
_fftwf_plan_guru64_split_dft_r2c
_fftwf_plan_guru_dft
_fftwf_plan_guru_dft_c2r
_fftwf_plan_guru_dft_r2c
_fftwf_plan_guru_r2r
_fftwf_plan_guru_split_dft
_fftwf_plan_guru_split_dft_c2r
_fftwf_plan_guru_split_dft_r2c
_fftwf_plan_many_dft
_fftwf_plan_many_dft_c2r
_fftwf_plan_many_dft_r2c
_fftwf_plan_many_r2r
_fftwf_plan_null_destroy
_fftwf_plan_r2r
_fftwf_plan_r2r_1d
_fftwf_plan_r2r_2d
_fftwf_plan_r2r_3d
_fftwf_plan_with_nthreads
_fftwf_planner_destroy
_fftwf_power_mod
_fftwf_print_plan
_fftwf_printer_destroy
_fftwf_problem_destroy
_fftwf_rader_tl_delete
_fftwf_rader_tl_find
_fftwf_rader_tl_insert
_fftwf_rdft2_buffered_register
_fftwf_rdft2_complex_n
_fftwf_rdft2_inplace_strides
_fftwf_rdft2_nop_register
_fftwf_rdft2_pad
_fftwf_rdft2_rank0_register
_fftwf_rdft2_rank_geq2_register
_fftwf_rdft2_rdft_register
_fftwf_rdft2_solve
_fftwf_rdft2_strides
_fftwf_rdft2_tensor_max_index
_fftwf_rdft2_thr_vrank_geq1_register
_fftwf_rdft2_vrank_geq1_register
_fftwf_rdft_buffered_register
_fftwf_rdft_conf_standard
_fftwf_rdft_dht_register
_fftwf_rdft_generic_register
_fftwf_rdft_indirect_register
_fftwf_rdft_kind_str
_fftwf_rdft_nop_register
_fftwf_rdft_rank0_register
_fftwf_rdft_rank_geq2_register
_fftwf_rdft_solve
_fftwf_rdft_thr_vrank_geq1_register
_fftwf_rdft_vrank3_transpose_register
_fftwf_rdft_vrank_geq1_register
_fftwf_rdft_zerotens
_fftwf_redft00e_r2hc_pad_register
_fftwf_regsolver_ct_directw
_fftwf_regsolver_ct_directwsq
_fftwf_regsolver_hc2c_direct
_fftwf_regsolver_hc2hc_direct
_fftwf_reodft00e_splitradix_register
_fftwf_reodft010e_r2hc_register
_fftwf_reodft11e_r2hc_odd_register
_fftwf_reodft11e_radix2_r2hc_register
_fftwf_reodft_conf_standard
_fftwf_rodft00e_r2hc_pad_register
_fftwf_safe_mulmod
_fftwf_scanner_destroy
_fftwf_set_timelimit
_fftwf_solver_destroy
_fftwf_solver_register
_fftwf_solver_use
_fftwf_solvtab_exec
_fftwf_spawn_loop
_fftwf_stride_destroy
_fftwf_taint
_fftwf_tensor_append
_fftwf_tensor_compress
_fftwf_tensor_compress_contiguous
_fftwf_tensor_copy
_fftwf_tensor_copy_except
_fftwf_tensor_copy_inplace
_fftwf_tensor_copy_sub
_fftwf_tensor_destroy
_fftwf_tensor_destroy2
_fftwf_tensor_destroy4
_fftwf_tensor_equal
_fftwf_tensor_inplace_locations
_fftwf_tensor_inplace_strides
_fftwf_tensor_inplace_strides2
_fftwf_tensor_kosherp
_fftwf_tensor_max_index
_fftwf_tensor_md5
_fftwf_tensor_min_istride
_fftwf_tensor_min_ostride
_fftwf_tensor_min_stride
_fftwf_tensor_print
_fftwf_tensor_split
_fftwf_tensor_strides_decrease
_fftwf_tensor_sz
_fftwf_tensor_tornk1
_fftwf_the_planner
_fftwf_threads_cleanup
_fftwf_threads_conf_standard
_fftwf_tile2d
_fftwf_toobig
_fftwf_transpose
_fftwf_transpose_tiled
_fftwf_transpose_tiledbuf
_fftwf_triggen_destroy
_fftwf_twiddle_awake
_fftwf_twiddle_length
_sfftw_cleanup_
_sfftw_cleanup__
_sfftw_cleanup_threads_
_sfftw_cleanup_threads__
_sfftw_destroy_plan_
_sfftw_destroy_plan__
_sfftw_execute_
_sfftw_execute__
_sfftw_execute_dft_
_sfftw_execute_dft__
_sfftw_execute_dft_c2r_
_sfftw_execute_dft_c2r__
_sfftw_execute_dft_r2c_
_sfftw_execute_dft_r2c__
_sfftw_execute_r2r_
_sfftw_execute_r2r__
_sfftw_execute_split_dft_
_sfftw_execute_split_dft__
_sfftw_execute_split_dft_c2r_
_sfftw_execute_split_dft_c2r__
_sfftw_execute_split_dft_r2c_
_sfftw_execute_split_dft_r2c__
_sfftw_export_wisdom_
_sfftw_export_wisdom__
_sfftw_flops_
_sfftw_flops__
_sfftw_forget_wisdom_
_sfftw_forget_wisdom__
_sfftw_import_system_wisdom_
_sfftw_import_system_wisdom__
_sfftw_import_wisdom_
_sfftw_import_wisdom__
_sfftw_init_threads_
_sfftw_init_threads__
_sfftw_plan_dft_
_sfftw_plan_dft_1d_
_sfftw_plan_dft_1d__
_sfftw_plan_dft_2d_
_sfftw_plan_dft_2d__
_sfftw_plan_dft_3d_
_sfftw_plan_dft_3d__
_sfftw_plan_dft__
_sfftw_plan_dft_c2r_
_sfftw_plan_dft_c2r_1d_
_sfftw_plan_dft_c2r_1d__
_sfftw_plan_dft_c2r_2d_
_sfftw_plan_dft_c2r_2d__
_sfftw_plan_dft_c2r_3d_
_sfftw_plan_dft_c2r_3d__
_sfftw_plan_dft_c2r__
_sfftw_plan_dft_r2c_
_sfftw_plan_dft_r2c_1d_
_sfftw_plan_dft_r2c_1d__
_sfftw_plan_dft_r2c_2d_
_sfftw_plan_dft_r2c_2d__
_sfftw_plan_dft_r2c_3d_
_sfftw_plan_dft_r2c_3d__
_sfftw_plan_dft_r2c__
_sfftw_plan_guru_dft_
_sfftw_plan_guru_dft__
_sfftw_plan_guru_dft_c2r_
_sfftw_plan_guru_dft_c2r__
_sfftw_plan_guru_dft_r2c_
_sfftw_plan_guru_dft_r2c__
_sfftw_plan_guru_r2r_
_sfftw_plan_guru_r2r__
_sfftw_plan_guru_split_dft_
_sfftw_plan_guru_split_dft__
_sfftw_plan_guru_split_dft_c2r_
_sfftw_plan_guru_split_dft_c2r__
_sfftw_plan_guru_split_dft_r2c_
_sfftw_plan_guru_split_dft_r2c__
_sfftw_plan_many_dft_
_sfftw_plan_many_dft__
_sfftw_plan_many_dft_c2r_
_sfftw_plan_many_dft_c2r__
_sfftw_plan_many_dft_r2c_
_sfftw_plan_many_dft_r2c__
_sfftw_plan_many_r2r_
_sfftw_plan_many_r2r__
_sfftw_plan_r2r_
_sfftw_plan_r2r_1d_
_sfftw_plan_r2r_1d__
_sfftw_plan_r2r_2d_
_sfftw_plan_r2r_2d__
_sfftw_plan_r2r_3d_
_sfftw_plan_r2r_3d__
_sfftw_plan_r2r__
_sfftw_plan_with_nthreads_
_sfftw_plan_with_nthreads__
_sfftw_print_plan_
_sfftw_print_plan__


Alexei Kontsevoi
fftw3.def


		    GNU GENERAL PUBLIC LICENSE
		       Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
                       51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			    Preamble

  The licenses for most software are designed to take away your
freedom to share and change it.  By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users.  This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it.  (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.)  You can apply it to
your programs, too.

  When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

  To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

  For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have.  You must make sure that they, too, receive or can get the
source code.  And you must show them these terms so they know their
rights.

  We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

  Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software.  If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

  Finally, any free program is threatened constantly by software
patents.  We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary.  To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

  The precise terms and conditions for copying, distribution and
modification follow.
�
		    GNU GENERAL PUBLIC LICENSE
   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

  0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License.  The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language.  (Hereinafter, translation is included without limitation in
the term "modification".)  Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope.  The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

  1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

  2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

    a) You must cause the modified files to carry prominent notices
    stating that you changed the files and the date of any change.

    b) You must cause any work that you distribute or publish, that in
    whole or in part contains or is derived from the Program or any
    part thereof, to be licensed as a whole at no charge to all third
    parties under the terms of this License.

    c) If the modified program normally reads commands interactively
    when run, you must cause it, when started running for such
    interactive use in the most ordinary way, to print or display an
    announcement including an appropriate copyright notice and a
    notice that there is no warranty (or else, saying that you provide
    a warranty) and that users may redistribute the program under
    these conditions, and telling the user how to view a copy of this
    License.  (Exception: if the Program itself is interactive but
    does not normally print such an announcement, your work based on
    the Program is not required to print an announcement.)
�
These requirements apply to the modified work as a whole.  If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works.  But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

  3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

    a) Accompany it with the complete corresponding machine-readable
    source code, which must be distributed under the terms of Sections
    1 and 2 above on a medium customarily used for software interchange; or,

    b) Accompany it with a written offer, valid for at least three
    years, to give any third party, for a charge no more than your
    cost of physically performing source distribution, a complete
    machine-readable copy of the corresponding source code, to be
    distributed under the terms of Sections 1 and 2 above on a medium
    customarily used for software interchange; or,

    c) Accompany it with the information you received as to the offer
    to distribute corresponding source code.  (This alternative is
    allowed only for noncommercial distribution and only if you
    received the program in object code or executable form with such
    an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it.  For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable.  However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
�
  4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

  5. You are not required to accept this License, since you have not
signed it.  However, nothing else grants you permission to modify or
distribute the Program or its derivative works.  These actions are
prohibited by law if you do not accept this License.  Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

  6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions.  You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

  7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all.  For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices.  Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
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  8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded.  In such case, this License incorporates
the limitation as if written in the body of this License.

  9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time.  Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number.  If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation.  If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

  10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission.  For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this.  Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			    NO WARRANTY

  11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

  12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		     END OF TERMS AND CONDITIONS
�
	    How to Apply These Terms to Your New Programs

  If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

  To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA


Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

    Gnomovision version 69, Copyright (C) year name of author
    Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License.  Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary.  Here is a sample; alter the names:

  Yoyodyne, Inc., hereby disclaims all copyright interest in the program
  `Gnomovision' (which makes passes at compilers) written by James Hacker.

  <signature of Ty Coon>, 1 April 1989
  Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs.  If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library.  If this is what you want to do, use the GNU Library General
Public License instead of this License.
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Pa3PyX's Band Replication Tool v1.2
===================================

I. Introduction

Given that the majority of PC users only understand audio recording and
compression methods on the user level, it comes as no surprise that a lot of
audio material circulating around the Internet is encoded or captured poorly.
One of the most common symptoms of poorly encoded/captured/mastered audio,
besides high frequency noise and artifacts, is the absence of high frequencies
altogether. Improperly chosen low-pass filters, lousy frequency response of the
underlying analog equipment, and low encoding bit rate are among the most
frequent causes. In the audio material processed in such way, practically all
high frequency information beyond a certain sharp cutoff (e.g. 11 kHz) has been
completely obliterated, and the audio sounds characteristically "muffled" (or
"dull"). The conventional methods of restoring high frequency content, such as
equalizers and harmonic exciters, prove to be largely ineffective with such
material -- equalizers do exactly squat because they only amplify certain
frequency bands, and in such material there is nothing to amplify, while
harmonic exciters fail because they introduce harmonics of certain low
frequencies, but are not typically aware of which frequencies are already
present, and which have been trimmed by low-pass filters and need restored.
Moreover, harmonic exciters do not typically allow amplification of generated
harmonics beyond a certain point -- the amplitude is largely fixed and is
determined based on the frequencies the harmonics are generated from.
Therefore, applying a harmonic exciter to such material results in a spectrum
that is still not even remotely resembles the original (before the application
of low-pass filters). Not only do they not completely restore the amplitudes
of the deleted high frequencies, but they also needlessly amplify and add
noise to the content below the filter cutoff. See Figure 1 for more info.
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Thus, different techniques are required to treat such audio material, but
personally I found no suitable tools even among some commercial VST plugins,
let alone free software. Thus, given a fairly simple idea borrowed from modern
audio compression techniques, this tool was developed.


II. Principles of operation

Somehow, the high frequency content must be restored based on the remaining
lower frequency spectral lines. High frequencies have the nice property that
they are, by and large, either harmonics (overtones) of lower frequency
signals (which, when one gets into 10-16 kHz range, are so abundant that the
individual tones are no longer perceived separately by the ear), or are
noise-like to begin with, so that a continuous "hiss" or "hustle" is heard
instead of discrete tones (consider a cymbal crash, for instance). Thus, since
we don't have to worry about tonality, the most straightforward approach for
regenerating these high frequencies is to take the frequency lines just below
the filter cutoff and copy them beyond the cutoff. Limited Fourier window size
(piecewise transform) will ensure temporal synchronicity and appropriate
intensity of the frequency band replicated in this way. This is the main
technique used by this tool. A similar but more sophisticated technique called
spectral band replication (SBR) is used in low bitrate lossy audio encoding
schemes, such as mp3PRO and AAC+; this technique allows encoders to drop
frequencies above a certain cutoff, usually a quarter of the original audio's
sampling rate, at encoding time and restore them from lower frequencies at
decoding time. The difference is that SBR-enabled audio encoders store
information in the bitstream that allows the decoders to determine how the
high frequencies can be optimally regenerated, but of course no such
information is present in the plain low-pass-filtered audio. So unlike the
audio decoders, we have to replicate the bands blindly, which leads us to some
issues.

To modify the spectrum of the signal, obviously we have to take its Fourier
transform. We then toy with the signal in the frequency domain, and then take
the inverse Fourier transform to obtain the processed signal. If the operation
we wanted to perform was a time-invariant filter (e.g. an equalizer), this
could have been done in the time domain. But the operation we are interested
in is not (technically) a filter, nor is it time invariant, because just
applying the modulation in time domain to shift a subband of the signal
upwards in the frequency spectrum will not suffice, as we will see later on.
So we are stuck with the FT/process/iFT cycle. The problem is that Fourier and
other sinusoidal transforms obliterate all temporal information. If we take
the FT of the entire piece of audio, process it in the above way, and then
take the inverse FT, we will find that our regenerated high frequiencies,
instead of being where we need them in time, are "smudged" all over the
place. Thus, we have to take the FT piecewise, where the window has to be
large enough to sufficiently define the frequency band we wish to replicate,
but small enough not to introduce time domain artifacts in the form of
"smudginess" (echo/pre-echo). The next problem that we run into is that if we
take the FT piecewise and apply our frequency band translation for each piece,
the spectral leakage (an artifact arising from the FT's implicit periodicity
coupled with normally aperiodic nature of the signal) will cause us to
regenerate spectral lines from frequencies that should not have even been
there in the first place, and thus we introduce noise in the high frequency
band, i.e. high frequency signal in the sections of the audio where there
should be none. Additionally, mostly due to the same reason, we introduce
discontinuities at window edges. So the transform windows have to overlap and
for each sample, a weighted average has to be computed from overlapping
windows, with more weight assigned to samples closer to the window centers,
and less weight assigned to samples closer to the edges. In this
implementation, windows overlap by half and the raised cosine (Hann) weighting
function is used by default. As of v1.2, the function is applied immediately
before the FT is taken, which reduces the spectral leakage artifacts and
avoids abrupt changes (audible as pops) at FT window edges.

The other issue is the intensity of the replicated band. In the frequency
profile of the typical sound (and this will be slightly different for speech,
music, background noise, etc), generally, the higher the frequency, the lower
the amplitude. Thus replicating a lower frequency band into higher frequencies
will create a sharp spike in the average spectrum. This is to be avoided, since
it causes ringing and sounds unnaturally; the transition from the original to
the replicated band in the spectral profile should look smooth. What seems a
straightforward solution is to fit a semi-log scale line through the array of
magnitudes of the spectral lines in the original band. Then compute the values
of this line at the start and end of the original frequency band; the end of
the original band, in this implementation, becomes the start of the
regenerated band. Thus, the difference between these values is the factor (on
the log scale) that the regenerated band magnitudes are to be scaled by. But
the trouble is, the least square error line that we fit in such a way may not
fit significantly (there is too much variance within the original spectral
band), resulting in wildly fluctuating amplitudes in the regenerated band,
which is preceived as "wheezing" or "snoring". To avoid this, we average the
signal spectrum over several successive windows, and apply linear regression
then, to determine the attenuation factor at each particular block. The number
of windows (i.e. the amount of time) to average over again has to be chosen
experimantally; too low results in "snoring" due to wildly fluctuating
magnitudes and short-term peaks in the power spectrum, too high -- in
"ringing" due to sharp peaks at the junction of the orignal and regenerated
band resulting from inadequate adaptiveness. The default is chosen to be 100
ms. Finally, a slight overlap of the original and replicated bands (of 3
spectral lines, where the values are averaged) is done to further reduce
ringing. Additionally, the line may be fitted through a wider frequency band
than is replicated (more data points), sometimes resulting in the estimates
being more stable as well.


III. Command line parameters

The following is the command line syntax of the program. Required parameters
are denoted by <>, optional -- by [].

bandr.exe <inf> <outf> [sfmt] [st] [lst] [end] [ws] [wfac] [wfn] [psfac] [thr]

inf:    The input file to be processed. This must be 8, 16, 24, or 32 bit PCM,
        or 32 or 64 bit floating point. Any number of channels is allowed; each
        channel will be processed separately and result in the corresponding
        channel in the output file. Processing an audio file is done in two
        passes. The first pass calculates the attenuation factors of the
        replicated band (i.e. estimates the spectral envelope to be applied to
        the replicated band), and the second pass applies spectral translation
        with the appropriate scaling.

outf:   The output file where the processed signal will be written to. This
        will be overwritten if exists.

sfmt:   Output file sample format. One of the following:
        uint8:  8 bit PCM
        int16:  16 bit PCM
        int24:  24 bit PCM
        int32:  32 bit PCM
        fp32:   32 bit floating point
        fp64:   64 bit floating point
        auto:   Same as input file (default)
        Note that although 64 bit floating point (double precision) output is
        possible, it is wasteful since internally, the program operates with 32
        bit floating point numbers (single precision only).

st:     Start frequency of the original band band to replicate, in Hz. Default
        is 8000. This will be rounded to the nearest frequency line depending
        on the FT window size. With this parameter, as well as [lst], [end],
        [ws], and [wfac], specify 0 to use the default value. Both [st] and
        the subsequent [lst] must be less than [end] by at least 2 spectral
        lines, and both must correspond to at least spectral line 1 (the first
        non-zero frequency bin in the DFT). The values are automatically
        adjusted if they happen to lie out of range.

lst:    Start frequency of the reference band to fit a line through in order to
        determine the intensity of the regenerated band that provides a smooth
        spectral transition between the original and replicated bands. Default
        value is whatever is specified by [st], so that the original and
        reference bands are one and the same. Setting this value lower (so that
        the reference band is wider than the original band to replicate) may
        help reduce unpleasant fluctuations in the amplitudes of the replicated
        lines, but if the original spectrum in the range ([lst] - [end]) is
        highly non-linear or poorly correlated, this will only result in a
        worse fit, and consequently a sharp peak at the junction of the
        original and replicated bands. Use a value of -1 to disable envelope
        estimation feature (which will disable the analysis pass and cause the
        program not to apply any factor to the regenerated spectral lines), and
        a value of 0 to use the default.

end:    The end of the original and reference bands and start of the replicated
        band. Beyond this, existing frequency lines (up to the Nyquist
        frequency) will be truncated. The original band, starting at [st]
        and ending at (nfreq - ([end] - [st]) will then be copied (with a few
        tweaks) and placed starting at this frequency less 2 spectral lines
        (nfreq is the Nyquist frequency of the audio file, which is half the
        sampling rate). The end frequency line itself and two preceding lines
        define the overlap zone; the original spectral values and the
        replicated ones are blended here to reduce the "ringing" artifacts
        resulting from sharp low-pass filtering of the original signal and the
        spectral discontinuity that may sometimes arise after the portion of
        the spectrum has been shifted. Thus, given the start of the original
        band as [st], and the end of it as [end], FT window size as [ws], and
		the file's sampling rate as {srate}, the end of the replicated band is
        given by [end] + ([end] - [st]) - 3 * ({srate} / [ws]) -- provided that
        the original signal is low-pass filtered at [end], which is how the
        [end] value should be determined for a given audio file. The default
        for [end] is 12000 Hz, so the default end of the replicated band (the
        new bandwidth of the audio) for a 44.1 kHz sampling rate and window
        size of 256 is 12000 + (12000 - 8000) - 3 * (44100 / 256), or
        approximately 15.5 kHz. The maximum valid value for [end] is the
        Nyquist frequency.

ws:     Size of the Fourier transform window, in samples. Larger windows
        provide better frequency resolution (allowing the user to specify the
        frequencies above more exactly), but also introduce time artifacts in
        the form of echo/pre-echo, whereas smaller windows improve temporal
        resolution, but limit the frequency resolution and increase artifacts
        due to spectral leakage (sometimes audible as high frequency tones
        where there were none in the original signal). The default is
        calculated for the target length of 5 ms (which is about the temporal
        resolution of human ear) based on the input file's sampling rate and
        rounded to the nearest power of 2 for performance reasons. Also note
        that larger window setups take longer to process (FT is not exactly
        linear time, not even FFT), and memory requirements for these get
        nasty fast. Use -1 to set FT window size equal to the number of
        samples in the entire file, but use this option with caution. Minimum
        window size is 6, but because there are only 4 (6 / 2 + 1) spectral
        lines in this case (0 .. 3), line 0 is never touched, and 3 lines are
        always used for blending, a window size of 6 does not actually leave
        any room for band replication. The minimum *meaningful* window size is
        7. The program should work, but has not been extensively tested with
        odd window sizes. The minimum recommended size for 44100 Hz sampling
        rate files is 128, and the maximum recommended size for that sampling
        rate is 1024.

wfac:   The number of windows over which to average the power spectrum used to
        estimate the spectral envelope of the replicated band. Larger values
        will tend to smooth out sharp variations in the high frequency content
        where they result from too much variation between FT windows and thus
        reduce "snoring", but will also slow the response to genuine changes
        of high frequency levels, resulting in long rise/fall times and thus
        may add too much "breathing". Smaller values tend to reduce
        "breathing". The default is calculated for the target length of 100 ms
        based on the window size and the input file's sampling rate. When
        setting your own value, remember that FT windows overlap by half, thus
        the temporal length of the averaging period will be approximately
        twice as short as window size in milliseconds times [wfac]. Use -1 to
        average over the entire file.

wfn:    The function to modulate the input samples with before feeding them to
        the FT and then overlapping the FT inverses to reconstruct the signal
        after processing. This applies to both envelope analysis and processing
        phases. Functions which assign more weight to the center of the
        function better reduce the discontinuities around window edges. Raised
        cosine (Hann) or linear (triangular, Bartlett) windows tend to give the
        best results; others are included for experimentation. Each sample in
        the window is multiplied by the weighting factor given by [wfn], and
        after passing through the FT/process/iFT engine, added with the sample
        (occupying the same position in the stream) from the neighboring
        window, also multiplied by its own weighting factor. The sum is then
        divided by the sum of the weighting factors (which, rest assured, is
        never 0) and placed into the output stream. The following functions can
        be used; the domain of each is [0..1].
        pow4:   { 80*x^4       if x<=0.5
                { 80*(x-1)^4 otherwise
        pow4i:  -20*(x-0.5)^4+1.25
        lin:    { 4*x     if x<=0.5 (Bartlett, triangular)
                { 4*(1-x) otherwise
        rcos:   1+cos(2*Pi*(x-0.5)) (Hann, default)
        nutl:   2.81082*(0.355768-0.487396*cosf(2*Pi*x)+0.144232*cos(4*Pi*x)
                         -0.012604*cosf(6*Pi*x)) (Nuttall)
        const:  1 (rectangular)
psfac:  Phase scatter factor to apply to the translated frequency band. The
        phases of the spectral lines are scattered by adding a number in the
        range of -psfac*Pi to psfac*Pi (monotonically increasing from low to
        high end of the regenerated band). This tends to reduce the coarse
        appearance of the regenerated frequencies by flattening ("chirping")
        sharp impulses in the time domain, but tends to worsen artifacts
        arising from spectral leakage and decrease temporal resolution, so use
        higher values with caution for sparse signals such as speech, and
        choose a balanced window function (Hann, Bartlett). The default value
        is 0.5.
thr:    Number of threads to execute FFTW routines in, to take advantage of
        multiple logical processors in the system. Currently, this parameter
        only affects FFTW and only has any effect for larger window sizes, so
        the default is 1 (no multithreading). Future versions of this program
        may implement parallel processing of multiple channels in the audio.

Examples:

bandr.exe in.wav out.wav fp32 0 0 12500

Processes the file in.wav using the original band cutoff of 12500 Hz, with
default original and reference band starts, default window size, window
function, and averaging factor, writing the output to out.wav as 32 bit
floating point.

bandr.exe in.wav out.wav auto 0 0 0 1024 40 lin

Processes the file in.wav using the default original and reference bands, FT
window size of 1024 samples, averaging factor of 40 windows, and triangular
window function, writing the output to out.wav using the same sample format as
the input.


IV. Determining operation parameters

To process your particular audio material properly, you will need to determine
the cutoff frequency of the low-pass filter that was applied to your audio
data. This tool will not do it for you; use some spectrum analyzer tool (one is
available in most equalizer and audio editing software). The cutoff is visible
as an abrupt drop in the average spectral profile. This is your cutoff
frequency ([end] parameter); if your audio sounds muffled, this will likely be
below 16 kHz. If, however, you do not see an abrupt cutoff below 16 kHz but
your audio still sounds muffled, do not use this tool -- use an equalizer
instead; the high frequency content is there, it just needs amplified and
possibly noise reduced (using some spectral subtraction tool) afterwards (yes,
in my experience it's better to apply noise reduction *after* equalization --
this results in less "musical" noise introduced by spectral subtraction). If
you have determined the cutoff, as a next step you need to determine how much
of the high frequency content you want to restore; typically you will want
your restored spectrum to cut off at no lower than 14 kHz (16 kHz is good, if
you can achieve that; frequencies above that are largely inaudible -- I can't
hear anything past 19 kHz, no matter how loud). Next, subtract the actual
cutoff from the desired cutoff, and (for an audio with sampling rate of 44.1
kHz and the default window size of 256) add 500 Hz (3 * (sampling rate) /
window size). Suppose your actual cutoff was 13 kHz, then 16000 - 13000 + 500 =
3500. This is the width of the original band you need to replicate. We already
know that the original band ends at [end]; so to determine [st], we simply
subtract the width value we obtained above from [end]. In the example above,
[st] of 13000 - 3500 = 9500 Hz will achieve the goal. Note, however, that it is
not desirable to use [st] frequency below 5-8 kHz (depending on the audio) as
this begins to introduce distortions and noise (because amplitudes at
frequencies below that range may be poorly correlated in time with the ones you
are trying to regenerate); instead, try running the tool multiple times to
replicate the same band multiple times.

Once you are decided on [start] and [end], use the statistics displayed after
the analysis pass to calibrate the envelope extrapolation algorithm for your
particular audio. Generally, the window size [ws] should be kept at the default
(use 0 for the default), but the number of windows to average [wfac] should be
tweaked so that (1) the RMSE is below 4.5 dB, (2) the 3Q p-value (slope==0) is
0.2 or below, and (3) the 1Q p-value (slope==prior) is 0.75 or above. Simply,
this means that the slope estimate for most windows should be significantly
different from 0, but not significantly different from the slope estimate for
the prior window. Increasing [wfac] tends to improve all three statistics at
the expense of the algorithm's time resolution; an optimal value of [wfac] is
usually the minimum value that satisfies all three conditions. If such a value
cannot be found, tweaking the fit range by changing [lst] can sometimes help.
If that doesn't help either and RMSE does not go down, you would do well to
inspect the spectrogram in the fit range -- it probably contains some highly
non-linear regions. Make sure the audio sounds acceptable around those
sections. If no perceptually good results are obtained, it may be best to
disable envelope extrapolation altogether (set [lst] to -1).


V. Files in this distribution

bandr.exe             The main program executable
libfftw3f-3.dll       The FFTW library v3.2.2 (single precision build),
                      required by bandr.exe. If you  have a newer version
                      installed in the system directories,  this file may be
                      deleted
readme.txt            This manual
gpl.txt               GNU General Public License
source\bandr.prj      LCC-Win32 project file
source\bandr.c        Main program code
source\wave.c         WAVE read/write support routines
source\wave.h         WAVE routines header
source\fftw3.h        FFTW library header
source\fftw3.def      List of exports from libfftw3f-3.dll


VI. Building the project in LCC-Win32 (tested with wedit v4.0-2009-09-16)

1) Unpack the "source" directory with all its files to a convenient location.

2) Use the LCC-Win32 command line "buildlib" utility to build "fftw3.lib" from
   the included file "fftw3.def". Normally, while being in the project
   directory, you would run "c:\lcc\bin\buildlib.exe fftw3.def fftw3.lib".

3) Start wedit and import the project (Project->Import...), pick the file
   "bandr.prj" from the directory where you extracted the source.

4) Go to (Project->Open all files); several files should open in the workspace.
   Use (Compiler->Generate Makefile) to create the make file for the project;
   this will also create the "lcc" subdirectory in the source directory.

5) Finally, use (Compiler->Rebuild all) to produce the executable in the "lcc"
   subdirectory. You will need to place the file "libfftw3f-3.dll" in the same
   directory as "bandr.exe" (or somewhere in the %PATH%) for it to run.

It should be trivial to generate project files to build with your favorite C99
optimizing compiler as well.


VII. Version history

Version 1.2 (2010-04-10)
------------------------
1) Fixed a screaming bug where an odd difference between start and end
   spectral lines caused destructive interference across overlap-add windows.
   It helps to apply the modulation theorem properly.
2) The phase scattering algorithm has changed; additive scattering is now used
   instead of multiplicative, in order to reduce interference artifacts due to
   overlapping windows.
3) Window function on the processing pass is now applied before the FT rather
   than afterwards. Applying it afterwards in the previous version was mostly
   needed as a workaround for the two problems above. A triangular weighting
   function is now used after the inverse FT is taken, in addition to the
   window function; both are unapplied before the output is written.
4) The FT normalization factor has been changed, hopefully allowing for a
   better estimation of the noise floor with large window sizes during the
   analysis pass.
5) Fit statistics (specifically the root mean square error and the p-values
   representing the likelihood of zero slopes and likelihood of stable slope
   estimates) are now displayed after the analysis pass to assist in choosing
   proper values for [lst], [ws] and [wfac]. The fit algorithm has also been
   changed slightly (now the program averages the log power spectrum before
   applying the linear regression, rather than applying the regression and then
   averaging the factors over [wfac] windows).
6) Changed the cross-fade filter code to avoid creating a 3 dB dip in the
   power spectrum at the junction of the original and regenerated bands.
7) Introduced a limiting condition to avoid rising envelope slope in the
   replicated band. If the slope is estimated to be rising, the spectral
   envelope in the replicated band is flattened after scaling, to mitigate
   "essing" artifacts and clipping. Changed line fitting code to use linear
   frequency scale instead of log, as the latter did not really provide any
   better fit in terms of RMSE in most cases, but the former avoids a number of
   uncomfortable contortions involved in flattening the spectral envelope.
8) Updated FFTW library to version 3.2.2 and added limited SMP support;
   official library build is now used (for ease of future upgrades)
9) This manual has been updated to correct conceptual and typographics errors
   in preparation to publishing this project as part of a master's thesis.

Version 1.1 (2006-03-07)
------------------------
1) The original existing content beyond [end] is now replicated; that is, the
   width of the original band to replicate was changed from [end] - [st] to
   (nfreq - [end]). If the value for [end] is chosen correctly, the end of the
   replicated spectrum should be about the same, since the original file will
   not contain any significant data beyond [end]. However, simply cutting off
   the frequency response at [end] + ([end] - [st]), as was done in the
   previous version, used to introduce ringing. This version preserves the
   original cutoff shape instead.
2) Changed blending filter from 2 to 3 spectral lines to further reduce
   ringing.
3) A few cosmetic adjustments in screen output.

Version 1.0 (2006-02-04)
------------------------
Initial release.


VIII. Credits

This tool:      Pa3PyX (pa3pyx@come.to, http://pa3pyx.come.to/)
FFTW library:   Matteo Frigo & Steven G. Johnson (source code and binaries for
                various platforms are available at http://www.fftw.org/)

FFTW is distributed under GPL; hence, so is this tool. See the file GPL.TXT to
view the complete terms.

Copyright (C) 2006, 2010 Pa3PyX

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
St, Fifth Floor, Boston, MA 02110-1301 USA
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