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I.  INTRODUCTION 

 

A.  Overview 

Dopamine, a major neurotransmitter in the mammalian central nervous 

system, is involved in the control of locomotor activity, and also in pathways 

regulating behavior and reward (Schultz, 2002).  The dopamine transporter 

(DAT) plays a critical role in the synaptic clearance of dopamine by mediating the 

reuptake of dopamine from the extracellular space.  Following the invasion of the 

nerve terminal by an action potential (in dopaminergic neurons), dopamine is 

released into the synaptic cleft by Ca2+-mediated exocytosis.  The released 

dopamine binds to receptors on the postsynaptic membrane and activates 

dopaminergic signal transduction pathways.  The neurotransmission of dopamine 

is terminated primarily by reuptake of dopamine into the presynaptic cell via the 

dopamine transporter (Fig. 1).  Thus, DAT is, in part, responsible for the 

maintenance of dopaminergic homeostasis in neuronal cells.  The dopamine 

transporter belongs to a large class of transporters referred to as Na+/Cl--

dependent transporter or neurotransmitter: sodium symporter (NSS) family.  

Members of this class include: the serotonin transporter (SERT), norepinephrine 

transporter (NET), epinephrine transporter (ET), and also transporters for 

betaine, creatine, GABA, glycine, proline, and taurine (Amara and Arriza, 1993; 

Amara and Kuhar, 1993).  For these transporters, the reuptake process involves 

the translocation of substrate and cosubstrates Na+ and Cl- across the plasma 

membrane.  This transport process also involves a conformational change in the 
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transporter protein (Rudnick and Clark, 1993).  In the case of DAT, the outward-

facing transporter binds one Cl- and two Na+ ions and one dopamine molecule.  

These binding events permit the transporter to undergo a conformational change 

to an inward-facing conformation.  This internal-facing form dissociates Na+, Cl-, 

and dopamine to the cytoplasm.  On binding internal K+, the transporter 

undergoes another conformational change (to an outward-facing conformation) 

which allows the carrier to dissociate K+ on the cell exterior.  Consequently, the 

original form of the transporter is generated which can then initiate another round 

of transport by binding external Na+, Cl-, and dopamine.   

DAT is expressed almost exclusively in dopaminergic neurons of the 

substantia nigra and the ventral tegmental area of the brain (Ciliax et al., 1995; 

Freed et al., 1995).  The areas of the brain where dopaminergic neurons are 

found to project include the striatum, nucleus accumbens and the prefrontal 

cortex.  DAT is also expressed throughout the cell on axons, dendrites and the 

soma (Nirenberg et al., 1997).   

DAT is the primary target of psychostimulant drugs including 

methylphenidate, cocaine, and amphetamines; such drugs bind to DAT and 

inhibit the reuptake of dopamine (Kuhar et al., 1991).  Thus, a convincing clinical 

rationale exists for understanding the structure and function of this transporter 

protein.  In addition to inhibiting uptake of extracellular dopamine, amphetamines 

also stimulate efflux of intracellular dopamine (Jones et al., 1998).  The resultant 

effect of psychostimulant drug action on DAT is increased accumulation of 

dopamine in the synaptic cleft causing potentiated neurotransmission of 
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dopamine in those areas of the brain associated with reward and reinforcement.  

Consequently, the motor and reward pathways of the midbrain are activated, 

triggering the increased locomotor activity and euphoria associated with 

psychostimulant drug use.   

 

 

Figure 1.  Schematic representation of dopamine synaptic terminal.   
DAT is localized to presynaptic sites where it is vital for the termination of dopaminergic 

neurotransmission and maintenance of presynatic dopamine storage.  DA, dopamine; AMPH, 
amphetamine; DAT, Dopamine transporter; BZT, benztropine. 
 

Experiments using mice lacking the dopamine transporter have 

demonstrated the importance of the transporter in psychostimulant action (Giros 

et al., 1996).  High doses of cocaine did not increase locomotor activity above the 

already elevated levels in these DAT knock-out mice.  Nonetheless, it is pertinent 

to note that not all the behavioral effects of cocaine can be ascribed solely to 

DAT.  Subsequent studies evaluating both cocaine self-administration (Rocha et 
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al., 1998) and conditioned place preference (Sora et al., 1998) in DAT knock-out 

mice showed that cocaine self-administration and conditioned place preference 

were intact.  Mice with a double disruption of both dopamine and serotonin 

transporter genes exhibited no conditioned place preference in response to 

cocaine.  The serotonin transporter may contribute to cocaine reward and 

reinforcement naturally (Sora et al., 2001) or in compensation for the absence of 

DAT. 

 

B.  Statement of the problem 

Cocaine abuse is growin .S.  It is estimated that g at an alarming rate in the U

more than 23 million people in the U.S. have tried cocaine, nearly 40,000 people 

use it daily, and 5,000 new users are added each day (SAMHSA, 1997).  Drug 

abuse generally inflicts severe medical, social, and judicial costs upon the 

society.  The central problem with cocaine addiction is that even after treatment 

and extended periods of abstinence the risk of relapse is high.  The primary 

feature of cocaine addiction is the compulsive seeking of the drug that results in 

failure to resist taking the drug.  The abuse liabilities of cocaine result from its 

euphorigenic and reinforcing properties.  Neurochemical studies on effects of 

cocaine show that the mesolimbic and mesocortical dopamine systems of the 

brain are involved in psycholocomotor stimulant reward function.  The behavioral 

profile that is associated with cocaine addiction results from the accumulation of 

dopamine in the synapse and its actions at one or more of the D1- D5 dopamine 

receptors.  Thus, the reinforcing property of cocaine is caused by potentiated 
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neurotransmission of dopamine in mesolimbic pathways.  Cocaine binds to the 

dopamine transporter and inhibits dopamine reuptake leading to a distortion in 

dopamine homeostasis.  No definitive information exists on the conformation of 

neurotransmitter transporter proteins, as no crystallographic or high resolution 

data are available.  At present the binding sites for dopamine or cocaine on DAT 

have not been well elucidated.  Using site-directed mutagenesis and chimeric 

studies, investigators have identified certain amino acid residues in the primary 

structure of the dopamine transporter that are important for substrate and/or 

inhibitor binding to DAT.  Of the several DAT mutants published so far, aspartate-

79 (D79) of the rat DAT is still the only residue whose mutation caused an 

increase in both Km for dopamine uptake and Ki for dopamine to compete for the 

cocaine analog [3H]WIN35,428 binding site (Kitayama et al., 1992).  This 

suggested a critical role for D79 in DAT function.  In a separate study, Barker and 

coworkers (1999) showed that in both human norepinephrine and rat serotonin 

transporters, the replacement of the aligned aspartates with uncharged amino 

acids resulted in the disruption of substrate transport.  For the reason that 

dopamine and cocaine possess a protonated nitrogen atom at physiological pH, 

it was postulated that the positively charged amino group of dopamine or 

protonated nitrogen of cocaine directly interacts with the negatively charged 

carboxylate of D79 and that ionic competition between cocaine and dopamine is 

the mechanism of cocaine inhibition of dopamine uptake (Carroll et al., 1992).  

Several lines of evidence, however, directly contradict this hypothesis.  In their 

studies with neutral 8-oxa analogs of WIN35, 428 and cocaine, Madras et al. 
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(1996) and Kozikowski et al. (1999) have proven that both compounds are quite 

potent inhibitors of dopamine transport by DAT relative to the charged, nitrogen-

based parent compounds.  Nevertheless, the D79 residue appears to be crucial 

to DAT function.  The D79 residue is one of two charged residues that reside in 

the hydrophobic lipid bilayer.  Furthermore, amino acid sequence alignment of 

transmembrane domain 1 from various members of the NSS transporter gene 

family, which the DAT belongs to, shows that an aspartic acid at this position is 

conserved only in those members whose substrates have an aromatic moiety.  It 

is likely that the role of the D79 side chain may be to contribute to an aromatic 

binding pocket for DAT ligands.  Therefore, the primary focus of this study was to 

determine whether D79 was involved in the recognition of some feature of the 

DAT substrate or inhibitor structure.  The specific hypothesis to be tested here is 

that the D79 residue is pivotal to DAT function and that the side chain of this 

residue may form intramolecular contacts that supported an aromatic binding 

pocket.   

 In the course of this study using mammalian cell lines stably-transfected 

with WT DAT cDNAs, it was observed that the dopamine uptake inhibition 

potency (DUIP) of a given inhibitor will fluctuate even though the apparent 

binding affinity of the drug remained static.  The nature of this phenomenon was 

investigated by examining three possible influences on DAT function at the level 

of the cultured cell: the age of the cell line (measured by cell passage number), 

the density of the cell monolayer (i.e., percent confluence), and the effect of 

varying DAT expression level by manipulation of transfection conditions.  The 
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specific hypothesis to be tested in this case is that the DUIP of DAT inhibitors in 

CHO cells stably transfected with WT DAT fluctuate as a function of cell state.  

   

C.  Literature Survey 

1.  Structure of the Dopamine Transporter 

acids in its primary sequence.  As 

mentio

The human DAT contains 620 amino 

ned earlier, the three-dimensional structure of DAT, or any other member 

of the family of mammalian neurotransmitter transporters, is unknown due to the 

absence of X-ray crystallographic or high-resolution structural information.  

Nevertheless, the topological assignment of the dopamine transporter has been 

made possible by the use of analytical techniques such as substituted cysteine 

accessibility method (SCAM), site-directed mutagenesis, and hydrophobicity 

studies.  Hydrophobicity analysis of the primary sequences of mammalian 

monoamine transporters indicates that monoamine transporters are polytopic 

membrane proteins containing 12 transmembrane domains connected by 

alternating extracellular and intracellular loops with the N- and C-termini located 

in the cytosol (Fig. 2).  The cytoplasmic location of N-terminal and the 

extracellular location of the sequence between transmembrane (TM) domain 3 

and 4 of DAT has been demonstrated (Nirenberg et al., 1996).  In addition, the 

topological assignments of four cysteine residues have been verified using 

SCAM analysis (Ferrer and Javitch, 1998).  C90 and C306 are located 

extracellularly, and C135 and C342 appear to be intracellular (Ferrer and Javitch, 

1998).  Furthermore, three residues (two histidines and on glutamate) predicted 
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to be on the extracellular face of the human dopamine transporter, H193 (located 

in extracellular loop 2), H375 (located in TM 7), and E396 (TM 8), have been 

shown to constitute three coordinates of an endogenous Zn2+-binding site.  The 

participation of these residues in binding the small Zn2+ ion implies a nearness of 

extracellular loop 2, TM 7, and TM 8 in the tertiary structure of the human DAT 

(Norregaard et al., 1998; Loland et al., 1999).  DAT is a heavily glycosylated 

protein with an apparent molecular mass of ~80 kDa as determined by gel 

electrophoresis.  The N-deglycosylation of mature DAT reduced the molecular 

mass to ~50 kDa (Patel, 1997).  The bulk of cloned dopamine transporters have 

at least three consensus sites for N-linked glycosylation in the second 

extracellular loop located between TMs 3 and 4.  Mutational studies have shown 

that this glycosylation is very important for the activity and stability of the 

transporters at the surface, but does not seem to be important for the regulation 

of the intrinsic transport activity (Torres et al., 2003).  The stability and targeting 

of the human norepinephrine transporter to the cell surface largely depend on 

glycosylation of the transporter at the consensus sites (Melikian et al., 1996).  

This effect may also be applicable to the dopamine transporter protein.  
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        Figure 2.  Schematic illustration of plasmalemmal monoamine transporters topology. 

 

wo cysteines (C180 and C189) in the second extracellular loop are 

predict

rylated in stably expressing cells and striatal 

synapt

 

T

ed to form a disulfide bridge important to DAT cell surface expression 

(Wang et al., 1995).  Substitutions of these cysteines severely decreased the 

expression of the mutant transporters.  Immunocytochemistry data showed that 

COS cells transfected with C180A and C189A mutant DAT displayed reduced 

membrane staining and prominent staining in perinuclear regions consistent with 

Golgi apparatus (Wang et al., 1995).  These results suggest that cysteines in the 

DAT second extracellular loop may provide sulfide residues crucial to full 

transporter expression.   

DAT is phospho

osomes (Vaughan et al., 1997). Protein kinase C-mediated DAT 

phosphorylation (Vaughan et al., 1997) causes internalization of the transporter 

  



 10

protein (Pristupa et al., 1998; Melikian and Buckley, 1999) and down-regulation 

of transporter activity (Kitayama et al., 1994; Vaughan et al., 1997; Zhang et al., 

1997).  There are several DAT consensus sites for protein kinase 

phosphorylation (Giros et al., 1992); nonetheless, DAT function does not appear 

to be regulated by phosphorylation at these sites.  Deletion of all possible protein 

kinase C sites did not affect the ability of protein kinase C activators or inhibitors 

to regulate dopamine transport (Granas et al., 2003).  It is possible, therefore, 

that direct dopamine transporter phosphorylation might occur at nonconsensus 

phosphorylation sites. It is also likely that DAT phosphorylation is considerably 

influenced by ligand occupancy.    

 

2.  Substrate and Inhibitor Selectivity of the DAT 

chieved for several species 

(Giros 

syndrome.  A brief description of selected DAT inhibitors is given below. 

DAT cloning and characterization has been a

et al., 1991, 1992; Miller et al., 2001; Jayanthi et al., 1998; Kilty et al., 

1991; Usdin et al., 1991; Porzgen et al., 2001; Gallant et al., 2003; Shimada et 

al., 1991).  The DAT has a well-defined and distinctive pharmacological profile.  

Dopamine uptake by DAT is inhibited by a variety of compounds including the 

psychostimulants cocaine, mazindol, and methylphenidate, and a few selective 

compounds that include the GBR compounds 12909 and 12935 and the 

muscarinic antagonist benztropine.  In addition to clearing dopamine, DAT can 

transport amphetamines and the dopaminergic neurotoxin 1-methyl-4-

phenylpyridinium ion (MPP+), which triggers a Parkinson’s disease-like 
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   Benztropines 

Benztropine (3α-diphenylmethoxytropane, cogentin1) is a tropane-based 

linergic agent which is used for the 

treatment of symptoms associated with Parkinson’s disease.  Benztropine is 

different from cocaine by possessing a diphenylmethoxy group attached to the C-

3 position of the tropane ring.  Para-substitution of a halogen-group on one of the 

phenyl rings of benztropine augments its potency for inhibition of dopamine 

uptake.  It has been shown that optimal binding affinity at the DAT was 

accomplished when small halogens such as fluorine and chlorine were placed in 

the para- and/or meta- positions of one or both phenyl rings.  This modification 

caused a diminution in potency for inhibition of serotonin and norepinepherine 

uptake, resulting in a considerably more dopamine-selective compound than the 

parent benztropine.  The following structure–activity relationships for the 

benztropines have been established: the diphenyl ether must be in the α-

stereochemistry and both aryl rings are required and must be free to rotate.  

Assessment of benztropine analogs in animal models of cocaine abuse 

demonstrated that regardless of binding to DAT with high affinity and exhibiting 

potent inhibition of dopamine uptake, in vitro, these compounds did not 

demonstrate a cocaine-like behavioral profile (for a review of the structure-activity 

studies of benztropine analogs, see Newman and Kulkarni, 2002). 

 

dopamine uptake inhibitor.  It is an anticho
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                               Benztropine  
 

   GBR Compounds 

GBR compounds (aryl 1,4-dialkyl piperazines) were modeled after 

benztropine. The key structural dissimilarity between benztropine and GBR 

compounds is that the GBR compounds have a piperazine ring in place of the 

tropane nucleus present in benztropine.  One of the most potent compounds in 

this group is GBR 12909.  In contrast with cocaine, GBR 12909 is not a central 

nervous system stimulant.  The mechanism of action of GBR 12909 is identical to 

that of cocaine.  GBR 12909 binds to DAT and inhibit dopamine uptake.  GBR 

12909 differs from cocaine in that it produces a relatively moderate and long-

lasting increase in dopamine, which does not produce the same degree of 

euphoria compared to the effect of cocaine.  
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   Mazindol  

Mazindol is a dopamine uptake inhibitor with very low abuse liability.  

Currently, mazindol, 5-(4-chlorophenyl)-2,3-dihydro-5-hydroxy-5H-imidazo[2,1-

a]isoindole, is marketed in the United States as an anorexic agent (exogenous 

obesity) and as an orphan drug for the treatment of Duchenne muscular 

dystrophy.  It is an effective inhibitor of uptake and binding at DAT, NET and 

SERT sites.  It blocks the uptake of dopamine and also inhibits [3H]cocaine and 

[3H]WIN 35,428 binding.   

 

                                  

 

   WIN-type of compounds 

 The key structural feature of phenyltropanes (WIN-type of compounds) is 

that they lack the 3α-benzoyl ester function group present in cocaine. The phenyl 

ring is directly attached to the tropane ring.  The phenyltropanes were first made 

with the intention of obtaining an effective stimulant or antidepressant with 

diminished toxicity.  These compounds bind to DAT and block dopamine uptake.  

WIN35,428 is the prototype compound in this class.  Inhibition of [3H]WIN35,428 

binding to the DAT is the common radioligand used to determine ligand binding 
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affinity due to sufficient specificity to DAT.  [3H]WIN35,428 labels both the high- 

and low-affinity binding sites of DAT, just like cocaine, and is resistant to 

metabolic and chemical degradation.  It also has a high signal-to-noise ratio. 

 

                                    

        

   4-ARA-127 

 4-ARA-127 is a piperidine-based ligand that has been fast-tracked by 

NIDA’s Medication Development Group for use as a substitute medication for 

cocaine dependence.  This compound displays the characteristics of a partial 

agonist at the dopamine transporter.  The most important pharmacological point 

of distinction between this compound and cocaine is its low activity at the 

serotonin transporter (with a slight action at other receptor systems as found 

through the NIMH screening program).  In primate studies,  it was established 

that this piperidine-based ligand was more weakly reinforcing than cocaine. 
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3.  Structure-Function Analysis of the Dopamine Transporter 

   a.  Transmembrane (TM) domains. 

 

    TM 1 

A TM 1 aspartic acid residue common to the plasma membrane 

monoamine transporters but not shared by other neurotransmitter: sodium 

symporter (NSS) family members is the side chain most frequently proposed to 

directly contact both inhibitors and substrates of the dopamine transporter.  Of all 

the several DAT mutants published so far, aspartate-79 (D79) of the rDAT is the 

only residue whose mutation (to glutamate) was reported to cause an increase in 

both Km for dopamine uptake, and an increase in Ki for dopamine in competing 

for the cocaine analog [3H]WIN35,428 binding site (Kitayama et al., 1992).  In 

contrast, recent findings with the same D79E DAT mutant showed no effect on 

dopamine affinity when compared with WT values.  Three-fold losses in cocaine, 

WIN 35,428, mazindol and methylphenidate affinities were observed, with little or 

no effect on the dopamine uptake inhibition potency (DUIP) for these drugs 
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(Wang et al., 2003).  On the other hand, binding affinities and DUIPs for 

benztropine and its analogs were altered substantially by the D79E mutation 

(Ukairo et al., 2005).  Barker et al. (1999) showed that for the human 

norepinephrine transporter (NET) and rat serotonin transporter (SERT), the 

replacement of the analogous aspartate residue with uncharged amino acids 

resulted in the disruption of substrate transport.  These findings led investigators 

to believe that the positively charged amino group of dopamine directly interacts 

with the negatively charged carboxylate of D79, an approach based on the G 

protein-coupled receptor model of a salt bridge between the positively charged 

agonist amino group and negatively charged TM domain carboxylate side chain 

(Strader et al., 1988).  Consequently, it has been postulated that ionic 

competition between cocaine and dopamine is the mechanism by which cocaine 

inhibited dopamine uptake (Carroll et al., 1992).  The neutral “8-oxa” analogs of 

WIN35,428 and cocaine still inhibit DAT, albeit less potently than the charged, 

nitrogen-based parent compounds (Madras et al., 1996 and Kozikowski et al., 

1999).  Thus, the idea that D79 of the plasma membrane dopamine transporter is 

a counter ion for the positively charged substrate amino group is speculative.  A 

glycine side chain is found at the analogous position in the other NSS family 

members including transporters for GABA, betaine, glycine and proline.  The 

substrates for these transporters share with the monoamines the positively 

charged amino group but lack aromatic groups (Wang et al., 2003).  The 

presence of an aspartic acid side chain at this position in only those transporters 

recognizing aromatic substrates may indicate that the aspartic acid residue 
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serves as a ‘strut’ supporting an aromatic binding site for the ligand (Ukairo et al., 

2005).  Recent data were not in agreement with, but did not rule out, formation of 

a salt bridge between aspartate and either dopamine, cocaine or amphetamine 

(Wang et al., 2003; Ukairo et al., 2005).  The aspartate (D75) in the analogous 

position in NET was intolerant to mutation, and like the DAT, only glutamate 

substitution of D98 yielded a functional SERT (Barker et al., 1999).  In an effort to 

find DAT TM residues capable of directly interacting with the positively charged 

moieties of substrates and inhibitors, conserved acidic and tryptophan hDAT 

residues were separately mutated and the mutant transporters characterized, 

including the TM 1 residues D68 and W84 (Chen et al., 2001).  The mutation of 

D68 to asparagine (D68N) resulted in 3 - 4 fold losses in affinity for WIN 35,428 

and in cocaine DUIP (Chen et al., 2001).  The mutation did not appreciably affect 

recognition of the classic DAT inhibitor GBR-12909 or most of the 

hydroxypiperidine GBR-like analogs tested; however, one such analog, (+)-R,R-

D-84, sustained a 17-fold affinity loss.  (+)-R,R-D-84 differs from one of the 

analogs unaffected by the mutation only in the position of a hydroxyl group.  

Thus, it is possible that DAT interacts with GBR analogs by way of hydrogen 

bonding between its D68 residue and the hydroxyl groups of these compounds 

(Zhen et al., 2004).    

Human (W84L) and rat (W84A) DAT substitutions of this tryptophan 

residue increased WIN 35,428 affinity and cocaine DUIP without affecting 

dopamine Km values (Chen et al., 2001; Lin et al., 2000).  It is envisaged that 

W84 may contribute to maintaining an intracellular-facing DAT conformation 
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(Chen et al., 2001).  The Na+-dependent conformational changes required for 

DAT function were impaired in hDAT W84L (Chen et al., 2004).  This mutant also 

displayed Na+ sensitivity differences between cocaine and the diphenylmethoxy-

bearing compounds benztropine and GBR-12,909.  Taken together with the 

aforementioned rDAT D79E results, the hDAT W84L findings suggest that TM 1 

residues may provide discrimination between diphenylmethoxy-bearing 

compounds and classic inhibitors such as cocaine, WIN 35,428 and mazindol.  

Moreover, of several endogenous hDAT cysteine residues surveyed for 

accessibility to the methanethiosulfonate alkylating agent MTSET, the 

benztropine-induced DAT alkylation pattern deviated from those of cocaine, WIN 

35,428, mazindol and dopamine only at C90, a residue immediately extracellular 

to TM 1 (Reith et al., 2001).  It is unclear whether these TM 1-associated inhibitor 

selectivities are solely due to DAT conformational differences or are indicative of 

TM 1 contributions to inhibitor binding sites. 

 

    TM 2 

Mutation of rDAT F98 to alanine (F98A), a residue presumed to be located 

at the TM 2 extracellular boundary, decreased WIN 35,428 binding 6-fold.  The 

mutation had no effect on the dopamine uptake affinity, but dopamine turnover 

rate was significantly diminished (Lin et al., 1999).  F98 is largely conserved in 

the NSS family and possibly less likely to directly contact specific uptake 

inhibitors.  A mouse/Drosophila DAT chimera study led to identification of mDAT 

F105 as the residue primarily responsible for the 10-fold higher DUIP of cocaine 
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at the mDAT; this position is occupied by methionine in the dDAT.  Of several 

mutations tested, only the presence of an aromatic side chain at mDAT position 

105 retained wildtype-like DUIPs for cocaine.  Substitutions of F105 with 

nonaromatic amino acids alanine, serine, threonine, leucine, isoleucine, 

asparagine, and glutamine resulted in mutants with diminished cocaine binding 

affinity.  Whether the effect of nonaromatic substitution of mDAT F105 on 

cocaine DUIP was direct or indirect was not investigated (Wu and Gu, 2003).  

Intriguingly, WIN 35,428 affinity at F105A mutant rDAT decreased by only 2-fold 

relative to wildtype rDAT (Lin et al., 1999).  In contrast with the observation made 

in the studies of DAT TM2, substituted cysteine accessibility method (SCAM) 

analysis of rSERT TM 2 did not identify residues that directly affected substrate 

binding or were accessible to alkylating agents (Sato et al., 2004).  Most recently, 

random mutagenesis of mDAT TM 2 residues in the vicinity of F105 generated 

the triple mutant L104V/F105C/A109V, which suffered 69- and 47-fold DUIP 

losses for cocaine and methylphenidate.  The DUIPs for the substrates 

amphetamine and methamphetamine at the triple mutant were not significantly 

different from those at the wildtype mDAT (Chen et al., 2005). 

 

    TM 3 

A region of the dopamine transporter surrounding the 3rd transmembrane 

domain is considered to be vital for cocaine recognition.  Using human/bovine 

DAT chimeras a 54 residue segment encompassing TM 3 was identified as 

especially crucial for dopamine uptake and WIN 35,428 binding (Lee et al., 
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1998).  Remarkably, replacement of the bDAT TM 3 residue I152 with its 

conservative valine counterpart in the hDAT was found to almost single-handedly 

confer the superior substrate transport and WIN 35,428 binding characteristics of 

the hDAT (Lee et al., 2000).  Two positions away, FI54 in TM 3 also appears to 

be a cocaine-selective residue in DAT.  Mutation of F154 to alanine (F154A) 

lowered cocaine affinity by about 10-fold while retaining normal dopamine uptake 

activity (Lin and Uhl, 2002).  The F154A mutation also altered cocaine 

stereoselectivity.  V152 and F154 should be located on opposite faces of DAT 

TM 3, implying that both cannot directly contact the ligand.  SCAM analysis of TM 

3 of rSERT indicated that I172, the residue analogous to hDAT V152, is on the 

helical face accessible to ligands and external agents (Chen et al., 1997).  

Moreover, I172 and Y176 of rSERT are in or near the binding sites for serotonin 

and cocaine (Chen et al., 1997; Chen and Rudnick, 2000).  Assuming that TM 3s 

of the DAT and SERT have comparable orientations in the plasma membrane, 

V152 would be expected to face the ligand pore and F154 would face the lipid 

bilayer.  F155 of DAT could still face the ligand pore, a residue conserved among 

DATs but replaced by tyrosine in SERTs and NETs.  The rDAT F155A mutant 

sustained a profound loss in apparent affinity for dopamine, but only a mild 

decrease in WIN 35,428 affinity (Lin et al., 1999). 

 

    TM 5 

Replacement of W267 hDAT with leucine forms a mutant DAT with a 3-

fold decrease in cocaine DUIP when compared with WT hDAT (Chen et al., 

  



 21

2001).  Uptake kinetics suggest that W267 contributes to an outward- 

(extracellular-) facing DAT conformation (Chen et al., 2001).  This residue is 

presumed to border the cytoplasm.  Glycine replacement of rDAT P272 modestly 

reduced Vmax for dopamine uptake, but decreased WIN 35,428 binding affinity 

10-fold without a reduction in rDAT plasma membrane expression.  DUIPs for 

cocaine, BTCP (1-[1-(2-benzo[b]thiopheneyl)cyclohexyl]piperidine hydrochloride),  

mazindol and trihexyphenidyl decreased by over 100-fold (Kopajtic, 1997).  A 

subsequent study characterized rDAT P272A mutant in uptake and binding 

studies.  The alanine mutant decreased the affinities for both dopamine and WIN 

35,428 binding relative to wildtype rDAT (Lin et al., 2000).  Alanine replacement 

of the analogous hNET residue P270 yielded undetectable specific binding of 

nisoxetine and 11-, 3- and 3-fold decreases in the norepinephrine uptake 

inhibition potencies (NUIPs) of nisoxetine, desipramine and cocaine, 

respectively.  Of 10 hNET proline residues mutated, only P270A decreased 

recognition of uptake inhibitors by 3-fold or more (Paczkowski and Bryan-Lluka, 

2004).  The number of TM proline residues is observed to be inexplicably large in 

transport proteins when compared with other integral membrane proteins, yet it is 

not clear how such TM proline residues affect transporter protein structure and 

function (Williams and Deber, 1991; Brandl and Deber, 1996).  In general, it has 

been postulated that proline residues disrupt α-helices, whereas alanine residues 

promote α-helix formation (Barlow and Thornton, 1988).  The extent of the α-

helical "kink" induced by proline, however, is reliant on its environment (Li et al., 

1996), and especially on neighboring residues (Ri et al., 1999; Visiers et al., 
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2003).  Thus, proline residues may serve a structural role in determining protein 

infrastructure by influencing helix-helix packing.  Functional roles for TM proline 

residues may include providing hinges that facilitate signal transduction, 

mediating conformational changes via cis-trans isomerization of the bond linking 

the proline to the preceding residue of the polypeptide, and providing a geometry 

that allows neighboring amide carbonyl oxygen atoms of the polypeptide to serve 

as cation binding sites (Sansom et al., 2000; Eisenman and Dani, 1987; Sansom, 

1992).  The latter functional role is most likely for the monoamine transporters.  

Thus, P272 may provide a direct ligand binding site, a key Na+ binding site that 

modulates transport or substrate or inhibitor recognition, or simply a kink 

necessary to the ligand or ion binding pocket. 

 

    TM 6 

Mutation of hDAT W311 to leucine (W311L) decreased WIN 35,428 

affinity 10-fold and cocaine DUIP over 3-fold while dopamine inhibition of WIN 

35,428 binding decreased by over 100-fold (Chen et al., 2001).  This mutation 

had no effect on the plasma membrane expression of hDAT.  Conversely, 

alanine replacement of the rDAT counterpart (W310A) increased WIN 35,428 

affinity 4-fold, and dopamine displacement of the cocaine analog was over 200 

times more effective (Lin et al., 2000).  The rDAT W310A mutation caused 

decreased plasma membrane expression, increased Km and diminished Vmax 

for dopamine uptake.  The discrepancy in the data obtained for hDAT and rDAT 

could be because the rDAT binding was conducted at 4oC, compared to 37oC in 
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the hDAT study (Chen et al., 2001).   Two residues away, the hDAT D313N 

mutant did not markedly affect WIN 35,428 or cocaine binding under normal 

assay conditions, and dopamine affinity was diminished (Chen et al., 2001).  

Although it is unlikely to be part of the substrate or inhibitor binding sites, D313 

may nevertheless regulate access to external dopamine in a Na+-dependent 

fashion.  This residue and W84 have been shown to be involved in cation 

interactions, and controls, in part, the ability of Na+ to drive the DAT between 

inward- and outward-facing conformations, in turn influencing dopamine access 

and Na+-dependent cocaine affinity (Chen et al., 2002; Chen and Reith, 2003).  

 

    TM 7 

Simultaneous mutation of the rDAT S356 and S359 residues to glycine or 

alanine resulted in reductions in WIN 35,428 binding affinity and decreases in 

dopamine uptake.  These residues are hypothesized to form hydrogen bonding 

interactions with the catechol hydroxyl groups of dopamine (Kitayama et al., 

1992).   This model was borrowed from that of Strader and colleagues, who 

demonstrated an association between α-adrenergic receptor TM serine residues 

and agonist hydroxyl groups (Strader et al., 1989).  The fact that a serine side 

chain is found at this same position throughout the NSS family, including 

transporters for non-catechol substrates, argues against this model. 

 Finally, alanine replacement of rDAT F361 decreased WIN 35,428 binding 

affinity by an order of magnitude without affecting dopamine uptake kinetics (Lin 
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et al., 1999).  Positioned at the midpoint of TM 7, this side chain is largely 

conserved in the NSS family. 

 

    TM 8 

For the rDAT, alanine substitution of W406 (W406A) decreased WIN 

35,428 binding affinity by 3-fold; decreased Vmax for dopamine uptake by ~10-fold 

and increased dopamine uptake and binding affinities.  DAT plasma membrane 

expression was altered in this mutant (Lin et al., 2000).  This residue is not far 

from the extracellular boundary and is largely conserved in the NSS family, 

although a phenylalanine side chain is found at the same position in the SERT. 

 

   b.  Extracellular loops (ECL)  

Many mutations of recognized extracellular and intracellular residues have 

been generated for the purpose of detecting conformational shifts in, or mapping 

tertiary structure of, NSS family members.  A few of these mutations were 

demonstrated to affect uptake inhibitor recognition.  The hDAT C90A mutant was 

prepared toward generating a DAT species lacking endogenous 

methanethiosulfonate-reactive cysteine residues (Ferrer and Javitch, 1998).  This 

mutation did not alter affinity for WIN 35,428, but selectively diminished the DUIP 

of benztropine; DUIPs of cocaine, WIN 35,428 and mazindol were unaffected by 

the mutation.  This very highly conserved ECL 1 residue is not expected to 

directly contact benztropine, but rather to differentially contribute toward 

stabilizing benztropine- versus cocaine-preferring DAT conformations (Reith et 
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al., 2000; Ferrer and Javitch, 1998).  Gether and colleagues have mutated many 

extratransmembranous hDAT residues in elucidating the endogenous Zn2+ 

binding site of the DAT, and in creating new Zn2+ sites toward mapping TM 

domain proximities (Loland et al., 2004; Norgaard-Nielsen et al., 2002; Loland et 

al., 1999).  In the course of this work, the extracellular hDAT mutants E218Q 

(ECL 2), E307Q (ECL 3) and D385N (ECL 4) were found to sustain 4- to 5-fold 

losses in WIN 35,428 affinity (Loland et al., 1999).  Treatment of M371C and 

A399C mutant hDATs with MTSET caused a profound reduction in [3H]dopamine 

uptake (Norregaard et al., 2003).  Cocaine, but not dopamine, protected A399C 

DAT from MTSET-induced inactivation.  On the other hand, dopamine, and not 

cocaine protected M371C from MTSET.  This observation may imply that A399 is 

in the DAT binding site of cocaine or that cocaine induces a conformational 

change that diminishes the reactivity of A399C.  In addition, the finding that 

protection of A399C occurs selectively with inhibitors and protection of M371C 

selectively with substrates supports the notion that inhibitors promote and bind 

conformational states of the transporter that differ from those adopted in the 

presence of substrates (Norregaard et al., 2003). 

 Regarding other ECL mutations, WIN 35,428 affinity decreased 5-fold as a 

result of the ECL 4 rDAT F390A mutation; dopamine uptake was virtually 

eliminated (Lin et al., 1999).  Asparagine substitution of hDAT D476, a residue at 

the ECL 5 / TM 10 border, decreased WIN 35,428 affinity 4-fold, cocaine DUIP 3-

fold, and apparent affinity (measured by Km value) for dopamine 7-fold (Chen et 

al., 2001).  For the above ECL loop mutants, it is likely that the inhibitor binding 
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affinity and uptake inhibition potency losses are due to mutation-induced 

conformational changes; however, modifications in the actual inhibitor binding 

sites have not been ruled out. 

 

   c.  Intracellular loops (ICL) 

The tyrosine residue at position 335 of the hDAT may be important for 

cocaine binding.  Mutation of this residue to alanine (Y335A) caused defects in 

the function of high affinity Zn2+ binding to DAT (Loland et al, 2002). Zn2+ binding 

to WT DAT normally reduces dopamine uptake.  In Y335A DAT, binding of Zn2+ 

to its high affinity sites resulted in potentiation of dopamine uptake.  In addition, 

Y335A mutation caused a 150-fold reduction in apparent affinity of DAT for 

cocaine and related inhibitors when compared with WT DAT values.  Loland and 

colleagues proposed that Y335 may be part of a network of intramolecular 

interactions that is important for stabilizing the transporter in a conformational 

state that maintains the structural integrity of the inhibitor binding site and to 

which extracellular substrate can bind and initiate transport.  Further analyses of 

the intracellular loops of hDAT identified other residues that, when mutated to 

alanine, exhibited similar phenotype as Y335A (Loland et al, 2004).  Akin to 

Y335A, the mutants K264A (IL2), D345A (IL3), and D436A (IL4) were 

characterized by lower affinities for cocaine and other inhibitors as well as a low 

uptake capacity that was potentiated by Zn2+.   In a separate study, Chen et al, 

2004 showed that D345N DAT also exhibited a phenotype similar to Y335A.  

D345N mutation decreased cocaine analog binding by over 90% but uptake 
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inhibition by various DAT inhibitors was preserved in contrast to what was 

observed with Y335A mutation. 

 

4.  Regulation of DAT Function 

   a.  Post-translational modification 

DAT function is regulated largely by way of rapid shuttling of DAT to and 

from the plasma membrane.  Phosphorylation of DAT by kinases leads to rapid 

redistribution and internalization of DAT away from the plasma membrane 

causing diminished cellular uptake of dopamine (Pristupa et al., 1998, Melikian 

and Buckley, 1999; Daniels and Amara, 1999).  There are several consensus 

sites on the primary structure of the DAT for protein kinase phosphorylation of 

the transporter (Giros et al., 1992).  Acute exposure of hDAT expressing Sf9 cells 

to  PMA, a PKC activator, reduced Vmax for [3H]dopamine uptake by ~ 40% 

when compared with control cells treated with αPDD (an inactive phorbol ester) 

(Pristupa et al., 1998).  This inhibition of uptake was blocked by the protein 

kinase inhibitor staurosporine (Pristupa et al., 1998).  Furthermore, confocal 

microscopy data revealed that the observed decline in [3H]dopamine uptake was 

associated with redistribution of surface DAT to the internal environment. 

Recruitment of the internalized transporters back to the cell surface was 

responsible for the observed augmentation in [3H]dopamine uptake in cells 

treated with the PKC inhibitor (Pristupa et al., 1998).   Nonetheless, proof that the 

direct phosphorylation of the transporter modifies its intrinsic activity or triggers 

the downregulation and internalization of the dopamine transporter is 

  



 28

inconclusive. The deletion of all the consensus sites for protein kinase C did not 

put a stop to protein kinase C-induced internalization (Chang et al., 2001).  In a 

different study, deletion of the first 22 amino acids (N-terminus) from DAT 

eliminated 32P incorporation into DAT in response to PKC activation (Granas et 

al., 2003).  This shortened mutant DAT still transported substrate and was 

internalized normally subsequent to protein kinase C activation (Granas et al., 

2003).  These data mean that N-terminal phosphorylation of DAT is not 

necessary for transporter internalization.  Recent evidence indicates that the 

transport capacity and intracellular trafficking of DAT is controlled by mitogen-

activated protein kinase (MAPK) (Moron et al., 2003).  Incubation of striatal 

synaptosomes or epitope-tagged hDAT HEK 293 cells with MAPK kinase 

inhibitors diminished dopamine uptake in a concentration dependent manner; 

decreased Vmax for dopamine uptake but had no effect on dopamine uptake 

affinity (Moron et al., 2003).  Biotinylation and confocal microscopic studies 

showed that the observed effect of MAPK kinase inhibitors on dopamine 

transport kinetics was due to clathrin-mediated redistribution of hDAT from the 

plasma membrane to the internal environment of the cell (Moron et al., 2003). 

It has been demonstrated recently that PKC can control MAPK activation 

and that the mechanism of activation shows isotype specificity (Schonwasser et 

al., 1998).  Some species of PKC, such as PKC-α, show an ability to activate the 

MAPK cascade via c-Raf, while other isoforms activate this cascade by a 

mechanism independent of c-Raf1 activation.  Thus, distinct subclasses of PKC 
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may account for two independent signalling pathways to MEK and, hence, MAPK 

activation. 

 

   b.  Protein-protein interactions 

Monoamine transporters have sequence motifs that are known to guide 

protein-protein interactions, including a leucine repeat in TM 2, a PDZ binding 

site at the extreme carboxyl termini, and presumed tyrosine-based and di-leucine 

internalization motifs (Torres et al., 2003).  By means of the yeast two-hybrid 

system, a direct interaction between α-synuclein and DAT has been determined 

(Lee et al., 2001).  α-synuclein is a pre-synaptic protein that has been associated 

with Parkinson’s disease (Gwinn- Hardy, 2002).  α-synuclein augments the 

functional activity of DAT when it is co-expressed with DAT in cells (Lee et al., 

2001).  On the contrary, coexpression of α-synuclein and DAT in Ltk– fibroblasts 

manifestly decrease the reuptake of dopamine by DAT by ~30–50% (Wersinger 

and Sidhu, 2003; Wersinger et al., 2003; Sidhu et al., 2004).  The diminution in 

DAT activity was due to a reduction in Vmax for dopamine uptake by the 

transporter without any change in DAT expression levels.  An outcome of the α-

synuclein-mediated reduction of DAT activity was that upon exposure of 

cotransfected cells to dopamine, there was decreased dopamine-induced 

oxidative stress and cytotoxicity.  In the presence of α-synuclein, the DAT was 

trafficked away from the plasma membrane into the cytoplasm.  This is evident 

from biotinylation experimental data showing reduced DAT presence at the 

plasma membrane by (Wersinger et al., 2003).  α-Synuclein interacts directly with 
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DAT, creating a stable protein: protein heteromeric complex in cotransfected 

cells, mesencephalic neurons, and substantia nigra. The interactions were 

observed between the nonamyloid β component (NAC) domain (residues 58-

107) of α-synuclein and the last 22 amino acids of the carboxyl terminal tail of 

DAT (Wersinger et al., 2003).  Analogous to wild-type, the missense A30P 

mutant form of α-synuclein decreased DAT function, trafficking DAT away from 

the plasma membrane and contributing to the formation of stable protein: protein 

complexes, again through the NAC domain (residues 58-107) of A30P and the 

last 22 amino acids of the CT tail of DAT (Wersinger et al., 2003a).  The other 

missense A53T mutant was unable to alter DAT function, and succeeding studies 

demonstrated that this protein interacted only weakly with the transporter 

(Wersinger et al., 2003a). 

 The PDZ domain-containing protein PICK 1 has been shown to interact 

with the carboxyl termini of DAT and NET (Torres et al., 2001).  In culture, PICK 

1 colocalizes with DAT and NET in dopaminergic and noradrenergic neurons 

respectively.  PICK 1 additionally stimulates DAT and NET clustering in 

transfected cells thereby increasing the activity of the transporters.  Thus, PICK 1 

may play a part in targeting of these transporters to the nerve terminals (Torres 

et al., 2001).  In cultured neurons, a DAT mutant lacking the PICK 1 binding site 

failed to localize to neuronal processes and remained confined primarily in cell 

bodies.  There are indications that PICK 1 interacts with PKC.  It is possible then 

that PICK 1 may be involved in the PKC-mediated trafficking of monoamine 
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transporters.  Recent experience also suggest an interaction between DAT and 

the LIM homeodomain-containing protein, Hic-5 (Carneiro et al., 2002).   

 

   c.  Transporter oligomerization 

The oligomerization of DAT has been well studied and there are indications 

that DAT function is also regulated via transporter oligomerization.  In 

mammalian cells co-expressing differentially tagged DAT molecules, HA-tagged 

DAT co-purified with 6His-tagged DAT signifying a physical contact between 

transporter proteins (Torres et al., 2003).  Verification of the functional 

oligomerization of DAT was achieved using dominant-negative mutants of DAT.  

Two loss-of-function mutant transporters (Y335A and D79G) that were expressed 

at the cell surface blocked wild-type DAT uptake activity without affecting the 

membrane targeting of the wildtype transporter.  Furthermore, non-functional 

amino and carboxyl termini-truncated mutants of DAT blocked wild-type DAT 

function by impeding the normal processing of the wild-type transporter to the cell 

membrane (Torres et al., 2003).  Mutations in the leucine repeat of the second 

transmembrane domain of the transporter removed the dominant-negative effect 

of all these mutants. Additionally, a small fragment comprising the first two 

transmembrane domains of DAT blocked wild-type transporter function but not 

when the leucine repeat motif was mutated. Taken together, these results 

indicate that the assembly of DAT monomers plays a vital role in the expression 

and function of the transporter (Torres et al., 2003).  Hastrup et al., 2001 have 

also identified a well characterized dimerization motif, GxxxG, in the intracellular 
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half of TM 6 of DAT.  DAT dimers are formed as a result of a symmetrical cross-

linking between cysteine residues located on the extracellular face of TM 6. The 

precise contribution of oligomer formation to transporter function remains 

uncertain.  Nonetheless, oligomerization has clearly been established to play a 

role in facilitating the trafficking of the transporters to the surface. Data from 

Javitch’s (Hastrup et al., 2001) and Caron’s research groups (Torres et al., 2003) 

have shown that mutants in which the domains involved in oligomer formation 

have been mutated are not efficiently delivered to the cell surface. 
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II.  MATERIALS AND METHODS 

 

A.  Materials and Equipment 

     1.  Facilities 

 Laboratories – Mellon Hall of Science, Room 456 

 Office – Mellon Hall of Science, Rooms 420 and 456 

2. Cell lines 

 Chinese Hamster Ovary (CHO) cells stably expressing wildtype and D79E  
 mutant DAT.   

 COS 7 cells 

3. Chemicals and Drugs 

 Bovine serum albumin 
 Fisher Scientific, Pittsburgh, PA 
 
 Complete Mini protease inhibitor cocktail tablets 
 Roche Diagnostics Corp., Indianapolis, IN 
 
 Compressed carbon dioxide 
 Air Products, Pittsburgh, PA 
 
 Dimethylsulfoxide 
 Sigma Chemical Co., St. Louis, MO 
 
 Ampicillin Na salt 
 Fisher Scientific, Pittsburgh, PA 
 
 Ethanol, HPLC grade 
 Fisher Scientific, Pittsburgh, PA 
 
 Isopropanol, DNase-free 
 Fisher Scientific, Pittsburgh, PA 
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 LB agar 
 Fisher Scientific, Pittsburgh, PA 
 
 LB broth 
 Fisher Scientific, Pittsburgh, PA 
 
 Methanol, HPLC grade 
 Fisher Scientific, Pittsburgh, PA 
 
 Ribonuclease A 
 Fisher Scientific, Pittsburgh, PA 
 
 Precast polyacrylamide gels, 4 – 20% 
 BioRad Laboratories, Hercules, CA  
 
 dNTP mix 
 Stratagene, La Jolla, CA 
 
 Plasmid mini-prep kit 
 Stratagene, La Jolla, CA 
 
 Polymerase, Pfu Turbo 
 Stratagene, La Jolla, CA 
 
 Quickchange mutagenesis kit 
 Stratagene, La Jolla, CA 
 
 XL1 Blue cells 
 Stratagene, La Jolla, CA 
 
 Dpn1 enzyme 
 Stratagene, La Jolla, CA 
 
 Plasmid maxi-prep kit 
 Qiagen Inc., Valencia, CA 
 
 Plasmid mini-prep kit 
 Qiagen Inc., Valencia, CA 
 
 Qiaquick gel extraction kit 
 Qiagen Inc., Valencia, CA 
 
 Qiaquick PCR extraction kit 
 Qiagen Inc., Valencia, CA 
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D-glucose 
 Sigma Chemical Co., St. Louis, MO 
 
 Tetracycline-HCL 
 Sigma Chemical Co., St. Louis, MO 
 
 F-12 Nutrient Mixture 
 GIBCO-BRL, Grand Island, NY 
 
 Glycine 
 Sigma Chemical Co., St. Louis, MO 
 
 HEPES 
 Fisher Scientific, Pittsburgh, PA 
 
 HRP-conjugated goat anti-rat IgG 
 Chemicon International, Temecula, CA 
 
 Agarose 
 Invitrogen, Carlsbad, CA 
  
 Alexa-Fluor 488, goat anti-rat IgG (H+L) 
 Molecular Probes, Eugene, OR 
 
 MAB369 Rat anti-Dopamine Transporter 
 Chemicon International, Temecula, CA 
 
 DH5α cells 
 Invitrogen, Carlsbad, CA 
 
 PolyFect Transfection Reagent 
 Qiagen Inc., Valencia, CA 
 
 SOC media 
 Invitrogen, Carlsbad, CA 
 
 Not 1 restriction enzyme 
 Invitrogen, Carlsbad, CA 
 
 Bgl2 Restriction Enzyme 
 Invitrogen, Carlsbad, CA 
 
 Psh1 restriction enzyme 
 Invitrogen, Carlsbad, CA 
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BsiW1 restriction enzyme 
 Invitrogen, Carlsbad, CA 
 
 Rhodamine phalloidin 
 Molecular Probes, Eugene, OR 
 
 T4 DNA ligase 
 Invitrogen, Carlsbad, CA 
 
 Penicillin-Streptomycin 
 GIBCO-BRL, Grand Island, NY 
 
 Fetal bovine serum 
 GIBCO-BRL, Grand Island, CA 
 
 Sodium Dodecyl Sulfate 
 Sigma Chemical Co., St. Louis, MO 
 
 Sodium Hydroxide 

Sigma Chemical Co., St. Louis, MO 
 
Trichloroacetic Acid 
Sigma Chemical Co., St. Louis, MO 
 
Trizma Base 
Sigma Chemical Co., St. Louis, MO 
 
Trypsin-EDTA 10X 
GIBCO-BRL, Grand Island, NY 
 
ScintSafe scintillation fluid 
Fisher Scientific, Pittsburgh, PA 
 
PBS, Ca/Mg-free 
Fisher Scientific, Pittsburgh, PA 
 
Tris-HCL salt 
Sigma Chemical Co., St. Louis, MO 
 
Protein MW marker 
Fisher Scientific, Pittsburgh, PA 
 
Sodium chloride 
Sigma Chemical Co., St. Louis, MO 
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[3H]WIN35, 428 
Perkin Elmer, Foster City, CA 
 
[3H]Dopamine 
Perkin Elmer, Foster City, CA 
 
GVA Mounting Solution 
Zymed, San Francisco, CA 
 
Goat Serum 
Biomeda, Foster City, CA 

 

4. Materials 
 
BioRad Protein Assay Kit 
BioRad, Hercules, CA 
 
Cryogenic vials 
Nalgene, Rochester, NY 
 
Polaroid Film 
Fisher Scientific, Pittsburgh, PA 
 
Pasteur pipettes 
Fisher Scientific, Pittsburgh, PA 
 
Scintillation vials 
Fisher Scientific, Pittsburgh, PA 
 
Test tubes, 12x75mm 
Fisher Scientific, Pittsburgh, PA 
 
PVDF membrane 
BioRad Laboratories, Hercules, CA 
 
Sterile Tissue culture plates (6-, 12-, 24-well) 
Fisher Scientific, Pittsburgh, PA 
 
Sterile disposable serological pipettes (5, 10, 25 ml) 
Fisher Scientific, Pittsburgh, PA 
 
Eppendorf tubes (1.5µl) 
Fisher Scientific, Pittsburgh, PA 
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Glass microscope coverslips (#1) 
Fisher Scientific, Pittsburgh, PA 
 
Glass microscope slides 
Fisher Scientific, PA 
 
Kodak T-Max 400 film 
Eastman Kodak Co., Rochester, NY 
 
Fisherbrand Redi-TipsTM disposable pipette tips (1, 10, 200, 1000µl) 
Fisher Scientific, Pittsburgh, PA 
 
Pipette Aid 
Drummond Scientific Company, Broomall, PA 

 

5. Equipment 
 

Accumet pH meter, Model 291 
Fisher Scientific, Pittsburgh, PA 
 
BioRad Power Pac 3000 
BioRad, Hercules, CA 
 
Hot plate with stirrer 
Fisher Scientific, Pittsburgh, PA 
 
Leica Confocal Laser Microscope TCS-SP2 
Leica Microsystems, San Diego, CA 
 
Liquid Scintillation Counter Tri-Carb 2100TR 
Packard Instrument Co., Downers Grove, IL 
 
UV/VIS Spectrophotometer DU530 
Beckman Instruments, Fullerton, CA 
 
Analytical Balance 
Mettler-Toledo Inc., Highstown, NJ 
 
Centrifuge 5810R (Large) 
Eppendorf North America Inc., Westbury, New York. 
 
Centrifuge 5415C (Small) 
Eppendorf North America Inc., Westbury, New York. 
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Universal Vacuum System UVS400 
Savant Company Inc., Irvine, CA 
 
PCR Mastercycler 
Eppendorf North America Inc., Westbury, New York. 
 
Weighing Balance 
Denver Instrument, Denver, CO. 
 
Freezer (-20oC) 
Forma Scientific, Waltham, MS 
 
Liquid Nitrogen Tank 
 
Laboratory Refrigerator 
REVCO Thermo Electron Corporation, Asheville, NC. 
 
Horizontal Gel Electrophoresis System 
GIBCO-BRL, Grand Island, NY. 
 
Gel Apparatus 
BioRad, Hercules, CA. 
 

6. Computer Software 
 

GraphPad Prism 3.0 
GraphPad, San Diego, CA 
 
Microsoft Excel, Microsoft Office 2003 
Microsoft Corporation, Orem, UT 
 
Microsoft Word, Microsoft Office 2003 
Microsoft Corporation, Orem, UT 
 
Adobe Photoshop Version 5.0 
Adobe Systems, Seattle, WA 
 
Adobe Acrobat (Reader and Writer) 
Adobe Systems Inc., Seattle, WA 

MDL-ISIS Draw 2.5 
Elsevier MDL, San Leandro, CA 
 

  



 40

B.  Methodology and Procedures 

1.  Cell culture 

CHO-K1 cells stably transfected with WT DAT or D79E DAT were used in 

the present study.  These cells were grown at 37OC and 5% CO2 in F12K 

medium supplemented with 10% fetal bovine serum (FBS), 100 units/ml 

penicillin, 100mg/ml streptomycin and 100µg/ml G-418.  COS-7 cells were 

employed for all experiments requiring transient transfection of plasmid DNA.  

The COS-7 cells were maintained in DMEM media supplemented with 10% FBS, 

100 units/ml penicillin, 100mg/ml streptomycin, and 20 mM L- glutamine.  All cells 

were grown in 75 cm2 flasks and subcultured twice weekly.  Cells were 

subcultured by aspirating media from the flask and washing the confluent 

monolayer with 10 mL Hanks buffered salt solution (HBSS).  The cells were then 

detached by addition of 3 mL trypsin-EDTA solution to the monolayer.  The 

trypsin-EDTA solution was swirled to coat the monolayer and 2 mL of the trypsin-

EDTA was aspirated from the flask.  The cells were left to stand at room 

temperature (under a sterile hood) in 1 mL trypsin-EDTA for 3 min or until the 

cells detach from the flask.  The trypsinization reaction was quenched by addition 

of 9 mL of appropriate “complete media” (media supplemented with FBS and 

antibiotics).  The trypsinate was gently mixed to create an even suspension of 

cells.  Two milliliters, out of a total volume of 10 mL, of the trypsinate was 

transferred into a new flask and 18 mL of “complete media” was added to it; the 

cell solution was then mixed gently.  The flask was capped and kept flat in the 
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incubator (37oC and 5% CO2) and cells were allowed to grow to confluence.  

Cells were typically subcultured on Mondays and Thursdays. 

 

2.  Site- directed mutagenesis 

All site-directed mutagenesis was conducted using the QuikChange 

mutagenesis kit (Stratagene).  rDAT in Bluescript vector was used as template 

for the PCR-based mutagenesis.  Sense and antisense oligonucleotides were 

designed to contain the desired mutations.  The oligonucleotide primers were 

synthesized by Sigma-Genosys Inc., U.S.A.  The sequences of primers used for 

the generation of D79L DAT were: 5’-

GTCATCGGCTTTGCTGTGCTCCTGGCCAATGTCTG-3’ for the forward primer 

and 5’-CCAGACATTGGCCAGGAGCACAGCAAAGCCGATGAC-3’ for the 

reverse primer.  These complementary primers were annealed to the template 

cDNA and extended with the proofreading polymerase pfu Turbo (Stratagene) 

with the following PCR parameters: 30 sec at 95oC, 30 sec at 95oC, 1 min at 

55oC, and 6 min at 72oC for 25 cycles.  Subsequently, the PCR product was 

digested with Dpn1 to eliminate the methylated, nonmutated parental strands.  

The mutant cDNA was then transformed into XL1-Blue supercompetent E. coli 

cells using the heat-shock method.  The bacterial cell solution was then plated on 

agar plates containing 50 µg/ mL ampicillin and incubated overnight at 37oC.  

The following day, colonies were selected and plasmid preparation was carried 

out using the Stratagene miniprep system to produce pure supercoiled plasmid 

DNA.  Mutagenesis was confirmed by DNA sequence analysis of the miniprep 
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product (University of Pittsburgh sequencing facility).  The fragment (~ 500 bp) 

containing the mutation in rDAT-pBluescript was isolated by digestion with Not1 

and Bgl2 restriction enzymes, gel purified, and ligated into the Not1/Bgl2- 

digested wild type rDAT-pC1 vector.  The ligation product was transformed into 

MC1061 cells using the heat shock method and cells were plated on agar plates 

containing ampicillin and tetratcycline and incubated overnight at 37oC.   

Colonies were again selected and the plasmid DNA was purified using the 

Stratagene mini-prep kit according to manufacturer’s guidelines.  The fragment 

containing the mutation in rDAT-pC1 was isolated by double digestion with 

PshA1 and BsiW1 enzymes.  This 1.8 kb fragment was then ligated into the 

PshA1/BsiW1- digested wildtype rDAT-pIRES vector.  The ligation product was 

transformed into DH5α supercompetent E. coli cells by way of the heat shock 

method and cells were plated on agar plates containing ampicillin.  The agar 

plates were then incubated overnight at 37oC to allow growth of bacterial 

colonies.  A few bacterial colonies were selected, lysed, and the supercoiled 

DNA was purified using the Stratagene mini-prep kit.  The presence of 

supercoiled plasmid DNA was verified by agarose gel electrophoresis.  Following 

confirmation of successful mutagenesis by DNA sequence analysis, a sample 

from the mini-prep product was again transformed into DH5α cells, plated on 

agar plates and incubated overnight at 37oC.  Plasmid preparations were carried 

out, this time, using the Qiagen maxi-prep kit to produce a larger volume of pure 

supercoiled plasmid DNA sufficient for transient transfection of cells.  The DNA 

concentration and purity (measured as A260:A280 ratio) were estimated by 

  



 43

spectrophotometric analysis.  Plasmid DNA having an A260:A280 ratio greater than 

or equal to 1.7 was typically used for transient transfection of COS 7 cells.  All 

other D79 mutant DATs used in the present study were previously generated by 

Wenfei Wang in the laboratory of Dr. Surratt at Albert Einstein College of 

Medicine (AECOM), Bronx, New York. 

 

3.  Cell Transfections 

A modification of the calcium phosphate method or the use of PolyFect 

reagent (Qiagen, Los Angeles, CA) was employed for transient transfections of 

COS 7 cells.  For the calcium phosphate method, confluent COS 7 cells were 

subcultured in 6-well plates such that the monolayer would be 40 - 50% confluent 

when the transfection commenced the next day.  Twenty micrograms of plasmid 

were used for the transient transfections.  Two tubes were prepared, with the 

contents of one tube slowly added to the second tube.  The first tube contained 

plasmid DNA, Millipore water, 10x Tris- EDTA (TE) buffer pH 8.0, and 0.5M 

CaCl2 mixed together to achieve a final amount of DNA of 20 µg.  The second 

tube contained 2x HEPES- buffered saline (HBS) solution.  The contents of the 

first tube were added to the second tube dropwise with continuous vortexing.  For 

an individual well of the 6-well plate containing 40% confluent cells, 200 µl of the 

above mixture was added.  The cells take up the exogenous plasmid via 

endocytosis of the calcium phosphate/DNA complex.  On the next day, the 

transfection mixture is removed and the replaced with 2 ml fresh DMEM. The 

cells were used for pharmacological studies 48 hours later.   
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For the PolyFect reagent-mediated transient transfection, a slight 

modification of the manufacturer’s protocol was employed.  The day before 

transfection, cells were seeded in 6-well plates and incubated overnight at 37OC 

and 5% CO2 such that the cells will be 50-80% confluent the next day.  On the 

day of transfection, cell monolayers in 6-well plates were washed with 1 x 1mL 

phosphate buffered saline (PBS), pH 7.3, and 1.5 mL of “complete” DMEM media 

was added to each well.  These cells were then incubated at 37oC and 5% CO2 

until the commencement of transfection.  The transfection mixture was prepared 

as follows: plasmid DNA (1.5 µg) was diluted with 100 µL of DMEM containing no 

serum, proteins, or antibiotics and mixed by vortexing for 10 seconds.  Ten 

microliters of PolyFect transfection reagent was then added to the DNA solution, 

mixed by vortexing for 10 sec, and incubated at room temperature for 8 min to 

allow DNA-PolyFect complex formation.  Subsequently, 600 µL of complete 

DMEM (containing serum and antibiotics) was added to the reaction tube 

containing the transfection complexes and mixed by pipetting up and down twice.  

The total volume of the transfection mixture was immediately transferred to a 

single well of the 6-well plate containing 80% confluent cells at room 

temperature.  The transfected cells were incubated at 37oC and 5% CO2 and 

used for pharmacological studies 48 hours after transfection.  When performing 

transient transfections of cells in more than one well (which was more often the 

case), the volumes described above were multiplied by the number of wells used. 

The stably-transfected DAT-CHO cell lines used in this study were 

prepared in the laboratory of Dr. Surratt at AECOM, New York.  Lipofectamine-
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mediated transfection was used to prepare the stable cell lines; stable 

transfectants were selected in the presence of 500 µg/ml G-418 in F-12K HAM 

medium.  Cell lines were maintained as described above. 

 

4.  Immunocytochemistry and confocal microscopy 

COS-7 cells were seeded on coverslips placed in 6-well plates and grown 

to 40 - 60% confluence.  Cells were transiently transfected on the following day 

with WT or D79 mutant DAT plasmids, or the vector control plasmid, using 

PolyFect reagent (Qiagen, Los Angeles, CA).  After 48 hours, cells were fixed in 

4% paraformaldehyde solution in PBS at room temperature for 15 min, rinsed 

once with PBS, and incubated with blocking-permeabilizing solution (5% goat 

serum, 1% BSA, and 0.1% Triton X-100 in PBS buffer solution) for 45 min at 

room temperature.  Cells were next incubated with rat monoclonal anti-DAT 

antibody (MAB369; Chemicon, Temecula, CA) at 1:1000 dilution for 1 hr.  The 

anti-DAT antibody solution was aspirated and cells were washed five times with 

PBS containing 0.1% Triton X-100 (TPBS), and incubated with a mixture of 

secondary antibody (goat anti-rat Alexa Fluor 488; Molecular Probes, Eugene, 

OR) at 1:500 dilution and rhodamine phalloidin (Molecular Probes) at 1:250 

dilution for 1 hr.  After three washes in TPBS followed by two washes in PBS, 

coverslips were mounted on slides using GVA mounting solution (Zymed, San 

Francisco, CA) and left to dry overnight in the dark at 4OC.  DAT protein was 

visualized using the Leica TCS-SP2 confocal laser microscope with a glycerin 

immersion 63x objective.  Alexa 488 was excited at 488 nm with an 
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argon/krypton laser and emission photons from 500 – 600 nm were accumulated 

by the photomultiplier tube.  Rhodamine phalloidin was excited at 543 nm with a 

helium/neon laser and emission photons from 550 to 650 nm were accumulated.  

The fluorophores were detected separately and overlay images were generated 

automatically by the imaging software. 

 

5.  [3H]-Dopamine saturation uptake assays 

All [3H]-dopamine uptake assays were conducted with cell monolayers 

seeded in 6-well plates.  In dopamine saturation uptake assays, cell monolayers 

in six-well plates were washed 2 X 1 mL with KRH buffer (25mM HEPES, pH 7.3, 

125 mM NaCl, 4.8 mM KCl, 1.3 mM CaCl2, 1.2 mM KH2PO4, and 5.6 mM 

glucose) supplemented with 50 mM ascorbic acid (KRH/AA) and then incubated 

with increasing concentrations (0.5 – 16 µM) of a fixed ratio of [3H]dopamine: 

nonradioactive dopamine (~0.1 Ci/mmol) for 5 min.  Dopamine uptake was 

quenched by aspirating the dopamine solution and washing the monolayers with 

2 X 1 mL KRH/AA buffer. Subsequently, cells in each well were lysed with 1 ml of 

1% SDS, incubated at room temperature for 1 hr with gentle shaking, and 

transferred to scintillation vials for determination of incorporated tritium.  The 

results of liquid scintillation counting and protein determinations were used to 

calculate uptake of [3H]dopamine expressed as pmol/mg protein/ min.  In each 

experiment, the mean result from duplicate wells for each treatment was used 

and the experiments were repeated at least four times.  Specific uptake was 

calculated as the difference between uptake of [3H]dopamine in the absence and 
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presence of 10 µM mazindol.  KM and VMAX values were calculated from non-

linear regression analysis of the data for each individual experiment using the 

GraphPad Prism 3.0 software. 

 

6.  [3H]-Dopamine uptake inhibition assays 

The monolayer was washed twice with KRH/AA buffer (2 x 1 mL).  

Dopamine uptake inhibition experiments incubated the cells with inhibitors for 10 

minutes, followed by the addition of 10nM [3H]-dopamine for a further five 

minutes.  The range of concentrations of inhibitors or substrates employed was 

as follows: cocaine, 1 nM - 100 µM; WIN35,428, 1 nM - 10 µM; 8-oxa-

norcocaine, 1 nM - 1 mM; 4-ARA-127, 10 nM - 100 µM; mazindol, 3 nM - 10 µM; 

methylphenidate, 3 nM - 10 µM; benztropine, 0.1 nM - 30 µM; 3β-4'-

chlorobenztropine, 1 nM - 30 µM; 4'-chlorobenztropine, 0.1 nM - 30 µM; 4',4"-

difluorobenztropine, 0.1 nM - 10 µM; GBR-12,909, 0.1 nM - 10 µM; rimcazole, 1 

nM - 30 µM; N-formyl-4,4'-difluorobenztropine, 10 nM - 1 mM; and 4-

trifluoromethylbenztropine, 1 nM - 30 µM.  Uptake was quenched by aspirating 

the inhibitor/ radioligand solution and washing the monolayer with 2 x 1 ml of 

KRH containing ascorbic acid (KRH/AA).  Nonspecific binding was assessed with 

10µM mazindol, or with 30 µM cocaine if the drug tested was mazindol.  The 

cells in each well were then lysed with 1 mL of 1% SDS and incubated at room 

temperature for 1 hour with gentle shaking.  The lysate was transferred into 

scintillation vials containing 5 mL ScintSafe fluid and radioactivity was counted 
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using a liquid scintillation counter.  Ki values for [3H]dopamine uptake inhibition 

were determined with GraphPad Prism 3.0. 

 

7.  [3H]WIN35,428 saturation binding assays 

All binding assays were conducted with stable DAT-CHO cells or transient 

DAT-COS 7 cells subcultured in six-well plates.  [3H]WIN35,428 was the 

radioligand used in all binding assays.  This compound is structurally similar to 

cocaine, labels both the high- and low- affinity binding sites just as cocaine, but is 

more stable in vitro.   For [3H]WIN35,428 saturation binding assays, serial 

dilutions of WIN35,428 (1 nM - 10 µM) were made in KRH/AA buffer.  

[3H]WIN35,428 was added to each dilution of drug to achieve a final 

concentration of approximately 1 nM for the radioligand.  Cell monolayers in 6-

well plates were then washed with 2 x 1mL of KRH/AA buffer and incubated with 

the mixture of [3H]WIN35,428 and WIN35,428 for 15 minutes.  The drug solution 

was removed and the cell monolayers were washed with 2 x 1 mL KRH.  Cells 

were lysed with 1% SDS solution and the 3H content of the cell lysates was 

determined in a scintillation counter.  Bmax and Kd values for [3H]WIN35,428 

binding were determined with GraphPad Prism 3.0 software. 

 

8.  [3H]WIN35,428 binding inhibition assays 

All competition binding assays were conducted exactly as described for 

the dopamine uptake inhibition assays except that [3H]-dopamine was replaced 
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with 1nM [3H]WIN35,428 and cells were incubated with a mixture of radioligand 

and nonradioligand competitor for 15min. Briefly, serial dilutions of the drugs to 

be examined were made in KRH/AA buffer.  [3H]WIN35,428 was added to each 

dilution of drug to achieve a final concentration of 1 nM for the radioligand.  The 

range of concentrations of drugs employed were as  indicated above for 

dopamine uptake inhibition: cocaine, 1 nM - 100 µM; WIN35,428, 1 nM - 10 µM; 

8-oxa-norcocaine, 1 nM - 1 mM; 4-ARA-127, 10 nM - 100 µM; mazindol, 3 nM - 

10 µM; methylphenidate, 3 nM - 10 µM; benztropine, 0.1 nM - 30 µM; 3β-4'-

chlorobenztropine, 1 nM - 30 µM; 4'-chlorobenztropine, 0.1 nM - 30 µM; 4',4"-

difluorobenztropine, 0.1 nM - 10 µM; GBR-12,909, 0.1 nM - 10 µM; rimcazole, 1 

nM -30 µM; N-formyl-4,4'-difluorobenztropine, 10 nM - 1 mM; and 4-

trifluoromethylbenztropine, 1 nM - 30 µM).  To begin with, cell monolayers in 6-

well plates were washed with 2 x 1mL of KRH/AA buffer and incubated with the 

mixture of radioligand and nonradioactive competitor for 15 minutes.  The 

experiment was quenched by aspirating the test solution and washing the cell 

monolayers twice (2 x 1 mL) with KRH/AA buffer.  Nonspecific binding was 

assessed by addition of 10µM mazindol except when mazindol was the drug 

tested, in which case 30µM cocaine was substituted.  The cell monolayers were 

then lysed with 1 mL of 1% SDS solution and incubated at room temperature for 

1 hour with gentle shaking.  Cell solution from each well was then transferred to 

scintillation vials containing 5 mL of ScintSafe fluid and radioactivity was counted 

using a scintillation counter.  Ki, Kd, and BMAX values were determined with 

GraphPad Prism 3.0 software. 
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9.  Protein assays 

 Stable DAT-CHO cells or transient DAT-COS 7 cells subcultured in 6-well 

plates were used for protein assays.  For every experiment carried out that 

required estimates of protein content, two wells were reserved for this purpose.  

The confluent cell monolayers in 6-well plates were washed with 2 x 1 mL PBS.  

Cells in each well were then lysed with 0.5 mL of 0.2N NaOH solution, scraped 

with a rubber policeman, and incubated for 30 min at 4oC with gentle shaking.  

The cell lysates were transferred into Eppendorf tubes for storage at -20oC or for 

immediate estimation of protein content.  Protein assays were conducted 

according to the method of Bradford.  For each assay, carried out in duplicate, 

780 µL of water was added to 20 µL of cell lysate in a test tube and mixed gently.  

200 µL of BioRad “micro-Bradford” reagent was then added to the cell solution, 

vortexed for 10 sec, and incubated at room temperature for 5 min.  The 

absorbance of the protein/ dye solution was measured at 595 nm using a 

spectrophotometer.  The concentration of protein was calculated by interpolating 

the absorbance reading of the sample protein using protein standard curve. 

This curve was generated using BSA (1mg/mL stock solution) as protein 

standard.  A serial dilution of the BSA stock solution in water was performed to 

make six different concentrations of BSA such that the final concentrations were 

1, 2, 3, 4, 5, and 6 µg/ mL.  The initial volume for each dilution was 800 mL (e.g. 

for 2µg/ mL: 2µL of 1mg/mL BSA + 798 µl of water).  200 µL of BioRad reagent 

was then added to each test tube containing the protein dilutions (bringing the 

total volume of reaction to 1 mL), vortexed for 10 sec, and incubated at room 
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temperature for 5 min.  The absorbance of each protein dilution was read at 595 

nm using a spectrophotometer.  A protein standard curve (plot of absorbance 

versus amount of protein) was generated using the Excel software. 
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III.  RESULTS AND DISCUSSION 
 

A.  Results 

1.  Expression, localization and function of WT DAT and D79 mutant DATs 

 WT DAT and four D79 mutant DATs (D79A, D79E, D79L, D79N) were 

screened for their abilities to bind [3H]WIN35,428, take up [3H]dopamine, or 

target to the cell membrane.  The mutant DATs were made by site-directed 

mutagenesis and confirmed by DNA sequencing.  These mutants were used to 

characterize features of the TM1 aspartic acid residue important for dopamine 

uptake and inhibitor recognition.  A mutation from aspartate to alanine (D79A) 

results in a large decrease in size and a loss of charge and polarity of the 

residue.  The mutation of aspartate 79 in rDAT to glutamate (D79E) is a 

conservative exchange as these two amino acids differ from one another only by 

one methylene group.  The D79L mutation provides a leucine side chain that 

causes a loss in the negative charge and hydrogen bonding potential of 

aspartate but retains a size similar to that of aspartate.  An asparagine for 

aspartate substitution at position 79 of DAT (D79N) eliminates the negative 

charge but retains the hydrogen bonding potential of the residue.  All constructs 

were assessed in parallel using a one point binding assay.  Relative to WT DAT, 

only the D79E DAT mutant displayed detectable specific binding of 

[3H]WIN35,428 (P<0.05, compared with vector transfected cells) (Fig. 3).   

The D79 mutant DATs were also tested for functional uptake by incubating 

COS 7 cells transiently transfected with the cDNA of WT DAT or the D79 mutant 
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DATs with 10 nM [3H]dopamine for 5 min at 22oC.  The D79E DAT mutant was 

yet again the only mutant DAT that displayed functional uptake of [3H]dopamine 

(P<0.001, compared with vector-transfected cells) (Fig. 4).   

 

 

 

              

 
Figure 3.  Determination of [3H]-WIN35,428 specific binding by COS-7 cells expressing WT 
or D79 mutant DAT proteins.  

The extent of specific [3H]-WIN35,428 binding as a percentage of WT DAT was assessed 
for cells transiently transfected with plasmids encoding D79A, D79E, D79L or D79N DAT, or the 
plasmid vector lacking DAT sequence (“Vec”). The data represent an average of 5 separate 
experiments. * P < 0.05 (Student T test) relative to "vector alone" control.  Reprinted with 
permission from ASPET from Ukairo et al., 2005. 
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Figure 4.  Determination of [3H]-dopamine uptake ability by COS-7 cells expressing WT or 
D79 mutant DAT proteins.  

The extent of total [3H]-dopamine uptake as a percentage of WT DAT was assessed for 
cells transiently transfected with plasmids encoding D79A, D79E, D79L or D79N DAT, or the 
plasmid vector lacking DAT sequence (“Vec”). The data represent an average of 5 separate 
experiments. *P< 0.001 (Student T test) relative to "vector alone" control. 
 

Confocal microscopy experiments, however, showed that all the DAT 

protein constructs tested were expressed at the cell surface (Fig. 5).  Cell surface 

expression of WT DAT and D79 mutant DAT proteins had earlier been confirmed 

by biotinylation and western blotting data from our laboratory; D79N DAT, 

nevertheless, displayed a diminished cell surface expression when compared to 

WT DAT (Wang et al., 2003).  The fact that all D79 mutant DATs were expressed 

on the cell plasma membrane suggests that the functional and radioligand 

binding deficits observed were not due to an inability to target to the cell surface. 

Only the WT DAT and D79E DAT mutant were further characterized due to the 

failure to detect either radioligand specific binding (Fig. 3) or [3H]-dopamine 

uptake (Fig. 4) in the other mutant constructs.  
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Figure 5.  Localization of WT or D79 mutant DAT in DAT-COS 7 cells under confocal laser-
scanning microscope.  

COS 7 cells transiently transfected with WT DAT or D79 mutant DAT were stained with 
monoclonal anti-DAT antibody and visualized with Alexa Fluor 488 (green signal). The cells were 
also stained with rhodamine phalloidin (red signal) to label cortical F-actin, a marker at the cell 
membrane. Overlay view (yellow signal) shows the co-localization of WT DAT or D79 mutant DAT 
with F-actin. Shown are representative confocal images of four different experiments. Scale bar = 
8.00µm for all images.  Reprinted with permission from ASPET from Ukairo et al., 2005. 
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2.  Assessing the role of DAT TM 1 D79 residue in dopamine uptake 

 The dopamine uptake inhibition potencies (DUIPs) and binding affinities 

of various dopamine analogs at WT DAT and D79E DAT were tested.  This study 

investigated the effect of modifying the catechol moiety of dopamine to overall 

substrate transport and also verified whether the D79 side chain of DAT was 

involved in recognition of some feature of the substrate catechol ring moiety.  

The drugs tested were: (+)-amphetamine, (-)-amphetamine, p-tyramine, m-

tyramine, norepinephrine, and dopamine (Fig. 6).   
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Figure 6.  Chemical structures of DAT substrates employed in [3H]-WIN35,428 and [3H]-
dopamine displacement assays. 
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The Km for dopamine uptake and the Ki for dopamine inhibition of 

[3H]WIN35,428 binding were unaffected by the D79E mutation (Table 1).  These 

data contradict the long-held hypothesis of an ionic interaction between 

dopamine and aspartate-79 as being the principal means of interaction between 

dopamine and the DAT.   Norepinephrine (addition of a β-OH group to dopamine) 

was equipotent at both WT DAT and D79E DAT at inhibiting dopamine uptake.  

On the other hand, the D79E mutation caused a two-fold loss in the binding 

affinity of norepinephrine (Table 1).  The D79E mutation had little or no effect on 

the DUIPs of m-tyramine or p-tyramine (each lacking one of the catechol OH 

groups found in dopamine); the mutation, nevertheless, decreased the binding 

affinities of both compounds by more than 5-fold (Fig 7, and Table 1).  The D79E 

mutation induced a 5-fold loss in the DUIP and a 9-fold loss in the binding affinity 

of S(+)-amphetamine (lacking both catechol OH groups and adding an α–methyl 

group) (Table 1).  The DUIP of the less psychoactive R(-)-amphetamine isomer 

was not significantly affected by the D79E mutation, but its binding affinity was 

diminished by about 4-fold (Table 1).  The DUIPs for m-tyramine, p-tyramine and 

(-)-amphetamine at both DAT constructs suggest that loss of one or both 

catechol OH groups was tolerated by D79E DAT, while the binding affinities of 

the three substrates were markedly diminished by the mutation. 
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Figure 7.  m-Tyramine or p-Tyramine inhibition of [3H]-dopamine uptake or [3H]WIN35,428 
binding. 

The [3H]-dopamine uptake inhibiton (A and C) and inhibition of [3H]WIN35,428 binding (B 
and D) experiments were done under identical conditions at CHO cells stably transfected with WT 
DAT (filled symbols) or D79E DAT (open symbols).  The data are representative of at least three 
independent experiments. 
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Table 1.  Effect of DAT substrates on CHO cells stably expressing WT and D79E DAT.   
KM and Ki values were derived from experiments incubating the stably transfected cells 

with nonradioactive substrates in the presence of [3H]-dopamine or [3H]-WIN35,428 at 22OC in 
KRH/AA buffer.  Values are presented as mean ± S.E.M. for three to six independent 
experiments.  Reprinted with permission from ASPET from Wang, Sonders, Ukairo et al., 2003. 
 

  Ki or KM  
WT DAT  D79E DAT 

  (µM)  
[3H]- dopamine uptake    

Dopamine 1.7 ± 0.3  2.3 ± 0.3 
Norepinephrine 5.4 ± 0.5a  5.2 ± 0.3a

m-Tyramine 1.4 ± 0.3  1.2 ± 0.3a

p-Tyramine 1.7 ± 0.1  3.3 ± 0.4b

(+)-Amphetamine 0.5 ± 0.1  2.4 ± 0.3b

(-)-Amphetamine 2.8 ± 0.5  4.2 ± 0.5a

[3H]-WIN35,428 inhibition    
Dopamine 2.1 ± 0.2  2.5 ± 0.4 

Norepinephrine 2.3 ± 0.5c  5.5 ± 0.7a,b

m-Tyramine 1.0 ± 0.2a  6.6 ± 1.2a,b,c

p-Tyramine 0.8 ± 0.1a,c  4.3 ± 0.5b

(+)-Amphetamine 0.4 ± 0.1a  3.7 ± 0.8b

(-)-Amphetamine 2.0 ± 0.2  8.1 ± 0.5a,b,c

 

 

a P<0.05 versus dopamine for the given assay and DAT construct (Student’s T test) 
b P<0.05 versus WT DAT for that assay (Student’s T test) 
c P<0.05 for [3H] for WIN inhibition versus dopamine uptake at the same DAT construct (Student’s 
T test) 
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3.  Effect of DAT inhibitors on CHO cells stably expressing WT or D79E 

DAT 

WT DAT and D79E DAT stably-transfected CHO-K1 cell lines were 

employed to characterize the DUIPs and binding affinities of various DAT 

inhibitors (Fig 8).  In order to better assess the key functional groups important 

for DAT recognition, DAT inhibitors containing various pharmacophore 

modifications of cocaine were selected for analysis.  The Ki values for DUIP and 

binding affinity were obtained from inhibition of [3H]-dopamine uptake and [3H]-

WIN35,428 binding inhibition experiments respectively; both assays were carried 

out under the same conditions.  Previously, it was shown that the D79E DAT 

mutation had little or no effect on the DUIPs of the classical DAT inhibitors 

cocaine, WIN35,428, methylphenidate and mazindol (Wang et al., 2003).  Except 

for benztropine (structurally different from cocaine by having a diphenylmethoxy 

group at the C-3 position), all other drugs studied here displayed this same DUIP 

pattern.  The DUIP of 8-oxa-norcocaine, an analog of cocaine lacking the tropane 

nitrogen and thus a positive charge, was unaffected by the D79E mutation (Table 

2).  Furthermore, the DUIPs of 4-ARA-127, rimcazole and GBR-12909 (all 

compounds containing the piperidine or piperazine substitution of the tropane 

ring) were unaffected by the D79E DAT mutation (Fig. 9, and Table 2).  In 

contrast, the DUIP of benztropine was 8 fold higher at D79E DAT than at WT 

DAT, a deviation from the trend observed for the other drugs (Fig 9 and Table 2).   
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Figure 8.  Chemical structures of DAT inhibitors employed in [3H]-WIN35,428 and [3H]-
dopamine displacement assays.   

Reprinted with permission from ASPET from Ukairo et al., 2005. 
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The mutation had a different effect on the binding affinities of the drugs studied.  

The binding affinities of cocaine, WIN35,428, 8-oxa norcocaine, mazindol, and 

methylphenidate were about 3-8 fold less at D79E DAT when compared with WT 

DAT values.  The mutation had no effect on the binding affinities of GBR-12,909 

and rimcazole but elevated the binding affinity of ARA-127 by 2-fold (Table 2).  

As was earlier reported for cocaine, WIN35,428, methylphenidate, and mazindol, 

the binding affinities for rimcazole and 8-oxanorcocaine were 3-6 fold higher than 

their DUIPs at WT DAT.  The binding affinities for 4-ARA-127 and GBR-12,909 at 

WT DAT were 2 fold lower than their DUIPs (Table 2).  On the other hand, 

benztropine was equipotent at inhibiting [3H]WIN35,428 binding and 

[3H]dopamine uptake at WT DAT (Tables 2 and 3).  The binding affinities and 

DUIPs of cocaine, mazindol, methylphenidate, WIN35,428, and 4-ARA-127 at 

D79E DAT were identical (Table 2).  For 8-oxa-norcocaine and rimcazole, 

however, the binding affinity at D79E DAT was 2 - 4 fold higher than DUIP.  

Benztropine and GBR-12,909 were 3 fold less potent as inhibitors of 

[3H]WIN35,428 binding than as inhibitors of [3H]dopamine uptake at D79E DAT 

(Tables 2 and 3).  

Seeing that the D79E mutation affected only the DUIP of benztropine, the 

pharmacological profiles of structural analogs of this drug were further examined 

at WT and D79E DAT.  Except for 4',4"-difluoroBZT and GBR-12,909, the DUIPs 

of all other benztropine analogs were diminished by the D79E mutation but to 

different extents (Table 3).  Intriguingly, the considerably different DUIPs of the  
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Figure 9.  Effect of DAT inhibitors on CHO cells stably expressing WT or D79E DAT 
GBR-12,909 (squares), methylphenidate (diamonds) and benztropine (circles) inhibition 

of [3H]-dopamine uptake (left graph) or [3H]-WIN 35,428 binding (right graph) under identical 
conditions at CHO cells stably transfected with WT DAT (filled symbols) or D79E DAT (open 
symbols). The data are representative of at least 3 independent experiments.  Reprinted with 
permission from ASPET from Ukairo et al., 2005. 
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Figure 10.  Effect of benztropine and BZT analogs on CHO cells stably expressing WT or 
D79E DAT.   

Benztropine (circles), 4'-chlorobenztropine (upright triangles) and 3β-4'-chlorobenztropine 
(inverted triangles) inhibition of [3H]-dopamine uptake (left graph) or [3H]-WIN 35,428 binding 
(right graph) under identical conditions at CHO cells stably transfected with WT (filled symbols) or 
D79E DAT (open symbols). The data are representative of at least 3 independent experiments.  
Reprinted with permission from ASPET from Ukairo et al., 2005. 
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benztropine analogs (ranging from 15 – 964 nM) at the WT DAT were unified to 

approximately 20 nM at D79E DAT (Fig. 10 and Table 3).  Additional benztropine 

analogs were investigated to assess the effects of adding larger groups to the 

tropane and phenyl rings.  Replacement of the N-methyl group of 4',4"-

difluoroBZT with the charge-neutral N-formyl group (N-CHO-4,4’-diFBZT) caused 

a profound reduction in DUIPs at both WT and D79E DAT (Table 3).  Although 

the D79E mutation increased the DUIP of this compound, the Ki for inhibiting 

dopamine uptake diverged from the Ki of 20 nM at D79E DAT observed for other 

benztropine analogs.  The binding affinity of N-CHO-4,4’-diFBZT was increased 

by 3 fold by the mutation.  4'-trifluoromethylBZT, a benztropine analog having a 

larger aryl group on one of the phenyl rings, also diverged from the 20 nM DUIP 

D79E DAT pattern. The D79E mutation increased the DUIP of 4'-

trifluoromethylBZT by about 4 fold but had no effect on its binding affinity (Table 

3).  Interestingly, the 3β-4-chlorobenztropine compound (with its diphenyl ether 

group in the β position) also yielded a DUIP of approximately 20 nM at D79E 

DAT. The mutation caused a 37-fold increase in the DUIP of 3β-4-

chlorobenztropine in order to achieve the 20 nM DUIP. 

For most of the benztropine analogs, the D79E mutation had no effect on 

their binding affinities.  Increased binding affinities due to the mutation were 

observed only for 3β-4-chloroBZT (3 fold) and N-formyl-difluoroBZT (5-fold) 

(Table 3).  The DUIP data of benztropine and its analogs suggested a connection 

between modifications of the tropane ring C-3 position of cocaine and 

modifications of the DAT D79 side chain.  
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Table 2.  Dopamine uptake inhibition potencies and binding affinities of structurally 
diverse DAT inhibitors at CHO cells stably expressing WT or D79E DAT.   

Kd (WIN35,428 only) and Ki values were derived from experiments incubating the stably-
transfected cells with nonradioactive ligands in the presence of [3H]dopamine or [3H]WIN35,428 
at 22oC in KRH/AA buffer.  Values are presented as Mean ± SEM for 3 - 6 independent 
experiments.  Of the 9 structurally diverse DAT blockers studied, only the DUIP of benztropine 
was substantially altered by the D79E mutation.  Reprinted with permission from ASPET from 
Ukairo et al., 2005. 

 
 

   Ki (nM)  
 WT  D79E 

[3H]- Dopamine uptake    
WIN35,428a 74 ± 17  71 ± 12 

ARA-127 1630 ± 200  1540 ± 120 
Cocainea 555 ± 29  1126 ± 32b

Oxa-norcocaine 9777 ± 1489  8196 ± 340 
Mazindola 31 ± 3  47 ± 4 

Methylphenidatea 152 ± 20  161 ± 9 
Benztropine 160 ± 37  19 ± 3b

GBR-12,909 15 ± 3  40 ± 9 
Rimcazole 643 ± 43  691 ± 76 

[3H]-WIN35,428 inhibition    
WIN35,428a 20 ± 1c  68 ± 4b

ARA-127 3300 ± 40c  1570 ± 210b

Cocainea 128 ± 5c  1066 ± 84b

Oxa-norcocaine 1564 ± 212c  5533 ± 653b,c

Mazindola 13 ± 1c  41 ± 3b

Methylphenidatea 57 ± 3c  167 ± 2b

Benztropine 127 ± 22  51 ± 5b,c

GBR-12,909 31 ± 5  40 ± 9 
Rimcazole 180 ± 26c  226 ± 38c

 

 

 

a Wang et al. (2003) Mol. Pharmacol. 64: 430 - 439   
b P<0.05 versus WT DAT for that assay 
c P<0.05 for WIN inhibition vs. dopamine uptake at the same DAT construct 
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Table 3.  Dopamine uptake inhibition potencies and binding affinities of benztropine and 
its analogs at CHO cells stably expressing WT or D79E DAT.   

Ki values were derived from experiments incubating the stably-transfected cells with 
nonradioactive inhibitors in the presence of [3H]dopamine or [3H]WIN35,428 at 22oC in KRH/AA 
buffer.  Values are presented as mean ± SEM for 3 - 6 independent experiments.  Reprinted with 
permission from ASPET from Ukairo et al., 2005.  

  

 

  Ki (nM)  
 WT DAT  D79E DAT 

[3H] - Dopamine uptake    
Benztropine 160 ± 37  19 ± 3a

4-chloroBZT 83 ± 6  19 ± 3a

3β-4-chloroBZT 964 ± 161  26 ± 4a

4,4'-difluoroBZT 22 ± 4  18 ± 3 
4-trifluoromethylBZT 1282 ± 79  330 ± 36a

N-CHO-4,4’-diFBZT 21760 ± 2857  1575 ± 452a

GBR-12,909 15 ± 3  14 ± 3 
[3H]–WIN35,428 inhibition    

Benztropine 127 ± 22  51 ± 5a,b

4-chloroBZT 45 ± 6b  44 ± 10b

3β-4-chloroBZT 680 ± 123  120 ± 35a,b

4,4'-difluoroBZT 8 ± 1b  9 ± 2b

4-trifluoromethylBZT 541 ± 71  359 ± 25 
N-CHO-4,4’-diFBZT 12730 ± 1996  3840 ± 746a

GBR-12,909 31 ± 5  40 ± 9 
 

 

 

aP<0.05 versus WT DAT for that assay 
bP<0.05 for WIN inhibition vs. dopamine uptake at the same DAT construct 
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4.  Effects of cell age, density and DAT cell surface expression on the 

DUIPs of classical DAT inhibitors 

Previous observations indicated that the DUIP of cocaine at WT DAT 

varied with cell age (C.K. Surratt, unpublished data).  The study was enlarged to 

determine whether this phenomenon was unique to cocaine or could be 

extended to other classical DAT inhibitors such as mazindol, methylphenidate, 

and benztropine.  The influence of cell density (%confluence) and DAT cell 

surface expression levels on inhibitor DUIP fluctuation was also investigated.  

The WT DAT-CHO K1 stable cell line was used for the study.  Cells in passages 

9 - 20, 25 - 36, and 40 - 54 were described as “low”, “medium”, and “high” 

passage cells, respectively.  The DUIPs for these classical DAT blockers differed 

between “low passage” (P9 - P20) and “high passage” (P40 - P54) WT DAT CHO 

cells in a statistically significant fashion (Fig 11 and Table 4).  The Ki value for 

inhibition of [3H]dopamine uptake (for all the drugs tested) was about 2 fold less 

at low passages when compared with high passage values.  In contrast, assays 

conducted in parallel indicated that apparent binding affinities (measured by 

displacement of [3H]-WIN35,428) of these 4 inhibitors were not subject to cell 

passage number.  WT DAT Bmax values for [3H]-WIN35,428 binding varied 

significantly between the “low” and “high” passage cells; however, the Kd values 

for all treatment groups remained unchanged (Table 4).   

The DUIP of cocaine at WT DAT-CHO cells grown to different densities in 

6-well plates was also investigated.  Neither the DUIP nor the apparent binding 

affinity of cocaine was influenced by the density (% confluence) of the cell 
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monolayer (Table 5).  The cells were grown to 20%, 100% and 150% confluence.  

The monolayer is defined as “100% confluent” when all cells appeared to be in 

contact with neighboring cells, so as not to leave open spaces on the culture 

dish.  

Manipulation of WT DAT expression level via transient transfection of 

COS-7 cells with an amount of DAT plasmid cDNA 4-fold lower than optimal 

resulted in a statistically significant fluctuation in the dopamine uptake inhibition 

potency of cocaine (Table 6). 
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Figure 11.  Effect of methylphenidate on WT DAT-CHO cells of different passage numbers. 
Methylphenidate inhibition of [3H]-dopamine uptake (left panel) or [3H]-WIN35,428 binding 

(right panel) under identical conditions at WT DAT CHO cells of different passage number.  The 
data are representative of at least 3 independent experiments.  Passages of 9 -20, 25 - 36 and 40 
- 54 were classified as “low”, “medium” and “high”, respectively. 
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Table 4.  Effect of DAT blockers on WT DAT-CHO cells of different passage numbers. 
Inhibition of [3H]-dopamine uptake or [3H]-WIN35,428 binding by classical DAT blockers 

under identical conditions at WT DAT CHO cells of different passage number.  Ki values were 
derived from experiments incubating the stably-transfected cells with nonradioactive DAT 
inhibitors in the presence of [3H]-dopamine or [3H]-WIN 35,428 at 22OC in KRH buffer.  Passages 
of 9 -20, 25 - 36 and 40 - 54 were classified as “low”, “medium” and “high”, respectively.  (The 
ranges for an individual drug were narrower, as testing with a given inhibitor was completed 
before the next inhibitor was addressed).  Mean ± SEM for at least 3 independent experiments. 
 

 

 Cell Passage 
 Low Medium High 
  Ki (nM)  
[3H]-DA uptake inhibition    

Cocaine 719 ± 94 1055 ± 52 1503 ± 127a

Mazindol 44 ± 4 74 ± 5 93 ± 17a

Methylphenidate 352 ± 17 640 ± 22 662 ± 45a

Benztropine 236 ± 40 395 ± 45 413 ± 27a

[3H]-WIN35,428 inhibition    
Cocaine 179 ± 22 197 ± 22 251 ± 28 
Mazindol 15 ± 2 19 ± 2 20 ± 2 

Methylphenidate 74 ± 7 72 ± 5 85 ± 6 
Benztropine 78 ± 6 85 ± 9 92 ± 10 

[3H]-WIN35,428 binding     
Kd (nM) 17 ± 1 17 ± 2 18 ± 1 

Bmax (pmol/mg) 9 ± 2 11 ± 2 19 ± 3b

 

 

 

aP < 0.05 vs. low passages for the same drug in the uptake assay (one-way ANOVA, Newman-
Keuls post hoc test) 
bP < 0.05 vs. low passages in the [3H]WIN35,428 saturation binding assay (one-way ANOVA, 
Newman- Keuls post hoc test). 
 

 

 

 

 

 

  



 70

Table 5.  Effect of cell density on the DUIP and binding affinity of cocaine at WT DAT-CHO 
cells. 

Cocaine inhibition of [3H]-dopamine uptake or [3H]-WIN35,428 binding under identical 
conditions at WT DAT CHO cells as a function of cell density (% confluence).  Experiments were 
carried out with intact cell monolayers at 20%, 100%, and 150% confluence.  Ki values were 
derived from experiments incubating the stably-transfected cells with cocaine in the presence of 
[3H]-dopamine or [3H]-WIN35,428 at room temperature in KRH buffer. Data are mean ± SEM for 3 
- 4 experiments.  

 

 

      Confluence (Cell Density) 
 20% 100% 150% 
    
 Ki (nM) 

Cocaine    
[3H]-DA uptake inhibition 505 ± 108 534 ± 109 540 ± 62 
[3H]-WIN35,428 inhibition 260 ± 25 240 ± 12 201 ± 16 

 

 

 

Kinetic analysis of [3H]dopamine uptake revealed a significant increase 

(P<0.05, one-way ANOVA; n = 4) in Vmax of dopamine uptake in WT DAT-CHO 

cells with increasing cell passage number (low<medium<high) (Fig 12 and Table 

7).  This increase in Vmax was associated with an increase in WT-DAT cell 

surface expression (Bmax) at higher passage numbers.  The turnover number of 

WT DAT (expressed as Vmax/Bmax), however, did not vary significantly between 

the “low”, “medium” and “high” passage cells (Table 7).  A statistical comparison 

of the Vmax/Bmax values for the different groups was not possible as these are 

ratios of mean values.  “Low”, “medium” and “high” passage cells showed no 

significant changes in Km values for [3H]dopamine uptake. 
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Table 6.  Effects of DAT cell surface expression on the DUIP of cocaine  
Cocaine inhibition of [3H]-dopamine uptake by COS-7 cells transiently transfected with 

various amounts of a plasmid cDNA encoding WT DAT.  “PolyFect”-mediated transient 
transfections were carried out using 375, 750 or 1500 ng WT DAT - pIRES plasmid per 35 mm 
well containing a confluent monolayer of COS-7 cells.  Cell monolayers were assayed for [3H]-
dopamine uptake and its inhibition by cocaine at room temperature in KRH buffer 48 hours after 
transfection.  Ki values are the Mean ± SEM for 3 experiments. 
 

 

 WT DAT – pIRES Plasmid 
 ng DNA / 35 mm well 
 375 750 1500 
  Ki (nM)  

[3H]-DA uptake inhibition  
Cocaine 228 ± 7 353 ± 20 558 ± 75a

[3H]-WIN35,428 binding    
Kd (nM) 12 ± 2 15 ± 2 14 ± 2 

Bmax (pmol/mg) 0.8 ± 0.4 2.0 ± 0.5 4.0 ± 0.2 
 

 

aP < 0.05 vs. dopamine uptake inhibition Ki values for assays employing 375 ng plasmid 
transfections (one-way ANOVA, Newman-Keuls post hoc test) 
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Figure 12.  Dopamine uptake saturation kinetics of WT DAT CHO cells of different passage 
numbers.   

CHO cells stably transfected with WT DAT were incubated with increasing concentrations 
of a fixed ratio of [3H]dopamine: nonradioactive dopamine (0.5 – 16 µM dopamine at 0.1 Ci/mmol) 
as indicated in the method section.  The data are representative of 4 independent experiments.  
Passages of 9 -20, 25 - 36 and 40 - 54 were classified as “low”, “medium” and “high”, 
respectively.  Km and Vmax values were determined by fitting the rate versus concentration data.  
The inset shows an Eadie- Hofstee plot of the data with lines drawn from the derived kinetic 
constants.  See Table 7 for a summary of the calculated data. 
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Table 7.  Kinetic and binding characteristics of rDAT wild-type in CHO cells of different 
passage numbers.   

Km and Vmax values were derived from uptake experiments incubating the WT DAT cells 
with dopamine at 0.1 Ci/mmol for 5 min at 22oC.  Nonlinear regression analysis was employed to 
accurately determine Km and Vmax values.  Bmax values were derived from [3H]WIN35,428 
saturation binding experiments.  Km, Vmax, and Bmax values are the mean ± SEM for at least three 
independent experiments. 

 
 

 Cell Passage 
 Low Medium High 
Vmax(pmol/min.mg protein-1) 681 ± 18 1136 ± 85a,b 1645 ± 202a

Km (µM) 1.1 ± 0.2 1.4 ± 0.2 2.0 ± 0.4 
Bmax (pmol/mg) 9 ± 2 11 ± 2 19 ± 3c

Vmax/Bmax 76/min 103/min 87/min 
 
 
 

aP < 0.05 vs. low passages in the uptake assay (one-way ANOVA, Newman-Keuls post hoc test) 
bP < 0.05 vs. high passages in the uptake assay (one-way ANOVA, Newman-Keuls post hoc test) 
cP < 0.05 vs. low passages in the [3H]WIN35,428 saturation binding assay (one-way ANOVA, 
Newman- Keuls post hoc test). 
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B.  Discussion 

A TM 1 aspartic acid residue (Position 79 in the DAT) is conserved among the 

NSS proteins that conduct the aromatic monoamine neurotransmitters dopamine, 

norepinephrine, epinephrine and serotonin across the plasma membrane.  This 

negative charge on aspartic acid has been proposed to serve as the counter-ion 

for the positively charged nitrogen atom present in all classical DAT inhibitors 

including cocaine (Carroll et al., 1992).  In the present study alanine, leucine, 

asparagine or glutamate substitutions at this position were generated in order to 

assess the importance of side chain length, hydrogen bonding potential and 

negative charge for recognition of DAT inhibitors.  Only the D79E DAT mutant 

displayed detectable specific binding of [3H]-WIN35,428 (Fig. 1) or functional 

uptake of [3H]dopamine (Fig. 2).  Consequently, only WT DAT and D79E DAT 

stably transfected cell lines were employed in the present study with a range of 

DAT substrates as well as DAT blockers either structurally dissimilar to cocaine 

or containing variations of the 3 primary components of the cocaine 

pharmacophore, the positively charged tropane nitrogen atom, the tropane ring, 

and the C-3 aromatic substituent. 

 Using various dopamine analogs, the possibility that D79 is involved in 

recognition of some feature of the substrate catechol ring moiety was tested.  

The dopamine uptake inhibition potencies for the tyramines and (-)-amphetamine 

at WT versus D79E DAT indicated, however, that loss of one or both catechol 

hydroxyl groups were essentially tolerated by D79E DAT.  Binding affinities for 

these three substrates, on the other hand, were reduced several fold by the 
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mutation.  The result suggests that different DAT conformations or populations 

are responsible for DUIP and high affinity binding.  Thus, one DAT conformation 

or population is apparently more sensitive to alterations in the substrate catechol 

moiety than is a second DAT conformation/population.  An "aromatic pocket" role 

for the DAT D79 residue is consistent with the fact that the aspartate is 

conserved among the NSS proteins whose substrates bear an aromatic moiety.  

A glycine residue is found in the analogous position for members of the same 

transporter family that recognize nonaromatic substrates (eg. Glycine, GABA, 

betaine) that nevertheless retain the protonated amino group (Wang et al., 2003). 

As stated above, the aromatic moiety of dopamine would be the most logical 

substrate functional group to show dependence on the D79 DAT residue. 

To investigate the importance of the positive charge of cocaine to its 

action at the DAT, we employed a compound for which the N-8 of the tropane 

ring was replaced with a charge-neutral oxygen atom, a modification that has 

previously been shown to spare dopamine uptake inhibition potency (DUIP) and 

specific binding at WT DAT (Kozikowski et al., 1999).  The Ki for inhibition of 

dopamine uptake by 8-oxa-norcocaine at D79E DAT was similar to WT values; 

binding affinity was, however, diminished by almost 4 fold (Table 1).  The 

glutamate-for-aspartate switch is often thought of as a conservative mutation.  

Recent findings indicate that although these two amino acids differ only by one 

methylene group, they have different spatial preferences (Johnson and Peterson, 

2001).  Furthermore, aspartic acid has been shown to favor interactions between 

the side chain carbonyl group and a backbone carbonyl group resulting in a ring-
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like structure which is not observed for glutamic acid (Deane et al., 1999).  

Consequently, if D79 is actually situated in the binding pocket of the DAT, a 

D79E mutation should introduce some steric hindrance to the ligand binding 

cavity considering the different spatial preferences of the two amino acids.   The 

observation that the DUIP of this charge-neutral cocaine analog is unaltered by 

an allegedly more crowded binding pocket is not in agreement with (but not 

exclusive of) the postulate that a salt bridge between the D79 residue and the N-

8 atom is the principal, governing DAT - cocaine interaction.  The 8-oxa-

norcocaine compound paralleled cocaine in that Ki values suggest its affinity to 

be several fold greater than its DUIP at WT DAT, and in that its affinity and DUIP 

values were less than 2 fold apart at D79E DAT. 

 To verify the significance of the cocaine tropane ring with respect to the 

D79 side chain, DAT inhibitors that possess a piperidine or piperazine in place of 

the tropane ring were employed in binding and uptake inhibition assays (Table 

2).  A number of piperidine-based cocaine analogs have been shown to be 

effective in blocking binding of DAT ligands or dopamine uptake at the DAT 

(Kozikowski et al., 1998; Tamiz et al., 2000), demonstrating that the tropane ring 

of cocaine is not absolutely required for cocaine action at the transporter.  The 

compound employed in the present work, 4-ARA-127, is a WIN35,428 analog 

that lacks the 6,7-bridgehead of the tropane ring and contains a p-chlorophenyl 

instead of a p-fluorophenyl substituent on what would be C-3 of the tropane ring 

(Fig. 3).  The D79E mutation had little or no effect on the pharmacology of this 

piperidine-based cocaine analog (Table 2).  The D79E mutation also did not alter 
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the pharmacological profile of the piperazine-based compounds, GBR-12,909 

and rimcazole (Table 2).  These data indicate that the role of the D79 residue 

may not include recognition of the tropane ring (or piperidine/piperazine ring 

replacement) of these DAT inhibitors. 

It was predicted that the third position of the cocaine pharmacophore, an 

aromatic group at the tropane C-3 position, would be the most sensitive to 

alterations of the DAT D79 side chain.  For an inhibitor that directly blocks 

dopamine binding at a DAT site in which the D79 residue is crucial, an aromatic 

ring would be the more logical primary pharmacophore for this role.  An aromatic 

moiety is obligatory at the tropane C-3 position of cocaine for DAT inhibition, and 

even for inhibitors missing the tropane structure an aromatic ring is necessary 

(Carroll et al., 1992, Newman and Kulkarni, 2002).  Based on this fact,  the 

contribution of the tropane C-3 substituent to DAT inhibition was investigated in 

detail by testing benztropine, possessing one of the more pronounced structural 

variations at this position, with the D79E mutant.  Of 9 structurally diverse DAT 

blockers initially studied, only the DUIP of benztropine was altered to a large 

extent by the D79E mutation (Table 2). 

It is possible that the D79E mutation influences recognition of the common 

diphenylmethoxy pharmacophore given that benztropine and several of its 

analogs yielded the same DUIP at D79E DAT despite often very different DUIPs 

at WT DAT (Table 3).  Unlike WT DAT, the D79E DAT protein was by and large 

tolerant of diphenylmethoxy ring substituents, especially surprising considering 

the marked reorientation of the diphenylmethoxy moiety in the 3β-4'-
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chlorobenztropine derivative.  Optimal binding at the DAT is achieved when the 

diphenyl ether of benztropine is in the axial or α-stereochemistry; both aryl rings 

are required and cannot be held in a rigid cyclic structure (reviewed in Newman 

and Kulkarni, 2002).  The pharmacological profile of the different benztropine 

analogs at D79E DAT suggests that the D79E substitution may have enhanced 

DAT interaction with the diphenylmethoxy moiety possibly by providing a 

"roomier" binding pocket for this pharmacophore that accommodates different 

halogen substituents and ring orientations.  Both of the phenyl rings of 

benztropine may simultaneously contribute to inhibition of D79E DAT, but likely 

not when in the same plane.  The phenyl rings of rimcazole are fused and thus 

constrained in space by a bond that creates an intervening pyrrole ring (Fig. 8).  

Comparing results (Table 2) for rimcazole to those for GBR-12,909, its closest 

structural analog in this study, suggest that the phenyl rings must be able to 

rotate freely for potent dopamine uptake inhibition at the DAT.  Furthermore, 

comparative molecular field analysis (CoMFA) of benztropines contends that the 

relative orientation of the phenyl rings is important for DAT affinity (Kline et al., 

1997, Kulkarni et al., 2004). 

There is accumulating evidence that benztropine employs a DAT binding site 

distinguishable from other DAT blockers.  Newman and colleagues have 

identified dissimilarities between benztropine and cocaine actions at the DAT via 

distinctive structure-activity relationship profiles (Newman and Kulkarni, 2002).  

Benztropine altered the accessibility of alkylation agents to wildtype DAT 

cysteine residues in a pattern distinct from the pattern generated by cocaine, 
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WIN35,428 and mazindol (Reith et al., 2001).  The latter study revealed a 

primary alkylation pattern difference at C90, a DAT extracellular loop cysteine 

residue that immediately follows TM 1.  The notion that benztropine is recognized 

by a DAT protein region encompassing the TM 1 D79 residue is supported by 

other DAT structure-function findings.  Chen and colleagues showed that the 

binding affinities for benztropine and GBR12,909, but not those of cocaine or 

WIN35,428, were Na+ dependent at W84L DAT, a mutation of a TM 1 residue 

only 5 positions away from D79 (Chen et al., 2004).   

In addition to different roles of the tropane ring nitrogen and the C-3 position 

aromatic functional groups between cocaine-like and benztropine-like 

compounds, the necessity and nature of the C-2 position substituent also differs 

between these structural classes of DAT inhibitors (Newman and Kulkarni, 2002).  

Cocaine and its analogues require a substituent in the C-2 position (e.g., a 2-

methyl ester for cocaine), a substituent not required for the benztropines to 

exhibit high affinity for DAT.  Indeed, the only 2-methyl ester substituted 

benztropine with affinity for the DAT presents this substituent in a 

stereochemistry opposite to that of cocaine (Meltzer et al., 1994).  These findings 

have been confirmed and expanded (Zou et al., 2002; Zou et al., 2003), and 

preliminary behavioral evaluation of the (+)-2-ester-substituted benztropines 

suggests that the C-2 position substituent plays a role in the behavioral profile of 

these compounds (Newman and Kulkarni, unpublished data). 

From these SAR studies and the data herein, the influence of particular 

functional groups within the C-3 pharmacophore appears to be weighted toward 
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the aromatic ring system.  In the benztropine class, the 4’,4”-difluorophenyl ether 

provides optimal binding affinity at WT DAT.  Molecular modeling of benztropine 

and its most divergent analogs with respect to WT versus D79E DAT 

pharmacology indicates that C-3 aromatic substituents that reduce DUIP at DAT 

fall outside of the optimal binding pocket (Ukairo et al., 2005).  The same is true 

for the neutral tropane N-formyl group of AHN 2-032.  Considering the significant 

DUIP increases for these compounds with the D79E mutation, it may be that the 

benztropine binding pocket is modified by the mutation to increase tolerance for 

these C-3 or tropane nitrogen modifications.  With regard to the latter, it is 

possible that the cocaine and benztropine recognition sites of DAT differ in that 

D79 contributes to recognition of the C-3 pharmacophore of cocaine, but the 

tropane nitrogen of benztropine.  Nevertheless, it should be taken into account 

that the D79E mutation-induced DUIP increase was only slightly more 

pronounced for N-formylbenztropine compared to benztropine itself (Table 2). 

 The mechanism by which the D79E mutation influences the DAT binding 

affinities of the various inhibitors tested remains uncertain.  The D79E mutation 

had little or no effect on the DUIPs of cocaine, WIN35,428, mazindol and 

methylphenidate.  Conversely, their binding affinities were reduced 3-4 fold by 

this mutation (Wang et al., 2003).  The Ki value for displacement of 

[3H]WIN35,428 binding at D79E DAT by these classical DAT inhibitors matched  

their Ki values for inhibition of [3H]dopamine uptake.  Binding Ki values for these 

drugs diverged from their DUIP Ki values at WT DAT.  It appears that the 

mutation eliminates the DAT site, conformation or population responsible for 
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higher affinity binding of these drugs, while sparing the 

site/conformation/population primarily responsible for inhibition of dopamine 

uptake (Fig. 13) (Wang et al., 2003).   

 

 

DAT Population 1                     DAT Population 2 
(Lower WIN Affinity)                           (Higher WIN Affinity)

                      

DA 

 
 
Figure 13.  Model for dopamine uptake and WIN35, 428 binding at DAT 

Two DAT populations (rectangular structures) are represented at the cell surface, within 
the plasma membrane (parallel horizontal lines).  The large majority of [3H]dopamine uptake is 
proposed to be mediated by DAT population 1; population 2 is thus under-represented with 
respect to total uptake of the dopamine radiotracer. Population 1 displays a lower affinity (~70 
nM) for [3H]WIN 35,428 (WIN, inscribed in quasi-pentagonal structure) than does population 2 
(~20 nM); Population 1 is thus underrepresented with respect to total binding of the WIN 35,428 
radiotracer.  Higher levels (e.g., >500 nM) of WIN 35,428 (or other DAT inhibitors employed in the 
study) thoroughly eliminate dopamine uptake by both DAT populations, but the uptake inhibition 
curves reflect actions principally at population 1 (the primary [3H]dopamine conduit). The D79E 
mutation eliminates DAT population 2, eliminating the higher affinity binding of DAT inhibitors but 
affording little or no effect on their dopamine uptake inhibition potencies.  Reprinted from Wang, 
Sonders, Ukairo et al., 2003. 

 

 

The 8-oxa-norcocaine data are also in conformity with this hypothesis 

(Table 2).  In the case of benztropine and structurally analogous compounds, 

binding affinities and DUIPs at WT DAT were lower than, or at best, equal to, 

DA 
 WIN 

 WIN  WIN 

 WT DAT and D79E DAT                                                   WT DAT only 
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those at D79E DAT (Table 3).  Furthermore, binding affinities and DUIPs for 

these compounds at D79E DAT were dissimilar.  For these drugs, the DAT 

site/conformation/population responsible for higher affinity inhibitor binding is 

likely to be different from that for cocaine, and may be affected differently by the 

D79E substitution.   

 The idea of separate DAT populations, as opposed to simply multiple 

binding sites or conformations, is supported by the observations that the DAT 

and other monoamine transporter proteins form functional homooligomeric 

complexes (Kilic and Rudnick, 2000; Hastrup et al., 2001; Schmid et al., 2001; 

Hastrup et al., 2003; Kocabas et al., 2003) as well as complexes with membrane 

and cytoskeletal proteins including Hic-5, PICK-1, α-synuclein and syntaxin 1A 

(Torres et al., 2001; Carneiro et al., 2002; Wersinger and Sidhu, 2003; Lee et al., 

2004).  In fact, the SNARE protein syntaxin 1A, inhibits substrate uptake via 

direct interaction with GABA, glycine, serotonin and norepinephrine transporters, 

all members of the NSS transporter family which includes the DAT (Beckman et 

al., 1998; Geerlings et al., 2000; Haase et al., 2001; Sung et al., 2003).  It has 

been shown that the GABA transporter N-terminal aspartate residues directly 

interacts with syntaxin 1A to modulate transporter function (Hansra et al., 2004).  

It is conceivable, therefore, that the D79E mutation eliminates (or augments) 

DAT populations consisting of complexes with syntaxins or other endogenous 

factors (Ramsey and DeFelice, 2002).  Some TM 1 mutations have been shown 

to alter Na+ or Cl- binding, in turn altering inhibitor affinities (Mager et al., 1996; 

Barker et al., 1999; Chen et al., 2004); possibly, the D79E mutation could 
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manipulate availability of DAT sites, conformations or populations in this way.  It 

is intriguing to consider that structural modification of a DAT inhibitor may alter its 

preference for a certain DAT population, in turn selectively affecting its behavioral 

pharmacology. 

 The lack of correlation between DAT inhibitor DUIPs and apparent binding 

affinities at the WT DAT is well-documented (Pristupa et al. 1994; Eshleman et 

al. 1999) and has yet to be satisfactorily explained.  In the course of this study 

using mammalian cell lines stably-transfected with WT DAT cDNAs, it was 

observed that the DUIP of a given inhibitor will fluctuate even though the 

apparent binding affinity of the drug does not fluctuate.  In order to investigate the 

nature of this phenomenon, three possible influences on DAT function at the 

level of the cultured cell were investigated: the age of the cell line (measured by 

cell passage number), the density of the cell monolayer (i.e., percent 

confluence), and the effect of varying DAT expression level by manipulation of 

transfection conditions.  To ensure that comparisons between DUIP and 

apparent binding affinity were legitimate for a given DAT inhibitor, [3H]-dopamine 

uptake assays, binding assays involving the cocaine analog [3H]-WIN 35,428, 

and versions of each assay that included nonradioactive competitors were 

conducted under identical conditions.  As reported above, a conservative 

glutamate-for-aspartate substitution in TM 1 of the rat DAT protein (D79E) 

decreased apparent binding affinities of several classical DAT inhibitors by 3 - 8 

fold, yet yielded little or no effect on the DUIPs of these blockers (Wang et al., 

2003).  This finding implied that at least two discrete inhibitor-binding DAT sites, 
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conformations or populations exist, and that in this CHO cell system at least, the 

DAT site/conformation/population responsible for inhibitor high affinity binding is 

less responsible for dopamine uptake.  The present findings indicate that the 

“age” of the WT DAT CHO cell line, as defined by cell passage number, appears 

to be relevant to the DUIP for the classical DAT blockers cocaine, mazindol, 

methylphenidate and benztropine.  The DUIP of cocaine was also apparently 

subject to DAT expression levels.  These results can best be explained by a 

model invoking two or more DAT populations, as opposed to two or more DAT 

binding sites or conformations within the same DAT population.  The “cell 

passage number” experiment indicated that DUIPs for all inhibitors tested 

fluctuated suggesting that DAT function is regulated by an unidentified 

intracellular agent, the actions of which are sensitive to cell state (e.g., cell age).  

Reducing DAT expression while holding cell passage number constant also 

caused cocaine DUIP to fluctuate.  Taken together, these results lead us to 

postulate that inhibitor DUIP may be a property of the ratio of “naked” or 

unmodified DAT molecules to “complexed” or posttranslationally-modified DAT 

molecules.  DAT complexes may include homooligomers or heterooligomers 

(with syntaxins or other endogenous proteins/factors capable of modulating DAT 

function).  For example, cellular aging may convert most of a “complexed” or 

posttranslationally-modified population, which is less efficient in dopamine 

transport but more efficient in binding the inhibitor, to the naked or unmodified 

DAT population that is more efficient in dopamine transport but less efficient in 

binding the inhibitor.  This hypothesis is the subject of further investigation in our 
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laboratory.  Given the fact that DAT is a phosphoprotein as well as a 

glycoprotein, the use of inhibitors of DAT phosphorylation and glycosylation will 

be employed to determine the involvement of these pathways in the observed 

changes in inhibitor DUIP due to cell passages.  In addition, the influence of DAT 

oligomerization state on the observed phenomenon will also be investigated.    

If certain DAT populations are more relevant to the mechanism(s) of 

action of cocaine, amphetamines and other psychostimulants, characterization of 

such populations may further development of novel therapeutics for these drugs 

of abuse. 
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IV. CONCLUSIONS 

 
Our results may be of significance to ongoing efforts in the development of 

anti-cocaine medications.  In addressing whether the D79 side chain contributes 

to the DAT binding sites of other portions of the cocaine pharmacophore, only 

inhibitors with variations of the tropane ring C-3 substituent, i.e., benztropine and 

its analogs, displayed a considerably altered DUIP as a function of the D79E 

mutation.  A single conservative amino acid replacement thus distinguished 

structural requirements for benztropine function relative to those for all other 

classical DAT inhibitors.  Thus, it is possible to delineate the mechanism of action 

of this DAT inhibitor, which has a low abuse liability, using DAT mutagenesis and 

other structure-function studies.  The development of drugs, including cocaine 

and benztropine analogs, that inhibit DAT and yet display a distinct behavioral 

profile from cocaine in animal models (Newman et al., 1994; Newman and 

Kulkarni, 2002; Woolverton et al., 2002; Kozikowski et al., 2003) suggest that an 

anti-cocaine medication is attainable.   

The present results also indicate that while apparent binding affinities of 

classic DAT blockers were unchanging at CHO cells stably transfected with the 

wildtype rat DAT, the DUIPs for these inhibitors fluctuated as a function of cell 

passage number.  Manipulation of DAT levels in transiently-transfected COS-7 

cells appeared to influence cocaine DUIP in these cells.  These observations 

suggest that an unidentified cellular agent modulates DAT inhibitor DUIP but not 

binding affinity at the DAT protein. 
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V. APPENDICES 
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Effect of DAT substrates on CHO cells stably expressing WT and D79E DAT.  KM and Ki 
values were derived from experiments incubating the stably transfected cells with nonradioactive 
substrates in the presence of [3H]-dopamine (upper panel) or [3H]-WIN35,428 (lower panel) at 
22OC in KRH/AA buffer.  Values are presented as mean ± S.E.M. for three to six independent 
experiments.  DA, dopamine; NE, norepinephrine; MTA, m-tyramine; PTA, p-tyramine; AMPH, 
amphetamine. 
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Effects of DAT cell surface expression on the DUIP of cocaine.  Cocaine inhibition of [3H]-
dopamine uptake by COS-7 cells transiently transfected with various amounts of a plasmid cDNA 
encoding WT DAT. 
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VII.  ABSTRACT 
 

A long-standing postulate holds that cocaine inhibits DAT-mediated 

dopamine transport via competition with dopamine for formation of an ionic bond 

with the DAT transmembrane 1 aspartic acid residue 79.  A recent study from our 

laboratory indicated that mutation of this aspartate to glutamate (D79E) had little 

or no effect on dopamine affinity or dopamine uptake inhibition potencies for 

WIN35,428 and cocaine, and decreased WIN35,428 affinity by only 3 fold (Wang 

et al., 2003). The study cast doubt on the requirement of a dopamine-D79 ion 

pair, but did not address whether the residue plays a role in recognizing the 

cocaine pharmacophore.  In the present study, DAT inhibitors containing 

variations of three primary components of this pharmacophore- the positively 

charged tropane nitrogen atom, the seven-carbon tropane ring itself, and the 

aromatic substituent at the tropane C-3 position- were assessed for binding 

affinity and dopamine uptake inhibition at the same D79 DAT mutants.  Only 

inhibitors with modifications of the phenyl ring substituent of cocaine, i.e. 

benztropine and its analogs, displayed considerably altered dopamine uptake 

inhibition potency as a function of the D79E mutation.  These observations may 

suggest that the side chain of the D79 residue is important for the recognition of 

the aromatic components of DAT ligands. 

Furthermore, we investigated the influence of cell passage number, the 

density of the cell monolayer and the effect of varying DAT expression levels by 

manipulation of transfection conditions on DAT function.  It was observed that the 

DUIPs of cocaine, mazindol, methylphenidate, and benztropine fluctuated as a 
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function of DAT-CHO cell passage number.  The binding affinities of these DAT 

inhibitors, however, remained static.  Also, the DUIP of cocaine fluctuated as a 

result of variations in DAT cell surface expression.  It is therefore conceivable 

that an unidentified cellular mediator modulates DAT inhibitor DUIP but not 

binding affinity at the DAT protein. 
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