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ABSTRACT 

 

NEAR-INFRARED ANALYSIS AND PROCESS CONTROL  

OF PHARMACEUTICAL PELLETIZATION PROCESSES  

 

 

 

By 

David J. Wargo 

December 2009 

 

Dissertation supervised by James K. Drennen, III, Ph.D. 

This study explored the potential of near-infrared spectroscopy in the 

determination of pharmaceutical pellet characteristics and to predict desired process 

endpoints during fluidized bed drug suspension layering and coating operations.  Various 

strengths of diltiazem HCl pellets were prepared via a tangential-spray rotogranulation 

process and subsequently coated Eudragit RS30D in a Wurster column.  In-line and at-

line near-IR process monitoring methods were evaluated.  Quantitative calibrations for 

potency, applied polymer solids and dissolution were developed using several different 

regression models.  Both in-line and at-line determinations of pellet potency were 

effectively accomplished with average standard errors of prediction of 1.11% and 0.63%, 

respectively.  Near-IR prediction of pellet potency of pilot-scale batches was also 

achieved using data from laboratory-scale experiments.  For Wurster coating operations, 



 

 v

in-line and at-line near-IR regression models for predicting applied polymer solids were 

developed which demonstrated R2 values of 0.98 or greater and standard errors of 

calibration less than 0.6%.  Prediction of a t50% dissolution metric within 7 minutes of 

actual values was possible for pellets exhibiting 8 to 12 hour release characteristics.  

Qualitative assessment of applied polymer solids was also accomplished using 

Mahalanobis distance and bootstrap pattern recognition algorithms.  This study has 

demonstrated the potential of near-IR spectroscopy in quantitative and qualitative 

assessment of pelletized pharmaceutical product characteristics and in the identification 

of process endpoints.  Future implementation of these techniques could potentially reduce 

production cycle-times associated with the acquisition of laboratory test results and 

ensure product quality compliance throughout various stages pellet manufacturing.  

 



 

 vi

DEDICATION 

 

To my wife, my parents, and all those who have supported and believed in me



 

 vii

ACKNOWLEDGEMENT 

 

 I would like to acknowledge many people for helping me during my doctoral 

work.  I would especially like to thank my advisor, Jim Drennen, for his generous time, 

flexibility, understanding and commitment.  Throughout my graduate experience, Jim 

encouraged me, stimulated my analytical thinking and provided an excellent atmosphere 

for doing research.  It has been a great pleasure to develop scientific skills under his 

guidance.  I would also like to thank Dr. Lawrence Block, Dr. Carl Anderson, Dr. Peter 

Wildfong, Dr. Mitch Johnson, Dr. David Johnson, and Dean Douglas Bricker for serving 

on my defense committee.  Special thanks goes to Dr. Block for many enjoyable and 

thought provoking scientific discussions and for long ago instilling in me the desire to 

pursue graduate education and an industrial pharmacy career.          

 I would like to thank Mylan Pharmaceuticals and Merck & Co., both which 

provided support for my research efforts at Duquesne and for Mylan’s support while I 

completed my dissertation.    

   I would also like to thank John Kirsch, who, as a good friend and colleague, was 

always willing to help and give his best suggestions.  It would have been a lonely lab 

without him.   

 I wish to thank my parents who always supported and encouraged me in both 

personal and professional endeavors.  I am also grateful to my children – Jacob, Natalia, 

and Liam – for allowing me many hours of seclusion as I completed this manuscript.  

Finally, I would like to thank my wife, Debbie, who has always stood by me through 

good times and bad.  This would not have been possible without her love and support.  



 

 viii

TABLE OF CONTENTS 

Page 

 
Abstract .............................................................................................................................. iv 
 
Dedication .......................................................................................................................... vi 
 
Acknowledgement ............................................................................................................ vii 
 
List of Tables ................................................................................................................... xiii 
 
List of Figures ....................................................................................................................xv 
 
1 Introduction 1 

1.1 Statement of the Problem.........................................................................................1 

1.2. Literature Review.....................................................................................................3 

1.2.1 Pharmaceutical Pellet Dosage Forms.................................................................3 

1.2.1.1 Pellet Rationale ............................................................................................3 

1.2.1.2 Pelletization Techniques ..............................................................................4 

1.2.1.2.1 Fluid Bed Technology............................................................................5 

1.2.1.2.2 Drug Layering ..................................................................................6 

1.2.1.2.3 Wurster Coating ..................................................................................8 

1.2.2 Process Analytical Technology........................................................................11 

1.2.2.1 Process Analytical Chemistry – History and Concepts .............................11 

1.2.2.2 Near-infrared Spectroscopy .......................................................................12 

1.2.2.2.1 Near-IR Theory ................................................................................13 

1.2.2.2.2 Diffuse Reflectance..............................................................................15 

1.2.2.3 Chemometrics ............................................................................................17 



 

 ix

 Page 

1.2.2.3.1 Spectral Preprocessing .........................................................................18 

1.2.2.3.1.1 Linearization ..................................................................................18 

1.2.2.3.1.2 Smoothing ......................................................................................21 

1.2.2.3.1.3 Multiplicative Scatter Correction...................................................22 

1.2.2.3.1.4 Derivatization.................................................................................23 

1.2.2.3.2 Principal Component Analysis ............................................................24 

1.2.2.3.3 Quantitative Analysis...........................................................................26 

1.2.2.3.3.1 Multiple Linear Regression............................................................29 

1.2.2.3.3.2 Principal Component Regression...................................................30 

1.2.2.3.3.3 Partial Least Squares Regression ...................................................31 

1.2.2.3.4 Qualitative Analysis.............................................................................33 

1.2.2.3.4.1 Mahalanobis distance.....................................................................34 

1.2.2.3.4.2 Soft Independent Modeling of Class Analogies ............................35 
 
1.2.2.3.4.3 Bootstrap Error-Adjusted Single-sample Technique .....................36 

 
1.2.2.4 Pharmaceutical Applications of Near-Infrared Spectroscopy....................38 
 

1.2.2.4.1 Analysis of Coated Dosage Forms.......................................................40 

1.2.2.4.2 Analysis of Pelletized Dosage Forms ..................................................43 

1.2.2.4.3 Analysis of Moving Solids ..................................................................44 

2 Experimental 48 

2.1 Laboratory-scale Rotogranulation .........................................................................48 

2.1.1 Materials ..........................................................................................................48 
 
2.1.2 Formulation......................................................................................................48 



 

 x

 Page 
 
2.1.3 Drug Suspension Layering...............................................................................48 
 
2.1.4 Near-IR Methodology......................................................................................57 
 

2.1.4.1 Instrumentation ..........................................................................................57 

2.1.4.2 In-line Spectrometry ..................................................................................59 

2.1.4.3 At-line Spectrometry..................................................................................62 

2.1.4.4 Spectral Preprocessing ...............................................................................62 

2.1.5 Diltiazem HCl Reference Assay ......................................................................63 

2.1.6 Quantitative Prediction of Pellet Potency ........................................................64 

2.2 Pilot-scale Rotogranulation....................................................................................66 

2.2.1 Materials ..........................................................................................................66 
 
2.2.2 Formulation......................................................................................................66 
 
2.2.3 Drug Suspension Layering...............................................................................66 
 
2.2.4 Near-IR Methodology......................................................................................72 
 

2.2.4.1 Instrumentation ..........................................................................................72 

2.2.4.2 At-line Spectrometry..................................................................................74 

2.2.4.3 Spectral Preprocessing ...............................................................................74 

2.2.5 Quantitative Prediction of Pellet Potency ........................................................75 

2.3 Laboratory-scale Wurster Coating.........................................................................75 

2.3.1 Materials ..........................................................................................................75 

2.3.2 Formulation......................................................................................................76 

2.3.3 Sustained-release Coating................................................................................76 

2.3.4 Near-IR Methodology......................................................................................78 



 

 xi

  Page 

2.3.4.1 Instrumentation ..........................................................................................78 

2.3.4.2 In-line Spectrometry ..................................................................................82 

2.3.4.3 At-line Spectrometry..................................................................................85 

2.3.4.4 Spectral Preprocessing ...............................................................................88 

2.3.5 Eudragit RS30D Assay ....................................................................................88 

2.3.6 Quantitative Prediction of Eudragit RS30D Coating Level.............................93 

2.3.7 Qualitative Prediction of Eudragit RS30D Coating Endpoint .........................93 

3 Results and Discussion 95 

3.1 Quantitative Prediction of Pellet Potency ..............................................................95 

3.1.1 In-line Analysis of Pellet Potency....................................................................98 

3.1.1.1 Single and Multiple Wavelength Regression.............................................98 

3.1.1.2 Principal Component Regression...............................................................99 

3.1.1.3 Partial Least Squares Regression .............................................................105 

3.1.1.4 Summary of In-line Regression Model Performance ..............................107 

3.1.2 At-line Analysis of Pellet Potency.................................................................111 

3.1.2.1 Single and Multiple Wavelength Regression...........................................114 

3.1.2.2 Principal Component Regression.............................................................115 

3.1.2.3 Partial Least Squares Regression .............................................................120 

3.1.2.4 Summary of At-line Regression Model Performance..............................120 

3.1.3 Comparison of In-line and At-line Near-IR Methods for 
 Monitoring Drug Layering.............................................................................124 

3.1.4 Practical Considerations Regarding Near-IR Monitoring of  
 Drug Suspension Layering.............................................................................135 
 



 

 xii

 Page 

3.1.5 Pilot Plant Applications .................................................................................139 

3.2 Quantitative Prediction of Eudragit RS30D Coating Level.................................143 

3.2.1 In-line Analysis of Coated Pellets..................................................................145 

3.2.1.1 Single and Multiple Wavelength Regression...........................................147 

3.2.1.2 Principal Component Regression.............................................................148 

3.2.1.3 Partial Least Squares Regression .............................................................153 

3.2.1.4 Summary of In-line Regression Model Performance ..............................153 

3.2.2 At-line Analysis of Coated Pellets.................................................................157 

3.2.3 Comparison of In-line and At-line Near-IR Methods for 
 Monitoring Wurster Coating..........................................................................157 

3.2.4 Prediction of Dissolution of Eudragit RS30D Coated Pellets .......................162 

3.3 Qualitative Prediction of Eudragit RS30D Coating Level...................................170 

4 Conclusions 179 

References........................................................................................................................184 

Appendices.......................................................................................................................196 

 



 

 xiii

LIST OF TABLES 

 

 Page 
 

1. Diltiazem HCl pellet formulations.........................................................................49 

2. Processing parameters for laboratory-scale drug suspension layering ..................51 

3. Sampling scheme – Laboratory-scale drug suspension layering ...........................58 

4. Pilot-scale diltiazem HCl pellet formulation .........................................................67 

5. Processing parameters for pilot-scale drug suspension layering ...........................69 

6. Sampling scheme – pilot-scale drug suspension layering......................................73 

7. Eudragit® RS30D coating system formulation ......................................................77 

8. Processing parameters for laboratory-scale Wurster coating.................................79 

9. Sampling scheme – Laboratory-scale Wurster coating .........................................81 

10. Principal components of in-line diltiazem HCl drug-layered .............................100 

11. Principal component regression results for in-line diltiazem HCl 
 drug-layered pellets..............................................................................................104 
 
12. Partial least squares regression results for in-line analysis of  
 diltiazem HCl drug-layered pellets ......................................................................108 
 
13. Summary of regression results for in-line assessment of pellet potency .............109 
 
14. Principal components of at-line diltiazem HCl drug-layered pellet samples ......116 

15. Principal component regression results for at-line analysis of diltiazem  
 HCl drug-layered pellets ......................................................................................119 
 
16. Partial least squares regression results for at-line analysis of diltiazem 
 HCl drug-layered pellets ......................................................................................121 
 
17. Summary of regression results for at-line assessment of pellet potency .............122 
 
18. Comparison of in-line and at-line regression model performance for  
 potency prediction................................................................................................125 



 

 xiv

 Page 
 
19. Theoretical versus actual pellet potency ..............................................................137 
 
20. Processing parameters for drug suspension layering – Laboratory versus  
 pilot scale .............................................................................................................140 
 
21. Principal components of in-line ERS polymer coating onto diltiazem  
 HCl pellets ...........................................................................................................149 
 
22. Principal component regression results for in-at-line analysis of  
 ERS coated diltiazem HCl pellets........................................................................152 
 
23. Partial least squares regression results for in-line ERS polymer  
 coating onto diltiazem HCl drug-layered pellets .................................................154 
 
24. Summary of regression results for in-line assessment of applied  
 ERS polymer........................................................................................................155 
 
25. Summary of regression results for at-line assessment of applied  
 ERS polymer........................................................................................................158 
 
26. Comparison of in-line and at-line regression model performance  
 for applied ERS polymer coating prediction .......................................................160 
 



 

 xv

LIST OF FIGURES 
 
 Page 

 
1. The rotor processor ..................................................................................................7 
 
2. The Wurster column ..............................................................................................10 
 
3. Process spray rates, 150mg/g diltiazem pellets......................................................52 
 
4. Process spray rates, 300mg/g diltiazem pellets......................................................53 
 
5. Process spray rates, 550mg/g diltiazem pellets......................................................54 
 
6. Diltiazem HCl pellet particle size distribution via sieve analysis..........................56 
 
7. Fiber-optic sampling system for rotogranulation...................................................60 
 
8. Fiber-optic sampling system for rotogranulation...................................................61 
 
9. Standard curve for diltiazem HCl assay by HPLC ................................................65 
 
10. Pilot-scale process spray rates, 550 mg/g diltiazem HCl pellets ...........................70 
 
11. Pilot-scale 550 mg/g diltiazem HCl pellet particle size distribution via  
 sieve analysis .........................................................................................................71 
 
12. Eudragit rs30d spray rates for 300mg/g diltiazem HCl pellets..............................80 
 
13. Effect of Lexan or sapphire on 30% diltiazem HCl pellets coated with  
 5%, 10%, & 16% Eudragit RS30D........................................................................83 
 
14. In-line calibration for applied polymer solids – Scanning through Lexan ............84 
 
15. Fiber-optic sampling system for Wurster coating..................................................86 

 
16. Fiber-optic sampling system for Wurster coating..................................................87 
 
17. Chemical structures of tropaeolin OOO and ammonio methacrylate  
 copolymer ..............................................................................................................90 
 
18. Standard curve for Eudragit RS30D assay.............................................................92 
 
19. Near-IR spectra of diltiazem HCl pellets, 150mg/g -- 86% to 106%  
 potency...................................................................................................................96 
 



 

 xvi

  Page 
 
20. Primary drug-layered pellet components ...............................................................97 
 
21. Loadings spectrum of in-line 150mg/g diltiazem HCl pellets .............................102 
 
22. Loadings spectrum of in-line 550mg/g diltiazem HCl pellets .............................103 
 
23. Potency calibration and prediction - diltiazem HCl 150mg/g pellets 
 in-line analysis .....................................................................................................112 
 
24. 2nd derivative spectra for 300mg/g pellets - RCA vs. probe sampling ...............113 
 
25. Loadings spectrum of at-line 150mg/g diltiazem HCl pellets .............................117 
 
26. Loadings spectrum of at-line 550mg/g diltiazem HCl pellets .............................118 
 
27. Potency calibration and prediction -- diltiazem HCl 150mg/gpellets  
 at-line analysis .....................................................................................................123 
 
28. Potency calibration across all diltiazem HCl pellet strengths..............................128 
 
29. Principal component plot for 15%, 30%, and 55% diltiazem HCl pellets...........130 
 
30. Principal component scores plot for 55% diltiazem HCl pellets .........................131 
 
31. Comparison of 150mg/g diltiazem HCl pellet spectra – RCA versus  
 Smart Probe sampling ..........................................................................................133 
 
32. PC-1 loadings for 15% diltiazem HCl pellets - Analysis via Smart Probe..........134 
 
33. PC-1 loadings for 15% diltiazem HCl pellets - Analysis via rapid  
 content analyzer ...................................................................................................136 
 
34. Pilot-scale potency prediction using laboratory-scale data..................................142 

 
35. 550mg/g diltiazem pellets -- Coated 6% to 16% applied polymer solids............144 

 
36. 550mg/g Diltiazem Pellets Coated with 6% - 16% polymer solids –  
 Truncated spectral region.....................................................................................146 
 
37. First PC loadings for 16% ERS coated pellets – In-line sampling ......................150 
 
38. Second PC loadings for 16% ERS coated pellets – In-line sampling..................151 
 



 

 xvii

  Page 
 
39. Applied polymer solids calibration and prediction – Diltiazem HCl  
 150mg/g Pellets – In-line Analysis ......................................................................156 
 
40. Coating calibration and prediction -- Diltiazem HCl 150mg/g 
 pellets - At-line analysis.......................................................................................159 
 
41. 150mg/g diltiazem + 16% ERS coat – RCA versus Direct Reflectance  
 probe sampling.....................................................................................................163 
 
42. PC-1 loadings for 15% diltiazem HCl pellets + 16% ERS coat – RCA  
 versus Direct Reflectance probe ..........................................................................164 
 
43. PC-2 loadings for 15% diltiazem HCl pellets + 16% ERS coat –  
 RCA versus Direct Reflectance probe .................................................................165 
 
44. Dissolution profile for Eudragit RS30D coated pellets .......................................167 
 
45. Prediction of t50% diltiazem HCl dissolved for Eudragit RS30D coated  
 diltiazem HCl 550 mg/g pellets ...........................................................................169 
 
46. Qualitative prediction of target applied polymer solids – BEAST  
 versus Mahalanobis distance................................................................................172 
 
47. Qualitative prediction of applied polymer solids using the BEAST  
 algorithm.  Target 6% coating level.....................................................................175 
 
48. Qualitative prediction of applied polymer solids using the BEAST  
 algorithm.  Target 10% coating level...................................................................176 
 
49. Qualitative prediction of applied polymer solids using the BEAST 
 algorithm.  Target 14% coating level...................................................................177 
 
 
 



 

 1

 
 
1  INTRODUCTION 
 
 
1.1  Statement of the Problem 

 Multiparticulate drug delivery systems have become increasingly popular due to 

their ability to provide unique release profiles and offer potential clinical benefits.  A 

variety of pelletization technologies have provided the pharmaceutical scientist with 

tremendous flexibility during solid oral multiparticulate dosage form development.  Of 

the technologies available to produce the particles comprising these systems, layering a 

suspension or solution of drug onto a seed material can produce pellets that are spherical 

in shape, have a smooth surface, and are uniform in size and size distribution.  These 

characteristics are especially desirable when the pellets will be subsequently coated to 

provide some degree of controlled drug release.  

 The concentration of drug in the core pellet, and the quantity or thickness of the 

functional polymeric coating present on controlled release pellets are both critical factors 

affecting the physical integrity of these systems as well as drug release rates.  

Unfortunately, controlled release pellet production often involves lengthy and expensive 

manufacturing operations in which there are no simple in-process methods for accurately 

monitoring drug product potency or the extent of applied coating solids.  Typically, 

researchers and manufacturing personnel must rely on theoretical determinations of 

applied solids to predict drug layering and coating process endpoints.  An assay of the 
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pellets is necessary prior to encapsulation to determine the fill weight needed to deliver 

the desired dose.  Additionally, dissolution testing of the final dosage form is essential to 

ensure uniformity of the drug release rate.  The development of rapid analytical methods 

to evaluate pellet core and coating characteristics may reduce production-cycle time 

associated with the acquisition of laboratory test results and allow product quality to be 

assessed at various stages of processing prior to completing the manufacture of an entire 

batch. 

 The objective of this research was to develop and evaluate new applications of 

near-IR analysis for monitoring and controlling pharmaceutical pellet production 

operations, and to investigate the practical limits of the applications described.  Both at-

line and in-line near-IR spectroscopic methods for evaluating core and coated pellet 

characteristics, and predicting desired process endpoints were investigated.  At the core 

of this research was the quantitative assessment of core pellet potency and applied 

polymer solids during rotor drug layering and Wurster coating operations, respectively.  

This includes modification of processing equipment and the application of a method to 

permit on-line monitoring of drug layering and polymer film coating processes, as well as 

the development of a reference technique for the quantification of an ammonio 

methacrylate sustained-release polymer.  The ability of pattern recognition methods to 

qualitatively predict coating process endpoints was also determined.  In addition, this 

research evaluated the use of near-IR spectroscopy to nondestructively predict drug 

release (dissolution) characteristics of controlled release pellets.  Finally, the ability to 

utilize laboratory-scale data to assess pellet potency during production scale drug 

layering operations was investigated, obviating the need to rely on theoretical 
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determinations of applied drug layering suspension solids for process endpoint 

identification. 

 

1.2  Literature Review 
 
 
1.2.1  Pharmaceutical Pellet Dosage Forms 

 
 

 The term “pellet” has been used to define a number of different types of 

manufactured agglomerates.  Pellet products are used in many industries, but in the 

pharmaceutical industry pellets are generally described as granular or spherical drug 

containing entities.  Pharmaceutical pellets generally range in size from 0.5 to 1.5 mm in 

diameter (1). 

 

1.2.1.1  Pelletization Rationale 

 Pelletized products offer flexibility in dosage from design and development, and 

can be utilized to improve safety and efficacy of bioactive agents.  Pellets are attractive as 

components of dosage forms or as dosage forms themselves.  They can be produced by a 

number of methods and can be incorporated into a number of different traditional dosage 

forms including capsules (2,3), conventional tablets (4,5), rapidly disintegrating tablets 

(6), or suspensions (7).  Pellets composed of separate drug entities can be blended and 

formulated in a single dosage form either for simultaneous drug delivery or for delivery 

to different sites along the gastrointestinal tract.  Additionally, combinations of pellets 

can be utilized to avoid drug substance incompatibilities.  Because of their spherical 
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shape and low surface area to volume characteristics, pellets are excellent substrates for 

application of immediate or modified release coatings.        

 Pellets are also advantageous from an in vivo perspective.  Because pellets 

disperse freely in the gastrointestinal tract, they provide increased surface area for 

dissolution and absorption.  When coated with modified-release polymers, pellet systems 

can reduce peak plasma fluctuations, and minimize potential side effects without 

appreciably lowering bioavailability (8).  Pellets also reduce variations in gastric 

emptying rates and overall transit times thereby minimizing intra- and inter-subject 

variability of plasma profiles as compared to single-unit dosage forms (9,10).  

Additionally, because a large number of pellets are administered per dose, the likelihood 

of dose dumping is dramatically reduced.  If several individual pellets were to fail and 

“dump” their drug content, only a minimal effect on the overall release characteristics of 

the dosage form would be observed. 

 

1.2.1.2  Pelletization Techniques   

 Pelletization has been defined as an agglomeration process that converts fine 

powders or granules of bulk drugs and excipients into small, free-flowing, spherical or 

semi-spherical units, referred to as pellets (8).  A number of methods are available for the 

manufacture of pellets.  The most common pelletization processes used in the 

pharmaceutical industry are extrusion/spheronization, solution/suspension layering, and 

powder layering (11).  Other processes may include spray drying, spray congealing, and 

compression of dry powders into spherical compacts.  “Balling” is another older process 

for pelletization in which dry powders are tumbled in a coating pan or drum with 



 

 5

simultaneous application of a binding liquid.  In 1949, Smith, Kline & French (SKF) 

borrowed a process used in the confectionery industry to make pharmaceutical pellets (1).  

This process used sugar granules as seed cores for the application of powders upon which 

spherical particles were ultimately built.  In the confectionary industry, spherical sugar 

seeds manufactured by this process, called nonpareils, are still used as decorative 

toppings for candies and pastries.  This same procedure was adapted by SKF for the 

creation of drug containing pellets.  Nonpareils themselves were also used as a starting 

core in this earliest drug layering technique, a practice still used today. 

 

1.2.1.2.1  Fluid Bed Technology   

 Fluid bed technology has been used in the pharmaceutical industry for about forty 

years.  It was first employed as an efficient drying technique, which was a dramatic 

improvement over traditional tray drying.  Fluid bed processing now includes drying, 

granulation, coating and layering.  Although pan and fluid bed technology can both be 

used to coat either tablets or pellets, modified pan coating is generally reserved for 

tablets, and pellets are almost exclusively processed using fluid bed techniques.  The 

major advantage of these systems over traditional pan coating is enhanced air flow.  In 

the past twenty years, few changes have been made to fluid bed technology other than the 

introduction of tangential drug layering and coating processes (12-14), and the emergence 

of fine particle coating techniques (15-17).  Unit shape and geometry has, in some 

applications, become more specialized (18,19).  
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1.2.1.2.2  Drug Layering 

 Application of drug and excipients onto a seed material from a solution or 

suspension can produce pellets that are spherical in shape, have a smooth surface, and are 

uniform in size and size distribution.  This process is similar to traditional coating, in that 

it involves the application of a dispersed solid onto a core.  The dispersion is atomized 

using a nozzle that produces droplets that hit and spread over the surface of the core.  

Fluidization air, usually warmer than ambient conditions, aids in evaporation of the 

dispersion medium which results in deposition of the solid material.     

 In recent years, tangential-spray pelletization processes have gained considerable 

attention.  This technology utilizes a fluid bed equipped with a rotating disc in the bottom 

of the fluid bed product container.  Originally this technology had been conceived for 

high-density fluid bed granulation and is now frequently used to produce high-dose 

pellets by layering drugs on nuclei.  A controlled release film may be subsequently 

applied (12-14). 

 The rotor processor, as depicted in Figure 1, consists of a cylindrically shaped 

product bowl and an expansion chamber (20).  The rotor disk sits at the base of the 

product bowl seated along the circumference of the chamber when not in motion.  The 

disk is raised during processing to create a slit between the edge of the rotor disk and the 

conical bottom of the rotor product bowl.  The adjustable disk height allows control of air 

volume through the slit, independent of velocity.  This key feature permits very low 

drying rates for direct pelletization, and pellet growth by powder layering.  For coating 

applications requiring quick evaporation of a medium, the air volume can be significantly  



 

 7

 
 

 
 
 

Figure 1.  The rotor processor. 
 

Glatt Gmbh. Fluid Bed Coating. http://www.glatt.com /e/01_technologien/ 01_04_08.htm (accessed 
09/06/08). part of The Glatt Group. http://www.glatt. com/ (accessed 09/06/08). 
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increased while keeping air velocity constant.  This flexibility results in a single unit 

processor capable of both layering and coating.  

 The fluidization pattern in the rotor processor can best be described as a spiraling 

helix.  Three factors act on the product to create this flow pattern.  The rotating disk 

provides centrifugal force which forces the pellets toward the wall of the processing 

chamber at the periphery of the rotor, while airflow through the slit creates a vertical 

force causing the product to become fluidized.  The fluidization air pushes the product 

upward into the expansion chamber until gravity overcomes the air velocity and the 

material falls toward the center of the disk where there is little air movement (12,13).  

The cycle is repeated many hundreds of times until the appropriate quantity of solids are 

applied to the core substrate.  Liquids or powdered solids can be added to the process 

through air atomizing nozzles located on the side wall of the product bowl.  The nozzles 

spray tangentially into the processing chamber in the same direction as the fluidization 

pattern.  Using this technique, weight gains of up to 400% w/w relative to the initial bowl 

charge can be achieved (21-23).  

   

1.2.1.2.3  Wurster Coating 

 Perhaps one of the most important improvements to fluid bed equipment, 

especially for the coating of pellets, was the advent of the bottom spray Wurster column 

(24).  The Wurster process is an industry recognized coating technique for precision 

application of a film coat to particulate materials such as powders, crystals, or granules.  

This technology can be used to encapsulate solid materials having diameters ranging 

from approximately 50 µm to several centimeters.   
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 Wurster coating technology, as depicted in Figure 2, is characterized by the 

location of a spray nozzle at the bottom of a fluidized bed of solid particles (20).  The 

particles are suspended in the fluidizing air stream that is designed to induce cyclical flow 

of the particles past the spray nozzle which delivers atomized coating solution or 

suspension.  The process has a greater drying capacity than other coating systems due to a 

relatively high fluidizing air velocity.  Since the particles actually separate as they are 

carried away from the nozzle, it is possible to coat small particles without agglomeration 

(15, 16). 

 During processing, the atomized coating material collides with the particles as 

they are carried away from the nozzle.  The temperature of the fluidizing air is set 

appropriately to evaporate solution or suspension vehicle or solidify the coating material 

shortly after impingement on the particles.  All coating solids remain on the particles as a 

part of the developing film or coating.  This process is continued until each particle is 

uniformly coated to a desired film thickness. 

 For coating applications, the Wurster system compares favorably to the 

tangential-spray system, since the three main physical criteria are the same: (i) concurrent 

spraying, with the nozzle being buried inside the product resulting in minimal droplet 

travel distance; (ii) uniform exposure of the particles to the spray mist; and (iii) high 

product density in the spraying zone.  
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Figure 2.  The Wurster Column 
 

Glatt Gmbh. Fluid Bed Coating. http://www.glatt.com /e/01_technologien/ 01_04_08.htm 
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1.2.2  Process Analytical Technology 

 Recently, there has been significant interest in process analytical technology 

(PAT) within the pharmaceutical industry following the issuance of an FDA guidance 

document on this subject (25).  The FDA’s PAT initiative is a push to bring the efficiency 

of pharmaceutical manufacturing in line with that of other specialty chemical production 

standards (26).  PAT can be described as a system for designing, analyzing, and 

controlling manufacturing through timely measurements (i.e., during processing) of 

critical quality and performance attributes of raw and in-process materials and processes, 

with the goal of ensuring final product quality.  The term analytical in PAT is broadly 

viewed and integrates chemical, physical, microbiological, and production mathematical 

risk analyses.  Implementation of PAT should provide a means for better understanding 

and controlling pharmaceutical manufacturing operations, which is consistent with the 

FDA’s perspective on drug quality systems: quality cannot be tested into products; it 

should be built-in or should be by design (25). 

  

1.2.2.1  Process Analytical Chemistry – History and Concepts   

 Pharmaceutical PAT has essentially evolved from the concept of Process 

Analytical Chemistry (PAC), which has gained considerable attention since the mid-

1980s because of opportunities presented by technological, methodological, and 

chemometric advancements, as well as changing needs within the chemical and allied 

products industries (27-30).  Although Callis et al. (27) presented a conceptual 

framework to describe five areas of PAC, the boundary between it and the usual practice 

of laboratory analysis is still somewhat ambiguous.  Nevertheless, the terms at-line, in-
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line, off-line, on-line, and non-invasive are referred to throughout PAC and PAT 

literature.  At-line analysis refers to manual sampling with local transport to an analyzer 

located within a manufacturing area, while in-line methods involve a sample interface 

located in the process stream (27).  Off-line often refers to manual sampling with 

transport to a remote or centralized laboratory, while on-line analysis usually involves 

automated sampling and sample transfer to an automated analyzer (27).  Callis et al. (27) 

also classified non-invasive sampling as a separate PAC area, however, today it is 

generally desirable that all process analytical sampling be as non-invasive as possible. 

 

1.2.2.2  Near-infrared Spectroscopy  

 Although the near-IR region of the electromagnetic spectrum has been studied 

since the 1800s (31), it was not recognized for its analytical potential until after the 

Second World War.  Modern concepts of this technology were developed in the 1950s at 

the USDA in an analytical group headed by Karl Norris, who evaluated the potential of 

near-IR for rapid quality control of agricultural commodities.  This work, which 

demonstrated that non-destructive reflectance near-IR spectra of biological samples could 

be used for analytical purposes, lead to the widespread use of near-IR in the agricultural 

field (32). 

 Near-infrared spectroscopy (near-IR) has become the method of choice for many 

industrial process analytical applications because it is rapid, nondestructive and 

noninvasive.  The widespread growth of this technology has primarily been the result of 

significant advancements in high speed computing.  Additional developments in optical 

instrumentation, chemometric methods and spectral data analysis software have lead to 
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various applications of this technique in the petrochemical, pulp, paper, biomedical, and 

pharmaceutical industries.  A number of books (33-35) and review articles (36-39) have 

been published on the theoretical aspects of near-IR and its applications.  Additional 

papers devoted to pharmaceutical applications of near-IR spectroscopy have also been 

published (40-45). 

 

1.2.2.2.1  Near-IR Theory 

 When molecules are irradiated with an external source of energy, they acquire the 

potential for energy changes.  The electromagnetic spectrum consists of energy vibration 

ranging from wavelengths several meters in length to those less than 10-2 nm.  The near-

infrared region of the electromagnetic spectrum lies between about 750 – 2600 nm (46).   

 Murray and Williams (46) have provided an excellent description of near-infrared 

energy absorption.  When photon energy (energy related to the wavelength at which the 

irradiation is emitted) is absorbed by a molecule, the rotational, vibrational, or 

electromagnetic energy of the molecule is elevated by a discrete amount that is equivalent 

to the energy applied.  Molecules can only absorb energy that is coincident with the 

characteristic vibrations of the molecule and that can result in the molecule being excited 

to a higher energy level.  When infrared radiation is absorbed by a molecule, the energy 

status of the molecule changes.  The vibrational and rotational quantum numbers are 

representative of these changes.  The magnitude of the rotational energy is lower than 

that of vibrational energy, but the energy level of a molecule is the sum of the vibrational 

and rotational energies.  Most of the molecules in a substance are normally in the lowest 

energy level, or ground state, however, when an external source of energy is applied, the 
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molecules absorb photon energy and jump from the ground state to the next highest 

vibrational or rotational energy level, constituting the absorption process.  Fundamental 

absorptions usually occur in the mid-infrared region between 2,500 and 15,000 nm.  

Other molecules will absorb enough energy to reach the next second energy level, 

represented the first overtone band.  Since fewer molecules reach this level, the first 

overtone band is generally much weaker in intensity than the fundamental absorption.  

Still fewer molecules reach the third energy level, which is the second overtone.  First 

and second overtones occur at approximately one-half and one-third of the wavelength of 

the fundamental.  Higher energy levels are available, but fewer and fewer molecules 

attain these levels, therefore the third and higher overtones appear as even weaker bands 

relative to the fundamental.  Deviation in the overtone absorption band frequencies from 

theoretical frequencies is due to anharmonicity (deviation from the law of harmonic 

vibration) of the chemical bonds involved (46).  Vibrational energy changes are usually 

accompanied by a larger number of rotational changes and, therefore, appear as bands.   

 All molecules and parts of molecules have vibrations at characteristics 

wavelengths.  In each model of vibration, all of the functional groups of atoms of the 

same type in a molecule vibrate with the same frequency.  The two main modes of 

molecular vibrations are stretching and bending (46).  Stretching is movement along the 

axes, so that the distance between the atoms changes rhythmically.  Bending involves 

changes in bond angle between atoms.  Only vibrations that result in rhythmic changes in 

the dipole moment of a molecule can cause absorbance in the infrared (46).  Most 

fundamental resonant molecular vibrations occur at frequencies outside the near-infrared 

region, with bands seen in the near-infrared being the overtones or combinations of the 



 

 15

fundamentals, which are usually of higher intensity than the overtones (46).  The 

intensity of overtone and combination bands depends on the degree of anharmonicity, 

and these different modes of vibration give rise to the bands observed in the near-IR 

region.  The majority of overtone peaks arise from the R -H stretching mode (i.e., C-H, 

O-H, N-H, S-H) since vibrations of the hydrogen atom appear to be particularly 

susceptible to anharmonicity (46, 47).  Therefore, the absorption bands observed in the 

near-IR region arise from overtones of stretching vibrations involving functional groups 

with hydrogen atoms or combinations involving stretching and bending modes of 

vibrations of these groups.   

 The majority of active pharmaceutical ingredients and excipients possess 

functional groups (i.e., -C-H, -O-H, -N-H, etc.) that absorb in the near-infrared region.  In 

addition, the low molar absorptivity of most of these compounds in the near-IR region 

allows samples to be analyzed in their native state, requiring little or no preparation or 

dilution prior to analysis.  Broad overlapping bands observed using this technique also 

provide a means for performing both quantitative and qualitative analyses.   

 

1.2.2.2.2  Diffuse Reflectance 

 Reflectance spectroscopy measures the light reflected from a sample.  The 

incident beam of light is divided into two parts: transmitted light and reflected light.  The 

reflected light is comprised of both specular and diffuse components.  The specular 

component, described by Fresnel’s law, contains little information about sample chemical 

composition, consequently, its contribution to measurements is minimized by adjusting 

the detector’s position relative to the sample (48,49).  It can be eliminated through 
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appropriate optic designs.  Diffuse reflection, however, is the result of the simultaneous 

absorption and scattering of light from the sample and contains information regarding 

physicochemical properties of potential interest.  In practical applications, a simple 

relationship between the concentration of a component and reflected intensity, which is a 

direct analog of Beer’s law, is   

 

  Ca
R

Log ∗=)1(  (Eq. 1)  

 

where R is the intensity of diffusely reflected light, a is the absorptivity of the material, 

and C is the concentration.  

 In reflectance mode, the sample must be sufficiently thick to present an infinite 

pathlength.  All incident light is absorbed or reflected, and only the reflected light is 

measured.  In reflectance mode, both specular and diffuse components are superimposed 

so that the path length cannot be kept constant and will vary with sample packing.  

Reflectance, refraction, transmittance, and absorbance will take place depending on both 

the chemical and physical properties of the sample pack (46).  This scattering alters the 

proportion of absorbed and reflected radiation so that path length becomes an additional 

unknown along with concentration in Beer’s law.  Thus, even if only one component 

were known to absorb at just one wavelength, it would be necessary to solve a pair of 

simultaneous equations relating path length and concentration to optical density at the 

two wavelengths (46).   

 Several factors affect the linearity of Beer’s law in near-IR diffuse reflectance 

analysis (46).  One is the difference in the linearity of response of the lead sulfide (PbS) 
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detectors that are responsible for making the measurement and differences in path length 

caused by particle characteristics.  Another factor is the influence of temperature, which 

at different wavelengths, can cause shifts to longer or shorter wavelengths, depending on 

the temperature and position of the band.  Such factors can be compensated for by 

instrument design, and residual deviations from linearity are corrected by log 1/R 

transformation of the spectra.   

 

1.2.2.3  Chemometrics 

 Chemometrics is a term used to describe the application of mathematics, statistics, 

and logic-based methods to derive meaningful chemical information from complex 

samples.  The theoretical foundations of many commonly employed chemometric 

techniques were developed decades ago.  However, the practical application of these 

methods has relied on advancements in computer technology and the availability of 

chemometric software. 

 Unlike other more traditional aspects of analytical chemistry, chemometrics is not 

associated with any particular instrumental method for measuring chemical data.  

Chemometric models have been employed to resolve analytical problems in a variety of 

scientific disciplines ranging from organic synthesis to electrical engineering.  Although 

the breadth of this field makes it difficult to comprehensively review all aspects of 

chemometric research, Brown et al. (50) have published an extensive review of this topic.  

Review articles discussing chemometric applications to pharmaceutical and biomedical 

analysis have been presented by several authors (51,52).  The following discussion 



 

 18

examines several chemometric techniques commonly employed in the near-infrared 

analysis of pharmaceuticals. 

 

1.2.2.3.1  Spectral Preprocessing 

 Most near-IR instruments measure relative reflectance, R.  Relative reflectance is 

computed as the ratio Is/Ir, where Is is the intensity of radiation reflected from the sample 

and Ir is the intensity of radiation reflected from a reference standard.  Reflectance 

standards are commonly manufactured as flat disks composed of materials such as 

ceramic or PTFE (Spectralon®), both of which are highly reflective to near-IR radiation. 

 The depth of penetration of near-IR radiation into a sample is dependent on the 

absorption and scattering characteristics of the sample matrix.  Variations in particle size, 

density, and sample positioning, as well ambient temperature and humidity conditions, 

may affect subtle changes in measured spectral characteristics.  Various mathematical 

treatments have been suggested for modeling particle size effects on near-IR spectra (53-

57).  In addition, Berntsson et al. (58) evaluated methods for determining minimum 

effective sample size for near-IR reflectance analysis.  To eliminate undesirable spectral 

attributes, several signal preprocessing techniques may be employed.   

 

1.2.2.3.1.1  Linearization 

 Linearization of reflectance spectra is typically accomplished by either a log (1/R) 

or Kubelka-Munk transformation.  Log (1/R) values are preferred instead of units of 

reflectance because there exists an almost linear relationship between the concentration 

of an absorbing component and its contribution to the log (1/R) value at the wavelength 
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absorbed.  A more rigorous and theoretically satisfying approach to spectral linearization 

is presented by the Kubelka-Munk (K-M) transformation.  K-M theory has three 

simplifying assumptions:  (i) the scattered radiation is isotropically distributed; (ii) the 

particles in the layer are randomly distributed and very much smaller than the thickness 

of the layer; and (iii) the layer is subject to only diffused reflection (59).   Radiation 

passing through a scattering medium can be divided into radiation passed forward in the 

direction of the incident beam (I), and radiation scattered back toward the illuminated 

surface (J) (60).  An equation can be written describing the change in intensity (dI)of the 

beam (I), as it passes through a small sample layer of thickness, (dx).  The amount of 

radiation absorbed is considered to be proportional to an absorption constant, K, and to 

the intensity of the beam itself.  Since this represents a decrease, a minus sign is included 

such that dl = -KIdx.  Loss to scatter is represented through a second constant, S, and the 

total decrease in intensity is thus dI = -KIdx – SIdx.  The radiation that is scattered from 

the I beam augments the J beam, and vice versa.  Therefore, the change in intensity of the 

I beam is:  

 

   ( ) SJdxIdxSKdI ++−=     (Eq. 2) 

 

and the equation for the J component is: 

 

    ( ) SIdxIdxSKdJ ++−=    (Eq. 3) 
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These equations may be solved to obtain expressions for the intensities of the beams I and 

J anywhere within the samples as a function of certain boundary conditions, such as on 

an ideal black background, on an ideal white background, without backing, etc.  The 

boundary conditions of the principal interest are I = Io at x = 0 and J = 0 at x = d (60). 

  The K-M theory treats all beams passing through the layer dx in the general 

direction of x=0 as a part of I , and all beams passing through dx in the general direction 

of x=0 as part of J, however, their actual path length will be longer unless they are 

traveling exactly perpendicular to the surface (60).  The deviations are probably due to 

the effects of total internal reflection, which tend to increase the path length more for 

large angles of incidence, but may also involve factors such as relative refractive index, 

particle size, and shape (61).  The scattering coefficient, S, is likewise, the result of 

complex interaction of many factors (61).   

  Assuming that sample thickness is sufficiently large such that no light 

passes through it entirely, the K-M theory leads to the following equation:   

 

   )(
2

)1( 2

Rf
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K

R
R

==
−     (Eq. 4) 

  

where R is diffuse reflectance, and K and S are the respective absorption and scattering 

constants for a particular material.  The quantity f(R) is known as the K-M function.   

The Kubelka-Munk equation creates a linear relationship for spectral intensity 

relative to sample concentration.  It requires a reference standard that is essentially non-

absorbing.  However, the log 1/R expression of reflectance does not require the standard 

to be 100% reflecting because each application involves the use of a unique empirically 
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derived equation.  The standard, must, however, be stable with time and not affected by 

typical environmental changes.  Furthermore, the K-M approach assumes an infinite 

sample dilution in a non-absorbing matrix, a constant scattering coefficient and an 

“infinitely thick” sample layer.  The difficult variable to determine in this equation is the 

scattering factor, S, which depends on the particle size and shape distribution, and the 

packing density of the material (62).  For these reasons it is critical that the samples are 

packed identically each time.  Despite the sophistication the K-M transformation, log 1/R 

is more commonly utilized because of its simplicity and broad applicability. 

 

1.2.2.3.1.2  Smoothing 

 Smoothing is used to remove noise from spectra without altering the important 

chemical information present.  The most common techniques for smoothing spectra 

include boxcar smoothing, polynomial (Savitzky-Golay) smoothing, and Fourier 

transformation.  Boxcar smoothing begins by defining subsets containing a fixed number 

of data points across the spectrum.  The center point of each subset is replaced by the 

average value of the subset members, and the averages are connected by a smooth curve.  

The degree of smoothing can be modified by altering the number of points in the Boxcar 

interval.  The greater number of points averaged, the greater the degree of smoothing.  

Although one advantage of this technique is its ease of computation, an increase in 

distortion of the signal and subsequent loss of spectral information may occur if too many 

points are averaged in the calculation (63).   

 Polynomial smoothing involves fitting, by least-squares methods, a polynomial 

equation to subsets of data points across a spectrum.  From the derived equations, the 
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center point of each interval is computed.  The points are then connected by a smooth 

curve (63). 

 The Fourier Transform (FT) is a mathematical operation for decomposing a time 

function into its frequency components (amplitude and phase).  This process converts a 

raw spectrum (e.g., a time series) into two frequency domain spectra, one which is called 

a real spectrum and the other imaginary (this terminology comes from complex numbers) 

by performing cosine and sine functions, respectively, on the original data.  An inverse 

transform then converts the real and imaginary pairs into a real series that is different 

from the original spectrum in some desirable way (64).  For example, points 

corresponding to noise can be eliminated from the Fourier spectrum without altering 

essential chemical information.  FT is considered to be both a filtering and a noise 

reduction technique (65). 

 

1.2.2.3.1.3  Multiplicative Scatter Correction 

 Multiplicative scatter correction (MSC) is a technique used to remove baseline 

shifting due to linear additive and multiplicative scatter effects.  MSC assumes that, for a 

given set of spectra, light scatter and chemical information can be mathematically 

differentiated.  The first step in MSC involves regressing spectral variables xi against an 

average spectrum x  over k wavelengths using the following model: 

 

  (Eq. 5) 
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The constants a and b are estimated from the regression and used to obtain the scatter 

corrected spectrum by: 

 

          (Eq. 6) 
 
 
 Isakkson and Naes (66) have described the advantages of using MSC, indicating 

that prediction results are improved through better fit to a multivariate linear model (a 

more linear relationship between constituent and spectral values) and less irregularity in 

the scatter corrected data.  As a result, quantitative and qualitative calibration and 

prediction errors may be minimized.  An additional advantage of this technique for 

removing baseline shifting is that, following correction, the MSC spectra maintain the 

appearance of the original log (1/R) spectra.   

  

1.2.2.3.1.4  Derivatization. 

 Derivatives are useful for resolving overlapping absorption bands and removing 

spectral baseline shifting.  Although a variety of derivatization techniques have been used 

to resolve near-IR spectra, the second derivative has gained widespread acceptance for 

pharmaceutical analysis (67).  Second derivative calculations yield absorption peaks 

pointing in a negative direction relative to the positive absorption peaks seen in log 1/R 

spectra.  The appearance of the derivative spectra are highly dependent on the width or 

“gap” of data points over which the derivative calculations are performed.  Higher-order 

derivative spectra may also be employed to resolve overlapping peaks and remove 

baseline shifting, however, they are more sensitive to noise, may be more difficult to 
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interpret, and have, in many instances, not been shown to improve calibration or 

prediction results (63).  

 

1.2.2.3.2  Principal Component Analysis 

 The analysis of complex samples usually requires several measurements in order 

to define the different variables that make each sample unique.  There are usually many 

variables that can influence the spectral data acquired from a sample, and it can be very 

difficult to determine what information is necessary in order to produce the correct 

correlation for sample classification. 

 Dimensionality reduction of spectral information should provide a simplistic 

representation of the data for visualization and understanding yet retain sufficient detail 

for thorough mathematical analysis.  If executed properly, it should also encourage the 

consideration of meaningful relationships between the variables.  Although several 

techniques for reducing the dimensionality of large data sets are well documented in the 

statistical literature, one such technique, principal component analysis, has gained 

widespread acceptance in near-infrared analysis.  

 Principal component analysis (PCA) involves the rotation of a spectral array of n 

points in p-dimensional space to introduce a new set of orthogonal linear coordinates so 

that the sample variances of the given points with respect to the derived coordinates are 

in decreasing order of magnitude (68).  The first principal component is such that 

projections of the given points onto it have maximum variance among all possible linear 

coordinates; the second principal component has a maximum variance subject to being 
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orthogonal to the first.  All subsequent axes are orthogonal to any preceding axes and 

follow in order of decreasing variance. 

 Mathematically, PCA corresponds to the decomposition of the data matrix X, 

which contains I = 1, 2, . . ., I spectra of k = 1, 2, . . ., K wavelengths, into means ( kx ), 

scores (tia), loadings (pak) and residuals (,ik):  

 

          (Eq. 7) 
  

 The loadings are an indication of the intra-spectrum variation.  The absolute value 

of the loading describes how much a certain wavelength contributes to the ath principal 

component, whereas the sign provides information as to whether a particular wavelength 

is positively or negatively correlated with the principal component.  Scores show the 

location of the spectral information for spectrum i along the ath principal component and, 

hence, describe the inter-spectra variation.  Spectra that are similar will, therefore, have a 

similar score value. 

 A simplistic representation of principal axis transformation can be expressed by 

the matrix equation: 

 

          (Eq. 8) 
 
 
where E is a square matrix of a eigenvectors, each with k loadings elements.  The matrix 

of new variables, T, is composed of score elements which form column vectors called 

principal components.  The first principal component describes the largest systematic 

variation in the data matrix X, the second principal component the next largest, and so on. 
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 One result of the principal axis transformation procedure is that the covariance 

between any two new variables for all samples is zero, which may not necessarily be true 

for the original variables.  This allows the total variance of the spectra to be expressed as 

a summation of the variance for each of the new variables.  A second result is that the 

total variance is now concentrated into the first few principal components.  Therefore, 

higher order principal components, which primarily account for random spectral noise, 

can be easily removed from principal component models without the loss of significant 

chemical information (68). 

 

1.2.2.3.3  Quantitative Analysis 

 Quantitative analysis involves a variety of statistical methods that relate near-IR 

absorbance values at specific wavelengths to measurable analyte qualities via Beer's law.  

Establishing this relationship by using a set of samples of known composition and a 

statistically sound regression technique is referred to as calibration.  Global calibrations 

utilize full spectral data, while models using only a few selected wavelengths are referred 

to as local.  The development of a calibration model should involve the following steps: 

 

(i)   Prepare a set of standards that will represent the expected range of samples 

 to be encountered in a typical test environment.  

(ii) Determine sampling and reference test errors (a spectral method cannot  

 correlate to a reference method better than the method correlates to itself). 

(iii)  Choose a data treatment that provides an acceptable standard error of 

 calibration (SEC) and acceptable coefficient of correlation (r).  The SEC, 
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 also referred to as the standard error of estimate (SEE), is calculated 

 according to the following equation: 

 

         (Eq. 9) 

 
 

where N is the total number of samples in the model, k is the number of 

wavelengths used in the calibration, iŷ  is the estimated concentration from 

the calibration model for the ith sample, and yi is the actual concentration of 

the ith sample.   

 The SEC statistic is the standard deviation for the residuals due to 

differences between actual and predicted values within the calibration set.  It 

is an indication of the total residual error due to the particular regression 

equation to which it applies.  The SEC will decrease with the number of 

wavelengths (independent variable terms) used within an equation, 

indicating that increasing the number of terms will allow more variation 

within the data to be explained (69).  This statistic is a useful estimate of the 

theoretical maximum accuracy obtainable for a specified set of wavelengths 

used to develop a calibration.  The residual for each sample is equal to the 

actual chemical value minus the near-IR predicted value for all samples 

within the calibration set.  

 The correlation of coefficient (r) provides an indication of the degree 

to which the calibration fits the data, and is determined according to: 
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         (Eq. 10) 
 

 

where y  is the average concentration.   

(iv)  Validate the calibration model and test for overfitting.  For example, a 

 calibration model demonstrating an SEC that is much less than the reference 

 test error may be the result of too many terms in the calibration regression 

 (too much random noise fit by the model) or too few samples.  

(v)  Attempt to understand why the calibration model works, why certain 

 preprocessing techniques and regression methods provide better results than 

 others, and why certain factors are included in the model.  To gain practical 

 acceptance, the model must be mathematically and spectroscopically 

 justifiable. 

 

 Following the development of a statistically sound calibration model, the 

prediction of unknown sample properties may be accomplished by applying the 

calibration model to the near-IR spectra of the test samples.  An indication of the 

predictive power of the model is provided by a standard error of prediction (SEP) 

calculation.  This term, also referred to as the standard error of performance, provides a 

comparison between reference method results and the near IR predicted values for 

samples outside the calibration set used to develop the model.  The SEP calculation is 

similar to that used in determining SEC, however, SEP has only N -1 degrees of freedom.  
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 Although there exist numerous methods for performing quantitative near-infrared 

analysis, the following discussion will briefly examine methodologies commonly 

employed in pharmaceutical applications of near-infrared spectroscopy.   

 

1.2.2.3.3.1  Multiple Linear Regression 

 One of the most elementary statistical approaches to quantitative near-infrared 

calibration and prediction is multiple linear regression (MLR).  This technique uses the 

absorbance information at a number of wavelengths to isolate the effect of a single 

analyte and to normalize the baseline (63) .  MLR is based on the following relationship: 

 
          (Eq. 11) 
 
 
where Y is the response variable, bm is the absorptivity at the kth wavelength, and Xk is the 

log 1/R value at that wavelength.  An entire spectral data array or a selected number of 

wavelengths may be used in the estimation of the bk  coefficients.  Calibrations based on 

narrow spectral regions are typically less complicated than global models, however, the 

performance of such localized models is highly dependent on the proper choice of 

wavelengths.  To assist in wavelength selection, procedures such as "step-up" and "step-

down" regression are often employed (70).   

 Several MLR algorithms have been described by Hruschka (63). The step-up or 

forward-stepwise regression procedure picks the wavelength to add as a second variable 

in a two-term regression, and so on until some stopping criterion is met.  The step-down 

procedure starts with a multi-term regression using all available wavelengths and 

eliminates variables by some criterion.  The all-possible combinations procedure tests all 
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possible linear regressions on all subsets of the available wavelengths and reports the 

subsets giving the lowest SEC.  This procedure is usually limited to all subsets containing 

only two or three wavelengths.  As an alternative, each step in the step-up method can be 

followed by one step of the step-down method, to check for wavelengths that can be 

safely eliminated when a new wavelength is added.  Proper selection of subset of 

available variables is necessary to avoid overfitting (63).  However, with respect to near-

IR, correlation of absorbances of adjacent wavelengths may lead to collinearity, and there 

are usually fewer calibration samples available than there are recorded wavelengths of the 

log 1/R spectra (71).  Consequently, MLR often leads to unstable estimates of b.  

Therefore, although the model may fit a calibration set well, an unstable regression vector 

may magnify small random errors in future samples and lead to large prediction errors. 

 

1.2.2.3.3.2  Principal Component Regression 

 Principal component regression (PCR) is a robust technique for developing global 

calibrations.  PCR utilizes principal component spectra derived from principal axis (PCA) 

transformation as previously discussed.  Because most of the spectral variation of the 

calibration set is usually described by the first few principal components, the number of 

regression variables necessary to adequately model the data is dramatically reduced.  

Data reduction also allows for sources of spectral variation, other than those related to the 

sample attributes being evaluated, to be eliminated from calibration.  One weakness of 

PCR is that, because chemical information is not included in principal axis 

transformation, regression factors are determined solely on the basis of near-IR data.  

Therefore, the development of a calibration model using PCR may rely on good 
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correlation between the principal components and the chemical data, which may or may 

not exist.  In addition, there may also remain y-correlated variance proportions in the 

higher order PCs that never get into the PC-regression stage, simply because the 

magnitudes of the other X-structure parts (which are irrelevant in an optimal (X,Y) 

regression sense) dominate (72). 

 

1.2.2.3.3.3  Partial Least Squares Regression 

 The partial least squares (PLS) technique, developed by Svante Wold, considers 

errors in both independent (spectroscopic data) and dependent (sample analyte 

information) variables in the calculation of PLS factors (73).  Such factors are analogous 

to principal components.  Since both spectral and sample analyte variance are taken into 

account in determining PLS factors, the significance of the factors with respect to the 

analytical problem at hand is increased because the factors are oriented in accordance 

with the target analyte.  Basically, PLS attempts to explain as much of the variation in the 

dependent variable as possible using only relevant factors contained in the spectral data.   

 The mathematics of PLS are quite rigorous and have been thoroughly described in 

the literature (74).  For a system of n samples, PLS simultaneously resolves matrices X (n 

x k) and Y (n x p), which contain spectral absorbance values recorded at k wavelengths 

and the concentrations of the p analytes to be determined.  Each matrix is resolved into 

the product of a scores and loadings matrix.  The loadings for matrix X are determined 

from the scores of the dependent variable matrix, and the loadings for matrix Y are 

calculated from the scores of the independent variable (spectral data) matrix, X.  The 



 

 32

∑
=

=

=
Nn

n
npnp Nyxc

1

'" /

covariance between y, the dependent variable, and the PLS component is maximized for 

component p according to: 

 

      (Eq. 12) 

 

where ny '  is the centered value of the y sample for n, there are N samples in the dataset 

and  pnx"  is the PLS score of the centered pth component for this sample.   

 Erbensen (72) has provided a concise comparison of PCR and PLS regression.  As 

opposed to performing two independent PCA-analyses on two spaces, X and Y, PLS uses 

y-variance to guide the decomposition of the X-matrix, so that the outcome constitutes an 

optimal validated regression.  Instead of performing independent PCA analysis on X and 

Y spaces, PLS actively connects these spaces by specifying the u-score vector(s) to act as 

the starting points for the t-score vectors in the decomposition of X.  Thus the starting 

proxy-t1 is actually u1 in the PLS method, thereby letting the Y-data structure directly 

guide the decomposition of X.  Subsequently, u1 is substituted by t1 later in the algorithm.  

By this method, u1 influences the decomposition of X and the calculation of the X-

loadings (w).  The X-space t-vectors are then calculated based on the newly determined 

w-vector, and are subsequently used in Y-space decomposition.  The PLS-algorithm is 

specifically designed around these interdependent u1→ t1 and t1→ u1 substitutions in an 

interactive way until convergence, at which time a final set of vectors has been calculated 

for the current PLS-component for both the X-space and the Y-space.  Thus, what first 

appears as two sets of independent PCA decompositions is, in fact, based on these 

interchanged score vectors (72).  In this way, the X- and Y- spaces are interdependently 
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modeled.  By balancing both X- and Y- information, PLS reduces the influence of large 

X-variations which do not correlate with Y, and thereby removes the problem of the two-

stage PCR weakness (72).  Since PLS focuses as much on the Y-variance as well as the 

X-variance, and there is particular interest in the co-varying relationship between these 

samples, simpler models (those with fewer components) can be developed.  

 Perhaps, the most critical step involved in PLS calibration involves the selection 

of the number of factors used to construct the regression model.  Too few factors can 

leave important spectral information unmodelled, while too many factors may result in 

the inclusion of a significant amount of noise included in the model.  Martens and Naes 

(75) suggested a cross-validation procedure to determine the optimum number of factors 

to be included in the PLS calibration.  This technique calculates a root mean square error 

of prediction (RMSEP) for a series of PLS calibration models containing 1 to n factors.  

The optimal number of factors to be included in the calibration model is determined as 

the number of factors after which there is no significant decrease in the RMSEP. 

 

1.2.2.3.4  Qualitative Analysis 

 In addition to being a powerful tool for quantitative pharmaceutical analysis, near-

IR spectroscopy has gained recognition for its qualitative analysis capabilities.  

Qualitative analysis involves classifying samples by comparing their spectral 

characteristics to those of a reference group.  Unlike quantitative methods, qualitative 

spectral analysis does not always rely on the existence of a direct correlation between 

spectral characteristics and chemical information.  
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 Qualitative near-IR analysis is typically performed in one of two ways.  The first 

method involves a visual examination of the spectrum followed by sample identification 

or classification by matching the location and strength of absorption peaks with those of 

known substances.  Although this technique may provide satisfactory results in certain 

cases, the broad overlapping nature of near-IR absorbance bands combined with 

extraneous sources of spectral variation, greatly limits the usefulness of this method. 

 The second, and more widely accepted method for qualitative near-IR analysis, 

utilizes pattern recognition techniques.  Such methods classify samples according to their 

similarity to a training set.  Because pattern recognition techniques can only recognize the 

variability to which they are accustomed, it is necessary to develop a training set that 

represents all expected sources of spectral variability.  After training the computer to 

recognize the spectral qualities of acceptable material, pattern recognition algorithms can 

be employed to quickly identify and classify unknown test samples.  The following 

discussion will describe several popular pattern recognition methods. 

 

1.2.2.3.4.1  Mahalanobis Distance 

 Mark and Tunnell (76) suggested a Mahalanobis distance (D2) calculation to 

qualitatively classify near-infrared spectra.  The Mahalanobis distance is a standardized 

Euclidean distance that describes the distance between point X and the center of a group 

of spectra Xi through the following relationship 

 

  Eq. (13) 

 



 

 35

( )∑ −−= 1/22
0 knss i

where X is the multidimensional vector describing the location of the spectrum X, iX  is a 

multidimensional vector describing the location of the mean spectrum of the ith group, 

( )'iXX −  is the transpose of vector ( )iXX −  and M is the matrix describing the distance 

measures of the multidimensional space involved.   A spectrum is typically classified as 

“acceptable” if its distance falls inside the 99% probability (less than three standard 

deviations) level.  Multiple wavelengths or principal component spectra may be used to 

calculate D2, however, the use of principal components ensures that all spectral 

information is retained for classification.   

 

1.2.2.3.4.2  Soft Independent Modeling of Class Analogies 

 Soft Independent Modeling of Class Analogies (SIMCA) is a pattern recognition 

technique that uses principal component analysis of near-IR spectra to develop 

mathematical models for each training set (77).  The number of principal components 

used determines the dimensionality of the class model and may affect the performance of 

the SIMCA calculation.   

  SIMCA begins by calculating the sum of squares of the difference (si
2) between 

the original spectrum and the reproduced spectrum according to 

: 

           (Eq. 14) 

 

where aij is the raw absorbance spectrum, aij is the transformed spectrum following PCA, 

p is the number of wavelengths and k is the number of significant principal components.  

The total variance between samples within a class (s0
2) is determined by the equation: 
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           (Eq. 15) 
 
 

where n is the number of training samples and k is the number of principal components 

used to construct the model.  To classify each sample, a ratio of variances with 1/(n – k – 

1) degrees of freedom is calculated and compared to a tabulated F value. 

 

      (Eq. 16) 

 

The probability level for sample acceptance is the same as previously described in the 

Mahalanobis distance calculation. 

 

1.2.2.3.4.3  Bootstrap Error-Adjusted Single-sample Technique 

 The Bootstrap Error-Adjusted Single-sample Technique (BEAST) is a non-

parametric pattern recognition procedure designed to operate in the high-speed parallel or 

vector mode.  Lodder and Hieftje (78) have discussed this algorithm, derived from 

Efron’s bootstrap calculation (79), in detail and have provided examples of its 

application.   

 The BEAST begins by treating each wavelength in a spectrum as a single point in 

multidimensional space (“hyperspace”).  Each point is translated from the origin along 

each axis by an amount that corresponds to the magnitude of the signal observed at each 

wavelength.  Samples having similar spectra map into clusters of points in similar regions 

of hyperspace.  Larger cluster size corresponds to samples having greater intrinsic 

variability.   
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 The BEAST develops an estimate of the total sample population using a small set 

of known (training) samples.  A predetermined number of randomly selected sample sets 

(containing the same number of elements as the training set) is drawn from the training 

set, with replacement, to form a bootstrap distribution by Monte Carlo approximation.  A 

point estimate of the center of this distribution, representing the estimate of the true 

population distribution for the sample set, is also calculated.  Bootstrap distribution 

quantiles are readily converted into confidence intervals and are therefore useful in 

defining the boundaries of a training set in the hyperspace of spectral points.  Assuming 

the parameter of interest is represented by the bootstrap-set center, selecting any two 

bootstrap-distribution percentiles gives the corresponding confidence limits for the 

center-parameter (e.g., selecting the 16th and 84th percentiles of the bootstrap 

distribution produces the central 68% confidence limits).  

 When a new sample is analyzed, its spectrum is projected into the same 

hyperspace as the known samples.  A vector is then formed in hyperspace to connect the 

center of the population estimate to the new sample spectral point.  A hypercylinder is 

formed about this vector to contain a number of estimated-population spectral points.  

The distances between the center of the hypercylinder and the points within it are sorted 

and the upper and lower confidence limits are scaled in accordance with a measure of the 

skew of the distribution.  The distance from the center to the new sample spectrum is 

scaled by a skew-adjusted standard deviation (SD) calculated from the sorted distances  

 BEAST distances are used to identify sample constituents.  Uncorrected BEAST 

distances (suitable for unskewed training sets) are calculated as follows: 
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       (Eq. 17) 

 

where cj is the center of the bootstrap distribution, xj is the test sample spectrum and σ is 

a BEAST standard deviation.  When a sample spectrum projects to a point within three 

standard deviations of the center of a cluster of spectral points from a known substance or 

product, the sample is considered to be a sample of the known material.  The known 

product is either a pure substance or a mixture of components.  When the new sample 

contains different substances or components in concentrations that differ from the known 

product, the new sample spectral point is displaced from the known spectral cluster.  The 

magnitude of this displacement increases as the difference between the new sample and 

the set of known samples increases.  Furthermore, the direction of the displacement of the 

new sample point corresponds to the spectra of the constituents responsible for the 

displacement.  

 Although the BEAST is primarily utilized for qualitative analysis, this technique 

can also be used quantitatively (80,81).  Using the estimated BEAST distances within a 

training group and their corresponding analyte response variables, a calibration model 

may be developed.  When an unknown sample is tested, its BEAST distance is calculated 

and its analyte response is determined using the calibration model.    

 

1.2.2.4  Pharmaceutical Applications of Near-Infrared Spectroscopy 

 Near-infrared spectroscopy has gained widespread acceptance in the 

pharmaceutical industry as a rapid and non-destructive analytical technique.  
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Applications of this technology can be found throughout many phases of pharmaceutical 

manufacturing, from identification and testing of incoming raw materials (54,82), to 

analytical control of unit process operations (83,84), and finally analysis of finished 

dosage forms (85-93).  Recently, a general chapter regarding near-infrared 

spectrophotometry has been included in the United States Pharmacopeia (94).  

Additionally, the technique has been addressed in a FDA draft guidance for industry 

regarding analytical procedures and methods validation (95).  Although near-IR is not 

specifically addressed in FDA’s guidance document for PAT, it has been reported that 

near-infrared applications appeared in 41% of the literature citations in FDA's PAT 

Initiative Literature References (26).  

 Early pharmaceutical applications of near-IR focused on the determination of 

active ingredients in formulations after appropriate extraction (96,97).  The majority of 

work has, however, involved the analysis of a variety of intact pharmaceutical dosage 

forms including powders (98-99), blends (99-101), granulations (102-104), tablets (81, 

85, 87, 106) capsules (80, 88), creams (89), liquids (90,106), and parenterals (107-108).  

Comprehensive review articles regarding the historical development of near-IR 

applications have been published by Kirsch and Drennen (45), and by Morisseau and 

Rhodes (109).  The following discussion highlights some of the major developments in 

the use of near-IR spectroscopy for pharmaceutical applications discussed in this 

dissertation.  
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1.2.2.4.1  Analysis of Coated Dosage Forms 

 Coatings are applied to solid dosage forms for a variety of reasons including 

aesthetics, taste-masking, stability enhancement, or to provide modified release of active 

drug substance (110).  Application of a proper amount of coating to a dosage form is 

essential to provide desired physicochemical, pharmacological, or cosmetic effects.  For 

example, insufficient levels of applied rate controlling polymer coating on a sustained 

release dosage form may result in faster than desired drug release, while excessive levels 

of applied coat may retard drug release to a greater than desired extent.  Therefore, it is 

important to closely monitor the quantity of coating applied to solid dosage forms during 

processing.  

 For tablets, the amount of applied coating is typically determined by calculating 

the difference between the average weight of a coated tablet and the average weight of an 

uncoated core.  Measurement of coated tablet thickness (111) has been suggested for 

monitoring the level of applied coating.  This technique, however, is indirect and is based 

on measurement of average core and coated tablet weight.  Therefore, it provides little 

information regarding individual tablet coating weight variation.  For pellet processes, 

researchers and manufacturing personnel must rely on determinations of applied solids to 

predict coating process endpoints.  This is usually performed by applying a specified 

quantity of coating solution onto a known quantity of core pellet substrate.  This 

technique, which is primarily theoretical, assumes no loss of core material during 

processing with complete application of the applied coat.  Therefore, it provides limited 

information regarding the actual quantity of coating material present on the core substrate 

at any point during processing.   
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 Laboratory methods, such as microscopy, have the potential for providing a direct 

measurement of coating thickness, but often require laborious sample preparation, and 

are, therefore, not feasible for real-time analysis.  Microscopy may also have associated 

with it a considerable degree of error due to inherent variability in thickness of the 

substrate or applied coating.  Several thickness measurements per sample must be 

obtained to provide an accurate assessment of coating thickness.  Direct assessment of the 

quantity of polymer applied to tablets has been achieved via a gel permeation 

chromatographic methods described by MacLaren and Hollenbeck (112) and Scattergood 

et al. (113).  Such techniques also require labor-intensive sample preparation and 

analyses, and are not suitable for process analysis applications.   

 One of the first references regarding near-IR analysis of coated dosage forms 

involved the quantification of amiodarone content of coated tablets (105). In this 

application, the researchers indicated a need to scrape the coating from the tablets prior to 

analysis because of spectral interference with the drug substance.  In 1995, Kirsch and 

Drennen (115) demonstrated that valuable information about core tablet properties of 

film coated tablets could be assessed using near-IR spectroscopy.  Prediction of core 

tablet hardness, drug content, and time to 50% dissolution of ethylcellulose coated 

cimetidine tablets was effectively accomplished using principal component regression 

using near-IR spectra collected on both grating-based and acousto-optic tunable filter 

spectrometers.   

 Kirsch and Drennen (83) also published a near-IR method for monitoring the 

coating of tablets in a Wurster column.  In this work, the Wurster column was retrofitted 

with a sample thief (115) to allow tablet samples to be withdrawn from the process 
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stream for obtaining near-IR spectra during coating.  As coating  proceeded, decreasing 

absorbance was observed in regions characteristic of the primary core tablet components 

while increasing absorbance was noted in regions characteristic of the applied coating.  

Principal component analysis of scatter-corrected or second derivative spectra was 

employed to predict the quantity of ethylcellulose or hypromellose applied.  Over a 

coating range of 2% to 30%, SEE and SEP values for applied polymer solids were 

approximately 1%. 

 The use of near-IR spectroscopy to evaluate the quantity of active ingredient 

applied to a tablet via a film coating operation was investigated by Buchanan et al. (116).  

A partial least squares regression model was developed using scatter corrected near-IR 

reflectance data obtained using a NIRSystems Model 6500 spectrometer equipped with a 

Rapid Content Sampler.  HPLC was employed as reference laboratory method for 

determining active drug content contained per tablet.  SEP values in the range of 3% to 

4% were reported for the model studied.   

 Another application of near-infrared analysis of coated tablets was reported by 

Andersson and coworkers (117), who quantified the amount of coating applied to a dual-

active bilayer tablet.  Each half tablet was composed of different granulations containing 

different active ingredients.  Tablets were coated in a side-vented coating pan and 

removed from the process stream prior to near-IR analysis.  A PLS model was developed 

utilizing spectra obtained from both tablet sides, pretreated with MSC, and ordered into 

one object.  Characterization of the coating measurements was achieved by calibrating 

the spectra versus coating thickness obtained from optical microscopy.  Using PCA, the 
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authors estimated the maximum depth in the coating material that returned chemical 

information to be approximately 0.1 mm to 0.2 mm.  

 

1.2.2.4.2  Analysis of Pelletized Dosage Forms  

 The earliest reference to near-infrared analysis of pharmaceutical pellets was in a 

1966 paper by Sinsheimer and Keuhnelian (96).  This work involved the qualitative 

analysis of compressed pellets composed of either a mixture of amine salts and potassium 

chloride or amine salts alone.  Spectra were collected in the 1050 to 2800 nm region and 

analyzed qualitatively using peak assignments.  Although no calibrations were developed, 

several spectral features of these samples were noted for showing promise in the 

quantification of drugs in the solid state. 

 An on-line near-IR monitoring method for monitoring pellet product uniformity 

during encapsulation was described by Duff et al. (118).  This study utilized a remote 

reflectance fiber optic probe mounted to the feed chute of a commercial encapsulation 

machine.  Assay calibrations were developed using multiple linear regression and PLS 

analysis of second derivative spectra.  Both models had correlation coefficients of about 

0.98 and standard errors of calibration of better than 0.5% over an assay range of 98% - 

100%.   

 In another study, Andersson et al. (119) described a near-IR method suitable for 

analysis of the film coating on pharmaceutical pellets during processing.  In this study, 

core pellets were sieved to a diameter of 400-500 µm and subsequently coated with a 

solution of ethylcellulose and ethanol.  During processing, the pellets increased in size by 

~30% corresponding to a coating thickness of ~60-75 µm.  Near-IR spectra were 
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collected using a sampling device and diffuse reflectance probe positioned inside the 

process vessel of an in-house constructed fluid bed processor.  The sampling device 

utilized was similar to that described by Kirsch and Drennen (83,114,115) from which 

samples were withdrawn from the process stream, spectra were acquired, and the samples 

were returned for additional processing.  A PLS regression model was employed to 

predict coating thickness using fluorescence microscopy and image analysis (120) as a 

reference method.  Using as little as one PLS projection, R2 values of 0.97 and standard 

errors of calibration and prediction of 2.2 µm and 2.3 µm, respectively, were achieved. 

 

1.2.2.4.3  Analysis of Moving Solids 

 Physical sampling and the presentation of a sample to a fiber-optic probe are 

essential elements of any process analysis (121).  Although a stationary sample 

presentation can be obtained by means of an in-line sub-sample (83,114), or by stopping 

or removing a sample from the process (83,116,122,123), such a sample-spectrometer 

interface may be difficult to develop and may also limit sampling rate.  Analysis of 

moving samples are essential for various process analytical applications.   

 For a given sample, there will always be scattering variation due to heterogeneity 

with respect to sample characteristics such as powder packing, surface roughness, and 

distance from the probe, even if the sample is homogenous with respect to chemical 

composition.  This is due to the fact that near-IR diffuse reflectance is the result of both 

absorption and scattering, where the scattering coefficient is typically an order of 

magnitude larger than the absorption coefficient (124,125).  Measurement of a moving 
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sample can, therefore, become quite complicated since its signal is likely to have random 

variations as the sample moves.   

 Although near-IR sampling of moving solids is frequently carried out in industry, 

the number of publications describing moving sample/spectrometer interfaces has been 

somewhat limited.  Several patents describing the development of moving sample-

spectrometer interfaces have been granted.  In one such patent, Kemeny et al. (126) 

described a system where material is moving under an optical window suitable for on-

line near-IR applications.  He noted that if particle size was small as compared to the 

illuminated surface, the concentration of stationary product could be determined within 

acceptable limits.  However, if the average diameter was larger and its size distribution 

wider, the measurement was only precise if the sample was moving, i.e., if a sufficiently 

larger sample was analyzed.  Two additional patents (127,128) describe methods for 

monitoring moving base materials such as paper, in which near infrared radiation is 

directed upon the material.   

 In a 2001 paper, Berntsson et al. (121) characterized the effect of sample 

movement on spectral response using FT-NIR spectroscopic analysis of model samples 

such as paper, plastic and fine and coarse powders.  The authors found that controlled 

movement caused sample artifacts to appear in sample interferograms.  They attributed 

the origin of these artifacts to variation in the detector signal level caused by sudden 

changes in the overall sample reflectance as the sample moves.  In this study, it was 

shown that these artifacts did not affect the near-IR spectra range, and that spectra 

obtained from moving samples could not be distinguished from spectra obtained from 

stationary samples.   
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 Most recently, Andersson et al. (129) characterized the effect of sample 

movement on spectral response during fiber optic probe diffuse reflectance near-IR 

spectroscopy sampling.  In this study 400 – 500 µm pellets were used to model coarse 

powder while microcrystalline cellulose was used as a model fine powder.  Controlled 

movement of the model samples during fiber optic probe sampling was accomplished 

through the construction of a 300 mm rotating disk apparatus.  In the initial phase of 

study, the probe was placed 1 mm above the rotating disk at a fixed radius from the 

center of the disk and rotation speeds ranging from 3 – 61 rpm were investigated.  In the 

second phase of study, additional measurements were obtained by inserting the probe into 

a glass vessel containing a powder sample, which was placed on the rotating disk.  The 

third phase of this study involved analysis of ethylcellulose coated pellets, containing 

between 8% and 120% w/w of applied target coating solids, which were arranged in 

monolayers on the rotating disk using double-sided tape.  For each test condition, 

measurements were performed at 1 and 10 scans per spectrum, and approximately 100 

spectra were acquired at each rotational speed.  Chemometric routines of MSC, PCA, 

PLS and SIMCA were employed in the analysis of the near-IR spectra. 

 Following chemometric analysis, two spectral artifacts were observed.  First, a 

baseline offset occurred due to variations in the average distance between the probe and 

the samples, different packing, or the presence of cavities in the samples analyzed.  

Additional spectral artifacts were also observed that appeared as momentary transitions 

between spectra from different materials within the scanned spectrum.  A correlation 

between the sample speed and the number of transitions was also observed.  Such 
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artifacts were difficult to identify by visual inspection, but could be tracked by 

multivariate methods such as PCA and PLS.   

 The reasons for measuring a moving solid sample may, for example, be to obtain 

a large effective sample.  Similarly, it may simply be impossible to interrupt the process 

to obtain a stationary sample.  In this case, material inhomogeneities, such as differences 

in particle size, inevitably influenced the reflectance spectra.  The presented data 

demonstrated that by analyzing moving samples, thereby increasing the effective sample 

size, such effects could be suppressed because the cumulative sample studied yielded 

reproducible average values even if the sample was locally inhomogeneous.  However, 

local product variations could be hidden when the effective sample size was increased.  

Therefore, the number of samples acquired during in-line analysis of process streams 

should be carefully considered.   

 In this study, it was determined that, for monitoring moving solids and 

mimicking conditions typically encountered during in-line or on-line process analysis, at 

least 20 to 40 consecutive samples should be used to predict an average value with 

sufficient precision. 
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2  EXPERIMENTAL 
 
 
2.1  Laboratory-Scale Rotogranulation 
 
 
2.1.1  Materials   

  Diltiazem hydrochloride (Gyma, Milan, Italy), polyvinypyrrolidone K29/32 (ISP, 

Wayne, NJ), micronized talc (Alphafil 500, Luzenac America, Englewood, CO), and 25-

30 mesh non-pareil seeds (Chr. Hanson, Milwaukee, WI) were donated by Mylan 

Pharmaceuticals, Inc. (Morgantown, WV).   

 

2.1.2  Formulation  

 Triplicate batches of pellets containing 150mg/g (15%), 300mg/g (30%), and 

550mg/g (55%) theoretical active drug content were prepared by layering a 40% w/w 

aqueous suspension of diltiazem HCl (88% w/w), PVP K29/32 (6% w/w), and 

micronized talc (6% w/w) onto 25 – 30 mesh (600 µm – 710 µm) non-pareil seeds.  

Quantitative descriptions of the formulations under investigation are presented in 

Table 1.  

 

2.1.3  Drug Suspension Layering 
 

 Suspension layering was conducted using a Glatt GPCG-3 fluid bed processor 

(Glatt Air Techniques, Ramsey, NJ) equipped with a 12 inch rotor insert (Vector  
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Table 1.   Diltiazem HCl pellet formulations. 
 

 

Ingredient Theoretical Quantity per Unit 
(mg/g) 

Quantity per Batch  
(g) 

   
150 mg/g (15%)   
Non-Pareil Seeds (25-30 mesh) 828.8 2700 
Diltiazem HCl 150.0 525* 
PVP K29/32 10.6 37* 
Micronized Talc 10.6 37* 
Purified Water** --- (900)* 
Total 1000 3299 
   
   
   
   
300 mg/g (30%)   
Non-Pareil Seeds (25-30 mesh) 657.2 2100 
Diltiazem HCl 300.0 1050* 
PVP K29/32 21.4 75* 
Micronized Talc 21.4 75* 
Purified Water** --- (1800)* 
Total 1000.0 3300 
   
   
   
   
550 mg/g (55%)   
Non-Pareil Seeds (25-30 mesh) 371.6 1099 
Diltiazem HCl 550.0 1923* 
PVP K29/32 39.2 137* 
Micronized Talc 39.2 137* 
Purified Water**  --- (3299)* 
Total 1000.0 3296 
   

   
  *   Quantity represents a 6% overage to provide 106% theoretical potency. 
** Removed during processing. 
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Corporation, Cranberry, NJ).  Formulations were designed to yield approximately 3300 

grams of finished product, in order to achieve 100% rotor capacity at the process 

endpoint.  Drug suspension was delivered via a Masterflex peristaltic pump (Cole-Parmer 

Instrument Co., Chicago, IL) to a tangential spray system equipped with a 1.2 mm nozzle 

tip.  The spray gun was completely immersed in the rotating product throughout the 

layering process. During processing, product temperatures were maintained between 

38°C and 42°C, and rotor speeds varied from 525 to 575 rpm.  Angular velocity was ~29 

ft/sec.  Spray rates varied from 10 g/min to 25 g/min while atomizing air pressure was 

constant at 40 psi.  Processing parameters are presented in Table 2.  Of the listed 

parameters, inlet air temperature and process spray rate were most critical for maintaining 

appropriate temperature control to avoid spray drying or agglomeration.  Process spray 

rates for the 150mg/g, 300mg/g and 550mg/g formulations are presented in Figures 3, 4, 

and 5, respectively, as a function of time.  

 Suspension spray rates were kept low at early process times to ensure rapid 

solvent evaporation following suspension contact with the pellet surface and prevent 

agglomeration.  As the rotor and the product reached an equilibrium temperature and the 

particle size and quantity of the pellets increased during processing, it was possible to 

increase spray rates without forming agglomerates.  Inlet air temperature and air flow 

were adjusted to maintain a product temperature of ~40ºC, which, during initial process 

optimization studies, produced few agglomerates (≥16 mesh) or fines (<30 mesh).  Spray 

rates varied depending on the pellet strength being processed.  Smaller diameter pellets, 

such as those employed in the 150mg/gram strength, required slightly slower spray rates  
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Table 2.   Processing parameters for laboratory-scale drug 
                 suspension layering. 
  
Process Parameter Target 
150 mg/g  
Inlet Air Temperature 55  ±  5° C 
Product Temperature 40  ±  2° C 
Exhaust Air Temperature 44 ±  3° C 
Spray Rate 9 – 12 g/min 
Air Flow 120  ±  10 cfm 
Atomization Air Pressure 40 psi 
Rotor Speed 550 ±  25 rpm 
Non-pareil Charge 2700 g 
Process Time 135 ±  8 min 
  
  
  
300 mg/g  
Inlet Air Temperature 55  ±  5° C 
Product Temperature 40  ±  2° C 
Exhaust Air Temperature 46  ±  3° C 
Spray Rate 9 – 20 g/min 
Air Flow 110  ±  10 cfm 
Atomization Air Pressure 40 psi 
Rotor Speed 550 ±  25 rpm 
Non-pareil Charge 2100 g 
Process Time 210 ±  11 min 
  
  
  
550 mg/g  
Inlet Air Temperature 60  ±  5° C 
Product Temperature 40  ±  2° C 
Exhaust Air Temperature 46  ±  3° C 
Spray Rate 10 – 27 g/min 
Air Flow 120  ±  10 cfm 
Atomization Air Pressure 40 psi 
Rotor Speed 550 ±  25 rpm 
Non-pareil Charge 1099 g 
Process Time 300 ±  10 min 
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to prevent excessive agglomeration.  Agglomerates were classified as groups of pellets 

such as doublets, triplets, or higher order multiplets.   

 A graphic presentation of the pellet particle size distributions, based on sieve 

analysis, is presented in Figure 6.  Corresponding numerical sieve analysis data are 

summarized in Appendix 1.  Trial #1 for the 150mg/g strength employed slightly higher 

spray rates than runs #2 and #3.  The higher spray rates produced 5% agglomerates (≥16 

mesh ).  Trials #2 and #3, which utilized slower spray rates, each had only 0.4% 

agglomerates.   

 For the 300mg/g and 550mg/g processes, it was possible to use much higher spray 

rates than those utilized in the 150mg/g batch.  All trials for the 300mg/g strength 

demonstrated approximately 90% pellets retained on a 20 mesh screen with 

approximately 10% of the pellets retained on an 18 mesh screen.  All pellets were 

classified as singlets.   For the 550mg/gram strength, trials 1, 2, and 3 demonstrated 

1.2%, 1.2%, and 4% agglomerates (≥16 mesh), respectively.  In Trial 1, the larger 

number of pellets retained on the 18 screen was attributed to a significant quantity of 

non-pareil seeds that fell into the air plenum after the start of fluidization, and prior to the 

initiation of spraying.  These beads were assayed and found to contain no diltiazem.  The 

decreased quantity of non-pareil seeds available for the drug layering process 

subsequently resulted in the production of larger, super-potent pellets.  The 4% 

agglomerates in trial #3 were attributed to several line clogs that occurred during 

layering, resulting in localized overwetting. 
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 Figure 6.  Diltiazem HCl Pellet Particle Size Distribution via Sieve Analysis
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 Potency was evaluated over a theoretical target potency range of 96% to 

106% for all formulations.  The theoretical quantity of applied suspension to achieve 

desired pellet potency was determined by:  

 

      (Eq. 18) 

 

where Q is the weight in grams of non-pareil seeds, D is the theoretical quantity of active 

drug substance per gram of pellets at 100% potency, and P is the desired potency in 

percent.  Time points for sample selection were identified by monitoring the weight of 

suspension delivered during processing.  A description of the sampling scheme is 

presented in Table 3.  Within the studied range, theoretical potency increased by 

approximately 1% every 1.5, 3 or 4 minutes for the 150mg/gram, 300mg/gram, and 

550mg/gram lots, respectively.   

 

2.1.4  Near-IR Methodology 
 
 
2.1.4.1  Instrumentation 

 Near-IR reflectance spectra were collected using a NIRSystems Model 6500 

grating-based spectrometer (Foss NIRSystems, Silver Springs, MD).  Spectra were 

collected in reflectance mode as an average of 20 scans over a wavelength range of 1100 

to 2500 nm with a data interval of 2 nm.  Because of significant spectral noise above 

2200 nm due to the fiber optics, only the 1100 nm to 2200 nm region was used for 

spectral analysis.   
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Table 3.  Sampling scheme – laboratory-scale drug suspension layering. 
 

    
150mg/g Diltiazem HCl Pellets 

    
Theoretical Potency 

(%) 
Theoretical Potency 

(mg/g) 
Quantity Sprayed 

(g) 
Sample Time 

(min) 
87 130.6 1183 105 
90 135.1 1232 108 
93 139.6 1280 111 
96 144.1 1330 114 
98 147.1 1363 117 
100 150.1 1397 120 
102 153.1 1431 123 
104 156.1 1465 126 
106 159.1 1499 130 

    
    
    

300mg/g Diltiazem HCl Pellets 
    

Theoretical Potency 
(%) 

Theoretical Potency 
(mg/gram) 

Quantity Sprayed 
(g) 

Sample Time 
(min) 

96 288.1 2577 180 
98 294.1 2658 186 
100 300.1 2741 192 
102 306.1 2825 198 
104 312.1 2911 204 
106 318.1 2999 210 

    
    
    

550mg/g Diltiazem HCl Pellets 
    

Theoretical Potency 
(%) 

Theoretical Potency 
(mg/g) 

Quantity Sprayed 
(g) 

Sample Time 
(min) 

96 528.6 4189 260 
98 539.6 4417 268 
100 550.6 4660 276 
102 561.6 4920 284 
104 572.6 5199 292 
106 583.6 5500 300 
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2.1.4.2  In-line Spectrometry 

 To facilitate in-line spectroscopic monitoring of the drug suspension layering 

process, the rotor unit was modified to allow the insertion of a 0.5 inch diameter near-IR 

fiber-optic probe (Smart-Probe®, Foss/NIRSystems, Silver Spring, MD) directly into the 

processing chamber.  The probe had a 0.8 cm sapphire window, and consisted of two 

collinear fiber optic bundles.  Each bundle was 2.5 m long, and was comprised of 210 

optic fibers (each 200 µm diameter).  One bundle transmitted light from the exit slit of the 

monochromator to the sample, while the other bundle returned the reflected light from the 

sample to a PbS detector.  The fiber-optic-probe was located 180° from the tangential 

spray nozzle 2 inches above the rotor disk.  This vertical proximity of the probe was 

equivalent to approximately ½ of the product bed height.  The probe was adjusted such 

that its tip was even with the inside wall of the rotor processor, and in direct contact with 

the rotating particles.  Figure 7 presents a schematic drawing of the in-line sampling 

system for rotogranulation.  Photographs of the sampling system are shown in Figure 8.    

 During manufacturing, near-IR spectra of the rotating particles were obtained at 

specified theoretical potency intervals by monitoring the weight of suspension delivered.  

The time required to obtain one spectrum of 20 averaged scans was 20 seconds.  The 

number of pellets comprising a monolayer across the surface of the probe’s window was 

approximately 77, 58, and 47, for the 150mg/g, 300mg/g, and 550mg/gram strengths, 

respectively.  Therefore, in the time to obtain one spectrum, between ~950,000 

(550mg/g) and ~1.5 million pellets (150mg/g) were scanned. 
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Figure 7.  Fiber-optic Sampling System for Rotogranulation 
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Figure 8.  Fiber-Optic Sampling System for Rotogranulation 
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2.1.4.3  At-line Spectrometry 

 Although the fiber-optic probe obviated the need to remove samples from the 

processor, pellet samples were thieved from the processor immediately following each in-

line scan.  The samples, each weighing approximately 5 grams, were immediately 

screened through #16 and #30 mesh sieves to remove agglomerates and fines, and 

transferred to 3 dram glass scintillation vials. 

 Near-IR spectra were obtained in triplicate using a Rapid Content Analyzer® 

(RCA) sampling system (Foss NIRSystems, Silver Springs, MD).  Near-IR radiation 

from a tungsten-halogen source was brought to the RCA sample compartment by means 

of a fiber-optic bundle (420 fibers, each 200 µm diameter). Reflected light from the 

sample was reflected back into the detector array of the RCA, which consisted of four 

PbS detectors and four Si detectors for collection of near-IR and visible spectra, 

respectively. Spectra were obtained by scanning through the base (1.8 cm diameter) of 

the glass vials.  The number of pellets comprising a monolayer across a sample vial base 

was approximately 390, 290, and 240 for the 150mg/g, 300mg/g, and 550mg/g strengths, 

respectively.  Each vial was inverted three times between scans.  Replicate scans were 

averaged to obtain one spectrum for each sample time point.  Total collection time per 

sample was approximately 90 seconds.    

 

2.1.4.4  Spectral Preprocessing 

 Spectra were reference-corrected using a 99% Spectralon® disk (Labsphere, North 

Sutton, NH) and reflectance values were linearized with a log(1/R) transformation prior 

to analysis.  NIRSystems NSAS® software (Version 3.25, Foss NIRSystems, Silver 
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Springs, MD) was used for spectral processing.  Chemometric analysis was performed 

using proprietary programs written in SPEAKEASY IV EPSILON +® (Speakeasy 

Computing Corp., Chicago, IL) and NSAS® software.  Multiplicative scatter correction 

(MSC) or second derivative (D2) transformation of the spectra was performed prior to 

calibration development and at-line or in-line prediction to remove unwanted spectral 

variation due to particle size, density, and sample positioning, temperature and humidity 

fluctuation.   

 

2.1.5  Diltiazem HCl Reference Assay 
 
 
 Diltiazem HCl content of the pellet samples was determined using a validated 

HPLC method according to the USP 24 monograph for Diltiazem HCl Extended Release 

Beads (130).  A stock solution of diltiazem HCl (1 mg/ml) was prepared in methanol.  

Subsequently, the stock solution was diluted with 50:50 phosphate buffer:acetonitrile to 

obtain standard concentrations of 5, 10, 20, 30, 40, and 50 µg/ml. The samples were 

analyzed using a Hewlett-Packard model liquid chromatograph (Model 1050, Palo Alto, 

CA) equipped with a diode array detector.  A 4.6 mm x 150 mm column (Phenomenex, 

Torrance, CA) having 5 µm L7 (C-8) packing was used in the study.  A 50:50 v/v 

mixture of 0.05M monobasic potassium phosphate pH 3.0 buffer containing 0.05% 

triethylamine and acetonitrile was employed as the mobile phase.  The mobile phase was 

degassed by sparging with helium for 30 minutes and filtered through a 25 mm 0.45 µm 

hydrophilic PTFE membrane filter (Millex-LCR®, Millipore, Bedford, MA) prior to use.  

The flow rate was 1 ml/min, the detector wavelength was set at 240 nm, and the sample 

injection volume was 20 µl.  A linear regression was performed between the area-under-
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the-curve (AUC) and the drug concentration values.  Replicate solutions were made for 

each concentration over a three day period.  Figure 9 displays the standard curve 

obtained.  The R2 value for the calibration was 0.9999.  Triplicate injections of the 30 

mcg/ml standard over a three day period demonstrated an RSD of 0.25%.   

 The diltiazem HCl content of prepared pellet samples was determined by 

transferring each pellet sample to a 100 ml volumetric flask and diluting with 60 ml 

methanol.  The flasks were capped, placed on a mechanical shaker for 30 min, sonicated 

for 10 min, and then diluted to volume with methanol.  From each flask, a 3 ml aliquot 

was obtained, diluted to 100 ml with mobile phase, and mixed.  The resulting solution 

was passed through a 0.45 µm filter and transferred to HPLC vials for analysis. 

 

2.1.6  Quantitative Prediction of Pellet Potency 

 Several calibration models were investigated for predicting the diltiazem HCl 

content of drug layered pellets.  The simplest models assessed single or multiple 

wavelength calibration.  More complex multivariate techniques such as PCR and PLSR 

were also investigated in this study.  To assess the significance of spectral preprocessing 

on calibration development and performance, separate were developed for MSC and D2 

spectra.  Single and multiple wavelength calibrations, and PCR were performed using 

chemometric routines written in SPEAKEASY®.  PLSR was performed using NSAS® 

software.       
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2.2  Pilot-Scale Rotogranulation 

2.2.1  Materials   

  Diltiazem hydrochloride (Gyma, Milan, Italy), polyvinypyrrolidone K29/32 (ISP, 

Wayne, NJ), micronized talc (Alphafil 500, Luzenac America, Englewood, CO), and 25-

30 mesh non-pareil seeds (Chr. Hanson, Milwaukee, WI) were donated by Mylan 

Pharmaceuticals, Inc. (Morgantown, WV).   

 

2.2.2  Formulation  

 Two 75 kg batches of pellets containing 550mg/g (55%) theoretical active drug 

content were prepared by layering a 40% w/w aqueous suspension of diltiazem HCl (88% 

w/w), PVP K29/32 (6% w/w), and micronized talc (6% w/w) onto 25-30 mesh non-pareil 

seeds.  Quantitative descriptions of the formulations under investigation are presented in 

Table 4.  

  

2.2.3  Drug Suspension Layering 
 

 Suspension layering was conducted using a Vector FL-Multi-60 fluid bed 

processor (Vector Corporation, Marion, IA) equipped with a 30 inch rotor insert (Vector 

Corporation, Marion, IA).  Formulations were designed to yield approximately 75 kg of 

finished product to achieve 100% rotor capacity at the process endpoint.  Drug 

suspension was delivered via a peristaltic pump (Model 520DI, Watson Marlow, 

Wilmington, MA) to a four-nozzle tangential spray system in which each spray gun was 

equipped with a 1.2 mm nozzle tip.  The spray gun was completely immersed in the 

rotating product throughout the layering process. During processing, product  
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Table 4.  Pilot-scale diltiazem HCl pellet formulation. 
 

 

Ingredient Theoretical Quantity per Unit 
(mg) 

Quantity per Batch  
(kg) 

   
550 mg/g (55%)   
Non-Pareil Seeds (25-30 mesh) 371.6 27.9 
Diltiazem HCl 550.0 41.3 
PVP K29/32 39.2 2.9 
Micronized Talc 39.2 2.9 
Purified Water*  --- (70.7)* 
Total 1000.0 75.0 
   

   
  *  Removed during processing. 
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temperatures were maintained between 38°C and 48°C, and rotor speeds varied from 75 

to 90 rpm.  Angular velocity was ~12 ft/sec.  Spray rates varied from ~240 g/min to ~465 

g/min while atomizing air pressure was constant at 50 psi.  Processing parameters are 

presented in Table 5.  Of the listed parameters, inlet air temperature and spray rate were 

most critical for maintaining proper product temperature and avoiding spray drying or 

agglomeration.  Process spray rates, as a function of time, for the pilot-scale formulations 

are presented in Figure 10.   

 Process spray rates were initially low to prevent agglomeration of the pellets 

during early process stages.  As processing continued and the product and the fluid bed 

processor reached equilibrium temperature, spray rates were increased as necessary to 

maintain a target bed temperature of ~48°C.  A graphic representation of the pellet 

particle size distributions, based on sieve analysis, is presented in Figure 11.   

Corresponding sieve analysis data are summarized in Appendix 2.   

 Both pilot-scale batches had approximately 80% of the pellets retained on a #20 

mesh screen and approximately 15% of the pellets retained on a #18 mesh screen.  All 

pellets retained on these screen sizes were classified as singlets.   Trial #1 had 

approximately 2.4% agglomerates (>18 mesh) and Trial #2 had approximately 4.6% 

agglomerates.  The slightly higher quantity of agglomerates observed for Trail #2 as 

compared to Trail #1 and was attributed to a slightly higher spray rate at early time 

points.   
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Table 5.   Processing parameters for pilot-scale drug 
                 suspension layering. 
 
  
550 mg/g  
Inlet Air Temperature 67  ±  7° C 
Product Temperature 48  ±  12° C 
Exhaust Air Temperature 37  ±  6° C 
Number of Spray Guns 4 
Spray Rate 244 – 464 g/min 
Nozzle Size 1.2 mm 
Air Flow 700  ±  200 cfm 
Atomization Air Pressure 50 psi 
Rotor Speed 90 - 105 rpm 
Non-pareil Charge 27.9 kg 
Process Time 5 hours 
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 Potency was evaluated over a theoretical target potency range of 90% to 100% for 

both formulations.  The theoretical quantity of applied suspension to achieve desired 

pellet potency was determined by:  

 

          (Eq. 19) 

 

where Q is the weight in kg of non-pareil seeds, D is the theoretical quantity of active 

drug substance per gram of pellets at 100% potency, and P is the desired potency in 

percent.  Time points for sample selection were identified by monitoring the weight of 

suspension delivered during processing.  A description of the sampling scheme is 

presented in Table 6.  Within the studied range, theoretical potency increased by 

approximately 1% every 10 minutes. 

 

2.2.4  Near-IR Methodology 

2.2.4.1  Instrumentation 

 Near-IR reflectance spectra were collected using a NIRSystems Model 6500 

grating-based spectrometer (Foss NIRSystems, Silver Springs, MD).  Spectra were 

collected in reflectance mode as an average of 20 scans over a wavelength range of 1100 

to 2500 nm with a data interval of 2 nm.  Because of significant spectral noise above 

2200 nm due to the fiber optics, only the 1100 nm to 2200 nm region was used for 

spectral analysis.   
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Table 6.  Sampling scheme – pilot-scale drug suspension 
                layering. 

   
Theoretical Potency 

(%) 
Theoretical Potency 

(mg/g) 
Quantity Sprayed 

(kg) 
   

90 495 72.3 
91 551 75.7 
92 506 79.3 
93 512 83.1 
94 517 87.1 
95 523 91.4 
96 528 96.0 
97 534 101.0 
98 539 106.2 
99 545 111.9 
100 550 117.8 
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2.2.4.2  At-line Spectrometry 

 Although the fiber-optic probe obviated the need to remove samples from the 

processor, pellet samples were thieved from the processor immediately following each in-

line scan.  The samples, each weighing approximately 5 grams, were immediately 

screened through #18 and #30 mesh sieves to remove agglomerates and fines and 

transferred to 3 dram glass scintillation vials. 

 Near-IR spectra were obtained in triplicate using a Rapid Content Analyzer® 

(RCA) sampling system (Foss NIRSystems, Silver Springs, MD).  Near-IR radiation 

from a tungsten-halogen source was brought to the RCA sample compartment by means 

of a fiber-optic bundle (420 fibers, each 200 µm diameter). Reflected light from the 

sample was reflected back into the detector array of the RCA, which consisted of four 

PbS detectors and four Si detectors for collection of near-IR and visible spectra, 

respectively. Spectra were obtained by scanning through the base (1.8 cm diameter) of 

the glass vials.  Approximately 240 pellets comprised the monolayer across sample vial 

base.  Each vial was inverted 3 times between scans.  Replicate scans were averaged to 

obtain one spectrum for each sample time point.  Total collection time per sample was 

approximately 90 seconds.      

 

2.2.4.3  Spectral Preprocessing 

 Spectra were reference-corrected using a 99% Spectralon® disk (Labsphere, North 

Sutton, NH) and reflectance values were linearized with a log(1/R) transformation prior 

to analysis. NIRSystems NSAS® software was used for spectral processing and all 

chemometric analysis was performed using proprietary programs written in 
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SPEAKEASY IV EPSILON +® (Speakeasy Computing Corp., Chicago, IL).  

Multiplicative scatter correction (MSC) or second derivative (D2) transformation of the 

spectra was performed prior to calibration development and at-line or in-line prediction to 

remove unwanted spectral variation due to particle size, density, and sample positioning, 

temperature and humidity fluctuation 

 

2.2.5  Quantitative Prediction of Pellet Potency 

 Single wavelength, PCR and PLSR calibration models were investigated for 

predicting the diltiazem HCl content of drug layered pellets.  To assess the significance 

of spectral preprocessing on calibration development and performance, separate 

calibrations were developed for MSC and D2 spectra.  Single wavelength and PCR 

analyses were performed using chemometric routines written in SPEAKEASY®.  PLSR 

was performed using NSAS® software.   

 
 
2.3  Laboratory-Scale Wurster Coating 
 
 
2.3.1  Materials 

 Eudragit® RS30D (Rohm-Pharma, Darmstadt, Germany), triethyl citrate, NF 

(Citroflex®2 NF, Morflex Inc., Greensboro, NC) and micronized talc (Alphafil 500®, 

Luzenac America, Englewood, CO) were donated by Mylan Pharmaceuticals, Inc. 

(Morgantown, WV). 

 



 

 76

2.3.2  Formulation 

 The diltiazem HCl pellets prepared in the rotogranulation studies were coated 

with a  20% w/w suspension consisting of Eudragit® RS30D, triethyl citrate (18% w/w of 

polymer solids), and micronized talc (30% w/w of polymer solids).  Triplicate coating 

batches were processed for each of the three different potency beads.  A quantitative 

description of the coating system under evaluation is presented in Table 7.   

 All coating suspensions were prepared according to the following procedure.  The 

triethyl citrate (TEC) was dispersed in the water and mixed for 30 min using a laboratory 

mixer (Model G3UO5R, Lightnin, Rochester, NY) and 8 mm diameter axial flow 

impeller (Model A310, Lightnin, Rochester, NY).  The micronized talc was slowly added 

to the TEC/water dispersion then mixed for an additional 30 min.  The Eudragit® RS30D 

was passed through a 40 mesh sieve to remove agglomerates then slowly stirred into the 

TEC/talc suspension.  The final suspension was mixed a minimum of 60 minutes prior to 

application, as per the manufacturer’s recommendation, to ensure proper plasticization of 

the mixture.   

 

2.3.3  Sustained-release Coating  

 Coating was conducted using a Glatt GPCG-3 fluid bed processor (Glatt Air 

Techniques, Ramsey, NJ) equipped with a 6 inch Wurster insert.  Drug suspension was 

delivered via a Masterflex peristaltic pump (Cole-Parmer Instrument Co., Chicago, IL) to 

a spray system equipped with a 0.8 mm nozzle tip.  During processing, spray rates varied 

from 10 g/min to 15 g/min, and atomization air pressure was kept constant at 30 psi.  

Airflow was varied between 800 cfm and 850 cfm and the partition height was adjusted  
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Table 7.   Eudragit® RS30D coating system formulation. 
 

Ingredient Solids Quantity per Batch* 
(grams) 

Quantity per Batch* 
(grams) 

   
Eudragit RS30D 280 933.3 
Triethyl Citrate, NF 50.4 50.4 
Micronized Talc 84.0 84.0 
Purified Water** --- (1004.3)** 
Total 414.4 2072 
   

   
  *   Quantity applied to 1750 grams of core beads to achieve 16% polymer coat. 
** Removed during processing. 
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as needed to maintain adequate movement of the particulate bed.  Inlet air temperature 

was varied between 40ºC and 46ºC to maintain product temperatures between 28ºC and 

30ºC.    Summaries of the coating process parameters and spray rates are presented in 

Table 8.  Coating application rates for Eudragit® RS30D applied to 300mg/g diltiazem 

HCl beads are presented in Figure 12 as a function of time.  Spray rates for the 150mg/g 

and 550mg/g pellets were similar to those utilized in the 300mg/g trials.  

 Coating was evaluated over the range of 5% to 16% applied polymer solids.  

Sample points were identified by monitoring the weight of coating suspension delivered 

during processing.   A description of the theoretical sampling scheme is presented in 

Table 9.  Each minute the quantity of applied polymer increased by 0.11% which 

corresponded to a 1% increase in coating level approximately every 9 minutes. 

 

2.3.4  Near-IR Methodology  

2.3.4.1  Instrumentation 

 Near-IR reflectance spectra were collected using a NIRSystems Model 6500 

grating-based spectrometer (Foss NIRSystems, Silver Springs, MD).  Spectra were 

collected in reflectance mode as an average of 20 scans over a wavelength range of 1100 

to 2500 nm, with a data interval of 2 nm.  Since the Model 6500 spectrometer employs a 

fiber optic bundle, which has significant absorbance above 2200 nm, only the 1100 nm to 

2200 nm region was used for spectral analysis due to a lower instrumental signal-to-noise 

(S/N) ratio within this region. 
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Table 8.   Processing parameters for laboratory-scale 
                 Wurster coating. 
 
  
Inlet Air Temperature 40 - 46°C 
Product Temperature 28 – 30°C 
Exhaust Air Temperature 29 – 30°C 
Spray Rate 10 – 15 g/min 
Air Flow 800 – 850 cfm 
Atomization Air Pressure 30 psi 
Diltiazem HCl Core Bead Charge 1750 g 
Process Time 160 ±  10 min 
  

   
  



  

80 

 

Fi
gu

re
 1

2.
  E

ud
ra

gi
t R

S3
0D

 S
pr

ay
 R

at
es

 fo
r 3

00
m

g/
g 

D
ilt

ia
ze

m
 H

C
l P

el
le

ts
 

91011121314151617

0
30

60
90

12
0

15
0

18
0

Ti
m

e 
(m

in)

Spary rate (g/min)

Tr
ial

 #
1

Tr
ial

 #
2

Tr
ial

 #
3



 

 81

 
 
 
 
 
 
 
 
 
 
 

Table 9.  Sampling scheme – Laboratory-scale Wurster coating. 
 
Theoretical Applied 

Polymer Solids 
(%) 

Theoretical Applied 
Polymer Solids* 

(g) 

Suspension Applied* 
(g) 

Sample Time 
(min) 

    
5 87.5 648 65 
6 105 777 74 
7 122.5 907 82 
8 140 1036 91 
9 157.5 1166 100 
10 175 1295 108 
11 192.5 1425 117 
12 210 1554 125 
13 227.5 1684 134 
14 245 1813 143 
15 262.5 1943 151 
16 280 2072 160 
    

  
*  Per 1750 grams of diltiazem HCl core pellets.  
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2.3.4.2  In-line Spectrometry 

 In-line spectroscopic monitoring of the coating process involved the use of a 1 

inch diameter near-IR fiber-optic probe (Direct Reflectance Probe, Foss NIRSystem, 

Silver Spring, MD).  The probe had a 10 mm sapphire window, and consisted of two 

collinear fiber optic bundles.  Each bundle was 1 m long, and was comprised of 420 

source-to-sample fibers and 720 sample-to-detector fibers (each 200 µm diameter).  One 

bundle transmitted light from the exit slit of the monochromator to the sample, while the 

other bundle returned the reflected light from the sample to a PbS detector.    

 Initial studies attempted to scan directly through the polycarbonate sight glass in 

the base of the Wurster column.  However, the lexan exhibited very strong near-IR 

absorbance, which dramatically reduced the signal from the pellet samples.  To overcome 

this interference, a 1 inch diameter hole was drilled in the sight glass and a sapphire 

window was inserted such that the sapphire was flush with the surrounding lexan material 

and in contact with the pellets.  The sapphire and the adhesive used to secure it in place 

were transparent in the near-infrared region and did not interfere with spectral analysis.  

Figure 13 shows the near-IR spectra of 300mg/g diltiazem pellet samples coated with 

5%, 10% and 16% Eudragit RS30D obtained by scanning through either the lexan sight 

glass or the sapphire window.  Spectra obtained through the sapphire window were 

representative of the coated product, whereas those obtained by scanning through the 

original sight glass resembled the strong lexan signal.   Further evidence of the 

detrimental effects of lexan on the near-IR calibration is apparent in Figure 14, where it 

is obvious that there is no predictive ability for near-IR estimation of percent applied 

polymer solids (% w/w).   
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 Near-infrared spectra were obtained by using the fiber-optic probe to scan the 

moving pellets as they passed the sapphire window during processing.  Spectra were 

obtained at specified applications of polymer solids by monitoring the weight of coating 

suspension delivered.  The time required to obtain one spectrum was 20 sec.  The time 

required to obtain one spectrum of 20 averaged scans was 20 seconds.  The number of 

pellets comprising a monolayer across the surface of the probe’s window was 

approximately 120, 90, and 75, for the 150mg/g, 300mg/g, and 550mg/g strengths, 

respectively.  During processing, it was observed that the particle bed moved at a rate of 

~3 in/sec, therefore, in the time to obtain spectrum, between ~11,000 (550mg/g) and 

~18,000 pellets (150mg/g) passed the sapphire window.  Figure 15 illustrates a 

schematic of the in-line sampling system for Wurster coating.  Photographs of the 

sampling system are displayed in Figure 16.   

 

2.3.4.3  At-line Spectrometry 

 Immediately following each scan, a 5 g sample of pellets was extracted from the 

Wurster processor using a thief, screened through 16 and 30 mesh screens to remove 

agglomerates and fines, then transferred to 3 dram glass vials.  An additional near-IR 

evaluation of the pellet samples was performed at-line prior to reference analysis for 

polymer content.   

 Near-IR spectra were obtained in triplicate using a Rapid Content Analyzer® 

(RCA) sampling system (Foss NIRSystems, Silver Springs, MD).  Near-IR radiation 

from a tungsten-halogen source was brought to the RCA sample compartment by means  
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Figure 15.  Fiber-Optic Sampling System for Wurster Coating 
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Figure 16.  Fiber-optic Sampling System for Wurster Coating 
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of a fiber-optic bundle (420 fibers, each 200 µm diameter). Reflected light from the 

sample was reflected back into the detector array of the RCA, which consisted of four 

PbS detectors and four Si detectors for collection of near-IR and visible spectra, 

respectively. Spectra were obtained by scanning through the base (1.8 cm diameter) of 

the glass vials..  The number of pellets comprising a monolayer across a sample vial base 

was approximately 390, 290, and 240 for the 150mg/g, 300mg/g, and 550mg/g strengths, 

respectively.  Each vial was inverted three times between scans.  Replicate scans were 

averaged to obtain one spectrum for each sample time point.  Total collection time per 

sample was approximately 90 sec.      

 

2.3.4.4  Spectral Preprocessing 

 Spectra were reference corrected using a 99% Spectralon® disk (Labsphere, North 

Sutton, NH) and reflectance values were linearized with a log(1/R) transformation prior 

to analysis.  NIRSystems NSAS® software was used for spectral preprocessing and all 

other chemometric analysis was performed using proprietary programs written in 

SPEAKEASY IV EPSILON +® (Speakeasy Computing Corp., Chicago, IL).  To assess 

the significance of spectral preprocessing on calibration development and performance, 

separate calibrations were developed for MSC and D2 spectra.    

 

2.3.5  Eudragit® RS30D Assay 

 The quantity of Eudragit RS30D (ERS) polymer solids applied to diltiazem HCl 

pellets was determined using a modified version of a colorimetric ion-pair complexation 

method described by Melia et al. (131).  Eudragit RS30D solids were isolated from a 
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stock 30% w/w commercial aqueous latex dispersion by casting polymer films in 

polystyrene weigh boats and placing the samples in a 105 ºC laboratory oven for 48 h to 

remove water.  The prepared films were stored in a desiccator over phosphorous 

pentoxide for 24 hours prior to analysis. 

 Standard solutions of dried ERS in chloroform were prepared over a 

concentration range of 0.25 mg/ml to 5 mg/ml.  A 0.5 ml aliquot of stock solution was 

transferred to a 10 ml glass test tube and diluted with 4 ml chloroform and 5 ml 0.0016 M 

tropaeolin 000 in 0.1 M sodium chloride.  The test tube was capped and mixed on a 

platform vortex mixer for two minutes.  Chemical structures of ammonio methacrylate 

copolymer, the primary component of ERS, and tropaeolin 000 are presented in Figure 

17.  Upon mixing, the quaternary ammonium groups of the ERS complexed with the 

sulfonic acid functionalities of the anionic tropaeolin 000 dye and formed neutral species 

that partitioned into the organic layer.  The mixture was then centrifuged for 10 minutes 

at 2500 rpm and the organic layer was analyzed by visible spectrometry through 1 cm 

quartz cuvettes.  The absorption maximum of 485 nm was identical to that of the dye in 

the aqueous layer.  Absorbance at 485 nm was linearly related to the polymer 

concentration of the sample. Absorbance at 485 nm in the chloroform layer was found to 

be linearly related to polymer concentration over the range of  0.2 to 1.4 absorbance units 

with an R2 of 0.9997.   

 To determine the ERS content of coated diltiazem HCl pellets, 500 mg of sample 

pellets were transferred to 20 ml glass scintillation vials and vortexed for 15 min to 

dissolve the polymer.  Based on a theoretical range of applied polymer solids of 5% to 

16%, the test solutions had theoretical ERS concentrations of 1.25 mg/ml to 80 mg/ml.   
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Ammonio Methacrylate Copolymer 
the ratio of ethyl propenoate groups to methyl 2methylpropenoate groups to  

2-(trimethylammonio)ethyl 2-methylpropenoate groups is about 1:2:0.1 
 
 
 

Figure 17.  Chemical Structures of Tropaeolin OOO and  
Ammonio Methacrylate Copolymer 
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These were within the working range of the standard curve.  Subsequent dilution steps 

mimicked those used in preparation of the standard curve, however, following 

centrifugation it was observed that the entire quantity of tropaeolin 000 dye had 

partitioned into the organic layer.  Upon investigation, it was noted that the pH of the 

aqueous orange dye solution was approximately 6.5.  At this pH, the tertiary amine group 

of the basic diltiazem HCl drug substance, with a pKa of 7.7, would be ionized.  This 

cationic species would then compete with the positively charged quaternary ammonium 

groups on the ERS polymer for anionic binding sites on the tropaeolin 000 dye.  This was 

confirmed by testing additional samples spiked with varied levels of diltiazem HCl.  The 

non-pareil seed, povidone, and talc components of the core pellets were determined to be 

non-interfering species.   

 To minimize ionization of the diltiazem HCl drug substance, the initial procedure 

was modified such that the stock 0.0016 M tropaeolin 000 in 0.1 M sodium chloride 

solution was adjusted to pH 13 with 0.1 N sodium hydroxide.  At this pH, the color of the 

aqueous dye layer changed from orange to red.  However, the chloroform solution 

remained orange and there was no detectable shift in wavelength or intensity.  This pH 

adjustment was performed for all subsequent standard and test preparations.   A linear 

regression was performed between the absorbance at 485 nm and Eudragit RS30D 

concentration values.  Replicate solutions were made for each concentration over a three 

day period.  Figure 18 displays the standard curve obtained.  The R2 value for the 

calibration was 0.9998.  Analysis of a 2.5 mg/ml standard over a three day period 

demonstrated an RSD of 0.32%, while analysis of freshly prepared standards over a three 

day period demonstrated an RSD of 0.41%.
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2.3.6  Quantitative Prediction of Eudragit RS30D Coating Level  

 Several calibration techniques were investigated for predicting the quantity of 

Eudragit RS30D applied to diltiazem HCl core pellets.  Single and multiple wavelength 

calibrations as well as PCR and PLSR models were developed for both MSC and D2 

spectra with the concentration of Eudragit RS30D as the dependent variable and spectral 

absorbance values, principal components or PLS factors as independent variables.  Single 

and multiple wavelength calibration, and PCR were performed using programs written in 

SPEAKEASY®.  PLSR was performed using commercial NSAS® software.       

 

2.3.7  Qualitative Prediction of Eudragit RS30D Coating Endpoint  

 The ability of two pattern recognition algorithms to qualitatively predict coating 

process endpoints was assessed in this phase of study.  The techniques under 

investigation included a Mahalanobis Distance (MD) calculation and a Bootstrap Error-

Adjusted Single-sample Technique (BEAST).  These methods classify samples according 

to their similarity relative to a training set.  After training the computer to recognize the 

spectral qualities of acceptable material, the pattern recognition algorithms were 

employed to identify and classify unknown test samples.  All qualitative analyses were 

performed using programs written in SPEAKEASY®. 

 In this study, near-IR spectra from six pellet samples containing a known quantity 

of polymer solids were used to develop spectral training sets.  The quantity of applied 

coat solids was confirmed using the ERS assay previously described.  During subsequent 

coating trials, samples were collected at various time points corresponding to different 

levels of applied coating and their spectral similarity to the training set was assessed via 
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the described pattern recognition techniques.  For these analyses, samples within 3 SDs 

of the center of the training set cluster were considered to contain the desired level of 

Eudragit RS30D while samples with distances greater than 3 SDs were classified as 

outliers.   
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3  RESULTS and DISCUSSION 
 
 
3.1  Quantitative Prediction of Pellet Potency 
 
 
 Because most pharmaceutical active ingredients and excipients absorb near-IR 

radiation, studies utilizing near-IR provide information regarding all system components.  

Figure 19 displays the near-IR spectra of diltiazem HCl, nonpareil seeds, and 150 mg/g 

drug layered pellets corresponding to 86% to 106% theoretical potency based on applied 

suspension solids.  As layering proceeds, decreasing absorbance is observed in regions 

characteristic of the sucrose and starch-based non-pareil seeds  (1400 nm – 1600 nm and 

2000 nm – 2150 nm), while increasing absorbance is noted in regions characteristic of 

diltiazem HCl (1680 nm – 1900 nm and 1200  nm – 1350 nm).   

 Chemical structures of sucrose and diltiazem HCl, the primary components of the 

drug-layered pellets, are presented in Figure 20.  In the regions characteristics of the non-

pareil seed, the decreasing absorbance in the 1400 nm to 1600 nm region lies within the 

first overtone region and is attributed to O-H stretching, while the 2000 nm to 2150 nm 

region represents a combination band arising from O-H stretching.  In regions 

characteristic of diltiazem HCl, increasing absorbance in the 1680 – 1900 nm and the 

1200 nm – 1350 nm region, are primarily the result of C-H stretching and S-H stretching 

in the first and second overtones, respectively. 
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3.1.1  In-line Analysis of Pellet Potency 

 Single wavelength, multiple wavelength, and principal component calibrations 

were developed using both scatter corrected and second derivative spectra.  A PLS 

calibration model was also developed using second derivative spectra.  The choice of 

spectral preprocessing, MSC or D2, was based on the programs used to perform 

chemometric analysis.  Single wavelength, multiple wavelength, and PCR analyses were 

performed on both MSC and D2 using SPEAKEASY® chemometric routines.  PLSR 

was, however, performed using NSAS® software which offered only derivative-based 

spectral preprocessing.  Because spectra were collected during processing, calibration 

model development was limited to one spectral scan per batch at each time point.  Five 

batches were processed for each pellet strength.  Each batch was processed on a unique 

day with a complete set-up and tear-down of the fluid bed processor occurring between 

lots.  Calibrations were developed using 18 samples within the 96% to 106% theoretical 

potency range from three of the five batches for each formulation.  Two additional 

batches from each formulation were processed to assess the predictive power of the 

developed calibrations.   

 

3.1.1.1  Single and Multiple Wavelength Regression 

 For the single and multiple wavelength models, the most robust calibrations were 

developed using wavelengths from spectral regions characteristic of non-pareil seeds or 

diltiazem HCl drug substance.  A single wavelength calibration was developed using 

absorbance values at 1672 nm which was highly correlated with diltiazem HCl.  A two-

wavelength model was developed using 1680 nm and 2040 nm, which correlated with 
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diltiazem HCl and non-pareil seeds, respectively.  A SPEAKEZ® program provided 

preliminary identification of suitable wavelengths for calibration based on least-squares 

regression statistics R2 and SEC.  Wavelengths to be used for calibration were then 

selected based on their correlation to significant absorbance bands for diltiazem or non-

pareil seeds.   

 For the 150mg/g strength, pellet potency increased by approximately 1% every 90 

seconds.  Single- and multiple-wavelength models for this strength had R2 values of 0.93 

and 0.92, respectively.  SEC and SEP were 0.97% and 1.33%, respectively, for the 

single-wavelength model, and 0.89% and 1.25%, respectively, for the multiple 

wavelength calibration.  For the 550mg/g strength, pellet potency increased by 

approximately 1% every four minutes.  For this strength, both the single- and multiple-

wavelength models provided R2 values of 0.99.  SEC and SEP were 0.30% and 1.72%, 

respectively, for the single-wavelength model, and 0.57% and 1.61%, respectively, for 

the multiple wavelength calibration.   

 

3.1.1.2  Principal Component Regression 

 Principal component regression was used following an MSC or D2 treatment of 

the NIR data.  Initially, spectra were transformed into principal component axis space.  

Table 10 summarizes the sequences of principal components and their percentages of 

contribution to the total variations of spectral data for each pellet strength.  The roots 

provide information about the magnitudes of variances along with principal component 

axes.  The first principal component accounts for the largest amount of the total 

variations which, for MSC spectra, ranges from about 48% for 150mg/g pellets to about  
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93% for the 550mg/g strength.  For D2 spectra, a greater number of PCs were required to 

explain the total spectral variation.  The correlation of the first two PCs to the non-pareil 

seed and diltiazem HCl components of 150 mg/g and 550  mg/g drug layered pellets can 

be observed in Figures 21 and 22, respectively, which present the loadings spectrums of 

these components for MSC spectra.  Although not readily apparent in the graphs, the 

correlation of these PCs to certain spectral regions characteristic of the primary pellets 

components was confirmed by comparing second derivative spectra of these ingredients 

to the loading spectra.  Interestingly, a higher degree of noise is observed in 150mg/g 

pellets, relative to the 550mg/g strength, which has a much smoother loadings spectrum.  

The factors contributing to the increased noise in the 150 mg/g spectra are may be related 

to increased scatter from a smaller pellet particle size distribution, and a greater rate of 

change in potency occurring over the collection interval.  

 The principal components used for regression were limited to those that 

contributed significantly to the model (t-statistic >3.0).  Regression results are 

summarized in Table 11.  For both MSC and D2 spectra, two PCs were significant for all 

pellet strengths, which allowed potency to be predicted within ~1.5% of actual values.  

The inclusion of additional PCs was also investigated during calibration development.  

Although such models provided lower SEC values, they demonstrated higher SEP values, 

indicating potential overfitting of the data.  Ideally, robust calibrations should be based 

on PCs which provide SEC and SEP values that are similar and as low as possible.  The 

multivariate calibrations presented here have been optimized in such a manner.  
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Figure 21.  Loadings Spectrum of in-line 150mg/g Diltiazem HCl Pellets  
PC-1 (top) and PC-2 (bottom) 
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Figure 22.  Loadings Spectrum of in-line 550mg/g Diltiazem HCl Pellets  
PC-1 (top) and PC-2 (bottom) 
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3.1.1.3  Partial Least Squares Regression 

 Partial least squares regression was performed on D2 spectra using a commercial 

software package,  NSAS® Version 3.25, that was provided with the NIRSystems Model 

6500 spectrometer.  As previously described, PLSR is useful with small populations of 

samples that contain experimental noise in the near-IR and/or the chemical data.  PLS is 

similar to PCA, in that the regression factors for both are linear combinations of 

wavelengths established from combinations of near-IR spectra.  In PCA, principal axis 

transformation is performed independently of the calibration regression, and accounts for 

the maximum variation in the near-IR data.  Under PLS, the principal axis transformation 

and the development of the calibration regression are concurrent, where the factors 

describe the types of spectral variation that are important for modeling the variables in 

the chemical data.  A validation process is employed to assess the amount of error due to 

variation between the samples in the population and to identify the appropriate number of 

factors to provide a robust calibration without overfitting the model.   

 The cross validation approach employed by the NSAS® software splits the 

population into N segments (usually four) then validates the segment as an unknown 

against the remaining sections.  The selection process designates as a segment, sample 1, 

sample 5, sample 9, etc. as the regression moves through the entire population until all 

the samples in the population are fully validated.  The procedure calculates the mean 

square error or cross validation (MSECV) for the population and attempts to determine 

the number of factors that will characterize the sample set without overfitting it.  The user 

is provided the option of comparing a separate test population against the calibration 

population to validate the model.  For each model, the software determines and reports 
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the minimum MSECV, the ratio of the current MSECV value to the minimum value in 

the set, the correlation coefficient, and the standard error.  It then recommends an 

appropriate number of factors based on the ratio of the current MSECV to the minimum 

MSECV in which it recognizes the optimal number of factors as those that provide a ratio 

of about 1.25 (132).  A “prediction” function allows the user to apply a stored calibration 

equation to a spectral data file for prediction of constituent percentages.   

 The preceding discussion is provided to explain the approach taken in NSAS® for 

PLS calibration model development.  The preceding explanation of the NSAS® method 

for PLS calibration, and the use of this software in the current study is, by no means, 

advocating the use of a “black-box” approach to near-IR calibration and analysis.  At the 

time this work was performed, our laboratory was primarily focused on the development 

of PCA regression models for near-IR data.  Since PLS was available in the commercial 

NSAS® software package that accompanied the spectrometer used to collect spectral data 

from drug layering and pellet coating experiments, a logical extension of this work was to 

assess the performance of the NSAS® PLS model in predicting pellet potency and applied 

polymer solids and compare its performance to PCA methods.  When using any type of 

commercial software, the relevance of suggested regression factors with respect to the 

analyte characteristics under evaluation, should be well understood, and their effect on 

model performance and robustness critically assessed.   
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 Partial least squares regression results of D2 spectra for all pellet strengths are 

summarized in Table 12.  The results were similar to those obtained using PCR, with 

SEPs less than 1.5% observed for most models.  Similar to PCR, the SEC and SEP 

observed using PLS regression improved as pellet strength increased.  This was attributed 

to a slower rate of potency change over the spectral acquisition interval, and potentially 

less particle size related scatter associated with the higher strengths.  Interestingly, the 

NSAS® software use of the ratio of current MSECV value to the minimum value in the 

calibration was effective at identifying an ideal number of factors to prevent overfitting.  

Although SEC could be improved by adding PLS factors to the model, SEP was observed 

to decrease when too many factors were included in the calibration.  As previously 

reported, a similar phenomenon was observed for PCR regressions when non-statistically 

significant PCs were included in the calibration.   

 

3.1.1.4  Summary of In-line Regression Model Performance 

 A summary of the performance of optimized single wavelength, multiple wavelength, 

PCR and PLS models for in-line analysis of all pellet strengths is presented in Table 13.  

Similar calibration results were obtained for 150 mg/g, 300mg/g, and 550mg/g drug 

layered pellets.  Standard error of the laboratory (SEL) (133) for the HPLC reference 

method, calculated according to the following equation, was determined to be 

approximately 0.46%, which was well within the USP chromatographic system suitability 

limit of 2% (134).   
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Table 12.  Partial least squares regression results for in-line analysis of 
                  diltiazem HCl drug-layered pellets.    

     
150 mg/g 

Factor MSECV R SEC SEP 

1 2.862 0.87 2.67 % 2.71% 
<2> 1.053 0.95 1.24 % 1.52% 

3 1.634 0.97 1.11 % 1.63% 
4 1.881 0.98 0.88 % NT 
5 1.347 0.99 0.61 % NT 

     
300 mg/g 

Factor MSECV R SEC SEP 

1 2.504 0.89 1.72 % 2.01% 
2 1.223 0.95 1.04 % 1.12% 
3 0.982 0.97 0.84 % 1.05% 

<4> 0.828 0.99 0.58 % 0.96% 
5 0.727 0.99 0.43 % 1.12% 
     

550 mg/g 

Factor MSECV R SEC SEP 

<1> 0.815 0.97 1.04 % 0.71% 
2 0.851 0.98 0.87 % 0.95% 
3 1.151 0.98 0.74 % NT 
4 1.445 0.99 0.60 % NT 
5 1.600 0.99 0.50 % NT 
     

     < > - factors recommended by NSAS®  

      NT - not tested. 
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Table 13.  Summary of regression results for in-line assessment of pellet potency. 
 

     
150mg/g Diltiazem HCl Pellets 

   Potency (%) 
Regression Model PCs R2 SEC SEP 

     
PCR – MSC 2 0.83 1.66 1.49 
PCR – D2 2 0.90 1.32 1.09 
     
PLS – D2 2 0.95 1.24 1.52 
     
Multiple Wavelength -- 0.92 0.89 1.25 
     
Single Wavelength -- 0.93 0.97 1.33 
     
     

300mg/g Diltiazem HCl Pellets 
   Potency (%) 

Regression Model PCs R2 SEC SEP 
     
PCR – MSC 2 0.88 1.42 1.01 
PCR – D2 2 0.88 1.27 0.96 
     
PLS – D2 4 0.99 0.58 0.96 
     
Multiple Wavelength -- 0.99 0.51 0.36 
     
Single Wavelength -- 0.99 0.82 0.31 
     
     

550mg/g Diltiazem HCl Pellets 
   Potency (%) 

Regression Model PCs R2 SEC SEP 
     
PCR – MSC 2 0.94 1.02 0.93 
PCR – D2 2 0.95 0.99 1.02 
     
PLS – D2 1 0.97 1.04 0.71 
     
Multiple Wavelength -- 0.99 0.57 1.61 
     
Single Wavelength -- 0.99 0.30 1.72 
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              (Eq. 20)  

 

 

In this equation, Op1 and Op2 are reference potency values measured on separate days, 

and m is the number of samples analyzed.   

 All multivariate calibration models, with the exception of the 150mg/g MSC/PCR 

model, demonstrated R2 values of 0.88 or greater and standard errors of calibration no 

greater than 1.4%.  Interestingly, even the simplistic single and multiple wavelength 

models demonstrated their ability to predict pellet potency within 2% of HPLC values.  

Such results indicate that it may be possible to employ inexpensive single filter 

instruments for on-line monitoring of drug layering operations.  However, there are 

numerous advantages to full-spectrum methods, including:  the ability to reduce noise by 

averaging data over both wavelengths and spectra; noise reduction by rejecting the higher 

factors, into which the noise is preferentially placed; the advantages inherent in the use of 

orthogonal variables; and the avoidance of the time-consuming step of performing the 

wavelength selection process.  On the other hand, when a condition of differential non-

linearity exists in the data, traditional wavelength selection (i.e., MLR) might be capable 

of creating more accurate models than full wavelength methods, since, almost be 

definition, this approach will find the wavelength(s) where the effect of non-linearity are 

minimal, which full-spectrum methods (PCS and PLS) may not do (134). 
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 Of the three drug levels investigated, the 150mg/g pellets demonstrated the most 

rapid rate of potency change within the studied range.  Pellet potency increased by 

approximately 1% every 90 seconds.  Figure 23 shows a plot of both the calibration and 

prediction results obtained by principal component regression of second derivative 

spectra for 150mg/g pellets.  Despite the rapidly changing drug content of the pellets, 

potency could be accurately predicted using in-line near-IR analysis.  The calibration 

model provided an R2 value of 0.90 and a SEC of 1.32%.  Although SEP and SEC values 

below 2% would be acceptable for most rotogranulation operations, the calibration 

performance of the 150mg/g strength could possibly be improved by slowing down the 

application rate or decreasing the solids content of the drug layering suspension.   

 

3.1.2  At-line Analysis of Pellet Potency 

 Frequently, the physical modification of processing equipment to allow in-line 

process monitoring is not feasible.  In such instances, at-line process monitoring may be a 

viable alternative.  In this study, an at-line near-IR analysis of pellet samples was 

conducted prior to HPLC potency analysis.  At-line spectra of unit-dose samples were 

obtained in triplicate by scanning through the base of the glass sample vials using a 

NIRSystems Rapid Content Analyzer and model 6500 spectrometer.   

 Figure 24 compares second derivative spectra of 300mg/g diltiazem HCl pellets 

collected in-line using the fiber-optic probe, or at-line using the rapid content  

analyzer.  The spectral features of both samples are similar.  Such spectral similarity may 

be attributed to the fact that both in-line and at-line samples are representative of the 

batch at specified sample time points, and that both instruments utilize similar optical  
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design characteristics, a common monochromator system, and similar fiber optic bundles 

and detector materials.   

 

3.1.2.1  Single and Multiple Wavelength Regression 

 Similar to the in-line studies, the single and multiple wavelength models that 

provided the most robust calibrations were developed using wavelengths from spectral 

regions characteristic of non-pareil seeds or diltiazem HCl drug substance.  A single 

wavelength calibration was developed using absorbance values at 1672 nm which was 

highly correlated with diltiazem HCl.  A two-wavelength model was developed using 

1680 nm and 2040 nm, which correlated with diltiazem HCl and non-pareil seeds, 

respectively.   For the 150mg/g strength, single- and multiple-wavelength models had R2 

values of 0.99 and 0.98, respectively.  SEC and SEP were 0.76% and 0.84%, 

respectively, for the single-wavelength model, and 0.54% and 0.56%, respectively, for 

the multiple wavelength calibration.  For the 550mg/g strength, both the single- and 

multiple-wavelength models provided R2 values of 0.99.  SEC and SEP were 0.49% and 

0.56%, respectively, for the single-wavelength model, and 0.48% and 0.53%, 

respectively, for the multiple wavelength calibration.  The improved performance of 

these techniques, relative to the in-line results, is likely due to the static nature of the 

samples, normalized particle size due to sieving prior to analysis, triplicate scans of the 

samples to provide a more representative spectrum of each sample, and a larger number 

of samples in the calibration set. 
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3.1.2.2  Principal Component Regression 

 Principal component regression was used following an MSC or D2 treatment of 

the NIR data.  Initially, spectra were transformed into principal component axis space.  

Table 14 summarizes, for each pellet strength, the sequences of principal components 

and their percentages of contribution to the total variations of spectral data.  Similar to in-

line sampling, the first principal component accounts for the largest amount of the total 

variations which, for MSC spectra, ranges from about 68% for 150mg/g pellets to about 

91% for the 550mg/g strength.  For D2 spectra, a greater number of PCs were required to 

explain the spectral variation.  In these spectra, the amount of total variation explained by 

the first PC ranges from about 60% for 150mg/g pellets to about 78% for the 550mg/g 

strength.   

 The correlation of the first two PCs to the non-pareil seed and diltiazem HCl 

components of 150 mg/g and 550  mg/g drug layered pellets can be observed in Figures 

25 and 26, respectively, which present the loadings spectrums of these components for 

MSC spectra.  The loadings for 150 mg/g and the 550 mg/g at-line samples are very 

similar to those obtained from the vial samples; however, a smoother loading spectra was 

observed for the at-line samples relative to spectra collected in-line.  

 The principal components used for regression were limited to those that 

contributed significantly to the model (t-statistic >3.0).  Regression results are 

summarized in Table 15.  For the 150 mg/g and 300mg/g strengths, two PCs were 

significant (t-statistic > 3.0) and used in the calibration model development. For the 550 

mg/g strength, one PC significant PC was used in the model.  These models demonstrated 

that potency could be predicted within ~1% of actual values.  In addition, for all models,  
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Figure 25.  Loadings Spectrum of at-line 150mg/g Diltiazem HCl Pellets  
PC-1 (top) and PC-2 (bottom) 
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Figure 26.  Loadings Spectrum of at-line 550mg/g Diltiazem HCl Pellets  
C-1 (top) and PC-2 (bottom) 
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SEC and SEP were inversely related to pellet strength.  In general at-line analysis had 

SEC and SEP values about 0.5% lower than those obtained from in-line methods.  A 

detailed discussion of the factors contributing to the observed differences in calibration 

and prediction errors between in-line and at-line analyses is provided later in this 

manuscript.   

 

3.1.2.3  Partial Least Squares Regression 

 Partial least squares regression results of D2 spectra for all pellet strengths are 

summarized in Table 16.  The results were similar to those obtained using PCR, with 

SEPs less than 1% achieved, and an inverse relationship between pellet strength and SEP 

observed   In general, the PLS models used one additional regression factor as compared 

to PCR,  which may be attributed to inclusion of sources of analyte error in the model.  

The addition of such information may have allowed slightly lower SEPs to be achieved 

without overfitting.  The ratio of current MSECV value to the minimum value in the 

calibration was again effective at identifying an ideal number of factors to prevent 

overfitting. 

 

3.1.2.4  Summary of At-Line Regression Model Performance 

 A summary of the performance of optimized single wavelength, multiple 

wavelength, PCR and PLS models for at-line analysis of all pellet strengths is presented 

in Table 17.  In addition, a plot of both the calibration and prediction results obtained by 

principal component regression of second derivative spectra for 150mg/g pellets is 

presented in Figure 27.  Similar calibration results were obtained for 150mg/g, 300mg/g,  
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Table 16.  Partial least squares regression results for at-line analysis of 
                  diltiazem HCl drug-layered pellets.    

     
150 mg/g 

Factor MSECV R SEC SEP 

1 1.353 0.79 2.24 % 2.55% 
2 0.267 0.96 0.96 % 1.12% 

<3> 0.187 0.98 0.77% 0.80% 
4 0.156 0.98 0.66 % NT 
5 0.117 0.99 0.56% NT 

     
300 mg/g 

Factor MSECV R SEC SEP 

1 0.357 0.95 1.12% 1.23% 
2 0.222 0.98 0.64% 0.69% 
3 0.178 0.99 0.62% 0.65% 

<4> 0.162 0.99 0.56% 0.55% 
5 0.138 0.99 0.53% 0.57% 
     

550 mg/g 

Factor MSECV R SEC SEP 

<1> 0.109 0.9902 0.66% 0.55% 
2 0.108 0.9920 0.61% 0.53% 
3 0.129 0.9935 0.58% 0.68% 
4 0.150 0.9940 0.53% NT 
5 0.138 0.9946 0.52% NT 
     

     < > - factors recommended by NSAS®  

      NT - not tested. 
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Table 17.  Summary of regression results for at-line assessment of pellet 
                  potency. 
 

     
150mg/g Diltiazem HCl Pellets 

   Potency (%) 
Regression Model PCs R2 SEC SEP 

     
PCR – MSC 2 0.92 0.92 0.75 
PCR – D2 2 0.97 0.63 0.55 
     
PLS – D2 3 0.98 0.77 0.80 
     
Multiple Wavelength -- 0.99 0.54 0.56 
     
Single Wavelength -- 0.98 0.76 0.84 
     
     

300mg/g Diltiazem HCl Pellets 
   Potency (%) 

Regression Model PCs R2 SEC SEP 
     
PCR – MSC 2 0.96 0.72 0.66 
PCR – D2 2 0.96 0.63 0.65 
     
PLS – D2 4 0.99 0.56 0.55 
     
Multiple Wavelength -- 0.98 0.70 0.78 
     
Single Wavelength -- 0.99 0.55 0.52 
     
     

550mg/g Diltiazem HCl Pellets 
   Potency (%) 

Regression Model PCs R2 SEC SEP 
     
PCR – MSC 1 0.98 0.66 0.53 
PCR – D2 1 0.97 0.65 0.54 
     
PLS – D2 1 0.99 0.66 0.55 
     
Multiple Wavelength -- 0.99 0.48 0.53 
     
Single Wavelength -- 0.99 0.49 0.56 
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and 550mg/g drug layered pellets.  At-line analysis produced significantly better 

calibration and prediction results than the in-line system.  All multivariate calibration 

models demonstrated R2 values of 0.94 or greater and standard errors of calibration no 

greater than 1.0%.  The simplistic single and multiple wavelength models also 

demonstrated their ability to predict pellet potency within 1% of actual HPLC values.  As 

previously discussed, such results indicate that it may be possible to employ inexpensive 

single filter instruments for on-line monitoring of drug layering operations.  However, the 

numerous advantages of full-spectrum methods should be strongly considered during 

near-IR method development.  

 

3.1.3   Comparison of In-line and At-line Near-IR Methods for Monitoring 
Drug Layering 

  
 
 A comparison between in-line and at-line calibration model prediction errors is 

presented in Table 18.  Using PCR or PLS, the average in-line and at-line SEPs for pellet 

potency were 1.11% and 0.63%, respectively, with a maximum SEP exhibited by the 

150mg/g strength PLS-D2 in-line model.  The use of single or multiple wavelength 

models allowed potency prediction with average SEPs of 1.09% and 0.63%, for in-line 

and at-line analyses, with a maximum value of 1.72% exhibited in the 500mg/g in-line 

model.   Such results are reasonable in terms of the ability to control the drug loading 

process, and acceptable with respect to the 0.46% SEL value of the reference method.  

 Overall, at-line analyses demonstrated lower calibration and prediction errors than 

in-line methods.  Several contributing factors to the robust performance of the at-line 

method may include: (i) the stationary nature of the sample; (ii) normalized particle size  
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Table 18.  Comparison of in-line and at-line regression model performance for 
                  potency prediction.   
   

150mg/g Diltiazem HCl Pellets 
 

Standard Error Of Prediction (%) Regression Model  In-line At-line 
   
PCR – D2 
 

1.09 0.55 

PLS – D2 
 

1.52 0.80 

Multiple Wavelength 
 

1.25 0.56 

Single Wavelength 
 

1.33 0.84 

   
300mg/g Diltiazem HCl Pellets 

 
Standard Error Of Prediction (%) Regression Model  In-line At-line 

   
PCR – D2 
  

0.96 0.65 

PLS – D2 
 

0.96 0.55 

Multiple Wavelength 
 

0.36 0.78 

Single Wavelength 
 

0.31 0.52 

   
550mg/g Diltiazem HCl Pellets 

 
Standard Error Of Prediction (%) Regression Model In-line At-line 

   
PCR – D2 
 

1.02 0.54 

PLS – D2 
 

0.71 0.55 

Multiple Wavelength 
 

1.61 0.53 

Single Wavelength 
 

1.72 0.56 
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and morphology due to removal of pellets from the process stream and sieving prior to 

analysis; (iii) the use of a larger number of samples for calibration development to 

encompass inherent variability in the sample pellet population; and (iv) differences 

between the spectral acquisition systems.   

 The number of samples for calibration development and prediction for the in-line 

system was unavoidable given the rate of potency change during processing and the 

operations that needed to be performed between each sample point.  Within the potency 

range used for calibration development, theoretical potency increased by approximately 

1% every 1.5, 3 or 4 min for the 150mg/g, 300mg/g, and 550mg/g lots, respectively.  The 

following operations, which required approximately 65 – 70 sec to complete, were 

performed between the acquisition of each sample:  (i) obtain a 20 scan spectrum [~30 

seconds]; (ii) thief pellet sample from processor for reference potency analysis and at-line 

analysis [~10 sec]; (iii) sieve pellet sample through upper and lower sieve to remove 

agglomerates [~15 sec]; (iv) transfer pellet sample to labeled sample vial [~10 sec].   

 For the 300mg/g and 550mg/g strengths, the relative non-active time available 

between sample time points was approximately 1.5 and 2.5 min, respectively.  For 

150mg/g pellet processing, there was only about 20 sec of non-active time.  Additional 

samples were not obtained because the sampling scheme was designed to assess samples 

at predefined process points corresponding to theoretical coating levels based on 

traditional weight gain monitoring methods.  If the study were to be repeated, a larger 

number of samples in the calibration set would be investigated by both increasing the 

potency range being investigated, and increasing the number of batches to be included in 

the calibration set.    
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 To investigate the effect of increasing both the calibration range and the number 

of samples in the calibration set, a regression model was developed using 162 spectra 

collected at-line from a total of nine rotogranulation batches (3 lots per strength) for 

150mg/g, 300mg/g, and 550mg/g pellets.  In order to develop the calibration across all 

pellet strengths, potency values were converted to percentage of diltiazem HCl content 

per pellet sample, 15%, 30%, 55%, respectively.   A scatter plot of the calibration 

obtained following principal component regression of MSC spectra is presented in 

Figure 28.  To test the calibration, the drug content of 108 samples from six additional 

batches (2 lots per strength) was assessed.  Using two principal components an R2 value 

of 0.998, an SEC of 0.66%, and an SEP of 0.71% were achieved.   

 Although it was possible to develop a single calibration across the studied range 

of pellet strengths, differences in slope between individual pellet strength categories can 

be seen in Figure 28.  These deviations are a manifestation of non-linearity between the 

response of the near-IR method and drug concentration across the broad range of the 

single calibration model.  Such non-linearity may result in erroneous estimation of pellet 

potency, and could adversely affect the ability to validate such a method for routine use.  

Therefore, the development of individual potency calibrations within specific pellet 

strength categories, as conducted in this study, is preferred.  An additional limitation of 

this model is the time required to perform the processing steps described above relative to 

the rate of potency change occurring during processing.  In such cases, unique calibration 

models with a reduced number of scans would be required.  Alternatively, though not 

preferred due to increased cost and process inefficiency, the drug layering suspension  
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could be diluted or the spray rate decreased to slow the rate of potency change during 

processing. 

 Differences between the potency range characteristics for the studied pellet 

strengths are also exemplified in Figure 28.  This graphic clearly demonstrates that the 

96% to 106% potency range becomes broader as drug content increases from 150 mg/g to 

550mg/g.  In terms of drug content, studied potency ranges were 144 mg/g to 159 mg/g 

for the 15% pellets, 288 mg/g to 312 mg/g for the 30% pellets and 528 mg/gram to 572 

mg/g for the 55% strength.  Such differences also help to explain why there exists a rank 

order difference in rate of potency change over the 150mg/g to 550mg/g strength range. 

 The grouping of pellet samples according to drug content is also apparent in 

Figure 29 which is a principal component scores plot of the first PC versus the second 

PC, obtained following PCA of MSC spectra.  Data from such plots may be used in 

pattern recognition tests in a quality control environment for qualitative classification of 

samples according to pellet strength.  Such classification could be particularly beneficial 

as a quality control procedure during encapsulation of multiple types of pellets by 

ensuring that the different pellet types or strengths are correctly placed into their 

respective hoppers.     

 Within each strength category, pellets could also be qualitatively classified 

according to coating level.  A principal component scores plot of the first PC versus the 

second PC obtained following PCA of MSC at-line spectra for 55% diltiazem HCl pellets 

is presented in Figure 30.  Such classification, when used in combination with various 

pattern recognition algorithms, could also be used to identify desired rotogranulation  
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process endpoints.  An example of this type of application is discussed later in this 

manuscript.     

 Another significant factor governing the robust performance of the at-line method 

for assessing pellet potency is the configuration of spectral data collection systems.  For 

at-line analysis, a NIRSystems Rapid Content Analyzer® module was used for spectral 

collection, while in-line analysis utilized a NIRSystems fiber optic Smart Probe®.  

Although both the Rapid Content Analyzer and the Smart Probe utilize fiber bundles for 

transmitting excitation light to the sample, there are significant differences in their bundle 

configurations.  The RCA utilizes 420 fibers to transmit near-IR excitation energy from 

the source to the sample over a distance of 10 in.  The Smart Probe, which is also 

composed of 420 fibers, however, utilizes 210 fibers to transmit excitation energy to the 

sample and 210 fibers to return reflected light to the detector over a distance of 5 ft.   

 Since the Smart Probe, as compared to the RCA, utilizes fewer fibers to carry 

light to and from the sample and the distance the energy must travel is much greater, 

significant energy loss over the length of the fiber occurs.  This energy  

loss translates to lower absorbance values for spectra collected using the probe. This 

difference is exemplified in Figure 31, which depicts spectra of 100% potent  

150mg/g diltiazem HCl pellets collected using either the RCA or the SmartProbe.     Such 

absorption differences are likely to translate to a lower signal to noise ratio for the 

SmartProbe, which may contribute to the higher and more variable SEC and SEP results 

obtained during in-line assessment of pellet potency.  This increase in noise can be 

observed in Figure 32, which shows the loadings spectrum for PC-1 following PCA 

analysis of MSC spectra for a 150mg/g rotogranulation trial analyzed using the Smart  
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Probe.  A much smoother loadings spectrum for the same samples analyzed using the 

RCA is shown Figure 33.   

 Two additional factors that may have contributed to increased noise in the in-line 

spectra are sample presentation and pellet morphology and size distribution.  In-line 

analysis assessed the characteristics of moving particles, whereas the at-line technique 

involved analysis of stationary samples.  Prior to at-line analysis, agglomerates and fines 

were removed from the sample via a simple sieving process.  During in-line analysis, 

however, there was no opportunity to remove out-of-specification particles from the 

batch.   

 

3.1.4.  Practical Considerations Regarding Near-infrared Monitoring of Drug 
  Layering  
 
 
 Numerous processing and formulation factors such as rotor speed, inlet air 

temperature, process airflow, atomization air pressure, dew point, solids content of 

layering suspension, binder level, and drug solubility characteristics can dramatically 

affect the potency and morphology of pellets produced via rotogranulation.  Although 

typical drug layering processes utilize lengthy and expensive manufacturing schemes, 

operations typically rely on theoretical determinations of applied solids to indirectly 

predict drug layering endpoints.   

 During this study, the accuracy of the theoretical applied solids method for 

assessing pellet potency was evaluated.  Table 19 is a summary of the theoretical (based 

on applied suspension solids) versus actual potency (as determined by HPLC) for 

150mg/g, 300mg/g, and 550mg/g diltiazem HCl pellets.  These data demonstrate that  
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there was an approximate 2% difference between theoretical and actual pellet potency, 

with actual potency being less than theoretical values in most instances.  For this type of 

unit operation, such losses are expected, and would be addressed by adjusting the capsule 

fill weight to compensate for the loss.  However, during this study, trial #1 of the 

150mg/g strength and trial #1 of the 550mg/g strength pellets demonstrated -5% and +6% 

deviations from theoretical potency.  These deviations were attributed to assignable 

processing issues, which are not uncommon in routine pharmaceutical manufacturing 

operations.   

 For the 150mg/g batch, several nozzle clogs during processing caused localized 

over-wetting and generated approximately 10% agglomerates (>16 mesh) within the 

batch.  The agglomerates were subsequently removed from the batch via the screening 

process.  The screened pellets, although sub-potent, would conform to USP assay 

specifications of 90.0% - 110% at the theoretical target process endpoint (100% 

theoretical potency).  Since actual HPLC potency values, not theoretical values, are used 

in the development of calibration models, inclusion of these data in the model was 

deemed acceptable.    

 For the 550mg/g batch, a significant quantity of non-pareil seeds was observed in 

the air plenum below the rotor after processing.  The beads were assayed and found to 

contain no diltiazem.  The absence of drug substance on the beads indicates that the beads 

fell into the plenum during start-up which can occur with this rotogranulation operation.  

This resulting decrease in the quantity of non-pareil seeds available for drug layering 

subsequently resulted in the production of super-potent beads.  These beads, were also 

deemed acceptable for use in the development of calibration models.  
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 The data summarized in the table above demonstrates that traditional methods of 

monitoring applied coating suspension solids during rotogranulation are neither optimal 

nor reliable.  True batch potency, as measured by HPLC, and weight gain methods 

differed by as much as 7% due to potential systematic problems that occurred during 

processing, i.e., nozzle clogs or pellet loss to the plenum during start-up.  Even when no 

process anomalies were encountered, pellet potency as determined by weight gain 

differed from HPLC values by an average of 3%.  Hence, there is a need for an in-line 

method to monitor such pelletization processes.  

 Because near-IR methods for determining pellet potency are less affected by 

changes in processing conditions than traditional weight gain monitoring techniques, 

such methods can provide a higher degree of confidence in identifying process endpoints.  

With such methods in place, the development of near-IR in-process release specifications 

could reduce production cycle-time by allowing subsequent batch processing to proceed 

prior to receiving analytical laboratory results, or prevent the loss of an entire batch due 

to an unexpected process anomaly.    

 

3.1.5  Pilot Plant Applications 

 Because of the favorable results obtained in the laboratory scale study, an 

experiment was conducted to assess the ability to predict the potency of pilot scale pellets 

using data obtained from experiments performed in the laboratory.  A comparison of 

laboratory versus pilot-scale processing parameters, including rationale for scale-up 

parameter selection is presented in Table 20.  Although quantitatively identical 

laboratory and pilot-scale 550mg/ml formulations were evaluated in this study,  
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Table 20. Processing parameters for drug suspension layering – laboratory 
                      versus pilot scale. 
 
Parameter Laboratory Pilot Scale Scale-up Rationale 

Batch Size 3.3. kg 75 kg 
to provide 100% 

equipment fill at process 
endpoint 

Inlet Air Temperature 60  ±  5° C 67  ±  7° C 
adjusted to maintain 

product temperature within 
target 40 – 50ºC range 

Product Temperature 40  ±  2° C 48  ±  12° C target 40 – 50 ºC based on 
laboratory scale data 

Exhaust Air Temperature 46  ±  3° C 37  ±  6° C dependent variable 

Number of Spray Guns 1 4 proportional increase based 
on equipment design  

Nozzle Size 1.2 mm 1.2 mm identical to development  

Total Spray Rate 10 – 27 g/min 244 - 464 g/min 

linear increase based on 
solution delivery rate, bowl 

charge, and atom. air 
pressure, product 

performance 

Atomization Air Pressure 40 psi 50 ± 10 psi proportional increase based 
on solution delivery rate 

Rotor Speed 550 ± 25 rpm 90 ± 15 rpm 
experimentally determined 
to prevent attrition during 

processing 

Angular Velocity ~29 ft/sec ~12 ft/sec 
experimentally determined 
to prevent pellet attrition 

during processing 

Air Flow 120  ±  10 cfm 700  ±  200 cfm 

adjusted to maintain 
sufficient fluidization and 
adequate rate of solvent 

evaporation  

Process Time 5 hours 5 hours identical  
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theoretically determined process parameters were adjusted, as necessary, to provide a 

finished product with desirable physical (narrow particle size distribution, minimal 

agglomerates and fines, smooth surface) and chemical (assay, content uniformity) 

characteristics.  Near-IR analyses were conducted once final process parameters were 

defined.   

 The MSC/PCR calibration developed for the 550mg/g laboratory scale pellets was 

used to predict the potency of a 75 kg pilot scale batch.  Figure 34 shows a plot of 

predicted versus actual potency.  The prediction error for this study, 1.04%, although 

acceptable, was slightly higher than in the laboratory study.  This error may be attributed 

to differences in pellet surface characteristics and density differences between laboratory 

and pilot scale pellets.   

 The application of near-IR for predicting the endpoint of clinical or production 

scale batches based on calibration models developed in the laboratory may prove to be 

very important to the pharmaceutical manufacturer.  When drug layering or polymer 

coating efficiencies vary, as they do, from lab scale equipment to larger equipment used 

for manufacturing, the availability of a rapid on-line or at-line measurement for 

prediction of process endpoints may potentially save millions of dollars in time and 

materials.  Although the standard error of prediction may not match the values obtained 

when calibration and validation data arise from product manufactured on the same 

equipment, the results may be good enough to prevent loss from the initial batches of 

clinical production lots of product while saving valuable time.    

 An additional study was conducted to assess the ability to monitor clinical batch 

pellet production and predict pellet potency.  From each of the initial 75 kg batches, 
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eighteen samples ranging from 90% to 100% theoretical potency were analyzed 

according to previously described at-line methods, and used to develop potency 

calibrations.  Samples from two additional 75 kg pilot-scale batches, processed using 

similar conditions to those used for calibration, were used to test the model.  The 

regression results for PCR, PLS, and single wavelength calibration provided SEP values 

ranging from 0.32% to 0.53% which were similar to those observed in laboratory-scale 

at-line analysis.  Such results are not surprising since both the training samples and the 

test samples were processed under the same conditions, handled similarly, and tested via 

the same at-line procedures.  Because these batches were part of a clinical batch 

manufacturing campaign, it was not possible to conduct in-line analysis due to cGMP 

concerns.  However, the at-line results clearly demonstrate that near-IR analysis can be 

an efficient tool for accurately monitoring the potency of drug layered beads in a 

production environment.   

 
 

3.2 Quantitative Prediction of Eudragit RS30D Coating  
  Level 

 
 
 Wurster coating studies utilized diltiazem HCl pellets from each potency class 

prepared during initial rotogranulation studies.  The pellets were coated with an aqueous 

dispersion of Eudragit RS30D (ERS) which was plasticized with triethyl citrate and 

contained talc as an anti-tacking agent.  Figure  35 (baselines off-set for clarity) shows 

the spectra of a core 550mg/g diltiazem pellet, a cast ERS film, and coated pellets 

containing 5% to 16% theoretical applied polymer solids.  Although the spectra appear to  
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be very similar, minor spectral changes can be observed in regions characteristic of the 

Eudragit RS30D polymer and core pellets.  Chemical structures of the primary coating 

system and core pellet components were presented in Figure 17 and Figure 20, 

respectively.  

 Truncated regions of the coated bead spectra, presented in Figure 36, demonstrate 

that absorbance increases with applied coating in regions characteristics of the coating 

material, while absorbance decreases in regions characteristic of the core pellet.  The 

increasing absorbance in the 1680 to 1700 nm is attributed to C-H stretching in the first 

overtone region due to the influence of the poly(ethylacrylate, methylmethacrylate) 

trimethyl-ammonio-ethylmethacrylate chloride polymer, the primary component of the 

ERS system.  The decreasing absorbance observed in a region characteristic of the core 

pellet, 2156 nm to 2180 nm, are likely the result of a combination bands arising from 

amine stretching associated with diltiazem HCl.   

 

3.2.1  In-Line Analysis of Coated Pellets 

 Duplicate coating batches were processed for each of the three different potency 

types of diltiazem HCl core beads.  The same calibration techniques used to build models 

for the prediction of pellet potency were employed to develop an in-line near-IR method 

for determining applied ERS solids during Wurster coating.   

 Single wavelength, multiple wavelength, and principal component calibrations 

were developed using both scatter corrected and second derivative spectra.  A PLS 

calibration model was also developed using second derivative spectra.  The choice of 

spectral preprocessing, MSC or D2, was based on the programs used to perform  
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A.  Spectral Region Characteristic of Eudragit RS30D 

 

 
B. Spectral Region Characteristics of Diltiazem HCl 

 
 

Figure 36:  550mg/g Diltiazem Pellets Coated with 6% - 16% Polymer Solids 
Truncated Spectral Regions 
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chemometric analysis.  Single wavelength, multiple wavelength, and PCR analyses were 

performed on both MSC and D2 using SPEAKEASY® chemometric routines.  PLSR 

was, however, performed using NSAS® software which offered only derivative-based 

spectral preprocessing.  Because spectra were collected during processing, calibration 

model development was limited to one spectral scan per batch at each time point.   

 A total of 4 batches were processed for each pellet strength.  Two batches were 

processed per day with complete set-up and tear-down of the fluid bed processor 

occurring between lots.  Calibrations were developed using 24 samples within the 5% to 

16% theoretical applied polymer solids range from two of the four batches for each 

formulation.  Two batches from each formulation were processed to assess the predictive 

power of the developed calibrations.   

 

3.2.1.1  Single and Multiple Wavelength Regression 

 For the single and multiple wavelength models, the most robust calibrations were 

developed using wavelengths from spectral regions characteristic of the ERS polymer or 

the drug-layered pellet.  A single wavelength calibration was developed using absorbance 

values at 1616 nm which was highly correlated with ERS.  A two-wavelength model was 

developed using 1616 nm and 2086 nm, which correlated with ERS and drug-layered 

pellets, respectively.  For all strengths, both single- and multiple-wavelength models had 

R2 values of 0.99, and SEC and SEP values of <0.5% were achieved.  
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3.2.1.2  Principal Component Regression 

 Principal component regression of spectra collected in-line was used following 

MSC or D2 treatment of the NIR data.  Initially, spectra were transformed into principal 

component axis space.  Table 21 summarizes the sequences of principal components and 

their percentages of contribution to the total variations of spectral data.  The first 

principal component accounts for the largest amount of the total variations which, for 

MSC spectra, is about 60%.  For D2 spectra, a greater number of PCs were required to 

explain total spectral variation. In these spectra, the amount of total variation explained 

by the first PC is about 50%. 

 The correlation of the first two PCs to the ERS and drug-layered pellet 

components of 150 mg/g, 300mg/g, and 550  mg/g beads coated with 16% w/w ERS can 

be observed in Figures 37 and 38, which present the loadings of these PCs for MSC 

spectra.  In general, a smother loading spectra is observed for the at-line samples relative 

to spectra collected in-line which may be attributed to: (i) the stationary nature of the 

sample; (ii) normalized particle size and morphology due to removal of pellets from the 

process stream and sieving prior to analysis; (iii) more uniform sample moisture; and (iv) 

differences between the spectral acquisition systems.   

 The principal components used for regression were limited to those that 

contributed significantly to the model (t-statistic >3.0).  Regression results are 

summarized in Table 22.  Two PCs were significant for all models (t-statistic > 3.0) with 

the exception of 300mg/g D2/PCA, in which only one PC was significant.  All models 

demonstrated that applied polymer solids could be predicted within 0.7% of laboratory 

values for all pellet strengths.  The inclusion of additional PCs was also investigated  
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Figure 37.  First PC Loadings for 16% ERS Coated Pellets – in-line sampling 
150mg/g (top), 300mg/g (middle), 550mg/g (bottom) 
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Figure 38.  Second PC Loadings for 16% ERS Coated Pellets – in-line sampling 
150mg/g (top), 300mg/g (middle), 550mg/g (bottom) 
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during calibration development.  Although such models provided lower SEC values, they 

demonstrated higher SEP values, which may indicate overfitting of the data.  The 

calibrations utilized in this study were based on PCs which provided SEC and SEP values 

that were similar and as low as possible, thus maximizing the model robustness.   

 

3.2.1.3  Partial Least Squares Regression 

 Partial least squares regression results of D2 spectra for all pellet strengths are 

summarized in Table 23.  Performance of the PLSR was similar or slighlty better than 

PCR, with SEPs of less than ~0.5% achieved for all pellet strengths.  In some instances, 

SEP values were lower than SEC.  Since only a limited number of samples were available 

for model development, such behavior was not unexpected.   

 

3.2.1.4  Summary of In-Line Regression Model Performance 

 A summary of the performance of optimized single wavelength, multiple 

wavelength, PCR and PLS models for in-line analysis of applied polymer solids during 

Wurster coating is presented in Table 24.  Similar calibration results were obtained for 

150 mg/g, 300mg/g, and 550mg/g drug layered pellets.  All calibration models 

demonstrated R2 values of 0.98 or greater and standard errors of calibration less than 

0.70%.  A scatter plot of the calibration and prediction results obtained by D2/PCR 

regression of second derivative 150mg/g pellet spectra pellets is presented in Figure 39.  

This model demonstrated an R2 value of 0.98, an SEC of 0.63%, and an SEP of 0.35%.  

Standard error of the laboratory (SEL) for the reference method, as previously reported, 

was approximately 0.47%.   
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Table 23.  Partial least squares regression results for in-line ERS 
                  polymer coating onto diltiazem HCl drug-layered pellets.    

     
150 mg/g 

Factor MSECV R SEC SEP 

1 2.25 0.99 0.59% 0.52% 
2 1.72 0.99 0.52% 0.42% 

<3> 1.17 0.99 0.37% 0.25% 
4 1.15 0.99 0.32% NT 
5 1.29 0.99 0.25% NT 

     
300 mg/g 

Factor MSECV R SEC SEP 

1 6.28 0.98 0.71% 0.87% 
2 2.41 0.98 0.38% 0.42% 
3 1.66 0.99 0.29% 0.36% 

<4> 1.38 0.99 0.23% 0.34% 
5 1.12 0.99 0.17% 0.39% 
     

550 mg/g 

Factor MSECV R SEC SEP 

1 2.34 0.99 0.65% 0.72% 
2 1.84 0.99 0.51% 0.54% 

<3> 1.29 0.99 0.47% 0.50% 
4 1.27 0.99 0.42% NT 
5 1.39 0.99 0.41% NT 
     

     < > - factors recommended by NSAS®  

      NT - not tested. 
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Table 24.  Summary of regression results for in-line assessment of applied ERS 
                  polymer. 

     
150mg/g Diltiazem HCl Pellets 

   Applied Polymer (%) 
Regression Model PCs R2 SEC SEP 

     
PCR – MSC 2 0.98 0.55 0.61 
PCR – D2 2 0.98 0.43 0.70 
     
PLS – D2 3 0.99 0.37 0.25 
     
Multiple Wavelength -- 0.99 0.36 0.39 
     
Single Wavelength -- 0.99 0.40 0.20 
     
     

300mg/g Diltiazem HCl Pellets 
   Applied Polymer (%) 

Regression Model PCs R2 SEC SEP 
     
PCR – MSC 2 0.99 0.28 0.33 
PCR – D2 1 0.98 0.51 0.55 
     
PLS – D2 3 0.99 0.29 0.36 
     
Multiple Wavelength -- 0.99 0.20 0.25 
     
Single Wavelength -- 0.99 0.14 0.21 
     
     

550mg/g Diltiazem HCl Pellets 
   Applied Polymer (%) 

Regression Model PCs R2 SEC SEP 
     
PCR – MSC 2 0.98 0.34 0.48 
PCR – D2 2 0.99 0.29 0.31 
     
PLS – D2 2 0.99 0.47 0.50 
     
Multiple Wavelength -- 0.99 0.21 0.33 
     
Single Wavelength -- 0.99 0.25 0.28 
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 As observed in the rotogranulation study, the simplistic single and multiple 

wavelength models also demonstrated their ability to accurately predict applied polymer 

solids content within ~0.75% of actual values.  Therefore, it may be possible to employ 

simple filter-based instruments to monitor coating operations in-line.  However, the 

merits and shortcomings of both full-spectrum and single or multivariate modeling 

techniques, as previously discussed, should be thoroughly investigated to assure 

consistent model accuracy for a routine commercial environment (134).   

 

3.2.2  At-line Analysis of Coated Pellets 

 At-line spectra of unit-dose samples were obtained in triplicate by scanning 

through the base of the glass sample vials using a NIRSystems Rapid Content Analyzer 

and model 6500 spectrometer.  Table 25 provides a summary of the calibration models 

developed using coated pellet spectra collected at-line.  Additionally, a plot of both the 

calibration and prediction results obtained by principal component regression of second 

derivative spectra for 150mg/gram pellets is presented in Figure 40.  Overall, the 

performance of the at-line methods was similar to the in-line models with SEP values of 

less than of ~0.6% achieved for all models. 

 

3.2.3  Comparison of In-line and At-line Near-IR Methods for Monitoring 
Wurster Coating 

  

 A comparison between on-line and at-line coating prediction errors is presented in 

Table 26.  For all calibration models, it was possible to predict potency within 0.6% of 

reference laboratory values.  Interestingly, the in-line model, in some instances, provided  
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Table 25.  Summary of regression results for at-line assessment of applied ERS 
                  polymer.  

     
150mg/g Diltiazem HCl Pellets 

   Applied Polymer (%) 
Regression Model PCs R2 SEC SEP 

     
PCR – MSC 2 0.99 0.43 0.59 
PCR – D2 2 0.99 0.37 0.48 
     
PLS – D2 2 0.99 0.38 0.42 
     
Multiple Wavelength -- 0.99 0.33 0.39 
     
Single Wavelength -- 0.99 0.39 0.42 
     
     

300mg/g Diltiazem HCl Pellets 
   Applied Polymer (%) 

Regression Model PCs R2 SEC SEP 
     
PCR – MSC 2 0.99 0.37 0.49 
PCR – D2 2 0.99 0.27 0.49 
     
PLS – D2 2 0.99 0.29 0.34 
     
Multiple Wavelength -- 0.99 0.27 0.34 
     
Single Wavelength -- 0.99 0.31 0.37 
     
     

550mg/g Diltiazem HCl Pellets 
   Applied Polymer (%) 

Regression Model PCs R2 SEC SEP 
     
PCR – MSC 2 0.99 0.23 0.53 
PCR – D2 2 0.99 0.26 0.59 
     
PLS – D2 2 0.99 0.23 0.41 
     
Multiple Wavelength -- 0.99 0.21 0.32 
     
Single Wavelength -- 0.99 0.25 0.28 
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Table 26.  Comparison of in-line and at-line regression model performance for 
                  applied ERS polymer coating prediction.   
   

150mg/g Diltiazem HCl Pellets 
 

Standard Error Of Prediction (%) Regression Model  In-line At-line 
   
PCR – D2 
 

0.70 0.48 

PLS – D2 
 

0.25 0.42 

Multiple Wavelength 
 

0.39 0.39 

Single Wavelength 
 

0.20 0.42 

   
300mg/g Diltiazem HCl Pellets 

 
Standard Error Of Prediction (%) Regression Model  In-line At-line 

   
PCR – D2 
  

0.55 0.49 

PLS – D2 
 

0.36 0.34 

Multiple Wavelength 
 

0.25 0.34 

Single Wavelength 
 

0.21 0.37 

   
550mg/g Diltiazem HCl Pellets 

 
Standard Error Of Prediction (%) Regression Model In-line At-line 

   
PCR – D2 
 

0.31 0.59 

PLS – D2 
 

0.50 0.41 

Multiple Wavelength 
 

0.33 0.32 

Single Wavelength 
 

0.28 0.28 
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better prediction results than did the at-line method.  This may be attributed to the fact 

that in-line spectra were obtained by scanning through a  

stationary sapphire window which is transparent in the near-IR region.  During at-line 

analysis, error may be introduced from variations in sample packing, sample 

repositioning, and variability in the base of the glass vial through which spectra are  

collected.  Such results are reasonable in terms of the ability to control the drug loading 

process, and acceptable with respect to the 0.41% SEL of the reference method.  

 With respect to sample presentation, Yoon et al., (135) in their analysis of sample 

presentation effect on the spectra of pharmaceutical excipients, demonstrated that sample 

thickness and sample presentation diameter had considerable effects on near-IR spectral 

characteristics while spectral changes associated with sample packing was less 

pronounced.  In the current study, the depth of the pellets in the sample vials and the 

depth of the pellets moving past the direct reflectance in the in-line method were similar 

(~5 cm).  Since the beads analyzed in this study are free-flowing, have a relatively narrow 

particle size distribution, and do not considerably consolidate when tapped, variations in 

packing differences were also not likely significantly contribute to at-line measurement 

error.  However, to mitigate risk associated with packing differences and the potential for 

sample segregation to occur, each vial was inverted 3 times between scans and replicate 

scans were averaged to obtain one composite spectrum for each sample time point.   

 One aspect of the sampling that potentially contributed to better prediction results 

for the in-line method, as compared to at-line analysis was sample presentation diameter.  

The sapphire window in direct reflectance probe used for in-line analysis had a diameter 

of 10 mm, while the base diameter of the sample vials used for at-line analysis was 
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18 mm.  In addition, both the Direct Reflectance Probe and the RCA utilize 420 fibers 

(200 µm diameter) to carry near-IR radiation to the sample.  Therefore, since the sapphire 

window diameter in the direct reflectance probe is smaller than the base of the sample 

vials, and the distance the near-IR radiation travels through the fibers in the probe is 

significantly greater than for the RCA, lower absorbance values for the in-line samples 

would be expected.  However, as seen in Figure 41, which depicts spectra of 150mg/g 

diltiazem HCl pellets coated with 16% ERS collected using either the RCA or the fiber 

optic probe, higher absorbance values were associated with the probe sampling system.  

Such absorption differences are likely to translate to a lower signal to noise ratio for the 

RCA, which may contribute to the higher and more variable SEC and SEP results 

obtained during at-line assessment of pellet potency.  In addition, the loadings spectra for 

PC-1 and PC-2 of MSC spectra for 150mg/g diltiazem HCl pellets coated with 6% to 

16% ERS, presented in Figure 42 and Figure 43, demonstrate good correlation to 

spectral features of interest in predicting coating level.  Despite minor performance 

differences between the in-line and at-line systems, both were quite effective in providing 

a non-invasive technique for monitoring the Wurster coating process.   

 

3.2.4  Prediction of Dissolution of Eudragit RS30D Coated Pellets 

 Prior to final blending or encapsulation, intermediate pellets lots are often tested 

to ensure that they meet product specifications such as potency and dissolution.  Since the 

production of most extended-release pellet products usually involves time consuming and 

expensive manufacturing operations, in-house quality control mechanisms are commonly 

employed to prevent the combination of sub-standard intermediates with acceptable  



  

163 

 
  

Fi
gu

re
 4

1.
  1

50
m

g/
g 

D
ilt

ia
ze

m
 +

 1
6%

 E
R

S 
C

oa
t

R
C

A
 v

er
su

s 
D

ire
ct

 R
ef

le
ct

an
ce

 S
am

pl
in

g

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8 11

00
13

00
15

00
17

00
19

00
21

00

w
av

ele
ng

th
 (n

m
)

log 1/R

Pr
ob

e
RC

A



  

164 

 

Fi
gu

re
 4

2.
  P

C
-1

 L
oa

di
ng

s 
fo

r 1
5%

 D
ilt

ia
ze

m
 H

C
l P

el
le

ts
 +

 1
6%

 E
R

S 
C

oa
t

R
C

A
 v

er
su

s 
D

ire
ct

 R
ef

le
ct

an
ce

 P
ro

be

-0
.1

5

-0
.1

0

-0
.0

5

0.
00

0.
05

0.
10

0.
15

11
00

13
00

15
00

17
00

19
00

21
00

w
av

ele
ng

th
 (n

m
)

weights

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log 1/R

Pr
ob

e
RC

A
C

or
e

ER
S



  

165 

 
 

Fi
gu

e 
43

.  
PC

-2
 L

oa
di

ng
s 

fo
r 1

5%
 D

ilt
ia

ze
m

 H
C

l P
el

le
ts

 +
 1

6%
 E

R
S 

C
oa

t
R

C
A

 v
er

su
s 

D
ire

ct
 R

ef
le

ct
an

ce
 P

ro
be

-0
.3

0

-0
.2

0

-0
.1

0

0.
00

0.
10

0.
20

0.
30

0.
40

11
00

13
00

15
00

17
00

19
00

21
00

w
av

ele
ng

th
 (n

m
)

weights

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log 1/R

Pr
ob

e
RC

A
C

or
e

ER
S



 

 166

( )( )( )bxxeayy 010
−−++=

product.  Once identified, sub-standard material may either be reworked (if possible) or 

removed entirely from subsequent manufacturing operations.  Although such quality 

mechanisms may potentially save companies millions of dollars, intermediate testing 

procedures may be costly and time consuming, especially for extended-release products 

intended to provide twenty-four hour drug release.  The development of near-infrared 

spectroscopic methods to predict extended-release pellet dissolution characteristics could 

potentially reduce production cycle down-time associated with the acquisition of 

intermediate laboratory results.  Furthermore, such methods would allow product quality 

to be assessed prior to completing the manufacture of an entire batch.  

 In this study, drug release from 120 mg doses of 55% diltiazem HCl pellets, 

coated with either 12%, 14% or 16% Eudragit RS30D, was evaluated over 8 h using a 

USP dissolution apparatus equipped with an automated UV sampling system 

(Varian/Cary, Palo Alto, CA).  Dissolution conditions, as per the USP 24 monograph for 

Diltiazem Hydrochloride Extended-release Capsules (130), were: n = 12, 900 ml of 0.1N 

HCl, apparatus II, 50 rpm paddle speed, λ = 240 nm.  The time required for 50% of drug 

release to occur (t50%) was determined by modeling the dissolution profiles using 

TableCurve 2D® software (Version 4.0., Systat Software, San Rafael, CA).  The 

dissolution profiles, presented in Figure 44, were fit to the four parameter sigmoidal 

equation:  

 
          (Eq. 21) 
 
 
where: 0y  represents the lower bound in dissolution; a is the difference between the 

upper and lower bound in dissolution; 0x  is the time of the inflection point; and b  is a  
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scale parameter (width in time in which most of the dissolution change occurs).  

Dissolution data and regression coefficients are summarized in Appendices 3 – 5. 

 Sigmoidal drug release patterns from Eudragit® RS coated pharmaceutical 

products have been well studied (136,137), and are best described by an ion exchange 

mechanism.  As the dissolution medium dissolves the diltiazem HCl in the core, anionic 

counterions from both the drug substance and the dissolution media interact with the 

oppositely charged quaternary ammonium groups in the Eudragit RS polymer and 

increase the permeability of the hydrated polymer film.  The lag time associated with this 

phenomenon is controlled by the rate of water influx through the coating, and increases 

with increasing thickness of the coat.   

 Prior to dissolution, near-IR spectra were collected from 1100 to 2200 nm using a 

NIRSystems 6500 spectrometer equipped with a Rapid Content Analyzer sampling 

system.  The spectra were scatter corrected and reduced to 275 wavelengths  

prior to principal component analysis for calibration development.  In this analysis, the 

first two principal components explained 99% of the variability in the spectral data and 

were used in the calibration model.  Figure 45 shows a plot of calibration and results 

obtained.  The model had a R2 of 0.997, an SEC of 6.9 minutes and an SEP of 8.1 min.   

 The results of this study demonstrate the potential of near-infrared spectroscopy 

as a rapid, non-destructive means for assessing the dissolution characteristics of 

extended-release pellets.  Furthermore, the dissolution data generated shows that the 

coating applied to pellets within a target applied polymer solids range is uniform.  For 

n=12 samples, t50% values varied by only by about 7 min (~3%) over a four to six hour 

time period.     
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3.3   Qualitative Prediction of Eudragit RS30D Coating 
Endpoint 

  

 In addition to being a powerful tool for quantitative pharmaceutical analysis, near-

IR spectroscopy has gained recognition for its qualitative analysis capabilities.  

Qualitative analysis involves classifying samples by comparing their spectral 

characteristics to those of a reference group.  The most widely accepted methods for 

qualitative near-IR analysis utilize pattern recognition techniques.  Such methods classify 

samples according to their similarity to a training set.  Because pattern recognition 

techniques can only recognize the variability to which they accustomed, it is necessary to 

develop a training set that represents all expected sources of spectral variability.  After  

training the computer to recognize the spectral qualities of acceptable material, pattern 

recognition algorithms can be employed to quickly identify and classify unknown test 

samples.     

 The ability of two pattern recognition methods to qualitatively predict coating 

process endpoints was assessed in this phase of study.  The techniques under 

investigation included a MD calculation and a BEAST (Bootstrap Error-Adjusted Single-

sample Technique).  Of these methods, the BEAST has been previously shown to offer 

speed, accuracy and precision over the Mahalanobis distance metrics in qualitative 

analysis of near-IR data (78,138).  Both methods classify samples according to their 

similarity to a training set.  After training the computer to recognize the spectral qualities 

of pellet samples containing a desired level of applied polymer coating, the referenced 

pattern recognition algorithms were employed to identify and classify unknown test 
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samples as either acceptable or unacceptable with respect to a target applied coating 

level.   

 In this study, three different training sets, corresponding to 6%, 10% and 15% 

applied polymer solids, were developed from samples collected from two Wurster 

coating runs.  Each target training set was comprised of 12 samples (six samples from 

each coating run).  For each sample, triplicate spectra were collected by scanning through 

the base of the glass sample vials using a NIRSystems Rapid Content Analyzer and 

model 6500 spectrometer, then averaged.  Following MSC treatment of the near-IR data, 

a principal-axis-transformation of the spectral data points was performed.  Principal 

component analysis reduced 275 independent variables to 2 principal components which 

explained 99% of the variance in the data.  Training sets development for both the 

Mahalanobis and BEAST analyses utilized two principal components and 1000 bootstrap 

replications.     

 During two subsequent coating trials, samples were collected at various time 

points over a range of 6% to 16% applied polymer solids.  Using the bootstrap algorithm 

or Mahalanobis distance metric to assess test sample spectral similarity to the training set, 

a distance analogous to a standard deviation was calculated between the test sample and 

the center of the training cluster.  Samples within 3 SDs from the training cluster were 

considered to contain the target coat and were classified as acceptable.  Samples with 

SDs >3 were classified as outliers and were deemed unacceptable.   

 A graphic presentation of the classification results for BEAST and MD analyses 

of all investigated pellet strengths and target coating levels is presented in Figure 46.   
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Figure 46.  Qualitative Prediction of Target Applied Polymer Solids 
BEAST versus Mahalanobis Distance 
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In each graph, three training sets, 6%, 10% and 15%, are presented by the hatched bars.  

The height of the bars represents the number of test samples (out of six) classified by the 

BEAST and MD algorithms as similar (≤3 SDs) to the training set.   Corresponding 

numerical values are displayed in Appendix 6.  For all pellet strengths and coating levels, 

both the BEAST and MD metrics correctly classified all samples that deviated more than 

1% from the training group as outliers.  Therefore, these results are not presented in the 

graph. With respect to samples within ~1% of target coating level, the BEAST metric 

was more robust than the MD calculation in correctly identifying samples containing a 

desired target coating level.  Furthermore, the BEAST was more effective at correctly 

classifying samples outside of the target coating range as outliers.  However, it is 

important to note that for both algorithms, all false positive or false negative 

classifications had BEAST or MD distances that were borderline with respect to the 3 SD 

classification limit for spectral similarity.  Possible sources for error include inherent size 

variability of individual pellets comprising a single sample, and variability of the 

reference method.  Differences between the chemometric techniques may also provide 

some insight into the more robust performance of the BEAST metric in this application. 

 In a 1991 publication, Drennen and Lodder (138), provided an excellent 

comparison of the BEAST and MD methods.  They demonstrated that the BEAST 

distance between the center of a training cluster and a sample spectrum is proportional to 

the concentration of the sample constituents that generate the vector connecting the center 

and sample spectral points.  The direction of the vector provides the spectrum that 

identifies the constituents of the sample.  The BEAST is nonparametric and makes no 

assumptions about the distribution of spectral points in hyperspace.   
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 The MD metric assumes the spectral variations associated with both the 

calibration set and the test spectra are random.  However, spectral noise is often not 

random, particularly in the analysis of complex samples.  For the MD technique to 

function correctly, the spectral clusters must all share the same shape in hyperspace.  

Furthermore, these clusters must not be skewed.  As a consequence, near-IR spectral 

discrimination using Mahalanobis distances is more likely to fail when the sample of 

interest is a complex mixture with many variables.  Since multiparticulate systems are 

complex systems, which involve changing constituent concentrations, and are subject to 

scattering differences due to differences in particle sizes in the sample matrix, the 

BEAST metric may provide more reliability with regard to classification performance 

than the MD approach.  Another explanation for these observed results involves the 

ability of the BEAST to account for skew and to provide an advantage in cases where 

limited training data is available.  

 Figures 47, 48, and 49 show calculated bootstrap distances versus % applied 

polymer for 150mg/g pellets coated with 6%, 10% and 14%, respectively.  Note the 

increase in SD as the amount of applied polymer deviates from each respective target 

coating level.  For each coating level, the bootstrap algorithm was effective in identifying 

when the desired coating level was achieved.  All samples within 0.5% of each target 

coat were classified correctly by this pattern recognition technique.  However, several 

samples containing ±1% applied polymer solids were also classified as acceptable.  Such 

error is actually expected due to the fact that, within any given batch, the diameters of 

individual uncoated diltiazem HCl core pellets vary by as much 150 µm while the 

thickness of applied coating polymer varies by less than 2 µm within 1% of the target  
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coat.  Therefore, it is not unreasonable to have 1% variability in the actual polymer 

content of individual coated pellets or unit-dose samples.  Nevertheless, qualitative near-

IR techniques can provide a significant advantage over current methods of coating 

process monitoring, and errors of approximately 0.5% to 1% should be within acceptable 

limits for properly designed pellet products.  In fact, FDA guidelines regarding scale-up 

and post-approval changes for modified release products (SUPAC-MR) (139). allows as 

much as 10% w/w change in quantity of drug release controlling polymer in a modified-

release drug product, provided the dosage form meets application/compendial product 

release requirements and demonstrates dissolution similarity (F2 > 50) (140) with respect 

to the original ANDA or NDA exhibit lot formulation.   

 



 

 179

 
 
4  CONCLUSIONS 
 

 Controlled release pellet production often involves lengthy and expensive 

manufacturing operations in which there are no simple methods for accurately monitoring 

potency or applied polymer solids during processing.  Typically, formulation scientists 

and manufacturing personnel rely solely on applied weight gain calculations to predict 

drug layering and coating process endpoints.  In-process potency analysis is necessary to 

determine capsule fill weights needed to deliver a desired dose, and dissolution testing of 

the final dosage form is essential to ensure uniformity of the drug release rate.  The 

availability of a rapid on-line or at-line measurement for prediction of process endpoints 

and evaluation of product quality characteristics may potentially save millions of dollars 

in time and materials.  Therefore, the objective of this research was to develop and 

evaluate at-line and in-line near-infrared spectroscopic methods for assessing 

pharmaceutical pellet characteristics and to predict desired process endpoints.   

 The initial phase of this study demonstrated the utility of near-IR spectroscopy in 

the quantitative prediction of core pellet potency during rotogranulation operations. PCR 

or PLS based regression models were developed for predicting the potency of pellets 

containing diltiazem HCl over a range of 15% to 55% active drug content.  Both in-line 

and at-line determination of pellet potency was effectively accomplished with average 

SEPs of 1.11% and 0.63%, respectively.  The use of single or multiple wavelength 
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models also allowed acceptable potency prediction with average SEPs of 1.09% and 

0.63%, for in-line and at-line analyses.    

 Although it was possible to develop a single calibration across the studied range 

of pellet strengths, non-linearity was noted between the response of the near-IR method 

and drug concentration across the broad range of the single calibration model.  Such non-

linearity may result in erroneous estimation of pellet potency, and could adversely affect 

the ability to validate such a method for routine use.  Therefore, this study confirmed that 

the development of individual potency calibrations within specific pellet strength 

categories is preferred for this type of application.   

 The effective application of near-IR for predicting the endpoint of clinical or 

production scale batches was also demonstrated in this study.  Prediction of pellet 

potency at pilot scale was accomplished using laboratory data.  When process efficiencies 

vary, as they do, from lab scale equipment to larger equipment used for manufacturing, 

the availability of a rapid on-line or at-line measurement for prediction of process 

endpoints may potentially save millions of dollars in time and materials.  

 Perhaps one of the most important issues confirmed by this study is that 

traditional weight gain methods for monitoring rotogranulation operations are neither 

optimal nor reliable.  True batch potency, as measured by HPLC and weight gain 

methods, differed by as much as 7% when systematic process problems were encountered 

during processing.  Furthermore, even when no process issues were observed, actual 

pellet potency varied by an average of 3% from actual values.  Such findings provide 

strong support for the development and routine use of in-line method for monitoring 

rotogranulation operations.  
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 The second major phase of this study demonstrated the ability to monitor Wurster 

pellet coating operations and quantitatively predict applied coating level and dissolution 

characteristics.  Calibrations for applied Eudragit RS30D polymer solids were developed 

for in-line or at-line analysis of a variety of pellet strengths using PCR, PLS, multiple 

wavelength and single wavelength models.  All regression models demonstrated R2 

values of 0.98 or greater and standard errors of calibration less than 0.6%.  As seen in the 

rotogranulation study, the simplistic single and multiple wavelength models also 

demonstrated their ability to accurately predict applied polymer solids content within 

0.5% of laboratory values. Interestingly, the in-line model, in some instances, provided 

better prediction results than did the at-line method.  This was attributed to the fact that 

in-line spectra were obtained by scanning through a stationary sapphire window sampling 

system which was developed for in-line monitoring of the Wurster coating operation. 

 Analysis of the dissolution characteristics of sustained release pellets was also 

explored in this study.  Diltiazem HCl pellets containing 55% drug were coated with 12% 

to 16% Eudragit RS30D and subjected to dissolution testing in a USP II dissolution 

apparatus.  The time to reach t50% was used as the reference value for near-IR 

calibration development.  SEC and SEP values of approximately 7 minutes were obtained 

over a range of t50% values occurring between 4 h and 6 h.  Implementation of such a 

method could dramatically reduce production cycle downtime by allowing production to 

proceed on the basis of acceptable near-IR results.  Such applications would be 

particularly beneficial in the production of sustained-release products or products which 

have associated with them lengthy analytical testing procedures.  However, the accuracy 

of the near-IR method cannot be better than the reference method from which it is built.  
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Therefore, representative samples, those which include all type of expected variation, 

must be included in the model to ensure method robustness.  

 In the final phase of this study, qualitative analysis of applied Eudragit RS30D 

polymer level was accomplished using either a Mahalanobis Distance (MD) calculation 

or a Bootstrap Error-Adjusted Single-sample Technique (BEAST). For all pellet strengths 

and coating levels studied, both the BEAST and MD metrics correctly classified all 

samples that deviated more than 1% from target as outliers.  With respect to samples 

within ±1% of target coating level, the BEAST metric was more robust than the MD 

calculation in correctly identifying samples containing a desired target coating level.  In 

agreement with findings of previous studies, the BEAST was more efficient than the MD 

metric in correctly classifying samples within or outside of the outside of the target 

coating range.     

 Using the BEAST metric for qualitative analysis of applied polymer coating, all 

samples within 0.5% of each target coat were classified correctly.  However, several 

samples containing ±1% applied polymer solids were also classified as acceptable.  Such 

error is actually expected due to inherent variability of the pellets being analyzed.  

Overall, both the BEAST and the MD algorithms were effective in qualitatively 

predicting pellet potency within about 1% of reference method values. Such results 

should be considered as acceptable for assessment of functional coating level of properly 

designed pellet systems.  

This study has demonstrated the potential of near-infrared spectroscopy in 

quantitative and qualitative assessment of pelletized pharmaceutical product 

characteristics and in the identification of process endpoints at various stages of 
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manufacture.  New at-line and in-line applications of near-IR analysis for monitoring and 

controlling pharmaceutical pellet production operations and assessing core and coated 

pellet characteristics were developed, and their practical limits investigated.  Accurate 

near-IR assessment of core pellet potency and applied polymer solids during respective 

drug layering and coating operations, as well as qualitative identification of coating 

process endpoints was demonstrated utilizing both formulations and manufacturing 

processes that paralleled typical commercial pharmaceutical pellet production operations.  

Validation and implementation of the near-IR analysis techniques discussed in this 

manuscript could potentially reduce production cycle-times associated with the 

acquisition of laboratory test results while ensuring product quality compliance 

throughout various stages of the sustained-release pellet manufacturing process.   
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APPENDICES 

Appendix 1.  Laboratory-scale diltiazem HCl pellet particle size distribution via 
                       sieve analysis. 
 

Mesh Size Aperture 
(µm) 

Aperture 
Midpoint 

(µm)  

Trial #1 
(% retained) 

Trial #2 
(% retained) 

Trial #3 
(% retained) 

 
150 mg/g 

14 1400 1550 2 0 0 
16 1180 1290 2.4 0 0 
18 1000 1090 0.4 0.4 0.4 
20 850 925 52.4 56 57.9 
25 710 780 42.8 43.6 41.7 
30 600 655 0 0 0 
40 425 513 0 0 0 
      
      

300 mg/g 
14 1400 1550 0 0 0 
16 1180 1290 0 0 0 
18 1000 1090 8 8.8 9.2 
20 850 925 90.4 89.2 88.8 
25 710 780 1.6 2 2 
30 600 655 0 0 0 
40 425 513 0 0 0 
      
      

550 mg/g 
14 1400 1550 0.4 0.8 3.6 
16 1180 1290 0.8 0.4 0.4 
18 1000 1090 90 79.2 77 
20 850 925 8 19.6 19 
25 710 780 0.4 0 0 
30 600 655 0.4 0 0 
40 425 513 0 0 0 
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Appendix 2.  Pilot-scale diltiazem HCl 550mg/g pellet particle size distribution 
                       via sieve analysis  
 

Mesh Size Aperture 
(µm) 

Aperture 
Midpoint 

(µm)  

Trial #1 
(% retained) 

Trial #2 
(% retained) 

14 1400 1550 0.9 1.5 
16 1180 1290 1.5 3.1 
18 1000 1090 81.7 77.1 
20 850 925 14.9 17.6 
25 710 780 1.0 0.7 
30 600 655 0 0 
40 425 513 0 0 
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Appendix 3.  Dissolution Data for Eudragit RS30D Coated Pellets – 12% w/w Coat 
 
 

Time
(min) 1 2 3 4 5 6 7 8 9 10 11 12 min max mean SD

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 2 2 3 3 3 2 2 3 1 3 3 3 1 3 2.5 0.7

120 3 3 4 4 4 3 3 3 2 2 3 3 2 4 3.1 0.7
150 5 5 5 5 5 5 5 5 4 3 5 5 3 5 4.8 0.6
160 5 5 5 5 5 5 6 5 4 4 5 5 4 6 4.9 0.5
170 5 6 6 6 5 6 6 6 5 4 6 5 4 6 5.5 0.7
180 6 6 7 7 7 7 7 7 7 6 7 7 6 7 6.8 0.5
190 7 7 10 9 9 9 8 9 9 7 10 9 7 10 8.6 1.1
200 10 12 12 11 13 10 10 11 12 11 13 13 10 13 11.5 1.2
210 13 15 16 15 18 14 14 18 16 18 17 18 13 18 16.0 1.8
220 21 22 23 22 26 22 22 25 22 24 24 24 21 26 23.1 1.5
230 28 29 30 30 33 30 29 32 29 31 32 31 28 33 30.3 1.5
240 38 39 39 40 42 41 40 43 40 41 41 40 38 43 40.3 1.4
250 49 49 50 50 52 51 51 52 51 53 53 52 49 53 51.1 1.4
260 59 60 60 61 61 63 63 65 60 62 61 60 59 65 61.3 1.7
270 70 70 71 72 72 73 72 74 71 73 73 73 70 74 72.0 1.3
280 77 76 75 80 79 80 79 80 79 79 79 79 75 80 78.5 1.6
290 83 83 82 84 85 87 87 86 86 86 86 87 82 87 85.2 1.7
300 88 89 88 89 90 92 92 91 90 90 91 91 88 92 90.1 1.4
310 91 92 90 91 92 93 94 94 93 92 94 94 90 94 92.5 1.4
320 94 95 92 96 96 96 97 96 95 94 96 95 92 97 95.2 1.3
330 95 95 94 97 96 97 98 98 97 96 97 96 94 98 96.3 1.2
340 96 96 95 98 96 98 98 97 97 98 96 98 95 98 96.9 1.1
350 97 98 98 99 97 99 100 98 98 99 98 99 97 100 98.3 0.9
360 99 100 101 100 99 101 100 99 100 101 99 99 99 101 99.8 0.8
370 100 100 101 99 100 100 100 101 101 100 102 100 99 102 100.3 0.8
380 100 101 100 101 99 100 99 102 100 102 101 100 99 102 100.4 1.0
390 101 101 102 100 100 100 99 100 100 101 102 101 99 102 100.6 0.9
400 100 101 101 100 101 101 100 101 99 100 101 101 99 101 100.5 0.7
410 101 100 101 101 101 101 100 100 100 101 100 100 100 101 100.5 0.5
420 101 101 101 100 100 100 101 100 100 100 101 101 100 101 100.5 0.5
430 101 100 102 100 101 100 101 100 101 101 102 100 100 102 100.8 0.8
440 101 102 101 100 102 100 102 100 102 102 101 101 100 102 101.2 0.8
450 101 102 100 101 102 101 101 100 102 101 101 101 100 102 101.1 0.7
460 101 102 100 101 102 101 101 100 102 100 100 101 100 102 100.9 0.8
470 100 101 101 101 102 100 100 101 102 100 101 102 100 102 100.9 0.8
480 100 101 102 101 102 101 101 101 102 101 100 102 100 102 101.2 0.7

% Diltiazem HCl Released

 
 

 
Data fit to ( )( )( )bxxeayy 010

−−++=  for t50% dissolution analysis where: 
a = 98.4757 
b = 23.3649 

xo = 250.6261 
yo = 2.0915 
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Appendix 4.  Dissolution Data for Eudragit RS30D Coated Pellets – 14% w/w Coat 
 
 

Time
(min) 1 2 3 4 5 6 7 8 9 10 11 12 min max mean SD

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
60 1 2 3 3 2 2 3 3 1 3 2 3 1 3 2.3 0.8

120 3 4 5 4 3 4 3 2 3 3 3 5 2 5 3.5 0.9
150 4 5 3 4 5 5 4 5 5 4 3 5 3 5 4.3 0.8
160 5 5 4 6 4 4 5 5 6 5 4 6 4 6 4.9 0.8
170 6 6 5 6 6 6 5 4 6 5 5 4 4 6 5.3 0.8
180 6 6 6 6 5 6 5 4 7 6 6 5 4 7 5.7 0.8
190 6 6 7 7 5 6 6 5 6 6 6 5 5 7 5.9 0.7
200 7 8 8 6 6 7 6 6 7 7 7 7 6 8 6.8 0.7
210 8 10 10 8 8 8 7 8 9 10 9 9 7 10 8.7 1.0
220 10 12 12 10 13 10 10 11 12 11 13 12 10 13 11.3 1.2
230 15 16 17 14 15 13 14 16 17 16 18 18 13 18 15.8 1.6
240 20 22 23 20 21 20 22 23 22 21 24 23 20 24 21.8 1.4
250 26 29 30 28 27 27 29 29 30 26 32 30 26 32 28.6 1.8
260 36 37 39 37 39 35 38 35 38 35 41 40 35 41 37.5 2.0
270 46 49 52 47 49 47 51 49 46 46 51 52 46 52 48.8 2.3
280 55 60 62 58 60 57 60 60 58 57 60 62 55 62 59.1 2.1
290 67 69 73 69 71 68 69 68 68 66 71 73 66 73 69.3 2.2
300 76 78 81 77 80 78 78 75 77 75 80 81 75 81 78.0 2.1
310 84 85 87 85 85 84 83 81 82 84 87 86 81 87 84.4 1.8
320 89 91 92 90 89 90 88 87 87 89 90 92 87 92 89.5 1.7
330 91 93 94 94 91 92 92 90 89 93 94 94 89 94 92.3 1.7
340 93 95 93 96 93 94 94 93 91 96 96 96 91 96 94.2 1.6
350 96 97 96 98 95 95 96 94 93 97 99 97 93 99 96.1 1.7
360 97 97 98 99 96 96 97 94 96 98 100 98 94 100 97.2 1.6
370 99 97 98 100 98 97 97 96 97 98 101 99 96 101 98.1 1.4
380 99 99 100 100 100 98 98 98 99 100 101 101 98 101 99.4 1.1
390 101 99 102 101 100 99 100 99 100 101 100 100 99 102 100.2 0.9
400 100 101 101 100 101 101 100 101 99 100 101 101 99 101 100.5 0.7
410 101 100 101 101 101 101 100 100 100 101 100 100 100 101 100.5 0.5
420 101 102 100 101 102 101 101 100 102 101 101 101 100 102 101.1 0.7
430 100 101 101 101 102 100 100 101 102 100 101 102 100 102 100.9 0.8
440 100 101 100 101 102 101 101 101 102 101 100 102 100 102 101.0 0.7
450 101 101 101 100 100 100 101 100 100 100 101 101 100 101 100.5 0.5
460 101 102 100 101 101 101 101 100 102 100 100 101 100 102 100.8 0.7
470 101 100 101 101 101 101 100 100 100 101 100 100 100 101 100.5 0.5
480 100 101 102 100 102 101 101 101 102 101 100 102 100 102 101.1 0.8

% Diltiazem HCl Released

 
 

Data fit to ( )( )( )bxxeayy 010
−−++=  for t50% dissolution analysis where: 
a = 97.5053 
b = 23.0576 

xo = 273.1917 
yo = 3.0055 
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Appendix 5.  Dissolution Data for Eudragit RS30D Coated Pellets – 16% w/w Coat 
 
 

Time
(min) 1 2 3 4 5 6 7 8 9 10 11 12 min max mean SD

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 1 3 2 3 4 2 1 3 2 4 3 3 1 4 2.6 1.0

120 3 4 4 4 5 3 3 4 3 5 4 3 3 5 3.8 0.8
150 4 4 5 4 5 4 4 5 3 5 5 3 3 5 4.3 0.8
160 4 5 5 4 5 5 4 6 4 5 5 4 4 6 4.7 0.7
170 5 5 6 5 5 5 5 6 5 5 6 4 4 6 5.2 0.6
180 5 5 6 5 5 6 5 6 5 5 6 4 4 6 5.3 0.6
190 5 5 6 6 5 6 5 6 5 5 7 5 5 7 5.5 0.7
200 6 5 7 6 5 6 5 6 6 6 7 6 5 7 5.9 0.7
210 7 6 7 7 6 7 6 7 6 6 7 7 6 7 6.6 0.5
220 7 7 8 8 7 8 7 7 7 7 8 8 7 8 7.4 0.5
230 8 9 10 9 9 10 9 8 9 8 9 9 8 10 8.9 0.7
240 11 12 12 12 12 13 12 10 12 11 13 12 10 13 11.8 0.8
250 15 15 16 15 16 16 15 13 15 14 16 15 13 16 15.1 0.9
260 20 21 21 22 22 23 23 20 22 20 21 21 20 23 21.3 1.1
270 26 28 27 29 30 30 29 27 28 27 29 28 26 30 28.2 1.3
280 34 37 35 38 38 38 37 35 36 36 38 38 34 38 36.7 1.4
290 46 48 45 47 49 48 46 44 47 46 48 49 44 49 46.9 1.6
300 57 57 56 57 60 58 56 55 56 57 59 58 55 60 57.2 1.4
310 68 67 65 69 71 69 67 66 65 68 70 66 65 71 67.6 1.9
320 78 76 74 78 79 78 76 75 75 76 78 75 74 79 76.5 1.6
330 84 83 82 86 87 86 84 83 83 83 87 82 82 87 84.2 1.9
340 89 87 87 91 91 91 89 87 88 87 90 86 86 91 88.6 1.8
350 92 93 94 93 92 92 92 90 90 93 94 94 90 94 92.4 1.4
360 91 95 94 96 92 94 93 93 91 96 95 96 91 96 93.8 1.9
370 95 98 97 98 95 95 96 94 93 98 98 97 93 98 96.2 1.7
380 96 98 98 99 96 96 97 95 96 98 100 98 95 100 97.3 1.5
390 97 97 98 100 97 99 99 98 97 99 97 99 97 100 98.1 1.1
400 98 98 99 100 98 99 99 100 99 100 97 99 97 100 98.8 0.9
410 99 98 99 100 99 99 99 102 101 100 98 100 98 102 99.5 1.2
420 100 99 100 101 100 101 100 103 102 102 99 101 99 103 100.7 1.2
430 100 100 100 102 100 99 100 102 101 101 100 100 99 102 100.4 0.9
440 99 100 100 101 99 100 101 103 100 101 100 101 99 103 100.4 1.1
450 100 100 101 100 100 101 101 103 100 102 101 102 100 103 100.9 1.0
460 101 100 100 99 100 101 100 103 101 103 101 102 99 103 100.9 1.2
470 101 101 100 100 100 102 101 103 102 102 101 101 100 103 101.2 0.9
480 102 103 101 99 101 103 102 102 101 101 102 102 99 103 101.6 1.1

% Diltiazem HCl Released

 
 

Data fit to ( )( )( )bxxeayy 010
−−++=  for t50% dissolution analysis where: 
a = 96.9432 
b = 23.1678 

xo = 294.9015 
yo = 3.6087 
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Appendix 6.  Qualitative prediction of target applied polymer solids. 
   Comparison of BEAST and Mahalanobis distance metrics. 
 _____________________________________________________________ 
 

 

Applied Polymer Solids Total Samples
Acceptable Unacceptable Acceptable Unacceptable

 
5% 6 1 5 3 3

 6%* 6 6 0 5 1
7% 6 2 4 2 4

9% 6 5 1 3 3
  10%* 6 6 0 4 2

11% 6 3 3 3 3

14% 6 2 4 3 3
  15%* 6 6 0 4 2

16% 6 2 4 4 2

Applied Polymer Solids Total Samples
Acceptable Unacceptable Acceptable Unacceptable

 
5% 6 2 4 3 3

 6%* 6 6 0 4 2
7% 6 1 5 4 2

9% 6 1 5 3 3
  10%* 6 6 0 3 3

11% 6 2 4 2 4

14% 6 1 5 2 4
  15%* 6 5 1 4 2

16% 6 1 5 1 5

Applied Polymer Solids Total Samples
Acceptable Unacceptable Acceptable Unacceptable

 
5% 6 1 5 2 4

 6%* 6 6 0 3 3
7% 6 1 5 1 5

9% 6 0 6 3 3
  10%* 6 6 0 3 3

11% 6 1 5 3 3

14% 6 1 5 2 4
  15%* 6 6 0 4 2

16% 6 0 6 2 4

* Denotes Training Sample

MD Classification

BEAST Classification MD Classification

BEAST Classification MD Classification

300mg/gram Pellets

550mg/gram Pellets

BEAST Classification

150mg/gram Pellets
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