
Duquesne University
Duquesne Scholarship Collection

Electronic Theses and Dissertations

2005

Towards Optimal Tree Construction of Monotone
Functions
Miao Chen

Follow this and additional works at: https://dsc.duq.edu/etd

This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact
phillipsg@duq.edu.

Recommended Citation
Chen, M. (2005). Towards Optimal Tree Construction of Monotone Functions (Master's thesis, Duquesne University). Retrieved
from https://dsc.duq.edu/etd/396

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Duquesne University: Digital Commons

https://core.ac.uk/display/234047889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dsc.duq.edu?utm_source=dsc.duq.edu%2Fetd%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd/396?utm_source=dsc.duq.edu%2Fetd%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:phillipsg@duq.edu

 1

Toward Optimal Tree Construction of Monotone Functions

Presented to the Faculty

of the Mathematics and Computer Science Department

McAnulty College and Graduate School of Liberal Arts

Duquesne University

in partial fulf illment of

the requirements for the degree of

Master of Science in Computational Mathematics

by

Miao Chen

04/08/2005

 2

Miao Chen

Toward Optimal Tree Construction of Monotone Functions

Master of Science in Computational Mathematics

04/08/2005

APPROVED___
Jeffrey Jackson, Ph.D., Professor of Computer Science

APPROVED___
Donald L. Simon, Ph.D., Associate Professor of Computer Science

APPROVED___
Patrick Juola, Ph.D., Associate Professor of Computer Science

APPROVED___
Kathleen Taylor, Ph.D., Graduate Director and Professor of Mathematics

APPROVED___
Francesco C. Cesareo, Ph.D., Dean

McAnulty College and Graduate School of Liberal Arts

 3

Toward Optimal Tree Construction of Monotone Functions

1. Introduction

 A simple way to represent a Boolean function f which is assumed to be a mapping

from the space {0,1} n
�{ -1,1} with the exponent n representing the total number of

Boolean variables in the function is through the usage of the disjunctive normal form

(DNF), in which a conjunction of disjunctions of Boolean literals (Boolean variables and

their negations) are used. For instance, the expression x1x2+x2x3+x4x5 is a DNF. While a

monotone function f is a function for which the result will increase or remain the same if

one of its variables is flipped from 0 to 1, a monotone DNF simply contains no negation of

a Boolean variable. An expression like x1x2+x1 2x is not a monotone DNF but is a

monotone function, since although it includes the negation of the Boolean variable x2, it

can be further simplified to the minimized expression x1.

While the question of whether DNF is PAC learnable (defined later) in the

distribution-free setting has remained open during the past few decades, scientists have

been trying to solve the reduced problem of monotone decision tree learning from a

uniformly distributed sample [1]. Any Boolean function can be represented by a decision

tree. For example, a decision tree representation of the above DNF x1x2+x2x3+x4x5 is given

in Figure 1.

 x2
 / \
 x4 x1

 / \ / \
 0 x5 x3 1
 / \ / \
 0 1 x4 1
 / \
 0 x5
 / \
 0 1

 Figure (1) Decision tree representation of x1x2+x2x3+x4x5

 4

Since most decision tree representations of a monotone function (MDT) are larger

than the DNF representations of the same function (MDNF), i.e., learning a MDT is

expected to have less complexity than learning a MDNF and is an interesting problem. A

problem related to this is the construction of optimal tree. In this paper, I introduce a series

of experiments to test the conjecture that

 In a MDT, if a Boolean variable vb is relevant in only one sub-tree when a

Boolean variable vr is the root, but vr is relevant in both sub-trees when vb is the root,

then constructing an optimal tree having vr as its root, produces at least as small as a tree

having vb as its root.

 In the above statement, the size of a decision tree is measured using the total

number of the leaves. Variables vb and vr are any two variables within all the n variables,

which satisfy the above conditions. For the purpose of examining the effectiveness of this

conjecture, a comparison between optimal trees with the different roots needs to be

conducted. The criteria of optimal tree construction will be presented later including the

idea of influence-based optimal tree construction first suggested by O’Donnell and

Servedio [2]. Notations involved to this point are further explained as below.

Monotone function

A monotone function can be defined more formally in the following way:

Let ei be a string over { 0,1} n with 1 only on the ith position and everywhere else 0; a

monotone function shall satisfy the inequality:

f(x)�f(x ⊕ ei), for ∀ i and ∀ x,

where the x’s i th variable xi must satisfy xi=0. In the above inequality, the symbol ⊕ is the

XOR operator.

The importance of monotone DNF comes from the key role it plays in computer

learning as illustrated in a paper by Michael J. Kearns et.[4] that if the representation class

of monotone DNF formulae is efficiently PAC learnable, the representation class of

general DNF formulae is also efficiently PAC learnable.

 Monotone Boolean decision tree

 5

Any function can be represented by a decision tree. A monotone Boolean decision

tree is a binary tree that computes a monotone function. At the beginning, a variable is

chosen as the root of the tree, and then a node splitting procedure will continue as a root

variable is set to 0 or 1 in each of the iterations. The procedure will stop when no variable

is left for dividing and a leaf is generated to represent the expected value of the function.

For a fixed monotone function, its decision tree representation is not unique, and

the size of a decision tree depends on the choice of a variable as the root and the

consequent roots of all the sub-trees. To make it clear at this point, let us look at the

decision trees of the function described by above DNF, x1x2+x2x3+x4x5.

As shown in Figure 2, these two trees have different sizes. The tree in (a) has a size

of 8, and the tree in (b) has a size of 11. This degeneracy of decision trees for a given

monotone function f will naturally lead us to find the minimum sized tree for the given f.

 x2 x3
 / \ / \
 x4 x1 x2 x2

 / \ / \ / \ / \
 0 x5 x3 1 x4 x1 x4 1
 / \ / \ / \ / \ / \
 0 1 x4 1 0 x5 x4 1 0 x5
 / \ / \ / \ / \
 0 x5 0 1 0 x5 0 1
 / \ / \
 0 1 0 1

 (a) (b)

Figure (2) Two different trees for x1x2+x2x3+x4x5.

Optimal tree

We noted that the trees considered here are those monotone decision trees that

compute monotone functions. An optimal tree is a representation of a tree with size, which

equals to the total number of leaves, at least as small as any other representation. A

 6

variable is called an optimal root of the tree if the optimal size of the tree can be achieved

by choosing this variable as the root.

Influence

Conceptually, the term “ influence” introduced here can be treated as it would

function in real li fe. If a variable doesn’ t provide any positive change to the result, that

variable would have zero influence. A mathematical definition of the influence in the

uniformly distributed setting is given as:

Inf i(f) ≡ Prx~Un[f(x)�f(x ⊕ ei)].

This denotes that the influence of the i th variable is equal to the probability of

change of function’s value when the ith variable is flipped from 0 to 1 or vice versa. For a

monotone function, the calculation of influence can be further simplified by the lemma

below:

Lemma: Let f:{ 0,1} n
�{ -1,1} . In a monotone function, Infi(f)=−E[f(x)�

ieχ]=−E[f(x)

�(-1) ix], where E denotes the expectation value with respect to the uniform distribution

over x and
ieχ is defined as

ieχ (x)�(-1) xei ⋅ .

Relevant variable in a tree

A variable v is relevant in a tree if the variable has non-zero influence in the tree.

PAC learnable

A set of Boolean functions are efficiently PAC learnable if there exists an

algorithm, which, when given a teaching procedure (a procedure allowing creation of

functions from training data) to learn the target function, can output a hypothesis satisfying

error � ε with probability at least 1-δ in time polynomial to 1/ε, 1/δ,� n and the minimum

size representation of the function.

This famous model of learning is PAC learning, which stands for the Probably

Approximately Correct learning. The concept was first introduced by L.G. Valiant [3].

The main effort here is motivated by somewhat different criteria from an actual

 7

learning procedure of a monotone function, since the learning program is not fed by a

fraction of the data but rather the entire truth table of a specific monotone function. The

problem becomes more like an optimization procedure of tree construction as we are trying

to find evidence for or against the thesis that optimal-sized tree can be constructed using

the idea of influence.

2. Present status of the proposed problem

It has been shown in previous studies that if monotone DNF is PAC learnable with

any distribution for a given sample, then this DNF is also PAC learnable, independent of

sample distributions; nevertheless, this does not necessarily hold if monotone DNF is PAC

learnable with respect to uniform distribution [4]. In 1994, Jackson discovered that a DNF

can be efficiently PAC learned under uniform distribution by applying a

membership-query algorithm [5]. By assuming a constant accuracy, O’Donnell and

Servedio showed that the class of monotone functions under uniform distribution is PAC

learnable in time polynomial in the size of decision tree representing the function [2]. If it

is not feasible to construct an optimal tree efficiently by feeding the program the entire

truth table of the function, then by the Chernoff bound, Pr[| p̂ -p|�ε]�2e-2m
2ε , a number of

samples m polynomial in 1/ε is sufficient to ensure (with high probability) that the

hypothesis is within an error ε. Therefore, finding an optimal tree representation by perfect

data can lead to optimization of the learning algorithm presented by O’Donnell and

Servedio.

3. Suggested methodologies

1) Conjectures:

 In order to remind the reader of the primary concern raised in the beginning of this

proposal, it is repeated here as the primary conjecture.

Primary conjecture:

In a decision tree representation of a monotone function f, if a Boolean variable vb is

 8

relevant in only one sub-tree when a Boolean variable vr is the root, but vr is relevant in

both sub-trees when vb is the root, then constructing an optimal tree having vr as its root

produces at least as small as a tree having vb as its root.

Secondary conjecture:

If f is a monotone function and Infi(f)�Infj(f) for all vj�vi, then an optimal-sized tree

for f can be constructed having vi as its root.

The algorithm of influence-based optimal tree construction explained below is built

upon this conjecture. The two conjectures are related: we prove below that for the situation

given in the primary conjecture, Infr(f)�Infb(f).

In the secondary conjecture, the inference from the condition is quite liberal since it

does not necessarily say that only a variable with the largest influence can be a monotone

function's optimal root. Examples clarifying this point are quite easy to find. Let’s compare

the optimal trees with x2 and x3 as the root, respectively, in the monotone function

x1x2+x1x3x4+x2x3:

 x2 x3
 / \ / \
 x3 x3 x2 x2
 / \ / \ / \ / \
 0 x1 x1 1 0 x1 x1 1
 / \ / \ / \ / \
 0 x4 0 1 0 1 0 x4
 / \ / \
 0 1 0 1

 Figure (3)

From the above graphs, both optimal trees have 7 leaves and therefore have the

same size, but Inf(x2)=5/8 while Inf(x3)=3/8.

Lemma: If r and b are two variables in a monotone function f and b is relevant in only one

sub-tree when r is the root, but r is relevant in both sub-trees when b is the root, then

Infr(f)�Infb(f).

 9

Proof: Assume without loss of generality that b is relevant only in the right sub-tree when

r is the root. Let a be an assignment such that f(a |b=0,r=1)=0 and f(a |b=1,r=1)=1, then f(a

|r=0)=0, because if f(a |r=0)=1 then the fact that f(a |b=0,r=1)=0 violates the condition of f

being monotone.

Also we can get f(a |r=0,b=1)=0 and f(a |r=1,b=1)=1. So r is relevant in a |b =1.

This means r is at least as relevant as b, that is Infr(f)�Infb(f). QED

2) The general algorithm for finding counterexamples of the secondary conjecture

For the purpose of examining the effectiveness of the secondary conjecture, we

have designed a preliminary program to achieve the goal of efficiently generating an

influence-based optimal size tree and searching for examples against this method of tree

construction. If under the current capability of computational resources, a counter-example

could not be found for a certain interesting set of monotone functions, our confidence in

this conjecture will be increased. The algorithm is explained below:

 i) Function of Optimal tree construction-Opt(f):

1. If f is constant then

 return 1

2. else

 for every relevant variable v in f

3. call opt(f|v�0),opt(f|v�1) with v being set to 0 and 1:

 s0= opt(f|v�0), s1= opt(f|v�1)

4. sum=s0+s1

5. return minimum sum

6. end if

 ii) Function of influence-based optimal tree construction-inf_opt(f):

1. if f is constant return 1

2. else

 determine v, any one among the most influential variables

3. call inf_opt(f|v�0),inf_opt(f|v�1):

 s0= inf_opt(f|v�0), s1= inf_opt(f|v�1)

 10

4. return sum=s0+s1+1

5. end if

 iii) Function of finding counter example for the primary conjecture:

1. for every monotone function f of n bits

2. If inf_opt(f)�opt(f) then

3. Output f (the counter example)

4. end if

5. end for

 3) Influence Calculation

The most intuitive way to calculate influence of variables in a monotone function is

based on how influence is defined. For a monotone function of n variables, we need to list

its truth table with 2n entries, and each entry consists of an input state and an output state.

Count each time the variable of interest is flipped from 0 to 1 and the function value

increases. Then by dividing this count by 2n-1, we get the influence for that variable.

Another way to calculate influence is through the application of the Fourier

transform, which is defined as:

f̂ (a) = E[f(x)� aχ (x)] = 1/2n * f(x)� aχ (x),

where a ∈ { 0,1} n , aχ (x) =(-1)a� x, f:{ 0,1} n
�{ -1,1} .

For any monotone function f,

 Inf i(f)= -(f̂ (ie)),

where Infi(f) is the influence of the ith variable in f, and ei is a sequence of 0s and 1 with 1

appearing only on the ith bit.

The usage of Fourier coefficients may seem difficult to comprehend at first sight.

Compared with the original influence calculation method, it has no computational

advantage. But it is more convenient for hand calculation, especially when the number of

variables n in the function gets large, because otherwise we would need to list the 2n entries

for the truth table first. Let’s look at an example. A monotone Boolean decision tree can

 11

always be built for a monotone function f with our favorite variable as root disregarding

optimality of that tree, and the tree structure supports a visual method for calculating the

influence as a Fourier coefficient. Suppose

 x2
 / \
 x3 x3
 / \ / \
 -1 x1 x1 1
 / \ / \
 -1 x4 -1 1
 / \
 -1 1

Figure (4)
is the tree representing monotone function f and x2 is the variable for which we want to

calculate influence. There are 4 variables in the tree, so the denominator of Fourier

coefficient is -24. For each branch from root to leaf, let m be the number of missing

variables in that branch, and then multiply 2m with the leaf's value (the leaf's negative value)

for all branches in the left (right) sub-tree. In this case, the leftmost branch does not have x1

and x4, so 22 * (-1) is the term we need; the rightmost path also misses two variables, so 22

* (-1) is the term for that path. Sum up all terms for all branches while ignoring any pair of

branches having leaves that can be canceled out by each other, and then by dividing the

sum by the denominator, we get Infx2(f)= [22*(-1) +2*(-1)+ 22* (-1)]/(-24)=5/8.

As introduced above, both of the methods for influence calculation have their own

advantage and are alternately used to achieve better performance in this study.

4) Optimal size calculation for tree representation of monotone function of n

variables.

In order to verify the optimal tree construction based on influence, we need to

compare the optimal tree size of a function having a root obtained from the influence

method with the actual optimal tree size. The computational complexity is also doubly

exponential if we try to build the optimal tree by putting each variable iteratively at each

 12

level of the tree. We can compute the optimal size for function of n variables with a certain

variable as root by simply adding up the optimal size of the sub-trees for that particular

variable plus 1; in the case when two sub-trees are identical, the optimal size of the whole

tree is just the optimal size of one sub-tree plus 1.

5) Interesting Cases that might be the counterexamples to the primary conjecture

In general, there are
n

22 possible Boolean functions of n variables. As illustrated

below for the case of two variables:

x1: 0 0 1 1
x2: 0 1 0 1
F1: 0 0 0 0
F2: 0 0 0 1
F3: 0 0 1 0
F4: 0 0 1 1
F5: 0 1 0 0
F6: 0 1 0 1
F7: 0 1 1 0
F8: 0 1 1 1
F9: 1 0 0 0
F10: 1 0 0 1
F11: 1 0 1 0
F12: 1 0 1 1
F13: 1 1 0 0
F14: 1 1 0 1
F15: 1 1 1 0
F16: 1 1 1 1

 Table (1)

There are two Boolean variables x1 and x2 in each function. Therefore, there will be

22 input states; the value of each function is an output state specified by each input state. So

there are
2

22 Boolean functions of 2 variables in this example.

Since the computational complexity of generating all Boolean functions of n

variables is doubly exponential in the number of variables in a Boolean function, we could

not make a computer automatically generate all Boolean functions. Although the set of

monotone functions is just a subset of all Boolean functions, the number of monotone

functions of more than 6 variables is still very large as seen from Table (2). A program was

 13

written to test all monotone functions up to 6 variables. For the purpose of examining

functions of more than 6 variables, another program was written so that individual

interesting functions of that many variables can be tested. The method of specifying and

categorizing interesting functions is still in exploration. Three cases are listed that have

been examined:

I. All monotone functions with 6 variables.

We introduce here another algorithm used to generate all distinct monotone

functions for the given number of input variables.

The problem of enumerating distinct monotone functions was first studied by

Dedekind in 1897. The following values are known since 1991:

n M(n)

0 2

1 3

2 6

3 20

4 168

5 7581

6 7828354

7 2414682040998

8 56130437228687557907788

 Table (2)

Here M(n) in the second column is the number of distinct monotone functions of

n variables. Although the number gets huge when it reaches 8 variables, the sequence

increases slowly compared with double exponential growth. Therefore, this allows us to

write a computer program to generate all monotone functions of 6 variables. Beyond 6

variables, it requires not only more computational power, which a normal PC may be

barely able to handle especially for the case of 7 variables, but also lots of memory, which

even the most powerful computer can not afford. For example, the case of 7 variables will

require at least 10 GB memory to store all the monotone functions. For this reason, we

only tested a maximum total number of variables up to 6.

An elementary way of constructing all distinct monotone functions of a certain

 14

number of variables is through the usage of the truth table representation of the monotone

functions. As a consequence, each n variable function is specified by 2n input states and the

corresponding output states. To construct the monotone functions of n variables, we can

simply take a join of any two monotone functions Fi and Fj of n-1 variables to see if Fi will

be absorbed by Fj. Here the subscripts i and j are just a pair of integer numbers, which could

traverse all the monotone functions of n-1 variables. The output of the join operation of Fi

and Fj will lead to a potential candidate of the n variable monotone function. Depending on

the actual value of Fi U Fj, i f the result still equals Fj, the adjoinment of Fi and Fj, FiFj is a

new monotone function of n variables. For a concrete view, the procedure of generating

monotone functions of 3 variables from monotone functions of 2 variables is shown below:

Input states with 2 variables Input states with 3 variables

 0011 00001111
 0101 00110011
 Function 01010101
 1 0000 Function__________________
 2 0001 1 00000000
 3 0011 2 00000001
 4 0101 3 00000011
 5 0111 4 00000101
 6 1111 5 00000111
 6 00001111
 7 00010001
 8 00010011
 9 00010101
 10 00010111
 11 00011111
 12 00110011
 13 00110111
 14 00111111
 15 01010101
 16 01010111
 17 01011111
 18 01110111
 19 01111111
 20 11111111

Figure (5)

The right hand side lists the 20 monotone functions of 3 variables, which are

constructed from the 6 monotone functions of 2 variables shown on the left hand side.

 15

Notice the input states are positioned in an ascending order and a function such as

“00010000” is not an entry of the right list since “0001” U “0000” � “0000” . Any

monotone function adjoined with itself would make an entry of the right list. It is not hard

to see why this method will generate only monotone functions of n variables. Whenever

one more variable is added to the function of n-1 variables, each input state splits into two

states, such as the states “000” and “001” from “00” in the previous example. Then

certainly the functions of n variables contain twice the number of output states as functions

of n-1 variables. To be a monotone function, the function value can not decrease whenever

a variable is flipped from 0 to 1.This requirement is already satisfied by the initial case

where 0 and 1 are the only two monotone functions of 0 variable, so at each step of the

constructing procedure, all possible permutations of 0s and 1s in each output state of n

variables can be exhaustively tested by simply adjoining any two functions of n-1 variables

and checking the absorbability.

The algorithm for generating all monotone functions of n variables is constructed

as below. The program for searching for a counter example over all monotone functions of

0 up to 6 variables is attached in the Appendix.

1. For every monotone function fi(n) of n variables

2. fi(n) �0

3. For every monotone function fj (n-1) of n-1 variables

4. For every monotone function fk (j) of n-1 variables

5. If f j (n-1) OR fk (n-1) equals fk (n-1) then

6. fj (n-1) shifts 2n-1 to the left;

7. fi(n) = fj (n-1) OR fk (n-1)

8. End if

II. Monotone functions with decision tree representation with sub-trees having

no common optimal roots at the level of the tree next to the root level when a

variable only relevant in one sub-tree is the root.

Jackson had tried to prove the primary conjecture by an induction on the level of a

 16

monotone Boolean decision tree. He assumed that in a tree, i f its both sub-trees are not

constant, then they share a common optimal root. But counterexamples against the

presumption of common optimal root were found. For example, in a monotone function F

represented by x1x2+x3x4+x3x5, if we choose x3 as the root to build a decision tree for this

function, then A is the left sub-tree represented by x1x2 with x3 set to 0 while B is the right

sub-tree represented by x1x2+x4+x5 with x3 set to 1. Clearly all input states that satisfy A

will satisfy B. But A's optimal root is either x1 or x2 while B's optimal root is x4 or x5.

Monotone decision trees of A and B with respect to root x1,x2,x4 and x5 are given in

figure(6).

 x1 x2
 / \ / \
 0 x2 0 x1
 / \ / \
 0 1 0 1
 Sx1(A)=3(leaves) Sx2(A)=3(leaves) A: x1+x2
 x1 x2 x4 x5
 / \ / \ / \ / \
 x4 x2 x4 x1 x5 1 x4 1
 / \ / \ / \ / \ / \ / \
 x5 1 x4 1 x5 1 x4 1 x1 1 x1 1
 / \ / \ / \ / \ / \ / \
 0 1 x5 1 0 1 x5 1 0 x2 0 x2
 / \ / \ / \ / \
 0 1 0 1 0 1 0 1

Sx1(B)=6(leaves) Sx2(B)=6(leaves) Sx4(B)=5(leaves) Sx5(B)=5(leaves)

B: x1x2+x4+x5
 Figure (6)

Therefore, testing monotone Boolean decision trees without common optimal roots

on at least one level of the tree becomes interesting when a pair of variables having the

relation as defined in the primary conjecture exists in the function and the one that is only

relevant in one sub-tree is the root. Since a lack of common optimal root on any level of a

tree having the above property is where the induction breaks down, we choose 10

monotone functions of 7 and 10 monotone functions of 8 variables without common

optimal root at the level right next to the root level for testing the effectiveness of the

 17

primary conjecture. They are represented here as DNF.

For 7 variables:

1. x1x2x3x4x5 + x1x2x3x4x6 + x1x3x4x5x6 + x7x2

2. x1x2x3x4 + x1x5x6 + x3x7

3. x1x2 + x3x4x5 + x6x7 + x1x5

4. x1x2x3x4x6 +x6x7 + x1x5

5. x1x2 + x2x3x4 + x4x5 + x4x6 + x4x7

6. x1+ x2 + x3 + x4x5x7 + x6x7

7. x1x6x7 + x2x3x4x5 + x2x6x7 + x1x4x7

8. x1+ x2 + x3x4x5 + x4x5x7 + x6x7

9. x1x2x3x4 + x1x4x5x6 + x3x7

10. x1x4x7 + x1x3x5x7 + x1x6x7 + x2x3x4x5 + x2x6x7

For monotone functions of 8 variables:

1. x1x2x3x4x5x6 + x1x2x3x4x5x7 + x1x3x4x5x6x7+x8x2

2. x1x2x3x4 + x1x5x6 + x3x7x8

3. x1x2 + x3x4x5 + x6x7x8+ x1x5

4. x1x2x3x4x6 +x6x7x8 + x1x5

5. x1x2 + x2x3x4x8 + x4x5 + x4x6 + x4x7

6. x1+ x2 + x3 + x4x5x7x8 + x6x7

7. x1x6x7 + x2x3x4x5 + x2x6x7x8 + x1x4x7

8. x1+ x2 + x3x4x5x8 + x4x5x7 + x6x7

9. x1x2x3x4 + x1x4x5x6x8 + x3x7

10. x1x4x7 + x1x3x5x7 + x1x6x7 + x2x3x4x5 + x2x6x7x8

These monotone functions were tested in a program where a particular DNF is the

input with the number of variables in the function not limited to 8, and the output of the

program gives a counterexample if the DNF violates the primary conjecture or secondary

conjecture. The result for each function was given instantaneously and for these functions,

 18

there is no counterexample against the primary conjecture.

III. Monotone functions with a sub-tree having no vr and vb (as stated in the

primary conjecture) larger than a one node sub-tree.

It has been shown by Jackson (unpublished) that if C is a sub-tree in which neither

vr nor vb is relevant, and C is simply a leaf or a one node sub-tree, then decision trees with

C as a sub-tree also satisfy the primary conjecture and therefore are not the

counterexamples we are looking for. But once C gets larger than a one node sub-tree, there

has not been a good way to prove for this case that the primary conjecture still holds.

Therefore, we are searching for counterexamples in the functions with this property.

Below are 10 monotone functions of 7 and 10 monotone functions of 8 variables with the

property represented here as DNF and there is counterexample among them.

For 7 variables: x1x2x3x4x5x6 + x1x2x3x4x5x7 + x1x3x4x5x6x7+x8x2

1. x1x3 + x1x5 + x2x4x6x7

2. x1x6x7 + x3x4x5 + x2x6 + x4x6

3. x1x3x4 + x5x6 + x2x7 + x3x4 x7

4. x1x2x3x4 + x2x3x4x5 + x3x4x5x6 + x4x5x6x7

5. x1x2 + x2x3x4 + x3x4x5+x6x7 + x4x5x6

6. x1x2x3 + x4x5x6 + x7x1

7. x1x2x3x4 + x5x6x7 + x3x4x5x6

8. x1x2x4 + x3x4x6 + x5x7

9. x1x4 + x3x6 + x2x4x5x7

10. x1x3x7 + x3x5x6 + x2x3x4 + x4x5x6x7

For monotone functions of 8 variables:

1. x1x3x8 + x1x5 + x2x4x6x7

2. x1x6x7 + x3x4x5 + x2x6x8 + x4x6

3. x1x3x4 + x5x6 + x2x7x8+x3x4x7

 19

4. x1x2x3x4 x5 + x2x3x4x5x6 + x3x4x5x6x7 + x4x5x6x7x8

5. x1x2 + x2x3x4 + x3x4x5+x6x7x8 + x4x5x6

6. x1x2x3 + x4x5x6 + x7x1x8

7. x1x2x3x4 + x5x6x7 + x3x4x5x6x8

8. x1x2x4 + x3x4x6 + x5x7x8

9. x1x4 + x3x6 + x2x4x5x7x8

10. x1x3x7 + x3x5x6 + x2x3x4 + x4x5x6x7x8

4. Future work

I. By the way of constructing a DNF representation for a monotone function, it does

not seem like two variables vr and vb with the relation defined in the primary

conjecture could have the same influence. The proof of Infr(f)�Infb(f) does not

take into account that vr is relevant in both sub-trees of vb , so it does not exclude

a case like x1x2 . Although the bound with equality is sufficient for applying

influence-based optimal tree construction, the proof can be revised to prove

Infr(f)>Infb(f) .

II. The two programs written for the purpose of finding counterexamples against the

primary conjecture can be further revised so that they could accommodate more

variables in functions. That will increase the probability of finding a

counterexample if there is any.

5. Conclusion

It has been shown in this thesis that this conjecture holds for monotone functions of 6

variables and less. Because the doubly exponential computational complexity and the

limitation of the common computer, we only construct all monotone functions of up to 6

variables, and there are 7828354 monotone functions of 6 variables are generated and

tested for finding counterexamples against the conjecture. Additional efforts are made to

test some interesting functions of 7 and 8 variables chosen based on certain methods. These

methods and the methods including building optimal tree with and without influence are

 20

also further introduced in the thesis. In a conclusion, about 8 million monotone functions

as described in this thesis are tested and no counterexample has been found in this sample.

This increases our confidence in favor of the conjecture.

 21

Bibliography

1. J. Jackson, and R. Servedio, Learning Random log-depth Decision Trees under the

Uniform Distribution, Proceedings of the 16th Annual Workshop on

Computational Learning Theory, 2003.

2. R. O'Donnell and R. Servedio. On decision trees, influence, and learning monotone

decision trees. (unpublished)

3. L.G. Valiant. A theory of the learnable. Communications of the Association for

Computing Machinery, 27(11):1134-1142, 1984.

4. M. Kearns , M. Li , L. Pitt , L. Valiant, On the learnability of Boolean formulae,

Proceedings of the nineteenth annual ACM conference on Theory of computing,

285-295, 1987.

5. J. Jackson, An Efficient Membership-Query Algorithm for Learning DNF with

Respect to the Uniform Distribution, Journal of Computer and System Sciences

55(3), 1997.

 22

Appendix

/*

 * This is the program written to calculate the opt size of the monotone

 * function up to 6 variables.

*/

include <stdio.h>

include <math.h>

include <stdlib.h>

include <fstream.h>

include <iostream.h>

#define Nterm 4

#define SFT3 8 // 2^3

#define SFT4 16 // 2^4

#define SFT5 32 // 2^5

#define N_3 20 //the number of monotone functions for 3 vars

#define N_4 168 //the number of monotone functions for 4 vars

#define N_5 7581 //the number of monotone functions for 5 vars

#define N_6 7828354 //the number of monotone functions for 5 vars

#define MAX 10000 //just a large number

void nrerror(char error_text[])

 /*Numerical Recipes standard error handler* /

{

 int i;

 printf("\n\n");

 fprintf(stderr,"Numerical Recipes run-time error...\n");

 fprintf(stderr,"%s\n",error_text);

 fprintf(stderr,"...now exiting to system...\n");

 exit(1);

 23

}

int * inf_cal(unsigned long mfv,int n,int t2n,int * mindex)

 //mfv: monotone function's value; n: number of variables in the function; t2n: number

 //equal to 2^n.

{

 //to calculate the inf using the naive method, which defines the inf as a ratio of the

 //numb of changed f(v)|v:0->1,

 //with the total 2^n numbers. And here the inf is defined without normalized by 2^n

 //since one only cares the relative inf

 int i,j;

 unsigned long tmp;

 int indxf;

 long max=-1;

 //for monotone function value from bit 0 to bit 15

 /*

 * x0 00000000 | 11111111

 * x1 00001111 | 00001111

 * x2 00110011 | 00110011

 * x3 01010101 | 01010101

 * -----------------------

 * f 00000001 | 00000011 this is just one of 168 functions of

 *4 vars

 * bit0---------------->bit 15

 * /

 //cal the inf for each varible

 for(j=0;j<n;j++)//for each var

 24

 {

 vinf[j]=0; //initialize

 for(i=0;i<t2n;i++)//go through the whole list

 //namely 0,1,.....,2^n-1

 {

 i f(!((i>>(n-1-j))&1))//i f the var_j is 0

 //this definition of j is consistent with elsewhere in this

 //program

 {

 i f((t2n-1-i)<32){

 tmp=1&(mfv>>(t2n-1-i)); //get the fvalue of bit n-1-i

 }

 else{ tmp=1&(mfv>>16>>16>>(t2n-1-i-32));}

 indxf=(i |(1<<(n-1-j))); //flip the var_j from 0 to 1

 i f((t2n-1-indxf)<32){

 i f(tmp!=(1&(mfv>>(t2n-1-indxf))))//i f the DNF changes

 vinf[j]++;

 }

 else{

 i f(tmp!=(1&(mfv>>16>>16>>(t2n-1-32-indxf))))//if the

 //DNF changes

 vinf[j]++;

 }

 }

 } //end of the list

 } //end of each var loop

 for(j=0;j<n;j++) //for each var

 {

 25

 if(max <= vinf[j])

 {

 mindex[j]=j;

 max=vinf[j];

 }

 }

 //now return the index of the max influce var

 return mindex;

}

//the following method search an array of m var function lish and returns its

//optsize of that monotone function

int srch_opts(unsigned long * flist, int *optlist, unsigned long fvalue, int length)

 //the flist is an array of monotone functions

 //optlist is an array of optsize of the monotone functions

 //fvalue is the searching key and length is the size of the array

{

 int L=0, R=length-1;

 int M; //the left index rightmost index and middle index

 int found=0;

 while(L!=R&&!found)

 {

 if((R-L)==1)

 {

 if(fvalue==flist[L])

 {

 M=L;

 found=1;

 }

 else if(fvalue==flist[R])

 26

 {

 M=R;

 found=1;

 }

 else

 { }

 }

 else

 {

 M=(L+R)/2;

 if(fvalue>flist[M])

 {

 L=M;

 }

 else if(fvalue<flist[M])

 {

 R=M;

 }

 else //equal values

 {

 found=1;

 }

 }

 }

 return optlist[M];

}

int srch_opts2(unsigned long * flist, int *optlist, unsigned long fvalue, int length)

 //the flist is an array of monotone functions

 //optlist is an array of optsize of the monotone functions

 27

 //fvalue is the searching key and length is the size of the array

{

 int L=0, R=length-1;

 int i; //the left index rightmost index and middle index

 for(i=0;i<length;i++)

 {

 if(flist[i]==fvalue)

 break;

 }

 return optlist[i];

}

int gen_mnt(unsigned long *mntf_pre, unsigned long *mntf_nxt,int N_pre,int N_nxt,int

sft)

 /*

 * this function generate the mnt_function of n var from mnt_function of n-1 var

 * mntf_pre is the list of mnt functions of n-1 var

 * mnt_nxt is the list of mnt functions of n var

 * int N_pre is the number of mntf of n-1 var

 * and the int N_nxt is the number of mntf of n var

 * sft is the shift numbre and equals 2^(n-1)

 * /

{

 int i,j;

 //construct the 4 var monotone function

 for(i=0;i<N_nxt;i++)

 {

 mntf_nxt[i]=0;

 }

 int cnt=0; //the counter

 28

 for(i=0;i<N_pre;i++)

 {

 for(j=i;j<N_pre;j++)

 {

 //generate the 4 var monotone functions from the N_3 3 var

 //functions

 if((mntf_pre[i]|mntf_pre[j])==mntf_pre[j])

 {

 mntf_nxt[cnt]=(mntf_pre[i]<<1<<(sft-1))|mntf_pre[j];//incase sft==32, the << can

 //not handle >=32

 cnt++;

 }

 }

 }

 return cnt;

}

void left_right(unsigned long & left, unsigned long &right,int NV, int nv,unsigned long

mf,int N1,int N2)

 /*

 * suppose that the N1=2^3 is the number of inputs of 3 var, and the N2=2^4=16 is

 *now the number of inputs of 4 var; then

 * left, right; each stores the left and right subtree 3 vars monotone function

 * value, which is the key to find the optsize from the 3 var stored result

 * The nv is the nth var. For N2=16, nv=0,1,2,or 3.

 * NV is the # of variables in the MF

 * mf is the MF's value.

 * /

{

 int i,j, l,r;

 29

 unsigned long temp;

 i=nv;

 left=0; //need to double check the position of these two lines

 right=0;

 l=0; r=0; //the left and right counter are set to zero in the beginning

 for(j=0;j<N2;j++)

 {

 //for 4 vars for i=0 to 3

 //for monotone function value from bit 0 to bit 15

 /*

 * x0 00000000 | 11111111

 * x1 00001111 | 00001111

 * x2 00110011 | 00110011

 * x3 01010101 | 01010101

 * -----------------------

 * f 00000001 | 00000011 this is just one of 168 functions of 4 vars

 * bit0---------------->bit 15

 * /

 if((j>>(NV-i-1))&1)

 {

 //right

 if(j>=32) temp=mf>>N2-j-1;

 else temp=mf>>N2-(j+32)-1>>16>>16;

 if(temp&1)

 {

 right|=(1<<(N1-1-r)); //mask that bit to 1

 r++;

 }

 else

 {

 //right&=(0<<(N1-1-r)); //mask that bit to 0

 30

 r++;

 }

 }

 else

 {

 //left

 if(j>=32) temp=mf>>N2-j-1;

 else temp=mf>>N2-(j+32)-1>>16>>16;

 if(temp&1)

 {

 left|=(1<<(N1-1-l)); //mask that bit to 1

 l++;

 }

 else

 {

 //left&=(0<<(N1-1-l)); //mask that bit to 0

 l++;

 }

 }

 }

}

 void opt_size_cal(unsigned long* mntnf_pre,unsigned long* mntnf,int* optsz_pre, int*

optsz,int Nf_pre, int Nf, int nv)

 /*

 * This is the function to calculate the opt size of each monotone function for

 * a given number of vars, i.e., 3 vars, 4 vars, 5 vars, 6 vars etc.

 * Nf= 168 monotone functions for nv=4 vars

 * Nf_pre is 20 then since 3 var is used to cal 4 vars

 * nv is the number of variables in the monotone function

 */

 31

{

 unsigned long left, right; //each stores the left and right subtree 3 vars monotone

 //function

 //value, which is the key to find the optsize from the 3 var stored result

 int k, l, r, i;

 int tree_size, trszl, trszr; //size of trees

 int min;

 int *index_opt=new (int [nv]),min_index_opt;

 int nterm; //the number of total input terms, e.g. when nv=4 nterm=2^4=16

 int hfnt;

 unsigned long tmp1=0,tmp2=Nf;

 nterm=(int) pow(2.0, nv);

 hfnt=nterm/2;

 for (i=0;i<nv;i++)

 {

 index_opt[i]=nv;

 }

// for(k=0;k<Nf;k++) //N_4 number of monotone function of 4 vars

 //i f(nv==5) printf("Nf_pre is %d\n",Nf_pre);

 for(k=tmp1;k<tmp2;k++) //N_4 number of monotone function of 4 vars

 {

 min=1000;

 // if (nv==6) printf("k is %d\n",k);

 index_opt=inf_cal(mntnf[k],nv,nterm,index_opt);//get the index of the

 //variable with the largest influence

 // cout<<"index_opt is %f"<<index_opt<<"\n";

 for(i=0;i<nv;i++)

 {

 if(k%1000==0){

 32

 cout<<"the ith variable\t"<<i<<"\n";

 cout<<"mntnf["<<k<<"] of 6 variables "<<mntnf[k]<<"\n";}

 left_right(left,right,nv,i,mntnf[k],hfnt,nterm);

 //part I, find min optsize w/o considering the influence

 //after one gets the left and right subtree value for a give var as the

 //root

 //then calculate the optsize tree for each var as a root.

 //Finally one chooses the min optsize tree

 trszl=srch_opts(mntnf_pre,optsz_pre,left,Nf_pre);

 trszr=srch_opts(mntnf_pre,optsz_pre,right,Nf_pre);

 if(left == right)

 tree_size=trszl; //the tree size is just one sub-tree's size

 else

 tree_size=trszl+trszr+1;

 i f(min>=tree_size)

 {

 min=tree_size;

 min_index_opt=i;

 }

 //Part II, find min optsize by considering the influence of a var

 //if the above part I and part II give two different answer, there is a conter

 //example found.

 }

 //send the results to storage

 int count=0;

 for(i=0;i<nv;i++)

 {

 if(index_opt[i] < nv && min_index_opt == index_opt[i]) count=1;

 }

 i f(count == 0)

 33

 {

 printf("\n*** *** *** *mntnf[%d] is %d\n ",k,mntnf[k]);

 printf(" nv is %d\n",nv);

 printf("the counter example is found now\n");

 printf("the optimal root w/o influence(min_index_opt) is%d\n

",min_index_opt);

 printf("the true min is %d\n ",min);

 break;

 }

 optsz[k]=min;

 }

 delete [] index_opt;

}

int main(int argv, char *argc[])

{

 int i=0,cnt;

 unsigned long monotf; //the monotone function f

 int opts; //the optsize of the fuction f

 unsigned long * mntnf4= new (unsigned long [N_4]);

 if(mntnf4==NULL) nrerror("some thing is wrong with the allocation of

mntnf4\n");

 int * optsz4= new (int [N_4]);

 if(optsz4==NULL) nrerror("some thing is wrong with the allocation of optsz4\n");

 unsigned long * mntnf5= new (unsigned long [N_5]);

 if(mntnf5==NULL) nrerror("some thing is wrong with the allocation of

mntnf5\n");

 int * optsz5= new (int [N_5]);

 if(optsz5==NULL) nrerror("some thing is wrong with the allocation of optsz5\n");

 unsigned long * mntnf6= new (unsigned long [N_6]);

 34

 if(mntnf6==NULL) nrerror("some thing is wrong with the allocation of

mntnf6\n");

 int * optsz6= new (int [N_6]);

 if(optsz6==NULL) nrerror("some thing is wrong with the allocation of optsz6\n");

 unsigned long mntnf[N_3]; int optsz[N_3];

 if(argv<2)

 {

 printf("syntax: <inf_cal.out> <txt file> \n");

 exit(0);

 }

 //the following reads a 3 variable monotone function from a file and

 //stores in an array

 i fstream fin;

 fin.open(argc[1],ifstream::in);

 while(!fin.eof())

 {

 fin >>monotf>>opts;

 mntnf[i]=monotf;

 optsz[i]=opts;

 i++;

 if(i>=20) break;

 }

 fin.close(); //finishing reading the file

 //construct the 4 var monotone function and calculate the opt size

 for(i=0;i<N_4;i++){

 optsz4[i]=0;

 }

 cnt=gen_mnt(mntnf,mntnf4,N_3,N_4,SFT3);

 35

 //after successfully generate the monotone function of 4 vars

 //lets calculate the optimal size for each function

 opt_size_cal(mntnf,mntnf4,optsz,optsz4,N_3,N_4,4);

 //construct the 5 var monotone function and calculate the opt size

 for(i=0;i<N_5;i++){

 optsz5[i]=0;

 }

 cnt=gen_mnt(mntnf4,mntnf5,N_4,N_5,SFT4);

 //after successfully generate the monotone function of 5 vars

 //lets calculate the optimal size for each function

 opt_size_cal(mntnf4,mntnf5,optsz4,optsz5,N_4,N_5,5);

 //construct the 6 var monotone function and calculate the opt size

 for(i=0;i<N_6;i++){

 optsz6[i]=0;

 }

 cnt=gen_mnt(mntnf5,mntnf6,N_5,N_6,SFT5);

 //after successfully generate the monotone function of 6 vars

 //lets calculate the optimal size for each function

 opt_size_cal(mntnf5,mntnf6,optsz5,optsz6,N_5,N_6,6);

 //clean the space

 delete [] mntnf4;

 delete [] optsz4;

 delete [] mntnf5;

 36

 delete [] optsz5;

 delete [] mntnf6;

 delete [] optsz6;

 return 0;

}

	Duquesne University
	Duquesne Scholarship Collection
	2005

	Towards Optimal Tree Construction of Monotone Functions
	Miao Chen
	Recommended Citation

	tmp.1521836294.pdf.j8JhY

