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ABSTRACT 

 

STRUCTURE DETERMINATION BY X-RAY DIFFRACTION METHODS AND 

PHYSICOCHEMICAL CHARACTERIZATION OF QUATERNARY DIAMOND-

LIKE SEMICONDUCTORS 

 

 

By 

Carl D. Brunetta 

May 2013 

 

Dissertation supervised by Professor Jennifer A. Aitken 

 Diamond-like semiconductors (DLSs) are a class of semiconductor materials 

having structures similar to that of either cubic or hexagonal diamond.  These normal 

valence compounds are of interest for their wide variety of technologically useful 

properties that can be tuned for specific applications.  Until recently, DLS research has 

been focused on binary and ternary compositions due to their relative ease of synthesis.  

However, quaternary DLSs have gained considerable popularity due to their increased 

compositional flexibility and their potential as multifunctional materials.  Despite their 

growing reputation, the vast number of possible combinations and conceivable solid 

solutions, DLSs remain fairly unexplored. 

 This work focuses on quaternary DLSs of the formula Ag2-II-IV-S4 in order to 

advance the knowledge of structure-property relationships for this entire class of 



 v 

materials.  Toward this goal, a more complete understanding of the crystal structures of 

these materials is necessary.  This task is often problematic due to the presence of 

isoelectronic, or nearly isoelectonic elements, that can complicate X-ray structure 

refinements. In this work, Ag2CdGeS4 is used as a case study to demonstrate that this 

problem can be resolved with careful consideration of bonding environments as well as 

the use of high-resolution X-ray sources.  For the novel DLS Ag2ZnSiS4, the relationship 

between the structure and optical properties is probed with the combination of single 

crystal X-ray diffraction, optical diffuse reflectance spectroscopy and electronic structure 

calculations using the software package Wien2k.  Finally, the current set of predictive 

tools employed to forcast diamond-like structures are reviewed, including the adherence 

of these guidelines to the novel compound Ag2FeSiS4 as well all over 60 ternary and 

quaternary diamond-like materials currently reported in the literature.  Furthermore, the 

most common radii sets used for the prediction of bond distance and cell parameters in 

these materials are compared to the observed bond distances in quaternary diamond-like 

nonoxide materials.  
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 1 

1 An Introduction to Quaternary Diamond-like Semiconductors 

 

1.1 Introduction 

 Over the past 50 years, materials science and the study of semiconductors have 

become a very active area of research.  From the development of new materials with 

designed properties, to new synthesis techniques for existing essential components, this 

field generates materials that have become an essential part of our everyday lives.  

Semiconductor materials can be found almost everywhere including in the personal 

computer, cell phones, solar cells, fiber optics, and even lasers.  As technology advances 

a need arises for smaller, faster, and more efficient components, further propelling this 

exciting field of research.  While the study of new DLSs does not always produce 

improved materials, these compounds have a redeeming quality; the information gained 

from the study of these semiconductors provides a deeper understanding of the structure-

property and composition-property relationships.  This knowledge in turn contributes to 

the development of predictive tools for the next generation of useful semiconductor 

materials. 

 

1.2 Diamond-Like Semiconductors (DLSs) 

 The term diamond-like semiconductors (DLSs) refers to the class of normal 

valence materials with structures that resemble that of either cubic or hexagonal diamond 

and posses a band gap generally less than 4 eV.
1,2

  The normal valence nature of these 

materials refers to the component elements' eagerness to achieve an octet by either 



 2 

sharing, donating, or accepting electrons.   The result of this phenomenon is that the 

bonding within these compounds can range from mostly ionic to mostly covalent and any 

level of iono-covalent bonding in-between.
3
  

These materials also generally abide by four guidelines.1
,6
  The first is that the 

average number of valence electrons per atom is four.  This guideline ensures that the 

overall packing is similar to diamond, where each carbon atom possesses four valence 

electrons.  For example, the well know DLS stannite, Cu2FeSnS4, is comprised of eight 

atoms; two copper atoms, one iron atom, one tin atom, and four sulfur atoms.
4
  Each 

copper atom has one valence electron, the iron atom has two valence electrons, the tin 

atom has four valence electrons, and each sulfur atom has six valence electrons, for a 

total of thirty two valence electrons. Therefore, the average number of valence electrons 

is four, which can be generalized for quaternary compounds as: 

 

 ̅   
((                  )  (                  )  (                  )  (              ))

(                                 )
 

 

Where  ̅   is the average number of valence electrons; ncation1, ncation2, ncation3, and nanion 

are the number of respective atoms in the formula unit and vecation1, vecation2, vecation3, and 

veanion are the number of valence electrons per cation or anion. 

The second guideline is that the average number of valence electrons per anion is 

eight.  In other words, the octet of each anion must be satisfied and, therefore, the overall 

material must charge balance to contain an equal number of cations and anions. Using 

Cu2CdGeS4 as an example, the total number of valence electrons is thirty two, with each 

of the two copper atoms contributing two valence electrons, the cadmium atom 
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contributing two valence electrons, the germanium atom with four valence electrons, and 

each of the four sulfur atoms contributing six valence electrons.
5
 The division of the total 

number of valence electrons (thirty two) by the number of anions (four) results in an 

average of valence electrons per anion (
  ̅  

      
⁄ ) of eight, represented by the 

following general equation for quaternary compounds: 

 

 ̅  
     
⁄  

((                  )  (                  )  (                  )  (              ))

(      )
 

 

The third guideline states that the octet of each anion must be satisfied by the 

cations in its immediate coordination sphere. This guideline is also commonly known as 

Pauling‘s electrostatic valency principle, as it was first established in Pauling‘s 1929 

publication on the structures of complex crystals.
6
 Adherence to this guideline can be 

determined through the examination of valence bond sums or the amount of electrostatic 

charge that each cation contributes to each bound anion.  The charge of the valence bond 

(s) can be described as: 

 

  
 

 
 

 

Where z is the charge of the cation and v is the coordination number or the number of 

bound anions on the cation. For this guideline to be satisfied, the sum of the valence 

bonds to each anion must be equal to the negative charge on the anion in order for the 



 4 

structure in question to be electrostatically stable. Therefore, if the charge of the anion is 

-δ the relation can be described as: 

 

  ∑    ∑
  
    

 

 

However, complete adherence to this particular guideline is not necessary for a 

material to exist, or to be close to diamond-like.  As noted by Pauling, the charge of the 

anion can deviate from the charge of the valence bonds as long as the difference is 

compensated for within the structure through structural distortions.  For instance, if δ is 

greater than sum of the valance bonds, the cations will be more strongly attracted to the 

anion and the bonds will contract to compensate.  In contrast, if δ is less than the sum of 

the valence bonds, the cations will less strongly attracted and an elongation of the bonds 

occurs.6  These situations can still result in a stable structure; however, it will be 

significantly distorted relative to the usual diamond-like structure, although the diamond-

like motif may still be structurally noticeable. 

The final guideline for diamond-like materials is that all atoms must be 

tetrahedrally coordinated. This guideline ensures that these materials will have similar 

packing arrangements to that of cubic diamond or hexagonal diamond (lonsdaleite4) 

which are based on cubic and hexagonal closest packing of anions, respectively. The 

adherence to this rule can easily be determined post synthesis via X-ray structure studies; 

however, the application of this guideline as a predictive tool is somewhat problematic.  

Traditionally, Pauling‘s radius ratio rule is used to predict the coordination of ions in 

potential compounds. This rule states that the ratio between the cation radius and the 
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anion radius can be used to predict the coordination environment of the cation.  If the 

radius ratio falls between 0.22 and 0.41, a coordination number of four (tetrahedral 

geometry) is predicted.6  However, every quaternary diamond-like sulfide and selenide 

reported to date, as further explained in Chapter 4, exhibits the prerequisite tetrahedral 

coordination, despite radius ratios above Pauling‘s limit for CN=4.  This result is not 

completely unexpected; Pauling himself notes that this rule is not likely to hold true for 

softer anions such as sulfur and selenium.3
,6
  Furthermore, this rule assumes a hard 

sphere model of bonding where no covalent overlap of the orbitals are considered.  Since 

the iono-covalent character of the bonding within these materials is well known, the 

purely ionic model is not expected to be a an adequate representation.   

The application of these guidelines to predict new materials is fairly 

straightforward. The possible oxidation states and configurations of valence electrons 

across the periodic table are well known, as well as the formulae of diamond-like 

materials that satisfy the first three guidelines.  Table 1.1 shows the known formulae for 

binary, ternary, and quaternary DLS materials with the number of valence electrons 

represented by roman numerals and the number of atoms per formula unit represented by 

subscripts.  Compounds of the I2-II-IV-VI4 formula are the primary focus of this work. 

However, the prediction of tetrahedral geometry remains elusive, not only for the reasons 

listed above, but also due to the lack of complete or "accurate" radii sets that can describe 

the bonding of these materials.  Currently the best predictor for tetrahedral geometry is to 

search the literature for example compounds where the elements in question reside in a 

tetrahedral bonding environment.  Although this method in no way guarantees that the 

desired diamond-like compound will form, this method of prediction has been used 
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effectively in this work to predict and ultimately synthesize the two new DLSs 

Ag2ZnSiS4, and Ag2FeSiS4.
7
 

 

Table 1.1  Known formulae for DLS materials with the focus of this work indicated 

in red.
2
 

Binary Ternary Ternary Quaternary Quaternary 

I-VII III3-IV2-VII I-IV2-V3 I-IV-V-VI I-III-IV2-V4 

II-VI III2-IV-VI II-IV-V2 II-III-V-VI II-III2-IV-V4 

III-V II2-V-VII I-III-VI2 II-III-IV-VII I-II2-III-VI4 

IV-IV II3-IV-VII2 I2-IV-VI3 I-III-V-VII I2-II-IV-VI4 

 II4-III-VII3 I3-V-VI4 I-II-VI-VII  

 

1.3 Structure 

 The structure of diamond-like materials resembles that of either the cubic-closest 

packed (ccp) diamond or the hexagonal-closest packed (hcp) lonsdaleite (hexagonal 

diamond).
8,9

 The progression to binary compounds, as shown in Figure 1.1, can be 

imagined through the replacement of half the carbon sites with cations and the other half 

with anions.  One of the most well studied binary compounds is ZnS. This II-VI 

semiconductor can adapt either a ccp or a hcp structure forming the minerals sphalerite 

and wurtzite, respectively.
10,11

  If further ordered substitution is envisioned on the cation 

sites, ternary and quaternary compounds can be derived from each of the closest packing 

models.  The ternary DLS AgInS2 is another example of a compound that can adopt 

either packing arrangement dependant on synthetic conditions, growing in either a ccp 

chalcopyrite or hcp wurtz-chalcopyrite structure.
12,13
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Figure 1.1 Progression of DLS from diamond to quaternary materials for both 

cubic-closest packing (top) and hexagonal-closest packing (bottom) with example 

compounds and common structure types. 

 

Although the structure types listed in Figure 1.1 for ternary and quaternary DLS 

materials are those most commonly found in the literature, other structure types are 

possible when considering the ordering of the cations.  Quaternary DLSs in hcp 

arrangements are known to possess structures in the space groups Pn (no. 7), Pmn21 

(no. 31), and Pna21 (no. 33).  Each of these structures is comprised of the same 

arrangement of anions and only differs in cation ordering. This can lead to challenges in 

structure refinements, especially in situations where cations are similar in size or 
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isoelectronic, as well as difficulties in differentiating between them using standard 

laboratory X-ray diffraction techniques.
14

 

1.4 Synthesis 

 DLS materials can be synthesized in a variety of ways including high-temperature 

solid-state (HTSS) synthesis, chemical vapor transport (CVT), flux synthesis, and 

solvothermal methods, to name just a few.  This work primarily focuses on the HTSS 

synthetic approach with some samples prepared using CVT.  Both of these approaches 

are considered solid-state syntheses owing to the solid phase of both the starting and 

ending materials at room temperature and they are by far the most reported techniques 

used to prepare diamond-like materials. 

 

1.4.1 High-Temperature Solid-State (HTSS) Synthesis 

 The HTSS approach is a low-waste, high-yield technique, which ideally results in 

complete conversion of starting materials to product.  However, the phase purity of the 

products of this technique is very sensitive to temperature, because the most 

thermodynamically stable compound usually forms.  This process consists of combining 

the elements or binary starting materials in stoichiometric amounts under an inert 

atmosphere, vacuum sealing the reagents in a fused-silica reaction tube, and heating the 

samples in a programmable furnace. The heating profiles of these reactions are usually 

composed of five steps; initial heating or ramp up, dwell, slow cooling or ramp down, 

annealing, and final cooling.  A diagram of a typical heating profile is shown in 

Figure 1.2.  
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Figure 1.2  A diagramed standard heating profile used for high-temperature solid-

state synthesis. 

 The initial heating step generally reaches a temperature higher than the melting 

point of the desired material.  For quaternary DLSs this step is typically between 500°C 

and 1200°C.  The purpose of this step is to render the starting materials molten so that the 

atoms can more easily diffuse and arrange into the ordering necessary for the desired 

product. This diffusion and arrangement is further facilitated by the dwell step or a hold 

at high temperature.  The timescale of this step can range from hours to weeks, but 

typically lasts a few days.  The crystal growth of the product is then facilitated by a 

cooling step, typically slow (~5°C/hour) enough to reduce the thermal motion of the 

atoms until a supersaturated solution and nucleation/growth can occur.  The speed at 
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which this cooling takes place can determine which product is formed.  Faster cooling 

rates and even quenches can be utilized to access less stable products and are sometimes 

preferable for quaternary systems where binary byproducts are often more 

thermodynamically stable than the desired product.   

 The annealing step is optional step and holds the product, after crystallization, at a 

temperature approximately 2/3 of the melting temperature of the material.  This supplies 

thermal energy to the system without melting the material, to allow solid-state diffusion 

to take place, thus permitting the atoms to slowly rearrange and effectively ―repair‖ 

defects, minimize grain boundaries, and remove minor impurities.  This step normally 

last days to weeks and is sometimes employed after the product has been allowed to 

completely cool and has been processed in some way, such as grinding.  The last step of 

the process is the final cooling.  Generally this final cooling step is rapid and normally 

carried out radiatively.  Since the material is already solid when this step takes place, 

little to no change occurs in the sample. 

 

1.4.2 Chemical Vapor Transport (CVT) 

Chemical vapor transport (CVT) is a synthetic approach used when relatively 

large, high-quality crystals are desired.  This approach requires more time than the more 

common HTSS process, often on the order of weeks to months.  CTV also requires more 

material, produces waste products, and requires a multi-zone, high-temperature furnace. 

For this process starting materials are combined according to the desired stoichiometry 

and placed in a fused-silica tube.  A volatile transport agent such as iodine is added to the 

tube in a ratio of 5 mg/cm
3
 according to the total volume of the reaction vessel.

15
  The 
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reaction tube is then vacuum sealed at a diameter to length ratio of 1 to 10 for optimal 

crystal growth.  Crystal growth in this process is facilitated by a temperature gradient 

created by the two-zone furnace.  The end of the reaction tube containing the starting 

materials is held at a temperature approximately 200°C higher than the cool end of the 

tube, as depicted in Figure 1.3.
15

 During the long dwell at these temperatures, a 

convection current is created within the reaction tube caused by the volatile transport 

agent.  As the iodine heats, it weakly bonds to the starting materials and it migrates to the 

cooler end of the tube where it deposits the materials and returns to the warmer end.   

 
Figure 1.3  Diagram of chemical vapor transport synthesis. 

 

1.5 Previous Work 

 Quaternary DLSs first appeared in the literature in the late 1950‘s and for decades 

appeared to be novel compounds with few apparent uses.  Although many quaternary 

DLSs were already known as naturally occurring minerals, such as stannite (Cu2FeSnS4)4 

and cernyite (Cu2CdSnS4)
16

, DLS synthesis proved difficult and the naturally doped 

character of these minerals led to large amounts of impurities, making property 

characterization difficult.  Early research on these compounds primarily focused on 

structure and composition studies, relying mainly on ―shotgun‖ synthesis studies in which 
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numerous compositions, according to the stoichiometry of predicted quaternary systems, 

were targeted.5
,17

  The materials produced in these studies were structurally characterized 

using X-ray powder diffraction refinements or simple lattice parameter calculations, 

without the measurement of further properties.  However, these studies helped to 

establish the range of compositions that can form diamond-like structures, as well as the 

materials' ability to be doped and to form solid-solutions.  

Quaternary materials did not receive notable recognition until the mid 1990s with 

the discovery of Cu2ZnSnS4 (CZTS) and its nearly ideal band gap for solar energy 

conversion.
18

  This shifted some of the focus from the relatively established ternary 

photovoltaic materials CuInS2 and CuInSe2 to the new, more cost effective quaternary 

material comprised of earth abundant elements.
12

 Over the next two decades research into 

these materials boomed, focusing on new preparations, compositions, nanoscale 

syntheses, thin films, and more complete property characterizations.  This eventually led 

to further characterization of these materials and the discovery of numerous potential 

properties and applications such as photovoltaics,
19-21

 non-linear optics,
22,23

 

magnetism,
24,25

 and thermoelectrics.
26,27,28

 

 

1.6 Properties 

1.6.1 Photovoltaics 

 In the search for more earth-abundant and sustainable energy sources, solar 

energy conversion has become a leading technology.  Although solar cells are already in 

use for space vehicles and satellites; low efficiency and high cost of production prevents 

photovoltaic (PV) energy from becoming the dominant power source.
29,30

 Even though 
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the majority of commercially available solar cells are based on silicon, multi-cation DLS 

materials are gaining interest due to their inherent compositional flexibility. This leads to 

tunable band gaps in the range of 1.1 eV to 1.7 eV, which is predicted to be the optimal 

range for PV applications.
21

 Furthermore, DLS such as (CZTS) and Cu2ZnSnSe4 

(CZTSe) have band gaps of 1.45 eV and 1.41 eV, respectively, and are composed of non-

toxic, earth abundant elements, which are drastically increasing the interest in diamond-

like materials.
18,26

 

Research on quaternary DLS materials for PV applications has boomed even in 

the past decade with projects focusing mainly on application specific syntheses,
19,31-43

 the 

tunability of the band gaps through changes in composition,
44-47

 and structure-property 

relationships formulated with the aid of electronic structures.
36,48 

The synthetic work on 

these materials for solar cell applications has been centered on the materials' ability to be 

made into thin films and nanoparticulate inks for use as the essential solar radiation 

absorption layer.
49

 However, studies on composition and electronic structures have been 

focused on increasing the efficiency of the resulting solar cells through the adjustment of 

the band gap. Even though the efficiency of the quaternary DLS solar cells are not yet as 

high as their silicon-based counterparts,
50

 the tunable nature and the vast number of 

possible compositions of these materials make them viable candidates for the future of 

solar cells.  

 

1.6.2 Non-Linear Optics 

 The field of non-linear optics (NLO) refers to a material‘s ability to alter incident 

light as it passes through it.  Although this field can refer to many physical phenomena, 
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DLSs are of interest specifically for the occurrence of second harmonic generation 

(SHG).  This property, also known as frequency doubling, refers to the phenomenon 

when two incident phonons combine within a material to produce one phonon with 

double the frequency and half the wavelength.
51

  SHG materials have been found to be 

useful as tunable light sources for spectroscopy and laser applications.
52

  

Quaternary DLS materials are of particular interest for NLO phenomena because 

of their noncentrosymmetric structures (a prerequisite for SHG materials) and generally 

wide band gaps which leads to higher laser-damage thresholds. Typically ternary DLS 

materials are used commercially such as AgGaS2,
53-55

 AgGaSe2,
56

 and CuGaS2
57

 for their 

SHG response in the IR region. However, quaternary Li-containing DLSs have recently 

been reported with SHG responses 100 times that of standard α-quartz.
58

 These studies on 

Li2CdGeS4 and Li2CdSnS4 have demonstrated the viability of quaternary DLS materials 

for SHG applications and are helping to fuel a growing interest for new NLO 

materials.
23,58

  

 

1.6.3 Thermoelectrics 

 Thermoelectric (TE) devices are semiconductor systems that can employ either 

the Seebeck effect or the Peltier effect. The Seebeck effect refers to a system‘s ability to 

generate electricity from an applied temperature gradient.
59

 This process has potential 

applications as waste heat collectors for low efficiency procedures such as combustion 

engines
59

 and as power sources for human-implantable devices such as pacemakers.
60

 

Inversely, the Peltier effect is a system's ability to create a temperature gradient when 

supplied with a potential difference.  This process is of particular interest for applications 
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including solid-state refrigeration, laser diode coolers, car seat heater/coolers and 

electronic heat sinks.
59

  

 Thermoelectric materials are classified by a dimensionless figure-of-merit, ZT, 

which can be described as: 

 

   (
   

(        )
)  

 

The value of ZT is determined by the electrical conductivity ( ), Seebeck coefficient (S), 

lattice thermal conductivity ( latt), electrical thermal conductivity ( E), and the absolute 

temperature (T) of the material.  In order to gain perspective, for a TE system to be as 

efficient as a commercially available refrigerant system the material would have to 

possess a ZT of approximately 9.
61

 As is apparent in the above formula, this can 

potentially be achieved by maximizing the electrical conductivity and the Seebeck 

coefficient while minimizing the thermal conductivity.   

 The interest in DLSs for thermoelectric applications arise from the structure of 

these materials and the presence of high atomic mass elements leading to inherently low 

thermal conductivities. Although the presence of heavy elements normally results in low 

electrical conductivities, these effects can be mediated through doping procedures as is 

the case for Cu2+xZn1-xSnSe4 and Cu2ZnSn1-xInxSe4.
26,27

 Table 1.2 summarizes the current 

quaternary DLSs that are being targeted for these applications and lists their ZT values 

and band gaps.  Even though the best TE quaternary DLS materials have ZT values 

around 1 and research on these materials for this application have been limited to only a 

handful of studies,
28,63

 the ability to increase ZT through doping combined with the 
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structural flexibility and unexplored compositions of these materials makes TE the fastest 

growing area of interest for DLSs. 

 

Table 1.2  Thermoelectric figures of merit (ZT) for quaternary diamond-like 

materials. 

Compound Eg (eV) T (K) ZT Reference 

Cu2ZnSnS4 1.49 700 0.039 26 

Cu2.1Zn0.9SnS4 1.48 700 0.36 26 

Cu2ZnSnSe4 1.41 700 0.18 26 

Cu2.1Zn0.9SnSe4 1.39 700 0.45 26 

Cu2.1Zn0.9SnSe4 1.39 860 0.91 26 

Cu2ZnSnSe4 1.44 700 0.28 27 

Cu2ZnSn1-xInxSe4 - 700 0.37 27 

Cu2ZnSn1-xInxSe4 - 850 0.95 27 

Cu2CdSnSe4 0.98 700 0.19 26 

Cu2.1Cd0.9SnSe4 0.95 700 0.65 26 

  

1.6.4 Magnetism 

 Another potential property of interest for DLSs is ferromagnetism.  This 

phenomenon occurs when the material possesses a magnetic moment arising from the 

presence of magnetic elements such as Fe or Mn and, consequently, their unpaired 

electrons.  These materials are of interest for potential applications in electronic devices, 

specifically circuit boards and spintronic devices for the transfer, storage, and processing 

of electronic information.
64,65

 One method to find these potential materials is to 

synthetically target quaternary DLSs of the formula I2-II-IV-VI4 where II is either Fe or 

Mn.
66-75

 This was the approach used by Woolley et al. in their study of the diamond-like 
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material Ag2FeGeS4, which was found to be antiferromagnetic with a Néel temperature 

(TN), or a temperature that above which the material is paramagnetic, of 240K.
71

 Another 

avenue of research has been to dope Fe or Mn onto the II site in diamagnetic 

materials.
76,77

  This approach produces materials known as dilute magnetic 

semiconductors where the specific ferromagnetic characteristics may be tailored by site 

occupation and doping levels.  An example of this approach is the work of Quintero et 

al., where they created a solid-solution of Cu2Cd0.25Fe0.75GeSe4 that was found to be 

antiferromagnetic with a TN of 12K. 

 

1.7 Conclusion 

 This work focuses on the synthesis and physicochemical characterization of 

quaternary DLSs with the general formula I2-II-IV-VI4 for the elucidation of structure-

property relationships, as well as a critical review of the predictive tools used for these 

materials.  In other words the purpose of this work is to further the knowledge of what 

compositions and structures cause the physicochemical properties in these materials in 

order to determine how to predict them.  This allows for materials to be targeted for 

specific applications rather than the more common approach of synthesizing a new 

material and then determining its useful properties. Due to the vast number of 

conceivable compositions for quaternary diamond-like materials, predictive tools 

including property targeting techniques are a necessity for the advancement of DLS 

research and a key component for the development of new materials for real-world 

applications.  Therefore, careful structural studies, including crystal and electronic 
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structures, are of paramount importance in these materials for the establishment of 

structure-property relationships. 
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2 Cation Ordering and Physicochemical Characterization of the Quaternary 

Diamond-Like Semiconductor Ag2CdGeS4 

 

 

 

2.1 Introduction 

 Although quaternary diamond-like semiconductors (DLSs) were first discovered 

in the 1960s
78,79

 these compounds have recently seen increased attention.
80-90

 This is due 

to their promising, tunable properties stemming from their flexible compositions and 

stable structures. These normal valence compounds have structures that resemble that of 

either cubic or hexagonal diamond, as seen in Figure 2.1.
78,79,91

 Diamond-like 

semiconductor compounds adhere to a series of simple guidelines, which helps to predict 

new compounds that will possess these structures. The first guideline is that the average 

number of valence electrons per ion must be 4. Next, the average valence electron 

concentration per anion must be 8.
78,79

 Additionally, all ions are required to be in 

tetrahedral environments; Pauling's rule of radius ratios (1
st 

rule) has been recommended 

as a good predictor.
78,79,92

 Lastly, the octet of each anion must be fulfilled by the cations 

in its immediate coordination sphere, as dictated by Pauling's electrostatic valence sum 

rule (2
nd 

rule).
78,79,92
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Figure 2.1  Structural progression of the common space groups of hexagonal DLSs. 

 

 Over the years a large number of binary and ternary DLSs have been synthesized 

and characterized owing to their relative ease of synthesis.
78,79,93,94

 Although quaternary 

systems often present synthetic challenges, a search of recent literature shows an 

amplified interest in quaternary DLSs, due to their increased compositional flexibility and 

technologically useful properties.
83-90,94

 Provided that the guidelines of DLSs are not 

violated, a large number of ions can be used to construct these materials, making them 

ideal as tunable semiconductors.
84,90,95,96

 Physical properties of DLSs such as band 

gap,
83,84,97,98

 magnetism,
95,99

 second harmonic generation (SHG),
81,98,100

 and electrical 

properties
93

 can be tailored to a specific application by altering the composition of the 

material. This makes quaternary DLSs attractive materials in the areas of 

photovoltaics,
83,84,101

 spintronics,
99,102

 non-linear optics,
81,88

 and thermoelectrics.
89,90,103
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However, the resulting physicochemical properties of these quaternary DLSs are not only 

a result of their composition, but also the structural arrangement of the ions. A universal 

understanding of how structure (i.e. cation ordering) is related to each of these properties 

is not yet known. This knowledge is necessary for materials scientists to predict 

applications for new DLSs. For this purpose, a complete understanding of each 

compound's structure as well as its physicochemical characteristics is required. 

 Earlier work on Ag2CdGeS4 by Parthè et al.
104

 and Parasyuk et al.
105-107

 focused 

only on the structure of this compound from laboratory X-ray powder diffraction data; no 

other properties were explored. Both of these prior studies concluded that this compound 

crystallizes in the orthorhombic, noncentrosymmetric space group Pmn21, a well known 

space group for DLSs, often called the wurtz-stannite structure.
78,79,108

 A detailed 

comparison of the structure in Pna21 presented here, Pmn21 proposed previously
104,107

, 

and the computationally predicted Pn space group
109

 is described. Additionally this work 

reports diffuse reflectance UV/Vis/NIR spectroscopy, optical microscopy, scanning 

electron microscopy, energy dispersive spectroscopy, and inductively coupled plasma 

optical emission spectroscopy for Ag2CdGeS4. 

 

2.2 Experimental 

2.2.1 Reagents 

 Chemicals used in this work were utilized as obtained unless otherwise noted : (1) 

silver powder, ~325 mesh, 99.99%, Cerac Milwaukee, WI; (2) cadmium powder, 

99.999%, Strem Newburyport, MA; (3) germanium pieces were first ground using an 

impact mortar and pestle until the large pieces were broken up into a coarse powder and 
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then ground for 5 min in a ceramic mortar and pestle before use, 99.999%, Strem 

Newburyport, MA; (4) sulfur powder, sublimed, 99.5%, Fisher Scientific Pittsburgh, PA. 

 

2.2.2 Synthesis 

 Single crystals of Ag2CdGeS4 were produced by weighing 2 mmols of Ag, 

1 mmol of Cd, 1 mmol of Ge, and 4.1 mmol of S in an argon-filled glove box. These 

reagents were combined and ground for 20 mins using an agate mortar and pestle and 

transferred to 9 mm o.d. fused-silica tube. The tube was then flame-sealed under a 

vacuum of approximately 10
-3 

mbar and placed in a programmable furnace. The sample 

was heated to 800°C over 12 hrs and held at that temperature for 96 hrs. After a slow 

cooling step of 5°C/hr (60 hrs) to 500°C, the sample was allowed to cool to ambient 

temperature. Next, the tube was opened and the contents were examined with a light 

microscope. The product was comprised of mostly orange crystals and a small amount of 

dark green and red crystals. X-ray powder diffraction and energy dispersive spectroscopy 

indicated that the orange crystals were Ag2CdGeS4. Using the same techniques, the red 

crystals were identified as Ag8GeS6
110

 and the dark green crystals were determined to be 

an unidentified cadmium-germanium-sulfide phase.  Both ternaries were manually 

separated from the orange crystals under a light microscope. Analysis of the ground, 

hand-selected orange crystals by synchrotron X-ray powder diffraction showed that the 

large majority of the sample consisted of Ag2CdGeS4, with only trace amounts (less 

than 1%) of germanium sulfide and germanium. 
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2.2.3 Physical Property Measurements 

2.2.3.1 Optical Microscopy 

Optical images were collected using a Keyence Digital Microscope System, 

VHX-600. Images with increased depth of field were obtained by using the Keyence 

Profile Measurement Unit VHX-S15 with an antivibration system. The Keyence VH-

Z100R Real Zoom Lens with magnification range of x100 – x1000 was used.  

 

2.2.3.2 Scanning Electron Microscopy and Energy Dispersive Spectroscopy  

 Scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS) 

was performed on a Hitachi S-3400N scanning electron microscope equipped with a 

Bruker Quantax model 400 energy dispersive spectrometer using an XFlash
®
 5010 EDS 

detector with a 129 eV resolution. Samples were mounted on double-sided carbon tape 

affixed to an aluminum specimen holder. Images were taken at a working distance of 10 

mm with an accelerating voltage ranging from 2.5 to 15 kV. EDS spectra were also 

collected at a working distance of 10 mm and an accelerating voltage of 15 kV for 3 min 

live time.   

 

2.2.3.3 Inductive Coupled Plasma Optical Emission Spectroscopy 

 Quantitative analysis of Ag, Cd, Ge and S was performed by RJ Lee Group Inc. 

(Monroeville, PA) using inductivity coupled plasma optical emission spectrometry (ICP-

OES). Samples were prepared for analysis via a microwave-assisted acid digestion. High-

pressure XP1500 vessels in a MarsExpress CEM Microwave system were used. The 
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digested samples were analyzed in a Varian 730ES ICP-OES for Ag, Cd, Ge and S. The 

recovery was quantitative. 

 

2.2.3.4 Single-Crystal X-ray Diffraction: Data Collection and Reduction 

 A Bruker SMART Apex 2 CCD single crystal X-ray diffractometer using graphite 

monochromatized molybdenum Kα radiation was used to collect data at ambient 

temperature. Data were collected with a tube power of 50 kV and 30 mA for 35 sec per 

frame. SAINT was used to integrate the data and SADABS was employed to perform the 

absorption correction.
111,112

 XPREP was used for space group determination and to create 

files for SHELXTL.
113

 Based on systematic absences, two space groups were initially 

considered, Pna21 and Pnma. The space group Pna21 (No. 33) was selected because all 

DLSs are noncentrosymmetric. The additional systematic absences, h0l for h = 2n + 1 

clearly supported Pna21 over the previously reported Pmn21. 

 

2.2.3.5 Single-Crystal X-ray Diffraction: Solution and Refinement 

 The SHELXTL-PC
113

 software package was used to solve and refine the crystal 

structure, Figure. 2.2. All atoms were located at general positions.  The sites occupied by 

the Ag
1+

 and Cd
2+

 ions were nearly indistinguishable as these ions are isoelectronic, 

having nearly identical X-ray scattering factors and similar coordination geometries.  



 34 

 

Figure 2.2  The Pna21 structure of Ag2CdGeS4 (Model S) viewed slightly tilted from 

the crystallographic c-axis. 

 

 Various arrangements of Ag
1+

 and Cd
2+

 ions were refined at the three nearly 

identical 46 electron peaks in the electron density maps, maintaining a 2:1 ratio of ions 

(both disordered and ordered models were investigated). These sites will hereafter be 

referred to as M(1), M(2) and M(3).  The best model determined from refinement of the 

single crystal X-ray diffraction data is denoted as model S. Crystallographic details are 

reported in Table 2.1. Table 2.2 lists the refined atomic coordinates and isotropic 
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displacement parameters for model S as well as alternative assignments of the cations 

that were considered.  

 

 

 

Table 2.1 Crystallographic data and experimental details for Ag2CdGeS4 (Model S). 

Empirical Formula Ag2CdGeS4 

Size 0.21 x 0.11 x 0.05 mm 

Color Orange 

Habit Rod 

Formula weight 528.97 g mol
-1

 

Temperature 296(2)K 

Wavelength 0.71073 Å 

Space group Pna21 

Unit cell dimensions a = 13.7415(8) Å 

 b = 8.0367(5) Å 

 c = 6.5907(4) Å 

 α = β = γ = 90° 

Volume 727.85(8) Å
3
 

Z 4 

Calculated density 4.827 Mg m
-3 

Flack parameter 0.03(1) 

F(000) 952 

Reflections collected/independent 9573 / 1600 

Data/restraints/parameters 1600 / 1 / 75 

Completeness to theta=27.07 100.0% 

Goodness of Fit 1.112 

Final R indices [I>2sigma(I)] R1 = 0.0235, wR
2 
= 0.0583 

R indices (all data) R1 = 0.0267, wR
2 
= 0.0620 

Largest peak/hole 1.43/-0.56 eÅ
-3

 

Refinement of F2 was made against all reflections.    
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Table 2.2  M(1), M(2) and M(3) assignments for several structural models and 

fractional atomic coordinates and equivalent isotropic displacement parameters 

(Å
2
x10

3
) for Ag2CdGeS4, (Model S). 

Site Model S Model S' Model S'' SOF  Model SD
*
 SOF 

M(1) Ag(1) Cd(1) Ag(1) 1  Ag(1) 1 

M(2) Ag(2) Ag(2) Cd(1) 1  Ag(2) 0.83 

      Cd(2) 0.17 

M(3) Cd(1) Ag(1) Ag(2) 1  Ag(3) 0.17 

      Cd(3) 0.83 

Site x y z U(eq)
**

    

M(1) 0.42446(4) 0.23807(5) 0.2165(1) 40(1)    

M(2) 0.15876(3) 0.49941(5) 0.1976(1) 38(1)    

M(3) 0.34215(2) 0.48665(4) 0.70491(8) 22(1)    

Ge(1) 0.09086(3) 0.24090(5) 0.7118(1) 13(1)    

S(1) 0.4403(1) 0.2426(1) 0.8286(3) 19(1)    

S(2) 0.16390(9) 0.0134(1) 0.8216(3) 19(1)    

S(3) 0.0931(1) 0.2432(1) 0.3753(3) 20(1)    

S(4) 0.16580(8) 0.4696(1) 0.8176(3) 18(1)    

*    Model SD is a disordered version of Model S 

**  U(eq) is defined as 1/3 the trace of the orthogonal tensor Uij. 

 

 

 In model S, the structure was refined with Ag on the M(1) and M(2) sites and Cd 

on the M(3) site with an R1(I>2 (I)) of 0.0235. Other refinements  with this model were 

carried out using different cation assignments adhering to an ordered structure, Table 2. 

In model S', Cd was refined on the M(1) site with Ag on sites M(2) and M(3). After 

refinement of this model, the R1(I>2 (I)) increased to 0.0310. In model S'', Cd was 

refined on the M(2) site with Ag on the M(1) and M(3) sites.  The R1(I>2 (I)) of 0.0296 

resulting from the refinement of this model increased in comparison to model S.  
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In model SD, Ag/Cd disorder was considered for the M(1), M(2), and M(3) sites. 

It was not possible to create a model where the M(1) site contained both Ag and Cd. 

Attempts to introduce disorder on the M(1) site were made during several stages of the 

refinement, but were always unsuccessful because the refinement became unstable. 

However, Ag/Cd disorder could be successfully refined on the M(2) and M(3) sites. 

When the amount of Ag/Cd was allowed to refine freely on these two sites, the resulting 

chemical formula was Ag1.94Cd1.06GeS4. Next, a constraint was added to obtain a charge-

balanced formula of Ag2CdGeS4 with an R1(I>2 (I)) of 0.0236.  Although this model is 

disordered, it should be noted that the M(2) site in this model is still comprised of mostly 

Ag (83%), and the M(3) site mostly Cd, (83%). 

 An alternative structure model was obtained from the structure solution 

(expo2009)
114

 and Rietveld refinement (GSAS/EXPGUI)
115,116

 of synchrotron X-ray 

powder diffraction data and will be referred to as model P.  This model, also in Pna21, 

possesses an alternate set of cation sites distributed amongst a hexagonally closest-

packed network of sulfide ions, Figure. 2.3.  Model P, which will be further discussed in 

the results and discussion section, converged with Rp = 7.46% in GSAS/EXPGUI. 

Refinement of model P using the single crystal X-ray diffraction data refined with 

R1(I>2 (I)) = 6.10%. 
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Figure 2.3  The structural comparison of Ag2CdGeS4 in space groups Pna21, Pmn21 

and Pn. 

 An additional refinement model was considered using the previously proposed 

Pmn21 space group
104-107

.  The unit cell was obtained by a cell transformation resulting in 

the halving of the a-axis as well as switching the a and b axes.  The Pmn21 space group 

did not fit the observed systematic absences, but was manually entered.  The ―forcing‖ of 

this space group resulted in the use of only 854 reflections out of the collected 1600.  Six 

crystallographically unique atoms were located: 1 Ag, 1 Cd, 1 Sn and 3 S.  This 

refinement resulted in an R1(I>2 (I)) of 0.0254. Despite the ―good‖ refinement, this 

model is not favored because it does not fit approximately half of the observed data. 

 After the use of chemical reasoning and the Hamilton R test,
117,118

 model S was 

determined to be most probable structure.  The ratio of wR2(S)/wR2(P) was determined 

to be 2.166, greater than the Hamilton confidence level for 99.5% certainty of 1.034.  
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This test was employed for all models considered, Table 2.3.  Only the disordered model, 

SD, failed the Hamilton test indicating that it could not be rejected at 99.5% certainty. 

 

Table 2.3  The results of the Hamilton R test comparing the weighted R factors 

determined from the refinement of several structural models using single crystal X-

ray diffraction data to that of Model S. 

Model Cd Ag R1 (I>2 (I)) wR2 (all data) wR2 ratio R' 

S M(3) M(1), M(2) 0.0235 0.0620 N/A N/A 

S' M(1) M(2), M(3) 0.0280 0.1240 1.997 1.034 

S'' M(2) M(1), M(3) 0.0266 0.1256 2.023 1.034 

SD M(2),M(3) M(1), M(2), M(3) 0.0236 0.0622 1.002 1.004 

P
*
 N/A N/A 0.0610 0.1343 2.166 1.034 

*The cations reside in different crystallographic sites in Model P and cannot be directly compared to sites 

M(1), M(2) and M(3). 

 

2.2.3.6 Laboratory X-ray Powder Diffraction 

 X-ray powder diffraction studies were performed on a Panalytical X‘Pert Pro 

MPD powder X-ray diffractometer. Data were collected from 5° to 145° 2θ with a step 

size of 0.0083556° and scan rate of 0.010644°/sec. The incident beam optics were 

comprised of a 0.02 rad soller slit, a divergent slit of 1/4° and an anti-scatter slit of 1/2°; 

whereas, the diffracted beam optics were comprised of a 0.02 rad soller slit and an anti-

scatter slit of 1/4°. The samples were prepared for analysis by fixing the material on glass 

slides using double-sided tape and were held still, not rotated, during the scan. The 

incident radiation was generated from a copper source using a voltage of 45 kV and 

current of 40 mA, which produced X-rays with a wavelength of 1.541871 Å. Phase 

identification of crystalline components was carried out using the X‘Pert HighScore Plus 

software package
119

 and the International Center for Diffracted Data (ICDD) database. 
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 Rietveld refinements of laboratory X-ray powder diffraction data were carried out 

using the GSAS software package with the EXPGUI interface.
115,116

 Peak profiles were 

fitted using a pseudo-Voigt function with asymmetric terms and low angle support.
120,121

 

The background was modeled using a shifted Chebyschev polynomial with 6 to 12 

terms.
122

 Phase parameter refinements were carried out for the unit cell, atomic 

coordinates, and isotropic displacement parameters of the cations. Peak shapes were 

expressed through the refinement of the Cagliotti Gaussian terms and a scaling factor.
123

 

Site occupation factors were assumed to be 1 and no other physical or chemical 

constraints were used in the refinement. 

 

2.2.3.7 Synchrotron X-ray Powder Diffraction 

 High resolution synchrotron X-ray powder diffraction data were collected using 

beamline 11-BM at the Advanced Photon Source (APS), Argonne National Laboratory 

using an average wavelength of 0.413838 Å. Discrete detectors covering an angular range 

from -6 to 16º 2θ were scanned over a 34º 2θ range, with data points collected every 

0.001º 2θ and a scan speed of 0.01º/s. 

 The 11-BM instrument uses X-ray optics with two platinum-striped mirrors and a 

double-crystal Si(111) monochromator, where the second crystal has an adjustable 

sagittal bend.
124

  Ion chambers monitor incident flux. A vertical Huber 480 goniometer, 

equipped with a eidenhain encoder, positions an analyzer system comprised of twelve 

perfect Si(111) analyzers and twelve Oxford-Danfysik LaCl3 scintillators, with a spacing 

of 2º 2θ.
125

 The sample was spun during data collection. A Mitsubishi robotic arm was 

used to mount and dismount the sample on the diffractometer.
124

  An Oxford 
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Cryosystems, Cryostream Plus device was used to maintain the sample temperature at 

100 K.  

 The diffractometer was controlled via EPICS.
126

  Data were collected while 

continually scanning the diffractometer 2θ arm. A mixture of NIST standard reference 

materials, Si (SRM 640c) and Al2O3 (SRM 676) was used to calibrate the instrument, 

where the Si lattice constant determines the wavelength for each detector. Corrections 

were applied for detector sensitivity, 2θ offset, small differences in wavelength between 

detectors, and the source intensity, as noted by the ion chamber before merging the data 

into a single set of intensities evenly spaced in 2θ. 

The data were indexed with N-TREOR in expo2009
114

 and the lattice parameters 

were refined with GSAS/EXPGUI
115,116

 to a = 13.7407(1) Å, b = 8.0164(1) Å, c = 

6.5927(1) Å, α = β = γ = 90°. The structure was solved with expo2009 and Rietveld 

refinement was accomplished with GSAS/EXPGUI.  The space group was determined as 

Pna21 based on systematic absences.  Eight atoms were located in general positions 

resulting in model P.  Additionally, Rietveld refinements in GSAS/EXPGUI were carried 

out using model S which was determined from single crystal X-ray diffraction data.   

The background was fitted with a shifted Chebyschev polynomial with ten 

terms.
122

 For both models, Ag
1+

 and Cd
2+

 ions were refined anisiotropically; but, all other 

atoms were refined isotropically and independently.  With this high-quality data, the 

profiles (i.e. peak shape) are determined more by the sample than the instrument profile 

and therefore better described by the Lorentzian terms. The reflection profiles contained a 

significant amount of anisotropic strain broadening which was refined.  All data were 

corrected for absorption with the absorption coefficient being refined to 10.29.  All 
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structure factors were corrected for ΔFʹ and iΔFʹʹ (anomalous dispersion coefficients). 

Models S and P were used as starting models for Rietveld analysis.  Both models 

converged with similar statistics. For model S the least squares refinement converged 

with χ
2
 = 1.423, Rp = 7.45% (all data) and wRp = 9.65% (all data), while that of model P 

converged with χ
2 
= 1.426, Rp = 7.46% (all data) and wRp = 9.66% (all data). These two 

models in Pna21 are virtually indistinguishable with powder diffraction data. 

 

2.2.3.8 Diffuse Reflectance UV/Vis/NIR Spectroscopy 

 Diffuse reflectance UV/Vis/NIR spectra were collected using a Varian Cary 5000 

spectrometer equipped with a Harrick Praying Mantis diffuse reflectance accessory. The 

sample was ground, placed in the sample cup and compared to a similarly prepared 100% 

reflectance standard, BaSO4. Data were collected from 2500 to 200 nm at a scan rate of 

600 nm/min. The collected percent reflectance was converted to absorbance using the 

Kubelka-Munk equation
127

 and wavelength was converted to energy in eV. 

 

2.2.3.9 Differential Thermal Analysis 

 Thermal studies were carried out on a Shimadzu DTA-50 thermal analyzer using 

an Al2O3 reference that has no thermal events over the studied range of 25°C to 1000°C. 

The instrument was calibrated using a three-point method utilizing the melting points of 

indium, zinc, and gold standards. Both the reference and the sample of comparable mass 

were vacuum-sealed in fused-silica ampoules and placed in the instrument. The ampoules 

were then heated at a rate of 10°C/min to 1000°C, held at that temperature for 1 min, and 

cooled at a rate of 10°C/min to 100°C. This cycle was repeated to distinguish between 
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reversible and irreversible events. DTA residues were further characterized using X-ray 

powder diffraction. 

 

2.3 Results and Discussion 

2.3.1 Synthesis Optimization 

A series of samples were prepared with nominal compositions ranging from 

Ag2CdGeS3.9 to Ag2CdGeS4.5 and heated under various profiles in order to ascertain the 

ideal conditions for both crystal growth and the production of a phase-pure Ag2CdGeS4. 

The first samples that were made using 4 mmol equivalents of sulfur, were heated to 

700°C over 24 hrs and held there for 72 hrs. These samples were then slow-cooled at 

4°C/hr to 500°C and then cooled to room temperature over 24 hrs. In all cases, this 

produced mostly dark red crystals of Ag8GeS6 [110] and an unidentified dark green Cd-

Ge-S phase with small amounts of orange Ag2CdGeS4 powder. Subsequent heating 

profiles varied holding temperature, holding time, and cooling rates. It was found that 

when the holding temperature was increased to 800°C, the product changes to mainly 

orange powder, some orange crystals and a small amount of the darker ternary phases. In 

the series that produced the largest quantity of Ag2CdGeS4 crystals, the samples were 

heated to 800°C over 12 hrs, held for 96 hrs, and cooled at a rate of 5°C/hr to 500°C. 

However, these samples did not produce X-ray quality single crystals. The experimental 

parameters were then expanded further by varying the amount of sulfur added in the 

starting materials. Each of these samples produced an orange material and some of the 

ternary phases. The sample that produced the highest quality Ag2CdGeS4 crystals was 

made using the starting stoichiometry of Ag2CdGeS4.1. In this sample crystals of both the 
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orange Ag2CdGeS4 and the darker ternary phases were large enough to be manually 

separated so that characterization of Ag2CdGeS4 could be performed. Phase identification 

of the orange powder by synchrotron powder X-ray diffraction showed that the large 

majority of the sample consisted of the Ag2CdGeS4 and only trace amounts (less than 

1%) of germanium sulfide and germanium. 

 

2.3.2 Morphology and Composition 

 Optical microscopy was used to image the orange Ag2CdGeS4 crystals and the 

differently colored crystals of the unwanted phases.  The colors of these materials are 

prominently different; examples can be found in Figure 2.4a and 2.4b.  These crystals 

were also imaged with SEM to more carefully study size and morphology.  In addition to 

the noticeable difference in color, the ternary and quaternary phases also have dissimilar 

habits.  The orange crystals are found as single flat needles or in large bundles of planks, 

while the darker colored crystals form as polyhedra with rounded corners, Figure 2.4c 

and 2.4d.  Sizable crystals of the orange phase were shown to be as long as 1 mm in 

length while the average size was approximately 600 x 150 μm.  Crystals of the darker 

colored ternary phases were found to have an average size of 450 x 450 μm. These sizes 

proved to be large enough that the samples could be physically separated under a light 

microscope using a needle. EDS spectra showed the presence of all four elements in the 

orange crystals and only three of the intended elements on clean regions of the darker 

material, Figure 2.4e. Since EDS is only semi-quantitative, the composition of the hand-

selected orange crystals was confirmed using ICP-OES. The ICP-OES results yielded a 

stoichiometry of Ag1.96Cd1.04Ge0.84S4, in relatively close agreement with our predicted 

formula of Ag2CdGeS4. 
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Figure 2.4  (a) Digital image of an orange Ag2CdGeS4 crystal, (b) Digital image of 

the darker Cd-Ge-S phase, (c) SEM micrograph of an orange crystal taken with a 

magnification of 65x, (d) SEM micrograph of a dark crystal taken with a 

magnification of 230x, (e) EDS spectra of the orange crystal with the major peak of 

each element labeled. 
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2.3.3 Structure 

2.3.3.1 Structure Determination Challenges 

 The structure determination of Ag2CdGeS4 is difficult due to Ag
1+

 and Cd
2+

 being 

isoelectronic. As a result, the calculated X-ray powder diffraction patterns for the 

compound in the three space groups that were considered, Pna21, Pmn21
107

 and Pc
109

, are 

extremely similar, with additional low intensity peaks and slight intensity changes among 

common peaks being the only differences present in the calculated patterns. These subtle 

variations result from differences in the environments around the anion sites as a 

consequence of the different cation ordering and are manifest in the structure factors. 

When Ag
1+

 and Cd
2+

 are compared, their atomic X-ray scattering factors are nearly 

identical, having less than a 5% difference.
109,128

 However, the environments surrounding 

each of the cations in the proposed structures in question are different, which leads to 

subtle differences in the X-ray structure factors, the resulting symmetry and X-ray 

powder diffraction patterns. These subtle differences were closely examined in an effort 

to determine the most likely structure.  

Unfortunately, these types of indicators are extremely challenging to observe. 

Small diffraction peaks of ~1% or less in relative intensity are usually lost in the 

background of laboratory-collected powder X-ray diffraction data. Additionally, subtle 

differences in peak intensities can often be attributed to powder sample preparation, 

which can frequently result in preferred orientation. If these differences are to be used to 

distinguish between the different structure models, it would be with the use of high-

quality powder (i.e. synchrotron) or single crystal X-ray diffraction data.  This is because 

the difference in Ag
1+

 and Cd
2+

 atomic scattering factors for a given reflection increases 
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with decreasing wavelength.
128

 Additionally the use of lower wavelengths gives rise to 

higher resolution data. 

 

2.3.3.2 Structure Discription 

As determined from single crystal X-ray diffraction data, Ag2CdGeS4 crystallizes 

in the orthorhombic noncentrosymetric space group Pna21. In this structure, all ions are 

tetrahedrally coordinated and reside in general positions. Due to the difficulty of 

discerning Ag
1+

 and Cd
2+

 using X-ray data, three ordered structure models that place Cd 

on the M(1) site (model S'), on the M(2) site (model S'') and on the M(3) site (model S) 

were considered, Table 2.2. Models S' and S'' refined with higher weighted R factors and 

were deemed inferior to model S by use of the Hamilton R factor significance test, 

Table 2.3.
117

 In model S, each sulfur anion is surrounded by two silver cations, one 

cadmium cation, and one germanium cation in accordance to Pauling‘s 2
nd

 rule of local 

electroneutrality.
92

  Bond distances in Table 4 show an average Ag-S bond length of 

2.576(2) Å for Ag(1) and 2.539(3) Å for Ag(2). These distances compare well to those 

found for the quaternary DLS compounds AgCd2GaS4 with an average Ag-S bond length 

of 2.550(2) Å
129

, Ag2HgSnS4 with an average Ag-S bond length of 2.43(2) Å
130

 and 

Ag2ZnGeS4 with an average Ag-S bond length of 2.578(5) Å.
131

 The Cd-S bond has an 

average length of 2.526(2) Å, while the Ge-S bond lengths average 2.214(3) Å. These 

results are in agreement with bond lengths measured in the chemically related DLS 

Cu2CdGeS4, 2.528(6) Å and 2.28(1) Å, respectively.
132

  

The structure of Ag2CdGeS4 can be described as a hexagonal, closest-packed 

array of sulfur anions with Ag
1+

, Cd
2+

 and Ge
4+

 occupying tetrahedral holes. The model S 
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structure of Ag2CdGeS4 is isostructural to the DLS Li2CoSiO4.
133

 The structure can be 

viewed as a corner-sharing, three-dimensional network of MS4 tetrahedra. The CdS4 

tetrahedra are isolated from one another, as are the GeS4. The Ag(1,2)S4 alone form a 

3-dimensional network, where each AgS4 connects to four others by sharing corners. 

When viewed down the a-axis (Figure 4) the alternating nature of the cations can be seen. 

Rows along the c-axis of alternating Ag(1)-S4 and Ge(1)-S4 tetrahedra (ABAB) are 

separated by rows of Ag(2)-S4 and Cd(1)-S4 tetrahedra (CDCD). The pattern is then 

alternated (BABA) and (DCDC) after which it repeats. 

 

Figure 2.5  Polyhedral representation of Ag2CdGeS4 in Pna21 (Models S and P) and 

Pmn21 viewed down an equivalent axis. 

 

2.3.3.3 Cation Assignments 

Due to the difficulty of discerning Ag
1+

 and Cd
2+

 using X-ray data, other ordered 

structure models that place Cd on the M(1) site (model S') and Cd on the M(2) site 

(model S'') were considered. These refinements produced weighted R factors of 0.1240 

and 0.1256, respectively, for all data in comparison to wR2 = 0.0620 for model A. In this 
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case, the Hamilton R factor significance test
117

 was carried out to compare these ordered 

models, Table 2.3. The tests were performed by comparing the ratios of the weighted R 

factors for model S to model S' and S''. In the case of model S', the ratio of weighted R 

factors is 1.997.  This result is compared to the interpolated significance value of the 

Hamilton-R-factor ratio, (R'), for 75 parameters, 1525 degrees of freedom and a 0.005 

level of significance, R'75,1525,0.005=1.0338. Since the ratio of weighted R factors is greater 

than the significance value, model Sʹ can be deemed invalid in comparison to model S 

with 99.5% certainty. The calculation was again employed to compare model S" to 

model S. Here the ratio of weighted R factors was 2.023. This value was compared to the 

interpolated significance value for R'75,1525,0.005. In this case the ratio of weighted R 

factors is still greater than the significance value, so the assignment of Cd on the M(2) 

site is invalid with 99.5% certainty. 

The disordered model, model SD, was constructed so that both Ag and Cd were 

refined on the M(2) and M(3) sites. This model yielded an equivalent R factor in 

comparison to ordered model S. Since the number of parameters used in each refinement 

is not equal, the difference in the number of parameters is used to interpolate the R' value.  

The weighted R factor ratio of ordered to disordered models, wR2(A)/wR2(B), was 

preformed to prove or disprove the acceptance of model SD in spite of model S. While 

the weighted R factor ratio of disordered to ordered models, wR2(B)/wR2(A), was 

employed to determined whether or not the ordered model is significantly better than the 

disordered model, these ratios of 1.002 and 0.998, respectively, are less than R'2, 1525, 0.005 

= 1.003. Therefore, neither model can be rejected using this test at the 99.5% certainty.  
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 The reason for favoring the ordered model S over the disordered model SD is due 

to the electrostatic valency principle, also known as Pauling's 2
nd

 rule.
92

 Here it is 

predicted that if an anion does not have its octet satisfied by the cations in its immediate 

coordination sphere there will be structural distortions to relieve the over or under-

compensation of electrons.
78,92

 For example, in a disordered model, like model SD, it 

would be possible for a sulfur anion to have three silver cations and one germanium 

cation around it. In this case the sum of the electrostatic bond strengths (δ) would be 1.75 

instead of the preferred 2. Therefore the M-S bonds around the sulfur anion should get 

shorter to satisfy the under-compensation of charge. Alternatively, it is also possible in 

model SD that a sulfur anion could be surrounded by one silver, two cadmium and one 

germanium cation. In this situation the δ would be 2.25. Here the anion's charge would be 

overcompensated, resulting in a lengthening of the M-S bonds. Since the bond distances 

for this structure are normal it does not seem that Pauling's second rule should be 

violated.  Furthermore, Pauling‘s 5
th

 rule, the rule of parsimony, states that ―the number 

of essentially different kinds of constituents in a crystal tends to be small.‖
92

 Therefore, 

the simplest model, in this case the ordered model S, is favored because there are only 4 

different types of sulfur tetrahedra that make up this model in comparison to 16 in the 

disordered model SD.  

 

2.3.3.4 Comparison of Pmn21, Pna21, and Pc (Pn) Structures for Ag2CdGeS4 

The space group Pna21 has been observed for quaternary oxides, for example 

Li2CoSiO4.
133

 Although relatively rare among quaternary DLSs, Pna21 is a common 

space group for ternary DLSs, such as AgInS2
134

 and LiGaS2.
135

 However this is not the 

only space group proposed for Ag2CdGeS4, Figure 2.3. 
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In 1969, Parthé et al. reported a wurtz-stannite structure, in space group Pmn21, 

and lattice parameters for Ag2CdGeS4 from laboratory X-ray powder diffraction data.
104

 

Later in 2005, Parasyuk et al. supported the same space group with a refined structure 

from laboratory X-ray powder diffraction data.
107

 The space group Pmn21 is a well-

known space group for DLSs, such as Cu2CdGeS4
136

 and Cu2ZnSiS4 
82

 Additionally, a 

computational study in 2010 by Chen et al. predicted the Pc space group for Ag2CdGeS4 

from Madelung energy calculations.
109

 This structure has been observed for other DLSs, 

first reported in 1969 for Na2ZnSiO4
137

 and more recently for the compound Li2ZnSnS4.
80

 

The prediction was made by comparing Madelung energies for possible structures 

abiding by the diamond-like rules and a 2 x 2 x 1 supercell of wurtzite.
109

  Although 

Pna21 satisfies the rules of diamond-like materials, it has a larger supercell of 4 x 2 x 1 

and was not considered in this study. The main difference between the structures reported 

in Pna21, Pmn21 and Pc (Pn) is the arrangement of the cations. 

 The difference in the cation arrangement of the Pmn21 and Pna21 models is best 

illustrated by the polyhedral view of the two structures shown in Figure 2.5. In this view 

both structures are oriented with the tetrahedra pointing in the same direction 

demonstrating the lack of an inversion center in both structures. It is also easy to notice 

the higher symmetry of the Pna21 structure from this view. When comparing the 

crystallographic sites of the Pna21 structure to those found in Pmn21, it can be seen that 

both structures possess one crystallographically unique Ge. Closer examination of the 

GeS4 tetrahedra viewed down each corresponding axis shows that the arrangements of the 

isolated GeS4 tetrahedra are identical. Further comparisons were made with the one 

crystallographically unique Cd in each structure. However, the positions of the Cd atoms 
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relative to the GeS4 tetrahedra are different, demonstrating that the Cd sites in the two 

models are not equivalent, Figure 2.3.  

Another model for consideration in the space group Pna21, model P, was obtained 

from the solution of the synchrotron powder diffraction data.  In this structure, by looking 

down the a-axis, rows of alternating Cd(1)-S4 and Ge(1)-S4 tetrahedra (ABAB) separated 

by rows of Ag(1)-S4 and Ag(2)-S4 tetrahedra (CDCD) can be seen. The pattern is then 

alternated (BABA) and (DCDC) after which it repeats. While this structure has the same 

general pattern as model S, with the exception that the ions that make up the pattern are 

different, Figures 2.3 & 2.5. No compound was found in the literature possessing this 

structure type. The major difference between model P and model S is that in model S 

each crystallographically unique sulfur anion is surrounded by one of each of the 

crystallographically unique cations, Ag(1), Ag(2), Cd(1) and Ge(1). However, in 

model P, one unique sulfur anion is surrounded by Ag(1), Ag(1), Cd(1) and Ge(1), while 

another one is surrounded by Ag(2), Ag(2), Cd(1) and Ge(1).  The other two sulfur 

anions are connected to one of each of the unique cations. Therefore, although both 

models contain a hexagonally closest packed array of sulfur anions, the pattern of the 

crystallographically unique sulfur anions is not the same in the two structure models.  At 

first glance, model P looks very similar to the model in Pmn21.  If only the cation sites 

are considered, it becomes obvious that the one crystallographically unique Ag in the 

Pmn21 structure splits into two crystallographically unique Ag cations in model P.  

However, that is not the only difference.  If the sulfur ions are examined more closely, it 

can be found that the number of crystallographically unique sulfur sites is different (3 for 
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Pmn21 and 4 for Pna21) and the sulfur anions are arranged in a different pattern in order 

to generate the hexagonally closest packed array. 

 A model of Ag2CdGeS4 was constructed in the Pn space group, an equivalent 

space group (different setting) to the predicted Pc.
109,138

 Comparison of this model to the 

Pna21 structure shows that the locations of the Cd cations in relation to the GeS4 

tetrahedra are not equivalent, which is also found in the comparison to the Pmn21 model. 

The AgS4 tetrahedra in the Pn model are aligned in diagonal columns in the ac plane in 

contrast to the herringbone configuration in the Pna21 model found in the equivalent 

bc plane. 

 Another major difference between the models of Pna21, Pmn21 and Pn is the 

larger unit cell found for the Pna21 model. This may introduce the concern that the 

measured doubled axis from the single crystal X-ray diffraction data may be not be 

"real." To check this, careful analysis of the reflections from the single crystal X-ray 

diffraction data and their hkl indexes was performed. Since the h parameter corresponds 

to the doubled axis, the data were separated into odd and even h values. Then the 

measured intensity was compared to the background to determine how many reflections 

were greater than 4 . If the data collected only showed measurable intensity from the 

even sets of h values, it could be evidence that the doubled axis is not real. However, this 

analysis showed the presence of reflections greater than 4  for both groups, even and 

odd. Out of 6954 reflections with intensities greater than 4 , 51.6% had odd h values. 

 

2.3.4 X-ray Powder Diffraction 

Parasyuk et al. determined the structure of Ag2CdGeS4 in Pmn21 using laboratory 

X-ray powder diffraction data with subsequent Rietveld analysis giving an Rp of 
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0.0983.
107

 As previously stated, the powder diffraction patterns for the compound in 

Pmn21 and Pna21 are very similar, for this reason Rietveld analysis was carried out on 

laboratory collected samples of Ag2CdGeS4 in this work, using models in both space 

groups. Refinement of the Pna21 model S converged with an Rp value of 0.0720 and a χ
2
 

of 2.650. However, refinement of the same data using a model constructed with space 

group Pmn21 did not fit the data as well and yielded an Rp of 0.1209 and a χ
2
 of 6.878.   

Another refinement was carried out using a Pn model.
109

 Since Chen et al. did not 

provide lattice parameters or atomic coordinates for their model, a starting model for 

Rietveld analysis was constructed using the fractional atomic coordinates of the related 

DLS Li2ZnSnS4
80

 and the lattice parameters obtained from the single crystal data. The 

starting lattice parameters were obtained by halving the 13.7415(8) Å parameter of the 

Pna21 model and arranging the lattice parameters from smallest to largest which is the 

standard form for the Pn space group. This refinement converged with an Rp value of 

0.0954 and a χ
2
 of 5.620.   

A comparison of the calculated powder diffraction patterns for Pmn21, Pna21, and Pn 

shows that all of the main peaks of the three patterns appear at the same or very similar 

positions.  However, the doubling of the unit cell volume in Pna21 results in an increase 

in the number of resolvable planes in the crystals and therefore a more complicated 

diffractogram. This difference as well as intensity differences between peaks calculated 

for the three models can account for the difference in Rietveld results.  Of the small 

additional diffraction peaks expected for the Pna21 model, the most notable and largest of 

these peaks is the (121) located at 26.7582° 2θ (for Cu Kα) with a predicted relative 

intensity of 1.1%.  Other peaks that can be found in the pattern for the Pna21 model, and 
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not those of the others, are even lower in predicted relative intensity.  Unfortunately, 

these peaks are not observed in laboratory collected X-ray powder diffraction data. 

The synchrotron X-ray powder diffraction data set clearly showed the low intensity 

peaks not present in the collected laboratory X-ray powder diffraction data. Additionally, 

the systematic absences for the n-glide perpendicular to the a-axis (0kl for k+l = 2n+1), 

the a-glide perpendicular to the b-axis (h0l for h = 2n+1) and the 21 screw axis along the 

c-axis (00k for k=2n+1) are clearly apparent in this data set.  Interestingly, the structure 

that was initially solved from the synchrotron X-ray powder diffraction data, model P, is 

not the same as the preferred model as determined from single crystal X-ray diffraction, 

model S. When refined against the synchrotron X-ray powder diffraction data, model S 

and model P are indistinguishable and gave virtually identical statistics and features on 

the difference Fourier map.  This may be indicative of both phases being present in the 

powder. On the other hand, when model P was refined against the single crystal X-ray 

data, the statistics are reasonable and the model makes chemical sense; however, the 

statistics for model S are clearly favored as discussed previously.  The Rietveld plot of 

the synchrotron X-ray powder diffraction data using model S as a starting model is shown 

in Figure 2.6.  While the proposition of yet another structural model adds additional 

ambiguity to the structure determination of Ag2CdGeS4, two things are clearly evident 

from this data: (1) the larger unit cell is confirmed and (2) the presence of the higher 

symmetry is apparent.  
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Figure 2.6  Rietveld refinement of Ag2CdGeS4 refined in Pna21 (Model S) using 

synchrotron X-ray powder diffraction data.  The observed data (+++) and 

calculated data (solid line) are overlaid at the top.  While tick marks (III) indicating 

calculated peak locations and a difference plot (solid line) are shown below. 

2.3.5 Differential Thermal Analysis 

 DTA of a ground sample of Ag2CdGeS4, Figure 2.7, shows a broad endothermic 

event that is believed to be the result of a polymorph with a similar melting point.  Upon 

cooling, recrystallization of the phases is clearly evident. In the second cycle of the DTA, 

the melting points are more clearly defined. However, X-ray powder diffraction of the 

DTA residue, Figure 2.7, shows that the same diffraction pattern for the Ag2CdGeS4 

sample is obtained after the experiment, supporting the hypothesis that the observed 

impurity phase is a polymorph of Ag2CdGeS4. This is very interesting because this opens 

the possibility that Ag2CdGeS4 might exist in another structure. In both the publications 

by Parthé et al.
104

 and Parasyuk et al.
107

 the authors were not specific about the synthetic 



 57 

conditions used to prepare Ag2CdGeS4, so it is not possible to directly compare our 

synthetic procedures. In this study a second phase of Ag2CdGeS4 was never observed. 

Reactions carried out at higher temperatures always produced additional quantities of the 

unwanted Ag8GeS6 phase. Reactions quenched from high temperature yielded almost no 

Ag2CdGeS4, but rather a mixture of Ag8GeS6, Ag2S, GeS2, Ag5Cd8 and a few 

unidentified diffraction peaks. Interestingly, high-temperature polymorphs are usually of 

higher symmetry than lower temperature phases. In this work crystals have been isolated 

with the highest symmetry structure that has been reported for Ag2CdGeS4. 

 
Figure 2.7  Differential thermal analysis of Ag2CdGeS4 with heating cycles displayed 

with a solid line and cooling cycles with a dashed line (top).  The observed X-ray 

powder diffraction pattern of the residue is compared to the calculated pattern for 

Ag2CdGeS4 in Pna21 (Model S) (bottom). 
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2.3.6 Optical Diffuse Reflectance Spectroscopy 

Optical diffuse reflectance UV/Vis/NIR spectroscopy was performed for Ag2CdGeS4 

in order to estimate the band gap. The resulting spectrum shows an estimated band gap of 

2.32 eV, in agreement with the orange color observed for these crystals, Figure 2.8. The 

presence of only one clean absorption edge supports the X-ray powder diffraction 

analysis indicating that the sample is visually, nearly phase pure. 

 

 

 

 
Figure 2.8  Optical diffuse reflectance UV/Vis/NIR spectrum converted to 

absorption for Ag2CdGeS4. 
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2.4 Conclusion 

Single crystals of the diamond-like compound Ag2CdGeS4 have been prepared 

and the structure solved and refined in the space group Pna21, although two other space 

groups have been previously proposed for this material. The structure determination of 

Ag2CdGeS4 was challenging due to Ag
1+

 and Cd
2+

 being isoelectronic; however careful 

analysis of high-quality single crystal and high-resolution synchrotron X-ray powder 

diffraction data provided significant clues leading to the elucidation of the most probable 

structure.  Model S is clearly favored by the single crystal X-ray diffraction data; 

however model P makes chemical sense and cannot be distinguished by X-ray powder 

diffraction data. In fact the structure solution from synchrotron X-ray powder diffraction 

is a valid structure and would have been acceptable if a single crystal model hadn‘t been 

determined.  Additionally, the possible presence of multiple polymorphs is suggested by 

thermal analysis.  A partially disordered model was discarded due to the violation of 

Pauling's second and fifth rules, and the observation of normal bonding distances in this 

material.  While this compound could be a candidate for neutron diffraction studies, the 

synthesis is challenging, neither a single crystal of appropriate dimensions or a large 

enough quantity of powder has been successfully prepared, and cadmium is not a 

neutron-friendly element due to neutron absorption.  Future studies will be aimed at 

preparing the material in pure form, so that it may be further studied (e.g. anomalous 

dispersion) without the pain-staking, added step of hand-picking the crystals. 
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3 The Crystal and Electronic Band Structure of the Diamond-Like 

Semiconductor Ag2ZnSiS4 

 

3.1 Introduction 

 Over the past few years, multi-cation diamond-like semiconductors (DLSs) have 

received increased attention for their promising physical properties.  A work by Shi et. al. 

showed that Cu2Sn1-xInxSe3 possess an impressive thermoelectric figure of merit, ZT, of 

1.14 at 850 K indicating its potential use in thermo-electric applications.
139

  Newer work 

on compound Cu2ZnSnSe4 (CZTSe) has shown that the substitution of In in place of Sn 

increases ZT from 0.28 in the native compound to 0.95 in the 10% In substituted 

phase.
140

  Other work by Steinhagen et. al. has demonstrated that Cu2ZnSnS4 (CZTS) can 

be synthesized as nanocrystals in the kesterite structure which can be used as a cheaper 

route for the production of photovoltaic devices.
141

  Furthermore in 2009, Lekse et. al. 

reported that Li2CdSnS4 exhibits a second harmonic generation (SHG) response 100x that 

of α-quartz and is phase matchable.
142

  They suggest that quaternary DLS with larger 

band gaps should possess increased laser damage thresholds as compared to the 

commercially available ternary DLSs that are currently used in nonlinear optical 

applications.
143,144

  While these recent studies focus on the technologically useful 

properties of multi-cation DLSs, one of the key elements in understanding these materials 

as a class is the correlation between these desirable attributes and structure, both the 

crystal and electronic structures. 
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Figure 3.1  Structural progression of the hexagonal family of DLSs, showing the 

most common space groups at each level. 

 The above compounds are all diamond-like, i.e. they have a structure that 

resembles either cubic or hexagonal diamond
145,146

, Figure 3.1.  These materials follow a 

set of guidelines which include; i) each atom must have an average valence electron 

concentration of 4, ii) the average concentration of valence electrons for each anion must 

be 8,
145,146

 iii) each atom must have a tetrahedral coordination, and iv) the octet of each 

anion must be satisfied by its nearest neighbors.
145,146,147

  These conditions can be used 

not only to classify known compounds, but also to predict new compounds.  Furthermore, 

combining these rules with an understanding of how the structure of these materials 
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relates to the physical properties could prove useful in predicting properties of yet to be 

discovered materials.  

 This work presents the crystal structure, electronic band structure, and density of 

states (DOS) of the DLS Ag2ZnSiS4 as well as the experimentally determined band gap. 

Ag2ZnSiS4 is a quaternary DLS of the formula I2-II-IV-VI4, which can be derived from 

that of the I-III-VI2 family, with AgGaS2 being its closest ternary relative.  The structure 

of Ag2ZnSiS4 can be obtained from AgGaS2 by replacing every two Ga atoms in a 

doubled structure of AgGaS2 with one Zn and one Si in an ordered fashion (see 

Figure 3.1).Therefore the band structure and DOS are compared with that of AgGaS2 

computed using the same method.
148

 

 

3.2 Experimental 

3.2.1 Reagents 

 Chemicals used in this work were utilized as obtained unless otherwise noted : (1) 

silver powder, ~325 mesh, 99.99%, Cerac Milwaukee, WI; (2) zinc powder, 99.999%, 

Strem Newburyport, MA; (3) silicon powder, 99.999%, Strem Newburyport, MA; (4) 

sulfur powder, sublimed, 99.5%, Fisher Scientific Pittsburgh, PA. 

 

3.2.2 Synthesis 

 Single crystals of Ag2ZnSiS4 were produced by weighing 4 mmol of Ag, 2 mmol 

of Zn, 2 mmol of Si, and 8 mmol of S in an argon-filled glove box. These reagents were 

combined using an agate mortar and pestle until the sample appeared homogeneous (~ 20 

min). The sample was then transferred to a graphite crucible, which was then placed 
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within a 12 mm O.D. fused-silica tube. The tube was then flame-sealed under a vacuum 

of approximately 10
-3 

mbar and placed in a programmable muffle furnace. The sample 

was heated to 800°C over 12 hrs and held at that temperature for 96 hrs, after which the 

sample was slow-cooled to 500°C at 5°C/hr (60 hrs) and then allowed to cool radiatively 

to ambient temperature.  

The product was a gray colored ingot with colorless needle-like crystals slightly 

tinted green protruding from the surface. Energy dispersive spectroscopy (EDS) detected 

the presence of all four elements in the translucent green crystals. 

 

 

3.2.3 Physical Property Measurements 

3.2.3.1 Scanning Electron Microscopy and Energy Dispersive Spectroscopy 

 Scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS) 

was performed on a Hitachi S-3400N scanning electron microscope equipped with a 

Bruker Quantax model 400 energy dispersive spectrometer using an XFlash
®
 5010 EDS 

detector with a 129 eV resolution. Samples were mounted on double-sided carbon tape 

affixed to an aluminum specimen holder. Images were taken at a working distance of 10 

mm with an accelerating voltage of 15 kV. EDS spectra were also collected under these 

same conditions for 2 minutes live time.   
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3.2.3.2 Single-Crystal X-ray Diffraction: Data Collection and Reduction 

 A Bruker SMART Apex 2 CCD single crystal X-ray diffractometer employing 

graphite monochromatized molybdenum Kα radiation with a wavelength of 0.7107 Å and 

operating with a tube power of 50 kV and 30 mA was used to collect the data for 40 

s/frame at ambient temperature. A total of 4283 measured reflections were collected with 

1456 of them unique. The program SAINT
149

 was used to integrate the data and 

SADABS
150

 was employed to perform the absorption correction. XPREP was used for 

space group determination and to create files for SHELXTL.
151

 Based on systematic 

absences, two space groups were initially considered, Pn and P2/n. The space group Pn 

(No. 7) was selected because all DLSs are noncentrosymmetric due to all of the 

tetrahedra pointing in the same direction along a crystallographic axis.  

 

3.2.3.3 Single-Crystal X-ray Diffraction: Solution and Refinement 

 Using the SHELXTL-PC
151

 software package, the structure was solved and 

refined in the noncentrosymmetric space group Pn, Figure 3.2. Eight atoms were located 

on general positions; 2 Ag site, 1 Zn site, 1 Si site and 4 S sites.  The structure was 

refined with an R1(all data) of 0.0210. Other crystallographic and experimental details 

are reported in Table 3.1. Fractional atomic coordinates and equivalent isotropic 

displacement parameters are given in Table 3.2 while refined bond distances and angles 

are shown in Table 3.3.  The program CrystalMaker
®152

 was used to generate the crystal 

structure figures.  
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Figure 3.2  Unit cell of Ag2ZnSiS4 using thermal ellipsoids with 50% probability. 
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Table 3.1  Crystallographic data and experimental details for Ag2ZnSiS4 

Empirical Formula Ag2ZnSiS4 

Size 0.025 x 0.032 x 0.237 mm 

Color Green 

Habit Needle 

Formula weight 437.44 g mol
-1

 

Temperature 296(2)K 

Wavelength 0.71073 Å 

Space group Pn 

Unit cell dimensions a = 6.4052(1) Å 

 b = 6.5484(1) Å 

 c = 7.9340(1) Å 

 α = γ = 90°  

β = 90.455(1)° 

Volume 332.772(8) Å
3
 

Z 2 

Calculated density 4.366 Mg m
-3 

Flack parameter 0.04(1) 

F(000) 404 

Reflections collected/unique 4283 / 1456 

Data/restraints/parameters 1456 / 2 / 75 

Completeness to theta=27.11 100.0% 

Goodness of Fit 1.272 

Final R indices [I>2sigma(I)] R1 = 0.0197, wR2
 
= 0.0402 

R indices (all data) R1 = 0.0210, wR2
 
= 0.0411 

Refinement of F2 was made against all reflections.    
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Table 3.2  Fractional atomic coordinates and equivalent isotropic displacement 

parameters, Uiso (Å
2
x10

3
) for Ag2ZnSiS4. 

Site x y z U(eq)
*
 

Ag(1) 0.23428 (4) 0.31806 (5) 0.32726 (3) 29 (1) 
Ag(2) 0.71991 (6) 0.15354 (4) 0.57873 (5) 33 (1) 

Si(1) 0.7199 (3) 0.1844 (1) 0.0732 (2) 11 (1) 

Zn(1) 0.22232 (7) 0.31373 (7) 0.82066 (5) 16 (1) 
S(1) 0.1161 (1) 0.1248 (1) 0.5868 (1) 14 (1) 

S(2) 0.5879 (1) 0.3163 (1) 0.8534 (1) 15 (1) 

S(3) 0.0504 (1) 0.2008 (1) 0.0614 (1) 16 (1) 
S(4) 0.6239 (1) 0.3398 (1) 0.2966 (1) 14 (1) 
*  U(eq) is defined as 1/3 the trace of the orthogonal tensor Uij. 

 

Table 3.3  Selected bond distances (Å) and angles (°) for Ag2ZnSiS4. 

Bond Distance (Å)                          Bond  Angle (°) 

Ag(1) - S(1) 2.537(1) S(1) - Ag(1) - S(2) 106.65(3) 
Ag(1) - S(2) 2.5802(8) S(1) - Ag(1) - S(3) 112.69(3) 

Ag(1) - S(3) 2.527(1) S(1) - Ag(1) - S(4) 114.18(3) 

Ag(1) - S(4) 2.513(1) S(2) - Ag(1) - S(3) 100.47(3) 
  S(2) - Ag(1) - S(4) 108.48(3) 

  S(3) - Ag(1) - S(4) 113.14(4) 

    

Ag(2) - S(1) 2.545(1) S(1) - Ag(2) - S(2) 110.08(4) 
Ag(2) - S(2) 2.575(1) S(1) - Ag(2) - S(3) 110.86(3) 

Ag(2) - S(3) 2.565(1) S(1) - Ag(2) - S(4) 106.46(4) 

Ag(2) - S(4) 2.618(1) S(2) - Ag(2) - S(3) 106.14(4) 
  S(2) - Ag(2) - S(4) 117.02(3) 

  S(3) - Ag(2) - S(4) 106.21(4) 

    
Zn(1) - S(1) 2.327(1) S(1) - Zn(1) -S(2) 112.09(5) 

Zn(1) - S(2) 2.354(1) S(1) - Zn(1) -S(3) 110.33(4) 

Zn(1) - S(3) 2.333(1) S(1) - Zn(1) -S(4) 111.71(4) 

Zn(1) - S(4) 2.3623(9) S(2) - Zn(1) -S(3) 112.81(5) 
  S(2) - Zn(1) -S(4) 105.46(4) 

  S(3) - Zn(1) -S(4) 104.08(5) 

    
Si(1) - S(1) 2.135(1) S(1) - Si(1) - S(2) 107.84(9) 

Si(1) - S(2) 2.116(2) S(1) - Si(1) - S(3) 111.18(8) 

Si(1) - S(3) 2.122(3) S(1) - Si(1) - S(4) 108.5(1) 
Si(1) - S(4) 2.138(2) S(2) - Si(1) - S(3) 109.6(1) 

  S(2) - Si(1) - S(4) 111.91(8) 

  S(3) - Si(1) - S(4) 107.8(1) 
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3.2.3.4 Laboratory X-ray Powder Diffraction 

 X-ray powder diffraction studies were performed on a Panalytical X‘Pert Pro 

MPD powder X-ray diffractometer using copper Kα radiation with a wavelength of 

1.541871 Å and operating with a tube power of 45 kV and 40 mA.  Data were collected 

from 5° to 145° 2θ with a step size of 0.0083556° and scan rate of 0.010644°/sec. The 

incident beam optics were comprised of a 0.02 rad soller slit, a divergent slit of 1/4° and 

an anti-scatter slit of 1/2°; whereas, the diffracted beam optics were comprised of a 

0.02 rad soller slit and an anti-scatter slit of 1/4°. The samples were prepared for analysis 

using a top fill method where the sample powder is added from bottom to top of a sample 

holder and spread out using random chops of a razor blade to minimize preferred 

orientation. Phase identification of crystalline components was carried out using the 

X‘Pert HighScore Plus software package
153

 and the International Center for Diffracted 

Data (ICDD) database. 

 

3.2.3.5 Diffuse Reflectance UV/Vis/NIR Spectroscopy 

 Diffuse reflectance UV/Vis/NIR spectroscopy was performed using a Varian Cary 

5000 spectrometer equipped with a Harrick Praying Mantis diffuse reflectance accessory. 

The sample was ground, placed in the sample cup and compared to a similarly prepared 

100% reflectance standard, BaSO4. Data were collected from 2500 to 200 nm at a scan 

rate of 600 nm/min. The collected percent reflectance was converted to absorbance using 

the Kubelka-Munk equation
154

 and wavelength was converted to energy in eV. 
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3.2.3.6 Electronic Structure Calculations 

 Density functional theory (DFT) calculations were performed with the help of Dr. 

Balamurugan Karuppannan using the solid state electronic structure package, Wien2k 

(version 11.1).
155

  Wien2k uses a hybrid full potential linear augmented plane wave 

(LAPW) and augmented plane wave + local orbitals (APW + lo) schemes for solving the 

Kohn-Sham (KS) equations of the total energy of crystalline solids within DFT.  In the 

LAPW method, the unit cell of a crystal is partitioned into non-overlapping atomic 

spheres and interstitial regions.  The basis functions are constructed using the muffin-tin 

approximation (MTA), in which spherically symmetric potential within the atomic 

spheres and constant potential outside the spheres are assumed.  The electronic states are 

classified as core, semi-core and valence states.  The core states are completely confined 

within the atomic sphere while the semi-core states are high-lying core states that are not 

completely confined within the atomic sphere.  The valence states are (partly) 

delocalized.
156

  The APW + lo method increases the computation speed while its results 

are comparable in accuracy with that of LAPW method.
157

  The results presented here are 

based on the calculations using APW + lo methods of Wien2k. 

 The refined structure of Ag2ZnSiS4 (obtained in the single crystal XRD studies in 

this work) and the structure of AgGaS2 given by Laksari et al
148

 were used in the DFT 

calculations.  For the case of Ag2ZnSiS4, the Ag, Zn, Si and S atoms with electronic 

configurations, [Kr] 4d
10

 5s
1
, [Ar] 3d

10
 4s

2
, [Ne] 3s

2
 3p

2 
and [Ne] 3s

2
 3p

4
 were modeled 

to have MT spheres of radii (RMT) 2.48, 2.29, 1.97 and 1.97 bohr respectively.  On the 

other hand, following Laksari et al,
148

 the MT spheres of radii 2.2, 2.0 and 1.8 for Ag, Ga 

([Ar] 3d
10

 4s
2
 4p

1
) and S respectively are taken for the case of AgGaS2. In both cases, the 
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initial densities of the core, semi-core, and valence states were determined using the 

relativistic approach of local spin density approximations (LSDA).  These calculations 

were carried out along with the use of the Perdew–Burke–Ernzerhof generalized gradient 

approximation (PBE-GGA) for treating the exchange and correlation effects.
158

 The 

calculations for the case of AgGaS2 were also repeated using LSDA to approximate the 

exchange and correlation effects in order to more directly compare to calculations already 

found in the literature.
148,159

  The product of the minimum of RMT and Kmax (RKmax) was 

set to be 7.0 for the case Ag2ZnSiS4 and 8.0 for AgGaS2.  The peak energy cutoff 

separating the core from the valence states was -6.0Ry and the calculations were carried 

out using a radial mesh approach of 1000 points. 

 In all cases, self consistent calculations were carried out using a series of 

subroutines; LAPW0, LAPW1, LAPW2, LCORE, and MIXER which were repeated, in 

order, until the total energy of the system converged.
157

  The first subroutine, LAPW0, is 

carried out to calculate the total potential energy of the system as the sum of the Coulomb 

energy and exchange-correlation potential.  The Coulomb energy is calculated using the 

multi-polar Fourier expansion developed by Weinert in 1981.
160

 The exchange-

correlation potential is then calculated for each orbital using a least squares approach for 

the core states, a 3-dimensional fast Fourier transform (FFT) for the semi-core states, and 

the PBE-GGA for the valence states.
158

  The contribution from the plane wave to the 

Hamiltonian matrix is then determined by adjusting the Fourier series to have zero 

potential within the atomic sphere while retaining the potentials in the semi-core and 

valence states according to the formalization of Weinert et al.
161

  After which the 
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Hellmann-Feynman force is calculated from the total potential energy using the method 

of Yu et al.
162

   

 The second subroutine, LAPW1, is then utilized to set up the Hamiltonian matrix 

for the k-mesh according to the method of Koelling and Arbman in order to calculate the 

eigenvalues and eigenvectors through diagonalization.
163

  These values are then used by 

the third subroutine, LAPW2, to calculate the Fermi-energy and the expansion of the 

electronic charge densities for each occupied state and each k-vector.  Afterward, the 

subroutine LCORE calculated the eigenvalues, densities, and contribution to atomic 

forces for the core states.  This, spherical portion of the potential is modeled using the 

relativistic LSDA basis set established in 1969 by Desclaux.
164,165

  The final subroutine, 

MIXER, is then utilized to add and "mix" the charge densities of the core states 

(LCORE), semi-core states (LAPW0), and the valence states (LAPW2).  This process 

incorporates the multi-secant mixing scheme, developed by Marks and Luke in 2008, as a 

normalization step which utilizes the expansion coefficients from up to 10 proceeding 

iterations to calculate the optimal mixing fraction for each coefficient.
166

  The 

convergence criteria for this set of routines was an energy change less than 0.1 mRy/unit 

cell while the k-mesh was generated using a total of 1000 k-points over the whole 

Brillouin zone (BZ) utilizing the high symmetry points taken for plotting the band 

structure within the irreducible Brillouin zone (IBZ) based on the template files of 

Wien2k. 
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3.3 Results and Discussion 

3.3.1 Morphology and Composition 

 Reactions to prepare Ag2ZnSiS4 produced a gray ingot consisting of colorless 

crystals with what appeared to be a very slight green tint on the surface.  When the ingot 

was broken, cavities were observed within the ingot where more crystals were found.  

EDS analysis of the gray ingot showed regions of Ag2ZnSiS4, ZnS and an Ag-Si-S phase.  

X-ray powder diffraction of the ground ingot (Figure 3.3) shows the presence of the 

quaternary phase Ag2ZnSiS4.  The powder pattern also shows the presence of two 

unwanted phases, ZnS and Ag2SiS3, in the bulk sample. EDS spectra of the crystals show 

the presence of all four elements (Figure 3.4) in the measured ratio of Ag1.97Zn1Si1.15S4.13 

in agreement with the predicted stoichiometry.  A higher concentration of Zn was 

detected within the crystals than on the surface which is due to a possible surface coating 

of an impurity phase. 
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Figure 3.3  X-ray powder diffraction pattern of the ground ingot (top) compared to 

the calculated pattern of Ag2ZnSiS4 (bottom).  Peaks indexed to the impurity phases 

ZnS (*) and Ag2SiS3 (+) are also indicated. 
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Figure 3.4  Energy dispersive spectrum of Ag2ZnSiS4 crystal with an inlayed 

scanning electron micrograph of the same crystal. 

3.3.2 Structure 

Single crystal X-ray diffraction data reveal that Ag2ZnSiS4 crystallizes in the 

monoclinic noncentrosymmetric space group Pn.  All ions are tetrahedrally coordinated 

and reside in general positions. Each sulfur anion is surrounded by two silver cations, one 

zinc cation, and one silicon cation in accordance to Pauling‘s 2
nd

 rule of local 

electroneutrality.
147

 In this ordered structure the metal-sulfur bond lengths can be 

separated into three distinct categories. Bond distances for Ag-S show an average length 

of 2.539(1) Å for Ag(1) and 2.575(2) Å for Ag(2). These distances compare well to those 
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found for the quaternary DLS compounds Ag2HgSnS4 with an average Ag-S bond length 

of 2.43(2) Å
167

 and the related compound Ag2ZnGeS4 with an average Ag-S bond length 

of 2.578(5) Å.
168

 The Zn-S bond has an average length of 2.344(2) Å, which corresponds 

well with the average of 2.372(1)Å and 2.35(2) Å found in Ag2ZnGeS4
168

 and Li2ZnSnS4, 

respectively.
169

  The distances of the Si-S bonds average 2.128(4) Å in accordance to the 

bond lengths found in Cu2MnSiS4 and Cu2ZnSiS4 which have averages of 2.136(1) Å
170

 

and 2.136(1) Å 
171

 respectively.  

Although a less common structure type for diamond-like compounds, the Pn 

space group was first observed in these materials in 1969 by Joubert-Bettan et. al. for 

Na2ZnSiO4.
172

  This wurtz-kesterite structure type was also observed in the more recent 

study by Lekse et. al. in 2008 for the compound Li2ZnSnS4.
169

  However, the structure of 

Ag2ZnSiS4 was not completely unexpected, due to the predictions from Chen et. al. in 

2010 who preformed Madelung energy calculations for different structure types on a 

number of known and predicted diamond-like compounds and determined Pc (equivalent 

to Pn) to be the most energetically favorable for this predicted compound.
173

 

The structure of Ag2ZnSiS4 can be described as a hexagonal, closest-packed array 

of sulfur anions with Ag
1+

, Zn
2+

 and Si
4+

 occupying tetrahedral holes. The structure can 

be viewed as a corner-sharing, three-dimensional network of MS4 tetrahedra. When 

viewed down the b-axis one can notice (Figure 3.5) the alternating nature of the cations. 

Rows along the a-axis of alternating Ag(1)-S4 and Zn(1)-S4 tetrahedra (ABAB) are 

separated by rows of Ag(2)-S4 and Si(1)-S4 tetrahedra (CDCD). The pattern is then 

alternated (BABA) and (DCDC) after which it repeats.  This structure differs from the 

more common diamond-like wurtz-stannite structure, Pmn21 in the cation ordering.  In 
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Pmn21 there is only one unique site for the M
1+

 ions and they are aligned in rows down 

the c-axis, which is demonstrated by the comparison to the previously reported 

Cu2ZnSiS4 compound (Figure 3.5).
171

  Similarly, the difference between the Pn and 

Pna21 space groups is the cation ordering, specifically the location of the Zn
2+

 ion in 

respect to the Si
4+

 site as illustrated by the comparison to Ag2CdGeS4 in Figure 3.5.
174

 

 

 

 

 

Figure 3.5  Polyhedral view of Ag2ZnSiS4 extended to show long range cation 

ordering in comparison to the equivalent views of the similar compounds Cu2ZnSiS4 

and Ag2CdGeS4. 
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3.3.3 Electronic Band Structure and Density of States 

 The calculated electronic band structures of Ag2ZnSiS4 and AgGaS2 are shown in 

Figure 3.6 and 3.7 respectively.  In both compounds the valence band maximum (VBMa) 

and the conduction band minimum (CBMi) are at the Γ-point of the BZ, indicating that 

the compounds are direct band gap semiconductors.  The difference between the CBMi 

and VBMa yields a band gap (Eg) of 1.88 eV for Ag2ZnSiS4.  The value of Eg for AgGaS2 

is 1.21 eV.  The experimentally determined band gap of AgGaS2 is 2.51 eV, a positive 

1.3 eV difference from our calculated value,
159,173,175

 while UV/Vis/NIR spectroscopic 

analysis of Ag2ZnSiS4 sample yielded an estimated band gap of 3.28 eV (Figure. 3.8), a 

positive 1.4 eV difference from our calculated value. 
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Figure 3.6  Calculated electronic band structure of Ag2ZnSiS4.  The graph is scaled 

for 0 eV at the Fermi level (EF). 
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Figure 3.7  Calculated electronic band structure of AgGaS2.  The graph is scaled for 

0 eV at the Fermi level (EF). 
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Figure 3.8  Optical diffuse reflectance UV/Vis/NIR spectrum converted to 

absorption for Ag2ZnSiS4. 

 

 Since the band structure of AgGaS2 has been determined previously, a 

comparison was made between the present and published results.  Even though the same 

PBE-GGA has been used, the calculated Eg in the work reported here is a little higher and 

closer to the experimentally determined value, than that which was reported by M. G. 

Brik (1.00 eV) using Materials Studio 4.0 package with CASTEP.
159

   It is also noted that 

both Laksari et al
148

 and Chahed et al
176

 have reported that AgGaS2 has a direct band gap 

of 0.95 eV both calculated using the local density approximation (LDA) in Wien2k. In 

fact, calculations using LSDA in Wien2k in this work also yielded the same 0.95 eV band 
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gap for AgGaS2 with details given in the supplementary material. Therefore, it is clear 

that the PBE-GGA provides a relatively better, even though underestimated, estimation 

of the band gap, in comparison to LDA/LSDA using the Wien2k program. It is also 

worth noting here that there are new exchange correlation functionals such as the Heyd-

Scuseria-Ernzerhof (HSE) hybrid functional.
177

 Paier et. al. was able to calculate a band 

gap for the quaternary diamond-like semiconductor Cu2ZnSnS4 (CZTS) that was equal to 

the measured 1.5 eV band gap of the material.
177

 This functional is yet to be implemented 

for Wien2k so although it underestimates the band gap, (PBE-)GGA is used in this study. 

Therefore the underestimation of the band gap considered in this comparison is expected.   

 The calculated DOS and partial DOS plots for Ag2ZnSiS4 and AgGaS2 shown in 

Figure 3.9 and 3.10 clearly demonstrate the semiconducting nature of these compounds.  

In both Ag2ZnSiS4 and AgGaS2, the valence band (VB) close to the Fermi level has 

major contribution from the Ag-4d and S-3p states although there is significant, but 

relatively small, contribution from the 3p states of Zn and Si or the 3p and 4p states of 

Ga.  A very weak contribution in this region from the Zn-3d states can also be seen.  The 

hybridization of the Ag-4d states with the S-3p and the p states of other atoms in the 

crystal is well known as the p-d hybridization, which is responsible for the red-shift of the 

optical band gap in these materials with reference to that of their binary analogs.
178

  For 

example the binary DLSs, ZnS and GaS have an optical band gap of 3.6 and 2.5 eV 

respectively.
179

  The states around the CBMi are mostly contributed to by the 

Zn-4s/Ga-4s and Si-3s and 3p states.  There is also a small contribution from the Zn-3p 

states and S-3s and 3p states, and a weak contribution from the Ag-5s and 4p states. The 

majority of the Zn-3d states lie deep in the VB in the energy range of −6.0 to −8.0 eV and 
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the major contribution of Si-3s states are also deep in the valence band in the energy 

range of −6.0 to −8.0 eV as well as around −14.0 eV. Similarly, the major portion of 

Ga-3d states are in the energy range of −12 to −15.3 eV in the core of the VB.  The major 

part of S-3s states are also in the core of the valence band in the energy range of −12.0 to 

−14.2 eV with considerably less contribution around −7.5 eV. Ultimately, the presence of 

strong p-d hybridization (more of 4d states of Ag and less of Zn/Ga) mainly constitutes 

the VBMa while the conduction band is mainly constructed from the mixing of s and p 

states and very little of the d orbitals of the atoms. The same effects of p-d hybridization 

have also been reported in CuGaS2.
159,178
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Figure 3.9  The calculated total and partial density of states for Ag2ZnSiS4.  The 

graph is scaled for 0eV at the Fermi level (EF). 
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Figure 3.10  The calculated total and partial density of states for AgGaS2.  The 

graph is scaled for 0eV at the Fermi level (EF). 
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3.4 Conclusion 

 Single crystals of the quaternary diamond-like semiconductor Ag2ZnSiS4 have 

been synthesized via high-temperature, solid-state synthesis.  The crystal structure was 

solved in the monoclinic space group Pn.  Electronic band structure calculations show a 

direct energy gap of 1.88 eV, which suggests that the title compound is suitable for 

applications in optoelectronic devices such as LEDs.
180

  Partial (or full) replacement of 

Zn by magnetic ions such as those of Cr, Mn, Fe, Co, or Ni could establish interesting 

magnetic properties in the material, while retaining the semiconducting and optical 

properties for applications in spin-based electronics.
181,181,182 

 Substitution would also 

help in the fine-tuning of the band gap due to the finite, but small contribution of 

3d-orbitals to the valence band maximum and conduction band minimum of the band 

structure. Since the zinc metal states have less influence on the energy gap and are mostly 

confined deep in the valence band, this system is suitable for localizing the magnetic 

moments while retaining the semiconducting behavior.
183
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4 The Impact of Three New Quaternary Sulfides on the Current Predictive Tools 

for Structure and Composition of Diamond-Like Materials 

 

4.1 Introduction 

 Diamond-like semiconductor (DLS) materials are normal valence compounds 

whose structures can be derived from either the cubic or hexagonal form of 

diamond.
184-186

  The configuration of these structures can, therefore, be envisioned by 

taking the carbon lattice of cubic diamond or hexagonal lonsdaleite and replacing the 

carbon with cations and anions in an orderly fashion (Figure 4.1).  Due to their relative 

ease of synthesis, binary diamond-like materials are well represented in the literature; 

however, as the number of components increases to ternary, the synthesis becomes more 

challenging and, considering the greater number of predicted stoichiometries, relatively 

few have been reported.  For example, Zeng et al. computationally predicted 75 possible 

compositions for DLSs of the form I-III-VI2, where the Roman numerals represent the 

valence of the atom and the subscript indicates the stoichiometry.
187

 Only ~1/3 of these 

predicted compounds have been synthesized and characterized.  In the case of quaternary 

DLSs, such as the I2-II-IV-VI4 family, the number of possible compositions is even 

greater, yet there still remains many to be reported.   
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Figure 4.1  The structural progression of DLS’s derived from lonsdaleite. 

 Due to the large variety of possible compositions, quaternary diamond-like 

materials can possess numerous technologically useful properties.  These materials are of 

interest for applications such as tunable semiconductors,
188-191

 photovoltaics,
188,192,193

 

spintronics,
194,195

 non-linear optics,
196,197

 and thermoelectrics.
189,198,199

  The interest in 

applying these materials in such applications stems from the inherently tunable properties 

of band gap,
188,192,200,201

 magnetism,
190,194

 second harmonic generation,
196,201,202

 and 

electrical properties.
203

  However a complete understanding of the roles of structure and 

composition in determining the resulting physicochemical properties has not yet been 

realized.  Furthermore, due to limitations of the predictive tools, the development of new 

materials for specific applications is challenging. 

 For decades, four guidelines have been used to predict compositions that will 

have diamond-like structures.  The first is that the average number of valence electrons 

per atom is four. Next, the average number of valence electrons per anion must be 

eight.
184,185

 Also, the octet of each anion must be satisfied by nearest neighbor cations and 

each atom must be tetrahedrally coordinated.  For the last guideline, Pauling‘s radius 
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ratio rule is commonly used to predict coordination geometry.
184,185,204

  It is well known 

that this rule is effective in its application to relatively hard anions.  However, many 

examples of diamond-like materials with softer anions exist, yet violate this rule. 

 Here we present three new quaternary DLSs: Ag2FeSiS4, Li2FeGeS4,
205

 and 

Li2FeSnS4.
205

 These three compounds crystallize with the wurtz-kesterite structure in the 

space group Pn, raising the number of quaternary DLSs in this space group from 2 to 5. 

Using several sets of ionic and crystal radii, radius ratios of r
+
/r

-
 for all ions in these 

materials are significantly out of the range for tetrahedral coordination, thus violating 

Pauling‘s radius ratio rule. This prompts the re-evaluation of the predictive tools used for 

diamond-like materials even though the other guidelines for these materials are 

followed.
204 

 In addition to examining the three new compounds reported here, the 

adherence of diamond-like structures to Pauling‘s radius ratio rule has been assessed by 

considering all previously reported structures of quaternary diamond-like chalcogenides 

solved by single crystal X-ray diffraction methods and selected DLS structures refined 

from X-ray powder diffraction.
206-234

  Since several sets of tetrahedral radii have appeared 

in the literature, we also evaluated how well the experimental bond lengths from this set 

of compounds correspond to those predicted using the radii sets from various 

authors.
235-239 

 Furthermore, the cation tetrahedral volumes from this set of compounds 

were calculated and examined to determine whether or not they can be used to predict 

either a cubic- or hexagonal-derived diamond-like phase as proposed by Pfitzner et 

al.
217,225
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4.2 Experimental 

4.2.1 Reagents 

 Chemicals used in this work were utilized as obtained unless otherwise noted: (1) 

silver powder, ~325 mesh, 99.99%, Cerac Milwaukee, WI; (2) lithium sulfide powder, 

~200 mesh, 99.9%, Cerac Milwaukee, WI; (3) iron powder, 99.999%, Strem 

Newburyport, MA; (4) silicon powder, 99.999%, Strem Newburyport, MA; (5) 

germanium pieces were first ground using an impact mortar and pestle until the large 

pieces were broken up into a coarse powder and then ground for 5 min in a ceramic 

mortar and pestle before use, 99.999%, Strem Newburyport, MA; (6) tin powder, ~200 

mesh, 99.99%, Cerac Milwaukee, WI; (7) sulfur powder, sublimed, 99.5%, Fisher 

Scientific Pittsburgh, PA. 

 

4.2.2 Synthesis 

 Single crystals of Ag2FeSiS4, Li2FeGeS4
205

 and Li2FeSnS4
205

 were produced by 

weighing stoichiometric amounts of each element or binary starting material in an argon-

filled glove box.  For each material reagents were combined in an agate mortar, ground 

for 20 min with a pestle and then transferred to a 9 mm o.d. graphite crucible which was 

then placed in a 12 mm o.d. fused-silica tube. The tube was then flame-sealed under a 

vacuum of approximately 10
-3 

mbar and placed in a programmable furnace. For 

Ag2FeSiS4, the reactants were heated to 700°C over 12 hours, held at that temperature for 

96 hours and then cooled to 420°C over 50 hours after which the sample was allowed to 

cool radiatively.  For Li2FeGeS4 and Li2FeSnS4, the reactants were heated at 750 °C for 



 104 

96 hours, slowly cooled to 500 °C in 50 hours and then allowed to cool to room 

temperature naturally. In the case of Li2FeGeS4 and Li2FeSnS4, products were rinsed with 

N,N‘-dimethylformamide and hexane.  In all cases dark red, plate-like crystals were 

selected for single crystal X-ray diffraction.
205

 

 

4.2.3 Physical Property Measurements 

4.2.3.1 Single Crystal X-ray Diffraction: Data Collection and Reduction 

 A Bruker SMART Apex 2 CCD single crystal X-ray diffractometer utilizing 

graphite monochromatized molybdenum Kα radiation was used to collect data at ambient 

temperature with a tube power of 50 kV and 30 mA for 35 sec per frame. SAINT
240

 was 

used to integrate the data and SADABS
241

 was employed to perform the absorption 

correction. XPREP was used for space group determination and to create files for 

SHELXTL.
242

 Based on systematic absences, two space groups were initially considered, 

Pn and P2/n. The space group Pn (No. 7) was selected because all DLSs are 

noncentrosymmetric. 

 

4.2.3.2 Single-Crystal X-ray Diffraction: Solution and Refinement 

 The SHELXTL-PC
242

 software package was used to solve and refine the crystal 

structures of Ag2FeSiS4, Li2FeGeS4
205

 and Li2FeSnS4.
 205

  Each structure consists of eight 

atoms located on general positions: two (I) sites, one Fe site, one (IV) site, and four S 

sites (where I=Ag, Li and IV=Si, Ge, Sn).  The structures were refined with R1(all data) 

of 0.0249, 0.0346 and 0.0310, respectively.  Crystallographic parameters and details for 

each compound are shown in Table 4.1. Atomic coordinates and equivalent atomic 
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displacement parameters for Ag2FeSiS4 as well as the bond distances and bond angles of 

Ag2FeSiS4 can be found in Tables 4.2 and 4.3.  The program CrystalMaker
®243

 was used 

to generate the crystal structure figures.   

 

 

 

Table 4.1  Crystallographic data and experimental details for Ag2FeSiS4, Li2FeSnS4, 

and Li2FeGeS4. 

Empirical formula Ag2FeSiS4 Li2FeSnS4
205 Li2FeGeS4

205 

Size (mm) 0.13 x 0.30 x 0.84 0.02 x 0.05 x 0.06 0.01 x 0.05 x 0.09 

Color Dark red Dark red Dark red 

Habit Plate Plate Plate 

Formula weight 427.92 g mol-1 316.66 g mol-1 270.56 g mol-1 

Temperature 296 K 173 K 173 K 

Wavelength of X-ray 0.71073 Å 0.71073 Å 0.71073 Å 

Space group Pn Pn Pn 

Unit cell dimensions a = 6.4220(1) Å a = 6.3727(3) Å a = 6.2286(2) Å 

 b = 6.6185(1) Å b = 6.7776(3) Å b = 6.6029(2) Å 

 c = 7.8650(1) Å c = 7.9113(4) Å c = 7.7938(2) Å 

 α = γ = 90° α = γ = 90° α = γ = 90° 

 β = 90.614(1)° β = 90.207(3)° β = 90.047(2)° 

Volume 334.275(8) Å3 341.70(3) Å3 320.53(2) Å3 

Z 2 2 2 

Calculated density 4.242 Mg m-3 3.078 Mg m-3 2.803 Mg m-3 

Flack parameter -0.05(3) 0.08(3) 0.10(1) 

F(000) 396 292  256 

Reflections collected/unique 4330/1470 4042/1483 4074/1392 

Data/restraints/parameters 1470/2/75 1483/2/64 1392/2/64  

Completeness to theta = 27.11° 100% 100% 100% 

Goodness of fit 1.144 1.059 1.229 

Final R indices [I>2sigma(I)] R1 = 0.0235  

wR2 = 0.0627 

R1 = 0.0254  

wR2 = 0.0493 

R1 = 0.0290  

wR2 = 0.0605 

R indices (all data) R1 = 0.0249  

wR2 = 0.0641 

R1 = 0.0310  

wR2 = 0.0421 

R1 = 0.0346  

wR2 = 0.0623 

Refinement of F2 was made against all reflections.    
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Table 4.2  Selected bond distances (Å) and angles (°) for Ag2FeSiS4. 

Bond Distance Bond Angle 

Ag(1)—S(1) 2.547(2) S(1)—Ag(1)—S(2) 107.74(6) 
Ag(1)—S(2) 2.581(2) S(1)—Ag(1)—S(3) 110.80(5) 

Ag(1)—S(3) 2.529(2) S(1)—Ag(1)—S(4) 113.50(6) 

Ag(1)—S(4) 2.518(2) S(2)—Ag(1)—S(3) 100.75(6) 
  S(2)—Ag(1)—S(4) 109.06(5) 

Ag(2)—S(1) 2.544(2) S(3)—Ag(1)—S(4) 114.03(7) 

Ag(2)—S(2) 2.569(2) S(1)—Ag(2)—S(2) 111.36(6) 
Ag(2)—S(3) 2.560(2) S(1)—Ag(2)—S(3) 111.36(6) 

Ag(2)—S(4) 2.609(2) S(1)—Ag(2)—S(4) 106.07(6) 

  S(2)—Ag(2)—S(3) 107.19(7) 

Fe(1)—S(1) 2.336(2) S(2)—Ag(2)—S(4) 106.30(6) 
Fe(1)—S(2) 2.371(2) S(3)—Ag(2)—S(4) 106.30(6) 

Fe(1)—S(3) 2.339(2) S(1)—Fe(1)—S(2) 111.42(8) 

Fe(1)—S(4) 2.369(2) S(1)—Fe(1)—S(3) 108.84(7) 
  S(1)—Fe(1)—S(4) 114.46(8) 

Si(1)—S(1) 2.133(2) S(2)—Fe(1)—S(3) 112.83(9) 

Si(1)—S(2) 2.112(4) S(2)—Fe(1)—S(4) 104.71(7) 
Si(1)—S(3) 2.125(4) S(3)—Fe(1)—S(4) 104.43(9) 

Si(1)—S(4) 2.147(4) S(1)—Si(1)—S(2) 108.4(2) 

  S(1)—Si(1)—S(3) 110.4(1) 

  S(1)—Si(1)—S(4) 108.5(2) 
  S(2)—Si(1)—S(3) 109.8(2) 

  S(2)—Si(1)—S(4) 111.9(1) 

  S(3)—Si(1)—S(4) 107.9(2) 

 

 

Table 4.3  Fractional atomic coordinates and equivalent isotropic displacement 

parameters, Uiso (Å
2
x10

3
) for Ag2FeSiS4. 

Site x y z U(eq)
*
 

Ag(1) 0.23458(7) 0.3196(1) 0.32677(6) 32(1) 

Ag(2) 0.72118(9) 0.14939(8) 0.58073(9) 34(1) 
Fe(1) 0.2194(1) 0.3160(1) 0.8188(1) 16(2) 

Si(1) 0.7184(4) 0.1857(1) 0.0724(4) 12(3) 

S(1) 0.1162(3) 0.1205(2) 0.5855(2) 16(3) 

S(2) 0.5869(3) 0.3190(2) 0.8521(2) 17(3) 
S(3) 0.0486(3) 0.1986(2) 0.0606(2) 17(3) 

S(4) 0.6245(3) 0.3387(2) 0.2997(2) 15(3) 
*U(eq) is defined as 1/3 the trace of the orthogonal tensor Uij. 
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4.3 Results and Discussion 

4.3.1 Structure 

The isostructural Ag2FeSiS4, Li2FeGeS4, and Li2FeSnS4 crystallize in the space 

group Pn and can be described using the hexagonal, closest-packed model of sulfur 

anions with 1+, 2+, and 4+ cations occupying half the tetrahedral holes.  In this structure, 

all tetrahedra point in the same direction, demonstrating the noncentrosymmetric nature 

of the structure that can be clearly seen when viewed down the b-axis.  As shown in 

Figure 4.2, each compound consists of isolated IV-S4 tetrahedra, where each corner is 

shared by one II-S4 tetrahedron and two I-S4 tetrahedra.  All three existing structure types 

of the hexagonally derived DLSs have an identical IV-S4 array.  The wurtz-kesterite 

structure (Pn) found for the new compounds presented here differs in the ordering of the 

I-S4 and II-S4 tetrahedra from the more commonly encountered DLSs with the wurtz-

stannite structure (Pmn21) and the less common diamond-like materials that crystallize in 

the space group Pna21.  Looking down the b-axis of the wurtz-kesterite structure, 

alternating rows of I-II-I-II and IV-I-IV-I along the a-axis can be observed.   
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Figure 4.2  The arrangement of metal-sulfur tetrahedra in the Pn structure, as seen 

in Ag2FeSiS4, Li2FeSnS4, and Li2FeGeS4. 

Bond distances found in these compounds are comparable to those found in the 

literature for similar diamond-like materials.  The Ag-S bond distances found in 

Ag2FeSiS4 range from 2.428(2) Å to 2.609(2) Å with an average of 2.546(1) Å, 

analogous to the bond lengths found in Ag2CdGeS4 and Ag2ZnSiS4, which range from 

2.513(1) Å to 2.618(1) Å with an average of 2.558(1) Å.
206,210

  The Li-S bond lengths in 

Li2FeSnS4 and Li2FeGeS4 were found to have a range of 2.36(2) Å to 2.53(2) Å with each 

compound possessing an average Li-S bond length of 2.43(2) Å.  This is similar to those 

found in the previously reported DLS materials Li2CdGeS4 and Li2CdSnS4, which 
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possess a range of 2.402(9) Å to 2.45(4) Å and an average of 2.43(2) Å.
233

  The range of 

Fe-S bond lengths in Ag2FeSiS4, Li2FeSnS4, Li2FeGeS4 is relatively narrow with a range 

of ~0.02 to 0.04 Å, averaging 2.354(1), 2.358(1), and 2.328(1) Å, respectively. These 

distances match up to those found in Ag2FeSnS4 and Cu2FeSnS4.
208,220

  The Si-S bond 

lengths found in Ag2FeSiS4 are between 2.112(4) Å and 2.147(4) Å, averaging 

2.129(2) Å, which closely measures up to the bond lengths found in Ag2ZnSiS4 with an 

average of 2.128(1) Å.
210

  The Sn-S bonds in Li2FeSnS4, varying only by ~0.01 Å and 

averaging 2.393(1) Å, are akin to the average distance of 2.386(1) Å in Li2CdSnS4.  The 

Ge-S bond distances in Li2FeGeS4, varying ~0.02 Å and averaging 2.236(1) Å, are 

similar to the average bond distance of 2.212(1) Å in Li2CdGeS4.
233

 

 

4.3.2 Comprehensive Literature Comparison 

 A critical examination of these new diamond-like materials and those previously 

reported was made in order to re-evaluate the predictive tools for DLSs, Table 4.4.
206-234

  

Due to the similarities among DLS structure types, and in some cases the existence of 

isoelectronic ions, X-ray powder diffraction patterns of these materials can be very 

similar and in some cases nearly indistinguishable.
206

 Therefore, a majority of 

compounds whose structures have been assigned based on X-ray powder diffraction data 

have been excluded from this comparison. To the best of our knowledge, the structures of 

only 29 quaternary DLS chalcogenides, including the three reported here, have been 

solved from single crystal X-ray diffraction data. Herein the bond distances and 

tetrahedral volumes found in these structures are used to assess adherence to Pauling‘s 

radius ratio rule and Pfitzner's theory.
204,217,225
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Table 4.4  Radius ratios, r
+
/r

-
, and tetrahedral volumes for 41 selected quaternary 

diamond-like materials. 

Compound 
Space 

Group 

X-ray 

Method 

Radius Ratio* Tetrahedral Volumes (Å
3
)** Ref. 

I/VI II/VI IV/VI I(1)-VI I(2)-VI II-VI IV-VI Dev.  

Ag2CdGeS4 Pna21 SC 0.655 0.541 0.312 8.629 8.108 8.171 5.529 1.406 [206] 

Ag2CdGeS4 Pmn21 P 0.655 0.541 0.312 8.127  8.202 5.806 1.362 [207] 

Ag2FeSiS4 Pn SC 0.655 0.453 0.235 8.381 8.669 6.501 5.009 1.715 this work 

Ag2FeSnS4 I-42m SC 0.655 0.453 0.406 7.310  7.578 8.290 0.506 [208] 

Ag2HgSnSe4 Pmn21 P 0.655 0.647 0.406 9.667  8.758 7.723 0.973 [209] 

Ag2ZnSiS4 Pn SC 0.655 0.435 0.235 8.356 8.637 6.509 4.995 1.705 [210] 

Cu2CdGeS4 Pmn21 SC 0.435 0.541 0.312 6.439  8.588 5.574 1.552 [211] 

Cu2CdGeSe4 Pmn21 SC 0.435 0.541 0.312 7.624  7.951 7.397 0.279 [212] 

Cu2CdGeSe4 I-42m P 0.435 0.541 0.312 5.064  6.860 7.349 1.203 [212] 

Cu2CdGeTe4 I-42m SC 0.435 0.541 0.312 8.545  10.829 9.229 1.173 [213] 

Cu2CdSiS4 Pmn21 SC 0.435 0.541 0.235 6.412  6.376 6.422 0.025 [214] 

Cu2CdSiS4 Pmn21 SC 0.435 0.541 0.235 6.653  8.506 4.877 1.815 [215] 

Cu2CdSnSe4 I-42m P 0.435 0.541 0.406 7.284  9.788 8.063 1.282 [216] 

Cu2CoGeS4 I-42m SC 0.435 0.424 0.312 5.689  6.764 6.313 0.540 [217] 

Cu2CoSiS4 I-42m P 0.435 0.424 0.235 6.076  6.841 4.983 0.934 [218] 

Cu2CoSnS4 I-42m P 0.435 0.424 0.406 6.029  6.723 7.485 0.728 [218] 

Cu2CoSnSe4 I-42m P 0.435 0.424 0.406 7.327  7.120 8.607 0.806 [218] 

Cu2FeGeS4 I-42m SC 0.435 0.453 0.312 6.257  6.728 5.721 0.504 [219] 

Cu2FeSnS4 I-42m SC 0.435 0.453 0.406 5.064  6.860 7.349 1.203 [220] 

Cu2FeSnS4 I-42m SC 0.435 0.453 0.406 6.474  6.506 7.222 0.423 [221] 

Cu2FeSnS4 P-4 SC 0.435 0.453 0.406 6.401  6.553 7.038 0.333 [222] 

Cu2FeSnSe4 I-42m SC 0.435 0.453 0.406 7.123  7.644 8.626 0.763 [223] 

Cu2HgGeS4 Pmn21 P 0.435 0.647 0.312 6.183  8.820 5.556 1.732 [224] 

Cu2HgGeSe4 I-42m P 0.435 0.647 0.312 6.983  9.552 7.043 1.466 [224] 

Cu2HgSnSe4 I-42m P 0.435 0.647 0.406 7.056  9.710 8.590 1.332 [216] 

Cu2MnGeS4 Pmn21 SC 0.435 0.418 0.312 6.369  6.385 6.369 0.009 [225] 

Cu2MnGeS4 Pmn21 SC 0.435 0.418 0.312 6.324  7.581 5.671 0.971 [226] 

Cu2MnSiS4 Pmn21 SC 0.435 0.418 0.235 6.545  7.543 5.031 1.265 [225] 

Cu2MnSnS4 I-42m SC 0.435 0.418 0.406 6.667  7.448 7.156 0.395 [225] 

Cu2MnSnS4 I-42m SC 0.435 0.418 0.406 6.326  7.066 7.085 0.443 [226] 

Cu2MnSnS4 I-42m SC 0.435 0.418 0.406 6.381  7.336 7.136 0.503 [227] 

Cu2MnSnSe4 I-42m P 0.435 0.418 0.406 6.474  6.506 7.222 0.423 [228] 

Cu2ZnGeS4 I-42m SC 0.435 0.435 0.312 6.474  5.991 5.499 0.488 [229] 

Cu2ZnGeSe4 I-42m P 0.435 0.435 0.312 7.312  7.415 6.841 0.306 [230] 

Cu2ZnGeTe4 I-42m P 0.435 0.435 0.312 8.766  8.747 8.766 0.011 [231] 

Cu2ZnSiS4 Pmn21 SC 0.435 0.435 0.235 6.453  6.543 5.006 0.863 [232] 

Li2CdGeS4 Pmn21 SC 0.429 0.541 0.312 7.260  8.494 5.469 1.521 [233] 

Li2CdSnS4 Pmn21 SC 0.429 0.541 0.406 7.371  8.398 6.872 0.778 [233] 

Li2FeGeS4 Pn SC 0.429 0.453 0.312 7.347 7.317 6.427 5.750 0.769 this work  

Li2FeSnS4 Pn SC 0.429 0.453 0.406 7.353 7.362 6.698 7.007 0.318 this work 

Li2ZnSnS4 Pn SC 0.429 0.435 0.406 7.433 7.392 6.673 6.933 0.368 [234] 

*   Radius Ratio calculated using Shannon‘s 4-coordinate crystallographic radii for metals and 6-coordinate crystallographic radii for 

sulfur [37]. 

**Tetrahedral volumes calculated from solved and/or refined crystal structures. 

SC – Structures solved from single crystal X-ray diffraction. 

P   – Structures refined from powder X-ray diffraction.  
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4.3.3 Comparison of Tetrahedral Volumes 

 It has been proposed by Pfitzner and coworkers that the volumes of cation 

tetrahedra in quaternary DLSs can be used to predict whether the ensuing structure will 

exhibit cubic or hexagonal closest packing. They proposed that if all the tetrahedra are of 

similar size (volume) the structure will be related to cubic diamond and if there is greater 

disparity in the sizes (volumes) then the structures will be derived from lonsdaleite.  This 

theory was deduced from the experimental data of several ternary DLSs. Pfitzner and 

coworkers then selected three quaternary diamond-like compounds, Cu2MnSiS4, 

Cu2MnGeS4, and Cu2MnSnS4, as well as their solid solutions, in order to extend this 

hypothesis to quaternaries.
217,225

  

According to this theory, the title compounds Ag2FeSiS4, Li2FeSnS4, and 

Li2FeGeS4 should all exhibit large differences in the volumes of the tetrahedra since the 

structures are derived from lonsdaleite.  However, Pfitzner et al. did not establish a range 

in volume variations that would predict each packing type.  For the purpose of this 

comparison, variations greater than 1 Å
3
 were considered significant and used to predict a 

hexagonal-derived structure.  The tetrahedral volumes calculated from the bond distances 

for Ag2FeSiS4 show a variation of 3.660 Å
3
, the smallest tetrahedra volume is 5.009 Å

3 

for Si-S4 and the largest is 8.669 Å
3
 for the Ag(2)-S4 tetrahedra.  This predicts a 

hexagonal-derived diamond-like structure, which agrees with the structure solution 

reported here.  Likewise, Li2FeGeS4 also possesses a tetrahedral volume range of 

1.597 Å
3
, further confirming this hypothesis.  However Li2FeSnS4 is comprised of 

tetrahedra ranging from 6.698 Å
3
 for the Sn-S4 tetrahedra to 7.362 Å

3
 for the Li(2)-S4 
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tetrahedra.  This range of only 0.664 Å
3
 corresponds to a cubic-derived diamond-like 

structure in contrast to the structure reported here.   

Analysis of the 41 reported quaternary diamond-like chalcogenides selected here 

demonstrates that the tetrahedral volumes alone do not provide an indication of the 

preferred type of closest packing. When considering the reported cubic-derived 

structures, many of the materials with I-42m symmetry display significant variations in 

tetrahedral volumes.  The most notable examples are that of the Cu2CdGeTe4 with 

tetrahedral volumes ranging from 8.542 Å
3
 for

 
Cu-Te4 to 10.829 Å

3
 for Cd-Te4 and 

Cu2CdGeSe4 with volumes ranging from 6.632 Å
3 

for
 
Ge-Te4 to 9.642 Å

3
 for Cd-Te4.

213 
 

These large variations contradict the hypothesis that dissimilar tetrahedral volumes can 

be used as a predictive tool for hexagonal-derived structures and that uniform tetrahedral 

volumes forecast a cubic-related structure. In fact, two of the three compounds with the 

smallest variances in tetrahedral volumes posses hexagonally derived structures.  

Cu2MnGeS4 has the smallest variance in tetrahedral volumes and exhibits hexagonal 

closest packing.
225,226 

 Likewise, Cu2CdSiS4 with the third smallest variance also exhibits 

hexagonal closest packing, see Table 4.4.
214,215

 

 To determine if tetrahedral volumes could be used to predict a structure of 

hexagonal lineage, standard deviations of the volumes as well as their ratios were 

considered.  Among the tetrahedral volumes in the 41 diamond-like chalcogenides 

considered here, the IV-VI4 tetrahedra are the most regular in size and arrangement. In 

the three observed hexagonal-derived structure types, the anions can be found in a 

hexagonal closest packed array with the IV cations in the same tetrahedral holes (looking 

down the a-axis in Pna21, and the b-axis in Pmn21 and Pn).  The group I and group II 
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ions occupy the remaining tetrahedral holes, leading to structural differentiation. No 

pattern was observed in the variance of the tetrahedral volumes that can be used to 

predict the preference of cation arrangement. Moreover, the difference in tetrahedral 

volumes across one structure type was found to vary greatly. For example, among the 

five DLSs crystallizing with the wurtz-kesterite (Pn) structure, the standard deviation of 

the tetrahedral volumes ranges from 0.318 Å
3
 for Li2FeSnS4 to 1.715 Å

3
 for Ag2FeSiS4.  

This difference is even more dramatic for the wurtz-stannite (Pmn21) structure type 

where the standard deviation of the tetrahedral volumes ranges from 0.009 Å
3
 for 

Cu2MnGeS4 to 1.732 Å
3
for Cu2HgGeS4.

224-226 
 Thus the degree of variance does not favor 

the formation of a particular hexagonal-derived structure type. 

As demonstrated by this library of structures, somewhat larger deviations from 

ideal tetrahedral angles for one ion can often be compensated by lesser variance in the 

angles of another ion in the structure. Usually the angles in the I-VI4 and the II-VI4 

tetrahedra exhibit the greatest deviation from ideal, relative to the IV-VI4 tetrahedra. 

Therefore the averaged tetrahedral bond angles for the total structure are very close to 

109.5°. Consequently the examination of tetrahedral volumes certainly demonstrates the 

flexibility of the diamond-like framework, although it does not provide any predictive 

ability. 

 

4.3.4 Evaluation of Pauling's First Rule 

 Traditionally, one of the defining criteria for predicting tetrahedral structures is 

adherence to Pauling's first rule, the radius ratio rule.
204 

 This rule states that the ratio of 

the cation radius to the coordinating anion radius can be used to predict the ensuing 
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coordination geometry.  If this ratio is in the range of 0.225 to 0.414 the geometry is 

predicted to be tetrahedral, a prerequisite for diamond-like materials.
184,185

  However, 

most researchers are aware that Pauling's first rule can only be used as a guideline. In 

Pauling's seminal 1929 paper describing his rules, a number of example compounds were 

reported, mostly limited to simple binary oxides. However, O
2-

 is considered to be a hard 

base, while S
2-

 and Se
2-

 are softer anions and often do not display the same behavior. The 

range of ratios yielding diamond-like chalcogenides has not yet been reported. As a 

consequence of examining the selected 41 reported DLSs, the radius ratio for tetrahedral 

coordination is expanded from that specified by Pauling‘s first rule and may result in the 

prediction of additional diamond-like materials.
204

 

 For example when the radius ratios of the new quaternary DLSs reported here are 

considered using Shannon's revised radii and Pauling‘s range of 0.225 to 0.414, it can be 

found that none of these compounds are predicted to be diamond-like.
204,237

  For 

Ag2FeSiS4 the radius ratios range from 0.23 for Si
4+

/S
2-

 and 0.67 for Ag
+
/S

2-
. This is the 

largest spread in radius ratios among all quaternary DLS structures determined from 

single crystal X-ray data. For the lithium containing compounds, the radius ratios are 

closer to ideal, however, ratios of Li
+
/S

2-
 (0.42) and Fe

2+
/S

2-
 (0.45) are slightly above 

Pauling‘s predicted range for tetrahedral geometry. In fact any sulfides containing Ag
+
, 

Cd
2+

, Cu
+
, Fe

2+
, Li

+
, Hg

2+
, Mn

2+
, and Zn

2+
 are not predicted to adopt tetrahedral geometry 

according to Pauling‘s first rule. Therefore, Pauling's established range of tetrahedral 

radius ratios is not applicable to diamond-like chalcogenides and may eliminate pursuit of 

particular compounds if the desired coordination is not predicted.  In conclusion, the 

radius ratio rule should only be used as a guideline and the acceptable ratio for tetrahedral 
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coordination should be expanded to at least 0.67 for diamond-like compounds 

incorporating softer anions. 

 

4.3.5 Evaluation of Available Radii Sets 

 To advance predictions of structures and properties of diamond-like 

chalcogenides, the accuracy of the radii sets put forth is investigated herein.  The radii 

sets of Pauling and Huggins,
235

 Philips and VanVechten,
236

 Shannon,
237

 Koga,
238

 and 

Pyykkö
239

 were chosen for evaluation.  Figure 4.3 provides a comparison between the 

bond distances calculated from the various sets of radii to those of the measured bonds 

lengths found in the quaternary diamond-like materials listed in Table 4.4.  

 The covalent radii set presented by Pauling and Huggins in 1934 was derived 

from half the bond distance of homonuclear bonds.
235

 This radii set should not be 

confused with Pauling‘s tetrahedral covalent radii set from 1960 that will be discussed 

later with Pyykkö‘s radii. A comparison of the X-S bonds calculated from Pauling‘s radii, 

based on a hard-sphere model of the atom, to the measured bond lengths is shown in 

Figure 4.4.  This comparison demonstrates that, for the metals that were included in 

Pauling‘s radii set, the calculated metal-sulfur bond lengths are somewhat overestimated 

in comparison to the weighted average of the bond lengths observed in quaternary 

diamond-like materials.  Although, Pauling's radii can be used to predict metal-sulfur 

bond lengths within the range of bond lengths from single crystal X-ray diffraction 

measurements, many elements were not considered at the time due to a lack of data on 

homonuclear bonds. 
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Figure 4.3  Measured metal-sulfur bond distances from single crystal experiments of 

quaternary DLS’s depicting the weighted average and the range.  
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Figure 4.4  A comparison of the range and weighted average of measured metal-

sulfur bond lengths to the bond lengths calculated from Pauling, Phillips, Shannon, 

Koga, and Pyykkö radii as well as a modified Shannon radii using 4-coordinate 

sulfur radius determined from single crystal data of quaternary DLSs. 

In a later 1970 study, Phillips and Van Vechten calculated radii using the classical 

model of the atom and the Zeff of the outermost s or p orbitals to formulate a "core size" 

correction. In their study, measured data from the diamond-like structures of C, Si, Ge, 

and α-Sn were used to generate correction factors for their respective rows of the periodic 

table.
236

  Their results can be used to predict metal-sulfur bond lengths within 

experimental ranges; however, all of the metal-sulfur bond lengths are overestimated in 

comparison to the weighted average of the measured values and this is most pronounced 

in the bonds predicted for IV-S (Figure 4.4). 
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The set of crystal and ionic radii reported by Shannon in 1976 is one of the most 

commonly used because it takes into account both coordination number and oxidation 

state of the ions.  This radii set was calculated from a compilation of mostly binary 

compounds, and some ternary compounds, where the initial cation radii were determined 

by subtracting the previously established Ahrens‘ covalent radii for the anions from the 

measured bond distances.
244

  The radii for each ion with identical coordination and 

charge were averaged.  A correction factor was determined by plotting these average radii 

with respect to unit cell volumes for isostructural binary compounds with the same anion.  

The values for the cation radii were then adjusted according to the assumption that this 

relation is linear.  The adjusted cation radii were then used to determine the anion radius 

in the same fashion and the process was repeated.
245

 Although quite complete, Shannon‘s 

set does not contain a crystal radius for S
2-

 in four-coordinate geometry.
237 

 Most 

subsequent studies that use this set of radii employ the crystal radius for six-coordinate 

S
2-

 in place of a four-coordinate S
2-

, which is not an appropriate substitution. The use of 

the Shannon radii results in overestimating most of the metal-sulfur bond lengths, 

especially II-S bonds for which the predicted values are greater than any observed data. 

In this work, a crystal radius for four-coordinate S
2-

 was calculated from the 

averaged bond lengths of metal-sulfur bonds within the quaternary diamond-like 

materials considered here, by subtracting the Shannon four-coordinate radius for the 

respective metal cation.  This approach produced a crystal radius of 1.62(8) Å for four-

coordinate S
2-

 compared to Shannon‘s reported 1.70 Å crystal radius for six-coordinate 

S
2-

.
237

  This result was further substantiated using a "leave-one-out" cross validation 

study.
246

  In this method a data point is left out and the remaining data points are used to 
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predict the value of the missing data point.  A deviation is then calculated for the 

predicted point compared to the actual data point.  Predicted data points with deviations 

greater than 10% of its actual value are considered outliers; however, no data points in 

this study fell into this category.  This process was repeated for each data point and the 

deviations were averaged to assess the error in the radius.  Additionally, a separate 

dataset comprised of 40 ternary DLSs was also evaluated in the same manner.
247-271

  The 

average radius for four-coordinate S
2-

 was determined to be 1.62(9) Å from the ternary 

dataset after cross validation.  The metal-sulfur bond lengths predicted from this four-

coordinate S
2-

 radius and Shannon‘s cation radii are closer to the measured values then 

those calculated using Shannon‘s six-coordinate S
2-

 radius, Figure 4.4.  This modification 

to Shannon‘s radii set decreases the degree of overestimation for metal-sulfur bond 

lengths for the I and II metal cations; conversely, this adjustment leads to significant 

underestimation of the IV-S bond distances. 

In 2001, Koga re-evaluated covalent radii by considering only carbon bonds to 

elements and subtracting half the C-C distance in ethane.  Due to the difficulty of varying 

coordination patterns and spin states, this method is difficult to apply to transition metals; 

therefore, Koga preformed density functional theory (DFT) calculations to predict these 

radii.
238

  Figure 4.4 depicts that the use of this radii set provides metal-sulfur bond 

distances that are comparable to those of the IV-S bond distances; however, the bond 

lengths of I-S and II-S are severely underestimated. 

The most recent study put forth describing tetrahedral covalent radii has been 

presented by Pyykkö in 2012.
239

  In his study he considered interatomic distances found 

in the crystal structures of 41 binary compounds and the computationally predicted bond 
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distances from 48 ternary compositions.  Pyykkö used the same principles and 

assumptions that Pauling used in the determination of his tetrahedral covalent radii set in 

1960, while incorporating more data points and employing computationally determined 

structures containing elements for which no experimental data was available.
272

 Pyykkö 

reports radii for Li, Sc, Mn, Fe, Co, Tl, Pb, Bi, and Po, which Pauling did not.  

Additionally, an error correction was implemented in the case of elements for which both 

homonuclear and heteronuclear bond distances were known.  For those radii that are 

common to both sets the agreement is within 0.02 Å, with the following notable 

exceptions: Pauling predicts a radius of 1.35 Å for Cu while Pyykkö predicts 1.271 Å, 

Pauling predicts a radius of 1.52 Å for Ag while Pyykkö predicts 1.473 Å.  In comparison 

to Pauling‘s radii, Pyykkö overestimates the radii of all halogens except F which is 

underestimated.  Due to the similarity between the datasets and the mutual assumption 

that the tetrahedral compounds primarily consist of single covalent bonds, only Pyykkö‘s 

radii are used here, Figure 4.4.  The bond lengths predicted using Pyykkö‘s radii agree 

well with the measured metal-sulfur bond distances of the 41 quaternary DLSs 

considered here. This comparison shows good agreement for the I-S and IV-S bond 

lengths, even though the predicted value for the Si-S bond is higher than the weighted 

average.  On the other hand, this model was found to underestimate the bond lengths for 

half of the II-S bond distances considered. 

The comparison of measured bond distances with those calculated from several 

sets of radii shows that there is not one set of radii that can be reliably used to predict all 

of the bond distances in quaternary diamond-like sulfide materials with great accuracy. 

The metal-sulfur bond lengths predicted from Pauling‘s radii set shows the smallest 
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average deviation, 0.03 Å, from the weighted average for quaternary diamond-like 

materials; however, Mn, Fe, and Co radii are not included in this set, thus these metal-

sulfur bond lengths cannot be calculated, Table 4.5.  On the other hand, Mn-S, Fe-S, and 

Co-S bond lengths can be calculated using Pyykkö‘s radii set and the average deviation 

of all predicted metal-sulfur bond distances is only 0.01 Å greater than those predicted by 

Pauling.  The degree of ionic and covalent character of the bonding that depends on the 

electronegativity differences of the ions is responsible for the discrepancies between the 

measured bond distances and those calculated from radii.
272

  Although some researchers 

have attempted to account for this phenomenon, namely Phillips and Van Vechten
236

 and 

Shannon,
237

 they fall short of properly capturing the ionocovalent character of all bonds 

as evidenced by the significant inaccuracy in the prediction of some metal-sulfur bonds.  

For example, the Ag-S bond distance predicted from Shannon‘s radii set is 0.30 Å greater 

than the weighted average. Likewise, Phillips and Vechten predict a Si-S bond distance 

that is 0.15 Å greater than the weighted average. In conclusion, considering both 

accuracy and completeness of the radii set, we recommend the use of Pyykkö‘s radii for 

the prediction of metal-sulfur bonds in quaternary DLSs.  
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Table 4.5  The average S
2-

 (CN=4) deviation for predicted metal-sulfide bond 

lengths compared to the weighted average of reported data from quaternary 

diamond-like materials. The lowest deviations for each metal-sulfide bond are 

indicated in red. 

Metal Pauling (Å) 
Philips-Van 
Vechten (Å) 

Shannon 
(Å) 

Modified 
Shannon (Å) 

Koga (Å) Pyykkö (Å) 

Li - - 0.01 0.07 0.14 0.02 

Cu 0.04 0.01 0.06 0.02 0.13 0.03 

Ag 0.03 0.01 0.30 0.23 0.11 0.02 
Mn - - 0.08 0.01 0.17 0.02 

Fe - - 0.11 0.04 0.20 0.11 

Co - - 0.06 0.01 0.20 0.06 
Zn 0.02 0.02 0.11 0.04 0.07 0.02 

Cd 0.01 0.03 0.11 0.04 0.01 0.02 

Hg 0.06 - 0.22 0.15 0.05 0.06 

Si 0.06 0.15 0.06 0.13 0.04 0.06 
Ge 0.02 0.12 0.01 0.08 0.01 0.03 

Sn 0.02 0.12 0.03 0.10 0.04 0.03 

Avg. Dev. 0.03 0.06 0.10 0.08 0.10 0.04 

 

4.4 Conclusion 

 In conclusion, the crystal structures of three new, isostructural diamond-like 

materials have been reported.  Ag2FeSiS4, Li2FeGeS4, and Li2FeSnS4 were all found to 

crystallize in the noncentrosymmetric space group Pn increasing the members of this 

diamond-like structure type by 150%. Furthermore, all three compounds were found to be 

in violation of Pauling's radius ratio rule.
204

  This work, along with a careful comparison 

to a majority of the published single crystal structures and refined powder structures of 

quaternary diamond-like materials, demonstrates that this rule can be broken and desired 

tetrahedral structure can still be produced.  Furthermore, it has been determined that the 
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difference in tetrahedral volumes cannot be used to predict whether a structure will be 

derived from the cubic or hexagonal diamond structure as proposed by Pfitzner et al.
217

       

Additionally, five radii sets were used to calculate metal-sulfur bond distances 

that were compared to the measured bond lengths from quaternary diamond-like 

materials.  In order to improve the prediction of metal-sulfur bonds using the Shannon 

radii set, a four-coordinate S
2-

 radius was calculated to be 1.62(8) Å and the use of this 

radius for the prediction of metal-sulfur bond lengths improve the agreement with the 

measured results.  Although, the bond distances determined from Shannon‘s radii set 

describe the general trend of the I-S and II-S bond distances, these bond lengths are still 

markedly overestimated.
237

 Overall it was found that the new Pyykkö radii set best 

describes the weighted average bond lengths found for metal-sulfur bonds in quaternary 

materials.
239

 However, none of the radii sets considered here can be used to predict 

metal-sulfur bond lengths with great accuracy when compared to the weighted average 

bond lengths found for quaternary diamond-like semiconductors. 

With the growing interest of these materials for technological applications such as 

photovoltaics
188,192,193

 and thermoelectrics,
189,198,199

 as well as the daunting amount of 

imaginable compositions, there is a need for predictive tools in order to better focus 

synthetic efforts.  The realization of these tools depends on high-quality structural studies 

and physicochemical characterization of known quaternary diamond-like materials to 

produce the data sets necessary to advance future discovery of materials.  Computational 

predictions of structures and potential properties can only be as accurate as the input data, 

which includes atomic radii and an intimate understanding of the bonding that occurs.  To 
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this end there is still work to be done on optimizing the sets of radii for these complex 

systems. 
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5 Conclusions 

 

5.1 Novel Diamond-Like Materials 

The overall focus of this work was on the synthesis and physicochemical 

characterization of quaternary diamond-like materials with the formula I2-II-IV-VI4.  To 

date, fewer than forty of these compounds are known and structurally characterized using 

single-crystal X-ray diffraction or a combination of X-ray powder diffraction and 

Rietveld refinement.  This work adds two new quaternary diamond-like materials to this 

list, Ag2ZnSiS4
273

 and Ag2FeSiS4, and increases the number of silver-containing 

quaternary diamond-like compounds from four to six. 

 

5.2 Physical Structure 

In order to correlate physicochemical properties with the crystal structures of these 

materials, high-quality structural studies are necessary.  Early work on these compounds 

identified structures by simple comparisons of X-ray powder diffraction patterns using 

laboratory diffractometers.
274,275

 However, the work in this dissertation demonstrates that 

three possible space groups (3 types of cation ordering) for hexagonal quaternary, 

diamond-like materials have nearly identical X-ray powder diffraction patterns.  Using 

the example Ag2CdGeS4, a known quaternary DLS, this work reports a previously 

unreported space group Pna21, differing only in cation ordering from the reported Pmn21 

and the predicted Pn.
274,276,277 

These subtle differences in structure would be manifested 

in X-ray powder diffraction patterns by small deviations in the intensity of diffraction 

peaks and the presence of very small additional diffraction peaks that normally go 
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unnoticed using laboratory measurement and visual analysis.
278

  Another difficulty in this 

structure determination is that Ag
1+

 and Cd
2+

 are isoelectronic and, therefore, nearly 

indistinguishable through X-ray analysis. Until this work, no method had been presented 

to overcome this challenge short of neutron diffraction studies.  We proposed the careful 

examination of the bond lengths around each atomic site in order to identify the elements, 

as well as the careful consideration of multiple models with subsequent evaluation using 

the Hamilton R test.
279

  These methods were used to identify the structure of Ag2CdGeS4 

in the space group Pna21 using laboratory single-crystal X-ray diffraction data which was 

confirmed using high-resolution synchrotron X-ray powder diffraction data collected at 

Argonne National Laboratory.  

 In addition to demonstrating the application of these methods for structural 

analysis of these materials, this study clearly exemplifies the need for careful structural 

analysis of diamond-like structures.  Since the origin of many properties, such as band 

gap, second harmonic generation, and the thermoelectric figure of merit, in these 

materials are not yet fully understood, accurate detailed structural analyses are necessary 

to elucidate structure-property correlations.  Furthermore, the results of this work suggest 

that re-evaluation of many of the previously reported structures, which were deduced 

based on visual comparison of X-ray powder diffraction patterns or Rietveld refinement 

of laboratory X-ray powder diffraction data, may be necessary in order to ascertain 

structural details that contribute to understanding the relationships between the observed 

properties and crystal structures.   

 It is also pertinent to state that the structure solution and refinement of 

Ag2CdGeS4 in the space group Pna21 is only the second reported quaternary non-oxide 
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DLS in this space group.
278

  Similarly, the structure solution and refinement of 

Ag2ZnSiS4
273

and Ag2FeSiS4 in the space group Pn adds members to a structure type 

where only one quaternary diamond-like material had been previously reported.   

 

5.3 Electronic Structure 

In addition to the determination of the crystal structures of these materials by X-ray 

diffraction methods, the electronic structure of quaternary DLSs was probed using the 

software package Wien2k for the first time.
280

  Even though other groups have preformed 

electronic structure calculations on quaternary materials using other software packages, 

these data are scarce and calculations of band gap are rarely compared to optically 

determined band gaps.  The software package Wien2k is unique in its application of 

density functional theory calculations using a linear augmented plane wave approach and 

the Perdew-Burke-Ernzerhof generalized gradient approximation for exchange and 

correlation effects.
281,282

  This work demonstrates that these calculations are possible and 

are comparable to the work in the related system AgGaS2 that also uses Wien2k, but 

employs local spin density approximations for the exchange and correlation effects.
283

 

 Another significant achievement of this study is the identification of the atomic 

orbitals at and around the Fermi level (EF) in Ag2ZnSiS4.
273

  The orbitals comprising the 

top of the valence band and bottom of the conduction band of these DLSs are reported.  

Mostly the Ag-d and S-p contribute to the valence band maximum and mainly the Zn-s, 

Si-s, and Si-p contribute to the conduction band minimum in these structures.  This 

allowed us to predict that the II-site should be able to accept a first row transition metal 

such as Fe or Mn as a dopant, without drastically affecting the band gap of the material.  
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This suggests the potential for incorporating magnetic characteristics without altering the 

optical properties and provides a possible avenue of research for others to pursue. 

 

5.4 Predictive Tools 

Through a comparison of published quaternary compounds it has been 

demonstrated that the radius ratio rule
284

 should not be used as a predictive tool for 

tetrahedral coordination, and, therefore, diamond-like structure, in non-oxide compounds.  

Although this result is not unexpected due to the softer nature of the anions in these 

materials and, therefore, the higher degree of covalent bonding, it has yet to be explicitly 

stated in the literature. The present work clearly states that this should no longer be 

considered as a prerequisite for diamond-like materials.  Furthermore, it was also found 

that the tetrahedral volumes of these materials cannot be used to predict the packing 

arrangement (hexagonal-derived or cubic-derived) of the subsequent structures as 

predicted by Pfitzner et al.
285

  Instead, predictions of tetrahedral coordination can be 

made upon finding examples of tetrahedral coordination for other compounds containing 

the same ions in the literature.  For example, if the other guidelines of diamond-like 

materials are used to predict the diamond-like structure of the compound Ag2MnSiS4, the 

potential for tetrahedral coordination to occur is evaluated by searching the literature for 

examples of Ag-S, Mn-S, and Si-S tetrahedra.  However, it should be noted that the 

absence of examples in the literature does not rule out the existence of a diamond-like 

phase being accessible. 

 The present work also compared the metal-sulfide bond distances predicted by 

using various radii sets to those distances resulting from single crystal X-ray diffraction 
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studies.  Although this work has already demonstrated the inaccuracy of using radii for 

coordination prediction, these sets of radii are still extremely useful for computational 

studies as starting parameters for optimization calculations.  For those reasons, we 

compared the various available sets of radii used in solid-state chemistry to their 

effectiveness at predicting bond distances in quaternary diamond-like sulfides.
286-290 

  

Overall this work concludes that Pyykkö‘s covalent radii set,
290

 an extension of Pauling‘s 

covalent tetrahedral radii set from 1960,
291

 is the most complete and accurate set for 

predicting bonding distances in these materials.   

 

5.5 Future Work 

This work stresses the importance of careful structural studies toward the 

establishment of structure-property relationships in quaternary diamond-like materials.  

The implementation of bonding environment considerations, the Hamilton R test, 

synchrotron X-ray powder diffraction methods have been applied to quaternary diamond-

like materials, as well as DTF calculations based on the linear augmented plane wave 

approach to understand crystal structure and electronic structure details.  Furthermore, the 

electronic structure calculations for Ag2ZnSiS4 can be used to predict further quaternary 

diamond-like compounds, for example Ag2CoSiS4.  In addition to the prediction of these 

compounds, the reconsideration of how the radius ratio rule applies to the guidelines of 

diamond-like semiconductors leads to the prediction of many compositions of new 

compounds that may have been previously disregarded.  In conclusion, this work 

demonstrates the need for similar, thorough studies for all quaternary DLS materials in 

order for the origin of their properties to be understood.  
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Appendix I Cu2CdSnS4 

 

AI.1 Introduction 

 In addition to silver-containing diamond-like semiconductors (DLS), the 

diamond-like mineral cernyite,
292

 Cu2CdSnS4, was also synthetically produced as a 

potential parent for future doping studies.  This mineral was targeted because 1) it had not 

yet been synthetically produced, 2) in nature it is found heavily doped with Fe, Mn, and 

Zn on the 2+ site, and 3) the potential end-members of the solid-solution studies; 

Cu2ZnSnS4,
293

 Cu2FeSnS4,
294

 and Cu2MnSnS4
295

 are known.  As a first step for this 

project a synthesis of phase pure Cu2CdSnS4 has been developed and the product has 

been characterized using powder X-ray diffraction, diffuse reflectance UV/Vis/NIR 

spectroscopy, and differential thermal analysis. 

 

AI.2 Experimental 

AI.2.1 Reagents 

Chemicals used in this work were utilized as obtained: (1) copper powder, ~200 

mesh, 99.999%, Strem Newburyport, MA; (2) cadmium powder, 99.999%, Strem 

Newburyport, MA; (3) tin powder, -100 mesh, 99.999%, Strem; (4) sulfur powder, 

sublimed, 99.5%, Fisher Scientific Pittsburgh, PA. 
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AI.2.2 Synthesis 

 Stoichiometric amounts of copper, cadmium, tin, and sulfur were weighed out 

according to an 4 mmol equivalence of the general formula I2-II-IV-VI4.  These materials 

were ground together using a agate mortar and pestle in an argon-filled glovebox.  The 

ground mixture was transferred to 9 mm O.D. fused-silica ampoule and vacuum sealed at 

approximately 10
-3

 mbar.  The sealed tube was then heated to 800°C over 12 hours and 

held at 800°C for 125 hours.  After which the sample was slow cooled at a rate of 

6°C/hour for 50 hours.  Once the temperature reached 500°C the sample was allowed to 

cool ambiently.  The sample consisted of a gray microcrystalline powder, which was 

ground for subsequent property measurements.  

 

AI.2.3 Physical Property Measurements 

AI.2.3.1 Powder X-ray Diffraction 

 Powder diffraction patterns were collected using a Panalytical X‘Pert Pro MPD 

powder X-ray diffractometer. Data were collected from 5° to 145° 2θ with a step size of 

0.0083556° and scan rate of 0.010644°/sec. The incident beam optics were comprised of 

a 0.02 rad soller slit, a divergent slit of 1/4° and an anti-scatter slit of 1/2°; whereas, the 

diffracted beam optics were comprised of a 0.02 rad soller slit and an anti-scatter slit of 

1/4°. The samples were prepared for analysis by back-filling a sample holder with finely 

ground sample. Cu Kα radiation was used with an accelerating voltage of 45 kV and a 

current of 40 mA, producing X-rays with a wavelength of 1.541871 Å.  
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AI.2.3.2 Diffuse Reflectance UV/Vis/NIR Spectroscopy 

A Cary 5000 UV/Vis/NIR spectrometer was used to collect diffuse reflectance 

spectra. Samples were measured using a Harrick Praying Mantis diffuse reflectance 

accessory and BaSO4 was used as a 100 % reflectance standard. Wavelengths from 

2500 nm to 200 nm were scanned. Wavelength data were converted to electron volts and 

the percent reflectance data were converted to absorbance units using the Kubelka-Munk 

equation.
296

 

 

AI.2.3.3 Differential Thermal Analysis 

A Shimadzu DTA-50 thermal analyzer was employed for thermal analysis 

studies.  A three-point calibration curve with indium, zinc and gold was used to calibrate 

the instrument. Both a reference of Al2O3 with comparable mass to the measured sample 

and the sample were vacuum sealed in fused-silica ampoules. The temperature was 

programmed to increase at a rate of 10 °C/min from 25 °C to 1000 °C. The temperature 

then decreased to 100 °C at 10°C/min. Two cycles were preformed in order to distinguish 

reversible. 

 

AI.3 Results and Discussion 

AI.3.1 Powder X-ray Diffraction 

Rietveld refinements of laboratory X-ray powder diffraction data were carried out 

using the GSAS software package with the EXPGUI interface.
115,297

 Peak profiles were 

fitted using a pseudo-Voigt function with asymmetric terms and low angle support.
298,299
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The background was modeled using a shifted Chebyschev polynomial with 6 terms.
300

 

Phase parameter refinements were carried out for the unit cell, atomic coordinates, and 

isotropic displacement parameters of the cations. Peaks shapes were expressed through 

the refinement of the Cagliotti Gaussian terms and a scaling factor.
301

  

 The previously reported space group I-42m and atomic coordinates were used 

starting points for this refinement.
292

  The final refinement converged with a χ
2
 of 1.454 

and a equivalent wRp of 0.0571.  The refinement, Figure AI.1 , does not indicate the 

presence of any extra phases, suggesting a phase-pure product. 

 

Figure AI.1  Rietveld refinement of Cu2CdSnS4 refined in I-42m.  The observed data 

(+++) and calculated data (solid line) are overlaid at the top.  While tick marks (III) 

indicating calculated peak locations. 
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AI.3.2 Diffuse Reflectance UV/Vis/NIR Spectroscopy 

 The semiconductor nature of this material was accessed using diffuse reflectance 

UV/Vis/NIR spectroscopy.  The material was found to have a band gap of 1.27 eV, as 

shown in Figure AI.2.  The noise in the plot at the top of the band edge is attributed to a 

physical grating change that takes place in the instrument at that wavelength. 

 

Figure AI.2  Diffuse reflectance spectrum of Cu2CdSnS4. 

 

AI.3.3 Differential Thermal Analysis 

 Differential thermal analysis of Cu2CdSnS4 exhibited two reversible events one 

on heating and one on cooling.  Each cycle displayed an endothermic event upon heating 

that can be attributed to the melt of the product at approximately 930°C.  Likewise, each 

cycle shows a corresponding exothermic event when cooled which is most likely the 
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recrystallization of the material at approximately 900°C.  The lack of further thermal 

events supports the conclusion that the material is phase pure. 

 

Figure AI. 3  Differential thermal analysis of Cu2CdSnS4. 

 

AI.4 Conclusions and Future Work 

 A synthesis has been developed for the diamond-like semiconductor Cu2CdSnS4.  

The material was confirmed to be a semiconductor with a measured band gap of 1.27 eV.  

This material and synthesis will be used as an end member for future solid solution 

studies of the formula Cu2Cd1-xMxSnS4, where M=Co, Fe, Mn. 
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