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ABSTRACT  

 

INTER-GRADE AND INTER-BATCH VARIABILITY OF  

PHARMACEUTICAL-GRADE SODIUM ALGINATE 

 

 

 

 

By 

Shao Fu 

December 2011 

 

Dissertation Supervised by Lawrence H. Block, Ph.D. and Peter Wildfong, Ph.D. 

Polymeric excipients are generally the least well-characterized components of 

pharmaceutical formulations. The aim of this dissertation work is to facilitate the quality-

by-design (QbD) approach to pharmaceutical formulation and manufacturing by 

evaluating the inter-grade and inter-batch variability of pharmaceutical-grade polymeric 

excipients. Sodium alginate, a widely used polymeric excipient, was selected for 

evaluation using appropriate analytical methods and test conditions, especially 

rheological methods. The materials used were six different grades of sodium alginate and 

an additional ten batches of one of the grades.  

To compare the six grades, steady shear measurements were conducted on 

solutions at 1, 2, and 3% w/w, consistent with their use as thickening or binding agents. 
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Small amplitude oscillation (SAO) measurements were conducted on sodium alginate 

solutions at higher concentrations (4-13% w/w) corresponding to their use in controlled 

release matrices. In order to compare the ten batches of one grade, steady shear and SAO 

measurements were performed on their solutions at 2% w/w and 8% w/w, respectively. 

Results show that rheological properties of sodium alginate solutions are influenced by 

both molecular weight and chemical composition of sodium alginate. ―One-point‖ 

apparent viscosity data obtained at one low concentration and one shear rate is not 

representative of the complex rheological behavior of various grades of sodium alginate 

solutions at higher concentrations or other shear rates. The potential interchangeability of 

these different grades used as thickening or binding agents could be established by 

comparing the apparent viscosities of their solutions as a function of both alginate 

concentration and shear conditions. For sodium alginate used in controlled release 

formulations, both steady shear (at one low concentration, e.g., 2% w/w) and SAO 

measurements (at one high concentration indicative of polymer gel state, e.g., 8% w/w) 

are recommended to be performed on sodium alginate solutions to ensure 

interchangeability. Furthermore, among batches of the same grade, significant differences 

in rheological properties were observed, especially at the high solution concentration 

(i.e., 8% w/w). In summary, inter-grade and inter-batch variability of sodium alginate can 

be determined using steady shear and SAO methods.  

The influence of inter-grade and inter-batch variability of sodium alginate on the 

functionality of sodium alginate used in matrix tablets was investigated with a focus on 

compression properties, swelling, erosion behavior of alginate matrix tablets, and drug 

release from matrix tablets. The compression behavior of four grades and three batches of 



vi 

sodium alginate were studied by compaction energetics, out-of-die Gurnham, and out-of-

die Heckel analysis. It was found that sodium alginates deform less plastically than 

microcrystalline cellulose (MCC PH102) but similar to lactose anhydrous. Sodium 

alginates also demonstrate more elastic deformations during compression than both MCC 

PH102 and lactose anhydrous. Compacts prepared from multiple batches of the same 

grade varied in porosity. The same tensile strength of compacts can be achieved by 

compressing the multiple batches to the same porosity.  

Sodium alginate tablets undergo both swelling and erosion in water. Grades with 

substantially higher apparent viscosities at low solution concentration exhibit a higher 

percentage of water uptake and a low percentage of erosion. Those batches not 

significantly different in their apparent viscosities at low solution concentration but 

significantly different in viscoelasticity at high solution concentrations do demonstrate 

significant differences in their swelling and erosion behavior. Acetaminophen release 

from sodium alginate matrix tablets prepared from the four grades and three batches can 

be well described by a zero-order equation. Significant differences in release profile were 

observed among various grades and batches.  

In conclusion, the inter-grade and inter-batch variability of sodium alginate has a 

significant influence on the swelling, erosion, and drug release behavior of sodium 

alginate matrix tablets. Apparent viscosities of sodium alginate solution at low 

concentration alone are not sufficient to predict the functionality of sodium alginate used 

in matrix tablets. Viscoelastic properties of sodium alginate solutions at high 

concentrations indicative of polymer gel state are appropriate to be characterized.  
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Further study was conducted to determine whether sodium alginate solutions‘ 

rheological parameters are relevant to sodium alginate‘s use in the formulation of calcium 

alginate gels. Among the grades with similar guluronic acid percentage (%G), there is a 

significant correlation between gel fracture force and apparent viscosity. However, the 

results for the partial correlation analysis for all six grades of sodium alginate show that 

gel fracture force is significantly correlated with %G, but not with the rheological 

properties of the sodium alginate solutions. Studies of the ten batches of one grade of 

sodium alginate show that apparent viscosities of their solutions do not correlate with gel 

fracture force while tan  values are significantly, but minimally, correlated to gel 

fracture force. Inter-batch differences in the rheological behavior for one specific grade 

of sodium alginate are insufficient to predict the corresponding calcium alginate gel's 

mechanical properties. 

In summary, rheological methods, including steady shear and small amplitude 

oscillation, are able to identify the inter-grade and inter-batch variability of sodium 

alginate. Inter-grade and inter-batch variability of sodium alginate could lead to 

substantial differences in the functionality of sodium alginate in matrix tablets and in 

calcium alginate gels. Rheological properties of sodium alginate in solution are 

suggestive of its functionality as thickeners, or as controlled release agent. However, 

rheological properties of sodium alginate in solution do not seem to be sufficient to 

predict the mechanical properties of the corresponding calcium alginate gels. 
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CHAPTER 1. INTRODUCTION 

STATEMENT OF PROBLEM 

In recent years, the FDA has made substantial efforts in implementing the concept 

of "Quality by Design" (QbD). QbD emphasizes that quality cannot be tested into a 

pharmaceutical product, but rather that quality should be built into a product by virtue of 

a thorough understanding of the product ingredients and process by which it is developed 

and manufactured along with a knowledge of the risks involved in manufacturing the 

product and how best to mitigate those risks.
1
 A key component of the QbD concept is 

―Design space‖ — defined in the ICH Q8 (R1) guidance document as the 

―multidimensional combination and interaction of input variables (e.g., material 

attributes) and process parameters that have been demonstrated to provide assurance of 

quality.‖  As a result, Quality-by-Design (QbD) principles necessitate the establishment 

of a design space for each pharmaceutical product encompassing, in part, the active 

pharmaceutical ingredient(s) (APIs), the excipients, and the unit operations employed to 

produce the finished product.
2
  

Most of the attention in the pharmaceutical industry on product quality has 

focused on the physicochemical properties of APIs and the process variables of the 

various unit operations involved in a product‘s manufacture rather than on excipients. It 

is realized that variability in the APIs could be minimized by controlling physical or 

physicochemical parameters such as particle size distribution, polymorphic form, etc.  

Also, the variability in various unit operations could be minimized with a better 

understanding of the engineering principles that are responsible for variations in the 

outcome. In contrast, minimal attention has been paid to excipients and their variability.
3
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Excipients are defined by the USP as any component, other than active 

substances, intentionally added to the formulation of a dosage form. Excipients are 

included in a drug dosage form or delivery system to aid in manufacturing, to protect the 

APIs from degradation, to enhance stability, bioavailability, or patient acceptability, to 

assist in product identification, or to enhance any other attributes of the overall safety and 

effectiveness of a pharmaceutical product during storage and use. Furthermore, excipients 

in drug dosage forms and delivery systems can markedly affect the biopharmaceutical 

and pharmacokinetic properties of the associated APIs.
4,5

 In one case, for example, a 

change of calcium sulfate dihydrate to lactose in phenytoin capsules resulted in patient 

intoxication due to high phenytoin blood concentration.
3 

Nonetheless, excipients tend to 

be the least well-characterized components of the design space. At present, excipients are 

not always viewed for what they are, i.e., relatively impure, complex materials that, in the 

case of polymeric excipients, are not monodisperse. Since excipients are often poorly 

characterized physically and chemically, their impact on product variability is under-

appreciated. 

Pharmaceutical excipients tend to exhibit inter- and intra- manufacturer 

variability, owing largely to raw material variability.
6
 To monitor and control the possible 

variability of excipients, manufacturers typically rely on compendial specifications listed 

in individual monographs for pharmaceutical excipients in the United States 

Pharmacopoeia – National Formulary (USP–NF).
7
 However, pharmacopoeial 

specifications are primarily designed for assuring the identity and purity of 

pharmaceutical excipients, and not their functionality. There are a number of published 

studies attesting to the inequivalence of pharmaceutical excipients from multiple sources 
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or to the variability of multiple batches of an excipient from the same manufacturer, 

despite their adherence to USP–NF specifications.
8-24

 For example, it was reported in 

2010 that sodium lauryl sulfate (SLS) from two different sources: Spectrum Chemical, 

(Gardena, CA, USA) and Cognis Corporation (Cincinnati, OH, USA), both of which 

were labeled NF grade, differed significantly with respect to their effects on enhancing 

the solubility of a model drug and the drug dissolution rate from tablets.
24

 The NF 

addresses this issue by stating: ―Because of differing characteristics not standardized by 

this formulary, all sources and types of some excipients may not have identical properties 

with respect to use in a specific formulation. To assure interchangeability in such 

circumstances, users may wish to ascertain final performance equivalency or determine 

such characteristics before use.‖
25

   

Polymeric excipients, especially polymers extracted from natural resources, tend 

to exhibit inter-grade and intra-grade variability in their molecular weight distribution 

and chemical composition.
26

 The variability in the physicochemical properties of 

polymeric excipients could result in substantial differences in the final product 

performance.
8-16,21,27,28

  To further explore the issues of polymeric excipient variability, 

this dissertation focuses on a widely used, but poorly characterized polymeric excipient, 

sodium alginate. Sodium alginates are linear, unbranched, amorphous polysaccharides 

extracted from various types of seaweed. They are copolymers of β-D-mannuronic acid 

(M) and α-L-guluronic acid (G) linked to each other by 14 glycosidic bonds. The M 

and G units in the alginates may be randomly or non-randomly arrayed as heterogeneous 

or homogeneous sequences.  
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Sodium alginates have wide applications in the pharmaceutical and biomedical areas 

due to their abundance, low price, and compatibility with biological systems.
29

 

Pharmaceutically, sodium alginates are generally used as binding agents in tablets, as 

suspending and thickening agents in water-miscible gels, lotions and creams, as emulsion 

stabilizers, or as gel-forming agents in combination with divalent metal ions such as 

calcium.
30

 Of particular interest is their potential in the development of alginate-based 

controlled release drug delivery systems, such as matrix tablets, microcapsules, etc.
29

  

    According to a 2002 review by Tonnesen and Karlsen,
29

 more than 200 different 

alginate grades varying in molecular weight and chemical composition are commercially 

available from manufacturers. The heterogeneity of commercial pharmaceutical-grade 

alginates reflects differences among the botanical sources, seaweed harvesting locations, 

the season of harvesting, the plant parts employed, and the processing methods used. 

Current pharmacopoeial standards for sodium alginate include the following 

specifications and tests: identification (qualitative determination of the existence of 

sodium alginate by forming gel with calcium cations or with addition of sulfuric acid), 

microbial limits, loss on drying, total ash, arsenic, lead, heavy metals, and assay 

(quantitative determination of the amount of sodium alginate by a titrimetric method). 

However, these specifications and tests do not enable the characterization of variations in 

the molecular weight distribution and/or chemical composition of sodium alginate. As 

these variations can markedly affect the processability or performance of a sodium 

alginate-containing pharmaceutical product,
31,32

 it is important to find effective methods 

to better characterize sodium alginate.
1
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An effective method of excipient characterization should reflect the excipient‘s 

behavior during processing and its functionality in potential formulations. Since sodium 

alginates are mostly used as thickeners and gel-forming agents in both conventional and 

controlled release formulations, their processability and functionality can be related to 

their rheological behavior in solution. Rheological methods have many advantages over 

other methodologies for the characterization of polymer solutions: relatively simple 

sample preparation, short times required for tests, and direct measurement of polymer 

behavior under conditions expected to be encountered during formulation processing or 

product storage or use. Despite their utility in characterizing functionality, rheological 

testing of sodium alginate solutions is not specified in the United States Pharmacopoeia.         

Furthermore, even when excipient manufacturers do supply rheological data for sodium 

alginates, they typically only report the apparent viscosities of solutions at one specific 

concentration at one shear rate, and at one temperature — ―one-point‖ measurements — 

as if the alginates‘ solutions‘ rheological characteristics were those of Newtonian fluids. 

In fact, the typical rheological behavior of many polymer solutions is highly 

concentration-dependent, encompassing properties of those ranging from Newtonian 

fluids (at dilute concentrations), to those of shear-thinning non-Newtonian fluids (at 

intermediate concentrations), to those exhibiting viscoelastic behavior (at high 

concentrations).
33,34

 Additionally, the shear rates encountered in pharmaceutical 

manufacturing and in product use can vary considerably, ranging from 10
-3 

to 10
4
 s

-1
.
35

 

Thus, ―one-point‖ apparent viscosity measurements provide little or no insight into the 

selection of suitable polymer grades for a specific formulation or manufacturing 

process.
36

  A comprehensive rheological evaluation of sodium alginate solutions is 
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warranted in order to facilitate the identification of criteria that would allow grade-to-

grade or batch-to-batch comparison. 

Although a number of studies have been published on the rheological behavior of 

sodium alginate solutions,
37-47

 most of the sodium alginates employed in these studies 

were not pharmaceutical grades. For that matter, explicit recommendations have not been 

made in the literature as to the rheological methods that would be most appropriate for 

polymeric excipient evaluation relative to pharmaceutical processing or formulation 

performance. In addition, the previous studies were limited to the rheological 

characterization of sodium alginate solutions with concentrations lower than 5% w/v. 

Sodium alginate solutions at these low concentrations exhibit fluid-like behavior, 

whereas sodium alginate solutions at higher concentrations display a more substantial 

viscoelastic character. Process and product quality control during formulation 

development necessitate characterization of the rheological behavior of the excipient 

utilizing experimental conditions and excipient concentrations appropriate to the 

formulation under consideration. 

Hypothesis and Objectives 

The central hypothesis of this dissertation is that a comprehensive analysis of 

the rheological behavior, including apparent viscosity and viscoelasticity of sodium 

alginate solutions, will allow the identification of the inter-grade or inter-batch 

variability of pharmaceutical-grade sodium alginate. 

  

The objectives of this dissertation are to: 
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1. Determine the inter-grade and inter-batch variability of sodium alginate using 

rheological methods including steady shear and small amplitude oscillation.  

2. Investigate how inter-grade and inter-batch variability of sodium alginate grades 

and batches affect the compression behavior of sodium alginate and the 

functionality of sodium alginate matrix tablets, allowing correlation between 

rheological properties of sodium alginate in solution to its functionality in matrix 

tablets. 

3. Examine the correlation between rheological properties of sodium alginate in 

solution and calcium alginate gel properties. 
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LITERATURE REVIEW 

EXCIPIENT VARIABILITY 

According to the USP-NF (General Chapters <1078>) definition, excipients are 

―any substances, other than the active drug or product, that have been appropriately 

evaluated for safety and are included in a drug delivery system to either aid the 

processing of the drug delivery system during its manufacture, protect, support or 

enhance stability, bioavailability, or patient acceptability, assist in product identification, 

or enhance any other attribute of the overall safety and effectiveness of the drug delivery 

system during storage or use.‖ Excipients are not inert but play an essential role in the 

development and manufacture of pharmaceutical products.  Excipients enable the active 

pharmaceutical ingredients (APIs) to be formulated and/or manufactured as an 

efficacious drug product that can be administered safely to the patient.  Generally, the 

proportion of excipients in the drug formulation is substantially larger than that of the 

API. As a result, excipient properties often dictate the formulation behavior, making it 

critical to understand their functionality in a given formulation, and to develop effective 

methods for the characterization and control of the excipients with respect to their 

functionality for consistent product performance.  

Excipient functionality spans a broad range of applications including tablet 

diluents, lubricants, disintegrants, binders, surfactants, plasticizers, coloring agents, 

thickening agents, controlled release agents, preservatives, etc.   The selection of the most 

appropriate excipients is crucial, since excipients can influence the compatibility, 

stability, optimum shelf-life, and the in vivo performance of the pharmaceutical products. 

Pharmaceutical excipients are required to conform to the compendial specifications as 
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listed in the monographs in USP-NF. However, as Shangraw noted in 1987, compendial 

standards have traditionally focused on identity, quality, purity, packaging, and labeling, 

allowing standards for drugs to take precedence over standards for excipients.
48

  This 

disparity is still evident today, in spite of FDA‘s revision and support of the ICH 

Guidance for Industry — Q8(R2) Pharmaceutical Development, which suggests that 

"those aspects of drug products, excipients.....that are critical to product quality should be 

determined and control strategies justified."
49

  

Quality-by-design (QbD) principles necessitate the establishment of a design 

space for each pharmaceutical product encompassing the active pharmaceutical 

ingredient(s) (APIs), the unit operations, and the excipients.
2
 Unlike APIs, excipients 

tend to be less well characterized, and yet constitute the major components in many drug 

formulations.  In fact, polymeric excipients could be a major source of variability in 

pharmaceutical products, as they comprise mixtures of polymers of different molecular 

weights and chemical composition.
26

 To monitor and control the variability of excipients, 

formulators typically rely on compendial specifications provided for excipients in the 

USP-NF.
50

 However, tests listed in compendial specifications may not be indicative of 

how an excipient will perform its intended function in a formulation. Furthermore, an 

excipient may have multiple functionalities in a formulation,  e.g., an excipient may 

function as a tablet binder, thickening agent, controlled release agent in a single product, 

depending on its use in a formulation, manufacturing process, and/or drug delivery 

system.
51

  

The National Formulary has addressed the variability of excipient functionality in 

their General Notices and Requirements, stating that: ―Because of differing 
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characteristics not standardized by the National Formulary, all sources or types of some 

excipients may not have identical properties with respect to use in a specific preparation. 

To assure interchangeability in such instances, users may wish to ascertain final 

performance equivalency or determine such characteristics prior to use.‖
25

  

The FDA has also noted that ―For an excipient, conformance to compendial 

specifications alone can be inadequate for performing its intended function in a drug 

product, and/or for its suitability for use in commercial scale manufacturing (of the drug 

product), if the critical attributes of the excipient are not similar, when obtained from 

multiple sources.‖ 
52

  

Published reports have underscored the inequivalence of pharmaceutical 

excipients from multiple sources or even multiple batches from the same manufacturer 

with respect to processability, quality, and performance of the finished drug product, 

although all of them adhere to USP–NF specifications.
8-24,28

 Early in 1987, Reier
8
 

addressed the issue of reproducibility of excipients from lot-to-lot and vendor-to-vendor. 

His report investigated the variability of the ―same‖ NF-grade material(s) from multiple 

suppliers. He found that tribasic calcium phosphate from multiple sources varied in color, 

flowability, and compressibility, while lactose exhibited inter-manufacturer variability in 

compressibility and flowability.  Magnesium stearate from three separate batches of the 

same grade was found to be different with respect to particle morphology, particle size, 

bulk density and specific surface area, and resulted in variable tablet hardness, 

disintegration time, and drug dissolution. Povidone from various sources has been shown 

to vary with respect to its effect on tablet dissolution, sorbitol varies with respect to its 

compressibility, pregelatinized starch shows a varying degree of hydration, and titanium 
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dioxide varies with respect to solid form and hardness from manufacturer-to-

manufacturer.
8
  

Doelker et al.,
27

 investigated the tableting characteristics of NF grade 

microcrystalline cellulose (MCC) from seven manufacturers. The MCC powders were 

examined for their moisture content, particle size distribution, true, bulk and tapped 

densities, and flow properties. The effect of adding a lubricant (0.5% magnesium 

stearate) on the flow and tableting properties was also evaluated. Large differences in 

tablet properties (e.g., crushing forces of tablets) were generally observed among MCC 

products from the various manufacturers. In contrast, lot-to-lot variability was much less, 

and quite acceptable.  Whiteman and Yarwood
9
 also compared the tableting behavior of 

microcrystalline cellulose (MCC) from six different manufacturers and observed 

significant differences in the resultant tablet tensile strength due to possible variations in 

particle size distribution and surface properties. It was concluded that the compression 

properties of MCC could not be predicted based on compendial specifications (NF or 

BP).  

Landín et al., (1993)
13,28

 investigated the physicochemical properties of MCC 

produced in four different countries, from different types of wood, as raw materials, and 

three batches of MCC from the same manufacturer that differed in manufacturing process 

and raw materials. It was evident that MCC produced from different raw materials using 

different manufacturing processes were significantly different in lignin and hemicellulose 

content, crystallinity percentage, particle size, and flowability. Subsequent study on the 

influence of MCC source and batch variation on the tableting behavior and dissolution of 
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prednisone from MCC tablets showed that the variability in the rate of release of 

prednisone from the MCC-based tablets was correlated to MCC variability.
14

   

Lucisano et al.,
10

 evaluated two sources of hydroxypropyl methylcellulose 

(HPMC or hypromellose) used in a sustained-release tablet matrix. The difference in 

particle size and hydroxypropyl content of HPMC from the two sources led to different 

polymer hydration rates and hence different dissolution profiles. Dahl et al.,
11

 conducted 

a study to elucidate the correlation between HPMC physicochemical properties and the 

drug release profile from HPMC matrix tablets. Different lots of HPMC 2208 from two 

suppliers were used in their study. It was found that, irrespective of the supplier, the drug 

release profile was dependent on the chemical composition of the HPMC 2208, i.e., the 

higher the hydroxypropyl content, the faster the drug release rate. The authors pointed out 

that compendial specifications for the hydroxypropyl content of HPMC were too broad 

for their usage in sustained-release tablet matrix.  

Chatlapalli and Rohera
20

 used a torque rheometer to study the rheological 

behavior of wet masses containing  hydroxypropyl methylcellulose (HPMC) from two 

sources (Methocel® [Dow, Midland, Michigan, USA] and Pharmacoat® [Shin-Etsu, 

Tokyo, Japan]) and diltiazem HCl (DTZ) as the model drug.  Distinct differences in the 

rheological properties of the wet masses were observed, and attributed to the use of the 

two different HPMCs.  The authors suggested that the larger surface area, along with the 

lower bulk and tapped density of Pharmacoat® might lead to a higher substrate-binder 

interaction relative to the DTZ-Methocel® system, thus resulting in higher shearing 

torque during rheological characterization. Based on their findings, the authors suggested 

that rheological evaluation (which is not specified in USP-NF monograph for HPMC) of 
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HPMC from multiple sources could provide valuable information on the functionality 

and interchangeability of these excipients in wet granulation processes, pelletization, and 

extrusion/ spheronization. 

Alvarez-Lorenzo et al.
16

 compared the physicochemical properties of 

hydroxypropylcellulose (HPC) from two suppliers, considered nominally 

interchangeable, at least according to the criteria given in the USP-NF. However, these 

HPCs showed significant differences in molecular weight, molecular structure, particle 

size distribution, particle shape, and water affinity.  The differences in HPC 

physicochemical properties resulted in significantly different drug-release profiles of 

theophylline from HPC-based matrix tablets. The authors suggested that other physical 

properties that were not specified in the USP-NF, e.g., mean molecular weight and 

particle size distribution, should be determined for quality control of HPCs used in the 

manufacture of matrix tablets.  

Desai et al. 
21

 reported that HPC from two different sources (Hercules, USA and 

Nippon Soda, Japan), although both adhering to NF specifications, resulted in 

hydrochlorothiazide tablet formulations with different drug dissolution profiles.  The 

difference in performance between the two sources of HPC could be explained by their 

differences in chemical composition. HPC from Hercules had a higher percentage of 

hydroxypropyl content and a higher degree of molecular substitution than HPC from 

Nippon Soda. As a result, HPC from Hercules was less hydrophilic and formed a less 

viscous layer surrounding drug granules, leading to faster drug dissolution rate. Their 

study emphasized the importance of establishing functional tests for excipients used in 
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pharmaceutical products. It was suggested in the same paper that a cloud point test could 

be performed as a routine quality control tool for HPC used in controlled release tablets. 

Shah and Augsburger
17,18

 noted that the USP-NF monographs for crospovidone 

do not provide effective specifications which reflect on their functionality. Hence, 

reliable performance of crospovidone as disintegrant cannot be assumed from different 

sources meeting USP-NF standards. In their studies, five grades of crospovidone (two 

grades from ISP, Wayne, NJ, USA and the other three grades from BASF, Florham Park, 

NJ, USA) were compared and substantial differences in particle size and distribution, 

surface area, porosity and surface morphology were observed. The differences among the 

five grades of crospovidone in physical properties resulted in differences in disintegration 

time and dissolution rate of hydrochlorothiazide from crospovidone-containing dicalcium 

phosphate tablets. Due to the differences observed in crospovidone from multiple sources 

meeting NF standards, the authors proposed settling volume, liquid uptake, and 

disintegration force tests as standard performance tests for crospovidone.  

Shah and Augsburger 
19

 also compared the physical properties of another 

superdisintegrant, sodium starch glycolate, from three sources.  These sodium starch 

glycolates exhibited differences in particle size, surface area, porosity, surface 

morphology, and viscosity, although they all adhered to NF specifications. Compendial 

specifications for sodium starch glycolate do not characterize the physical properties 

associated with the functionality of sodium starch glycolate as a superdisintegrant.  

Zhao and Augsburger
22

 investigated the influence of  inter-manufacturer 

variability of croscarmellose sodium on its performance as a superdisintegrant.  

Croscarmellose sodium from five manufacturers (FMC Biopolymer, USA; DMV 
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International, Netherlands; Blanver, Brazil; Noviant, Netherlands; and JRS Pharma, 

USA) was selected for their study. Differences were observed in water uptake, and 

swelling properties of five sources of croscarmellose sodium in either neutral water or 0.1 

N HCl, which were thought to be due to their differences in particle size, total degree of 

substitution, and the ratio of basic to acidic substituents.  

Whiteman and Yarwood
12

 evaluated the influence of lactose NF from two 

different sources on tablet properties in a model formulation and a development 

formulation. It was found that the difference in mean particle size between these two 

sources resulted in different tablet tensile strength in both formulations investigated.  

Chamarthy et al.,
23

 compared the functionality of two different lots of soluble 

starch as compaction aid. One lot was used as received from the vendor and the other lot 

underwent an extra washing step with acetone.  Although these two lots of soluble starch 

were indistinguishable in particle size, specific surface area, crystallinity, moisture 

sorption, and IR spectrum, they were very different in their performance as a compaction 

aid (compressibility and compactibility) under all conditions of compression pressure and 

storage relative humidity studied.  The difference in performance was found to be due to 

their difference in surface energy. The lot with higher surface energy resulted in 

compacts with higher tensile strength. 

Perez-Marcos et al.
15

 found that seven lots of Carbomer 934 differed significantly 

in their rheological characteristics in aqueous dispersions, although these lots did not 

exhibit appreciable differences in infrared (IR) spectra, density or carboxylic acid group 

content. The differences in rheological behavior of these seven lots are due to their 

differences in mean molecular weight.  Significant differences between the two most 
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dissimilar lots were observed in regards to the dissolution profiles of theophylline and 

hydrochlorothiazide from these Carbomer-based matrix tablets. 

More recently, Qiang et al.,
24

 investigated the effects of sodium lauryl sulfate 

(SLS) from two different sources: Spectrum (Gardena, CA, USA) vs. Cognis (Cincinnati, 

OH, USA) on the solubilization of a model drug and its dissolution from tablets. The 

critical micelle concentration was lower for SLS from Spectrum than that from Cognis 

due to the difference in impurities. Apparently, the difference in critical micelle 

concentration between the two sources of SLS resulted in substantially different degrees 

of solubilization of the model drug.  

In summary, these previous studies have all emphasized the importance of 

evaluating and controlling the critical excipient properties, to ensure that consistent 

product performance is achieved. According to personal communications with 

experienced scientists in the excipient industry, it is possible to control excipient 

variability within a narrower range. However, greater control of excipient variability is 

associated with a much higher cost, which is usually unacceptable to both excipient 

manufacturers and the pharmaceutical industry. Nonetheless, steps need to be taken to 

ensure that the variability of excipients does not adversely affect manufacturing processes 

and product efficacy. The practicality and ultimate acceptability of ICH Q8 and the QbD 

concept will depend on the realization that the excipient variability (inequivalence) issues 

raised over the years are not of little consequence; they are not going to go away. 

Additional studies of excipient variability and functional performance must be 

undertaken. Not every drug dosage form or drug delivery system will be affected in the 
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same way by excipient variability, but we need to know the extent of the problem early 

on in the development process.
53

 

SODIUM ALGINATE 

Production 

Commercial sodium alginates are produced from various seaweed genera 

including Ascophyllum, Durvillaea, Eklonia, Laminaria, Lessonia, Macrocystis, 

Sargassum, and Turbinaria. Among these eight genera, Ascophyllum, Laminaria, and 

Macrocystis are the most widely harvested.
54

  

Alginic acid was first discovered by E. C. C. Stanford, a British pharmacist, in 

1883. Commercial production of alginates did not begin until Kelco was founded in 1929 

in California. Since then the alginate industry has grown with major producers being the 

United States, the United Kingdom, Norway, Canada, France, Japan, and China. In the 

United States, FMC Biopolymer is the major producer of alginates after buying the 

alginate section from ISP in 2008. The production of alginates in 2009 was 26,500 tons 

with a value of about US$318 million.
55

  

In seaweed, alginic acid is present predominantly as its calcium salt, although 

sodium, magnesium, and potassium salts also exist. The chemistry of the extraction 

processes of sodium alginate from seaweed is relatively simple, i.e., to turn insoluble 

calcium salts into soluble sodium alginate (Alg = alginate):  

Ca(Alg)2 + 2Na
+
     2NaAlg + Ca

2+
 

     However, the difficulties of the extraction processes arise from the physical 

separations required to filter slimy residues from viscous solutions or to separate 
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gelatinous precipitates from the large amounts of water within their gel structure which 

are resistant to both filtration and centrifugation.  

There are two alternative extraction processes employed in the manufacture of 

sodium alginate from seaweed. In the first process, the principal intermediates are 

calcium alginate and alginic acid. The intermediate calcium alginate can be precipitated 

in a fibrous form, which can be readily separated. After separation, calcium alginate can 

then be converted into alginic acid, which is fibrous and can be readily separated. 

Furthermore, some calcium alginate can be allowed to remain in the sodium alginate 

product to control the viscosity of the final product.  In the other process, no calcium 

alginate is formed; only alginic acid is produced. The disadvantage of the latter process is 

that alginic acid forms a gelatinous precipitate which is very difficult to separate, and the 

overall losses of alginic acid are generally greater than in the former process. In addition, 

the removal of water from within the gel structure of the separated alginic acid also 

presents difficulties in this process. Alcohol is usually used as a solvent for the 

conversion of alginic acid to sodium alginate. The use of alcohol makes the process more 

expensive and may lead to additional testing for organic solvent residues in the final 

product.  

The details of the calcium alginate extraction process are listed in Figure 1 and 

described in the following paragraphs.
54
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Figure 1. Schematic illustration of the calcium alginate extraction process for sodium 

alginate production adapted from McHugh et al..
54

 

 

Step 1. Size reduction of seaweed  
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Dry or wet seaweed is first chopped into small pieces, and then further broken 

down into a slurry of seaweed and water. Water in the slurry can be separated using a 

centrifuge or a rotary drum screen. Seaweed having a reduced size can be transported 

more readily by pumping it as a slurry in water. Seaweed harvested at different times or 

locations could vary in both molecular weight and chemical composition of sodium 

alginates. Further, methods used to dry the seaweeds could lead to variations in molecular 

weight of sodium alginates.  

Step 2. Acid treatment  

The major aim of the extraction processes is to convert calcium alginate into 

sodium alginate. If the seaweed is treated with alkali (usually sodium carbonate) then the 

process necessary for extraction is an ion exchange.  However, it has been demonstrated 

that a more efficient extraction is obtained by first treating the seaweed with dilute 

mineral acid: 
56

  

1. Pre-extraction (Alg = alginate): 

    

2. Extraction: 

     

In the pre-extraction, the calcium alginate is converted to alginic acid, which has 

been shown to be more readily extracted by alkali than the calcium alginate. The 

following extraction step can even be completed at a pH < 7.
56

 Furthermore, the treatment 

of seaweed with the mineral acid removes the acid-soluble phenolic compounds. There 

are two advantages of removing phenolic compounds: (1) phenolic compounds can form 

brown oxidation/polymerization products with alkali and are largely responsible for a 
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brown discoloration which occurs during alkaline extraction, (2) phenolic compounds can 

cause a loss of viscosity of alginate during alkaline extraction. As a result, pretreatment 

(before alkaline extraction) of the seaweed with the mineral acid leads to a more efficient 

extraction, a less colored product, and reduced loss of viscosity during extraction. 

 In practice, the seaweed slurry obtained from the first step is stirred with 0.1M 

sulfuric acid or hydrochloric acid for 30 min in the temperature range from room 

temperature to about 50°C. Subsequently, the slurry of seaweed and acid can be separated 

on a rotary drum screen. In this step, variations in the type and concentration of mineral 

acid, time, and temperature could lead to different degree of molecular chain breakdown, 

and hence variations in molecular weight of the final sodium alginate product. 

Step 3. Formaldehyde treatment  

Formaldehyde reacts with phenolic groups to form insoluble products.  Thus, 

formaldehyde, in addition to acid, is used to remove phenolic compounds from the 

seaweed. In practice, the seaweed slurry from step 2 is stirred with water containing 0.1-

0.4% commercial formalin solution for 15-30 min at room temperature. After treatment, 

the seaweed is separated using a rotary drum screen and the solids are used in the alkaline 

extraction. The concentration of formalin solution, time of treatment, and temperature 

could have effect on the physical and chemical properties of sodium alginate molecules 

by altering the uronate monomer conformation into open structure.
57

  

 

 

Step 4. Alkaline extraction    
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The purpose of this step is to convert the insoluble alginic acid to a soluble form 

so that it can be removed from the rest of the seaweed. The viscosity of the final product 

can also be controlled in this step by adjusting the temperature and extraction time. 

Higher temperature and longer extraction time result in breakdown of polymer chains and 

consequently lower the solution viscosity of the extracted sodium alginate. Sodium 

carbonate is usually used as the alkali because of its low cost.  

In practice, solid contents from step 3 are stirred in a tank with the sodium 

carbonate solution (about 1.5%) at temperatures from 50-95°C for 1-2 h. The time can be 

reduced by using higher temperatures, usually with some loss of viscosity in the final 

product. The balance of high temperatures versus time can be used to control the 

molecular weight and viscosity.  Meanwhile, variations in molecular weight of sodium 

alginate could be introduced in this step due to different temperature and processing time. 

Step 5. Separation of insoluble seaweed residue  

A. Flotation   

The dissolved sodium alginate from Step 4 needs to be separated from the alkali-

insoluble seaweed residue, which is mainly cellulose. Majority of the insoluble residue is 

usually removed by a flotation process. The extract dispersion from Step 4 is first diluted 

with 4-6 times its volume of water, to produce a suitable viscosity range, 25-100 mPa∙s. 

A small quantity of flocculant is added to the diluted dispersion and air is subsequently 

forced into the dispersion for several hours. The flocculant binds the fine particles 

together into large flocs, which air bubbles are more likely to attach to and lift. Since the 

cellulose residue is generally negatively charged, cationic flocculants are usually used, 

e.g., the polyacrylamides. The floated flocs can be scraped from the surface and the 
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clarified liquid beneath will be drawn off. The dilution of the original alkali extract is 

necessary to yield a low viscosity which allows the particle flocs to rise within an 

acceptable processing time. This flotation method is a very economical and effective way 

of clarification but the resulting solution might be still cloudy. For pharmaceutical grade 

alginates, a subsequent filtration step is usually required to further remove the insoluble 

residuals.  

In practice, dilution of the alkali extract and addition of flocculant is usually done 

by in-line mixing. The air can be pumped into the mixture further down the same line. 

The diluted, aerated extract dispersion is then pumped into large holding tanks. In a 

continuous process, the residual flocs can be continually scraped from the surface as the 

clarified liquid beneath is removed from the lower part of the tank. In a batch process, 

many holding tanks are used and the clarified liquid is usually drawn off near the bottom 

of the tank.  

B. Filtration  

Any insoluble residue remaining after flotation will be filtered through a rotary 

precoat vacuum filter, usually 2-3 cm layer of perlite. During filtration, a blade on the 

rotary filter continually removes the top surface of the precoat, so that a clean filter 

surface is always available. A new layer of precoat is usually required after 9-10 h, since 

most of the precoat has been removed by the scraper. For a very high clarity final 

product, a second filtration is sometimes used.  

 

 

Step 6. Precipitation of calcium alginate  
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After flotation and filtration, sodium alginate needs to be recovered in solid form 

from its aqueous solution. Evaporation is not practical since the solution is too dilute. The 

alginate can be precipitated as its calcium salt or as alginic acid, either of which will later 

be converted to sodium alginate. In this process, calcium alginate is precipitated.  

Calcium alginate can be precipitated in the form of fibers by carefully adding 

sodium alginate solution to a calcium chloride solution. The resultant calcium alginate 

fibers can be readily separated on a metal screen, and washed with water. Some seaweed 

give better fibrous calcium alginate than others, e.g., Laminaria gives long fibers which 

are easier to handle than the short fibers obtained from Ascophyllum.  

In practice, it is necessary to add the clear liquid obtained from Step 5 to the 

calcium chloride solution (about 10%) to form fibers. A suitable degree of mixing needs 

to be determined since too little mixing will result in a gel-type precipitate while too 

much mixing may cause excessive breaking up of the fibers, which are difficult to be 

retained on the metal screen used for separation. The precipitation may be done batch-

wise in tanks or continuously using an in-line mixer.  

Step 7. Bleaching of calcium alginate fiber 

Bleaching can be used to improve the color and odor of the final product. It is 

better to perform bleaching at this stage since calcium alginate is more resistant to 

degradation (loss of viscosity) than alginic acid. In practice, a sufficient quantity of 

sodium hypochlorite solution (usually 12%) is added to a suspension of the calcium 

alginate fibers in water. When a suitably colored solid is obtained, the solid is again 

separated on a metal screen. This step could add variation to the molecular weight of 

sodium alginate due to oxidation of uronate monomers. 
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Step 8. Conversion of calcium alginate to alginic acid  

In this step, calcium alginate fibers are converted into fibrous alginic acid which 

can be readily separated and dewatered. This is achieved by stirring calcium alginate 

fiber suspension in a dilute mineral acid, such as HCl. The type of acid, acid 

concentration, time of processing, and temperature will influence the molecular weight of 

sodium alginate. 

Step 9. Squeezing water out of the alginic acid  

A screw press is often used for the squeezing and dewatering of the fibrous 

alginic acid. The main advantage of this extraction process is that water can be squeezed 

from the resulting fibrous alginic acid more easily than the gel type of alginic acid which 

results from addition of acid to sodium alginate solution in the alginic acid process. 

Step 10. Conversion of alginic acid to sodium alginate  

After the previous nine steps, the sodium alginate from the original alkaline 

extract has now been purified and concentrated in the form of solid alginic acid. In this 

step, solid alginic acid will be converted to solid sodium alginate.  

In practice, the fibrous alginic acid, usually containing greater than 25% solids, is 

mixed with solid alkali, normally sodium carbonate, in a mixer suitable for blending 

heavy pastes. Sodium alginate forms and dissolves into solution in the small amount of 

water present, resulting in a heavy paste. The neutralization process can be readily 

controlled to obtain homogeneous final product. The reaction can be heated to 50°C. The 

formed heavy paste is forced through small holes and the extrusions are chopped into 

pellets. The pellets are subsequently dried either on trays in a hot-air oven or in a fluid-

bed dryer on a large scale.  A fluid-bed dryer fitted with a vibrating tilted screen is 
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usually used so that the pellets, continuously fed in, can vibrate down the screen and out, 

as the hot air blows up through the screen. The dried pellets (about 10% moisture) can be 

milled to an appropriate particle size to achieve the final solid sodium alginate. The 

processing variables in this final step could lead to variations in molecular weight of 

sodium alginate.  

In summary, it generally takes ten steps to extract sodium alginate from the 

seaweed. It is obvious that, in addition to the variations of the source materials, variations 

in chemicals and process parameters used in the extraction steps could result in variations 

in chemical composition and molecular weight of the final sodium alginate products.  

Different manufacturers may use different steps to extract sodium alginate from seaweed 

and hence produce sodium alginate varying in chemical composition and/or molecular 

weights. Even for the same manufacturer, batch-to-batch variability could be expected 

due to the variations in the processing steps. 

Physicochemical Properties of Sodium Alginate 

Sodium alginates are linear, unbranched, amorphous polysaccharides. They are 

copolymers of β-D-mannuronate (M) and α-L-guluronate (G) linked to each other by 

14 glycosidic bonds. The M and G units in the alginates may be randomly or non-

randomly arrayed as heterogeneous or homogeneous sequences (Figure 2). In 

homogeneous G sequences, the G units are linked together by diaxial glycosidic bonds 

(glycosidic bond is at axial position at both 1 and 4 carbon in the adjacent gluronic acid 

monomers) to form a buckled chain. Due to intra-molecular hydrogen bonding and steric 

hindrance between adjacent G units, homogeneous G sequences usually exhibit an 

extended, less flexible structure in solution.
58-60

 In homogeneous M sequences, the 
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mannuronic residues are connected by diequatorial glycosidic bonds (glycosidic bond is 

at equatorial position at both 1 and 4 carbon in the adjacent mannuronic acid monomers),  

forming a flexible ribbon-like structure due to a decrease in both steric hindrance and 

intra-molecular hydrogen bonding. Heterogeneous M-G sequences contain both 

equatorial-axial and axial-equatorial linkages and the differing degrees of freedom of the 

two residues result in greater overall flexibility than for (1→4)-linked-β-D-mannuronate 

chains. Hence, the stiffness of the chain sequences increases in the order:  MG < M < 

G.
58-60
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Figure 2. Sodium alginate sequences (from top to bottom): homogeneous G sequence, 

homogeneous M sequence, and heterogeneous M-G sequence. G is short for guluronate, 

while M  represents mannuronate. 

 

Alginates exist as a matrix polysaccharide in seaweed, comprising up to 40% of 

the dry weight of seaweed. Different species of seaweed have different habitats that 

expose them to periodic drying due to tidal patterns and waves, which lead to the 

differences in plant stiffness and elasticity.  The stiffness and elasticity of seaweed is 

controlled by the chemical composition and sequence distribution of alginate. Therefore, 

the properties of alginates depend on the seaweed species from which sodium alginate is 

extracted.   

The physical properties of alginates are closely related to the chemical 

composition.
61-63

 For example, the solubility of alginate in acid is correlated with the 

proportion of MG sequence. The formation of calcium alginate gels involves the 

homogeneous G sequence, so sodium alginate with higher proportion of G sequence 

usually form calcium alginate gels with greater gel strength.
64-66

  Thus, it is important to 

determine the relative proportions of the uronic acids of alginates. Various methods have 

been developed to measure the ratio of mannuronate to guluronate (the M/G ratio) in 

alginates.
58,63,67-69

  Chemical compositions for sodium alginate extracted from some 

common seaweed species are listed in Table 1.
70
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Table 1. Fractional chemical composition of sodium alginates extracted from various 

seaweed.
54

 

Source G M 

Ascophyllum nodosum 

(old tissue) 

0.36 0.64 

Ascophyllum nodosum 

(fruiting bodies) 

0.10 0.90 

Durvillea antartica 0.29 0.71 

Laminaria digitata 0.46 0.54 

Laminaria hyperborea 

(Stipe) 

0.68 0.32 
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Laminaria hyperborea 

(Leaf) 

0.55 0.45 

Laminaria hyperborea 

(outer cortex) 

0.75 0.25 

Laminaria japonica 0.31 0.69 

Macrocystis pyrifera 0.39 0.61 

 

 

The determination of the sequence distribution would be more useful, but also 

more difficult to obtain. By using a solution NMR method, it is possible to determine the 

percentage of each monomer (G or M), each of the four possible dimers (GG, MM, GM, 

and MG), and possibly each of the eight trimers (GGG, MMM, GGM, GMM, MGG, 

MMG, MGM, GMG).
69,71

 However, it is still not possible to determine the exact 

distribution of the three sequences.  

The M/G ratio of alginate can be modified, on a laboratory scale, by treating it 

with "mannuronan C-5 epimerase," an enzyme isolated from the soil bacterium, 

Azotobacter vinelandii.
66,72

 This enzyme converts mannuronic acid residues into 

guluronic acid residues in the polymer chain, and the resulting alginate forms stronger 

gels.
66,72

 However, application of enzyme modification of alginates on a large scale was 

limited due to the low production of this enzyme by bacterial culture and its low stability 

under operational conditions.
63
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Pharmaceutical Application 

Sodium alginates have wide applications in the pharmaceutical and biomedical 

areas due to their abundance, low price, and compatibility with biological systems. 

Pharmaceutically, sodium alginates are generally used as binding agents in tablets, as 

suspending and thickening agents in suspensions, water-miscible gels, lotions and 

creams, as emulsion stabilizers, or as gel-forming agents in combination with divalent 

metal ions such as calcium.
30

  Of particular interest is their potential in the development 

of alginate-based controlled release drug delivery systems.
29

  

In the development of a peroral controlled-release drug delivery system, the 

dosage forms are often prepared according to two designs: 1) the entire drug dose is 

contained in the same physical unit (matrix design); 2) the dose is contained in an 

assembly of small sub-units, which are subsequently filled into a capsule or compressed 

into a tablet.  The controlled release of the drug is achieved by the formation of a barrier 

around the formulations. Several formulation techniques can be used to incorporate the 

barrier into the peroral drug delivery systems, e.g., the inclusion of active pharmaceutical 

ingredients (APIs) in a polymer matrix, or the application of coating of a core containing 

the APIs.  Sodium alginate can play a significant role in the design of a controlled-release 

drug delivery system, owing to the fact that sodium alginate undergoes almost immediate 

hydration to create a viscous layer, which subsequently decreases the diffusion rate of 

drug molecules.  

When alginate-based matrix systems are exposed to an aqueous dissolution 

medium, drug release is modulated by diffusion through the swelling matrix and by 

dissolution/erosion of polymer gel at the gel/water interface. Water-soluble drugs are 
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released primarily by diffusion of dissolved drug molecules across the viscous gel layer, 

while poorly water-soluble drugs are released predominantly by erosion mechanisms. 

Alginate-based matrices have been employed to prolong release of many drugs including 

ibuprofen, theophylline, chlorpheniramine maleate, pseudoephedrine hydrochloride, and 

acetyl salicylic acid.
31,73-77

 In addition, previous studies have demonstrated the feasibility 

of preparing alginate matrix tablets industrially.
76,78

  

The pH of the dissolution medium plays an important role in the drug release 

profile from alginate-based matrices. Sodium alginate reacts with H
+
 to form insoluble 

alginic acid in gastric fluid (pH 1-3). On the other hand, sodium alginate forms a viscous 

solution in intestinal fluid (pH 6-7). As a result, water-soluble drugs diffuse through the 

alginic acid gel in gastric fluid and through the viscous polymer solution in intestinal 

fluid. Water-insoluble drugs mainly release in intestinal fluid with the erosion of sodium 

alginate gel and have minimal release in gastric fluid.
74

 By incorporating a pH 

independent hydrocolloid gelling agent (e.g., cellulose polymers) in the tablet the release 

rate of a basic drug can be made independent of pH.
79

  

Sodium alginate has also been used as a coating material in the preparation of dry-

coated tablets, leading to a reduced drug release rate.
73,80

 Sodium alginate was applied to 

coat gelatin capsules, which could remain intact in the stomach due to the formation of 

alginic acid gel, allowing for drug delivery selectively to the intestine.
81

 In addition, 

microspheres containing highly water-soluble drugs (e.g. acebutolol HCl) can be powder-

coated with sodium alginate to formulation into capsules or tablets, for a prolonged drug 

release effect.
82
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Sodium alginate has also been used in a buoyant capsule formulation for 

controlled release of a basic drug.
83

 In the stomach, sodium alginate forms alginic acid 

gel which entraps air inside the less dense powder bulk, resulting in capsule buoyancy. 

After buoyancy is lost, the dosage form is emptied into the intestine, where the gelled 

powder plug changes structure and becomes more porous as the alginic acid turns into 

soluble sodium salt with an increase in pH.  

Sodium alginate has also demonstrated to have excellent bioadhesive properties 

and thus can be applied in bioadhesive formulations to extend the gastrointestinal 

residence time.
84

 In addition, sodium alginate suspensions have shown promising effects 

in treating gastro-esophageal refluxate by adhering to esophageal tissue for periods up to 

one hour and forming a protective alginic acid gel layer against components in gastric 

reflux.
85,86

     

Sodium alginate is also widely used as a gelling agent due to its ability to form 

gels with divalent cations (e.g., Ca
2+

) under mild conditions. The ionotropic gelation of 

sodium alginate with calcium is conventionally described by the ―egg-box‖ model, where 

the divalent cations interact with guluronic acid monomers in the cavities formed by 

pairing up of the G sequences of the alginate molecular chains (Figure 3).
87,88

  Recent 

studies on calcium alginate gel formation reveal three distinct and successive steps of 

calcium binding to alginate with increasing calcium concentration: 1. interaction of 

calcium with a single G monomer; 2. formation of egg-box dimers; and, 3. lateral 

association of dimers to form multimers.
89

 The homogeneous G sequence percentage and 

molecular weight of sodium alginate determine the association modes of dimers and 

multimers of the resultant calcium alginate gels.
89
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Figure 3. Illustration of the ―egg-box‖ model for calcium alginate gel and the interaction 

between calcium cations and oxygen atoms (filled circles) on the guluronic acid 

monomers.  (Reprinted from ―Grant GT, Morris ER, Rees DA, Smith PJC, Thom D. 

Biological interactions between polysaccharides and divalent cations: the egg-box model. 

FEBS Lett  32:195-198‖, Copyright (1973), with permission from Elsevier). 

 

Calcium alginate gels have been used in wound dressings, dental impressions, and 

controlled release drug delivery systems.
90-93

 In controlled release systems based on 

sodium alginate cross-linked with calcium chloride, the diffusion of drug molecules are 

determined by the swelling and erosion behavior of calcium alginate gels. Under acidic 

conditions (e.g., in the stomach) with pH < pKa of alginic acid, swelling of the calcium 

alginate gels rarely occurs. Drug molecules are likely to be released by diffusion through 

the insoluble gel matrix. Under conditions with pH > pKa of alginic acid (e.g., in the 
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intestine),  the calcium cations in alginate gels, even those bound with the homogeneous 

G sequence, can be displaced by monovalent cations at high salt concentration (e.g., > 0.2 

M Na
+
), resulting in an increased swelling and erosion.

94
  

It has been shown that higher alginate concentrations
95,96

 and higher guluronic 

acid percentage
95,97

 lead to a slower drug release rate from calcium alginate gel beads. 

Sodium alginate rich in guluronic acid tends to form more rigid gels that are less prone to 

swelling and erosion since the homogeneous G-sequences have a high degree of 

coordination of the calcium cations.
64-66

 Drug release from calcium alginate gel beads is 

also influenced by the interaction between drug molecules and the alginate. For example, 

gentamicin sulfate was found to interact with the mannuronic acids of alginate without 

influencing the gelation of alginate with calcium ions. As a result, calcium alginate beads 

prepared from sodium alginate with a higher mannuronic acid content led to a slower 

release of gentamicin sulfate.
98

 

Higher calcium concentration
95,99

 and a longer gelling time during the preparation 

process of calcium alginate beads
95,99

 result in slower drug release profile. The cross-

linker type has been shown to have a pronounced influence on the drug release:
100

 

calcium alginate beads demonstrated more prolonged drug release profiles than alginate 

beads prepared from other cross-linking agents like Ba
2+

 and Sr
2+

.   Calcium alginate 

beads with various sizes have been applied to achieve a pulsatile drug delivery pattern for 

dextran.
101

 Thus, calcium alginate beads can be designed to change the release time onset 

and used as drug delivery systems intended to follow the circadian rhythm in the body. 

Calcium alginate gel can be formed at neutral pH and isotonic solution at room or 

body temperature. As a result, calcium alginate gel can be used as a matrix for the 
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entrapment and/or delivery of biomolecules, such as proteins, DNA, and live cells 

without deleterious effect on their three-dimensional structure and/or biological activity. 

102-104
 The porosity of the gel can be adjusted to allow for acceptable diffusion rates of 

macromolecules or small molecules.
105

  

A large number of proteins have been encapsulated in alginate microbeads, such 

as basic fibroblast growth factor, Interleukin-2, Leukaemia inhibiting factor, lactase, 

etc.
106-108

 Positively charged proteins (e.g., transforming growth factor-b) can potentially 

compete with calcium ion for available carboxylic acid sites on the alginates, leading to 

protein inactivation or a reduction in diffusion rate. In this case, additives (e.g., 

polyacrylic acid) can be included to protect the encapsulated protein from the alginate.
109

  

Protein (bovine serum albumin) diffusion within calcium alginate gels was found 

to depend on the chemical composition of sodium alginate: gels prepared from sodium 

alginate of lower guluronic acid content showed higher protein diffusion rate than gel 

prepared from sodium alginate with similar viscosity but higher guluronic acid content.
110

 

Furthermore, alginate-based microencapsulation of living cells, such as islet cells, for 

transplantation has been widely investigated and has shown promising results in both 

animal studies and clinical trials.
104,111

 

Recently, FMC Biopolymer developed a novel alginate capsule technology based 

on calcium alginate gel formation. In this technology, calcium alginate gel capsules are 

prepared as unique enteric non-gelatin softgel capsules, particularly suitable for the 

delivery of large dose actives, acid sensitive active or actives generating gastric irritation, 

and oxygen sensitive actives. Alginate softgel capsules are produced by the following 

process: 1), emulsions containing actives (oil phase), and CaCl2 (gelling salt) are 
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prepared; 2), emulsions are dropped into sodium alginate solution to form calcium 

alginate gel shell; 3), alginate softgel capsules are washed and dried. Alginate softgel 

capsules have the following advantages over conventional gelatin softgel capsules: 

thinner films (100-150 µm), low variability in film thickness, seamless technology, 

smaller size, and excellent dosage uniformity (1-3% relative standard deviation).  

Characterization 

    More than 200 different alginate grades varying in molecular weight and chemical 

composition are available from manufacturers.
29

 The heterogeneity of commercial 

pharmaceutical-grade alginates reflects differences among the botanical sources, seaweed 

harvesting locations, the season of harvesting, the plant parts employed, and the 

processing methods used. Current pharmacopoeial standards (USP 33-NF28) for sodium 

alginate include the following specifications and tests (Table 2):  
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Table 2.   Compendial specifications for sodium alginate (Sodium alginate monograph, 

USP34 – NF29). 

Test USP-NF  

Identification* + 

Microbial limits ≤ 200/g 

Loss on drying ≤ 15.0% 

Ash 18.0-27.0% 

Arsenic ≤ 1.5 ppm 

Lead ≤ 0.001% 

Heavy metals ≤ 0.004% 

Assay (dried basis) 90.8-106.0% 

*Qualitative determination of the existence of sodium alginate by forming gel with 

calcium cations or with addition of sulfuric acid. 

 

However, these specifications and tests do not enable the characterization of 

variations in the molecular weight distribution and/or chemical composition of sodium 

alginate. As these variations can markedly affect the processability or performance of a 

sodium alginate-containing pharmaceutical product,
31,32

 it is important to find effective 

methods to characterize sodium alginate.
1
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The American Society for Testing and Materials (ASTM) standard test methods 

for sodium alginate recommend using size exclusion chromatography with multi-angle 

laser light scattering detection (SEC-MALS) for the determination of molecular weight 

distribution. H
1
 solution NMR has also been employed to characterize the chemical 

composition of such excipients. However, both methods are time-consuming and the 

results are not directly indicative of the functionality of sodium alginate in formulations.  

An effective method of excipient characterization should reflect the excipient‘s behavior 

during processing and its functionality in potential formulations. Sodium alginates are 

mostly used as binders, thickeners and gel-forming agents in both conventional and 

controlled release formulations. The functionality of sodium alginate in these 

formulations can be related to its rheological behavior in aqueous solutions. Rheological 

behavior of polymers in solution is influenced by the molecular weight distribution of a 

polymeric mixture.
112-114

 Furthermore, rheological parameters are closely related to 

pharmaceutical processes and functionality. For instance, viscosity is an important factor 

contributing to sedimentation rate of suspensions or emulsions as described by the 

Stokes‘ law for particle sedimentation velocity:
115,116

 




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fluidparticle
 ,                     Equation 1 

where V is the sedimentation rate (m/s),  is the density (kg/m
3
), r is particle radius (m), g 

is gravitational acceleration (m/s
2
), and  is the fluid viscosity (Pa∙s). Viscoelasticity is 

another important property of polymer solutions, reflecting the extent of polymer-solvent 

interaction and polymer interchain association, aggregation, and entanglement.
117

  A 

polymer solution with high apparent viscosity and viscoelasticity may exhibit excellent 

suspending properties by trapping the dispersed particles in the quasi-gel network.
117
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Viscosity also plays an important role in the solute diffusion and dissolution in viscous 

environment as described by Stokes-Einstein Equation on Diffusivity and Noyes-

Whitney equation on solute dissolution.   

r

Tk
D

6


 ,                     Equation 2 

Where D is diffusivity, k is Boltzmann‘s constant, T is temperature in Kelvin, r is particle 

radius, and   is fluid viscosity. 
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where M is the mass dissolved, t is time, A is the surface area of solute particle, Cs is the 

solubility of the solute, Cb is the bulk solution concentration of the solute, and h is the 

thickness of diffusion layer. 

In the case of alginate-based matrices, sodium alginate swells to forms a hydrated 

polymer layer when it is in contact with water, resulting a typical polymer concentration 

and polymer entanglement profile in the hydrated polymer matrix as shown in Figure 4, 

where x is the distance from the unhydrated polymer surface. 
118,119

 



41 

 

Figure 4.Schematic illustration regarding the polymer concentrations and polymer chain 

entanglement in swelling matrix. 

 

Drug release initially starts from the surface of the matrices, followed by drug 

diffusion through, and/or erosion of the hydrated sodium alginate layer. Erosion of the 

hydrated layer is the result of the disentanglement and dissolution of alginate chains at 

the interface between the polymer gel and the bulk solution.
118

 It is very likely that 

erosion of the alginate hydrated layer is governed by the same polymer-solvent and 

polymer interchain interactions as those involved in rheological behavior.
120

 Viscoelastic 

parameters of other hydrophilic polymer solutions (e.g., hypromellose) were found to 

correlate with the erosion of polymer gels: i.e., the higher the elastic modulus, the slower 
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the erosion rate of gel.
121,122

 As a result, viscoelasticity of sodium alginate in the hydrated 

state is also expected to play an important role in the swelling and erosion behavior of 

matrices in water, and eventually the drug release profile from alginate-based matrices. 

Therefore, rheological methods could be applied to characterize sodium alginate in 

solution. 

RHEOLOGY 

Rheology is the science of deformation and flow of matter and the study of the 

manner in which materials respond to the applied stress or strain. Rheological principles 

stem from two fundamental laws: Hooke‘s law of elasticity and Newton‘s law of flow. 

These laws correspond to the two extremes of rheological behavior, i.e., elastic 

deformation and viscous flow, respectively. Elastic or Hookean deformation involves 

material under stress that returns to its original state when the stress is removed. Viscous 

or Newtonian flow means that a fluid undergoes flow with the application of the smallest 

stress and does not return to its original state when the stress is removed.  

 

Elastic deformation is described by Hooke‘s law as: 




E ,        Equation 4 

where E is modulus of elasticity (Pa),  is stress (Pa), and  is strain. 

Simple shear flow of viscous liquid between two parallel plates is the continual 

movement of hypothetical layers of liquid sliding over each other as shown in Figure 5.  
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Figure 5.  Velocity profile under shear flow between two parallel plates. 

 

 In the simplest case the velocity of each layer increases linearly with respect to 

the distance from the lower stationary plate. The gradient of the velocity in the direction 

at right angles to the flow is called the shear rate ( ), and the force per unit area created 

or produced by the flow is called the shear stress (). In this simple case, the shear rate is 

V/h, while the shear stress is given by F/A. The shear viscosity is the resistance to flow of 

a liquid and is defined according to Newton‘s law as: 







                                                         Equation 5 

Simple liquids follow Newton‘s law and their viscosity is independent of the shear rate. 

These are classified as Newtonian liquid, of which water is an example. Other liquids 

show decreased or increased viscosity with the increase of shear stress or shear rate, and 

are classified as shear-thinning or shear-thickening non-Newtonian liquids, respectively 

(Figure 6).  
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Figure 6. Shear behavior of Newtonian and non-Newtonian liquids. 

The shear stress-shear rate relationship for the different types of liquids can be 

described as: 

nk          Equation 6 

where k is constant and k > 0, n = 1 for Newtonian liquid, 0 < n < 1 for shear-thickening 

liquid, and n > 1 for shear-thinning liquid.  

Most polymer solutions are shear-thinning liquids. Characteristic shear rates 

related to pharmaceutical processing and application are listed in Table 3.  The apparent 

viscosities as a function of shear rate for the non-Newtonian liquids are usually 

determined by steady shear method. 
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Table 3. Typical shear rates for pharmaceutical operations.
35,123

  

Operation Shear rate, s
-1

 

Fine Particle Sedimentation ~ 10
-3

 

Coatings Draining off Surface 

under Gravity 

10
-1 

– 10
1
 

Pouring liquid from bottle 50 

Extrusion 1–100 

Pumping (Pipe Flow or Blood Flow) 1-3,000 

Mixing and Stirring 10 – 1,000 

Spreading Lotion/Cream on Skin 400 – 1,000 

Levigating Ointment using Spatula 400 – 1,000 

Injecting through Syringe 4,000 

Dispersing Nasal Spray 20,000 

Processing in Colloid Mill 10
5
 – 10

6
 

High-speed Coating 10
4
 – 10

6
 

Spray Drying 10
5
 – 10

6
 

  

Most materials/liquids encountered in pharmaceutical practices do not exhibit 

ideal behavior as described by Hooke‘s law or Newton‘s law. Those liquids that 

simultaneously exhibit fluid-like (viscous) and solid-like (elastic) behavior are named as 

viscoelastic materials. The viscoelasticity of a material can be measured using the small 

amplitude oscillation method, where the material is subjected to sinusoidal strain input 
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and the stress response is measured. Materials are generally tested in the ‗linear 

viscoelastic region‘, where the inner structure of the material is not destroyed by the input 

strain and the material‘s response to sinusoidal input is also sinusoidal with the same 

frequency.  

The phase shift () between the input strain and output stress and their amplitude 

reflects the viscoelastic behavior of the material (Figure 7). For an ideal elastic solid 

material, the applied force induced by the application of strain is transmitted through the 

sample quickly, and changes in stress are observed at nearly the same time as the applied 

strain.  Thus,  would be zero. For an ideal viscous fluid,  is 90°. For a viscoelastic 

material, the stress and strain are out of phase and  is between 0° and 90°.  

 

Figure 7. Phase shift () for different fluids(from top to bottom): elastic solid, viscous 

fluid, and viscoelastic material. 

For an oscillatory shear flow, the shear stress  and shear strain  oscillates with a 
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frequency of oscillation  as:    

)sin(0 t 
,        

Equation 7 

)sin(0   t
,      

Equation 8 

Shear stress with oscillation can be expressed as: 

)cos()sin( 00 tt  
,    

Equation 9 

Elastic or storage modulus is defined as the ratio of the in-phase stress with the 

strain.  









cos

0

0

0

0 


G

,       

Equation 10 

Loss modulus (G″) is defined as the component of stress 90 out-of-phase with 

the strain. 

 









sin

0

0

0

0 


G

,       

Equation 11 

The measure of the viscous/elastic ratio of the viscoelastic material is the ratio of 

G″ to G′ and is defined as loss tangent:  

G

G




tan

,        
Equation 12 

From a molecular point of view, elasticity of polymer solutions is attributed to the  

entanglement and relaxation of polymer chains.
124

 Rheologically, polymer gels are often 

distinguished from polymer solutions on the basis of the timescale dependence of the 

elasticity and viscosity as reflected in dynamic moduli: G′ and G″. An example is a 

semidilute polymer solution, in which polymer chains entangle with each other. For this 

kind of solution, G′ < G″ at low frequencies since those chains have sufficient time to 
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disentangle and flow during a single oscillation; and G′ > G″ at high frequencies due to 

the insufficient time for polymer chains to disentangle during a single oscillation, and 

thus the system appears as solid.
125

 Therefore, the lifetime or the relaxation time of the 

polymer entanglements determines whether the system appears a solid or a liquid in the 

mechanical spectrum in the available angular frequency range. When the lifetime of the 

interchain entanglements is sufficiently longer than the time scale of observation (1/), a 

solid-like mechanical spectrum is obtained. And the crossover frequency at which G′ 

equals G″ corresponds to the average relaxation time of entanglements.
33

 Thus, a gel 

should exhibit a solid-like mechanical spectrum, i.e., G′ > G″ throughout the 

experimentally accessible angular frequency.
33

  

 

Rheometers 

The Ubbelohde capillary viscometer is usually used for the determination of 

intrinsic viscosity (Figure 6) based on Poiseuille's law:  

L

hgr

L

Pr

dt

dV 















88

44

,     Equation 13 

where V is the volume of the liquid (L), t is time (second), r is internal radius of the tube 

(m), L is the length of the tube (m),  ΔP is the pressure drop (Pa), and  is the dynamic 

viscosity (Pa∙s). Usually the viscosity of a polymer solution is compared to the solvent, 

where the relative viscosity is given by: 

solventsolvent

solutionsolution

solvent

solution
r

t

t








  ,     Equation 14 
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Figure 8. Ubbelohde capillary viscometer ((Reprinted from ―Aulton M. E., Pharmaceutics 

The Science of Dosage Form Design 2
nd

 Edition‖, Copyright (2001), with permission 

from Elsevier). 

 

The AR 2000 rotational rheometer (TA instruments, New Castle, DE, USA) 

equipped with cone-and-plate is used for the steady shear and small amplitude oscillation 

measurements in this study (Figure 9). This rheometer is an air bearing, controlled 

stress/controlled rate rheometer. The use of air as lubricating medium allows application 

of torque with very little friction. The auto zero gap setting on the instrument sets a 

reproducible zero gap before actual measurement. Once the sample is loaded on the plate, 

the gap is closed automatically using this zero gap as the reference. The Peltier effect
126

 is 
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used in temperature control for fast and precise control. The Peltier effect is a reversible 

thermoelectric effect where magnitude and direction of current applied to Peltier 

elements can result in desired heating or cooling. The AR 2000 rheometer uses four 

Peltier elements which are surrounded by a heat exchanger through which water or 

cooling fluid can be circulated for removal of heat from Peltier plates.  

 

Figure 9.  The AR 2000 rotational rheometer (reprint from TA instruments product 

brochure with permission from TA Instruments, New Castle, DE, USA).  

 

The measuring system used is the cone-and-plate accessory (40 mm in diameter 

and 1 cone angle with truncation of 51 µm) (Figure 10). The materials of construction 

used in the geometries are stainless steel. The velocity at any point on the rotating surface 
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(either the cone or the plate) is given by r where r is the distance from the center of 

rotation and again  is the rotation rate in rad/s. The distance between the cone and plate 

at this point is given by r∙tan , where  is the angle between the cone and plate. If the 

cone angle is small (less than 4), tan can be approximated as in radians. Thus, the 

shear rate is defined as:  








 

 r

r
 ,      Equation 15 

The shear rate is therefore the same everywhere under the cone.   

 

 

Figure 10.  Illustration of AR 2000 cone-and plate: R: radius of the cone, and    : angle 

of the cone. 

 

 

Rheological Characterization of Sodium Alginate Solution 

A number of studies have been published on the rheological behavior of sodium 

alginate solutions.
37,39-47,127-129

  In 1970, Smidsrod
129

 determined the intrinsic viscosities 
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of several sodium alginate samples with molecular weight ranging from 1x10
5
 to 2.7x10

6
 

in aqueous salt solutions. The intrinsic viscosity of sodium alginate solution was found to 

decrease with increasing ionic strength, which was due to the fact that sodium alginate 

conformation became more compacted as a result of reduced intra-molecular electric 

repulsion. 

Kokini and Surmay
124

 studied the apparent viscosity of sodium alginate solutions 

as a function of shear rate and concentration.  Sodium alginate investigated in this study 

was one unspecified grade obtained from Kelco (Atlanta, Georgia). Sodium alginate 

solutions having concentrations of 1.25%, 1.5%, 1.75%, and 2.0% w/w were 

characterized in the shear rate range from 0.1 to 100 s
-1

.  All solutions showed shear-

thinning behavior. The steady shear behavior of sodium alginate solutions at different 

concentrations could be superimposed by plotting reduced viscosity (i.e., apparent 

viscosity at each shear rate divided by zero shear viscosity) as a function of the 

generalized shear rate (the true shear rate multiplied by the inverse of the shear rate at 

which reduced viscosity is equal to 0.8).  Their finding indicated that sodium alginate 

solutions showed the same degree of shear thinning in the concentration range 

investigated. 

Mancini et al.
127

 measured the intrinsic viscosity of four commercial grades of 

sodium alginate and their apparent viscosities in the concentration range of 0.125-1.5% at 

278K to 308 K. It was reported that the investigated sodium alginate solutions showed 

shear thinning behavior and the apparent viscosity of sodium alginate solutions decreased 

at higher temperature. An empirical relationship among apparent viscosity, shear rate, 

and average molecular weight of sodium alginate was also proposed.  However, only four 
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data points in the molecular weight range from 70 to 160 kDa were used to develop a 

rather complicated empirical relationship. Furthermore, the proposed empirical equation 

was not validated with additional data. 

Cancela et al.
39

 investigated the steady shear behavior of one grade of sodium 

alginate (high purity grade obtained from Prolabo, France) at concentrations of 0.5%, 

1.0%, and 1.5% w/w in the temperature range from 25 to 40 C. Shear-thinning behavior 

was observed for sodium alginate solutions at all three concentrations.  Apparent 

viscosities of sodium alginate solutions were found to decrease with increasing 

temperature.  

Gomez-Diaz and Navaza
128

 characterized the intrinsic viscosity and steady shear 

behavior of one unspecified grade of sodium alginate obtained from Aldrich at 

concentrations from 0.1 to 0.75% w/v in the temperature range 25 – 40 C. It was 

observed that sodium alginate produced a marked shear thinning effect in solution even at 

such low concentrations. Concentration had a positive effect on solution viscosity while 

temperature negatively influenced the apparent viscosities and the shear thinning 

behavior. Their findings are in agreement with previous studies.
124,127

 These results 

suggested that sodium alginate chains in solution start to interact with each other at very 

low concentrations and the apparent viscosity of sodium alginate solutions is influenced 

by both shear rate and temperature at a fixed concentration. Thus, when comparing the 

solution viscosity data of sodium alginate from different sources, it is critical to make 

sure that these viscosity data were generated at the same concentration under the same 

shear condition and temperature. 
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Nikerson and Paulson
40

 determined the critical overlap concentration of sodium 

alginate (one food grade Protanal GP 9356 from FMC) solution. Critical overlap 

concentration of polymer solution is the concentration below which polymer chains will 

not have interactions with each other in a very dilute environment. Experimentally, the 

critical overlap concentration was assumed to be notable by a marked increase in 

apparent viscosity as polymer solution changes from a Newtonian fluid to a non-

Newtonian fluid.
130,131

 In Nikerson and Paulson‘s study, the critical overlap concentration 

for sodium alginate solution was determined as the inflection point in a log-log plot of 

specific viscosity [sp = (solution /solvent)– 1] as a function of concentration with a value 

of 0.35% w/w. However, the experimental method used in the Nikerson and Paulson
40

 

study may not be sensitive enough to detect the critical overlapping concentrations. A 

previous study showed that sodium alginate solutions with concentration of 0.1% w/v 

already exhibit shear-thinning behavior.
128

 It is possible that sodium alginate chains may 

start to overlap each other at concentrations at a much lower concentration than 0.1% 

where the change in specific viscosity is not large enough to be detected experimentally. 

Rezende et al.
37

 performed both steady shear and small amplitude oscillation 

studies on sodium alginate (one unspecified grade purchased from Panreac, Barcelona, 

Spain) solutions at 2%, 3%, and 5% w/v for the determination of optimal design 

parameters for an alginate-based biomanufacturing system (alginate scaffold). Their 

findings showed that alginate solutions in the concentration range investigated underwent 

shear-thinning effects with increasing shear rates. It was also observed that the loss 

modulus was higher than the storage modulus and both moduli were dependent upon the 

frequency, which was a typical characteristic of dilute polymer solutions. Sodium 
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alginate solution at 5% w/v studied by Rezende et al.
37

  is the highest sodium alginate 

solution studied so far. Even at 5% w/v, sodium alginate solution still shows more 

viscous behavior than elastic behavior.  

Most of the sodium alginates employed in the previous studies were not 

pharmaceutical grades. For that matter, explicit recommendations have not been made in 

the literature as to the rheological methods that would be most appropriate for polymeric 

excipient evaluation relative to pharmaceutical processing or formulation performance. In 

addition, the previous studies were limited to the rheological characterization of sodium 

alginate solutions with concentrations lower than 5% w/v. Sodium alginate solutions with 

concentrations higher than 5% w/v or w/w would be expected to exhibit more elastic 

behavior and would provide valuable information on how sodium alginate behaves in 

formulations such as matrices during swelling and erosion.  

 

As demonstrated in the preceding literature review, excipients, especially 

polymeric excipients, could be a major source of variability in pharmaceutical products. 

There is a need to further understand the inter-grade and inter-batch variability of 

polymeric excipients and the effect of their variability on their performance in different 

formulations. Sodium alginate is selected in these studies. Rheological methods could be 

an effective method of characterizing sodium alginate with the potential of revealing its 

physicochemical properties and its behavior in processing and final performance in 

formulations. Further studies on rheological properties of sodium alginate are necessary 

to prove the usefulness of this analytical method in the identification of the inter-grade 

and inter-batch variability of sodium alginate. 
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CHAPTER 2. RHEOLOGICAL EVALATION OF INTER-GRADE AND INTER-

BATCH VARIABILITY OF SODIUM ALGINATE 

Introduction 

According to Quality-by-design (QbD) principles,
1
 a design space for each 

pharmaceutical product could be established by encompassing, in part, the active 

pharmaceutical ingredient(s), the unit operations employed to produce the finished 

product, and the excipients.
2
 Polymeric excipients, in particular, comprise mixtures of 
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polymers of different molecular weights and chemical composition and tend to be the 

least well-characterized components of the pharmaceutical products. This work focuses 

on the widely used, but poorly characterized polymeric excipient, sodium alginate, which 

is extracted from seaweeds.  

Sodium alginates are linear, unbranched, amorphous copolymers of β-D-

mannuronic acid (M) and α-L-guluronic acid (G) linked to each other by 14 glycosidic 

bonds. The M and G units in the alginates may be randomly or non-randomly arrayed as 

heterogeneous or homogeneous sequences. Due to the differences in steric hinge between 

adjacent monomers with respect to glycosidic bond rotation, the stiffness of the 

sequences in aqueous solution increases in the order MG < M < G. 
58-60

 

Due to their abundance, low price, and compatibility with biological systems, 

sodium alginates are widely used in the pharmaceutical and biomedical areas.
29

 

Pharmaceutically, sodium alginates are generally used as binding agents in tablets, as 

suspending and thickening agents in suspensions, water-miscible gels, lotions and 

creams, as emulsion stabilizers, or as gel-forming agents in combination with divalent 

metal ions such as calcium.
30

 Since sodium alginate can almost immediately form a 

viscous layer when in contact water, it is employed in the development of alginate-based 

controlled release drug delivery systems, such as matrix tablets, microcapsules, etc.
29

  

More than 200 different alginate grades — varying in molecular weight and 

chemical composition — are available from various manufacturers.
29

 The heterogeneity 

of commercial pharmaceutical-grade alginates reflects differences among the botanical 

sources, seaweed harvesting locations, the season of harvesting, the plant parts employed, 

and the processing methods used.
54

 Current pharmacopoeial specifications (USP -NF) for 
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sodium alginate do not enable the characterization of variations in the molecular weight 

distribution and/or chemical composition of sodium alginate. Since these variations can 

markedly affect the processability or performance of a sodium alginate-containing 

pharmaceutical product,
31,32

 adherence to the USP-NF monograph may not ensure the 

interchangeability of sodium alginates from different sources or even various batches 

from the same manufacturer. Previous studies have shown that the inter-manufacturer 

and/or inter-batch (lot) variability of excipients can exert a significant effect on the 

performance of the final formulations, even though these excipients meet the 

pharmacopoeial specifications.
10,11,15,16,21

 It is not surprising that pharmacopoeial 

specifications are not guarantors of excipient performance, because they focus on 

identity, purity, and safety. Thus, it is important for pharmaceutical manufacturers to 

develop effective methods for the characterization of sodium alginate in order to help 

establish the design space for sodium alginate-based formulations.
1
             

An effective method of excipient characterization should reflect the excipient‘s 

behavior during processing and its functionality in potential formulations. Sodium 

alginates are mostly used as binders, thickeners and gel-forming agents in both 

conventional and controlled release formulations. The functionality of sodium alginate in 

these formulations can be related to its rheological behavior in aqueous solutions.         

Steady shear rheological methods are eminently suitable for determination of solution 

flow behavior, which is critical for certain types of formulations, e.g., suspensions and 

emulsions. However, under steady shear, the underlying structure of the polymer network 

in solutions is destroyed. Solutions with high polymer concentrations, such as those 

present in the gel layer around an alginate-based matrix, are better characterized by 
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methods such as small amplitude oscillation (SAO) tests that are less likely than steady 

shear methods to disturb or disrupt the polymer network. Therefore, both steady shear 

and SAO rheological methods should be useful in characterization of sodium alginate. 

Unfortunately, the rheological properties of sodium alginate solutions are not specified in 

the United States Pharmacopoeia (USP33-NF28, 2010).  

Even though a proposed chapter for the USP-NF on excipient performance
51

 

suggests that viscosity tests be employed to assess the functionality of excipients used as 

thickening agents, the current pharmacopoeial chapter on viscosity testing does not 

mandate test conditions that reflect actual usage of the excipients.  Even when excipient 

manufacturers do supply rheological data for sodium alginates, they typically only report 

the apparent viscosities of sodium alginate solutions at one specific concentration, at one 

shear rate,  and at one temperature — ―one-point‖ measurements — as if the alginate 

solutions‘ rheological characteristics were those of Newtonian fluids. In fact, the typical 

rheological behavior of many polymer solutions is highly shear- and concentration-

dependent, encompassing the range from Newtonian to shear-thinning non-Newtonian to 

viscoelastic behavior.
 33,34

 The shear rates encountered in pharmaceutical manufacturing 

and in product use can vary considerably, ranging from 10
-3 

to 10
6
 s

-1
.
35

 Thus, ―one-

point‖ apparent viscosity values provide little to no insight into the selection of suitable 

polymer grades for a specific formulation or manufacturing process.
36

 A comprehensive 

rheological evaluation of sodium alginate solutions is warranted in order to facilitate the 

identification of criteria that would allow inter-grade or inter-batch comparisons.  

Although a number of studies have been published on the rheological behavior of 

sodium alginate solutions,
37-47

 most of the sodium alginates employed in these studies 
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were not pharmaceutical grade. In addition, these studies were limited to the rheological 

characterization of sodium alginate solutions at concentrations lower than 5% w/v. 

Sodium alginate solutions at these low concentrations exhibit fluid-like behavior, 

whereas sodium alginate solutions at higher concentrations display a more substantial 

viscoelastic character. Unfortunately, no studies have been conducted on these more 

highly concentrated, substantially viscoelastic solutions of sodium alginate.  

QbD necessitates an understanding of the rheological behavior of the excipient 

utilizing experimental conditions and excipient concentrations appropriate to the 

formulation and processes under consideration. The absence of meaningful, published 

data underscores the need for rheological methods that would be appropriate for 

polymeric excipient evaluation relative to pharmaceutical processing and formulation 

performance. Since rheological measurements generate numerical test results instead of 

limit test results, summary statistics of the grade-to-grade and batch-to-batch rheological 

parameters will benefit both the excipient manufacturer and pharmaceutical 

manufacturer.  

A persistent problem in traditional formulation development stems from the lack 

of awareness or ignorance of excipient variability. Following QbD principles, users need 

to understand the inter-grade and inter-batch variability of excipients and its possible 

impact on formulation processing and product performance. This work is intended to 

determine the inter-grade and inter-batch variability of sodium alginate using appropriate 

rheological methods and conditions, thereby providing insight into the delineation of the 

design space as part of QbD for sodium alginate-based formulations.  
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Materials and Methods 

Materials 

Six grades of sodium alginate (comprising one batch of each grade) — produced 

by FMC Biopolymer (Drammen, Norway) — representing a wide range of reported 

viscosities, were provided by the manufacturer (Table 4), along with 10 additional 

batches of one of the grades (LF120M, Table 5: batches were designated from A to J 

based on manufacturing date). Deionized water was obtained from a Milli-Q ultrapure 

water system (Millipore Corp., Billerica, MA, USA). Sodium chloride (ACS grade) was 

purchased from Sigma Aldrich (St. Louis, MO, USA) and used as supplied. 

 

 

 

 

 

Table 4. Sodium alginate grades and physicochemical properties specified by FMC 

Biopolymer.  

Grade FMC Product Name %G 

Viscosity range
a
, 

mPa•s 

1 Protanal LF10/60LS 35-45 20-70 

2 Protanal LF240D 30-35 70-150 

3 Protanal LF120M 35-45 70-150 
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4 Protanal LF200M 35-45 200-400 

5 Protanal LF200DL 55-65 200-400 

6 Protanal HF120RBS 45-55 600-800 

a
: Viscosity data reported in manufacturer‘s certificate of analysis [Viscosity was determined for 

1% w/v sodium alginate solutions at 20 ºC using a Brookfield viscometer, spindle #3 at 40 

rpm]. 

 

 

 

 

 

 

 

Table 5. Ten batches of sodium alginate — Protanal LF120M — produced in 2007 and 

physicochemical properties specified by FMC Biopolymer. 

Batch 

Manufacturer’s 

Batch # 

Manufacturing 

Date 

Viscosity
a
, 

mPa•s 

A 19338 01-23-2007 95 

B 19440 02-26-2007 97 

C 19626 04-24-2007 109 
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D 19664 05-11-2007 104 

E 19748 06-04-2007 97 

F 19812 06-15-2007 99 

G 19961 08-20-2007 96 

H 20041 09-11-2007 101 

I 20076 10-10-2007 112 

J 20228 11-12-2007 105 

a
: Viscosity data reported in manufacturer‘s certificate of analysis [Viscosity was 

determined for 1% w/v sodium alginate solutions at 20 ºC using a Brookfield 

viscometer]. 

 

Methods 

Calcium Content Determination 

Aqueous sodium alginate solutions (0.1% w/v) were prepared and the calcium 

content then determined by fitting the atomic absorption of sodium alginate solution at 

423 nm obtained on Atomic Absorption Spectrophotometer (Model 1100, Perkin-Elmer, 

MA, USA) to a standard curve.
132

  

 

Determination of % G by Solid-State 
13

C NMR (SSNMR) (Work done in Dr. Eric J. 

Munson’s lab at the University of Kansas) 
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The %G in the intact sodium alginate powders were determined by SSNMR: 

Solid-state 
13

C NMR spectra were acquired using a Chemagnetics CMX-300 

spectrometer (Varian, Inc., Fort Collins, CO, USA) operating at approximately 75 MHz 

for 
13

C.  Chemagnetics double-resonance probes equipped with Revpljk.olution NMR 7-

mm spinning modules (Revolution NMR, LLC, Fort Collins, CO, USA) were used to 

acquire all spectra.  Samples were packed into zirconia rotors and sealed with Teflon end-

caps.  Spectra were acquired using ramped-amplitude cross-polarization, magic-angle 

spinning (MAS) with total sideband suppression, and SPINAL64 decoupling.
  

Spectrometer settings were optimized and the reference frequency set using 3-

methylglutaric acid. 
 
A contact time of 1 ms, MAS frequency of 4.0 kHz, and a 

1
H-

decoupling field of approximately 80 kHz were used to acquire all spectra. The recycle 

delays varied based upon 
1
H T1 values for each sample, which were measured using 

saturation recovery experiments. Using Chemagnetics Spinsight software plots of 

integrated signal intensity versus saturation recovery times were fit to Eq. 16:  

)1( 1T
eampy


 ,                                                           Equation 16  

where y is the integrated signal intensity,  amp is the amplitude constant,  is the 

saturation recovery time, and T1 is the spin-lattice relaxation time.  Saturation recovery 

times were arrayed from 0.01 to 10 s, and monoexponential curve-fitting provided an 

accurate fit for all data sets.  A recycle delay equal to 5 times the 
1
H T1 value of each 

sample was used to acquire each spectrum. A total of 5120 transients were acquired in 

order to achieve a high signal-to-noise ratio (SNR). Deconvolution of peaks in the region 

60-90 ppm was achieved using Chemagnetics Spinsight software, and peak areas were 
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then used to calculate the amount of guluronic and mannuronic acid present in each 

sample.   

 

Intrinsic Viscosity 

The apparent viscosities of aqueous sodium alginate solutions containing sodium 

chloride (0.1 M) and of the solvent, solution and solvent, respectively, were evaluated at 

25°C by using an Ubbelohde viscometer (Cannon Instruments, State College, PA, USA). 

All alginate concentrations reported in this work were corrected for moisture content. 

Moisture content was determined as the weight loss of sodium alginate samples kept at 

105C for 4 hours using Thermogravimetric Analysis (TA Instruments, New Castle, DE, 

USA).  Intrinsic viscosities [] were determined from the concentration dependence of 

the reduced specific viscosity 
C

sp
in accordance with the Huggins equation: 

     Ck
C

sp


2




 ,         Equation 17                                        

where C is concentration, g/dL, k is a constant, and sp is specific viscosity:                     

1
solvent

solution
sp




                                                                Equation 18 

Intrinsic viscosity is the hydrodynamic volume of polymer chains at infinitely diluted 

concentration with a unit of dL/g. Weight average molecular weight (Mw) and number 

average molecular weight (Mn) were calculated according to Mark-Houwink-Sakura 

equation with the following constants:
133

 

  0.023Mw

0.984 Mw 
 
0.023








1

0.984

                            Equation 19 
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  0.095 Mn

0.963 Mn 
 

0.095








1

0.963

    

Equation 20 

where Mw and Mn are expressed in kDa.  The constants were obtained by fitting intrinsic 

viscosity data of sodium alginates to average molecular weight obtained from gel 

permeation chromatograph and laser scattering characterization.
133

   

 

Steady Shear 

Since sodium alginate is commonly used as a thickening agent in suspensions or 

emulsions at concentrations ranging from 1 to 3%,
30

 steady shear measurements were 

performed on sodium alginate solutions at 1%, 2%, and 3% w/w for the six grades, and 

2% w/w for the 10 batches of grade 3 using a controlled stress/rate (CS/CR) rheometer 

(AR-2000, TA Instruments, New Castle, DE, USA) with a steel cone-and-plate accessory 

( = 40 mm; =1°). Sample temperatures were maintained at 25 ± 0.1°C by a Peltier 

temperature-control system. The rotational rheometer was validated with Cannon 

viscosity standard N35 (Cannon Instruments, State College, PA, USA) (Appendix I). 

 

Small Amplitude Oscillation (SAO) 

SAO measurements were performed on sodium alginate solutions over a wide 

range of concentrations (4-13% w/w) using an AR-2000 CS/CR rheometer (TA 

Instruments, New Castle, DE, USA), equipped with a steel cone-and-plate accessory ( = 

40 mm;  = 1). Frequency sweeps were performed with the angular frequencies (ω) 

ranging from 1 to 100 rad/s at 25°C and/or 37ºC with 10% strain.  Strain sweeps from 1 

to 100% were carried out to make sure that the 10% strain applied during the frequency 
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sweep was in the linear viscoelastic region for the samples tested. Sample temperatures 

were maintained at 25 ± 0.1°C or 37 ± 0.1°C by a Peltier temperature-control system.  

The rheometer was validated by performing frequency sweep measurements on a 

standard material ─ liquid isoprene rubber (LIR50), a linear monodisperse 1,4-

polyisoprene with a molecular weight of 45 kDa and polydispersity less than 1.1 

(Kuraray American, Inc., Houston, TX, USA) (Appendix I). 

 

Temperature Influence on Rheological Behavior 

Steady shear and SAO studies were performed on solutions of one selected grade 

(grade 3: LF120M) of sodium alginate at various concentrations (2, 3, 4, 5, and 8% w/w) 

and at two different temperatures (20ºC and 37ºC) in accordance with the above 

procedures. Temperature effects on the apparent viscosities of the 2% w/w aqueous 

solutions of the six grades of sodium alginate were further investigated at 15, 20, 25, 37, 

and 45 ºC.   

 

Data Analysis 

Rheological data of the solutions of sodium alginate were analyzed via analysis of 

variance (ANOVA) and Levene‘s test for homogeneity of variance using PASW 

Statistics 18 for Windows (SPSS Inc., Chicago, IL, USA). Post hoc testing (p < 0.05) of 

the multiple comparisons was performed by either the Tukey HSD (Honestly Significant 

Difference) test or Games–Howell test, depending on whether the outcome of Levene‘s 

test was insignificant or significant, respectively. Where appropriate, the following 

specialized software applications were also employed in the analysis of data: GraphPad 
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Prism (version 5, GraphPad Software, Inc., La Jolla, CA, USA), TableCurve 2D (version 

5.01, Systat Software, Inc., San Jose, CA, USA), and TableCurve 3D (version 4.0, Systat 

Software, Inc., San Jose, CA, USA).  

Results and Discussion 

Inter-Grade Variability 

Calcium Content, Chemical Composition, and Intrinsic Viscosities 

Sodium alginate solutions‘ specific viscosities relative to concentration are plotted 

with respect to concentration in Figure 11. The intrinsic viscosities of the six grades of 

sodium alginate are corresponding to the y-axis intercepts of the linear regression of their 

respective data sets.  
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Figure 11. Sodium alginate solutions‘ specific viscosity/concentration with respect to 

concentration for the determination of intrinsic viscosity (0.1 M NaCl solution at 25C). 

Data are shown as mean and standard deviation of three replicates. 

 

The residual calcium content, chemical composition and intrinsic viscosity ([]) 

data for the six grades of sodium alginate are listed in Table 6. Sodium alginate, extracted 

from seaweed using the calcium alginate method,
54

 may have residual calcium that could 

influence the rheological properties of the resultant sodium alginate solution. In some 

instances, calcium salts are added to sodium alginate to increase viscosity of the 

corresponding polymer solutions.
54

 The residual calcium content of the sodium alginate 

powder employed in this study was found to vary from 0.08% to 0.51% w/w. The 

corresponding molar ratios of calcium to sodium alginate monomer range from 0.004 to 

0.025. Since calcium:alginate monomer molar ratios below 0.05 have been reported to 

exert little or no effect on the apparent viscosities of aqueous alginate solutions 

(measured at two different rates of shear),
134

  the ratios determined for these sodium 

alginates used in this study do not warrant concerns regarding the possible untoward 

influence of calcium on solution rheology.  

 

Table 6. Calcium content, %G, [], and average molecular weights calculated based on 

the intrinsic viscosities of the six grades of sodium alginate. Mean and standard deviation 

were calculated from three replicates. 
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Grade 

Calcium (%) 

(Mean ± S.D.) 

%G per FMC 

(% Range) 

%G per SSNMR 

(% Range) 

[η] (dL/g) 

(Mean ± S.D.) 

Average 

Mw (kDa) 

Average 

Mn (kDa) 

1 0.42 ± 0.0023 35-45 37 - 42 5.53 ± 0.15 263 68 

2 0.51 ± 0.0023 30-35 33 - 36 6.04 ± 0.09 288 75 

3 0.41 ± 0.0039 35-45 38 - 42 6.43 ± 0.06 306 80 

4 0.26 ± 0.0023 35-45 39 - 43 8.72 ± 0.24 418 109 

5 0.08 ± 0.0039 55-65 48 - 53 8.54 ± 0.12 409 107 

6 0.28 ± 0.0023 45-55 43 - 47 11.26 ± 1.21 541 142 

 

The guluronic acid percentages (%G) of the different grades — as determined in 

our study — are within the ranges specified by the manufacturer, except for grades 5 and 

6 for which the %G values determined by solid-state NMR (SSNMR) are slightly lower 

than the values listed in the manufacturer's specifications. The range of %G reported by 

the manufacturer was determined using 
1
H NMR spectroscopy in solution.  As sample 

preparation for solution NMR requires partial acid hydrolysis of the alginate chain, 

sample alteration or loss of insoluble material can occur.
135,136

  Therefore, analysis of the 

intact solid sample may actually give a better representation of the alginate composition.  

The range of intrinsic viscosities (and the corresponding molecular weights) of 

the sodium alginate differs by approximately two-fold among the six grades. The rank 

order of intrinsic viscosities of the six grades corresponds, approximately, to the viscosity 

range specified by the manufacturer: the higher the viscosity grade, the higher the 
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intrinsic viscosity. Interestingly, although there are differences in the intrinsic viscosities 

of grades 2 and 3, these two grades are characterized by the manufacturer as having the 

same range of solution viscosities. This is also true for grades 4 and 5.  The viscosity 

range provided by the manufacturer for each grade is in fact very wide. It is not 

surprising that grades with the same viscosity specification could still vary substantially 

in their average molecule weight.  

 

Steady Shear 

The steady shear rheological properties of the solutions of the six grades of 

sodium alginate at 1, 2, and 3% w/w concentrations, at 25C, are depicted in Figure 12, 

where the apparent viscosity (app) or shear rate is plotted as a function of shear stress.  
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Figure 12. Steady shear results of sodium alginate solutions at three concentrations at 

25°C: apparent viscosity as a function of shear stress for (a) 1%; (b) 2%; and (c) 3% w/w 

solutions; shear rate as a function of shear stress for (d) 1%; (e) 2%; and (f) 3% w/w 

solutions. Data are shown as mean and standard deviation of six replicates. 
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The apparent viscosities of all the alginate solutions decrease with increasing 

shear stress. Shear rate and shear stress data were fitted by the following power-law 

model (Equation 3 in Chapter 1): 

nk   ,        Equation 3 

where   is shear rate (1/s),  is shear stress (Pa), k is a constant, and n is the power law 

index. For shear-thinning fluids, n > 1. The larger the value of the power-law index, the 

more shear-thinning the solution.  The n values for the solutions of six grades of sodium 

alginate at three concentrations are summarized in Table 7. Based on n values, all six 

grades of sodium alginate are showing shear-thinning behavior in the concentration 

ranges investigated. It is consistent with previous observations of shear-thinning behavior 

of solutions of sodium alginate at these concentrations.
37,39,47,133

   Generally, those grades 

with lower apparent viscosities also show a smaller n values, which indicates that grades 

with lower viscosity are less shear-thinning than grades with higher apparent viscosities. 

For those grades with relatively lower apparent viscosities (Grades 1, 2, and 3), their n 

values keep almost constant from 1% to 3% w/w. For those grades with relatively higher 

apparent viscosities (Grades 4, 5, and 6), their n values decrease from 1% to 3% w/w. 

With a higher number of polymer chains in solutions at higher concentrations, larger 

shear stress is required to align the polymer chains along the flow direction. The dragging 

effects of sodium alginate molecules in solution are more obvious for those grades with 

larger molecular weights (long polymer chains in solution) than those grades with smaller 

molecular weights.  

 

Table 7. Power-law index values for sodium alginate solutions (six replicates).  
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Sodium Alginate 

n 

1% w/w 2% w/w 3% w/w 

Grade 1 1.244  0.011 1.293  0.020 1.274  0.016 

Grade 2 1.244  0.018 1.295  0.020 1.294  0.016 

Grade 3 1.355  0.018 1.401  0.013 1.374  0.040 

Grade 4 1.562  0.036 1.392  0.021 1.292  0.015 

Grade 5 1.679  0.039 1.458  0.017 1.327  0.011 

Grade 6 1.873  0.047 1.529  0.025 1.411  0.011 

 

The rank-order of the various sodium alginate grades based on the apparent 

viscosities of their solutions is grade 1 < grade 2 < grade 3 < grade 4 < grade 5 < grade 

6 for all three concentrations at low shear stress (1-25 Pa). Statistical analysis (ANOVA) 

of the steady shear data (six replicates) shows that apparent viscosities of the six grades 

are significantly different from each other at all three concentrations (P < 0.001) at low 

shear stress (1-25 Pa). Post hoc multiple comparisons reveal that all these grades are 

significantly different from each other at each concentration. It is also evident from 

Figure 12 that the differences in apparent viscosity among these grades of sodium 

alginate become larger at higher alginate concentrations or at lower shear stresses.  The 

―one-point‖ viscosity data reported by the manufacturer were measured using Brookfield 

viscometer (Middleboro, Massachusetts, USA) at 40 rpm, which corresponds to 0.25 to 

2.5 Pa shear stress based on the conversion method developed by Rosen et al.
137

 The 

viscosity ranges provided by the manufacturer for specific grades of sodium alginate are 

relatively large and overlapping. For example, the manufacturer‘s brochure shows the 
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same viscosity range for grades 4 and 5 (200-400 mPa•s) and for grades 2 and 3 (70-150 

mPa•s).  Obviously, this viscosity data does not reflect the variation in apparent viscosity 

of sodium alginate solutions at different concentrations under different conditions. Thus, 

those alginate grades specified by the manufacturer as having the same viscosity range 

may show significant differences in their rheological behavior under different conditions 

corresponding to a specific process or product use. It is important to determine the 

apparent viscosities at concentrations and shear conditions relevant to the formulations, 

e.g., apparent viscosities at low shear (e.g., 1 – 50 s
-1

) can be useful in the development of 

a suspension formulation, while apparent viscosities at high shear (> 10,000 s
-1

) 
35,123

 are 

more appropriate for solutions used in coating or spray-drying processes.  

As to the effect of polymer concentration on the apparent viscosities of these 

solutions at low shear stress, e.g., 1 Pa, the range of the apparent viscosities of the six 

grades of sodium alginate in solution is 10-fold at 1% w/w, 28-fold at 2% w/w, and 

33-fold at 3% w/w. At high shear stress, e.g., 100 Pa, the range of the apparent 

viscosities of the six grades of sodium alginate in solution is 5-fold at 1% w/w, 16-fold 

at 2% w/w, and 24-fold at 3% w/w. Apparently, the difference in average molecular 

weight among the various grades of sodium alginate are associated with 

disproportionately greater differences in apparent viscosities, especially at lower shear 

stresses and higher concentrations. Furthermore, the apparent viscosities increase > 6-fold 

for each grade from 1% to 2% and > 4-fold from 2% to 3%. This disproportionate 

increase in apparent viscosity is the result of the disproportionate increase in likelihood of 

polymer chain interactions in solution.  In addition, grades with higher Mw show a larger-

fold increase in their apparent viscosity at higher concentrations, e.g., from 1% to 2% 
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w/w, apparent viscosity of grade 1 solution increases 6 times while that of grade 6 

solution increases 15 times. This observation is in accordance with the previously 

reported empirical relationship
138-140

 between polymer solution viscosity, concentration, 

and molecular weight:  

)exp( yx

solventsolution MaC ,    Equation 21 

where M is polymer weight-average molecular weight, C is polymer concentration, 

solution and solvent are polymer solution and solvent apparent viscosity at a specified shear 

stress/rate, respectively, and a, x, and y are constants. Thus, higher polymer 

concentrations or larger polymer molecular weights Mw are associated with higher 

solution viscosities. Those polymers with higher Mw would show a larger-fold increase in 

viscosity with increasing concentration. Fitting our data to this equation results in Figure 

13, where apparent viscosities (1 Pa shear stress, 25°C) of sodium alginate solutions are 

plotted as a function of alginate concentration and the Mw  values estimated from the 

corresponding intrinsic viscosities (r
2
=0.966, a=0.085, x=0.426, y=0.694). However, 

there are only six different grades available for model fitting, the validity of the model 

will need to be tested with additional data.  

 

 

 

 

.  
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Figure 13. The relationship among apparent viscosities (1 Pa shear stress, 25°C) of 

sodium alginate solutions, sodium alginate concentration, and molecular weight.  

 

The apparent viscosities of solutions of these six grades are consistent, for the 

most part, with the expectation that higher average molecular weights would result in 

higher apparent viscosities. This is depicted in Figure 14 where apparent viscosities (1 Pa 

shear stress, 25°C) of sodium alginate solutions are plotted as a function of the Mw values 

estimated from the corresponding intrinsic viscosities. Since sodium alginate is a linear 

unbranched polymer, higher molecular weights increase the likelihood of inter-chain 

interactions in solution resulting in correspondingly higher viscosities.  
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Figure 14. Apparent viscosities (shear stress = 1 Pa; 25C) of sodium alginate solutions 

(1%, 2%, and 3% w/w) as a function of average Mw (calculated based on intrinsic 

viscosities). Data are shown as mean and standard deviation of six replicates. 

 

     One anomaly in the data is that grade 5 results in apparent viscosities that are 

significantly higher than those for grade 4 at corresponding shear stresses. On one hand, 

grade 5 has an average molecular weight that is slightly less than that of grade 4. On the 

other hand, grade 5 is higher in %G than grade 4. Thus, a possible explanation for this 

anomalous rheological behavior is that the higher %G in the alginate molecular chain of 

grade 5 leads to stiffer, i.e., more extended, chain conformations in solution 
58-60

 and an 

increased likelihood of inter-chain interaction under steady shear. 
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The contribution of average molecular weight and %G to apparent viscosity of 

alginate solutions is typified by the graph in Figure 15, where the apparent viscosity of 

2% w/w solutions (1 Pa shear stress, 25°C) is shown as a function of both Mw and %G. 

The empirical relationship among the variables may be expressed in terms of the least 

squares-fitted equation (per TableCurve 3D) as follows: 

wapp MG   336 1098.9)(%1081.585.3)ln( ,        Equation 22 

where r
2
 is 0.998. This empirical equation needs to be validated with additional data 

obtained from different grades with varying %G and molecular weight.  
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Figure 15. The relationship among apparent viscosity (1 Pa shear stress, 25°C) of 2% 

w/w sodium alginate solutions, Mw, and %G.  

 

Although size exclusion chromatography has been used to determine the 

molecular weight distribution of polymeric excipients and NMR has been employed to 

characterize the chemical composition of such excipients, rheological methods are easier 

to perform and can measure functionality-related properties of the excipients in a 

relatively short time period. Furthermore, rheological behavior is indicative of the 

molecular weight distribution of a polymeric mixture.
112-114

 Thus, steady shear behavior 

under specific shear conditions can be employed for assessment of the quality of 

polymeric excipients used as thickening or binding agents prior to product 

manufacturing. This work focuses on different grades of excipient from the same 

manufacturer, but the same methods can be applied to ensure interchangeability or 

equivalence of an excipient from different manufacturers. 

A specific range of apparent viscosities can be achieved by employing different 

grades of sodium alginate at different concentrations. Therefore, for those formulations 

whose functionality can be related to apparent viscosity, multiple grades of sodium 

alginate could be included as long as alginate concentration and mechanical conditions 

(e.g., shear rate or stress) were also specified. For example, when developing a 

suspension with desired apparent viscosities between 150 mPa·s and 300 mPa·s under 

low shear conditions (i.e., 1-10 Pa), grades 2 or 3 at 1% w/w, or grade 1 at 2% w/w, 

would be recommended. It is more reasonable and practical to employ the apparent 

viscosity values as justification for inclusion of excipients in a formulation — by 
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adjusting excipient concentrations to achieve the same apparent viscosities— than by 

selecting excipients based on their apparent viscosity data at one concentration. The 

inclusion of multiple excipient grades in the formulation design would be especially 

important when excipient production or availability is problematic. In fact, the concept of 

formulation design space was proposed to FDA as a post-approval activity during FDA 

generic drugs workshop in June 2009.
141

 

 

 

 

 

Small Amplitude Oscillation  

Strain Sweep  

Strain sweep experiments were conducted on sodium alginate solutions. The 

strain dependence of the storage modulus G, at a fixed angular frequency of 1.0 rad/s, is 

exemplified by the 8% w/w sodium alginate solutions as shown in Figure 16 (details for 

other concentrations are listed in Appendix I). For all six grades, the G value remains 

approximately the same until strain exceeds 40% at which more than a 10% drop of G is 

observed. The 10% strain used in frequency sweep in this work is, therefore, within the 

linear viscoelasticity range of alginate solutions. The applied strain in each frequency 

sweep measurement would not destroy or disrupt the polymer network/entanglements in 

the investigated sodium alginate solutions. 
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Figure 16. The storage modulus G as a function of %strain for 8% w/w alginate solutions 

at 37°C.  

 

Viscoelasticity           

At 1% w/w concentration, sodium alginate solutions show little evidence of 

elastic behavior or network formation: the values of storage modulus G are negligible. 

However, at concentrations ≥ 2% w/w, the viscoelastic moduli (storage modulus G, loss 

modulus G) are more substantial. SAO results for 2% and 3% w/w solutions are shown 

in Figure 17 in terms of G, G, and tan , i.e., the ratio of the loss modulus (G ) to the 

storage modulus (G). Higher alginate concentration leads to higher values of G and G, 

and lower values of tan  for all six grades of sodium alginate.  

ANOVA tests of tan  of solutions of these grades at both concentrations showed 

significant differences among these six grades of sodium alginate (P < 0.001). The results 

of post hoc multiple comparisons test indicate that grades 4 and 5 do not show any 
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significant differences in their viscoelasticity at 2% and 3% w/w. Interestingly, there is 

no significant difference in tan  between grades 3 and 4 at 3% w/w although their 

apparent viscosities are significantly different at this concentration. Thus, grades that are 

significantly different in their apparent viscosities may not necessarily be significantly 

different in their viscoelastic parameters at the same concentration.  

Apparent viscosities are mainly determined by inter-polymer interactions under 

steady shear. Since sodium alginate is a polydisperse mixture of molecules with different 

molecular weights and chemical composition, those molecules with a more extended 

conformation in solution would have more chances of interacting with each other under 

shear. On the other hand, viscoelasticity is a reflection of the polymer interactions under 

minor deformation. At these low concentrations, polymer chains do not form a 3-D 

network. Viscoelasticity is probably determined by the quasi-overlapping of adjacent 

polymer chains (their hydrodynamic spheres overlap each other) at these concentrations. 

One can assume, for the six grades of sodium alginates investigated, their intra-polymer, 

inter-polymer, and polymer-solvent interactions under steady flow and small amplitude 

oscillation are likely to vary.  Sodium alginates differ in apparent viscosity may not differ 

in viscoelasticity and vice versa. This result emphasizes the importance of characterizing 

the steady shear behavior as well as the viscoelastic properties of sodium alginate 

solutions in order to identify the inter-grade and inter-batch variability. 
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Figure 17. The tan  , G, and G as a function of angular frequency () for sodium 

alginate solutions at 2% (left) and 3% w/w (right) at 25°C. Data are shown as mean and 

standard deviation of six replicates. 

 

Cox-Merz Rule 

The quasi-empirical Cox-Merz rule states that the steady shear apparent viscosity 

(app) and the magnitude of the complex viscosity (*) of linear polymer solutions are 

superimposable at numerically equivalent values of shear rate (s
-1

) and angular frequency 

(rad/s).
142,143

 The complex viscosity is defined by 

  
 

G 2  G 2 
1 2


,      Equation 23 

As shown in Figure 18, rheological data for 2% w/w and 3% w/w solutions of the 

six grades of sodium alginate obey this rule. Conformity to the Cox-Merz rule is evidence 

for the absence of gel structure in these solutions.
144

 It also confirms that the calcium 

content of these sodium alginates does not exert a significant effect on the rheological 

behavior of their solutions at these concentrations. 
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Figure 18. Complex viscosity (*) and apparent viscosity (app) as a function of angular 

frequency (rad/s) and shear rate (s
-1

), respectively, for solutions of six grades of sodium 

alginate at 2% and 3% w/w and 25°C (solid symbols represent apparent viscosities; open 

symbols represent complex viscosities). Data are shown as mean and standard deviation 

of six replicates. 

 

Concentration Effect on Viscoelasticity  

The controlled release of drug substances from sodium alginate matrices was 

expected to correlate with the swelling and erosion behavior of the polymer matrix.
31,32

  

In the hydrated polymer layer, the alginate concentrations could range from very high 

values at the boundary with the unhydrated alginate, to relatively dilute concentrations at 

the boundary with the bulk alginate solution.  Erosion of the hydrated polymer gel layer 

occurs at the boundary between sodium alginate gel and the bulk solution.
118

  The inter- 
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and intra-polymer interactions involved in the erosion process are believed to be the 

same factors resisting strain under small amplitude oscillation measurements.
122

 

Therefore, the characterization of the rheological properties of sodium alginate solutions 

under small amplitude oscillation was extended to a wider range of sodium alginate 

concentrations in order to mirror the range of conditions that could be encountered in 

sodium alginate-based controlled release formulations during use. 

The viscoelastic behavior of solutions of the various sodium alginate grades is 

typified by the data for grade 3 from 2% to 13% w/w, shown in Figure 19, which depicts 

the angular frequency (ω) dependence of G and G  of these solutions at 37C — the 

temperature that peroral alginate formulations would be exposed to in the alimentary 

tract. At low concentrations, from 2 to 4 % w/w, liquid-like or fluid behavior is observed 

as G is higher than G at the accessible angular frequencies and both G  and G  are 

showing higher dependence on angular frequency than at higher concentrations. As 

sodium alginate concentrations increase beyond 4% w/w, G is still higher than G at 

lower frequencies, but crossover of G and G is evident at ~ 90 rad/s for 5% w/w, ~ 40 

rad/s for 6% w/w, and ~10 rad/s for 7% w/w solutions. Both G  and G show decreased 

dependence on angular frequency with increasing concentration. When the alginate 

concentration reaches 8% w/w, G is equal to or higher than G over the entire frequency 

range. For solutions with concentrations higher than 8% w/w, G is always higher than G 

over the entire frequency range and G is almost parallel to G in the low frequency range 

– a typical solid-like behavior for gels.
145-148

 The oscillation data show that with an 

increase in concentration, sodium alginate solutions change from ―liquid-like‖ behavior 

to ―solid-like‖ behavior.  
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Figure 19. The G and G as a function of angular frequency for sodium alginate (grade 

3) solutions at different concentrations at 37°C. 

 

For sodium alginate solutions at moderate concentrations, i.e., from 5 to 7% w/w, 

G is greater than G at low frequencies. This is most likely the result of the polymer 

chains having sufficient time to disentangle and flow during a single oscillation.
125

 At 

high frequencies, G is smaller than G due to insufficient time for the temporarily 

entangled polymer chains to come apart during a single oscillation, thereby resulting in 

the system‘s solid-like behavior.
125

 Therefore, the lifetime or the relaxation time of the 

entangled polymer chains determines whether the system behaves as a solid or as a liquid 

in a particular frequency range. When the lifetime of the interchain entanglements is 
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longer than the time scale of observation (1/ω), a solid-like behavior is obtained. The 

crossover frequency, i.e., G equals G, corresponds to the average relaxation time of 

entanglements.
33,125

 Therefore, the concentration at which G equals G [and tan  =1] in 

the lower end of the accessible frequency range (e.g., 1 rad/s) can be considered to be the 

critical concentration at which the polymer solution becomes a gel.
147

 For the sodium 

alginate (grade 3) solutions tested in this study, although both G and G increase with 

increasing alginate concentrations, G predominates relative to G once 8% w/w is 

reached. With concentrations higher than 8% w/w, G parallels G in the lower frequency 

range while predominating in the higher frequency range. The concentration-dependence 

of sodium alginate solution viscoelasticity is further illustrated by the changing tan  

values with increasing concentrations, as shown in Figure 20.  The tan  values decrease 

with the increasing concentration and are less than 1 when the concentration exceeds 8% 

w/w over the entire angular frequency range.  
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Figure 20. The tan  as a function of angular frequency for sodium alginate (grade 3) 

solutions at 37°C. 

 

The frequency dependence of G and G can be characterized by the following 

power-law relationships:
149-152

 

 G  K  n

,         Equation 24 

 G  K  n

,       Equation 25 

where K, K, n, and n are constants. 

The G and G data for the grade 3 sodium alginate solutions were fitted by these 

two equations above and the fitted coefficients and exponents are summarized in Table 8. 
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Both K and K values increase dramatically as sodium alginate concentration increases 

from 2% to 13% w/w. In the concentration range from 2% to 6% w/w, K < K with the 

values of K and K being very small, indicating a low degree of chain interaction and 

predominantly viscous behavior. With alginate concentrations changing from 6% to 7% 

w/w, there is a > 20-fold and >18-fold increase in K  and K, respectively. The 

substantial increases in K  and K values suggest a dramatic augmentation in polymer 

chain interaction. As alginate concentrations are increased from 7% to 8% w/w, both K  

and K exhibit a 20-fold increase. A further increase in alginate concentration from 8% 

to 9% results in a further increase in K and K.  However, the increases are < 6-fold. K  

is slightly less than K at both 7% and 8% w/w but becomes larger than K  at 9% — an 

indication of predominantly elastic behavior at the higher concentration. Therefore, based 

on the data for G and G, K and K, and tan  as a function of alginate concentration, the 

critical transition point from a fluid to a gel state for sodium alginate (grade 3) solutions 

is approximately 8% w/w.    

 

  

 

 

 

Table 8. Calculated power-law coefficients and exponents (reported as 95% confidence 

intervals of three replicates) of G and G for sodium alginate (grade 3) solutions at 

different concentrations at 37C. 
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Concentration, 

%w/w 
K n R

2
 K n R

2
 

2 (3.51 – 6.03) x 10
-6

 1.13 – 1.25 0.999 (5.85 – 7.28) x 10
-5

 0.81 – 0.86 0.999 

3 (1.64 – 2.11) x 10
-4

 0.96 – 1.02 0.999 (1.04 – 1.31) x 10
-3

 0.69 – 0.74 0.998 

4 (2.91 – 3.70) x 10
-3

 0.83 – 0.88 0.999 (1.11 – 1.42) x 10
-2

 0.60 – 0.66 0.997 

5 (4.69 – 5.49) x 10
-2

 0.68 – 0.72 0.999 (0.99 – 1.24) x 10
-1

 0.51 to 0.57 0.996 

6 (4.20 – 4.80) x 10
-1

 0.60 – 0.63 0.999 (6.63 – 8.21) x 10
-1

 0.45 to 0.51 0.995 

7 (1.00 – 1.12) x 10
1
 0.53 – 0.55 0.999 (1.23 – 1.50)  x 10

1
 0.41 – 0.46 0.994 

8 (2.05 – 2.25) x 10
2
 0.48 – 0.50 0.998 (2.14 – 2.56)  x 10

2
 0.37 – 0.42 0.993 

9 (1.27 – 1.36) x 10
3
 0.43 – 0.45 0.999 (1.10 – 1.30)  x 10

3
 0.33 – 0.38 0.993 

10 (6.36 – 6.85) x 10
3
 0.40 – 0.42 0.999 (5.03 - 5.89)  x 10

3
 0.31 – 0.35 0.992 

11 (3.02 – 3.20) x 10
4
 0.37 – 0.39 0.999 (2.16 – 2.50)  x 10

4
 0.29 – 0.33 0.992 

12 (1.45 – 1.52)  x 10
5
 0.35 – 0.36 0.999 (0.93 – 1.07)  x 10

5
 0.27 – 0.31 0.991 

13 (6.72 – 7.00)  x 10
5
 0.32 – 0.33 0.999 (3.93 – 4.66)  x 10

5
 0.25 – 0.29 0.990 

 

Values of n and n decrease gradually as alginate concentrations increase, 

indicative of a weaker dependence of G and G on angular frequency at higher 

concentrations. It has been reported that a covalently crosslinked gel will have n value ≈ 

0 while a physically crosslinked gel would have n > 0. For covalently crosslinked gel, 

the bonds are permanent and the mechanical behavior of the gels does change with the 

observation time, i.e., the angular frequency. On the other hand, the bonds involved in 

physical gels are not permanent and the mechanical behavior of physically crosslinked 

gel is usually dependent on observation time and the relaxation time of the chain 

entanglements.
151-154

 For sodium alginate solutions with concentrations from 8% to 13% 

w/w, the n values vary from 0.49 to 0.33, suggesting a weak physical gel behavior due to 

extensive polymer chain entanglements. Additional support for the characterization of 

these alginate solutions as weak physical gels at concentrations from 8% to 13% w/w is 

provided by the slight dependence of tan  on angular frequency
34

 as shown in Figure 20.  
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The viscoelastic parameters of solutions of all the six grades of sodium alginate 

with increasing concentration are illustrated in Figure 21, which depicts the concentration 

dependence of the complex viscosity (*), storage modulus (G′), and tan  of these 

sodium alginate solutions at 37C. 

The * and G′ values increase with increasing concentrations for all six grades, 

representing an increased degree of chain entanglement. Grades 1 and 6 exhibit the 

lowest and highest viscoelastic parameters over the concentration range investigated. It is 

noted that viscoelastic parameters, e.g., * and G′, of grade 4 solutions are larger than 

those of grade 5 solutions at concentrations higher than 4% w/w, in contrast to the 

rheological behavior seen in their solutions at lower concentrations (2%, 3% w/w). 

Values of * and G′ for Grade 4 are higher than those of grades 2, 3, and 5 over the 

whole concentration range, while the * and G′ values for grades 2, 3, and 5 overlap 

each other at concentrations higher than 8% w/w. The tan  values decrease with 

increasing concentrations and reach a value of one at different concentration for these six 

grades, indicating that these sodium alginate solutions change from the fluid state to the 

gel state with increasing concentrations due to increasing polymer chain entanglements. 

The transition from a polymer solution to a polymer gel occurs at the critical 

concentration, i.e., when tan  = 1.
145,146

 Critical concentrations for all of the alginate 

grades were estimated to be  11 %, 8 %, 8 %, 8 %, 10 %, and 5 % w/w, respectively, for 

grades 1 – 6, calculated from nonlinear regression fitting of tan  vs. concentration data.  
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Figure 21. Concentration dependence of viscoelastic parameters (determined at 1 rad/s) 

of the solutions of sodium alginate (six grades) at 37C: (a) complex viscosity (*); (b) 

storage modulus (G′), and (c) tan . Data are shown as mean and standard deviation of 

three replicates. 
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Generally, for linear polymers, the higher the molecular weight, the larger the 

degree of chain entanglement at high concentrations and the lower the critical 

concentration.
118

 However, in this study, grades 2, 3, and 4 are substantially different in 

their molecular weight, but similar in their critical concentration. Grade 5, which is 

relatively high in both molecular weight and %G, shows higher tan  values (and higher 

critical concentration) than grades 2 and 3. Although grades 4 and 5 are not significantly 

different from each other in viscoelasticity at lower concentrations, i.e., 2% and 3% w/w, 

their viscoelasticity profiles at higher concentrations are significantly different from each 

other. Since the G sequence has the most rigid and extended chain conformation in 

solution among the three sequences,
58-60

 sodium alginates with higher %G may have a 

coil conformation with lower degree of chain entanglement at high concentrations than 

those with a lower %G. Furthermore, grade 5 has a substantially lower residual calcium 

content than grades 2, 3, and 4 (Table 6). Although the calcium content for all these 

grades are relatively low and are not sufficient to form calcium alginate gels, there could 

be some interactions between calcium cations and sections of sodium alginate molecules, 

forming gel regions of limited size as well as quasi gel regions,  especially at high 

alginate concentrations.  The lower residual calcium content of grade 5 may result in 

fewer regional calcium alginate interactions and hence lower viscoelasticity than grades 

2, 3, and 4 at high concentrations.  In summary, the viscoelasticity of the various grades 

of sodium alginate at lower concentrations, is not indicative of their viscoelasticity profile 

at higher solution concentrations.  

Apparent viscosities of solutions of multiple grades of sodium alginate at lower 

concentrations are not indicative of the viscoelastic properties of sodium alginate 
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solutions at higher concentrations, as well. Apparent viscosity at low concentrations is 

mainly determined by the interactions among polymers with relatively higher molecular 

weight in the polydisperse mixture. Viscoelasticity at high concentrations, especially 

when the concentration exceeds the critical concentration, is determined by the polymer 

interactions in a 3-D entangled network. Every polymer molecule in the polydisperse 

mixture is believed to be involved in the 3-D entangled network. As a result, it is not 

surprising that apparent viscosities at low concentrations may not be indicative of the 

viscoelasticity of sodium alginate solutions at high concentrations. 

The pharmaceutical grades of sodium alginate, as with most polymeric 

pharmaceutical excipients, are grouped based on the apparent viscosity of their solutions 

at low concentrations, e.g., 1% w/v. In fact, in most studies of sodium alginate matrices 

in the literature, only the ―one-point‖ apparent viscosities of low concentration sodium 

alginate solutions were characterized.
31,32,75,155

 More likely than not, the incomplete 

rheological characterization of sodium alginate solutions is responsible for the disparity 

among different studies on the significance of the influence of the viscosity grade of the 

polymer on drug release from alginate matrices.
31,32,75,155

  A rational approach to QbD 

requires a more complete understanding of the rheological behavior (apparent viscosity 

and viscoelasticity) of these polymeric excipients as a function of excipient concentration 

and mechanical condition appropriate to the processing and performance of 

pharmaceutical formulations. For example, for sodium alginate used in extended release 

matrix tablets, it is reasonable to characterize both the apparent viscosity of sodium 

alginate solutions at relatively low concentrations and the viscoelasticity of sodium 

alginate solutions at relatively high concentrations. 
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Inter-Batch Variability  

The following data reflect the evaluations of the one grade (grade 3) that was 

available in multiple batches.  

Calcium Content, Chemical Composition, and Intrinsic Viscosities 

The residual calcium content, chemical composition, and intrinsic viscosity ([]) 

data for the ten batches of grade 3 are listed in Table 9. The residual calcium content of 

the sodium alginates employed in this study varies from 0.36% to 0.73% w/w. The 

corresponding molar ratios of calcium to sodium alginate monomer of the multiple 

batches range from 0.018 to 0.036, which is below the  critical ratio (i.e., 0.05) for 

calcium to exert significant effect on the rheological properties of aqueous alginate 

solutions.
134

 The %G values of the multiple batches as determined in our laboratory range 

from 37 to 41%, within the range specified by the manufacturer. Intrinsic viscosities of 

the ten batches vary from 6.53 to 7.80 dL/g. Batch A, which has the lowest ―one-point‖ 

viscosity value according to CoA, shows the highest intrinsic viscosity and average 

molecular weight in our study. 

 

Table 9. Calcium content, %G, [], and average molecular weights calculated based on 

intrinsic viscosities of the ten batches of sodium alginate grade 3. Mean and standard 

deviation were calculated from three replicates. 

Batch 
Calcium content,%  

(Mean ± S.D.) 

%G per SSNMR 

(% Range) 

[η] (dL/g) 

(Mean ± S.D.) 

Mw (kDa) 

(Average) 

Mn (kDa) 

(Average) 
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A 0.69 ± 0.010 37-41 
7.80±0.20 

373 97 

B 0.73 ± 0.006 38-41 
7.14±0.07 

341 89 

C 0.42 ± 0.008 38-41 
7.32±0.18 

350 91 

D 0.62 ± 0.009 38-40 
7.48±0.11 

357 93 

E 0.54 ± 0.002 38-41 
6.67±0.12 

318 83 

F 0.55 ± 0.012 37-41 
6.87±0.27 

328 85 

G 0.56 ± 0.008 39-41 
6.53±0.39 

311 81 

H 0.45 ± 0.006 38-40 
6.91±0.29 

330 86 

I 0.36 ± 0.008 39-42 
7.33±0.19 

350 91 

J 0.41 ± 0.006 39-42 
7.16±0.09 

342 89 

 

Steady Shear and Small Amplitude Oscillation 

The inter-batch variability of grade 3 was determined by comparing the apparent 

viscosities of 2% w/w solutions of the various batches at 25C. The inter-batch variability 

was further investigated by comparing the viscoelastic parameters of the various batch 

solutions at 8% w/w at 37C, based on the earlier determination of the critical 

concentration for grade 3.  The apparent viscosities of sodium alginate solutions at 2% 

w/w are depicted in Figure 22. ANOVA and the subsequent multiple comparisons tests 

demonstrate that batch A is significantly (p < 0.001) different from all other batches in 
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apparent viscosities of 2% w/w solutions while other batches are not significantly (p > 

0.05) different in their apparent viscosities.  

In contrast to the viscosity data provided in the certificates of analysis (CoA) in 

which batch A had the lowest viscosity value (Table 5), batch A exhibits substantially 

higher apparent viscosities than the other batches, which is in accordance with its having 

highest average molecular weight among the 10 batches. However, there is only one 

apparent viscosity value reported in the CoA for each batch. The CoA does not indicate 

when the apparent viscosity was measured with respect to the time of manufacture of 

each batch.  Furthermore, since no standard deviation of apparent viscosity for each batch 

is supplied in the CoA, it is rather difficult to assess the variability of multiple batches. 

Excipient manufacturers usually have much more data on their excipient than those 

reported in the CoA, e.g., apparent viscosity data for sodium alginate solutions during 

extraction process, at different time points, etc. It is important for the formulation 

scientists to communicate well with the excipient manufacturer to gain the access to the 

manufacturer‘s database. In this way, formulation scientist could gain a better 

understanding of the variability of excipients under consideration.   
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Figure 22. Steady shear result of sodium alginate (ten batches of grade 3) solutions at 2% 

w/w at 25°C. Data are shown as mean and standard deviation of six replicates. 

 

The tan   as a function of angular frequency for 2% w/w solutions of multiple 

batches at 25°C is depicted in Figure 23. Based on ANOVA, significant differences in  

tan  among the ten batches are evident (p < 0.001). Post hoc multiple comparisons test 

indicated that more batches are significantly different in tan  than in app  (Table 10). In 

addition, those batches that are significantly different in app are not necessarily 

significantly different in tan . 
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Figure 23. Angular frequency () dependence of tan  of the 2% w/w solutions of 

sodium alginate (ten batches of grade 3) at 25C. Data are shown as mean and standard 

deviation of six replicates. 

 

Figure 24 depicts tan  of the solutions of multiple batches (8% w/w) over a wide 

range of angular frequencies at 37C. Based upon ANOVA, significant differences (P < 

0.001) among these multiple batches in tan  are evident. The result of the post hoc 

multiple comparisons test for rheological parameters is summarized in Table 10. Batches 

showing significant differences in their app or tan  at 2% w/w also demonstrate 

significant differences in their tan  at 8% w/w.  Furthermore, there are more batches 

showing significant differences in their tan  at 8% than at 2% w/w. These outcomes are 

consistent with the likelihood of higher chances of inter-chain interactions at high 

concentrations. Inter-chain interactions are influenced by the differences in molecular 
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weight and chemical composition (influencing sodium alginate molecular chain 

mobility). These differences among multiple batches are evident in their viscoelastic 

properties. Batches J and I, which have the lowest viscoelasticity, also have the lowest 

residual calcium content among the ten batches. However, batch H has slightly higher 

residual calcium content than batch J but much higher viscoelasticity (as reflected in its 

lower tan  values) than batch J. Hence, the effect of residual calcium content on the 

viscoelastic properties appears to be trivial. 

 

Figure 24. Angular frequency dependence of tan  of the 8% w/w solutions of sodium 

alginate (ten batches of grade 3) at 37C. Data are shown as mean and standard deviation 

of six replicates. 
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Table 10. Results for multiple comparisons test of the rheological parameters of the 

solutions of the ten batches of sodium alginate (grade 3). 

Batch 

A A 

B , B 

C ,,  C 

D ,   D 

E ,    E 

F ,     F 

G ,      G 

H ,       H 

I ,, ,  ,  , , , I 

J ,, ,  , , , , ,  J 

 

The symbols in the cells correspond to significant differences in the paired data for specific 

rheological outcomes, as follows:  

 = log app  (2% w/w, 25°C);   = tan  (2% w/w, 25°C) 

 = tan  (8% w/w, 37C);        = No significant differences 

 

In summary, batch A shows significantly higher apparent viscosity than other 

batches at 2% solution, while other batches are similar in their apparent viscosity. More 

batches are showing significant differences in viscoelastic properties of their solutions. 

Batches I and J are significantly different from other batches in viscoelasticity. It seems 

that the variability of multiple batches could be related to their date of manufacturing. A 
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further investigation on the manufacturing time-dependent variability was conducted and 

is presented below. 

 

Inter-Batch Variability as a Function of Date of Sodium Alginate Manufacture 

Figure 25 depicts the variations in [], app (2% w/w,  = 1 Pa, 25C), tan  (2% 

w/w,  = 1 rad/s, 25C), *, G′, and tan  (8% w/w,  = 0.1 rad/s, 37C) as a function of 

time. The largest differences in the rheological parameters are evident between the batch 

produced in January and the last two batches produced in October and November. 

Batches manufactured between February and September show relatively small variations 

in their rheological behavior. Since alginates occur as a structural component in seaweed, 

the seasonal tidal fluctuations would lead to different degrees of seaweed stiffness and, 

therefore, variations in chemical composition and molecular weight of alginates. 

Furthermore, the ratio of actively-growing (young) to resting (old) tissue also varies in 

different seasons, resulting variation in alginate molecular structure.
156

 Thus, the season 

of harvesting may well be a factor contributing to the batch-to-batch variability of sodium 

alginate.  

Personal discussions with Dr. Brian Carlin from FMC Biopolymer indicate that 

the inter-batch variability of sodium alginate in chemical composition and viscosity was 

minimized by using as the source material a mixture of seaweeds harvested in 

different months during the year. Results obtained in this study did show that %G values 

of multiple batches produced in the same year fall within a narrow range and meet the 

specification set by the manufacturer. In addition, the ―one-point‖ viscosity data of the 

multiple batches reported in the CoA showed that all these batches are within a very 
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narrow range and meet the manufacturer‘s specification. However, the results in our 

study demonstrated that these batches still exhibit significant differences in their 

rheological behavior at concentrations higher than 1% w/w. Thus, reliance on ―one-

point‖ viscosity data to minimize inter-batch variability is potentially misleading. The 

inter-batch variability could be better controlled by adjusting the viscoelastic properties 

of sodium alginate solutions during the extraction process. The processing parameters in 

several extraction steps, such as acid treatment, alkaline extraction, conversion of calcium 

alginate to alginic acid, and conversion of alginic acid to sodium alginate, can be adjusted 

to achieve sodium alginate solutions at the last step within a specified range of 

viscoelasticity. The specific range of viscoelasticity will need to be explored and defined 

for a specific grade in order to achieve the desired batch-to-batch variation. 

On the other hand, there is no simple answer to the question that how much 

impact of the batch-to-batch variability of sodium alginate, or any other excipients, on the 

performance of the final products.  It will depend on the functionality and the percentage 

of the excipient in a specific pharmaceutical product. Hence, it is critical for 

pharmaceutical formulation scientists to determine the impact of the batch-to-batch 

variability of excipients on the performance on the drug products under development. An 

acceptable level of batch-to-batch variability should be defined. The next step would be 

to communicate with the excipient supplier to ensure that the acceptable variability is 

achievable in the manufacturing process. In case the acceptable variability is very narrow, 

it might not be practical for the excipient manufacturer to supply multiple batches within 

the specification. A modification to the formulation may be necessary to avoid this issue.    
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Figure 25. Temporal variations in rheological parameters of the solutions of multiple 

batches of grade 3: (a) []; (b) app (2% w/w,  = 1 Pa, 25C); (c) tan  (2% w/w,  = 1 

rad/s, 25C); (d) *; (e) G′; and (f) tan  (8% w/w,  = 0.1 rad/s, 37C). Error bars 

represent the standard deviation of each parameter (n = 3). 
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Temperature Effect on Apparent Viscosity and Viscoelasticity 

 

The temperature influence on the viscosity and viscoelasticity of sodium alginate 

solutions was also investigated in this work. At the outset, the effect of temperature on 

solutions of one grade (grade 3) of sodium alginate at different concentrations was 

investigated. Steady shear results for sodium alginate solutions at two different 

temperatures (20 and 37C) are illustrated in Fig. 26. The apparent viscosities at 37°C are 

significantly lower than at 20°C (Table 11). That‘s mainly because at higher temperature, 

the friction energy among polymer chains and polymer-solvent is smaller than that at 

lower temperature. Thus, when comparing the viscosity values of different grades or 

batches of sodium alginates in solution, it is important to make sure that the viscosity data 

were collected at the same temperature. 
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Figure 26. Temperature effect on sodium alginate (grade 3) solutions at various 

concentrations. 
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Table 11. One-way ANOVA test results for steady shear data of sodium alginate (grade 

3) solutions at two different temperatures. 

Concentration,       

% w/w 

p  Value 

(log Apparent Viscosity, 20°C vs. 37°C) 

2 < 0.001 

3 < 0.001 

4 < 0.001 

5 < 0.001 

 

SAO studies have also been conducted on aqueous solutions of grade 3 sodium 

alginate at various concentrations at two different temperatures: 20 °C and 37 °C. Fig. 27 

depicts tan  as a function of angular frequency.  SAO results indicate that, at each 

concentration, G and G are slightly higher and tan  slightly lower at the lower 

temperature (20°C) than at the higher temperature (37°C.).  At first glance, an increase in 

temperature appears to reduce elasticity of sodium alginate solutions, to some extent. 

However, subsequent statistical evaluation of the viscoelasticity data with an ANOVA 

test suggests that temperature does not exert a significant influence on the viscoelasticity 

of sodium alginate solutions at relatively high concentrations (e.g., > 4% w/w), at least in 

the temperature range investigated (Table 12). At low concentrations (2% or 3%), higher 

temperature increases tan  to some extent (decreasing viscoelasticity). It can be viewed 

as a horizontal shift of tan , i.e., the same tan  values are obtained at higher angular 

frequency at higher temperature. The observed viscoelasticity of sodium alginate solution 

is determined by the relaxation time of polymer entanglement and the observation time.  
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Increased temperature decreases the relaxation time of polymer entanglements. Thus, a 

higher angular frequency (smaller observation time) is required to obtain the same 

viscoelasticity, at least for sodium alginate solutions at low concentrations. Higher 

concentrations are associated with an increase in polymer chain interactions. The 

temperature effect on viscoelasticity is relatively minimal at high concentrations.  
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Figure 27. The tan  as a function of angular frequency for sodium alginate (grade 3) 

solutions at various concentrations at both 20°C and 37°C. 

Table 12. One-way ANOVA test results for viscoelastic data of sodium alginate solutions 

at two different temperatures. 

Concentration, w/w 

P value (20°C vs. 37°C) 

tan  log G log G 
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2% 0.15 0.19 0.20 

3% 0.16 0.26 0.28 

4% 0.24 0.39 0.44 

5% 0.19 0.30 0.38 

8% 0.12 0.22 0.25 

 

Subsequently, a wider temperature range was investigated to ascertain the effect 

of temperature on the apparent viscosity of the six grades of sodium alginate in 2% w/w 

solutions. Temperature-dependent apparent viscosities of 2% w/w sodium alginate 

solutions are illustrated in Fig. 28. For each grade, apparent viscosity decreases with 

increasing temperature. However, the rank of apparent viscosity among the six grades of 

sodium alginate in 2% w/w solutions remains the same over the whole temperature range 

investigated. In Fig.28, temperature (K)-dependent viscosities of the six grades of sodium 

alginate solutions are fitted by the empirical equation:
157

  

)exp(
T

b
a  ,       Equation 26 

where a (unit: Pa∙s) and b (unit: K) are empirical constants. Calculated constants are 

summarized in Table 13. The large differences in a among the six grades are a reflection 

of their substantial differences in apparent viscosity of 2% w/w solutions at any specific 

temperature within the range of 15-45 °C. The relatively small variation in b corresponds 

to the similarity of temperature-dependence of apparent viscosity for the six grades of 

sodium alginate in solution. The rank order of these six grades does not change at various 

temperatures. On the other hand, the absolute apparent viscosity values for each grade 

changes substantially with changing temperature. As a result, when comparing viscosity 



111 

data of solutions of sodium alginate from different sources, grades, and/or batches, it is 

very important to ensure that the viscosity data are obtained at the same temperature. 

   

 

Figure 28. Apparent viscosity of the six grades of sodium alginate in 2% w/w solutions 

under 10 Pa shear stress as a function of temperature.  

 

Table 13. Calculated constants and exponents of temperature-dependent viscosity. 

Grade a X 10
5
 (Pa∙s) b (K) R

2
 

1 2.54 2,727 0.999 

2 3.59 2,783 0.999 

3 4.34 2,819 0.999 
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4 10.27 2,852 0.993 

5 18.81 2,761 0.981 

6 23.99 2,973 0.998 

 

In the final analysis, for sodium alginate used as a thickener or binder, it is 

recommended to characterize the sodium alginate solutions using steady shear 

measurements over a relatively wide range of shear stresses or shear rates. The resultant 

apparent viscosities or rheograms could be used to ensure batch-to-batch, grade-to-grade, 

or supplier-to-supplier interchangeability of sodium alginate or to define the design space 

— in accordance with QbD principles — for specific formulations. For sodium alginate 

used in controlled release matrices, both steady shear (at one low concentration, e.g. 2% 

w/w) and small amplitude oscillation measurements (at one high concentration indicative 

of polymer gel state, e.g. 8% w/w) are recommended to be performed on sodium alginate 

solutions to ensure interchangeability or to define the design space.  

Conclusion 

Rheological properties of macromolecular excipients are important parameters 

that can be related to their functionality in different drug dosage forms and delivery 

systems. In this work, steady shear and small amplitude oscillation tests have been 

performed on solutions of six grades of sodium alginate at a wide range of shear stresses 

and angular frequencies, respectively. Steady shear results suggest that the apparent 

viscosities of solutions of different grades of sodium alginate are concentration and shear 

condition dependent. The differences in apparent viscosity among solutions of various 

grades of sodium alginate become more substantial at higher concentrations or lower 
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shear stress. Sodium alginates with higher molecular weight and higher %G are likely to 

exhibit higher solution viscosity at fixed concentration. When sodium alginate is used as 

a thickener or binder, the rheograms of its solutions at appropriate concentrations and 

shear conditions could be used as the basis for establishing the interchangeability and 

equivalence of multiple grades or batches from the same or different suppliers.  

As sodium alginate solution concentrations are increased, the rheological behavior 

of the solutions changes from that of a liquid to that of a weak physical gel. When sodium 

alginate is used for alginate-based matrices, the viscoelastic properties of its solutions at 

higher concentrations are recommended to be employed among the criteria for including 

different grades of sodium alginate in the formulation of alginate-based matrices.  

Rheological evaluations of multiple batches of one grade of sodium alginate 

produced over the course of one year showed significant batch-to-batch variability in 

rheological behavior at both low and high solution concentrations. Viscoelastic properties 

at one high concentration (8% w/w) are more indicative of the inter-batch variability than 

the rheological properties of solutions at lower concentrations.   

While temperature significantly influences steady shear behavior of sodium 

alginate solutions — especially at higher temperatures — it does not markedly affect 

solution viscoelasticity at least in the temperature range from 15 to 40 °C.  

The results of this study demonstrate that apparent viscosity and viscoelasticity of 

sodium alginate solutions enable the identification of inter-grade and inter-batch 

variability of sodium alginate. The results also emphasize the importance of 

characterizing the rheological behavior of solutions of sodium alginate at concentrations 

and conditions consistent with the relevant manufacturing processes and delivery system 
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environments. In this way one can justify the selection of an appropriate grade of sodium 

alginate for inclusion in a pharmaceutical formulation. Furthermore, viscoelasticity of 

sodium alginate solutions can be used as the criteria to control the batch-to-batch 

variability of a specific grade of sodium alginate within a narrow range. 

 

 

 

 

 

 

 

CHAPTER 3. INTER-GRADE AND INTER-BATCH VARIABILITY OF 

SODIUM ALIGNATE USED IN ALGINATE-BASED MATRIX TABLETS  

Part 1. Direct Compression Properties of Sodium Alginate 

Tablets, the most commonly manufactured pharmaceutical products, are solid 

dosage forms made from powdered or granular materials by compression or, 

infrequently, by molding methods. Given the wide application of compressed tablets, it is 

important to understand the tableting behavior of the solids that are to be compressed into 

tablets in terms of their compressibility (the ability of a material to undergo reduction in 

volume under pressure) and compactibility (the ability of a material to yield a compact of 

adequate strength). Compressibility is usually studied by exploring the relationship 

between compact porosity and the applied pressure, using various mechanical models,
158-
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160
 while compactibility is generally assessed by defining the relationship between the 

tensile strength of the compacts and the corresponding compact porosity.
161

   

Pharmaceutical powder compression is a complex process. It consists of several 

overlapping stages such as particle rearrangement, elastic/plastic deformation, and 

fragmentation. Powders undergo rearrangement, sliding, and restacking without 

deformation at low pressures. With increasing pressure, fragmentation of primary 

particles may take place by brittle fracture. Consequently, the broken particles fill into 

small spaces between larger particles, leading to volume reduction. In addition to particle 

fragmentation, plastic deformation may take place as powder particles undergo 

irreversible deformation in response to the increasing pressure. In fact,  fragmentation 

and plastic deformation occur with all materials, and it is the extent of the two processes 

taking place during compression that determines the volume reduction mechanism of a 

given material.
160

 Furthermore, elastic deformation dominates at higher pressures where 

the porosity of the powder bed is significantly reduced (e.g., when the porosity of the 

powder bed is < 10%) and the powder bed behaves like a solid body. It is a reversible 

deformation and is directly proportional to the magnitude of the applied pressure. 

Compression behavior of pharmaceutical powders has been analyzed using 

several mathematical models describing the change in porosity or volume in a powder 

bed as a function of applied pressure originally derived in other fields of industry, e.g., 

the Heckel analysis,
158,162

 the Kawakita model,
159

 and the Gurnham equation.
160,163

 

Parameters obtained from these models have been proposed as indicators of the primary 

consolidation mechanism of pharmaceutical powders.  
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Sodium alginate has been widely investigated as a filler-binder in matrix tablets 

for controlled drug release with a percentage of ~30% w/w of the tablet.
31,32,75,76,155

 

However, little information on the compression and compaction behavior of sodium 

alginate has been published. Schmid and Picker-Freyer evaluated the tableting properties 

of sodium alginate using a 3-D modeling technique encompassing density, time, and 

pressure of the material during compression.
164

 The authors concluded that sodium 

alginate deformed elastically and its compression behavior was dependent on both G/M 

ratio and molecular weight.
164

 Yet, in another study on the compression behavior of 

composite particles consisting of lactose and sodium alginate, Takeuchi et al, reported 

that the increased amount of sodium alginate in the composite particles led to an increase 

in plastic deformation, suggesting a plastic deformation mechanism for sodium alginate 

during compression.
165

 There is also a lack of published data on the variability in 

compression behavior of multiple batches from the same grade of sodium alginate. Thus, 

more studies need to be performed to better understand the compression properties of 

various grades and batches of sodium alginate.  

In this study, four grades of sodium alginate and three batches of a single grade 

were selected to study their compression properties. Compression behavior of sodium 

alginates may be influenced by particle size and molecular weight distribution according 

to Schmid and Picker-Freyer.
164

  For the four grades included in this study, the reported 

average particle size is the same, i.e., 75 µm. However, the particle size distribution 

among the four grades could be different, leading to different compression behavior. 

Generally, polymers with lower molecular weight tend to deform more plastically than 

polymers with higher molecular weight.
166

 Molecular weight change of polymers in the 
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lower middle molecular weight range could lead to substantial change in their mechanical 

properties.
166

 After reaching a threshold molecular weight, further increase will result in 

only minor changes in mechanical properties.
166

  The Mw of the four grades of sodium 

alginate varies from 288 to 409 kDa and the Mw of the three batches varying from 311 to 

373 kDa. There might be more differences among the grades than among the batches 

with respect to their compression behavior. 

Buckner et al. demonstrated that the use of  consolidation models in conjunction 

with a compaction energetics analysis is a more reliable approach to evaluating the 

relative plasticity of pharmaceutical materials.
167

 For consolidation models, the out-of-die 

method is preferred because porosity data collected under pressure could be influenced 

by elastic deformation and true density variation.
168,169

 In this study, the Gurnham and 

Heckel models were employed to analyze the out-of-die compression data of sodium 

alginate. In addition, the compaction energetics of sodium alginates were examined in 

accordance with Buckner et al..
167,170

 

 

Materials and Methods 

Materials 

 

Four grades (one batch each) and three batches of one grade of sodium alginate 

(LF120M, SA Grade 3) were provided by FMC Biopolymer (Drammen, Norway). 

Sodium alginate powders (passed through 125 μm sieve) were used for the compression 

studies. Physicochemical properties, previously determined for these grades and batches 

are listed in Table 14. Apparent viscosity of alginate solutions increases from grade 2 to 

grade 4. Multiple batches of sodium alginate were designated as batches A to J on the 
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basis of their date of manufacture, with batch A as the earliest batch. Microcrystalline 

cellulose (MCC, Avicel PH 102, FMC Biopolymer, Princeton, NJ, USA) and lactose 

anhydrous (Kerry Bio-Science, Norwich, NY, USA) were used for comparison in the 

compression studies.  

 

 

 

 

 

 

Table 14. Viscosity specification by manufacturer, guluronic acid percentage (%G), and 

intrinsic viscosity of the four grades and three batches of sodium alginate used in the 

compression studies. 

Sodium 

Alginate 
FMC Product Name 

Viscosity rangea 

mPa∙s 

% Gb
 

Intrinsic 

viscosity, [η], 

dL/g 

Mean ± S.D.c
 

SA Grade 2 Protanal LF240D 70-150 
33 - 36 6.04 ± 0.09 

SA Grade 3 Protanal LF120M 70-150 
38 - 42 6.43 ± 0.06 

SA Grade 4 Protanal LF200M 200-400 
39 - 43 8.72 ± 0.24 

SA Grade 5 Protanal LF200DL 200-400 
48 - 52 8.54 ± 0.12 

Batch A 19338 70-150 
36-41 

7.80 ± 0.20 
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Batch G 19961 70-150 
35-40 

6.53 ± 0.39 

Batch J 20228 70-150 
35-41 

7.16 ± 0.09 

a: Viscosity data reported in manufacturer‘s certificate of analysis [Viscosity of 

1% w/v sodium alginate solutions at 20 ºC using a Brookfield viscometer, spindle 

#3 at 40 rpm]. 

b: %G was determined by solid-state NMR. 

c: n=3. 

 

 

 

Methods 

Bulk Density and Tapped Density 

Bulk density and tapped density of sodium alginate powders were determined 

according to USP32-NF27 <616> with 35 ± 1 g powder in 100 mL graduate cylinder.  

 

Moisture Content 

 All sodium alginate powders were stored at room temperature (typically 20–22ºC) 

and controlled humidity (31-33% relative humidity) which was achieved with saturated 

magnesium chloride (MgCl2) solution.
171

 Moisture content of sodium alginate powders 

was determined according to USP <731> loss on drying method using Computrac 

Moisture Analyzer Max-2000 (Arizona Instrument, Chandler, AZ, USA). 

 

True Density 
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The true densities of sodium alginate powders were determined with a helium 

pycnometer (Quantachrome Instruments, Boynton Beach, Florida, USA). 

 

Particle size distribution 

The particle size distribution of the various sodium alginates was estimated 

according to the USP32-NF27 <786> agitation method using analytical sieves (125 µm, 

75 µm, 53 µm, and 38 µm sieves). 

 

 

 

Compaction 

Compacts were prepared with an Instron Universal Testing Machine (model 

5869) equipped with flat-faced punches and a 50 kN load cell (Instron, Norwood, MA, 

USA). Powders of 400 ± 1 mg were filled into a 12-mm cylindrical die and were 

compressed and decompressed at 1 mm/min up to a specified compression pressure 

ranging from 25 to 265 MPa. Instron-developed software, Bluehill
®
2, was used to operate 

the instrument and collect the force and displacement data during compression. Each 

experiment was conducted in triplicate. The punches and die were lubricated with a 2% 

(w/v) magnesium stearate suspension in methanol before each set of triplicates and 

allowed to dry. All powders and compacts were stored at room temperature (typically 20–

22ºC) and controlled humidity (31-33% relative humidity) which was achieved with 

saturated magnesium chloride (MgCl2) solution.
171
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Porosity of Matrix Tablets 

Matrix tablet dimensions (diameter and thickness) were determined at 0, 24, 48, 

and 72 h after compression by using an electronic digital caliper (Marathon Ltd., 

Richmond Hill, Ontario, Canada). Tablet porosity (ε) was calculated according to 

Equation 27: 







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



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
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m

D

D

true

apparent

225.0
11 ,    Equation 27 

where m is the tablet weight, D is the tablet diameter, t is the tablet thickness, and  ρ  is 

the true density of the sodium alginate powder.  

 

Tensile Strength 

When the porosity of sodium alginate compacts ceased changing during storage, 

typically after 72 h, sodium alginate matrix tablets were diametrically compressed at 10 

mm/min until fracture using Instron Universal Testing Machine (model 5869) equipped 

with a 1 kN load cell (Instron, Norwood, MA, USA). The fixture plates were covered 

with thin strips of paper to minimize shear stress at contact points. Tablets fractured 

diametrically into two equal halves. The tablet tensile strength (σT) was calculated 

according to the following equation: 

  


T


2  F

  D  t
,                                                             Equation 28 

where F is the force required to fracture the tablets, D  is tablet diameter, and t is tablet 

thickness.
172,173

  

 

Data Analysis 
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Compaction Energetics 

Compaction energetics at each compression pressure were calculated. Two 

mathematical models (Gurnham and Heckel models) were used to analyze the out-of-die 

compression data. Compression work and decompression work (elastic work) were 

determined through analysis of the area under the force-displacement (F-D) curves 

(Figure 29) obtained during the compression and decompression processes in accordance 

with Equations 29 and 30, respectively. 
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Figure 29. Typical compression profile of sodium alginate powders: compression force as 

a function of displacement. 

 

Deformation energy of the punch and die was taken into account by conducting 

compression experiments using an empty die at the same compression condition.  The 

permanent work done on powders during the compression process is defined as the 

difference between the work of compression (positive sign) and the work of 

decompression (negative sign) as shown in Equation 31: 

iondecompressncompressiodc WWW /  ,    Equation 31 

% Elasticity during compression is defined as: 

%100
W

W
Elasticity%

ncompressio

iondecompress
    ,                                  Equation 32 

 

Out-of-Die Heckel Plot 

The Heckel model describes the consolidation process as a first-order reaction of 

compact porosity with respect to the applied compaction pressure: 

APk 










1
ln  ,      Equation 33 

where  is porosity of compact at applied pressure P , k is the slope of the linear portion 

of the plot, and A is the intercept of the linear portion when P is zero.
158

 The porosity of 

the compact was calculated based on the powder‘s apparent volume and its true density. 

The reciprocal of the k is defined as the mean yield pressure (Py), which reflects the 

plasticity of the powder: the lower the Py values, the greater the plasticity.  
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In this study, sodium alginate compacts were prepared under compression 

pressures varying from 25 to 265 MPa. The linear portion of the Heckel plot, determined 

by the 1
st
-derivative method (Appendix II), ranged from 50 to 150 MPa.  

 

 

 

Out-of-Die Gurnham Analysis 

In 1946, Gurnham and Masson introduced an equation to describe the expression 

of liquids from fibrous materials including cotton, wool, etc.
163

 In their model, it was 

proposed that any increase in pressure, expressed as a fractional increase over the existing 

pressure, results in a proportionate increase in the apparent density of the mass: 

dA
P

dP
           Equation 34 

where P is pressure,  is apparent density based on solid weight and total volume, and A 

is a constant.  Integrating Equation 34 yields: 

  bPa  ln           Equation 35 

where a (unit: Pa
-1

)and b (unit: g/cm
3
)are constants. 

Linear relationships between apparent density and ln P were obtained for both dry 

and wetted fibrous materials (soaked with water or oil) except in a few cases. The volume 

reduction of dry fibrous material (particle slipping, fragmentation, and deformation) 

described in Gurnham and Masson‘s study may be considered similar to the processes 

during tablet compression. Zhao et al.
160

 first proposed the application of Gurnham model 

in evaluating the compression behavior of pharmaceutical powders.  

Replacing apparent density with porosity in Equation 35 yields: 
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  dPc  ln100  ,                         Equation 36 

where c (unit Pa
-1

) and d (no unit) are constants. The constant c expresses the effect of a 

change in pressure on compact porosity. A large value of c indicates a strong volume 

reduction ability of the material under compression. In other words, a larger c value 

relates to a more plastic material. Out-of-die data obtained in the compression pressure 

range from 50 to 150 MPa were used to fit Gurnham model. 

 

Results and Discussion 

Inter-grade Variability of Sodium Alginate in Compressibility 

Powder Properties 

The physical properties of sodium alginate powders were determined and listed in 

Table 15. Bulk densities of the grades 2, 3 and 4 are comparable and that of grade 5 is 

10% smaller.  Tapped density decreases from grade 2 to grade 5 from 0.973 to 0.867 

g/cm
3
. Carr‘s Index of the four grades of sodium alginate ranges from 28 to 32%. Thus, 

the flowability of sodium alginate powders is poor, but could be improved by the use of a 

glidant. The true densities of the four grades of sodium alginates vary from 1.706 to 

1.723, which are comparable to the values reported by Schmid and Picker-Freyer for 

different grades of sodium alginate.
164

 Moisture contents of sodium alginates stored in 

RH 31-33% range from 8.13% to 11.90%. Grade 2 has the lowest moisture content, while 

the other three grades are similar in moisture content. Moisture usually functions as a 

plasticizer of amorphous polymers, lowering the glass transition temperature and 

increasing the plasticity of amorphous polymers.   
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The particle size distribution obtained using the USP sieving method is depicted 

in Figure 30. The majority of particles (> 90%) for the four grades of sodium alginate are 

below 53 µm. Grade 4 has higher percentage of particles < 38 µm than the other three 

grades. Plastic materials with smaller particles usually form stronger tablets when 

compressed to the same porosity, due to the increased inter-particular bonding areas after 

compression.   

 

Table 15. Powder properties of four grades of sodium alginate (mean  standard 

deviation of three replicates). 

Sodium 

Alginate 

Bulk Density 

(g/cm
3
) 

Tapped 

Density 

(g/cm
3
) 

Carr‘s Index 

(%) 

True Density 

(g/cm
3
) 

Moisture 

Content (%) 

SA Grade 2 0.678  0.020 0.973  0.019 30.33  1.87 
1.707 ± 0.015 8.13 ± 0.18 

SA Grade 3 0.655 0.006 0.933  0.005 29.78  0.38 
1.723 ± 0.024 11.71 ± 0.25 

SA Grade 4 0.649 0.001 0.906  0.006 28.34  0.52 
1.716 ± 0.005 11.90 ± 0.04 

SA Grade 5 0.589 0.004 0.867  0.023 32.04  1.98 
1.706 ± 0.006 11.69 ± 0.07 
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Figure 30. Particle size distribution of sodium alginate (four grades) obtained using the 

USP sieving method (mean  standard deviation of three replicates). 

Compressibility and Compactibility 

Compression and compaction profiles of the sodium alginates, MCC PH102, and 

lactose anhydrous are depicted in Figure 31. The porosity of the powder bed of the 

alginates decreases with increasing pressure. At each compression pressure, the porosities 

of sodium alginate compacts are higher than that of MCC PH102 or lactose anhydrous. 

The tensile strength of the sodium alginate compacts increases with decreasing porosity.  

Compactibility is the ability of a powder to be transformed into tablets with 

strength during densification. It is represented by a plot of tensile strength as a function of 

porosity in Figure 31(b). The compactibility of pharmaceutical powders can generally be 

described by the Ryshkewitch equation:
174

 

 ke T,0T ,       Equation 37 
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where ζT is tensile strength, ζT,0 is tensile strength at zero porosity,  k is a constant, and ε 

is porosity. The compactibility data for sodium alginates, MCC PH102, and lactose 

anhydrous was fit to equation 37 using nonlinear regression (GraphPad Prism, La Jolla, 

CA, USA). The best-fit lines are presented in Figure 31(b).  As can be seen in Figure 

31(b), at any fixed porosity value in the range from 0.20 to 0.25, MCC PH102 compacts 

have the highest tensile strength, lactose anhydrous compacts have the lowest tensile 

strength, and sodium alginates compacts have intermediate tensile strength. Among the 

four grades, compacts of grades 2, 3, and 5 are similar in tensile strength, while compacts 

of grade 4 are higher in tensile strength the other three grades, at any fixed porosity in the 

range from 0.20 to 0.25. The smaller particle size of grade 4 might contribute to the 

higher tensile strength of compacts prepared from grade 4 than compacts prepared from 

other three grades. 



129 

Figure 31. (a). Porosity of sodium alginate compacts as a function of compression 

pressure; (b). Tensile strength of compacts as a function of porosity. 

 

Compaction Energetics 
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The compaction energetics, Wc/d and Wdecompression, for the four grades of sodium 

alginate along with MCC PH102 and lactose anhydrous, are plotted as a function of 

compression pressure in Figure 32. Both Wc/d and Wdecompression values increase with 

increasing compression pressure for all the materials investigated. In the whole range of 

compression pressure investigated, MCC PH102 has the highest Wc/d, lactose anhydrous 

exhibits the lowest Wc/d, and sodium alginates show Wc/d in between the two reference 

materials. It was reported that Wc/d at intermediate compression pressure (127MPa) is 

relatively a good indicator of a material‘s plasticity.
170

 Thus, the Wc/d values at 125 MPa 

for the excipients investigated are listed in Table 16. ANOVA and the subsequent 

multiple pair comparisons tests revealed that only grades 2 and 3 are not significantly 

different in their Wc/d values while all other pairs are significantly different in their Wc/d 

values (three replicates, p < 0.05). Sodium alginates with higher molecular weights 

(grades 4 and 5) show larger Wc/d values, although the differences are less than 7% when 

compared with grades at lower molecular weights (grades 2 and 3).  

Lactose anhydrous demonstrates the lowest Wdecompression at every pressure level. 

MCC PH102 shows similar Wdecompression as sodium alginates at compression pressures 

100 MPa. At higher compression pressures, MCC PH102 has Wdecompression close to 

grade 4, and lower than the other grades. Grade 4 exhibits lower value of Wdecompression 

than the other three grades in the whole compression range investigated.  
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Figure 32. Compaction energetics as a function of compression pressure for the four 

grades of sodium alginate, MCC PH102, and lactose anhydrous: (a). Wc/d; (b). 

Wdecompression. 
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The % Elasticity as a function of compression pressure is plotted in Figure 33. 

MCC PH102 and lactose anhydrous demonstrate similar % Elasticity in the pressure 

range investigated.  The % Elasticity values for MCC PH102 and lactose anhydrous keep 

almost the same (2.4-2.8%) from 50 to 125 MPa and increase slightly to 3.0-3.6% at 150 

MPa. The % Elasticity values of the four grades of sodium alginate decrease slightly (< 

1%) from 50 MPa to 100 MPa, and then increase slightly (< 1%) from 100 MPa to 150 

MPa. All four grades of sodium alginate demonstrate higher % Elasticity than both MCC 

PH102 and lactose anhydrous. Thus, it is in agreement with Schmid and Picker-Freyer‘s 

conclusion that sodium alginates deform more elastically than MCC during 

compression.
164

  

Grade 4 shows the lowest % Elasticity among the four grades of sodium alginate. 

The four grades of sodium alginate show similar Wc/d values during compression, 

suggesting that the energies applied for volume reduction and consolidation (bond 

formation among particles) are similar for the four grades. On the other hand, the elastic 

recovery during decompression breaks the bonds formed during compression. The higher 

% Elasticity would result in lower tablet strength. The lower % Elasticity of grade 4 

could partly explain the higher tensile strength of the compacts of grade 4 than the 

compacts of other grades when compressed to the same porosity. The lower % Elasticity 

of grade 4 might be due to the fact that grade 4 has a relatively higher portion of small 

particles than other grades. When compressed to the same porosity, small particles are 

usually associated with larger bonding areas, forming stronger inter-particular 

interactions and eventually stronger compacts than larger particles. 
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Figure 33. The % Elasticity as a function of compression pressure for sodium alginates, 

MCC PH102, and lactose anhydrous. 

 

Out-of-Die Heckel Analysis 

Linear regression of the ―out-of-die‖ Heckel plots for all excipients was 

performed in the compression pressure ranging from 50 to 150 MPa (Figure 34), and a 

summary of the mean yield pressure (Py) values and R
2
 values is listed in Table 16. MCC 

PH102 shows the lowest Py values. The 95% confidence intervals of the four grades of 

sodium alginate and lactose anhydrous are similar to each other. 
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Figure 34. The out-of-die Heckel plot for sodium alginates, MCC PH102, and lactose 

anhydrous (data are plotted as mean and standard deviation of three replicates). 

 

Gurnham Analysis 

The compact porosity () as a function of ln(P) was plotted for all excipients, and 

the data was analyzed by Gurnham equation via linear regression (Figure 35). The c 

values and R
2
 values for Gurnham analysis can be seen in Table 16. MCC PH102 has the 

highest c values, while lactose anhydrous has the lowest c values. The c values of the four 

grades of sodium alginate are in between those of MCC PH102 and lactose anhydrous 

and closer to that of lactose anhydrous. The 95% confidence intervals of the c values 

among the four grades are overlapping each other.  
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Figure 35. Gurnham analysis of compression behavior of sodium alginates, MCC PH102, 

and lactose anhydrous (data are plotted as mean and standard deviation of three 

replicates). 

 

 

 

 

 

 

 

 

 

Table 16. A summary of the irreversible compression energy Wc/d, Gurnham c, Heckel 

Py, and R
2
 values for sodium alginates, MCC PH102, and lactose anhydrous.  
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Excipient 

Wc/d
# 

125MPa 

(J/g) 

Gurnham Heckel 

C
*
 R

2
 Py* (MPa) R

2
 

SA Grade 2 15.12  0.05 11.12-13.24 0.9793 174.58 - 204.88 0.9833 

SA  Grade 3 15.02  0.06 10.81-13.05 0.9761 189.00 – 223.06 0.9813 

SA Grade 4 16.40  0.12 11.82-13.60 0.9865 173.79 – 208.94 0.9771 

SA Grade 5 15.63  0.02 10.73-11.91 0.9925 202.06 – 225.07 0.9920 

MCC PH102 24.90  0.32 16.20-17.45 0.9961 105.88 – 118.16 0.9917 

Lactose 

Anhydrous 
12.36  0.15 8.89-10.06 0.9933 184.23 – 199.96 0.9971 

#: n=3; *: data reported as 95% confidence intervals. 

 

In summary, MCC PH102 demonstrates the highest plasticity among all the 

materials investigated according to the results obtained by compaction energetics and the 

two models. It is obvious that the plasticity of sodium alginate is lower than that of MCC 

PH102. Based on Wc/d and Gurnham analysis, the plasticity of sodium alginates is higher 

than that of lactose anhydrous. However, based on Py values obtained from Heckel 

analysis, the plasticity of sodium alginates is similar to that of lactose anhydrous. Thus, 

the plasticity of sodium alginates is indistinguishable from that of lactose anhydrous. 

However, the moisture contents are different among MCC (5% w/w), lactose anhydrous 

(0.5% w/w), and sodium alginates (10% w/w).  Sodium alginates have higher moisture 

contents due to their amorphous nature (water penetrates into the amorphous region more 
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easily than the crystalline region). Sodium alginates may deform less plastically than 

lactose anhydrous when they have the same the moisture content. 

Among the four grades of sodium alginate, there is no significant difference in 

compression properties between grades 2 and 3 based on compaction energetics and the 

two models. For grades 4 and 5, there is a statistical significance (p < 0.05) in their Wc/d 

values (grade 4 > grade 5), although the difference is only 5%. Thus, these four grades 

can be considered as similar in their plasticity during compression. Grade 2 has the 

lowest molecular weight and also the lowest moisture content. The same amount of 

sodium alginate of grade 2 has higher number of chain ends, contributing to a higher 

plasticity during compression due to the higher free volumes of the chain ends than those 

grades with higher molecular weights. On the other hand, the higher moisture contents of 

the other grades would contribute to a higher plasticity. Hence, the fact that grade 2 

shows similar plasticity to other grades could be due to the combined effects of moisture 

content and molecular weight. For grades 3, 4 and 5, they have similar moisture contents. 

The fact that all these three grades demonstrate similar plasticity suggests that the 

threshold molecular weight for sodium alginate might be achieved and a further increase 

in molecular weight from grade 3 to grade 5 does not result in a substantial change in 

deformation mechanism. 

 However, only one batch from each grade was used in this study. The inter-batch 

variability within each grade was not accounted. Further studies on additional batches of 

each grade would provide a better understanding of the inter-grade variability of sodium 

alginate in compaction properties. With multiple batches from each grade included in the 
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further study, it might show that there are statistical significant differences in the 

mechanical properties of different grades of sodium alginate.   

 

Inter-batch Variability of Sodium Alginate in Compressibility 

Powder Properties 

The bulk, tapped, and true density, and moisture content values for the three 

batches of sodium alginate (grade 3) are summarized in Table 17. Their bulk, tapped, and 

true density values are all respectively very close to each other. All three batches have a 

Carr‘s Index greater than 25%, which means that their flowability is poor but could be 

improved by the use of a glidant. The moisture contents decrease slightly from batch A to 

J (from 11% to 9%). Particle size distribution for the three batches is depicted in Figure 

36. More than 90% w/w of the powders are below 53 µm for all three batches. Batch G 

has substantially lower percentages of particles > 53 µm than the other two batches. 

Batches A and J are similar in their particle size distribution. 

 

 

 

 

 

 

Table 17. Powder properties of three batches of sodium alginate (grade 3) (mean  

standard deviation of three replicates).  

Sodium Bulk Density Tapped Carr’s Index True Density Moisture 
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Alginate (g/cm
3
) Density 

(g/cm
3
) 

(%) (g/cm
3
) Content 

(% w/w) 

Batch A 0.613 ± 0.004 0.826 ± 0.007 25.9 ± 1.0 1.720 ± 0.009 11.26 ± 0.10 

Batch G 0.606 ± 0.007 0.876 ± 0.015 30.8 ± 1.8 1.717 ± 0.007 9.75 ± 0.10 

Batch J 0.629 ± 0.012 0.874 ± 0.003 28.0 ± 1.6 1.718 ± 0.006 8.95 ± 0.36 

 

 

Figure 36. Particle size distribution of sodium alginate (three batches) obtained from USP 

sieving method (mean  standard deviation of three replicates). 

 

Compressibility and compatibility profiles of the three batches are depicted in 

Figure 37.  Batch G shows the lowest porosity at each compression pressure. Batch A has 

relatively higher porosity than batch J at low pressures (50-100MPa) and has relatively 

lower porosity than batch J at high pressures (100-150MPa). Tensile strength of the 

sodium alginate compacts increases with decreasing porosity. The relationship between 

tensile strength and porosity for the three batches can be well described by the same 
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Ryshkewitch equation
174

 with R
2
 of 0.987. Thus, tensile strength of compacts prepared 

from the three separate batches is identical when compacted to the same porosity. This 

fact is important for scale-up process of sodium alginate matrix tablets. At large 

production scale, the compression speed is much higher than the bench-top tablet 

compressor. Since plastic deformation is time-dependent, higher compression speed 

could lead to reduced tablet strength. However, for the multiple batches of sodium 

alginate, the same tablet mechanical strength can be maintained in the scale-up process 

by adjusting parameters, such as pre-compression pressure, main compression pressure, 

compression speed,  etc., to achieve tablets with similar porosity.  
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Figure 37. (a). Porosity () of sodium alginate (three batches) powder under compression 

as a function of pressure; (b). Tensile strength of compacts (three batches) as a function 

of porosity. Data are reported as mean and standard deviation of three replicates. 

 

Compaction Energetics 

The compaction energetics, Wc/d and Wdecompression, and % Elasticity for the three 

batches of sodium alginate are plotted as a function of compression pressure in Figure 38. 

The three batches are similar in their Wc/d  and Wdecompression values. The Wc/d values at 125 
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MPa for the three batches investigated are listed in Table 18. The % Elasticity values for 

the three batches are similar, varying from 4% to 6% in the pressure range investigated. 
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Figure 38. Compaction energetics  and % Elasticity as a function of compression pressure 

for the three batches of sodium alginate: (a). Wc/d; (b). Wdecompression ;(c), % Elasticity. 

Heckel and Gurnham Analysis 
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The out-of-die Heckel and Gurnham analysis of the compression data for the three 

batches are depicted in Figure 39. The results are summarized in Table 18. Batches A and 

G are similar in their c values, while batch J has smaller c values. Batch A shows slightly 

higher Py values than batch G, while batch J exhibits the largest Py values among the 

three batches. 
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Figure 39. Out-of-die Heckel (a) and Gurnham (b) analysis of the compression data for 

the three batches of sodium alginate (grade 3). 

 

 

 

Table 18.  A summary of the Wc/d at 125 MPa, Gurnham c, Heckel Py, and R
2
 values for 

the three batches of sodium alginates.  
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Excipient 
Wc/d

# 

125MPa (J/g) 

Gurnham Heckel 

c* R
2
 Py* (MPa) R

2
 

Batch A 16.28  0.02 11.68 - 12.93 0.9928 203.29  – 223.11 0.9940 

Batch G 15.83  0.07 11.24 - 13.16 0.9831 185.60 – 208.81 0.9904 

Batch J 15.63  0.10 9.75 - 10.89 0.9916 242.72 – 270.93 0.9916 

#: n=3; *: data reported as 95% confidence intervals of three replicates. 

 

In summary, the plasticity of the three batches are similar to each other based on 

Wc/d   values at 125 MPa (< 5% difference). Gurnham analysis indicates that Batches A 

and G are similar in their plasticity while batch J is slightly less plastic (20% less in c 

value). Heckel analysis suggests that batches A and G are slightly more plastic than batch 

J. Based on the study on multiple grades, the molecular weight of these three batches 

should‘ve exceeded the threshold value and would have minimal influence on the 

compression behavior of these batches. Batch J has the lowest moisture content, which 

might be one of the reasons of its lowest plasticity among the three batches. Between 

batch A and batch G, batch G has the lower molecular weight (positive contribution to 

plastic deformation) and lower moisture content (negative contribution to plastic 

deformation), which may explain the similar plasticity between these two batches. 

The differences in porosity of compacts result in the differences in tensile strength 

of compacts prepared from these three batches at the same compression pressure: batch G 

> batch A > batch J. However, the tensile strength – porosity profiles for the three batches 
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indicate that the multiple batches are identical in compactibility, i.e., the same tensile 

strength can be achieved by compressing different batches to the same compact porosity. 

Conclusion 

The compression behavior of various grades and batches of sodium alginate was 

studied by compaction energetics, the out-of-die Heckel analysis, and the out-of-die 

Gurnham analysis. It was found that sodium alginates deform less plastically than MCC 

PH102 and slightly more plastically than lactose anhydrous when stored under the same 

temperature and relative humidity. Sodium alginates also demonstrate more elastic 

deformations during compression than both MCC PH102 and lactose anhydrous. For 

direct compression, tablets prepared from a mixture of sodium alginate and MCC PH102 

would be expected to have acceptable mechanical properties for industrial application. 

The four grades of sodium alginate investigated are similar in their compressibility and 

compatibility. However, only one batch for each grade was compared in this study. 

Multiple batches from each grade would provide a better view on the inter-grade 

variability of sodium alginate in their compression properties. Surprisingly, tablets of 

multiple batches of one grade exhibit substantial variation in porosity under the same 

compression pressure. The difference in porosity could be mainly due to the differences 

in particle size and plasticity among the various batches. However, multiple batches show 

identical compactibility. The same tensile strength can be achieved by compressing 

different batches to the same porosity. When using multiple batches of sodium alginate in 

matrix tablets, adjustments of the compression parameters may be required to achieve 

tablets with similar porosity and mechanical properties.  
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Part 2. Sodium Alginate Matrix Tablet Functionality 

Hydrophilic polymer matrices have been widely applied in peroral controlled drug 

release systems. Polymer matrix tablets are relatively easy and economical to formulate 
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and manufacture.
78

 Drug release from hydrophilic polymer matrices is controlled by the 

hydration characteristics (swelling and/or erosion) of the polymer and the physical 

properties of the resultant polymer gel layer formed around the matrices.
31,175-177

 Water-

soluble drugs are primarily released by diffusion of dissolved drug molecules through the 

polymer gel layer, while poorly water-soluble drugs are mainly released by erosion of the 

polymer layer at the interface between the polymer gel and the bulk solution.
178

  

Sodium alginate, which is able to form viscous solutions when in contact with 

water, has been employed to produce matrices such as beads, microspheres, and matrix 

tablets for extended drug release.
31,74,75,179

 Sodium alginate matrix tablets can be 

manufactured by direct compression, which is preferred industrially due to the low cost 

of manufacturing.
76,78

  

A useful approach to understand sodium alginate‘s functionality in controlled 

release matrix tablets is to study the swelling and erosion behavior of sodium alginate 

matrix tablets. The influence of multiple grades of sodium alginate — varying in both 

molecular weight and chemical composition   on swelling and erosion behavior of 

alginate-based matrix tablets has been investigated by several groups.  Efentakis and 

Buckton‘s study on sodium alginate matrix tablets prepared from two grades of sodium 

alginate (Viscosity grade: 14 Pa∙s and 0.2 Pa∙s of 2% solution at 25C, respectively. 

Viscosity measurement method was not specified) concluded that the high viscosity 

grade of sodium alginate formed a more substantial gel layer and eroded at a much lower 

rate in water than the low viscosity grade.
31

 Sriamornsak et al, investigated the swelling 

and erosion behavior of sodium alginate matrix tablets prepared from three grades of 

sodium alginate (Viscosity grade: 0.3 Pa∙s (high %G), 0.3 Pa∙s (low %G), and 0.035 Pa∙s, 
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respectively. Viscosity was determined on 1% solution using Brookfield LV viscometer 

at 60 rpm with NO. 2 spindle; temperature was not specified) in both 0.1 M HCl solution 

and phosphate buffer (pH 6.8).
32

 Their results demonstrated that the swelling and erosion 

behavior of these three grades of sodium alginate were not significantly different in an 

acidic medium, but were significantly different in phosphate buffer. Higher viscosity 

grades swelled to a higher degree and eroded to a lower extent than the low viscosity 

grade in phosphate buffer.
32

 The two grades with same viscosity but different %G did not 

show any significantly differences in their swelling and erosion behavior.
32

 Chan et al ,
180

 

also compared the swelling and erosion behavior of two grades of sodium alginate 

(Kinematic viscosity 3 and 108 mm
2
/s, respectively. Kinematic viscosity was determined 

on 1% solution using suspended-level viscometer at 37C) in both acidic and neutral 

media and reached the same conclusion as Sriamornsak et al.
32

   

There are three main issues regarding the aforementioned swelling and erosion 

studies. First, the grades of sodium alginate used in these three studies are substantially 

different in their viscosities (70 times, 9 times, and 36 times different in viscosity for 

sodium alginates used in the three aforementioned studies, respectively). Thus, it would 

not be surprising to detect significant differences in the swelling and erosion behavior. 

Grades with similar viscosity specifications, whether produced by the same manufacturer 

or different manufacturers, are more likely to be considered to be interchangeable. Hence, 

it is necessary to investigate the swelling and erosion behavior of sodium alginate grades 

with similar viscosities. Furthermore, the possible differences in swelling and erosion 

behavior of multiple batches of the same grade of sodium alginate should be examined as 

well. Second, the apparent viscosity data for the various grades of sodium alginate used 
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in the previous studies are ―one-point‖ viscosity data obtained at one concentration, one 

shear condition, and one temperature. Study of the rheological properties of sodium 

alginate solutions in Chapter 2 demonstrated that ―one-point‖ viscosity data obtained by 

simple viscometry do not adequately reflect the rheological behavior of sodium alginate 

solutions at higher concentrations under different shear conditions. Inter-grade and inter-

batch variability of sodium alginate is insufficiently characterized by their ―one-point‖ 

apparent viscosities. Third, the previous swelling and erosion studies were conducted by 

exposing the whole tablet to the dissolution medium. Consequently, the changing surface 

area and volume of the swelling tablets during the experiment can be expected to 

markedly affect the apparent erosion and swelling behavior of the whole tablets.  

To address these issues, four grades of sodium alginate, and three batches of one 

grade were selected to study the swelling and erosion behavior of sodium alginate matrix 

tablets. Among the four grades (grades 2, 3, 4, and 5), grades 2 and 3 are in the same 

viscosity range as specified by the manufacturer. Grades 4 and 5 are also in the same but 

relatively higher viscosity range (< 500% difference in viscosity among these different 

grades).  For swelling and erosion experiments, a specially designed cylindrical tablet 

holder was employed to expose only the upper flat surface of the tablets to the dissolution 

medium. Weight changes due to water update and polymer dissolution were determined 

at various time points. Furthermore, the continuous changes of the hydrated polymer 

layer thickness of sodium alginate matrix tablets were determined by the texture analysis 

method according to the method proposed by Yang et al.
181

 The release profile of a 

model drug, Acetaminophen, from sodium alginate matrix tablets was also studied. 
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Finally, the relationship between the rheological properties of sodium alginate solutions 

and the functionality of the sodium alginate matrix tablets was investigated. 

Materials and Methods 

Materials 

Four grades (one batch each) and three batches of one grade of sodium alginate 

(LF120M, grade 3) were provided by FMC Biopolymer (Drammen, Norway). 

Physicochemical properties, previously determined for these grades and batches were 

listed in Table 14 in Chapter 3 Part I. Apparent viscosity of alginate solutions increases 

from grade 2 to grade 4. Batches A to J were named based on their manufacturing date 

with batch A as the earliest batch. Deionized water was obtained from a Milli-Q ultrapure 

water system (Millipore Corp., Billerica, MA, USA). Acetaminophen (USP grade) was 

purchased from Spectrum Chemicals (Gardena, CA, USA) and the particles < 53 µm 

were used in drug release studies from sodium alginate matrix tablets.   

 

 

 

 

 

 

 

Methods 

Rheological Measurements of Sodium Alginate Solutions 
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The procedures employed in generating the steady shear and small amplitude 

oscillatory data for the sodium alginate solutions were described in the materials and 

methods section in Chapter 2. 

 

Preparation of Sodium Alginate Matrix Tablets 

Sodium alginate matrix tablets were prepared by direct compression using an 

Instron Universal Testing Machine (model 5869) equipped with a 50 kN load cell 

(Instron, Norwood, MA, USA). Sodium alginate powders (400 ± 1 mg) were filled into a 

12-mm die (Carver, Inc., Wabash, IN, USA) and were compressed using flat-faced 

punches (Carver, Inc., Wabash, IN, USA) at 10 mm/min to 30 kN (i.e., 265 MPa), held 

for 10 seconds, and decompressed at 10 mm/min. All powders and compacts were stored 

at room temperature (typically 20–22ºC) and controlled humidity (31-33% relative 

humidity) which was achieved by saturated MaCl2 solution.
171

  

 

Porosity of Matrix Tablets and Tensile Strength 

The procedures employed in generating porosity and tensile strength data for the 

sodium alginate compacts were described in the materials and methods section in 

Chapter 3 Part 1. 

 

 

 

 

 

Water uptake  
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A specially designed tablet holder, i.e., a cylindrical polyacetal block (diameter: 

15 mm; height: 15 mm) with a hole in the middle (diameter: 12 mm; depth: 12 mm), 

was used in the swelling and erosion studies (Figure 40).  

 

Figure 40. Schematic illustration of the tablet holder. 

Vacuum grease (Dow Corning Corporation, Midland, MI, USA) was carefully 

applied to the bottom flat surface and the side of the cylindrical alginate compacts before 

placing the compacts into the tablet holder. Only the upper flat surfaces of the sodium 

alginate tablets were exposed to the dissolution medium, i.e., deionized water. Swelling 

and erosion studies were performed in a USP type II dissolution apparatus 

(Vanderkamp
®
600, Vankel, Palo Alto, CA, USA) with paddles stirring at 50 rpm. 

Weighed tablets (W0) were placed in the tablet holder (weight, Wh) and immersed into 

900 mL deionized water at 37 ± 0.5 C. Tablet holder was placed in the center of the 

vessel bottom. At predetermined time points, 0.5, 1, 2, 3, 4, 5, 6, 7, 10 and 15 h, each 

tablet holder was withdrawn from the medium and blotted to remove excess water and 

weighed (Wt) on an analytical balance (Mettler Toledo, Columbus, OH, USA).  The 

increase in total weight due to water penetration into the matrix tablets and polymer 

dissolution was determined for each time point according to the following equation: 
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%100
W

WWW
Weight -Total-in-Increase %

0

h0t 


 ,      Equation 38       

 

Erosion  

The swollen matrix tablets collected at each time point were then dried in a 

vacuum oven (Isotemp
®

 Model 280A, Fisher Scientific, Pittsburgh, PA, USA) at 85C 

for at least 24 h, cooled in a desiccator, and weighed until constant weight (Wt, dry) was 

achieved. Three matrix tablets were used for each time point. Three intact tablets were 

dried, cooled, and weighed to determine the average dried weight (W0, dry) of the initial 

matrix tablets. The remaining weight percentage of tablets after polymer dissolution was 

estimated for each time point according to the following equation: 

100%
W

W
Remaining-Polymer %

dry0,

dryt,
 ,                     Equation 39  

      

Hydrated Polymer Layer Thickness 

  The movement of water penetration front and the dynamics of hydrated polymer 

layer formation as a function of time were evaluated by texture profiling analysis method 

modified from a previous report.
181

 The test was done on an Instron Universal Testing 

Machine (model 5869) equipped with a 50 N load cell (Instron, Norwood, MA, USA). A 

cylindrical probe (2mm in diameter) attached to the load cell travels at constant speed (10 

mm/min) into the swollen tablets inside the tablet holder while the force of resistance 

encountered by the probe and the distance traveled by the probe during the test were 

measured. The measurement starts at a trigger force (0.01 N) to indicate the swollen gel 

surface (the solution-gel interface or the erosion front) and it stops at a predetermined 
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stop force chosen to distinguish between the hydrated polymer layer and the remaining 

solid core of the tablet (the swelling front).  The stop force was based on measurements 

on dry tablets, for which the recorded force-displacement curve was very steep: the 

gradient of the curve was larger than 150 N/mm. The force-displacement curves for the 

dry tablets and the partially-swollen tablets were comparable for forces above 15 N. 

Thus, the stop force was set to be 15 N. An initial indentation of 100 µm on dry tablets 

was recorded under 15 N load. Thus, 100 µm was deducted from the displacement 

between trigger force and stop force for the calculation of hydrated polymer layer 

thickness. 

 

Drug Dissolution 

Acetaminophen and sodium alginate (1:9 w/w) powder (4 grams in total) was 

mixed on Thinky Mixer (Model ARM 310, Thinky USA, Laguna Hills, CA, USA)  at 

2000 rpm for 1 min. Blending endpoint was determined when relative standard deviation 

(%RSD) of acetaminophen content in samples taken from three different locations in the 

mixing container was < 5%. Acetaminophen (40 mg)-sodium alginate (360 mg) matrix 

tablets were prepared using flat-faced punches (12 mm in diameter, Carver, Inc., Wabash, 

IN, USA) at 10 mm/min to 30 kN (i.e., 265 MPa), held for 10 s, and decompressed at 10 

mm/min.  Tablets were placed inside the same tablet holders as described in the Water 

uptake.  

Drug dissolution test was performed on a VanKel® Dissolution Apparatus (Palo 

Alto, CA, USA) using USP Apparatus II with paddle rotation speed at 50 rpm. The 

dissolution medium was 900 mL of deionized water with temperature maintained at 37 ± 
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0.5C. At predetermined time points, 5 mL of samples were collected from the 

dissolution medium followed by addition of an equal volume of preheated deionized 

water. Acetaminophen concentrations of the samples were determined by calculation 

based on UV absorption at 244 nm on a Cary 3 UV/Vis Spectrometer (Varian/Agilent 

technologies, Santa Clara, CA, USA) according to a standard curve generated from 0.1 to 

50 μg/mL (R
2
 = 0.9999). Three samples were tested for each time point.  

 

Data Analysis 

The obtained data for the different grades and batches were analyzed via analysis 

of variance (ANOVA) and Levene‘s test for homogeneity of variance using PASW 

Statistics 18 for Windows (SPSS Inc., Chicago, USA). Post hoc testing (p < 0.05) of the 

multiple comparisons was performed by either the Tukey HSD (Honestly Significant 

Difference) test or Games–Howell test depending on whether Levene‘s test was 

insignificant or significant, respectively. GraphPad Prism (version 5, GraphPad Software, 

Inc., La Jolla, CA, USA) was used for the linear and nonlinear regression analysis of the 

data where appropriate. 

 

 

Results and Discussion 

Inter-Grade Variability  

Porosity of the sodium alginate matrix tablets prepared from four different grades 

varied from 0.17 to 0.19 as shown in Table 19. The tensile strength of sodium alginate 
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tablets, ranging from 5.13 to 5.85 MPa, was not observed to be significantly different 

among the four grades.   

 

Table 19. Matrix tablet porosity and tensile strength for the four grades of sodium 

alginate. 

Sodium Alginate Porosity
a
 

σT
a
 

(MPa) 

Grade 2 0.18 ± 0.008 5.63 ± 0.24 

Grade 3 0.19 ± 0.007 5.26 ± 0.36 

Grade 4 0.17 ± 0.006 5.85 ± 0.63 

Grade 5 0.17 ± 0.003 5.13 ± 0.25 

a
 n=3. 

 

Water uptake and erosion 

Sodium alginate tablets exposed to water undergo swelling with the formation of 

a gel layer. The water uptake and erosion behavior of matrix tablets prepared from four 

grades of sodium alginate are depicted, as a function of time, in Figure 41. For all four 

grades, the tablet weight continues to increase during the first 4 h as water penetrates into 

the matrix. Grades 2 and 3 show a drop in the % Increase-in-total-weight from 7 h to 15 h 

while the swollen tablet weight for grades 4 and 5 remains relatively constant over the 

duration of the experiment. Previous studies of the swelling behavior of sodium alginate 

matrix tablets showed similar water uptake profiles: water uptake increased at the 
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beginning and remained approximately constant for high viscosity grades of sodium 

alginate but decreased for low viscosity grades at longer times.
31,32
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Figure 41. Swelling and erosion behavior of sodium alginate matrix tablets: (a) the 

percentage of increase-in-total-weight; (b) percentage of polymer-remaining. Data are 

shown as the mean and standard deviation of three replicates. 

The four grades of sodium alginate are comparable in their % Increase-in-total-

weight values in the first four hours. Grades 4 and 5 have a similar % Increase-in-total-

weight profile over the whole time range investigated. Grades 2 and 3 demonstrate a 

significantly (P < 0.05) smaller % Increase-in-total-weight than grades 4 and 5 after 5 h. 

The % Increase-in-total-weight of grade 3 is not significantly different from that of grade 

2 during the first 10 h and becomes significantly higher than grade 2 at 15 h.  

Grades 4 and 5 are not significantly different in their % Polymer-remaining in the 

time range investigated, while grades 2 and 3 show significantly faster erosion rate than 

grades 4 and 5 as reflected in their smaller values of % Polymer-remaining after 5 hrs. 

Grade 3 has similar % Polymer-remaining to grade 2 in first 10 h and becomes 

significantly higher than grade 2 at 15 h. The significant differences observed among 

grades for water uptake behavior after 5 h could be attributed to the significant 

differences in erosion behavior.  

The process of erosion or polymer dissolution under defined fluid dynamics 

conditions from a swollen polymer gel layer has been envisioned as polymer 

disentanglement from the polymer gel followed by polymer diffusion through the 

diffusion layer to the bulk solution.
182,183

 The polymer dissolution process can be 

described by the following equation:
 170

 

  
m

p
 m

0
 k  A C

d
 t ,                            Equation 40  
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where mp is the remaining polymer weight at time t, m0 is the dry tablet weight at t = 0, k 

is a constant dependent on the average diffusion coefficient (Dave) of the polymer in the 

diffusion layer, A is the surface area of the swelling tablet exposed to the dissolution 

medium, and Cd is the disentanglement or critical concentration at which polymer chains 

start to disentangle from the polymer gel under the influence of external shear. The Cd 

values correspond to polymer solutions with a certain threshold viscosity/viscoelasticity 

high enough to resist the external shear.
118,183,184

 Under the same shear conditions, the Cd 

values of the matrix tablets prepared from the various grades of sodium alginate are a 

function, in part, of the rheological properties of the polymer solutions and would be 

constant during the polymer erosion process.
183

 The erosion data of the four grades of 

sodium alginate as shown in Figure 41b were fitted to equation 40 by linear regression; 

the slopes and R
2
 values are listed in Table 20. All four grades show good fit with R

2 
> 

0.98. Slopes, representing the polymer dissolution rate, differ among the four grades with 

the following rank order: grade 2 > grade 3 > grade 4 > grade 5.   

 

Table 20. Slope and R
2
 values of the linear regression fit for the erosion profile of the 

four grades of sodium alginate.  

Sodium Alginate Slope* R
2
 

Grade 2 -5.37  0.12 0.9873 

Grade 3 - 4.71  -0.13 0.9805 

Grade 4 - 3.70  0.09 0.9823 

Grade 5 - 3.24  0.07 0.9881 

* n=3. 
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The differences in erosion behavior of the four grades of sodium alginate matrix 

tablets could be partly explained by their rheological behavior in solution. The erosion 

rate of sodium alginate matrix tablets is determined by the average diffusion coefficient 

(Dave) and critical concentration (Cd).  According to the Stokes-Einstein equation: 

r

kT
D

6
 ,        Equation 2 

the polymer diffusion coefficient is inversely proportional to the apparent viscosity of the 

polymer solutions in the diffusion layer. Grades 2 and 3 have similar critical 

concentrations (Cd) to grade 4 but lower apparent viscosities in the diffusion layer than 

grade 4. It is very likely that the lower apparent viscosities of solutions of grades 2 and 3 

in the diffusion layer lead to a larger Dave of polymer in the diffusion layer and hence 

faster erosion rates for grades 2 and 3. Although grade 5 has a higher critical 

concentration than the other grades, it has higher apparent viscosities in the diffusion 

layer than the other grades.  It appears that the high apparent viscosities of grade 5 at low 

concentrations (1-3% w/w) substantially influence the erosion process, resulting in an 

erosion rate slower than the other grades. Therefore, the rheological properties of sodium 

alginate at both low and high concentrations could be important parameters for predicting 

the swelling and erosion behavior of sodium alginate in matrix tablets. Grades with 

higher apparent viscosities at low solution concentrations and higher viscoelasticity at 

high solution concentrations (lower Cd) tend to form matrix tablets with slower rates of 

erosion and higher rates of swelling. 

 

Hydrated polymer layer dynamics 
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A representative force-displacement profile for the swelling sodium alginate 

tablets at different time points is depicted in Figure 42 (Details for four grades and three 

batches of sodium alginate are listed in APPENDIX II). Based on the force-displacement 

profile, a typical schematic is created to illustrate the changing phases due to water 

penetration into the polymer matrix (Figure 43).  An overall increase in hydrated polymer 

layer of sodium alginate tablets is observed with respect to swelling time.  The hydrated 

polymer layer thickness as a function of swelling time for the four grades of sodium 

alginate is illustrated in Figure 44. The hydrated polymer layer thickness for all four 

grades is similar to each other at 1 h.  At 5 h, the hydrated polymer layer becomes thicker 

for all four grades. Grades 4 and 5 have the similar hydrated layer thickness. Grades 2 

and 3 also show similar thickness, which is much lower than grade 4 or 5. At 10 h, the 

hydrated layer thickness for all four grades is similar to the thickness at 5 h. At 15 h, the 

hydrated layer thickness increases slightly for grades 3, 4, and 5. Grade 2‘s hydrated 

layer remains similar thickness from 5 h to 15 h. At 15 h, Grades 4 and 5 are still similar 

in their hydrated layer thickness and Grade 3 has slightly higher hydrated layer thickness 

than grade 2.  

The hydrated polymer layer thickness profile for sodium alginate tablets is similar 

to the water uptake profile as shown in Figure 41. At the first four or five hours, hydrated 

layer thickness increases with increasing water uptake into the matrix tablets. After five 

hours, the hydrated layer thickness keeps relatively constant for grades 4 and 5 while the 

weights of the hydrated tablets do not change. The hydrated layer thickness for grades 4 

and 5 is larger than that of grades 2 and 3, which is in accordance with the higher amount 

of water uptake by tablets prepared from grades 4 and 5.  For grades 2 and 3, although the 
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weight of swollen tablets starts to decrease after 7 hours, the hydrated layer thickness 

does not seem to drop simultaneously. At 15 hour, the slight increase in hydrated layer 

thickness could be due to the heterogeneous swelling effect of the sodium alginate 

particles when water front reaches the bottom of the tablets.  

 

Figure 42. A typical force-displacement profile for swelling sodium alginate matrix 

tablets. 

0 2 4 6 8
0

3

6

9

12

15
I II III

Displacement, mm

F
o

rc
e
, 

N

 



165 

Figure 43. A schematic illustration of different regions in the polymer matrix due to 

water penetration: I. swollen gel layer; II. Hydrated but not swollen region; III. Dry core.  

 

 

Figure 44. Hydrated polymer layer thickness as a function of swelling time for matrix 

tablets of four grades of sodium alginate after exposed to water. 

 

Drug Release Studies 

 The porosity of Acetaminophen (APAP)-sodium alginate matrix tablets prepared 

from four different grades is listed in Table 21. Tablets from all four grades have similar 

porosities.   
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Table 21. Porosity of APAP-sodium alginate matrix tablets prepared from four different 

grades. 

APAP-Sodium Alginate Tablet Porosity 

Grade 2 0.14  0.003 

Grade 3 0.15  0.004 

Grade 4 0.14  0.002 

Grade 5 0.15  0.005 

 

Dissolution profile of APAP from sodium alginate matrix tablets is depicted in 

Figure 45. Tablets prepared from grades 2 and 3 show similar APAP release profile (P > 

0.05 at each time point). Tablets prepared from grades 4 and 5 also demonstrate similar 

APAP release profile (P > 0.05 at each time point). APAP release from tablets prepared 

from grades 4 and 5 is significantly slower than that from tablets prepared from grades 2 

and 3 (P < 0.01) after four hours. The APAP release data from sodium alginate matrix 

tablets in this study can be well described by the zero-order equation, 

kt
M

M t 
 ,       

Equation 41
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with R
2
 > 0.97 (the constants and R

2
 are listed in Table 22). Grades 2 and 3 are similar in 

their k values; so are grades 4 and 5. The k values of grades 4 and 5 are smaller than those 

of grades 2 and 3.   

The differences among the four grades in their dissolution behavior could be 

partly explained by their solution rheological properties. Drug release from sodium 

alginate matrix tablets is expected to be influenced by both sodium alginate gel erosion 

rate and the viscosity of sodium alginate solutions in the diffusion layer. Grades 4 and 5 

demonstrate much higher apparent viscosity values (> 3 times) than grades 2 and 3 at low 

concentrations from 1 to 3% w/w.  Since grade 4 has similar viscoelasticity with grades 2 

and 3 at high concentrations, it is very likely that the substantial differences in apparent 

viscosity at low concentrations contribute to the slower drug release from matrix tablets 

prepared from grade 4 than matrix tablets prepared from grades 2 and 3. Although grade 

5 shows slightly lower viscoelasticity than other grades at high concentrations, it has 

substantial higher apparent viscosity than grades 2 and 3 at low concentrations. This 

result suggests that the substantial differences in apparent viscosity at low concentrations 

could be the main factors determining sodium alginate‘s functionality in matrix tablets. 

On the other hand, despite the fact that grades 2 and 3 (or grades 4 and 5) do exhibit 

significant differences in their apparent viscosities at lower concentration according to 

the studies in Chapter 2, the absolute differences between these two grades in apparent 

viscosities are usually within 50%. This result indicates that grades with < 50% 

difference in their apparent viscosities at low concentrations may not show any 

substantial differences in their performance in matrix tablets.  
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 Additionally, sodium alginate matrix tablets prepared from grades 4 and 5 

demonstrate a thicker hydrated polymer layer than those tablets prepared from grades 2 

and 3. A thicker polymer layer would decrease the amount of drug released by diffusion 

through the hydrated polymer layer. 

 

Figure 45. Acetaminophen release profile from sodium alginate matrix tablets prepared 

from four different grades. 

 

Table 22. The constant, k (reported as mean  standard deviation, based on three 

replicates), and coefficient of determination (R
2
) of the linear regression fitting of the 

zero-order drug release data from sodium alginate (four grades) matrix tablets. 

Sodium Alginate k R
2
 

Grade 2 5.41   0.04 0.993 
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Grade 3  5.65   0.08 0.973 

Grade 4 4.07   0.05 0.981 

Grade 5 3.80   0.03 0.990 

Inter-Batch Variability  

Porosity of the pure sodium alginate matrix tablets prepared from batches G and J 

is almost the same (0.16), while the porosity of batch A tablets is slightly higher (0.21) 

(Table 23). Batch A shows higher degree of elastic recovery than the other two batches. 

Tensile strength of sodium alginate tablets ranges from 4.63 to 6.21 MPa.  There is no 

direct correlation between porosity and the tensile strength. The differences in tensile 

strength could be due to different plasticity and particle size among these three batches. 

As shown in Chapter 3 Part 1, Batch A and G are similar in plasticity, while batch J is 

relatively lower in plasticity. When compressed to the same porosity, batch G would have 

more inter-particular areas to form bonds than batch J. As a result, batch G has a higher 

tensile strength than batch J.  Although batch A has a higher porosity than batch J, batch 

A may have larger bond-forming surfaces than batch J due to the higher plasticity of 

batch A.  

 

Table 23. True density, matrix tablet porosity and tensile strength for the three batches of 

sodium alginate. 

Sodium Alginate Porosity
a
 

σT
a
 

(MPa) 

Batch A 0.21 ± 0.001 5.26 ± 0.23 

Batch G 0.16 ± 0.002 6.21± 0.14 
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Batch J 0.16 ± 0.008 4.63 ±0.46 

 a: n=3. 

 

The water uptake and erosion behavior of matrix tablets prepared from the three 

batches of grade 3 is depicted in Figure 46. All three batches show increasing water 

uptake during the first four hours. The swelling matrix of batch A has a relative constant 

weight from 4 h to 15 h, while batches G and J show a substantial drop in % Increase-in-

total-weight from 7 h to 15 h. Batches A and G exhibit similar water uptake behavior in 

the first 5 h with % Increase-in-total-weight slightly but not significantly higher than that 

of batch J. After 6 h, the differences in % Increase-in-total-weight among the three 

batches become more substantial, with the batch rank order A > G > J. Batch A is 

significantly (P < 0.05) higher in % Increase-in-total-weight than batches G and J after 10 

h, while batch G becomes significantly (P < 0.05) higher in % Increase-in-total-weight 

than batch J at 15 h. This phenomenon could be explained by the differences in the 

erosion behavior of the three batches as shown in Figure 46b. All three batches show 

similar % Polymer remaining at the first 7 hours. After 10 hours, the rank order of % 

Polymer remaining for the three batches are as follows: batch A > G > J.  The % 

Polymer-remaining as a function of time data for the three batches of sodium alginate (as 

shown in Figure 46b) were fitted to equation 40 by linear regression. The slopes and R
2
 

values are listed in Table 24. The slopes of the equations for the three batches differ from 

one another with the rank order of Batch J > Batch G > Batch A.  Batches with slower 

polymer erosion/dissolution rate also show higher weight gain in deionized water. 
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Figure 46. The % Increase-in-total-weight (a) and % Polymer-remaining (b) of three 

batches of one grade of sodium alginate matrix tablets in deionized water at 37C. Data 

are shown as mean and standard deviation of three replicates. 

Table 24. Slope and R
2
 values of the linear regression fit for the erosion profile of the 

three batches of sodium alginate.  

Sodium Alginate Slope* r
2
 

Batch A -3.38  0.12 0.9640 

Batch G -4.62  0.13 0.9771 

Batch J -5.23  0.12 0.9846 

* 95% confidence intervals (n=3). 

 

The erosion behavior of these three batches of sodium alginate could be partially 

explained by their rheological properties in solution. Batch A has significantly higher 

apparent viscosities (2% w/w solution) and viscoelasticity (8% w/w) than batches G and 

J. As a result, batch A exhibits slower erosion rate and higher extent of water uptake than 

batches G and J. Batch G is not significantly different from batch J in apparent viscosity 

at low concentration (2% w/w) but is significantly higher in viscoelasticity at both low 

(2% w/w) and high (8% w/w) concentrations than batch J. The higher viscoelasticity of 

batch G leads to a slower erosion rate than batch J. At 15 h, batch G shows significantly 

higher % Increase-in-total-weight and % Polymer-remaining than batch J. Thus, those 

batches showing no significant differences in their apparent viscosities at low solution 

concentration could still differ in their swelling and erosion behavior due to their 

differences in viscoelasticity. 
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 The overall hydrated polymer layer thickness as a function of time for sodium 

alginate matrix tablets prepared from three batches was plotted in Figure 47. The 

hydrated polymer layer increased at the beginning and kept almost constant after 5 h. 

Among the three batches, batch A has the largest hydrated layer thickness after 5 h. Batch 

G has similar thickness to batch A at 5 h and 10 h, but smaller thickness at 15 h. Batch J 

has the smallest thickness after 5 h. The hydrated polymer profile could be explained by 

the swelling and erosion behavior of these three batches. Batches with higher water 

uptake and slower erosion rate would show thicker hydrated layer thickness. However, 

the differences among the batches in hydrated layer thickness are not as pronounce as in 

water uptake profile. 

 

Figure 47. Hydrated polymer layer thickness as a function of time for sodium alginate 

matrix tablets of three batches of grade 3 during swelling. 
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The porosity of APAP-sodium alginate matrix tablets prepared from three batches 

is almost the same, varying from 0.15 to 0.16. The APAP release profile from sodium 

alginate matrix tablets prepared from three batches is shown in Figure 48. ANOVA test 

shows that batches A and G are not significantly different in their drug release profile (P 

> 0.05 at each time point). Batch J has higher percentage of drug released at each time 

point than batches A and G after 1 h (P < 0.01).  

 

Figure 48. The APAP release profile from sodium alginate matrix tablets prepared from 

three batches. 

 

APAP release from sodium alginate matrix tablets prepared from three batches is 

well described by the zero-order equation with R
2
 > 0.992 (Table 25).  : 

kt
M

M t 


,       Equation 41 
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Table 25. The constant, k (reported as mean  standard deviation based on three 

replicates) and R
2 

values of the zero-order fitting of drug release data from sodium 

alginate matrix tablets prepared from three batches. 

Sodium Alginate k R
2
 

Batch A 4.41  0.03 0.996 

Batch G 4.41  0.03 0.995 

Batch J 5.30  0.04 0.992 

 

The k values of batches A and G are almost the same, while the k value of batch J 

is higher than those of batches A and G. It is not surprising that tablets prepared from 

batch J shows the fastest drug release since matrix tablets of batch J has the highest 

erosion rate in water among the three batches. Although batch A matrix shows slower 

erosion than batch G matrix, the drug release profiles are the same between the two 

batches. The differences in apparent viscosity among the three batches are less than 50%, 

while the viscoelasticity of batch G in solution is in between batch J and batch A, and is 

closer to batch A than to batch J. The results suggested that, for multiple batches within a 

relatively narrow range of apparent viscosity, viscoelasticity of sodium alginate solutions 

could be more indicative of the drug release behavior from sodium alginate-based matrix 

tablets than the apparent viscosity. Recently, an abstract submitted to Society of 

Rheology also demonstrated that the viscoelastic properties of HPMC gels are correlated 

with the dissolution profile from HPMC matrix tablets prepared from multiple lots of 

HPMC with similar viscosity and chemical substitution.
185
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Conclusion 

Significant differences in swelling and erosion behavior of sodium alginate matrix 

tablets were evident among different viscosity grades. Even different batches of the same 

grade exhibit significant differences in the swelling and erosion behavior of their matrix 

tablets. The significant differences in swelling behavior observed among different sodium 

alginate grades can be attributed to their significant differences in erosion behavior. The 

erosion behavior of sodium alginate matrix tablets can be partly explained by their 

rheological properties (both apparent viscosity and viscoelasticity) in solution. Sodium 

alginate with higher apparent viscosity and viscoelasticity in solution show slower 

erosion rate and higher swelling rate. Compacts prepared from grades or batches with 

higher viscosity and higher viscoelasticity show slower drug release. Apparent viscosities 

of sodium alginate solution at low concentration alone are not sufficient to predict the 

functionality of sodium alginate in matrix tablets. Viscoelastic properties of sodium 

alginate solutions at one high concentration indicative of polymer gel state are 

appropriate to be characterized as well.  
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CHAPTER 4. RELEVANCE OF RHEOLOGICAL PROPERTIES OF SODIUM 

ALGINATE IN SOLUTION TO CALCIUM ALGINATE GEL PROPERTIES  

Introduction 

Sodium alginate is a linear unbranched, amorphous copolymer composed of β-D-

mannuronic acid (M) and α-L-guluronic acid (G) linked by 14 glycosidic bonds. The M 

and G units in the alginates may be randomly or non-randomly organized as 

heterogeneous or homogeneous sequences. Commercially available sodium alginate is 

usually extracted from various seaweeds.  The chemical composition and sequence 

distribution of sodium alginate depends on the species and parts of the seaweed employed 

for extraction.
54

 Chemical compositions for sodium alginate extracted from some 

common seaweed species have been discussed in Chapter 1 and are listed in  Table 1.
70

 

Sodium alginate is widely used as a gelling agent due to its ability to form gels 

under mild conditions with divalent cations such as calcium. Calcium alginate gels have 

been used in wound dressings, dental impression materials, controlled release drug 

delivery systems, and the encapsulation of living cells.
90-93

 The ionotropic gelation of 

sodium alginate with calcium cations is conventionally described by the ―egg-box‖ 

model, where calcium cations interact with guluronic acid monomers in the cavities 

formed by pairing up of the G sequences of the alginate molecular chains.
87,88

 Recent 

studies on calcium alginate gel formation reveal three distinct and successive steps of 

calcium binding to alginate with increasing calcium concentration: 1. interaction of 

calcium with a single G monomer; 2. formation of egg-box dimers; and, 3. lateral 

association of dimers to form multimers.
89

 The G sequence and molecular weight of 
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sodium alginate determine the association modes of dimers and multimers of the resultant 

calcium alginate gels.
89

 

Since sodium alginate is extracted from seaweed, commercial pharmaceutical 

grade alginates can be expected to be heterogeneous due to the differences in seaweed 

species, seaweed parts employed, harvesting location, and the harvesting season.
54

 As a 

result, sodium alginates from different manufacturers are unlikely to exhibit the same 

properties. Furthermore, the alginates provided by a specific manufacturer could also 

have batch-to-batch variations as shown in the studies on inter-batch variability of 

sodium alginate reported in Chapter 2.  

Pharmaceutical excipients are required to adhere to specifications listed in their 

monographs in United States Pharmacopeia-National Formulary (USP-NF). Each batch 

or lot of the excipient is tested by the excipient manufacturer to ensure compliance with 

the monograph specification; each shipment of the excipient would be accompanied by 

the manufacturer‘s certificate of analysis (CoA). However, pharmacopoeial specifications 

for sodium alginate make no mention of the viscosity of sodium alginate‘s solutions, even 

though the viscosity of its solutions is influenced by alginate molecular weight, M or G 

composition, and solution concentration. The manufacturer‘s CoA often provides 

viscosity data for sodium alginate solutions but seldom reports %G values for each batch. 

However, even when the manufacturer‘s viscosity data is provided, it is a ―one-point‖ 

value, i.e., determined at one concentration, one shear condition, and one temperature. 

Consequently, this datum may not reveal relevant rheological information regarding 

sodium alginate‘s behavior in alginate-containing formulations.  
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Previous studies on calcium alginate gels have shown that gel strength is 

influenced by both molecular weight and %G of the sodium alginate: higher molecular 

weights or higher %G are usually associated with stronger gels.
61-63,186-188

 For those 

sodium alginates with similar %G, it was reported that higher molecular weights or 

higher solution apparent viscosities correlated with higher calcium alginate gel strength. 

186-188
 However, no quantitative relationship among gel strength, apparent viscosity, 

molecular weight, and/or %G was proposed or suggested. Furthermore, most of the 

sodium alginates employed in these studies were not pharmaceutical grade.  

Data presented in earlier chapters demonstrated that rheological methods, 

including steady shear and small amplitude oscillation, are capable of differentiating 

among multiple pharmaceutical grades and batches of sodium alginate varying in average 

molecular weight and chemical composition. Furthermore, the ―one-point‖ viscosity 

values reported in the CoAs do not reflect the inter-batch variability in the solutions‘ 

apparent viscosities at 2% w/w.  The purpose of this work is to determine whether 

sodium alginate solutions‘ rheological parameters are meaningful relative to the 

subsequent use of the various sodium alginates in the formulation of calcium alginate 

gels. Calcium alginate samples were prepared from 2% w/w solutions of the six grades 

and ten batches of sodium alginate previously studied. Gel properties were evaluated by 

compression using an Instron Universal Testing Machine and the correlation between the 

gel properties and the solution properties of sodium alginate was investigated. 

 

Materials and Methods 

Materials 
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Six grades (one batch each) and ten batches of one of the grades of sodium 

alginate were provided by FMC Biopolymer (Drammen, Norway). Physicochemical 

properties of the various grades and batches are listed in Tables 6 and 9 in Chapter 2, 

respectively.  Apparent viscosity of alginate solutions increases from grade 1 to grade 6. 

Multiple batches of sodium alginate were designated as batches A to J on the basis of 

their date of manufacture, with batch A as the earliest batch. Deionized water was 

obtained from a Milli-Q ultrapure water system (Millipore Corp., Billerica, MA, USA). 

Calcium phosphate dibasic dihydrate and gluconic acid--lactone were purchased from 

Sigma-Aldrich (St. Louis, MO, USA) and used as supplied. 

 

Methods 

Rheological Measurements of Sodium Alginate Solutions 

The procedures employed in generating the steady shear and small amplitude 

oscillatory data for the sodium alginate solutions were described in the materials and 

methods section in Chapter 2. 

 

Calcium Alginate Gel Preparation 

Calcium alginate gels were prepared by the ―internal gelification‖ method.
187,189

  

An amount of calcium ion (calcium phosphate dibasic dihydrate) equivalent to one-half 

the alginate monomer molar content (nca 
2+ 

=1/2 nmonomer
i
) was thoroughly dispersed in 2% 

w/w sodium alginate solutions. The dispersions were mixed at 2000 rpm for 2 min via a 

                                                

i
 The number of moles of sodium alginate monomers (nmonomer) can be calculated as 

malginate/(198g/mole). 
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Thinky Mixer (Model ARM 310, Thinky USA, Laguna Hills, CA, USA) to remove air 

bubbles. By adding equivalent molar amounts (n = nCa 
2+) of gluconic acid-δ-lactone to the 

dispersion under vigorous stirring, calcium ions were slowly released into the solution. 

The resultant dispersions were quickly poured into a 24-well plate (Falcon® 3047 

Multiwell™, Becton Dickinson Labware, Franklin Lakes, NJ, USA) and stored at room 

temperature for 24 h. Cylindrical gel samples were formed inside the wells (15 mm in 

diameter x 17 mm in height).    

 

Mechanical Tests 

Cylindrical gel samples were subjected to compression to fracture at a cross-head 

speed of 120 mm/min on an Instron Universal Testing Machine (model 5869) equipped 

with a 1 kN load cell (Instron, Norwood, MA, USA) (Figure 49). Instron software, 

Bluehill
®
2, was used to operate the instrument and collect data.  The cross-head and base 

were both covered with sandpaper (fine grade 150, 3M, St. Paul, MN, USA) to prevent 

gel slippage between the platens. All tests were replicated six times, and the mean values 

and standard deviations calculated.  
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Figure 49. Illustration of cylindrical gel sample placed between two platens on an Instron 

Universal Testing Machine (Left: beginning of compression; Right: gel fracture under 

compression).  

 

Data Analysis 

During compression, the cylindrical gel sample became barrel-shaped due to the 

friction at the interfaces between the gel sample and the cross-head. Although the 

barreling deformation is indicative of a non-uniform deformation (i.e., the stress and 

strain vary throughout the gel sample under compression), the measurement of the 

localized fracture properties of a material can still provide useful information.
190

  With 

barreling, for a given axial compressive strain, the barrel shape of the deformed samples 

provides circumferential strain at the equator that is greater than the strain that would 

arise during homogenous compression. Meanwhile, the local compressive strain at the 

equator is less than the strain that would arise during homogenous compression. These 

strain combinations lead to tensile stress around the circumference and reduced 

compressive stress at the barrel equator. Therefore, compression tests with friction, and 

consequent barreling, can be used as tests for fracture. Fracture occurs catastrophically by 

shear either along one large shear plane, leading to complete separation, or at several sites 

around the specimen, leading to crushing of the material. In either case, the load-carrying 

capacity of the material is abruptly terminated at this maximum compression force.
190

  As 

a result, the maximum compression force, FM, along with the engineering strain, E, at 

fracture was used to compare the calcium alginate gel properties prepared from various 

grades and batches. Engineering strain is defined as: 
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,       

Equation 42 

where H0 is the initial height of the cylindrical gel sample, and H(t) is the instantaneous 

value of the sample height at fracture. 

 

Statistical Analysis 

The differences in calcium alginate gel properties among the various grades and 

batches were analyzed via analysis of variance (ANOVA) and Levene‘s test for 

homogeneity of variance using PASW Statistics 18 for Windows (SPSS Inc., Chicago, 

IL, USA). Post hoc testing (p < 0.05) of the multiple comparisons was performed by 

either the Tukey HSD (Honestly Significant Difference) test or Games–Howell test 

depending on whether Levene‘s test was insignificant or significant, respectively. Partial 

correlation tests for gel properties and rheological properties of sodium alginate solutions 

were conducted using PASW Statistics 18 for Windows (SPSS Inc., Chicago, IL, USA).  

Results and Discussion 

Inter-Grade Variability 

All gel samples prepared from the six grades of sodium alginate exhibited 

syneresis after 24 h at room temperature. The actual alginate concentration in the gel 

samples was estimated taking into account the loss of free water. The actual and nominal 

concentrations are quite similar among the six grades of sodium alginate; their ratio 

averaged 1.06 ± 0.02, similar to the ratio reported by Mancini et al.
187

 for their calcium 

alginate gels.  
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Table 26 summarizes the engineering strain (E), and the maximum compression 

force (FM) at gel fracture for calcium alginate gels prepared from six different grades of 

sodium alginate. Generally, stronger gels require larger force and larger strain to fracture. 

Gels prepared from grades 1 and 2 have smaller E  and FM at fracture than gels prepared 

from the other four grades. Gels prepared from grades 3, 4, 5, and 6 show similar E, but 

different FM at fracture. ANOVA and post hoc multiple comparisons tests of the FM at gel 

fracture among the six grades reveal that grades 5 and 6 are not significantly different 

from each other while the other grades do differ significantly from one another (p < 

0.01).  

 

 

 

 

 

Table 26. Engineering strain (εE), and the maximum compression force (FM) at gel 

fracture for calcium alginate gels prepared from six different grades of sodium alginate.  

Grade εE* FM (N)* 

1 0.53 ± 0.006 44.30  ± 1.58 

2 0.52 ± 0.005 22.05 ± 0.81  

3 0.58 ± 0.004 60.94 ± 1.38 

4 0.60 ± 0.015 84.88 ±  5.43 

5 0.59 ± 0.004 120.51 ± 2.91 
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6 0.61 ± 0.012 118.35 ± 12.25 

*n=6 

 

The relationship of calcium alginate gel strength (FM) to the %G of sodium 

alginate and the rheological properties (app and tan ) of the sodium alginate solutions 

were analyzed by partial correlation tests via PASW Statistics 18.  Among the grades 

with similar %G, i.e., grades 1, 3, and 4, there is a significant positive correlation 

between FM and app (r = 0.752, P < 0.001). These three grades show substantial 

differences in their apparent viscosity as discussed in Chapter 2. The differences in 

apparent viscosity are mainly due to their differences in molecular weight, i.e., high 

apparent viscosity is associated with high molecular weight. Since grades 1, 2, and 4 are 

similar in %G, the grades with higher apparent viscosity (or higher molecular weight) 

would tend to have longer homogeneous G sequence that is involved in the gel formation. 

As a result, grades with a higher apparent viscosity result in calcium alginate gels with 

higher strength. 

However, the results for the partial correlation analysis for all six grades of 

sodium alginate show that FM is significantly correlated with %G (r = 0.893, P < 0.001), 

but not with the rheological properties of the sodium alginate solutions (r = -0.147, P = 

0.400).  It suggests that %G plays a more important role in determining the gel strength. 

Grade 5 has a much higher %G than both grade 4 and grade 6. It is expected that gels 

formed from grade 5 are stronger than gels formed from grade 4. Although grade 5 has a 

smaller molecular weight than grade 6, the higher %G compensates the smaller molecular 

weight, probably resulting in similar homogeneous G sequence distribution and 
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eventually similar gel strength between these two grades. As a result, for multiple grades 

with substantial differences in %G, apparent viscosity of sodium alginate in solution is 

not sufficient to predict the resultant calcium alginate gel properties. 

 

Inter-Batch Variability  

Gel samples prepared from multiple batches of sodium alginate exhibited 

syneresis after 24 h at room temperature. The ratio between the actual and nominal 

concentration is almost the same among the multiple batches (1.08 ± 0.03).  Gel 

compression properties of the ten batches are summarized in Table 27.  

 

 

Table 27. Engineering strain (εE), and the maximum compression force (FM) at gel 

fracture for calcium alginate gels prepared from ten batches of one grade of sodium 

alginate.  

Batch εE* FM (N)* 

A 0.55 ± 0.006 53.10 ± 0.82 

B 0.54 ± 0.013 45.71 ± 3.10 

C 0.57 ± 0.008 59.85 ± 2.11 

D 0.56 ± 0.005 59.53 ± 1.83 

E 0.56 ± 0.007 58.88 ± 1.52 

F 0.56 ± 0.008 57.73 ± 1.97 

G 0.57 ± 0.007 59.95 ± 2.09 

H 0.57 ± 0.005 58.43 ± 1.45 
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I 0.58 ± 0.005 69.95 ± 0.91 

J 0.57 ±0.006 68.64 ±2.33 

*n=6 

The εE values at gel fracture range from 0.54 to 0.58 among these batches. The 

gel samples with the smallest εE at fracture also have the lowest FM at fracture. Since the 

%G values for these batches are in the similar range (37-41%), it would be expected that 

batches with higher apparent viscosities in solution would result in calcium alginate gels 

with higher gel strength. Previous studies of the rheological properties of the ten batches 

of sodium alginate demonstrated that the app of batch A (2% w/w solutions at 25C) is 

significantly higher than that of the other batches, while no significant differences are 

evident among the other 9 batches. However, batch A exhibits the second lowest gel 

strength among the multiple batches.  Batches J and K exhibit much higher gel strength 

than other batches.  As a result, the apparent viscosities of the sodium alginate solutions 

from multiple batches are not indicative of the resultant calcium alginate gel strength as 

depicted in Figure 50. On the other hand, the viscoelastic behavior of the multiple batches 

demonstrates a significant, although minimal, correlation (Figure 51, r = 0.553, P < 

0.001) between FM and tan .  
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Figure 50. The maximum compressive force of calcium alginate gel samples prepared 

from the multiple batches of grade 3 as a function of the corresponding apparent viscosity 

(app) of sodium alginate solutions (2% w/w, 1 Pa shear stress, 25C).  
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Figure 51. The maximum compressive force of calcium alginate gel samples prepared 

from the multiple batches of grade 3 as a function of the corresponding tan  of sodium 

alginate solutions (2% w/w, 1 rad/s, 25C).  

 

ANOVA test on FM for the multiple batches demonstrated significant differences 

among batches (P < 0.001). The subsequent multiple comparisons test yields the 

information on the pair-to-pair differences as summarized in Table 28 along with their 

differences in rheological properties. Batches that are significantly different in app are 

not necessarily significantly different in calcium alginate gel properties. Those batches 

that are significantly different in their tan  values are also significantly different in their 



190 

FM values. Still, there are batches that are not significantly different in their tan  values 

but significantly different in their FM values. Apparently, batches show more significant 

differences in their gel properties than in their rheological properties. 

 

Table 28. Results for multiple comparisons test of the gel deformation work and 

rheological properties among the ten batches of sodium alginate (grade 3). 

Batch 

A A 

B  B 

C ,t,g g C 

D ,g g  D 

E  g   E 

F  g    F 

G ,g g       G 

H ,g g      H 

I ,t,g t,g g t,g g t,g t,g t,g I 

J ,t,g t,g g t,g t,g t,g t,g t,g  J 

 

The letters in the cells correspond to significant differences in paired data for specific 

rheological outcomes or gel properties, as follows:  

 - log app ;  t – tan  ;  g - FM ;  - No significant differences.  
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Inadequate knowledge of the monomer sequence and distribution of the alginate 

molecular chains complicates the interpretation of these data.
191

 While solid-state NMR 

can be used to determine the total amount of each monomer in intact sodium alginate 

powder, it cannot be easily used to determine the amounts of diad and triad sequences 

due to the broad linewidths and decreased resolution typically seen in amorphous 

materials. Even though solution NMR spectroscopy has been applied to estimate the 

monad (G or M), diad (GG, MM, or MG), and triad (GGG, GGM, MGG, MGM, et al) 

frequencies within the alginate molecule,
68,69

 it requires partial acid hydrolysis of the 

sodium alginate sample which could lead to sample alteration or loss of part of the 

polymer chain.  Furthermore, assuming the data obtained from solution NMR were 

accurate, the monomer sequence length distribution can only be obtained by simulation 

assuming a statistical model for monomer distribution, which is usually an 

oversimplification of the biosynthesis of alginate.
72

  Commercially available sodium 

alginates are very likely produced from different types or parts of seaweeds and blended 

together to achieve a final chemical composition. In these situations, NMR data with 

statistical models are not sufficient to depict the monomer sequence length distribution.
64

   

It was reported that a minimum length of G sequence is required to form junction 

with divalent cations (about 8 for calcium alginate gel at 20C) and longer G sequence 

results in stronger gels.
64-66

 In addition, molecular weight distribution of sodium alginate 

would influence the interactions of dimers and multimers of the resultant calcium alginate 

gels.
89

 The variability in G sequence and molecular weight distribution among these 

grades and batches may not be directly reflected in the rheological properties of sodium 
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alginate solutions. Therefore, it is difficult to predict the calcium alginate gel properties 

based on the rheological properties of sodium alginate solutions. 

As a result, for calcium alginate gel formulations, e.g., calcium alginate 

hydrogels, microcapsules, etc., it is recommended that calcium alginate gel properties, 

such as maximum force at gel fracture, be used to define the design space.    

Conclusion 

The mechanical strength of calcium alginate gels prepared from multiple grades is 

significantly correlated with %G of the corresponding sodium alginates. However, the 

rheological properties of solutions of these different grades of sodium alginate are not 

indicative of the resultant gel properties. For the one specific grade of sodium alginate 

available in multiple batches, inter-batch differences in solution rheological properties 

were insufficient to predict the corresponding calcium alginate gel's mechanical 

properties. As a result, the use of steady shear and SAO methods to characterize sodium 

alginate solutions do not offer adequate insight into the resultant calcium alginate gel 

properties. Other rheological methods such as extensional rheology may ultimately prove 

to be more effective and meaningful. In the interim, until additional studies are done, we 

recommend that calcium alginate gels' mechanical properties be measured directly in 

order to ensure interchangeability of new batches or lots of sodium alginate used in gel 

preparation. 
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CHAPTER 5. CONCLUSION 

This dissertation work investigated the inter-grade and inter-batch variability of 

sodium alginate with a focus on rheological properties of sodium alginate solutions, 

compression properties of sodium alginate powders, the functionality of sodium algiante 

in matrix tablets, and the mechanical properties of calcium alginate gels,. 

As discussed in Chapter 1, rheological properties of polymeric excipients are 

important parameters that can be related to their functionality in different drug dosage 

forms and delivery systems. In Chapter 2, steady shear and small amplitude oscillation 

measurements have been performed on solutions of six grades of sodium alginate over a 

wide range of shear stresses and angular frequencies. Steady shear results suggest that the 

apparent viscosities of solutions of different grades of sodium alginate are influenced by 

both molecular weight and uronic acid composition: higher molecular weight and higher 

%G are likely to result in higher apparent viscosities. Rheological evaluations of multiple 

batches of one grade of sodium alginate produced in the same year showed significant 

batch-to-batch variability in steady shear behavior. Thus, it is recommended that for 

sodium alginate used as a thickening or binding agent, the apparent viscosities or 

rheograms of its solutions under appropariate shear conditions could be used to ensure 

inter-manufacturer, inter-grade, and inter-batch interchangeability of sodium alginate.  

As sodium alginate solution concentrations are increased, the rheological behavior 

of the solutions changes from that of a liquid to that of a weak physical gel. The ―one-

point‖ apparent viscosity data for various grades of sodium alginate are not reflective of 

their complex rheological properties at high concentrations. Thus, for sodium alginate 

used in alginate-based matrices, we recommended that both steady shear behavior of its 
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solutions at low concentration (e.g., 2% w/w) and the viscoelastic properties of its 

solutions at high concentratioin indicative of polymer gel state (e.g., 8% w/w) should be 

employed to ensure the interchangeability of  different grades and batches of sodium 

alginate.  

In Chapter 3, the inter-grade and inter-batch variability of sodium alginate in 

matrix tablets was investigated. First, the compression behavior of various grades and 

batches of sodium alginate was studied by compaction energetics, Gurnham analysis, and 

Heckel analysis with microcrystalline cellulose (MCC PH102) and lactose anhydrous 

used as reference materials. It was found that sodium alginates deform less plastically 

than MCC PH102 but slightly more plastically than lactose anhydrous. Sodium alginates 

also demonstrate more elastic deformations during compression than both MCC PH102 

and lactose anhydrous. Three batches from the same grade were found to vary in their 

compressibility but are identical in compactibility.  

The swelling and erosion behavior of sodium alginate tablets prepared from four 

grades and three batches were determined and the relevance to their rheological behavior 

was investigated. Significant differences in swelling and erosion behavior of sodium 

alginate matrix tablets were evident among different viscosity grade grades. The 

significant differences in swelling behavior observed can be attributed to their significant 

differences in erosion behavior. The erosion behavior of sodium alginate matrix tablets 

could be partly explained by the rheological properties of the corresponding sodium 

alginate solutions. Sodium alginate with higher apparent viscosity and viscoelasticity in 

solution show slower erosion rate and higher swelling rate. Acetaminophen release (one-

dimentional release) from sodium alginate matrix tablets can be described by a zero-order 
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equation. Compacts prepared from higher vicosity grades showed slower drug release 

profiles. Compacts prepared from batches with higher viscoelasticity demonstrated 

slower drug release profiles. Apparent viscosities of sodium alginate solution at low 

concentration alone are not sufficient to predict the functionality of sodium alginate in 

matrix tablets. Viscoelastic properties of sodium alginate solutions at one high 

concentration indicative of polymer gel state ought to be characterized as well. 

Chapter 4 explores the relevance of rheological properties of sodium alginate in 

solution to the mechanical properties of calcium alginate gels prepared from the six 

grades of sodium alginate and ten batches of one grade. The mechanical strength of 

calcium alginate gels prepared from multiple grades was found to be significantly 

correlated with %G of the corresponding sodium alginates. However, the rheological 

properties of solutions of these different grades of sodium alginate are not indicative of 

the resultant gel properties. For the multiple batches of the same grade, inter-batch 

differences in the rheological behavior were insufficient to predict the corresponding 

calcium alginate gel's mechanical properties even though there is a significant but 

minimal, correlation between gel property and tan . As a result, the use of steady shear 

and small amplitude ocscillation methods to characterize sodium alginate solutions do not 

offer adequate insight into the resultant calcium alginate gel properties. Thus, it is 

recommended that calcium alginate gels' mechanical properties be measured directly in 

order to ensure interchangeability of new batches or grades of sodium alginate used in gel 

preparation. 

Overall, the results obtained from this dissertation work demonstrate the 

advantages of characterizing the inter-grade and inter-batch variability of sodium alginate 
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using appropriate rheological methods, such as steady shear and small amplitude 

oscillation, over the ―one-point‖ apparent viscosity data. Rheological methods, including 

steady shear and small amplitude oscillation, could be very useful in characterizing 

sodiunm alginate used in formulations as thickener, binder, and/or controlled release 

agent. However, the inter-grade and inter-batch variability reflected in rheological 

properties was not directly correlated with the variations in the mechanical properties of 

calcium alginate gels. Calcium alginate gels' mechanical properties should be measured 

directly in order to ensure interchangeability of new batches or lots of sodium alginate 

used in gel preparation. 

The results obtained in this dissertation research strongly suggest that it is 

important for formulation scientists to determine the influence of inter-grade and inter-

batch variability on the pharmaceutical products under development. Different grades and 

multiple batches of the same grade can be obtained from the excipient manufacturer for 

formulation development. In case the inter-batch variability of the commercially 

available batches results in substantial differences in the performance of the final 

products,  a tighter control of variability is perferred. For sodium alginate, viscoelastic 

properties of sodium alginate solutions obtained in various steps in the extraction process 

can be used to help control the inter-batch variability within a tighter range than that 

observed in current commercial batches. Based on experimental design and data analysis, 

a combination of extraction parameters could be determined to produce sodium alginate 

with acceptable variability for a specific pharmaceutical product. It is critical for 

formulation scientists to maintain good communication with the excipient suppliers about 

the desired excipient properties. Both parties should have the same understanding of the 
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critical attributes of the excipients and the acceptable variability of a specific grade of 

excipient for a specific product. Furthermore, rheological properties of certain liquid 

pharmaceutical products (e.g., suspension, emulsions, etc) can be monitored duirng 

processing/manufacturing in order to minimize the variability in final product 

performance. Certain rheometers, e.g., RheoSense, a slit rheometer, could be applied for 

the on-line measurement of the apparent viscosity of liquid products during processing or 

manufacturing. 
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APPENDIX I. Rheological Characterization of Sodium Alginate 

This section describes the detailed methodology used to generate the rheological 

data as listed in chapter 2, along with the validation data. 
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Steady shear measurements were performed on AR 2000 rotation rheometer with 

cone-and-plate (TA Instruments, New Castle, DE, USA) using stepped flow procedure. 

Stress was varied from 1 to 100 Pa, and shear rate data were collected at 11 stress values, 

i.e., 5 points in each decade based on log-scale: 1.0 Pa, 1.6 Pa, 2.5 Pa, 4.0 Pa, 6.3 Pa, 10.0 

Pa, 15.8 Pa, 25.1 Pa, 39.8 Pa, 63.1 Pa, and 99.9 Pa. At each stress, the measuring time for 

shear rate is 30 seconds and the shear rate is reported as the average of data obtained in 

the last 10 seconds. The instrument is periodically validated by a Newtonian standard, 

Cannon viscosity standard N35 (Cannon Instruments, State College, PA, USA). The 

apparent viscosity data of N35 obtained by AR 2000 rheometer from 2007-2009 are 

shown in Figure 52. The determined apparent viscosity values are within the 5% range 

of the standard viscosity value (0.056 Pa∙s). 
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Figure 52. The apparent viscosity values of N35 at 25C determined by AR2000 

rotational rheometer.  
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 For small amplitude oscillation measurements, the rheometer was validated by 

performing frequency sweep measurements (1-100 rad/s at 10% strain) on a standard 

material ─ isoprene liquid rubber (LIR50), a linear monodisperse 1,4-polyisoprene with a 

molecular weight of 45 kDa and polydispersity less than 1.1 (Kuraray American, Inc., 

Houston, TX, USA). The viscoelastic data (G and G) obtained on AR 2000 rotational 

rheometer are depicted in Figure 53. The G and G in the angular frequency ranging 

from 1 to 10 rad/s are fitted by power-law equation: 
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The constant values are reported in Table 29. The experimental b and d values for 

liquid isoprene rubber (LIR50) based on the viscoelastic data obtained on AR 2000 

rheometer are within 5% deviation from the theoretical value for liquids, i.e., b=2, and 

d=1.
192
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Figure 53. The G and G data of liquid isoprene rubber determined on AR 2000 

rotational rheometer. 

 

Table 29. The constants of the power law equations for G and G. 

a 10.3  1.5 

b 2.0  0.07 

c 1113.0  13.0 

d 1.0  0.006 

 

 

Strain sweeps were carried out to determine the linear viscoelastic region of 

sodium alginate solutions. Strain sweeps were performed from 1 to 100% (or 1 to 20%) at 
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1 rad/s, or 10 rad/s, or 100 rad/s.  Results for the six grades and ten batches are shown 

from Figure 54 to Figure 62. The linear viscoelastic range is experimentally determined 

as the strain range where G value remains approximately the same until more than a 10% 

drop of G occurs when strain exceeds a critical value. All sodium alginate solutions are 

in the linear viscoelastic range when the strain was 10%, based on the results of strain 

sweep measurements. 
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Figure 54. The strain sweep result for sodium alginate Grade 1 (LF 10/60LS) solutions. 
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Figure 55. The strain sweep result for sodium alginate Grade 2 (LF 240D) solutions. 
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Figure 56. The strain sweep result for sodium alginate Grade 3 (LF 120M) solutions. 
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Figure 57. The strain sweep result for sodium alginate Grade 4 (LF 200M) solutions. 
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Figure 58. The strain sweep result for sodium alginate Grade 5 (LF 200DL) solutions. 
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Figure 59. The strain sweep result for sodium alginate Grade 6 (HF 120RBS) solutions. 
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Figure 60. The strain sweep result at 1 rad/s for sodium alginate solutions (ten batches of 

LF120M at 8% w/w and 37 C). 
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Figure 61. The strain sweep result at 10 rad/s for sodium alginate solutions (ten batches 

of LF120M at 8% w/w and 37 C). 
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Figure 62. The strain sweep result at 100 rad/s for sodium alginate solutions (ten batches 

of LF120M at 8% w/w and 37 C). 

 

 

 

 

 

 

 

 

 

 

APPENDIX II. Sodium Alginate Used in Matrix Tablets 

The linear portion of the out-of-die Heckel plot was determined by the 1
st
 

derivative method. The 1
st
 derivative values in the compression pressure range from 25 to 

265 MPa are listed in Table 30. 

 

Table 30. The 1
st
 derivative of Heckel plot for the four grades of sodium alginate 

(Chapter 3). 

Pressure, 

MPa 

1
st
 derivative of Heckel Plot 

(-ln)/P 

Grade 2 Grade 3 Grade 4 Grade 5 MCC Lactose 
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25-50 0.0126 0.0117 0.0113 0.0115 0.0125 0.0078 

50-75 0.0064 0.0059 0.0086 0.0060 0.0108 0.0058 

75-100 0.0034 0.0041 0.0032 0.0042 0.0097 0.0050 

100-125 0.0071 0.0044 0.0056 0.0045 0.0082 0.0051 

125-150 0.0043 0.0049 0.0046 0.0050 0.0071 0.0052 

150-200 0.0004 0.0003 0.0013 -0.0007 0.0038 0.0022 

200-265 0.0003 -0.0001 0.0006 0.0024 0.0027 0.0035 

  

The 1
st
 derivative values of the Heckel plot for various grades, MCC, and lactose 

anhydrous are in a relatively narrow range from 50 to 150 MPa. With compression 

pressure increasing from 25 to 50 MPa, there is a relatively high degree of decrease in 

porosity compacts, which could be due to particle rearrangement and/or fragmentation. 

On the other hand, with compression pressures higher than 150 MPa, there is a relatively 

low degree of decrease in porosity of the compacts, which indicates that there is more 

elastic deformation under high pressure than under low pressure. Thus, data collected 

from 50 to 150 MPa were used to fit Heckel plot. 

 The force-displacement profiles for the swelling sodium alginate tablets of four 

grades and three batches at different time points are depicted in Figure 63 and 64,   

respectively. 
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Figure 63.  The force-displacement profiles of swollen sodium alginate matrix tablets 

prepared from four different grades at various time points (1, 5, 10, and 15 h). 
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Figure 64. The force-displacement profiles of swollen sodium alginate matrix tablets 

prepared from three different batches at various time points (1, 5, 10, and 15 h). 
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