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ABSTRACT 

 

MACROPHAGE COX-2 AS A TARGET FOR IMAGING AND THERAPY OF 

INFLAMMATORY DISEASES USING THERANOSTIC NANOEMULSIONS 

 

 

 

By 

Sravan Kumar Patel 

March 2015 

 

Dissertation supervised by Dr. Jelena M. Janjic 

Personalized medicine can be an approach to address the unsatisfactory treatment 

outcomes in inflammatory conditions such as cancer, arthritis, and cardiovascular 

diseases. A common feature of chronic diseases is the infiltration of pro-inflammatory 

macrophages at the disease loci. Infiltrating macrophages have been previously utilized 

for disease diagnosis. These features suggest that macrophages can be broadly applicable 

targets for simultaneous therapy and diagnosis. Cyclooxygenase-2 (COX-2), an enzyme 

involved in the biosynthesis of a lipid inflammatory mediator, prostaglandin E2 (PGE2), is 

over expressed in macrophages infiltrating the pathological site. Inhibition of PGE2 leads 

to reduced inflammation, pain and macrophage infiltration. To utilize macrophages for 

the purpose of simultaneous therapy and diagnosis, we proposed to integrate therapeutic 

and imaging capabilities on a single nanomedicine platform, referred as theranostics. A 
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stable 19F MRI visible nanoemulsion platform was developed, incorporating celecoxib for 

COX-2 inhibition and near-infrared fluorescent dye(s) for fluorescence imaging. We 

hypothesized that inhibition of COX-2 in macrophages using a theranostic nanoemulsion 

will reduce the inflammation (and pain), and that this response can be visualized by 

monitoring changes in macrophage infiltration. In vitro characterization demonstrated 

that the theranostic displays excellent stability with no toxicity, and significant uptake in 

macrophages. Furthermore, it delivers celecoxib to macrophages and reduces PGE2 

production from these cells. In vivo studies in a murine paw inflammation model showed 

nanoemulsion presence at the inflamed site, specifically in COX-2 expressing 

macrophages compared to neutrophils. Supporting our hypothesis, celecoxib delivered 

through a nanoemulsion demonstrated time-dependent reduction in fluorescence from the 

inflamed paw, indicative of reduced macrophage infiltration. In a neuropathic pain 

model, celecoxib delivered to macrophages led to reduced pain concomitant with reduced 

macrophage infiltration at the inflamed site compared to free drug control (cross 

reference: Kiran Vasudeva, Dissertation, 2015). In conclusion, inhibition of COX-2 in 

macrophages using theranostic nanoemulsions proves to be an effective and generalized 

strategy facilitating simultaneous therapy and diagnosis, which can be applied to many 

chronic diseases. The diagnostic information during therapy can be used to tailor the 

treatment and reduce patient variability leading to personalized medicine. 
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1 Macrophages as targets for simultaneous diagnosis and therapy of 

inflammatory diseases 

 

1.1 Statement of the problem 

Inflammation is involved in the pathogenesis of many common diseases such as 

cancer, rheumatoid arthritis (RA), obesity, cardiovascular-related ailments, chronic 

obstructive pulmonary disease (COPD), asthma, inflammatory bowel disease (IBD), 

diabetes, Alzheimer’s, and infection-related diseases.1-3 Although it is beneficial in 

defending the body from injury or infection, unresolved inflammation can lead to 

substantial tissue injury, which is involved in the initiation, promotion and progression of 

diseases.1,3,4 Inflammatory diseases are associated with considerable economic burden. In 

2003, the Centers for Disease Control and Prevention reported that total expenditures due 

to arthritis and other rheumatic disorders were $128 billion, which was equivalent to 

1.2% of the 2003 United States gross domestic product.5 The direct and indirect costs 

attributable to asthma increased by six percent from $53 billion in 2002 to $56 billion in 

2007.6 In 2010, cardiovascular diseases were estimated to have total costs of $444 

billion.7 Figure 1.1 shows the prevalence of heart diseases, diabetes and asthma in the 

United States.  

Methods to effectively intercept pathways that lead to chronic inflammation are 

under intense development. While substantial progress has been made in the development 

of new drugs, inflammatory disease treatment and management still face significant 

problems. Inter- and intra-patient variability is one of the major factors contributing to the 

failure of current treatment approaches.8-10 The traditional treatment strategies rely on 
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diagnosis of the disease and administration of the appropriate therapy based on the 

severity of the disease. Disease severity is obtained from generalized diagnostic methods 

and other patient-specific parameters such as body surface area, weight, and past and 

current medication. Although the treatment is, in a way, tailored to the patient based on 

the diagnostic profile, often times a great variability in efficacy is observed between 

patients leading to the failure of the treatment. This variability could be attributed to the 

inhomogeneity transpiring at the molecular level in disease pathogenesis i.e. differences 

in protein expression, genetic predisposition, resistance to therapy, and other similar 

factors. For example, inflammatory biomarkers detected in COPD show significant 

variability between patients.11 Additionally, RA affecting synovial tissue in multiple 

joints can manifest as similar clinical symptoms in patients.12 However, marked 

variability in leukocyte infiltration and cytokine profile has been observed in their 

synovial tissues.13 This could be the reason for the variable clinical response to anti-

inflammatory drugs such as infliximab, and etanercept, which reduce the inflammatory 

cytokine, tumor necrosis factor-α (TNF- α). Inter- and intra-patient variability can also be 

a result of variable pharmacokinetics among patients as observed for infliximab 

treatment.14,15 
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Figure 1.1. Self-reported presence of chronic diseases in the United States. 

The above figure shows the prevalence of major inflammatory diseases in the United 

States according to the results of the National Health Interview Survey (2002 and 

2012).16,17 The numbers represent the percentage of people who had ever been told by a 

doctor or other health professional that they had heart diseases, diabetes mellitus or 

asthma. 

 

Therefore, the traditional model of “one drug for all” has proven sub-optimal, at 

least for chronic diseases, and a paradigm shift has been observed towards patient-

tailored treatment methods. Rapid advancements in genomics has led to the utilization of 

genetic information to stratify patient population known to respond to the therapy to 

increase efficacy and reduce unwanted side effects. This treatment model is referred to as 

personalized medicine.12,18 According to the U.S. Food and Drug Administration,19 

personalized or precision medicine is described as “the right patient with the right drug at 

the right dose at the right time”, and “the tailoring of medical treatment to the individual 

characteristics, needs and preferences of a patient during all stages of care, including 
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prevention, diagnosis, treatment and follow-up.” For example, breast cancer presents in 

different forms, where certain patients do not respond to therapies due to changes in 

molecular expression of biomarkers.20 These differences among patients are now 

recognized and treatment strategies are tailored leading to personalization of treatment. 

For example, treatment of metastatic breast cancer patients diagnosed positive for human 

epidermal growth factor receptor 2 (HER2) with an anticancer drug, Herceptin® 

(Trastuzumab), specific for these receptors increased the efficacy. Therefore, 

development of dedicated therapeutic interventions based on specific disease markers 

(companion diagnostics) is a new way of achieving the goal of personalized 

inflammatory diseases treatment.  

The approach of combining a biomarker or a diagnostic method to tailor the 

therapy is referred to as “theranostics”.21 Theranostics are also defined as an integration 

of therapeutic and diagnostic or imaging functionalities on a single platform that can 

diagnose disease, deliver drugs and monitor therapy leading to individualized treatment.18 

In this dissertation, the latter definition is used to refer to theranostics. Nanotechnology 

has been central in the development of theranostics because therapeutic and diagnostic 

components can be integrated together using nanoparticles (NPs).22 NPs offer several 

advantages such as high surface-area-volume ratio to obtain high loading of drug and 

imaging agents. They have been functionalized to increase blood circulation time by 

coating the surface with hydrophilic polymers such as polyethylene glycol (PEG).23 

Additionally, NPs can be functionalized to modulate the drug release based on 

environmental stimuli such as pH, temperature, enzymes, and redox potential, and their 

use can increase uptake in specific cells.24 Due to their tunable size and surface 
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properties, anatomical and physiological changes during inflammation can be exploited 

for targeted NP accumulation, namely through leaky vasculature by enhanced 

permeability and retention (EPR) phenomenon and through utilization of macrophages’ 

disease-homing characteristic.25,26  

These multifunctional NPs have been utilized to longitudinally visualize 

bioaccumulation in a live animal and ex vivo in tissue samples, assess cellular uptake 

kinetics, optimize the physicochemical aspects of theranostics for desired results, and 

guide therapy based on imaging i.e. image-guided surgery and phototherapy.2,18 The 

biodistribution information could guide clinical decision making such as continuing with 

therapy, changing dose or switching to a different therapy early in the treatment process. 

These entities can be assumed analogous to therapeutic radionuclides. For example, 

TheraSphere® technology uses microspheres containing radioactive Yttrium-90 (90Y) to 

treat inoperable liver carcinoma.27,28 These microspheres are delivered to liver through 

intra-arterial catheter-based delivery, where the internal radiation released by 90Y kills the 

cancer cells. Because microspheres can be detected by positron emission 

tomography/computed tomography (PET/CT), their liver distribution can be visualized to 

identify poorly implanted tumor regions and assess treatment options.27 

In addition to visualizing biodistribution, a significant challenge lies in 

monitoring the therapeutic response with theranostic NPs. There is a need to monitor the 

effectiveness of therapy because disease environment can change during therapy and/or 

develop resistance during therapy, leading to ineffective treatment. Cellular and 

molecular biomarkers are ever changing spatially and temporally during the disease 

pathogenesis and treatment. One particular mechanism relevant to inflammatory diseases 
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is the development of drug resistance observed in cancer, infectious diseases and 

RA.20,29,30 The development of drug resistance in these diseases could vary among 

patients. Another example involves observing reduction in macrophage infiltration or 

lack thereof in response to anti-rheumatic drug therapy in RA.29 Macrophages exacerbate 

the disease, so it is conceivable that an ineffective drug therapy would fail to cause a 

reduction in macrophage infiltration.  This issue, if detected early, could guide clinicians 

to change the drug dose or therapy. Identification of these dynamics and adjustment of 

therapeutic interventions based on real-time therapy response early in the treatment 

process could, thereby, save time and increase patient outcomes.  

Current theranostic NPs provide crucial biodistribution information. However, 

they have not been utilized to monitor therapeutic response. Therefore, the next step 

forward in the existing model of personalized medicine is personalizing the treatment 

while the therapy is ongoing. Figure 1.2 illustrates how theranostic NPs can help realize 

the goal of concurrent therapy and therapy monitoring.31 Accumulation of theranostic at 

the target site can be quantified to define dosing regimen for successive doses. For 

example, increase the dose if the accumulation leads to sub-therapeutic drug 

concentration. The imaging aspect can also be used for image-guided therapy such as 

delivering light precisely to the diseased areas in photo-based therapies. Additionally, if 

the theranostic can detect spatio-temporal changes in inflammation during therapy (based 

on the changes in imaging information), effective clinical decision-making regarding the 

dose adjustments or switching to an alternate therapy can be made, early in the treatment 

strategy. Essentially, the imaging component of the theranostic is utilized to assess 

biodistribution as well as monitor the efficacy of the therapeutic intervention. These 
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proposed roles of theranostic could achieve personalized medicine by monitoring 

response to the therapy in individual patients and accordingly adjust doses and switch to 

alternate therapies. 

 

 

Figure 1.2. Schematic showing proposed role of theranostics in personalized 

treatment. 

Text in the ellipse shows the clinical decision-making possibilities based on the 

diagnostic information obtained from theranostic functionalities. Inspired from Moore et 

al.31 

 

In this dissertation, we achieved drug response monitoring using theranostics by 

harnessing the natural pathophysiological mechanisms of macrophages, namely their 

phagocytic potential and disease-homing properties. Macrophages are widely 

investigated for simultaneous imaging and therapy in inflammatory diseases using 
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theranostics.2 These cells migrate to the injured site in response to chemokines and 

cytokines released during inflammation and participate in pro-inflammatory processes. 

Thus, theranostics can be delivered to these cells to suppress the pro-inflammatory 

activity and simultaneously image their infiltration. Delivering theranostics to 

macrophages is possible because they are naturally phagocytic and readily internalize 

NPs.32 Current theranostics act by either depleting macrophages or reducing their 

inflammatory activity.2 Due to the aggressive nature of macrophage depletion, which 

could lead to toxicities, theranostics inhibiting inflammatory mediators produced by 

macrophages is a safer and more effective approach. 

One of the key enzymes expressed by inflammatory macrophages is 

cyclooxygenase-2 (COX-2). COX-2 is overly expressed in all the diseases with an 

inflammation component, where it contributes to disease pathogenesis and is a target for 

many clinically used non-steroidal anti-inflammatory drugs (NSAIDs).33 Celecoxib, a 

selective COX-2 inhibitor has shown preclinical and clinical efficacy in cancer, RA, 

neurological disorders, and atherosclerosis34-40 through its inhibitory effect on 

prostaglandin E2 (PGE2) production and macrophage infiltration. Large oral doses of 

celecoxib are associated with cardio-toxicity, which potentiates the use of alternate 

delivery routes.41-46 Therefore, NP theranostics could reduce celecoxib-associated toxicity 

and facilitate drug delivery to macrophages for COX-2 inhibition, as well as monitor 

response by imaging macrophages and evaluating the dynamics of infiltration as a 

function of time and therapeutic delivery. 
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Figure 1.3. Current and future use of imaging functionality of macrophage 

theranostics. 

Black arrows show the current areas where the imaging aspect of theranostics is used as 

reported in the literature. Red dotted line shows the possible future use. 

 

As discussed previously, utilization of the imaging feature of macrophage 

theranostics was limited to in vitro characterization, in vivo biodistribution, and ex vivo 

histological analysis (Figure 1.3). We believe that simultaneous investigation of imaging 

and therapeutic aspects of disease treatment to monitor therapy will make the 

combinatorial approach more efficient for personalized medicine. To date, simultaneous 

therapeutic delivery and response monitoring using a single theranostic entity were not 

reported. We proposed that this could be achieved by exploiting the physiological and 

pathophysiological aspects i.e. phagocytic potential of macrophages, involvement in 

disease pathogenesis47, migration to inflamed sites, and accumulation changes in 

response to the treatment.29  
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In summary, this dissertation addresses the current challenge of theranostics and 

demonstrates response monitoring by exploiting the therapeutic and diagnostic roles of 

macrophages. By design, this approach is generally applicable to different inflammatory 

diseases, where macrophages play pathological role and possess diagnostic significance. 

The work presented in this dissertation is believed to advance the field and fuel additional 

research by increasing the utilization of imaging and therapeutic functionalities. 

1.2 Rationale, study hypothesis and aims 

A careful investigation of current literature (chapters 1 and 2) and our own data 

(chapters 4, 5, and 6) shows the following crucial findings relevant to macrophage-

targeted theranostics. 1) Macrophages are a key cell type involved in the pathogenesis of 

inflammatory diseases. 2) Macrophages and COX-2 are abundantly present in 

inflammatory diseases making them feasible targets for therapy and diagnosis. 3) 

Inhibition of myeloid COX-2 has shown efficacy in inflammation models. 4) Inhibition 

of COX-2 using celecoxib has shown to reduce inflammation by inhibiting PGE2 and 

leukocyte recruitment. 5) Long term oral use of celecoxib is associated with 

cardiovascular and renal toxicity. 6) Macrophages can readily internalize NPs and 

migrate to the sites of inflammation. 7) Dual mode perfluorocarbon (PFC) nanoemulsions 

can provide unambiguous detection of macrophage infiltration in inflammatory diseases 

using fluorescence and 19F magnetic resonance imaging (19F MRI) and can facilitate in 

vitro/ex vivo characterization using fluorescent methods. 

 The combination of these findings prompted us to target macrophage COX-2 

with a fluorescent PFC nanoemulsion incorporating celecoxib for simultaneous 

therapeutic and diagnostic effects. Newer reports are emerging where NPs were utilized 
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to inhibit or silence COX-2 in macrophages to treat underlying pathology. 

Chitosan/siRNA (small interfering ribonucleic acid) NPs were used to silence 

macrophage COX-2 in kidney injury.48 Celecoxib NPs were investigated to target 

macrophage COX-2 in a breast cancer animal model as a possible chemotherapeutic and 

chemopreventive strategy.49 Although theranostic aspects are not investigated, these 

studies are encouraging and further support our lead hypothesis identifying macrophage 

COX-2 as a generalizable anti-inflammatory intervention target.  

By exploiting the natural phagocytic ability and disease-migration aspects of 

macrophages, we aimed to detect the inflammatory loci, deliver celecoxib to 

macrophages, and monitor temporal changes in infiltration in response to therapeutic 

delivery using fluorescent PFC nanoemulsions. This dissertation is based on the central 

hypothesis that celecoxib-loaded fluorescent PFC nanoemulsions produce anti-

inflammatory effects while facilitating simultaneous imaging by optical fluorescence 

and 19F magnetic resonance of activated macrophages in an adjuvant-induced murine 

inflammation model. The following aims were proposed. 

Aim 1: Preparation, characterization and optimization of PFC nanoemulsions 

encapsulating celecoxib and near-infrared fluorescent (NIRF) dye and demonstration of 

acceptable stability and toxicity profiles. 

Aim 2: Characterization of PFC nanoemulsions in mouse macrophages for toxicity, 

uptake, and COX-2 inhibition. 

Aim 3: In vivo assessment of celecoxib-loaded theranostic nanoemulsion for anti-

inflammatory effect and imaging efficacy in an adjuvant-induced mouse inflammation 

model.  
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Through these study aims, PFC nanoemulsions were developed for macrophage 

imaging and assessment of infiltration changes. Efforts made to prepare a stable non-

toxic nanoemulsion with optimized imaging potential are summarized in chapters 3, 4, 5, 

and 6. Chapter 3 deals with the synthesis and characterization of PFC-lipid conjugates, 

formulation development, characterization for colloidal attributes, toxicity and uptake 

evaluation in model mouse macrophages of a candidate conjugate (C8-PFTE). Due to 

slight toxic effect on cell viability and further development anticipated to be cost-

ineffective, the focus shifted to a commercially available and clinically utilized PFC, 

perfluoropoly (ethylene glycol) ether (PFPE). The development and in vitro assessment 

as well as problems encountered with 19F MR imaging aspects of PFPE nanoemulsion are 

described in chapters 4 and 5. Ultimately, the development of an improved formulation 

with higher PFPE content with desired stability and in vitro efficacy is demonstrated in 

chapter 6. 

Chapter 7 describes the in vivo assessment of theranostic systems in adjuvant 

induced mouse paw edema and rat neuronal injury inflammatory models. In this chapter, 

combination of in vivo live animal imaging and ex vivo tissue analysis showed the 

specific accumulation of nanoemulsion in macrophages at the inflamed site. Furthermore, 

simultaneous therapy and monitoring changes in macrophage infiltration is demonstrated. 

Pain sensitivity reduction in the neuronal injury model further validated the approach of 

inhibiting COX-2 in macrophages for therapy and diagnostic imaging.  

This dissertation demonstrates that targeting macrophage COX-2 has the potential 

to be a general approach applicable to inflammatory diseases, that provides 
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individualized treatment options based on the patient’s response to the treatment, namely 

the extent of macrophage infiltration and associated temporal changes. 

1.3 Role of macrophages in therapy and diagnosis of inflammation 

Inflammation can be broadly defined as a host’s response to infection, injury or 

metabolic imbalance, which acts to restore homeostasis.4 It represents a highly complex 

network of cellular and sub-cellular components, which work in a regulated fashion to 

defend the host against deleterious stimuli.3 In a typical inflammation setting, local 

endothelial and immune cells release inflammatory mediators, which increase blood flow 

and vascular permeability at the site. Leukocytes such as neutrophils and macrophages 

migrate to the site of injury based on released chemotactic factors (cytokines and 

chemokines) by a process known as diapedesis.50 The inflammatory endothelium and 

local immune cells also upregulate cell adhesion molecules (CAMs) such as selectins, 

integrins, and cadherins, which further aid in the adhesion and transmigration of 

leukocytes.50,51 Neutrophils are recruited first to the site of injury and they act to remove 

the injurious stimuli by phagocytosis and the release of inflammatory mediators. 

Neutrophils are present in the first few hours to days, while macrophages are recruited by 

further downstream signals to aid in resolution and repair.51 Macrophages populate the 

inflammation sites to neutralize the injurious stimuli by modulation of adaptive 

immunity, tissue remodeling, and removal of pathogens, cell debris, and senescent cells.52 

This cascade is known as acute inflammation, which is self-limiting and results in the 

restoration of homeostasis (Figure 1.4). Failure to cease the injurious stimuli leads to 

persistent (chronic) inflammation resulting in tissue damage (Figure 1.4). 
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Figure 1.4. Schematic showing acute and chronic inflammatory events 

A. Features of acute inflammation are summarized as presentation of pathogen-associated 

molecular patterns (PAMPs) to the recognition receptors, which illicit inflammatory 

response with macrophage recruitment and removal of pathogen. Reversible damage 

created during this process is resolved leading to restoration of homeostasis. B. 

Presentation of damage-associated molecular patterns (DAMPs) leads to initial response 

through cytokines and chemokines produced by immune cells, which cannot eradicate the 

stimulus. Persistent stimulus leads to amplification of signal by positively influencing the 

production of DAMPs leading to tissue damage and chronic inflammation. From: Tabas 

I, Glass CK 2013. Anti-inflammatory therapy in chronic disease: challenges and 

opportunities. Science  339(6116):166-172.1 Reproduced with permission from AAAS. 
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Macrophages are a type of leukocyte belonging to the mononuclear phagocytic 

system, derived from progenitor cells of hematopoietic origin in bone marrow.53 They are 

replenished on a regular basis from circulating blood monocytes.53 Macrophages are 

constitutively present in all tissues, where they participate in tissue survival, regulation 

and modeling processes.52 Their primary function is to clear apoptotic cells and cellular 

debris generated during tissue remodeling and necrosis. In addition to these homeostatic 

roles, macrophages are essential immune cells that participate in both innate and adaptive 

immunity.47 During the chronic phase, macrophages are continuously recruited and 

release inflammatory mediators such as chemokines, cytokines, lipid mediators, proteases 

and reactive oxygen species (ROS).47 These mediators cause detrimental effects to the 

host leading to initiation, exacerbation and progression of several infectious and non-

infectious diseases.  

1.3.1 Macrophages in inflammatory diseases – potential for therapy 

There is increasing evidence that macrophages significantly contribute to the 

pathogenesis of many common chronic diseases. This section is primarily focused on 

pathologies involving non-infectious chronic inflammatory conditions. One example of 

these is RA, in which macrophages play a prominent role through their production of 

inflammatory mediators such as TNF-α, which can cause considerable inflammation and 

joint destruction.54 Another example is Type 2 diabetes, in which accumulation of 

macrophages is associated with several complications such as neuropathy, nephropathy 

and atherosclerosis.55 A third example is atherosclerosis, in which macrophages uptake 

low density lipoprotein and transform into lipid-laden cells called foam cells that 

contribute to the initiation and progression of atherosclerotic lesions.56 Additionally, 
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proteases produced by macrophages degrade the extracellular matrix (ECM), which leads 

to plaque rupture and myocardial infarction (MI). In cancer, tumor-associated 

macrophages (TAMs) are involved in several tumorigenic activities leading to 

angiogenesis and metástasis.57 Similarly, macrophages are involved in several stages of 

pathogenesis in neurological, autoimmune, cardiovascular and pulmonary diseases.54,58,59 

In addition to the discussed pathogenic roles, macrophages also display protective 

functions in chronic inflammatory diseases. Depending on the pathological environment, 

they adapt to different phenotypes, which, either intensify or resolve the disease.52 They 

are broadly classified as classically activated (M1) pro-inflammatory and alternatively 

activated anti-inflammatory (M2) phenotypes mirroring Th1 and Th2 states of T cells.60 

Due to the vast biochemical and physiological differences within M1 and M2, it was 

suggested that macrophages form part of a continuum and possess overlapping functions 

of different macrophage subsets. For the purpose of this discussion, only the two extreme 

states of macrophages, M1 and M2 are considered. The diverse roles of macrophages are 

attributed to these phenotypes. For example, TAMs exhibit M1 and M2 phenotypes 

depending on the local cytokine milieu. M2 macrophages are involved in the release of 

growth factors, angiogenesis and degradation of the ECM leading to metastasis, while 

M1 macrophages exhibit tumoricidal activity.61 In atherosclerosis, macrophages 

participate in the initiation, progression and rupturing of atheroma.62 In contrast, a subset 

of macrophages (M2) is involved in the resolution of the disease and tissue remodeling.63 

Likewise, macrophages play a diverse role in autoimmune,54 pulmonary,58 and 

neurological diseases.59 Therefore, macrophages represent promising targets for the 
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treatment of inflammatory diseases. Section 1.5 reviews some of the targets expressed by 

macrophages that can be intercepted by anti-inflammatory therapies. 

1.3.2 Imaging macrophages and disease diagnosis 

Imaging tools are indispensible in advancing our understanding of diseases for 

improved drug design and also for disease detection, diagnosis and assessment of 

treatment effects. Prime reasons to utilize macrophages for disease diagnosis include: (1) 

their abundance in the inflammatory milieu (2) their migration to the diseased locales and 

(3) the correlation observed between macrophage number and disease severity. A recent 

review by Weissleder et al.64 detailed the aspects of nanomaterials and imaging 

modalities for macrophage detection in inflammatory diseases in both preclinical and 

clinical settings. Magnetic resonance imaging (MRI) contrast agents, namely iron oxide 

nanoparticles (IONPs) and ultrasmall paramagnetic iron oxide (USPIO) NPs that are 

internalized by macrophages and infiltrate the inflamed site have been used clinically for 

non-invasive detection of atherosclerosis65, MI66, and type 1 diabetes.67 Trivedi et al.65 

applied USPIO NPs (Sinerem®, Guerbet, now withdrawn) to detect atherosclerotic 

plaques using MRI, which could be a viable diagnostic method to identify patients with 

high-risk for plaque rupture. A macrophage-targeted PET tracer was investigated for its 

ability to detect early synovitis in arthritic patients.68 The study identified that the 

accumulation of PET tracer is proportional to disease severity. Also, detection of PET 

tracer in the contralateral knee of the arthritic patients provided possibility of using this 

mode of macrophage imaging to detect subclinical synovitis. The effect of atorvastatin 

therapy was monitored by imaging macrophages using USPIO-enhanced MRI in the 

well-known ATHERMO (Atorvastatin Therapy: Effects on Reduction of Macrophage 
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Activity) study.69 Significant changes in signal intensity compared to baseline were 

observed with treatment in the carotid plaque, indicating changes in macrophage 

accumulation. These studies strongly support the use of macrophages as biomarkers for 

disease detection, disease severity assessment, and treatment effectiveness. Imaging 

macrophages has the potential to be a generalized method for disease diagnosis and 

prognosis, thus driving the personalized medicine in inflammatory diseases. 

1.4 Nanosystem design considerations for effective macrophage targeting 

NPs have been utilized to deliver imaging and therapeutic agents to macrophages 

with or without targeting ligands,70 because they are readily internalized by macrophages’ 

natural phagocytic ability (“big eaters”). Although macrophages can readily internalize 

NPs, several attributes, namely size, shape, surface charge, concentration, targeting 

ligands, and surface functionalization with PEG influence the in vivo targeting efficiency 

and performance. One of the major limitations of current nanomedicine formulations is 

their non-specific uptake by macrophages of reticuloendothelial system (RES), which 

reduce both blood circulation time and target site accumulation. However, this aspect can 

be exploited for macrophage-targeted therapies.  

Macrophages exhibit size-, concentration- and time-dependent uptake of NPs. 

Cell surface is negative and hence it has been proposed that positively charged NPs can 

bind to the cell surface and be internalized.71 However, many reports suggest that this 

effect is true for non-phagocytic cells. It should be noted that positively charged NPs 

induce cytotoxicity, thus reducing biocompatibility. Contrary to the uptake behavior of 

non-phagocytic cells, phagocytic cells show preferential uptake of anionic NPs.72 For 

liposomal formulation, highly charged anionic and cationic formulations show greater 
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uptake compared to the neutral ones.32,73 Negatively charged liposomes display greater 

biocompatibility. One report claims that NP size is a stronger determinant of macrophage 

uptake than charge,74 with 100 nm particles showing greater uptake than 40 nm. It is 

likely that larger particles can bind to multiple receptors triggering internalization 

through clustered receptors. 

NPs in circulation possess different properties due to electrostatic interactions 

with serum components, protein adsorption and opsonization, which can mask their 

native surface functional groups and charge, giving them a different set of properties for 

uptake. The recognition of NPs for uptake is mediated by opsonin coating (e.g. IgG) in 

the blood stream and subsequent interaction with cell surface receptors (Fc) for uptake. 

The extent of coating and recognition depends on size, surface charge, and the presence 

of functional groups. Finally, surface presence of PEG is essential for NP stability in the 

aqueous medium and for increase in blood circulation time. However, PEG can reduce 

the opsonization process and hence the uptake potential.75 Therefore, a critical balance 

needs to be established to obtain NPs displaying high stability and uptake in 

macrophages.  

In addition to these passive targeting approaches, targeting ligands can be used to 

increase uptake. Macrophages express several receptors that have been targeted with 

ligands such as dextran, folic acid, mannose, hyaluronate, and tuftsin, antibodies against 

F4/80 and cluster of differentiation (CD) 169.26,73,76,77 The disrupted vasculature in the 

inflammatory environment provides an additional opportunity to passively target 

nanosystems.25,26,78 Monocytes and macrophages have an intrinsic disease-homing 

property, which can be utilized for delivering NPs to inflamed sites.25,26 Through these 
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properties, macrophages have been used as Trojan horses to deliver drugs and imaging 

agents to the disease site.26 

While a universal criterion for NP design is not feasible to propose based on the 

literature, some features can be considered for effective macrophage uptake. The size of 

the nanosystem is a critical factor identified in many studies, with >100 nm showing 

significant uptake. Charge effect on differential uptake of NPs is documented; it is 

conceivable to use neutral or anionic NPs to avoid biocompatibility problems generally 

associated with cationic NPs. The concentration of surface PEG should balance stability 

and uptake. Finally, targeting ligands can be utilized to increase cell uptake, but synthesis 

of these conjugates, cost, and large-scale production entail careful evaluation. Unlike 

cancer or endothelial cells, the use of targeting ligands has lesser effect on uptake in 

macrophages because macrophages possess intrinsic phagocytic ability. Active targeting 

strategies could be highly useful to preferentially target a specific macrophage phenotype. 

1.5 Theranostics for macrophage detection and therapy – state of the art 

Anti-inflammatory therapies targeting macrophages by specific ablation, 

inhibition of their infiltration and reduction of pro-inflammatory mediator release have 

been applied in RA, atherosclerosis, vascular injury and cancer. However, variable 

efficacy results across the patient population were observed.14,15,79,80 In some instances, 

significant depletion of macrophages has been associated with immunosuppression, 

infection81 and reduced wound healing.82 This combination of therapeutic and harmful 

effects can be attributed to the different activated states of macrophages in disease 

environments. To delineate the protective and detrimental effects of targeting 

macrophages, there is a need to bring therapy and diagnosis together. In this regard, 
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theranostics could provide essential information about the delivery of drug carriers to 

macrophages as well as their biodistribution, treatment efficacy and toxicity profile in 

real-time, leading to better therapeutic intervention. Table 1.1 shows a summary of the 

theranostics reported in the literature, different targets, targeting ligands utilized and 

comments showing the highlights of the study. A schematic of multifunctional 

theranostics for macrophages is shown in Figure 1.5. 

  

 

Figure 1.5. Schematic showing the multifunctional theranostic systems utilized for 

imaging and therapy of macrophages. Originally published elsewhere.2 

 

1.5.1 Theranostics for macrophage ablation 

Photo and chemotherapy based approaches are utilized to reduce macrophage 

numbers at the diseased site. Reduction in these cells deprives the pathological 

environment of macrophage-mediated pro-inflammatory mechanisms, and thus reduces 

inflammation. Selective macrophage ablation was the major strategy used in 

experimental studies to investigate their role in pathogenesis of several diseases. 
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Macrophage depletion has been applied in the treatment of atherosclerosis,83 restenosis,84 

RA,85 and cancer86 in preclinical and clinical subjects.  

Photodynamic therapy (PDT) and Photothermal therapy (PTT) are treatment 

modalities that use a combination of light and a photoactive agent to induce cell death. 

PDT uses photosensitizers that produce cytotoxic oxygen species upon illumination.87 

PTT utilizes photoabsorbers such as organic dyes to generate localized hyperthermia 

upon illumination by visible to near-infrared (NIR) light.88 Hyperthermia can induce cell 

death by protein denaturation and disruption of the cytoskeleton. In PDT and PTT, NIR-

active (650-900 nm) material is preferred to enable treatment of deep tissues (up to a few 

centimeters) and also to reduce tissue scattering effects, which allows for reliable 

imaging. Since photosensitizer/photoabsorber accumulation and photo-irradiation are 

required for cell death, these are selective techniques. PDT and PTT agents can be 

referred to as theranostics due to their inherent fluorescence/absorbance and their ability 

to induce cell death. Of note, light based therapies are already applied clinically to treat 

cancer, skin conditions and other surface accessible pathologies.87 

Several NPs incorporating photosensitizers for disease imaging and macrophage 

ablation have been reported as shown in Table 1.1. Some of these theranostics were 

designed to increase macrophage uptake through targeting ligands such as hyaluronic 

acid and dextran. Theranostics have been investigated to detect and deplete macrophages 

in arthritic joints89 and atherosclerotic plaques.90,91 Imaging the theranostic facilitated the 

detection of arthritic joints, the assessment of residence time and the directing of light.89 

To confer additional selectivity, a stimuli-responsive theranostic was also reported, which 

utilized protease activation to selectively deplete cathepsin-B (Cat B) producing 
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macrophages.92 Cathepsin is a protease enzyme involved in matrix degradation, which 

can cause plaque rupture. 

For PTT, several nanomaterials such as gold nanorods (GNRs), nanoshells and 

carbon nanotubes have been studied as NIR absorbing materials.93-95 These materials 

have optical properties that can be used for in vitro and in vivo imaging. As outlined in 

Table 1.1, targeted and non-targeted NPs have been investigated for photothermal 

ablation of macrophages. For example, dextranated IONPs with surface gold coating 

were used for thermal ablation of atherosclerotic macrophages.95 GNRs coated with 

dextran or a macrophage targeting monoclonal antibody (CD11b) were tested in vitro for 

their cytotoxic potential.94,96  

Limited light penetration makes photo-based therapies impractical for 

inflammatory conditions in deeper tissues where surgical or invasive endoscopic 

intervention is required, as performed in some of the studies in Table 1.1. In these 

conditions, target-specific accumulation of cytotoxic chemotherapeutic drugs could be an 

alternative.  Several cytotoxic drugs such as clodronate, glucocorticoids, doxorubicin and 

methotrexate are utilized for this purpose.97-99 Systemic release of a cytotoxic drug can 

reduce the global macrophage population, thereby affecting homeostasis and making the 

host prone to infections. In this regard, theranostics could be employed to target cytotoxic 

drugs to inflamed tissue through EPR, while the imaging functionality could help 

visualize biodistribution. For example, the effect of prednisolone phosphate encapsulated 

in MRI-fluorescence active liposomes was studied on TAMs.98 Fluorescence was used 

for histological analysis and microscopy, while contrast enhanced MRI with gadolinium 

(Gd) liposomes was used to evaluate drug delivery to the tumor site and intra-tumoral 
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theranostic distribution in a mouse melanoma model. Imaging has assisted in the 

quantification of theranostic reaching the tumor site, which was found to be 5% in TAMs. 

However, a 90% reduction in systemic leukocyte count was observed. This reduction, as 

opposed to TAM depletion, could be the reason for therapeutic efficacy. While systemic 

reduction could reduce the tumor-infiltrating monocytes, a high drop in their count could 

make the host susceptible to infections. This study highlighted the importance of imaging 

functionality in the theranostic, which facilitated in the interpretation of mechanism of 

anticancer effect caused by these liposomes. 

Macrophage ablation therapies are inherently aggressive; therefore, selectivity is 

very crucial to reduce immunosuppression and infections. Although light-mediated 

theranostics are selective, they have been shown to cause significant tissue damage and 

induce inflammatory reactions, which could lead to recurrence of the disease.100 

Additional challenges included focused irradiation of target tissues, release of cellular 

products post cell death, toxicity due to long term accumulation of 

photosensitizers/photoabsorbers, light penetration depth in clinical subjects and 

dissipation of heat by blood flow. It is important to note that in certain diseases, a subset 

of macrophages show beneficial effects (e.g. M2 macrophages in atherosclerosis), and 

their depletion could hamper wound healing. Chemotherapeutic ablation of macrophages 

is useful in the treatment of deep-tissue pathologies that are inaccessible by PDT and 

PTT. Conferring the theranostic with tissue selectivity by targeting ligands, stimuli 

sensitivity, or external activation is vital in order to confine the activity to the target 

tissue. Although these aggressive approaches are valuable in life-threatening diseases 

such as cancer and less invasive alternatives need to be explored. 
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1.5.2 Theranostics utilizing non-ablation approaches 

Reducing the pathogenic activity of macrophages could be promising since this 

approach would avoid detrimental effects caused by macrophage ablation and the 

released toxic products. Macrophages produce a plethora of pro-inflammatory mediators 

that damage the host tissue and these can be targeted by theranostics. 

Harel-Adar et al.101 reported the utility of phosphatidylserine-presenting iron 

oxide loaded liposomes to modulate macrophage phenotype in MI. PS is expressed on 

apoptotic cells, which are recognized by macrophages and cleared. Apoptotic cells inhibit 

the production of pro-inflammatory cytokines from macrophages concomitant with the 

secretion of anti-inflammatory cytokines. The presence of iron oxide enabled 

visualization of theranostic accumulation at the infarct site after femoral vein injection in 

a rat model of acute MI. Following uptake of PS-liposomes by macrophages, an increase 

in anti-inflammatory markers and a reduction in pro-inflammatory markers were 

observed both in vitro and in vivo showing the shift of macrophage phenotypes from M1 

to M2. In vivo, theranostic-treated rats showed effective wound healing. Such 

theranostics could also be effective in other diseases. For example, celecoxib theranostic 

could be applied in cancer because celecoxib has shown to change the TAM phenotype 

from pro-tumor (M2) to tumoricidal M1-like.102 Specific receptors are expressed by 

macrophages displaying different phenotype, which could be used for selective 

targeting.103,104  
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Table 1.1. Table summarizing macrophage-targeted theranostics reported in the literature 

Target Theranostic  Ligand Disease model Comments 

Synovial macrophages 89a Nanogels incorporating 

photosensitizer 

Hyaluronic 

acid 

Arthritic mouse Imaging to visualize joint retention time, 

invasive local injection 

Plaque macrophages 90,91a Cross-linked IONPs 

incorporating 

photosensitizer 

Dextran Atherosclerotic 

mouse 

Imaging to visualize plaque macrophages 

and guide therapy, PDT after surgical 

exposure of carotid artery 

Cat B-producing 

macrophages 92a 

Protease activated 

photodynamic agent 

None Atherosclerotic 

mouse 

Imaging to visualize uptake and therapy 

response, selective for CatB-producing 

macrophages, multiple i.v. 

administration 

Plaque macrophages 95a Surface gold coated 

IONPs 

Dextran Atherosclerotic 

rabbit model 

Imaging to visualize uptake in 

macrophages in histological samples 

Macrophages in vitro 96a GNRs CD11b 

antibody 

- Similar cell death between naked and 

targeted GNRs 

Macrophages in vitro 94a GNRs Dextran - Increased cell death with targeted 

compared to naked GNRs 

Plaque macrophages 93a Single walled carbon 

nanotubes 

- Atherosclerosis 

mouse 

Imaging to visualize accumulation in 

ligated carotid arteries, ex vivo PTT 

TAMs 98a Prednisolone phosphate 

encapsulating Gd-

fluorescent liposomes 

- Melanoma 

mouse 

Dual mode imaging, fluorescence for 

histology and MRI to assess intratumoral 

distribution and therapy effect 

(measuring tumor size by MRI) 

In vitro macrophages 99b Coumarin-6 incorporating 

SPIO-PLGA NPs with 

cytotoxic methotrexate 

and clodronate 

F4/F80 

antibody 

- Fluorescence imaging to assess 

macrophage uptake in vitro  

Infarct macrophages 101b Phosphatidyl serine-

liposomes 

- Acute MI rat 

model 

MRI used to visualize infarct 

accumulation of liposomes, in vivo 

studies showed phenotype change (M1 to 

M2) 
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MCP-1/CCR2 

inflammatory 

monocytes/macrophages 
105b 

Fluorescently-tagged 

siRNA-loaded theranostic 

lipid NP 

- MI, 

atherosclerosis, 

diabetes and 

cancer 

Fluorescence imaging for 

biodistribution, target site accumulation 

and histology 

TNF-α 106b Fluorescently-tagged 

microparticles 

incorporating Map4k4 

siRNA 

1,3-β-

glucan 

LPS-injected 

mouse 

Fluorescence imaging to assess tissue 

and cellular uptake, oral delivery to 

reduce systemic TNF-α, high dosing 

frequency 

TNF-α 107b Fluorescent 

Supramolecular self-

assembled NPs  

Mannose, 

chitosan, 

cysteamin, 

polypeptide 

LPS-induced 

mouse hepatic 

injury 

Multivalent targeting, fluorescence 

imaging for biodistribution, single oral 

dose lead to 80% reduction in systemic 

TNF-α 

TNF-α from synovial 

macrophages 108b 

Anti-TNF-α siRNA-

loaded fluorescent 

liposomes (wraposomes) 

- Arthritis mouse 

model 

Fluorescence imaging for 

biodistribution, accumulation in 70% of 

synovial macrophages 

Hydrogen peroxide 109b Chemiluminescent antiox- 

idant Pluronic® F127 

micelles incorporating 

hydroxyl benzyl alcohol 

(HBA) and a fluorescent 

dye 

- LPS-induced 

inflammation 

(s.c.) mouse 

model 

Fluorescent imaging was stimuli-

sensitive (hydrogen peroxide) 

Myeloid-related protein-

8/14 110b 

anti-Mrp antibody coupled 

with Gd NP 

PS and ω-

carboxynon

anoyl-

cholesteryl 

ester  

Atherosclerotic 

mouse model 

Plaque distribution by MRI 

a Macrophage ablation; bNon-ablation approach  

PLGA - poly(lactic-co-glycolic acid); i.v. - intravenous; LPS – lipopolysaccharide; MCP-1 - monocyte chemoattractant protein-1
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Pro-inflammatory mediators produced by macrophages have been targeted for 

simultaneous therapeutic delivery and imaging. Monocyte chemoattractant protein-1 

(MCP-1) is a chemokine upregulated in inflammatory monocytes/macrophages, which is 

involved in their movement to the disease site. Leuschner et al. developed a 

fluorescently-tagged siRNA (small interfering RNA)-loaded theranostic lipid NP for 

CCR2 silencing activity in inflammatory monocytes.105 A detailed study outlining the 

utility of this delivery vehicle in MI, atherosclerosis, diabetes and cancer showed 

compelling results. Fluorescence imaging was used to visualize NP/siRNA 

biodistribution, which were predominantly present in splenic, bone marrow and blood 

inflammatory monocytes. In addition to MCP-1, CAMs can also be targeted to reduce 

macrophage infiltration. 

Dysregulated production of TNF-α, a potent pro-inflammatory cytokine produced 

by M1 macrophages, has been implicated in cancer, RA, IBD, and Alzheimer’s disease 

(AD).111,112 Theranostics facilitated the targeted delivery of TNF-α inhibitors, such as 

siRNA, to inflammatory macrophages and increased their oral absorption.106,107 These 

theranostics were surface functionalized with multivalent targeting capabilities (Table 

1.1) for increased uptake. Komano et al. reported the use of anti-TNF-α siRNA-loaded 

liposomes called wraposomes that targeted synovial macrophages in a mouse model of 

arthritis.108 Despite the absence of a targeting moiety, 70% of synovial macrophages were 

shown to uptake the theranostic. In these studies, imaging was utilized to confirm uptake 

in macrophages and to assess biodistribution. 

Excessive production of ROS can cause oxidative stress in diseases. Activated 

macrophages and neutrophils are the major source of ROS in the inflammatory 
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environment. Cho et al. showed in vitro and in vivo the anti-inflammatory activity of 

stimuli-responsive chemiluminescent antioxidant micelles that incorporated the 

antioxidant, hydroxyl benzyl alcohol and a fluorescent dye.109 The presence of ROS 

(H2O2) resulted in a POCL (peroxylate chemiluminescence) reaction that lead to the 

transfer of energy to the nearby dye, causing the dye to fluoresce. The stimuli-sensitive 

fluorescence of this theranostic was verified in an inflammation model. It could enable 

detection of the ROS-active inflamed site as well as assessment of therapeutic effect 

because reduction in ROS will lead to reduced fluorescence. 

Mrp-8/14 is a member of the S100-family of Ca2+-modulated proteins. It 

participates in vascular inflammation, macrophage recruitment, and pro-inflammatory 

cytokine release. Mrp-8/14 is detected in the cytoplasm of neutrophils and macrophages. 

Maiseyeu et al. targeted Mrp-8/14 in a mouse atherosclerotic model using a multivalent 

theranostic containing PS, ω-carboxynonanoyl-cholesteryl ester and an anti-Mrp antibody 

coupled with Gd-NP (aMrp-NP).110 The ω-carboxynonanoyl-cholesteryl ester (expressed 

on foam cells) and PS were utilized for uptake by macrophages, whereas the anti-Mrp 

antibody was used as an anchor for retention in atherosclerotic plaques. In vitro studies in 

BMDMs of the atherosclerotic mouse showed neutralization of Mrp 8/14 pro-

inflammatory effects with aMrp-NP, potentially caused by antigen-antibody interactions. 

In vivo MRI studies in the murine atherosclerotic model confirmed the presence of aMrp-

NP around the plaque.  

In addition to the above-discussed targets, macrophages express many enzymatic, 

protein and lipid based targets for therapeutic intervention. Compared to aggressive 

macrophage depletion, these approaches are non-destructive and the likelihood of benign 
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tissue damage is minimal, since no cytotoxic products are released. These studies 

demonstrate the feasibility of targeting macrophages for simultaneous imaging and 

therapy using a variety of theranostic systems.  

1.5.3 Conclusions, Limitations and Future Perspective 

As detailed in this chapter, macrophage-targeted theranostics have shown 

promising results in preclinical models for simultaneous imaging and therapy. A number 

of molecular targets in macrophages that are indicated in several diseases were 

investigated. Based on these studies, it can be concluded that the theranostics targeting of 

macrophages holds great promise for diagnosis and treatment of the inflammatory 

diseases, which could lead to effective disease management.  

However, limitations in current technology pertaining to the choice of imaging 

and therapeutic functionalities, and the utility of imaging aspect still need to be 

addressed. For example, the majority of the presented theranostics utilized optical 

imaging, which is limited by light penetration. Optical imaging can be reserved for 

surface pathologies, histological analysis and preclinical evaluation. To obtain unlimited 

tissue penetration in clinical subjects, theranostics that incorporate paramagnetic MRI 

contrast agents can be used, but the inherent tissue background limits unambiguous 

detection of macrophages. An alternative method is 19F MRI, which detects fluorine (19F) 

from externally introduced PFCs. This imaging technique holds great potential due to 

near-zero background leading to quantitative detection. 19F MRI aspects are discussed in 

chapter 2, section 2.4.3. 

Current anti-inflammatory therapies are majorly concentrated in targeting 

inflammatory mediators such as TNF-α, prostaglandins (COX-2) and inhibition of 
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macrophage migration. In this regard, biologics such as siRNA and monoclonal 

antibodies have shown potent anti-inflammatory properties; however, these biologics are 

usually associated with severe toxicities. While theranostics could limit these toxicities 

by site-specific targeting, challenges associated with large-scale production of 

biologics113 could add to the existing limitations of theranostics for clinical translation. 

Alternately, small molecule anti-inflammatory drugs with well-characterized efficacy, 

toxicity and safety profiles could be applied for theranostic research. Amongst these 

drugs, NSAIDs have shown efficacy across inflammatory disease models. NSAIDs are 

one of the commonly used anti-inflammatory drugs targeted against COX enzymes. The 

role of COX-2 in inflammatory diseases is discussed in chapter 2. 

Finally, as discussed earlier, therapy and imaging the response to the therapy have 

been investigated separately. A simultaneous approach to monitor the therapy could be 

very useful in the identification of the subgroup of patients that respond effectively to the 

treatment (i.e. to the theranostic under investigation). To achieve this goal, our efforts 

focused on the development of a macrophage COX-2 inhibiting theranostic. Chapter 2 

details background information and the synthesis of rationale for the developed 

theranostic. 

 

Parts of chapter 1 were originally published in the review by Patel and Janjic.2 
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2 Rationale for Perfluorocarbon nanoemulsions as a platform to 

deliver celecoxib for COX-2 inhibition in macrophages 

 

2.1 COX-2 in inflammatory diseases 

Cyclooxygenase (COX) enzymes, COX-1 and COX-2 are involved in several 

homeostatic functions. COX enzymes catalyze the conversion of arachidonic acid (AA) 

into biologically active lipids called prostaglandins (PGs), namely PGG2 followed by 

PGH2.
114 AA is released from the plasma membranes in the presence of phospholipase A2 

(Figure 2.1). PGH2 serves as a substrate for the formation of further downstream products 

such as PGI2, PGD2, PGE2, PGF2α, and thromboxane A2 (TXA2), in the presence of 

respective synthases. COX-1 is constitutively present and involved in ‘housekeeping’ 

functions such as the maintenance of gastric mucosa and renal blood flow.115 COX-2 is 

induced in response to injury or inflammatory stimuli.114,115 The increased production of 

PGs is responsible for pain, increased vascular permeability, edema and immune cell 

infiltration observed during inflammation.116 Immune cell infiltration has been associated 

with the effect of PGE2 on the upregulation of CAMs117 and MCP-1, which are involved 

in leukocyte recruitment. MCP-1, for instance, is induced by activated PGE2/EP4 

signaling.118 

COX-2 plays an important role in the pathogenesis of inflammatory diseases, 

where it is over-expressed. In fact, the development of COX-2 specific PET and 

fluorescence imaging agents for cancer and inflammation detection signify the ubiquitous 

presence of COX-2 in inflammatory diseases.119,120 For example, in osteoarthritis and 

RA, the synovial cavity is infiltrated with cells expressing COX-2, which is responsible 
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for pain. NSAIDs targeting COX-2 reduce pain and inflammation in arthritic patients. 

Evidence of reduced inflammatory cell infiltrate and inflammation in the synovium was 

also reported in a rat model of arthritis with selective COX-2 inhibition.121 In cancer, 

COX-2 expression has been correlated with poor prognosis, increased angiogenesis and 

metastasis. COX-2 silencing has shown delayed tumor formation and reduced metastasis 

in preclinical models.122 COX-2-mediated release of PGE2 is involved in the suppression 

of cancer cell apoptosis, increase in proliferation and angiogenesis.36 In support of these 

properties, long-term use of selective COX-2 inhibitors has shown beneficial anticancer 

effects in several clinical trials.123,124 COX-2 is also widely implicated in cardiovascular 

diseases such as atherosclerosis,125 where it is involved in macrophage recruitment and 

plaque rupture through MCP-1 and matrix metalloproteinases (MMPs). COX-2 

expressing cells are present around the amyloid-plaques in AD,126 and selective COX-2 

inhibitors have shown protection against AD. COX-2 is also shown to be involved in the 

pathogenesis of Parkinson’s disease, where it can contribute to neurodegeneration by 

oxidative stress.127 
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Figure 2.1. Formation of prostanoids from arachidonic acid. 

Phospholipase A2 converts membrane phospholipids to AA in response to stimuli, which 

can be converted to different prostanoids under the action of COX-1/COX-2 and related 

synthases. 

 

2.1.1 COX-2 in monocytes and macrophages as a therapeutic target 

Based on the studies presented in section 1.3.1 and section 2.1, COX-2 and 

macrophages have been implicated separately and together in many inflammatory 

diseases. Activated macrophages/monocytes such as TAMs in cancer and foam cells in 

atherosclerosis are one of the key cells expressing COX-2 in the inflammatory milieu. 

Therefore, we proposed that inhibition of macrophage COX-2 could be an effective 

strategy to reduce inflammation.128 Consistent with this hypothesis, recent reports 

indicate that targeting macrophage PGE2 can be applied to reduce cancer and 

atherosclerosis. COX-2 is overexpressed in foam cells and its selective inhibition has 
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reduced early atherogenesis. PGE2 produced by COX-2 expressing macrophages has 

been implicated in the release and activation of MMPs, which play an important role in 

plaque stability and macrophage infiltration in atherosclerosis.125 A COX-dependent 

pathway was indicated for monocyte chemotaxis in atherosclerosis.129 Consequently, 

selective COX-2 inhibition by celecoxib has exhibited reduction in MCP-1 and 

macrophage infiltration.40 Chen et al.130 recently reported that the deletion of myeloid cell 

mPGES-1, which catalyzes the synthesis of PGE2, reduces atherogenesis in mice. 

Likewise, deletion of COX-2 in myeloid cells contributed to reduced mammary tumor 

growth through increased cytotoxic T-cell function.131 In AD, COX-2 expressing 

macrophages were shown to infiltrate the brain and damage the blood brain barrier,126 

indicating a potential therapeutic effect by targeting these cells. Evidence from the 

literature supports that macrophage COX-2 inhibition could find widespread applicability 

in inflammatory diseases. 

2.2 Pharmacology of COX-2 inhibitor, celecoxib 

Celecoxib (Figure 2.2) is one of the widely used NSAID for selective COX-2 

inhibition. Celecoxib exhibits anti-inflammatory, analgesic and antipyretic activities. The 

IC50 of celecoxib is 40 nM and it displays 375-fold higher selectivity for COX-2 over 

COX-1 based on human recombinant enzyme assays.33 Unlike aspirin, celecoxib binds 

reversibly to the COX-2 enzyme pocket. The binding pocket of the COX-2 enzyme 

differs from COX-1 at one relevant position of 523. At this position, COX-2 has a valine 

while COX-1 has an isoleucine. This difference causes celecoxib bind strongly to COX-2 

and weakly to COX-1.34 
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Celecoxib is a BCS (Biopharmaceutics classification system) class II drug with a 

high membrane permeability (Log P = 3.64) and a low aqueous solubility of 7 μg/mL.132 

It has low (22-40%) oral bioavailability in dogs133 (to our knowledge absolute 

bioavailability in humans has not been reported). It is highly protein bound (90%) and it 

is also rapidly eliminated from the plasma (t1/2 = 11.2 h).33,46,134 It is metabolized 

primarily by cytochrome P450 enzyme, CYP2C9. Following hepatic metabolism, 

celecoxib is eliminated in urine and feces.34 Celecoxib is prescribed to reduce pain and 

inflammation in arthritis, juvenile RA, ankylosing spondylitis, and menstrual pain. It is 

also prescribed to treat colon polyps. It is dosed perorally in tablets and capsules. 

 

 

Figure 2.2. The chemical structure of celecoxib. 

 

The therapeutic effects of celecoxib span a wide spectrum of inflammatory 

diseases. Selective COX-2 inhibition with celecoxib has shown reduced atherosclerotic 

lesions in the mouse model, possibly by reducing inflammatory cell recruitment due to its 

inhibitory effect on the expression of CAMs.35 Reduced MCP-1 and macrophage 

infiltration was also observed with celecoxib treatment in a rabbit model of 



 

  37 

atherosclerosis.40 It has been reported to suppress and delay tumor growth in preclinical 

models.46,135 Epidemiological studies have provided evidence of reduced risk of colon, 

breast, lung and prostate cancers with regular use of celecoxib.136 In cancer, it acts as a 

multifunctional drug that simultaneously induces COX-2 independent apoptosis, inhibits 

PGE2 mediated anti-apoptotic proteins and inhibits angiogenesis.36 Recently, celecoxib 

has also been shown to alter the phenotype of macrophages from protumor (M2) to 

antitumor (M1) subtype via COX-2 inhibition.102 It has been shown to reduce vascular 

endothelial growth factor expression and vascular leakage, which are important 

contributors to the pathogenesis of diabetic retinopathy.41 Celecoxib showed protection 

against dopamine neuron loss in a preclinical model of Parkinson’s disease39, indicating 

its applicability in neurodegenerative diseases.  

2.3 Celecoxib toxicity and alternate formulations 
 

Selective COX-2 inhibitors reduce the risk of gastrointestinal side effects, which 

are associated with non-specific COX inhibitors. However, long-term use of specific 

COX-2 inhibitors is associated with cardiovascular and renal toxicity, which led to the 

withdrawal of Rofecoxib and Valdecoxib in 2004 and 2005 respectively.  Selective COX-

2 inhibition reduces prostacyclin production by vascular endothelium, with no inhibitory 

effect on TXA2 production. This selective reduction in protective prostacyclin predispose 

patients to vascular injury and cardiac events such as MI.137 Celecoxib is generally well 

tolerated, but in clinical cancer studies, high oral doses (200 – 400 mg, twice daily) were 

administered for several months leading to cardiovascular side effects, which may be 

severe.123 To overcome side effects and increase target site accumulation, which could 

reduce the required dose, alternate formulations of celecoxib have been investigated. 
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Microparticle and NP formulations of celecoxib have been attempted for specific delivery 

of celecoxib to the target tissue. Celecoxib has been incorporated in albumin 

microspheres,45 PLGA NPs,138 chitosan NPs,46 high density lipoprotein NPs,49 

liposomes,139 and immunoliposomes140 for intravenous (i.v.) applications in RA and 

cancer. Nanoemulsions, microemulsions and gels have been investigated for transdermal 

delivery of celecoxib.44,141 To reduce toxicity associated with oral administration, 

Soliman et al.44 reported microemulsion gels and tested the anti-inflammatory effect of 

celecoxib via transdermal route in carrageenan-induced paw edema model. Using 

radiolabeled celecoxib and microspheres, Thakkar et al.45 showed that microspheres 

produced 2.5 fold greater accumulation in arthritic joints compared to control after i.v. 

administration. The solution formulation of celecoxib revealed no difference between 

control and arthritic knees. This study demonstrates the advantage of using colloidal 

formulation to target inflamed sites for greater celecoxib accumulation. Likewise, 

Venkatesan et al.46 used chitosan NPs to deliver celecoxib to colon cancer tissue, which 

showed tumor inhibitory effects. To reduce side effects and increase local levels of 

celecoxib, Kompella and group42 formulated celecoxib into microparticles, which showed 

sustained release and reduced inflammation indicators in a diabetic retinopathy model 

utilizing an ocular route of delivery. Based on the studies, it can be concluded that 

alternate formulations and delivery routes have great potential to reduce limitations of 

oral celecoxib delivery, while increasing efficacy and safety. 
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2.4 Perfluorocarbon nanoemulsions 

2.4.1 Perfluorocarbons in biomedical applications 

PFCs are the hydrocarbons in which all or most of the hydrogens are replaced 

with fluorine. Fluorine, being the most electronegative atom with low polarizability. 

renders PFCs with strong intramolecular bonds and very weak intermolecular 

interactions.142 Large numbers of low polarizable fluorine atoms and very weak van der 

Waals forces render unique physicochemical properties to PFCs such as low cohesivity, 

surface tension, viscosity, friction, aqueous solubility and diffusion rate, and high 

spreading, fluidity, compressibility, thermal and chemical resistance, biological inertness, 

high density, “superhydrophobicity” and lipophobicity.142,143 The low polorizability of 

PFCs make them possess gas-like intermolecular bonds, thus leading to efficient gas-

dissolving capability. The large van der Waals radius of fluorine compared to hydrogen 

(1.47 Å vs. 1.20 Å) makes fluorocarbon chains bulkier as compared to hydrocarbons. The 

bulkiness of the fluorine and low polarizability results in both enhanced hydrophobicity 

and lipophobicity. Due to the highly stable C-F bond, PFCs tend to show high chemical 

and thermal resistance, as well as biological inertness.142 

Since PFCs are non-toxic and biologically inert, they have been investigated for 

more than 40 years in a variety of biomedical applications.143 Figure 2.3 shows some of 

the PFCs widely investigated for biomedical applications. One of the earliest applications 

utilized the oxygen carrying capacity of PFCs for organ preservation, wound healing, 

liquid ventilation, and as artificial blood substitution. They have also been employed as 

contrast agents for CT, sonography and MR imaging.144 The oxygen dissolving capacity 

was also exploited to sense partial oxygen pressure in order to image tumor 
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hypoxia.145,146 The biological inertness and the light refraction properties of PFC 

polymers have also been applied in ophthalmology to prepare contact lenses and 

implantable cornea lenses.147 PFC polymers were also used in reconstructive surgeries as 

vascular grafts and other devices.143 Recently, there has been a renewed interest in the 

application of PFCs for 19F MRI of externally injected formulations, which has been 

useful in tracking immune-therapeutic cells as well as in imaging 

macrophages/monocytes in a variety of diseases.148 One of the emerging applications of 

PFCs is to combine their ultrasound echogenicity with the light absorbing potential of 

NIR dyes to obtain hybrid photo-acoustic images.149 

 

 

Figure 2.3. Chemical structures of PFCs utilized in biomedical applications. 

Applications of these PFCs is described elsewhere.148,150-152 
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2.4.2 Perfluorocarbons and challenges 

Neat PFCs have been administered orally for image contrast purposes or directly 

to tumor tissues for oxygen sensing.144 However, many applications necessitate access to 

blood circulation through i.v. route. Oral administration shows only a miniscule amount 

of PFCs in the systemic circulation. Neat PFCs cannot be injected because they are 

hydrophobic and lipophobic and hence can lead to vascular embolism. They do not 

interact with cell membranes and do not enter cells. Therefore, PFCs have been 

emulsified with surfactants to obtain biocompatible submicron-sized emulsions (i.e. 

nanoemulsions), which are typical formulations for in vivo applications. Chapter 3 

provides more details about PFC formulations. 

Although PFCs are biocompatible, there are several limitations when using them 

for clinical applications. Due to their hydrophobic and lipophobic nature, PFCs do not 

interact with biological material, and there are no known PFC-metabolizing enzymes,152 

rendering them biologically inert. However, many PFCs tend to accumulate in the tissues 

for a long time. They are eliminated in feces if administered orally. In i.v. applications, 

their body residence time can range from a few hours to months depending on their 

molecular weight, chemical structure, and vapor pressure. They are usually eliminated 

through lungs and hence high vapor pressure PFCs such as perfluorohexane (Figure 2.3) 

are exhaled faster. PFC emulsions accumulate in RES organs such as the liver and spleen, 

and they are cleared based on their vapor pressure. PFCs with lipophilic character, such 

as perfluorooctyl bromide (PFOB), are cleared relatively faster (biological t1/2 = 12 days) 

when compared to fully fluorinated structures such as perfluoro-15-crown-5-ether (PFCE, 

Figure 2.3) whose biological half-life is greater than 250 days.150 As a result, biomedical 
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applications that demand the injection of large amounts of PFCs are usually limited to 

preclinical research because high dose requirement makes obtaining regulatory approval 

a challenge.  

2.4.3 Fluorescent/19F MRI nanoemulsions as tools for drug delivery and 

macrophage imaging 

PFC nanoemulsions have been increasingly used to image macrophages using 19F 

MRI. NIRF modified PFC nanoemulsions to facilitate in vitro and in vivo imaging and 

confer multimodality have also been investigated. In this section, imaging modalities are 

described, followed by nanoemulsion application for macrophage imaging and drug 

delivery. 

2.4.3.1 19F magnetic resonance imaging 

MRI is a commonly used non-invasive clinical diagnostic tool applied in 

detection, staging, image guided surgery, and assessment of therapy responses in many 

diseases. MRI can detect nuclei containing an odd number of protons or neutrons, which 

exhibit spin. Charged nuclei with this spin produce a magnetic moment.153 In the 

presence of a strong external magnetic field (1.5 to 11 Tesla), these magnetically 

susceptible nuclei such as 1H align with the field and precess with a frequency called 

Larmor frequency. The combined effect of these precessing nuclei contributes to the net 

magnetization. Radio frequency pulses matching the Larmor frequency are then used to 

tilt the nuclei away from the direction of the external magnetic field. Once the pulse is 

removed, the nuclei release energy in the form of radio frequency signal and return to 

their native alignment with the magnetic field, which is detected to construct an image. 
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Based on the tissue environment, the density and relaxation properties of 1H nuclei vary 

leading to contrast. 

MRI can evidently delineate soft tissues and can be used for repetitive imaging 

sessions. It has high spatial resolution (~100 μm) and unlimited tissue penetration.151 

MRI has low sensitivity (10-3 to 10-9 M) and requires a long acquisition time.22 Signal to 

noise ratio (SNR) in MRI can be increased by targeted contrast agents (SPIO or Gd), 

which function by altering the relaxation time of the surrounding protons, thereby 

producing contrast. Although contrast can enhance the local signal, the inherent 

inhomogeneities of tissues limit the unambiguous detection of a pathological 

condition.151  

Alternatively, 19F MRI can be used to circumvent the mentioned limitations of 1H 

MRI. 19F MRI detects organic fluorine, which is introduced exogenously into the body. 

Similar to 1H, the fluorine (19F) nucleus has a half spin, comparable MRI sensitivity 

(83%) and resonance (differs by 6%) to 1H.154 Therefore, 1H MRI machines can detect 

19F nuclei by tuning to an appropriate frequency. 19F MRI is not contrast imaging because 

there is virtually no imageable endogenous fluorine present in the body, except in the 

bones and teeth, where it is immobilized and cannot be detected by general MRI 

methods.155 Due to this near zero background, 19F MRI is a highly quantitative method. 

1H MRI can be registered during the same session to obtain anatomical context for the 19F 

signal. Similar to 1H MRI, 19F MRI has low detection sensitivity, which necessitates the 

introduction of highly fluorinated PFCs into the body in biocompatible formulations such 

as NPs, liposomes and nanoemulsions. Unlike 1H contrast agents, imaging prior to PFC 

administration is not required. Clinical use of 19F MRI is still in its infancy. However, 
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recently its use has been documented in cancer patients for imaging injected therapeutic 

dendritic cells (DCs).156 

2.4.3.2 Optical near-infrared fluorescence imaging 

Optical fluorescence imaging is a widely employed tool for cellular, sub-cellular, 

and whole animal imaging in preclinical research, due to its low cost and high detection 

sensitivity (picomolar to femtomolar).22 Fluorescence is the emission of light of a longer 

wavelength by molecules (fluorophores) absorbing a shorter wavelength of light. When 

fluorophores absorb photons, they are transitioned to an excited state. In this excited 

state, the molecule loses energy to its environment, finally returning to the ground 

state.157 Because energy is dissipated in the excited state, the emitted light is seen at a 

longer wavelength, which forms the basis for fluorescence detection methods. The 

difference between the maxima of these excited and emitted light wavelengths is called 

the stokes shift.157 Wavelengths in the visible to NIR region are used for fluorescence 

imaging.158 Typically, an externally introduced fluorophore is used for fluorescence 

imaging. Light scattering and tissue attenuation limits the use of fluorophores active in 

the visible light region for deep tissue in vivo imaging. Absorption of tissue components, 

namely hemoglobin, water and lipids, are low in the NIR region (650-900 nm). 

Therefore, fluorophores active in the NIR region can reduce tissue absorption and 

increase penetration depth up to few centimeters.158 Fluorescence imaging is regularly 

used in preclinical settings to visualize macrophages and the bioaccumulation of NPs.64 

Many organic and inorganic fluorescent dyes are used for this purpose such as cyanine 

derivatives (indocyanine green) and quantum dots.159 Fluorescence imaging is clinically 
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used for surface tissue imaging (breast), intravital microscopy, and real-time image 

guided surgery.  

Since no imaging modality provides all of the features for an optimal image 

construction, multiple imaging agents are integrated onto a single platform. Multimodal 

NPs with complementary imaging agents could offer high sensitivity detection, 

anatomical localization, and data validation from different imaging modalities. NIRF 

imaging is a promising technique due to low NIR absorbance by living tissues, high 

detection sensitivity, and minimal autofluorescence, but it is limited by fluorescence 

quenching, photobleaching, and tissue penetration. 19F MRI has unlimited tissue 

penetration and it is a quantitative method, but it requires relatively large amounts of 19F 

nuclei (μM to mM) at the target site.155 By combining NIRF and 19F MRI agents, 

sensitivity, specificity, and high tissue penetration can be obtained.160 Aspects of 

multimodal imaging applied to drug delivery and macrophage imaging is discussed in the 

following section.  

2.4.3.3 PFC nanoemulsions for drug delivery and imaging 

19F MRI has been widely investigated in the last decade for mostly cell tracking, 

and inflammation imaging through macrophage detection. Excellent reviews have been 

published in the area of in vivo cell tracking using 19F MRI.151,152,161 Briefly, cells of 

interest such as DCs and T-cells can be labeled ex vivo using PFC nanoemulsions and 

injected into the subject. The fate of these cells in the intact animal can be studied using 

19F MRI. Cell tracking has been applied to investigate the dynamic accumulation and 

clearance of T-cells from lymph nodes in a murine model.162 It has been used to visualize 
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DC migration,163 as well as to investigate the disease homing aspects of diabetogenic T-

cells in a diabetes model.164 

A more recent application of PFC nanoemulsions is in situ labeling of 

macrophages and imaging their accumulation to detect the inflammation loci. Successful 

in vivo macrophage visualization using 19F MRI has been reported in a variety of chronic 

inflammatory models such as cancer,165 RA,166 IBD,167 pulmonary inflammation,168 and 

transplantation models.169 Balducci et al.166 utilized this approach to quantify 

inflammation and assess treatment effect in a rat model of RA. Excellent correlation was 

observed between clinical score of arthritis and the number of 19F atoms detected in the 

arthritic joints. Furthermore, the effect of standard corticosteroid treatment showed a 

reduction in 19F content indicating reduced inflammation. 19F MRI has been used in other 

inflammation models (e.g. IBD and graft rejection), where the macrophage burden is 

reduced with therapeutic intervention concomitant with reduced 19F content.167,169 

Recently multimodal fluorescent PFC nanoemulsions were investigated, where 

fluorescent dye enabled characterization by commonly employed fluorescent methods.170 

Balducci, and Wen et al.171 reported a NIRF fluorescent PFC nanoemulsion to detect 

tumor-associated inflammation by 19F MRI and NIRF. A strong correlation between these 

two imaging signals was observed in different organs. The presence of fluorescent dye 

facilitated the assessment of nanoemulsion accumulation in specific cell type using flow 

cytometry and histology. 

The use of PFC nanoemulsions in drug delivery is slowly emerging. In these 

applications, PFCs were utilized to facilitate imaging by 19F MRI, ultrasound, and 

photoacoustic methods.172-174 An additional use was to trigger drug release by ultrasound. 
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Wickline and Lanza published several studies utilizing PFOB NPs incorporating 

fumagilin, melittin and other drugs for contact-mediated drug delivery in many disease 

models, which is reviewed elsewhere.175,176 In these studies, 19F MRI was used to detect 

the inflamed site and assess NP distribution to confirm drug deposition at the target site. 

Using an integrin-targeted PFC nanoemulsion, Fang et al.177 developed acoustically 

active PFC nanoemulsions incorporating camptothecin and investigated in vitro 

anticancer effect. PFC was used to trigger drug release with ultrasound. To date, PFC 

nanoemulsions were never utilized to target macrophages in inflammation for 

simultaneous drug delivery and imaging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  48 

3 Nanoemulsion development of a lipophilic perfluorocarbon 

conjugate as a 19F MRI tracer for macrophage imaging 

 

3.1 Introduction 

As discussed in chapter 2, current PFC nanoemulsions face several challenges 

regarding their long half-life, imaging artifacts due to multiple peaks, and formulation 

challenges due to their immiscibility with common pharmaceutical excipients. These 

challenges prompted us to synthesize a new class of lipophilic PFC conjugates. The 

formulation of these conjugates was soon encountered with instability, specifically 

Ostwald ripening (OR). In this chapter, the efforts made to resolve this instability leading 

to a stable formulation will be discussed. In vitro assessment for stability, toxicity in 

model macrophages and uptake to establish 19F MR properties is also presented. A 

theoretical background on nanoemulsions, their preparation methods, the mechanism of 

OR and the methods to form stable emulsions is provided. Part of the work presented in 

this chapter was originally published elsewhere.178 

3.1.1 Nanoemulsions 

An emulsion is a mixture containing immiscible phases, where one liquid is 

dispersed as droplets (dispersed phase) in another liquid (continuous phase). The 

dispersed phase is stabilized using surfactants in the continuous phase. A surfactant is a 

molecule containing amphiphilic parts in its structure that adsorbs at the interface of oil 

and water to reduce the interfacial tension and stabilize the droplets against coalescence 

by repulsive steric or electrostatic forces.179 Emulsions can be oil-in-water (o/w) and 

water-in-oil (w/o), where water and oil are the continuous phases respectively. Emulsion 
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formation is not a spontaneous process and requires energy input. An exception to this is 

microemulsions, which are formed in the presence of large amount of surfactants and 

they are thermodynamically stable. The total free energy of emulsion formation (ΔG) is 

given by:179 

∆G = γ∆A − T∆S                                                                                                         Equation 3.1  

where, ΔA is the change in interfacial area, γ is interfacial tension, T is temperature, and 

ΔS is change in entropy of the system. 

Based on Equation 3.1, as smaller emulsion droplets are formed, new interfacial 

area is created, thereby increasing the free energy of the system. Surfactants are utilized 

to reduce the interfacial tension and the free energy. 

Nanoemulsions are kinetically stabilized metastable systems with the droplet size 

below 100 nm. Although microemulsions can exist in this droplet size, they are not 

classified as nanoemulsions due to the fundamental difference in the mechanism of 

formation. In order to break an emulsion droplet into sub-micron sized droplets, 

enormous energy is required to overcome the Laplace pressure (Π) of the droplet, which 

is given by: 

Π = 2γ/r                                                                                                                         Equation 3.2 

where, r is the radius of the droplet. Smaller droplets have higher Laplace pressure and 

hence higher energy is required to break these droplets. Surfactants can reduce the 

Laplace pressure by reducing interfacial tension, making the droplet breakdown process 

easier. Following the breakdown, surfactants adsorb to the newly formed interface and 

stabilize the emulsions. 
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3.1.2 Nanoemulsion preparation using ultra sonication and microfluidization 

The formation of nanoemulsions requires enormous energy in order to overcome 

the Laplace pressure (Equation 3.2) and break the larger oil droplets into nanometer size. 

Nanoemulsions can be prepared by low-energy and high-energy methods.180,181 Low-

energy methods generally utilize changes in composition (phase inversion), rate and 

sequence of ingredient addition, and environmental factors such as temperature (phase 

inversion temperature) to form nanoemulsions. Method of preparing self-

nanoemulsifying drug delivery systems (SNEDDS) is widely utilized for pharmaceutical 

formulations, which can be categorized as low-energy method. However, these systems 

require a large amount of surfactants (20-50%), which could lead to undesirable side 

effects when administered. Also, these methods are limited by long-term stability and 

large-scale production.180 

High-energy methods utilize high shear such as homogenization, 

microfluidization and ultrasonication, to break the droplets and form nanoemulsions. 

High-energy emulsification methods such as sonication and microfluidization are widely 

used at laboratory and industrial scale. In fact, these two processing methods are 

commonly employed to prepare PFC nanoemulsions. In ultrasonication methods, acoustic 

waves are generated, which disperse droplets of dispersed phase in continuous phase. An 

ultrasound-driven mechanical vibrator produces sound waves at frequencies greater than 

20 KHz and high power causing shear and cavitation required for size reduction.181-183 

Ultrasonication equipment is readily available and it is an efficient method for generation 

of nanoemulsions at small scale. The inhomogeneous sound fields require constant 

recirculation/agitation of the mixture to achieve uniform size and low polydipsersity. 
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Microfluidization utilizes microfluidic technology, which was patented in 1985.184 An 

air- or nitrogen-driven intensifier pump pushes the crude emulsion through an interaction 

chamber containing 75 μm channels in Y or Z shape. The fluid is forced through these 

microchannels as two process streams that collide at an impingement area.181 This 

process creates high shear required to produce nanosized droplets. Microfluidization is a 

highly reproducible method and produces droplets with narrow size distribution. 

3.1.3 Ostwald ripening and instability of perfluorocarbon nanoemulsions 

Emulsions are thermodynamically unstable and hence emulsion breakdown is a 

spontaneous process to reduce free energy (Equation 3.1). Emulsions can destabilize by 

several mechanisms such as coalescence, flocculation, sedimentation, and creaming, 

which leads to phase separation.185,186 In nanoemulsions, however, Ostwald ripening 

(OR) is observed as a major destabilizing mechanism. This degradation occurs due to the 

difference in chemical potential between large and small droplets in the internal phase.185 

Based on the Kelvin equation, small droplets display high local solubility. As a result, 

large droplets grow as the dispersed phase molecules from smaller droplets dissolve and 

diffuse in the continuous phase, finally leading to phase separation.185 Because the size of 

the droplets in nanoemulsions is very small, the driving force for OR is greater. Several 

reports have emerged theorizing OR and solutions to reduce the same in emulsions. The 

theory proposed by Lifshitz, Slyzov and Wagner (LSW)187,188 for solid dispersions has 

also been applied to emulsions, where the OR rate (ω) is given by: 

ω =  
dr3

dt
=  

8

9
[
C∞γVmD

ρRT
]                                                                                            Equation 3.3 
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where, D is the diffusion coefficient of the dispersed phase molecules in the dispersion 

medium, C∞ is the saturation solubility of the dispersed phase in the continuous phase, C 

is the concentration of dispersed phase, γ is the interfacial tension between the two 

phases, and ρ is the density of the dispersed phase, Vm is the volume of dispersed phase, r 

is the radius of the emulsion droplets. R and T are the ideal gas constant and temperature 

respectively. 

According to LSW theory, the OR rate can be decreased by reducing interfacial 

tension using surfactants, solubility of the oil phase by employing low aqueous solubility 

oils, and diffusivity of the dissolved oil by increasing the continuous phase viscosity. One 

of the widely utilized method involves use of a second oil phase with lower aqueous 

solubility then the disperse phase at the same time showing miscibility with the dispersed 

phase.185 This second oil phase partitions between droplets and expected to be more 

associated with smaller droplets, thus reducing the solubility and the chemical potential 

difference between droplets leading to reduced OR. 

The growth in droplet size of PFC nanoemulsions under storage was a key 

challenge to apply them as artificial blood substitutes during 1980s and 1990s. Kabalnov 

et al. published theoretical and experimental reports189,190 suggesting that similar to 

hydrocarbon emulsions, PFC nanoemulsions also undergo OR,  despite PFCs displaying 

low aqueous solubility. For example, one of the earliest PFC emulsions prepared with 

polyethylene oxide (PEO) and polypropylene oxide (PPO) block copolymers (F68) 

showed considerable increase in size under storage.189,190 It has been observed that 

fluorocarbon emulsion stability depends on the nature of fluorocarbon, with long chain 

and highly fluorinated PFCs showing lower ripening rates, presumably due to the reduced 
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solubility in the aqueous phase.189 It has also been shown that adding a second PFC with 

lower aqueous solubility can reduce the ripening rate similar to hydrocarbon 

emulsions.190 It should be noted that the biological half-life of these PFCs are 

proportional to their molecular weights and structure, and hence the choice of PFCs 

depend on their potential interactions with biological systems. The use of fluorinated 

surfactants that solubilize in fluorous and aqueous phases is also proposed as another 

alternative to reduce OR by reducing interfacial tension between the phases, which 

reduces the driving force for diffusion. However, high toxicities associated with 

fluorinated surfactants, as well as their interference with 19F nuclear magnetic resonance 

(NMR) peaks resulting in 19F MRI artifacts, made the use of this method less practical. In 

contrast to F68-stabilized emulsions, phospholipid-based surfactants render good stability 

to PFC emulsions. The adsorbed phospholipid layer does not allow many non-electrolyte 

molecules to diffuse,190 which could be the reason for high stability of PFC formulations 

prepared with this system. Nevertheless, phospholipid-based surfactants are limited, in 

addition to the cost, by chemical degradation (lipid oxidation) observed under storage.191 

PFC nanoemulsions were generally formed with either lipid-based surfactants such as 

phosphatidyl choline or block copolymer-based surfactants such as poloxamers.  

3.1.4 Rationale 

The motivation for developing new PFC conjugates is the problems associated 

with the current formulations in terms of stability as well as imaging efficiency. 

Lipophilic PFCs can overcome these problems by enhancing interactions with 

hydrocarbon surfactants and thus leading to stable formulations. PFCs displaying 

lipophilic character such as PFOB (Figure 2.3) are highly investigated because it has a 
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low half-life (12 days) in the body and well-characterized elimination pathways, making 

it more favorable candidate for clinical applications. Similarly, lipophilic-fluorophilic 

constructs could also present with higher elimination. For 19F MRI applications, however, 

PFOB may not be best due to multiple peaks that could likely produce 19F MRI artifacts. 

Optimal PFC nanoemulsions for 19F MRI should mainly satisfy several design criteria152: 

1) stability and long shelf life; 2) a simple 19F NMR spectrum, ideally showing a single, 

narrow resonance in order to maximize sensitivity and prevent chemical shift imaging 

artifacts; 3) resistance to sedimentation (due to large density difference between PFC and 

aqueous phase) during storage; and 4) small molecular weight and lipophilic PFCs for 

faster excretion. 

Herein, we report chemical modifications with formulation strategies of 

structurally simple, small molecular weight (<500 g/mole) perfluorocarbon-hydrocarbon 

(PFC-HC) conjugates to obtain stable and biocompatible nanoemulsion for 19F MRI. We 

attempted two distinct approaches to overcome OR while optimal 19F MRI reagent design 

criteria (1-4) remain satisfied. In the first approach, the effect of hydrocarbon chain 

length variation on the stability of PFC-HC nanoemulsion is investigated. The second 

strategy evaluated the effect of adding a hydrocarbon on the inhibition of OR. 

3.2 Materials and methods 

3.2.1 Materials 

All reagents and solvents used in synthetic experiments were purchased from 

Sigma-Aldrich, Acros, TCI or Spectrum Chemicals (unless stated) and used without 

further purification. Pluronic® P105 was obtained from BASF Corporation. Pluronic® 

P123 and Cremophor-EL® (BASF) were obtained from Sigma Aldrich. Pluronic® F127 
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was purchased from Spectrum Chemicals. Pluronic® L121 is a gift from Dr. Eric T. 

Ahrens of Carnegie Mellon University. Olive oil used in nanoemulsion formulation was a 

generous gift from Croda International Plc. Acetone and chloroform were obtained from 

Fisher Scientific and Spectrum respectively. Trypan blue solution (0.4%) was obtained 

from Sigma-Aldrich. CellTiter-Glo® Luminescent Cell Viability Assay was purchased 

from Promega Corporation (WI, USA). Mouse macrophage cell line (RAW 264.7) was 

purchased from American Type Culture Collection (ATCC) (Rockville, MD, USA) and 

cultured according to the instructions. Dulbecco’s phosphate buffered saline (DPBS) was 

purchased from Mediatech, Inc. (VA, USA). Dulbecco's modified eagle medium 

(DMEM; GIBCO-BRL, Rockville, MD, USA) for cell culture experiments was 

supplemented with 10% fetal bovine serum (FBS) or fetal clone III, 

Penicillin/Streptomycin (1%), L-Glutamine (1%), sodium pyruvate (1%), HEPES (2.5%), 

and 45% D(+) glucose (1%). Trypsin EDTA, 1X was obtained from Mediatech, Inc. (VA, 

USA). All cells were maintained in 37 °C incubator with 5% carbon dioxide (CO2). 

3.2.2 Synthesis of C8/C12/C14 PFTEs 

Triphenylphosphine (Ph3P, 11.11 g, 42.37 mmol) was added to a solution of 1-

octanol (C8, 5.25 g, 40.35 mmol) in anhydrous ether, and the mixture stirred at room 

temperature (RT) for 15 minutes until the powder completely dissolved. The reaction 

mixture was then placed on an ice bath and diisopropylazodicarboxylate (DIAD)  

(8.71 mL, 44.38 mmol) was added dropwise. The addition was performed under argon 

atmosphere. During the addition, the solution changed color to pale yellow and a yellow 

precipitate was formed. After the addition was complete, the reaction mixture was stirred 

for an additional 30 minutes on the ice bath and then perfluoro-tert-butanol (1, 10.00 g, 
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42.37 mmol) was added in one portion, and the resulting mixture was stirred for 1.5 h at 

room temperature (RT). The crude reaction mixture was filtered over a short SiO2 column 

to remove the triphenylphosphine oxide precipitate. The filtrate was concentrated, re-

dissolved in a small amount of ether and loaded on a SiO2 column. The product was 

eluted with a perfluorohexanes/ether (1:1 v/v) mixture and concentrated in vacuo. 

Removal of the unreacted perfluoro-tert-butanol under vacuum yielded C8 analog of 

perfluoro-tert-butyl ether (PFTE) as a clear colorless oil (8.36 g, 59.5%). C12, C14 and 

C18 analogs were synthesized following the same procedure using dodecanol, 

tetradecanol, and octadecanol as the starting materials respectively. 

3.2.3  Nanoemulsion preparation using probe sonication and microfluidization 

3.2.3.1 Nanoemulsions with Cremophor® EL and Pluronic® P105 

 

Cremophor® EL/P105 surfactant mixture 

A solution containing mixed surfactants was prepared as follows. 4 g of 

Pluronic® P105 (P105) was dissolved in 100 mL water by stirring slowly at RT for the 

final concentration of 4% w/v (weight/volume). 6 g of Cremophor® EL (CrEL) was 

dissolved in 100 mL water by stirring at RT for the final concentration of 6% w/v. The 

two solutions were mixed at RT in 3:2 v/v (volume/volume) ratio in a round bottom flask, 

placed in a water bath preheated to 45 °C, and heated while slowly rotating for 20 

minutes on a rotary evaporator. The solution was then chilled on ice for 15 minutes, and 

stored in the refrigerator until use. The final concentration of this mixed micelle solution 

was 5% w/v, where 2% w/v was P105 and 3% w/v was CrEL. 
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Nanoemulsion preparation  

Nanoemulsions were prepared using sonication at 0.5 mL scale. PFTE 

nanoemulsion contained 10% w/v PFTE (C8/C12/C14) and 0.5% w/v of CrEL and P105 

in 3:2 ratios. Briefly, 50 mg of C8/C12/C14-PFTE and 50 μL of mixed micelle solution 

were vortexed and later hydrated by appropriate amount of water. A white dispersion was 

formed which was transferred to a 1.5 mL eppendorf tube for sonication. Probe 

sonication using Sonic Dismembrator (Fisher scientific, model 100) was used to prepare 

nanoemulsions. 1.5 mL eppendorf tube containing the sample was chilled on ice for 15 

min before sonication. The dial reading was set at 3 which produce an output power of 

~15 W during sonication. The sonication probe was inserted half-way inside the 

eppendorf tube to avoid any air entrapment. Pulses (5 sec) were manually applied with 5 

sec interval between each pulse for 2 min. Tubes were placed on ice during sonication to 

avoid increase in temperature.   

3.2.3.2 Nanoemulsions with single and mixed Pluronic® surfactants 

 

Probe sonication 

Nanoemulsions were prepared at 1 mL scale with Sonic Dismembrator (Fisher 

scientific, model 100). Stock solutions of surfactants either in de-ionized water 

(Pluronic® F127 and P105) or chloroform (Pluronic® P123 (P123) and L121) were 

prepared. Olive oil stock solution was prepared in acetone. Stock solutions of 

hydrophobic phases were mixed in a test tube to obtain the required final concentration of 

each ingredient. In C8-PFTE containing nanoemulsions, C8-PFTE was added directly to 

the mixture. The mixture was vortexed and blowing the air formed thin film. The samples 
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were stored in a desiccator under vacuum for 1.5 h to ensure complete removal of organic 

solvents. To the thin film, surfactant in water (where applicable) was added and vortexed 

vigorously. To this mixture, de-ionized water was added and vortexed for 1 min before 

transferring to a 1.5 mL eppendorf tube. Sonication was performed as described above. 

 

Microfluidization 

Stock solutions of P105 (5% w/v) in de-ionized water and P123 (10% w/v) in 

chloroform were prepared. Nanoemulsions were prepared at a 25 mL scale. Olive oil 

(1.25 g) and 4.5 mL of P123 (0.45 g) solution was transferred to a 250 mL round bottom 

flask. This mixture was subjected to solvent removal under reduced pressure (474 bar) at 

38 °C and 100 rpm for 2 h to form a thin film and later placed in a desiccator for 2-3 h 

under vacuum. C8-PFTE (1.25 g) was added to this mixture under stirring, followed by 6 

mL (0.3 g of P105) of aqueous P105 solution. The mixture was stirred for 15 min and de-

ionized water was added in appropriate amount. The mixture was transferred to a pre-

cooled microfluidizer (M110S, Microfluidics) and processed under recirculation for 30 

pulses at an operating pressure of 6 bar (~18-20000 psi pressure in the interaction 

chamber). The nanoemulsion was sterilized using sterile 0.22 μm cellulose filter 

(Millex®-GS, 33 mm). Samples (1.5 mL) of the nanoemulsion were taken and stored at 

4, 25 and 37 °C to assess their stability. The bulk of the nanoemulsion was stored at 4 °C 

and droplet size was monitored at different time points for all the samples. This 

nanoemulsion was designated as M2. For control nanoemulsion (M1) without C8-PFTE, 

2.5 g of olive oil was used and the same procedure as above was followed. 
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3.2.4 Characterization for colloidal attributes, and cytotoxicity and uptake in 

RAW 264.7 cells 

 

Droplet size and zeta potential measurements of nanoemulsions 

The size distribution of the nanoemulsion droplets in aqueous medium was 

determined by dynamic light scattering (DLS) using Zetasizer Nano (Malvern 

Instruments, UK). DLS obtains hydrodynamic diameter (Dh) from the diffusion 

coefficient of the particles under Brownian motion using Stokes-Einstein equation.192   

Dh =  
kT

3πηD
                                                                                                                   Equation 3.4 

where, k is Boltzmann’s constant, T is absolute temperature, η is viscosity of the 

dispersion medium, and D is diffusion coefficient of the particle. 

Diffusion coefficient is obtained by fitting the time autocorrelation data of the 

scattered light intensity with algorithms such as cumulants analysis. The two parameters 

obtained from the cumulants analysis and Equation 3.4 are mean diameter and an 

estimate of the width of the size distribution called polydispersity index (PDI).192,193 PDI 

is a dimensionless number whose values range from 0 to 1. PDI is equal to the square of 

the ratio of standard deviation (width of size distribution) to mean diameter.194 

Measurements were taken after diluting the nanoemulsion in water and 

equilibrating at RT for at least 20 minutes prior to each measurement. For nanoemulsions 

prepared with olive oil alone, 1:200 v/v dilution ratio was used and C8-PFTE containing 

nanoemulsions were diluted at 1:40 v/v ratio. Measurements were performed at 20 ºC and 

an angle of 173º (to incident light) to avoid multiple scattering. The stability of the 

nanoemulsions was assessed by measuring hydrodynamic diameter (Z average) and PDI 
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at different time points (days). Zeta potential was measured using specialized zeta cells 

(Malvern) with electrodes at same dilution used for size measurement. Following the 

same procedure, droplet size measurements were also carried out for M2 nanoemulsion 

dispersed (1:40 v/v) in di-water, serum-free cell culture medium (DMEM), and 10% v/v 

FBS-containing medium. These samples were incubated at 5% CO2 and 37 °C and 

monitored for 3 days.  

 

In vitro cytotoxicity 

In vitro cytotoxicity and labeling was performed in mouse macrophages (RAW 

264.7, ATCC). For cytotoxicity, cells were plated at 10,000 per well in 96 well plate. 

After overnight incubation at 37 °C and 5% CO2, cells were exposed to nanoemulsion 

(M1 or M2) dispersed in culture medium. A wide range of concentrations  

(0.375-12 mg/mL C8-PFTE or olive oil) was used. For M1 nanoemulsion, theoretical 

olive oil concentration was used. Following 24 h of exposure, 50 μL of CellTiter-Glo® 

analyte was added to each well and shaken for 20 min at RT. 100 μL of the cell lysate 

was transferred to a white opaque plate and luminescence recorded on Perkin Elmer 

Victor 2 Microplate Reader. 

 

Cell uptake with nanoemulsion M2 

For cell labeling, cells were plated at 0.8 million per well in 6 well plates and left 

undisturbed overnight. After 24 h, cells were exposed to different doses of C8-PFTE in 

nanoemulsion M2 (8, 4, 2, 1, 0.5 and 0 mg/mL). Each well contained 2 mL of medium 

with or without nanoemulsion M2 and labeling was performed in duplicates. The 
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attached cells were washed with DPBS (2x) and medium (1x). To collect the labeled 

cells, 0.5 mL of TrypleE was added to each well, incubated for 2 min and cells collected 

after repeated washing with medium. Collected cells were centrifuged at 1100 rpm for  

5 min (Centrifuge 5804R, VWR) and the supernatant was aspirated. The obtained cell 

pellet was re-dispersed in 3 mL medium. Only unexposed cells were counted. Briefly, an 

equal volume of cell suspension and 0.4% Trypan blue solution was mixed and cells 

counted using neubauer hemocytometer. To quantify the number of cells in nanoemulsion 

M2 exposed cells, CellTiter-Glo® cell viability assay was used. Based on the cell counts, 

a standard curve was constructed using serial dilutions of unexposed cells and recorded 

luminescence from the CellTiter-Glo® assay. Briefly, 100 μL of cell suspension and  

50 μL of the analyte were added to an opaque 96 well plate and shaken at RT for 20 min. 

By using the obtained regression equation, cell numbers were predicted for 

nanoemulsion-exposed samples. The cell suspensions were centrifuged at 2000 rpm for 

10 min and supernatant aspirated. To the obtained cell pellet, 180 μL of de-ionized water 

and 200 μL of 0.02% v/v aqueous trifluoroacetic acid (TFA) solution was added and 

transferred to 5 mm NMR tube for 19F NMR analysis.  

 

19F NMR of nanoemulsion M2 and labeled cells  

19F NMR of the nanoemulsion and above prepared cell suspension was recorded 

on Bruker Instruments (Bruker Instruments, 300 MHz). 200 μL of nanoemulsion was 

diluted with 200 μL of 0.2% v/v aqueous TFA. Amount of C8-PFTE in the emulsion and 

19F per cell was quantified based on the following equations using TFA as the reference 

(peak at -76.0 ppm).170  
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Amount of PFTE per mL =  
5(

Fne

Fr
)Nr

NA∗
19F

molecule

                                                                    Equation 3.5 

 

19F per cell =
(

Fne
Fr )

Cell number

∗ Nr                                                                               Equation 3.6 

Fne is the integrated PFC peak value around -71.5 ppm; Fr is the integrated reference 

peak value under -76 ppm; Nr is the number of fluorine atoms in TFA used for analysis; 

NA is Avogadro number (6.023 x 1023); Mwt is the molecular weight of PFC. 

19F/molecule are the number of fluorine atoms (nine) in PFTE structure. The 

multiplication factor used is five (200 μL of nanoemulsion was used in NMR tube) to 

obtain the amount per mL nanoemulsion. The equations are adapted from earlier 19F 

content calculations reported in the literature.164,170 

3.3 Results and discussion 

Currently used PFCs either possess high body residence time or multi-peak 19F 

NMR spectrum leading to imaging artifacts and a reduction in the 19F MRI sensitivity. 

PFOB has low body residence time and the newer imaging methods addressed the 

problems associated with imaging artifacts to some extent.150 However, it has been shown 

that PFOB only shows 37% of PFCE intensity in inflammation models.150 This reduced 

sensitivity, in turn, requires high dose administration of PFOB, thus increasing body 

burden. The number of 19F nuclei used for imaging is significantly lower (three 19F atoms 

per molecule) compared to the total number of fluorines (17 19F atoms) in PFOB. 

Therefore, we set out to synthesize lipophilic analogs of a previously reported PFC 
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conjugate and address formulation challenges pertaining to OR-dependent instability and 

evaluation of methods to reduce the same. 

Analogs of PFTE were synthesized in one step using an earlier reported 

Mitsunobu protocol195 with some modifications (Figure 3.1A). The addition of aliphatic 

hydrocarbon tails increased lipophilicity of the constructs, which facilitated PFC 

interaction with hydrocarbon surfactants. Further, the overall density of the PFC 

construct is substantially lower (1.18 g/mL). The construct shows only one peak at -71.4 

ppm from the perfluoro-tert-butyl group, equivalent to nine 19F atoms (Figure 3.1B). In 

preliminary studies by Janjic et al.196, C8-PFTE emulsified with non-ionic surfactants in 

water efficiently labeled mouse DCs and the cells injected into mouse leg were imaged 

by 19F MRI. However, this nanoemulsion was not stable upon prolonged storage and its 

preparation was not scalable. 

Our C8-PFTE nanoemulsion formed with CrEL and P105 also showed an 

increase in droplet diameter with time (Figure 3.2A). A plot of droplet volume (r3) vs. 

time revealed a linear increase in size with time (Figure 3.2B) indicating an OR-like 

phenomenon. Several reports have shown that OR rates decrease with increase in carbon 

number in both hydrogenated and fluorinated alkanes.185,190 Therefore, PFTE with 

increased chain length (C12 and C14) were synthesized and formulated employing the 

same surfactant system. Increased chain length showed some stabilization in the droplet 

size, but size fluctuations were observed during DLS analysis (Figure 3.2C). Chain length 

was further increased to C18, which produced a waxy solid, not amenable for 

incorporation in the nanoemulsion. The synthetic yields also reduced with increasing 
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chain length. Therefore, alternate strategies were employed to reduce OR in the 

nanoemulsion. 

 

 

Figure 3.1. Synthesis and representative 19F NMR of PFTE analogs. 

A. Synthetic scheme of PFTE formation. B. 19F NMR of C8 analog of PFTE showing 

single peak.178 
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Figure 3.2. Instability of CrEL/P105/PFTE nanoemulsions based on droplet size 

changes with time. 

A. Increase of droplet diameter with days for C8-PFTE nanoemulsion (n=2). B. Data 

from panel A plotted as cube of radius (r3) vs. days showing a linear increase in volume 

with time. C. Cube of radius (r3) vs. days plot of C12- and C14-PFTE nanoemulsions 

(n=2) showing fluctuation in size at the initial time points. 

 

3.3.1 Formulation development of C8-PFTE 

To stabilize the nanoemulsion prepared with C8-PFTE against OR, a large 

molecular weight hydrophobic molecule (ripening inhibitor) miscible with the dispersed 

phase, but practically insoluble in the continuous phase was utilized. It is well established 

that nanoemulsions can be stabilized against OR using a low diffusive hydrophobic 

component in the dispersed phase.197 Lipophilic C8-PFTE is readily miscible with olive 

oil, thus avoiding the use of large molecular weight PFCs, which might produce 
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interfering signals for 19F MRI. Here, the hydrocarbon oil and C8-PFTE are mixed in a 

1:1 ratio forming a mixed internal phase, which is stabilized by surfactants in water. With 

higher hydrocarbon oil content, there is an opportunity to incorporate additional imaging 

agents (e.g. fluorescent dyes) or lipophilic drugs in the formulation.  

 

Selection and optimization of surfactants 

To obtain a stable nanoemulsion, systematic selection of surfactants and 

optimization of their concentration was followed. Biocompatible phospholipids are 

widely employed to provide stable nanoemulsions. However, phospholipids are 

expensive and can undergo oxidation/peroxidation reactions upon prolonged storage.191 

Alternatively, non-ionic block copolymers of PEO and PPO (Poloxamers/Pluronics®) 

can be used for PFC nanoemulsion stabilization.152,170,196 Non-ionic block copolymers are 

inexpensive, biocompatible and generally regarded as safe.198 

The first phase of formulation development included selection of surfactants and 

their amount(s) that form nanoemulsions of desired characteristics. Olive oil alone was 

used as the dispersed phase because it is inexpensive compared to C8-PFTE. Also, olive 

oil is part of the proposed final formulation, where it was intended to act as an OR 

inhibitor. Olive oil is widely used in topical, oral and injectable pharmaceutical 

formulations.199 Nanoemulsions were prepared at small scale (1 mL) using probe 

sonication. Surfactants were screened either alone or in combination with another 

surfactant. Optimized formulations were selected based on droplet diameter (< 200 nm), 

PDI (< 0.2) and visual observation for formulation homogeneity. Table 3.1 summarizes 

characterization of test formulations (S1-S6) prepared with olive oil. The dispersed phase 
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concentration was maintained at 10% w/v while surfactants were screened at 1, 3 and 5% 

w/v (Table 3.1). A 1:1 w/w ratio between surfactants was used for the dual surfactant 

systems. Figure 3.3 shows nanoemulsion size dependence on surfactant concentration. 

Droplet size and PDI were dependent on surfactant concentration, but not on the type or 

combination of surfactants. Both 3 and 5% w/v showed droplet diameter and PDI less 

than 200 nm and 0.2 respectively for formulations S1, S2, S5 and S6, whereas 1% w/v 

produced nanoemulsions with size and PDI larger than 200 nm and 0.2 respectively. The 

observed increase in size at low surfactant amount can be attributed to the relatively low 

amount of surfactant available to stabilize the increased interfacial area during droplet 

formation. Based on this result, it can be concluded that 3% w/v is the lowest surfactant 

concentration meeting desired criteria. Formulation S3 containing L121 and P105 

showed phase separation, while formulation S4 formed a gel during thin film leading to 

further processing problems. Table 3.1 shows droplet size (diameter), half width of 

polydispersity index (PDIw/2) and PDI of all formulations prepared at 3% w/v surfactant 

concentration. Though P105 showed optimum stability, P123/P105 (S6) was selected due 

to its low hydrophilic-lipophilic balance (HLB) value of 12.25. Average HLB values of 

P123 and P105 were taken as 9.5 and 15 respectively.200 

 

Optimization of relative amount of Pluronic® P123 and P105 

Having selected P123/P105 surfactant combination, the relative ratio of P123 and 

P105 was optimized based on droplet size (< 200 nm), PDI (< 0.2), and size changes with 

time. For this set of experiments, a 1:1 combination of olive oil and C8-PFTE was 

employed as the dispersed phase. C8-PFTE was introduced into the nanoemulsion by 
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equal weight replacement of olive oil. The total dispersed phase concentration was 

maintained at 10% w/v. The concentration of surfactant system was held constant at 3% 

w/v. The relative ratios of P123 and P105 were changed as shown in Table 3.2. 

 

Table 3.1. Summary of formulations prepared with 10% w/v olive oil and 3% w/v 

surfactant system. Where two surfactants are used, they were at 1:1 w/w ratio. 

Formulation 
Surfactant 1 

Pluronic® 

Surfactant 2 

Pluronic® 

Droplet size ± 

PDIw/2 (nm) 
PDI 

Visual 

Observation 

S1 F127 P123 180.0±29.5 0.11 a, b 

S2 F127 P105 173.0±25.4 0.08 b 

S3 L121 P105 - - c 

S4 P123 - - - a 

S5 P105 - 173.4±33.7 0.15 Homogenous 

S6 P105 P123 172.0±35.9 0.17 Homogenous 
a Gel formation during thin film leading to surfactant loss during transfer 
b Thick texture based on visual observation 
c Phase separation 

 

 

 

 

Figure 3.3. Droplet diameter changes with surfactant amount for olive oil 

nanoemulsions. 

Nanoemulsions were prepared with probe sonication. Data for nanoemulsions S1, S2, S5 

is an average of duplicate experiments. Data from S6 represents one experiment. Error 

bars represent PDIw/2.178 
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Table 3.2. Summary of nanoemulsions prepared with C8-PFTE/olive oil (1:1) and 

Pluronic® P123 and P105 as surfactants (3% w/v). 

Formulation P123:P105 HLB 

Droplet    

diameter 

±PDIw/2 

(nm) 

PDI 
Zeta Potential 

±SD (mV) 
Stability 

S7 1:1 12.25 148.8 ± 27.3 0.13 -8.8 ± 1.9 Stable 

S8 3:2 11.70 152.0 ± 26.8 0.12 -9.0 ± 2.0 Stable 

S9 2:3 12.80 159.0 ± 33.7 0.19 -11.0 ± 3.4 Stable 

 

Nanoemulsions (S7-S9) formulated using probe sonication showed droplet size 

and PDI less than 200 nm and 0.2 respectively. All the formulations showed stability for 

at least 12 days as assessed by DLS (Figure 3.4A). PDIw/2 was used as standard 

deviation in order to follow the changes in size distribution with time. Zeta potential 

values were in the range of -8 to -11 mV (Table 3.2). Formulation S8 was selected 

because the surfactant ratio corresponds to a HLB value of 11.7, which is lowest among 

the tested combinations. Due to the presence of hydrophobic dispersed phase, a lower 

HLB value was preferred. Replacement of a portion of olive oil with C8-PFTE has not 

affected the stability of the nanoemulsion. Also, by comparing formulations S6 (Table 

3.1) and S7 (Table 3.2), the average droplet diameter was reduced by 20 nm after 

replacing olive oil with C8-PFTE. This reduction in size can be attributed to the low 

molecular weight and high density of C8-PFTE compared to olive oil. To validate the use 

of olive oil as ripening inhibitor using this surfactant system, C8-PFTE alone 

nanoemulsion with P123/P105 at the above selected ratio and amount was prepared. A 

time-dependent increase in droplet diameter was seen (Figure 3.4B) further validating the 

use of olive oil to stabilize the nanoemulsion. 
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Preparation and characterization of microfluidized nanoemulsions 

In the screening phase, all nanoemulsions were prepared using probe sonication. 

To prepare S8 nanoemulsion on a scale necessary for further cell studies, processing was 

changed from sonication to microfluidization. It was observed that microfluidization 

formed nanoemulsions with smaller size and PDI compared to sonication. The thin film 

formation step was modified for microfluidized C8-PFTE nanoemulsion compared to 

sonicated samples (S7-S9). During thin film formation on rotary evaporator, we observed 

that C8-PFTE evaporates at temperature (38 °C) and pressure (474 bar) utilized for 

removal of chloroform. Therefore, C8-PFTE was added after thin film formation of olive 

oil and Pluronic® P123. This new formulation is designated as M2. Control 

nanoemulsion with olive oil alone was also prepared using microfluidization and 

designated as M1. Nanoemulsions M1 and M2 were characterized for droplet size, PDI 

and zeta potential using DLS. 

 

 

Figure 3.4. Effect of olive oil on C8-PFTE nanoemulsion stability. 

A. Nanoemulsion diameter changes with time for combined C8-PFTE and olive oil 

containing nanoemulsions (n=2) and B. Nanoemulsion containing C8-PFTE, but not 

olive oil (n=1).178 
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Droplet size distribution showed a single peak (Figure 3.5A) indicating the 

absence of significant portion of large and small droplets. The average droplet size and 

PDI were around 180 and 0.2 for nanoemulsion M1 while nanoemulsion M2 showed a 

reduced droplet size and PDI around 130 nm and 0.15 respectively (Figure 3.5A-C). This 

reduced droplet size of nanoemulsion M2 is consistent with the sonicated nanoemulsions. 

Zeta potential values for nanoemulsions M1 and M2 were negative, -5 to -7 mV. For 

stable colloidal preparations, large zeta potential values (> ±30 mV) are preferred to 

ensure repulsion between the droplets.201 However, Pluronics can provide stabilization 

via steric hindrance rather than charge repulsion. Storage stability was evaluated at 4, 25 

and 37 °C by analyzing nanoemulsion samples at regular time intervals using DLS. Both 

formulations were shown to be stable for 160 days at all temperatures tested (Figure 

3.5B-C). 

Physical stability of nanoemulsions in cell culture relevant conditions was also 

evaluated. Droplet size and PDI were characterized for nanoemulsion M2 dispersed in 

water, serum-free medium, and 10% v/v fetal bovine serum (FBS)-containing medium. In 

all the media tested, nanoemulsion M2 showed high physical stability for at least 72 h 

stored at 37 °C and 5% CO2 (Figure 3.5D). A small increase in size (~10 nm) was noted 

for serum-free and serum-containing medium. Quantification by 19F NMR of 

nanoemulsion M2 showed a high C8-PFTE loading (48.4±0.92 mg/mL) in the 

nanoemulsion, which is 96% compared to theoretical concentration (50.4 mg/mL). 
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Figure 3.5. Physical characterization of microfluidized olive oil (M1) and C8-

PFTE/olive oil (M2) nanoemulsions using DLS. 

A. Representative size distribution of M1 (black) and M2 (red) nanoemulsions. B. Long 

term storage stability of M2 and C. M1 nanoemulsions at 4, 25 and 37 °C assessed by 

droplet size measurements. D. M2 nanoemulsion diameter changes in different media 

(n=3). The error bars in panels B and C represent PDIw/2.178 

 

In vitro stability results demonstrate that lipophilic PFC can interact effectively 

with excipients and form stable formulations. Because the obtained droplet size is larger 

than 100 nm with low PDI and a slight negative charge, these nanoemulsions meet the 

design criteria discussed in section 1.4 and could be internalized by macrophages. 

3.3.2 In vitro cell culture studies 

To demonstrate the biocompatibility and potential biomedical use of C8-PFTE 

nanoemulsions, in vitro cell culture studies were performed in a model phagocytic cell 

line, mouse macrophages (RAW 264.7). These cells are commonly utilized for in vitro 



 

  73 

toxicity and uptake studies due to their phagocytic properties. Similar to primary 

monocytes and macrophages, these cells can be activated in vitro to pro- and anti-

inflammatory states using LPS and interleukin-4 and 13 (IL-4 and 13) respectively.202,203 

Nanoemulsion M2 was exposed to macrophages for 24 h at different doses of C8-PFTE 

(0.375-12 mg/mL). A dose-dependent reduction in cell viability was observed (Figure 

3.6A). Cell viability showed a plateau from 3-12 mg/mL concentration with 80% viable 

cells. Bonetto et al.204 observed a similar level of cell viability for a PFC nanoemulsion 

and the authors stated that this is acceptable toxicity for ex vivo cell labeling used in cell 

tracking studies. Cell viability of nanoemulsion M1 (control) was assessed at the same 

total oil concentration as that of nanoemulsion M2. It showed about 20% increase in cell 

viability (Figure 3.6B). 

 Macrophages were labeled with nanoemulsion M2 at different concentrations of 

C8-PFTE for 24 h. Unexposed macrophages were counted and serial dilutions were 

prepared. Obtained luminescence values (CellTiter-Glo®) for serial dilutions were used 

to get a regression equation (R2 = 0.998). Using this equation, cell numbers were 

predicted for cells exposed to nanoemulsion M2. Labeled macrophages were subjected to 

19F NMR analysis to quantify the loading efficiency. As shown in Figure 3.6C, peak 

shape was unaltered in cells showing that C8-PFTE is metabolically stable. A dose-

dependent uptake of nanoemulsion M2 in macrophages was observed (Figure 3.6D). At 

the highest C8-PFTE concentration tested (8 mg/mL), cell loading was around 7 x 1011 

19F per cell, which is comparable to cell loading reported earlier (1012 19F/cell).151,170 It 

should be noted that the current nanoemulsion had only 5% w/v PFC compared to other 

reports, which utilized a higher PFC content (~10-40 % w/v) in the 
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nanoemulsion.169,170,196 Nanoemulsion with increased amount of C8-PFTE could further 

increase 19F per cell.  

 

 

Figure 3.6. In vitro characterization of olive oil (M1) and C8-PFTE/olive oil (M2) 

nanoemulsions in mouse macrophages. 

A. Macrophage viability (n=4) post 24 h exposure to dilutions of M2 and B. M1 

nanoemulsions. Data is represented as percent of control (0 mg/mL C8-PFTE or olive 

oil). C. 19F NMR of nanoemulsion M2-labeled macrophages; the resonance peak at -76.0 

ppm is TFA reference. D. Dose-dependent uptake of nanoemulsion M2 in macrophages 

(n=2). In panels A and D, data is represented as mean ± SD.178 

 

 

 



 

  75 

3.4 Conclusions, limitations and alternatives 
 

In conclusion, the work presented in this chapter identifies a new class of PFC-

HC conjugates for biomedical applications. Lipophilicity, a large number of magnetically 

equivalent 19F nuclei for imaging and low density are the hallmarks of this class of PFCs. 

Addition of less soluble olive oil to C8-PFTE produced nanoemulsions resistant to OR 

compared to nanoemulsion prepared with C8-PFTE. A combination of lipophilicity and 

low density imparted high stability to the PFTE nanoemulsions under storage and 

incubation with cell culture media. Dose-dependent uptake in macrophages showing 19F 

MR signature supports the nanoemulsion suitability for imaging. 

Although, a stable formulation of C8-PFTE nanoemulsion was developed, a few 

limitations were encountered during the course of formulation characterization to use this 

emulsion as a theranostic system. At high doses, C8-PFTE showed up to 20% reduction 

in cell viability, which necessitates further investigation for future in vivo applications 

involving direct injection and in situ labeling of macrophages. We also noted that 

celecoxib precipitated under storage in the nanoemulsions leading to its instability. This 

result is expected as celecoxib shows very low solubility in olive oil. Hence, an 

alternative or additional hydrocarbon solubilizer needs to be incorporated in the 

formulation. Because large-scale synthesis of C8-PFTE that is required for further 

optimization and drug incorporation studies is an expensive endeavor, our focus shifted 

to commercially available PFCs (chapters 4, 5 and 6). Nevertheless, the reported 

nanoemulsion can find applications in multi-spectral 19F MRI due to its single 19F 

resonance peak, which is easily distinguishable from the widely used PFCs such as PFPE 

and PFCE. C8-PFTE can be utilized in combination with these PFC nanoemulsions to 



 

  76 

detect two cell populations and their interactions in vivo, which could be applied in cell 

therapy and understanding cell-cell interactions in a pathophysiological setting. This way 

complicated MRI pulse sequences to separate 19F signal from each of these compounds 

are not required. It can also be utilized as a 19F MRI tracer to monitor cell infiltration 

changes in response to drug delivery by a distinct PFC nanoemulsion incorporating drug. 

In this case, the availability of distinct peaks can be utilized separately to assess 

therapeutic effect and visualize theranostic accumulation. 
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4 Development of fluorescent celecoxib-loaded PFPE nanoemulsions 

for drug delivery and imaging in macrophages 

 

4.1 Introduction 

Due to the limitations associated with C8-PFTE formulation, we investigated 

linear perfluoropolyether, PFPE (Figure 2.3). PFPE is represented by the formula 

CF3O(CF2CF2O)nCF3, where n = 4-16, with the average molecular weight of 1380 g/mol. 

PFPE shows a single main peak around -91.5 ppm205 in the 19F NMR spectrum 

corresponding to the monomer repeats CF2CF2O. The total number of magnetically 

equivalent fluorines around -91.5 ppm is 40. A small peak around -59 ppm from CF3 end 

groups in the PFPE spectrum is spectrally separated and hence its presence does not 

affect the image analysis.163 PFPE was previously used for in vivo 19F MRI tracking of ex 

vivo labeled immune cells (T cells and DCs),163,170,204 in vivo cytometry,162 and it is also 

evaluated in cancer patients to track injected immunotherapeutic DCs.156 

PFPE is an ideal PFC to be applied for in vivo 19F MRI studies due to its non-

toxic nature as well as the presence of large number of 19F to increase imaging 

sensitivity.156 Due to high biological inertness, PFPE elimination is slow and relies on the 

RES followed by expiration through lungs.152 This is the general clearance profile for 

most PFCs used in biomedical applications.151,152,190 Of note, in vivo assessment in our 

studies (chapter 7) are conducted only up to 3 days and hence our study end points are 

not affected by PFPE retention at the inflamed site. For studies involving chronic 

inflammation models and utilizing multi-dose administration of PFPE nanoemulsions, 

further characterization in vivo is necessary.  
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Our goal was to prepare a theranostic system with acceptable storage stability and 

following capabilities: 1) incorporates a selective COX-2 inhibitor; 2) can be imaged by 

two complementary molecular imaging techniques - NIRF and 19F MR; 3) Non-toxic; 4) 

can be internalized by macrophages in culture; and 5) produce therapeutic effect. 

Since pure PFCs are lipophobic, they cannot incorporate lipophilic drugs.143 

Previous reports showed the incorporation of therapeutic moieties in the surfactant layer 

surrounding PFC core of a nanoemulsion droplet.172,173 Premature leaking or burst release 

of the drug in vivo or during storage is a potential problem with this approach because the 

surfactant layer resides at the oil/water interface. Since the surfactant amount used in 

kinetically stabilized nanoemulsions is minimal (<5% w/w), amount of drug that can be 

incorporated will be very low. An alternate approach is to use solubilizers in the 

formulation. For example, coconut oil was used to solubilize lipophilic drug, 

camptothecin, in a PFC emulsion.177 

Celecoxib solubility in several natural and synthetic oils has been reported in the 

literature.44 Oils such as safflower, olive and corn were reported to have less than 5 

mg/mL solubility. Caprylic/capric triglycerides such as Capmul and Miglyol 810/812 N 

showed up to 10 mg/mL solubility. Our target concentration of celecoxib in the oil phase 

is 5 mg/mL, which corresponds to a theoretical concentration of 524 μM (0.2 mg/mL) in 

the nanoemulsion. This concentration was selected based on the literature reported i.v. 

dose for anticancer studies of celecoxib NPs. Venkatesan et al.46 showed anticancer effect 

in a mouse xenograft model after administering 100 μg/kg dose of celecoxib-chitosan 

NPs for three times making the cumulative dose 300 μg/kg Majority of the studies 

utilized multiple doses of celecoxib formulations. We intended to use a single i.v. 
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administration in the dose range of 100-200 μL of nanoemulsion per mouse, which 

corresponds to 800-1600 μg/kg of celecoxib. Although our selected dose is higher than 

the mentioned cancer study, the cumulative exposure to celecoxib compared to multiple 

oral doses of celecoxib is significantly less with our formulation. It should be noted that 

in one of the inflammatory models, rat neuropathic pain, significantly lower dose of 

celecoxib (~180 μg/kg) in a PFC nanoemulsion showed pharmacological effects (chapter 

7). In our preliminary attempts, nanoemulsions prepared with Capmul® showed toxicity 

in mouse macrophages. Hence, we used Miglyol 810N (or 812N), as a solubilizer for 

celecoxib. Miglyol 810 N, a medium-chain triglyceride of GRAS (generally regarded as 

safe) category, is widely used in parenteral nutrition emulsions.206 

An additional imaging modality was made possible by incorporating lipophilic 

NIR dye for NIRF imaging. NIRF imaging can be fast, economical and quantitative for 

preclinical studies. Combination of PFCs with optical imaging provides exceptional 

advantage over using MRI alone as discussed before. NIRF overcomes potential issues in 

biodistribution studies that use 19F detection alone in vivo, such as lack of access to a high 

field magnet, sensitivity and cost. The work presented in this chapter was originally 

published elsewhere.128 

4.2 Materials and methods 

4.2.1 Materials 

Celecoxib was purchased from LC Laboratories® (Woburn, MA, USA). Miglyol 

810N was generously donated by Sasol (NJ, USA). PFPE (produced by Exfluor Research 

Corp., Roundrock, TX, USA) was generously provided by Celsense Inc. (Pittsburgh, PA, 

USA) and used without further purification. CellVue® NIR815 (786 nm/814 nm) and 
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CellVue® Burgundy (683 nm/707 nm) Fluorescent Cell Linker Kit was purchased from 

Molecular Targeting Technologies, Inc. (MTTI) (West Chester, PA, USA). Purified 

mouse anti-mouse CD45.1 monoclonal antibody conjugated to FITC (fluorescein 

isothiocyanate) used for cell labeling was obtained from BD PharmingenTM. Antifade 

ProLong® Gold (Invitrogen) was used as the mounting medium. Lysotracker® Green 

DND-26 and Hoechst 33342 were obtained from Invitrogen. Bacterial lipopolysaccharide 

(LPS) was obtained from Sigma Aldrich. PGE2 enzyme-linked immunosorbent assay 

(ELISA) kit was obtained from Cayman Chemical Company (Ann Arbor, MI, USA). For 

all other reagents and cell culture conditions, see section 3.2.1. 

4.2.2 Preparation and characterization of PFPE nanoemulsions 

 

Preparation 

PFPE nanoemulsions were prepared using a mixture of nonionic surfactants, P105 

and CrEL. A premade aqueous solution of mixed surfactants was used (section 3.2.3.1). 

PFPE formulations were prepared to a final volume of 25 mL and the amount of 

ingredients is shown in Table 4.1. Celecoxib (5 mg) was first dissolved in 0.95 g of 

Miglyol 810N by overnight stirring while 6 μL of NIRF dye stock solution (1 mM in 

ethanol) was added before blending with PFPE. PFPE oil (1.81 g) was transferred to a 

500 mL round bottomed flask containing celecoxib, NIRF dye and Miglyol 810N and 

stirred at 1200 rpm, RT for 15 min. To this 11.5 mL (0.575 g of mixed surfactant) of 

mixed surfactant solution was added and stirred at 1200 rpm for additional 15 min. To 

this mixture, 11.5 mL of deionized water was added and stirred under ice-cold conditions 

for 5 min at 1200 rpm. The coarse emulsion was processed (Microfluidics M110S) for 30 
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pulses under recirculation mode (inlet air pressure ~6 bar) and temperature was noted. 

Sterile-filtered nanoemulsion samples (1.5 mL) were stored at 4 °C, 25 and 37 °C to 

assess the stability. The bulk of the nanoemulsion was stored at 4 °C until use. 

Nanoemulsion without celecoxib and NIRF dye was prepared in the same way to serve as 

the control. Table 4.1 shows components of all the nanoemulsions (A, B and C) 

formulated. Nanoemulsions were characterized by DLS measurements, 19F NMR and 

NIRF imaging. 

 

Table 4.1. Table showing components of PFPE nanoemulsions A, B, and C. 

Nanoemulsion 

Component 
A                      

mg/mL 

B                      

mg/mL 

Ca                      

mg/mL 

Celecoxib 0 0.2 0.2 

PFPE 72 72 72 

Miglyol 810N 38 38 38 

Cremophor® EL 13.8 13.8 13.8 

Pluronic® P105 9.2 9.2 9.2 

NIRF Dye μM μM μM 

Cellvue® NIR815 0 0.24 0 

Cellvue® Burgundy 0 0 0.24 
aNanoemulsion C is used for confocal microscopy of 

      labeled macrophages 

 

 

Droplet size and zeta potential measurements by DLS 

The size and zeta potential distribution of the nanoemulsion droplets in aqueous 

medium was determined by DLS at 1:40 v/v as mentioned in section 3.2.4. The stability 

of nanoemulsions incubated (37 ºC, 5% CO2) in cell culture medium (DMEM with 10% 

FBS) for 24 h was tested under same conditions. 
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19F NMR measurements of nanoemulsions  

19F NMR was recorded (Bruker, 470 MHz) on nanoemulsions (and dilutions in 

water) with 0.02% v/v TFA in water solution mixed in 1:1 v/v ratio (200 μL each). 19F 

NMR peak around -91.5 ppm corresponding to 40 fluorine nuclei was integrated with 

TFA (set at -76.0 ppm) as reference. Amount of PFPE per mL nanoemulsion was 

quantified based on the number of 19F under PFPE peak at -91.5 ppm as shown in 

Equation 3.5.  

 

NIRF imaging of nanoemulsions 

NIRF images of the above prepared NMR samples were recorded on an flat bed 

imaging system (Odyssey® Infrared Imaging System, LI-COR Biosciences, NE, USA). 

Nanoemulsion B loaded with celecoxib and NIRF dye was imaged. The NMR tubes with 

nanoemulsions were aligned and carefully taped to a paper, placed in the sample 

compartment and imaged. Images at 785 nm excitation wavelength and emission above 

810 nm were collected. Imaging parameters include an intensity setting of 2 and 2.5 mm 

focus offset. NIRF signal was quantified from the obtained images using the instrument 

software (Odyssey® Imager v.3). Nanoemulsion A was used to correct for the 

fluorescence background. Images were quantified by drawing region of interest (ROI) 

around the total area corresponding to the nanoemulsion (with aqueous TFA) in the NMR 

tube was carefully selected for quantification after setting the nanoemulsion A 

fluorescence as background in the instrument software. Fluorescence is obtained as 

relative fluorescence units (RFU). 
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HPLC Method and Validation 

A previously reported high performance liquid chromatography (HPLC) method 

was adapted43 and required validation parameters such as linearity, accuracy, inter-day 

precision, limit of detection (LOD) and limit of quantitation (LOQ) were evaluated for 

celecoxib (Table 4.2) according to ICH Q2 (R1) guidelines.207 The HPLC method 

consisted of a Waters Alliance (Waters Corporation, Milford, MA, USA) equipped with a 

Waters 2690 separation module and Waters 996 Photodiode Array detector. Data was 

acquired and analyzed by the Empower™ 2 Pro software. Analysis was performed using 

C18 column (Hypersil Gold C18 150mm X 4.6mm, 5μm pore size) and 75:25 

methanol:water as mobile phase with the flow rate of 1 mL/min at ambient temperature. 

The detection wavelength was 252 nm.  

Linearity and Range: The calibration curves were constructed with 6 concentrations 

ranging from 5 to 0.15 μg/ml. The linearity was evaluated by linear regression analysis 

using peak areas of celecoxib solutions. 

Accuracy and Precision: Accuracy and precision of the assay method was evaluated for 

both intra-day and inter-day variations at three different concentrations  

(3.75, 1 and 0.31 μg/mL), different from calibration curve for three days. Accuracy and 

precision were expressed in terms of percent mean recovery and percent relative standard 

deviation (% RSD) respectively. Intermediate precision, which refers to inter-assay 

variations was measured across three days. 

Limit of Detection and Quantitation: LOD and LOQ were determined based on the 

standard deviation (SD) of the response (σ) and slope (S) of the calibration curve 

obtained from multiple calibration curves. LOD is calculated by 3.3σ/S and LOQ by 
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10σ/S, where σ is the SD of the intercept of the calibration curves and S is the mean of 

slope of the calibration curves. 

 

Drug content in nanoemulsion 

The above-mentioned method was used to assess celecoxib content in 

nanoemulsions. Celecoxib was extracted from nanoemulsion using methanol. This 

method was slightly modified from the previously published method, which utilized 

methanol/water (75/25) for celecoxib extraction.43 Nanoemulsion B (250 μL) was 

dispersed in 10 mL methanol and vigorously vortexed. The mixture was centrifuged at 

4000 rpm (Centrifuge 5804 R, 15 amp version) for 10 min. PFPE was separated as a clear 

oil at the bottom of the tube. Supernatant was collected and analyzed for celecoxib. 

Analysis was carried out in triplicates. All the formulation ingredients were analyzed 

separately for possible interference using same chromatographic conditions. The obtained 

data is reported as percent drug loaded in the nanoemulsion compared to the theoretical 

concentration. 

 

Cell viability 

Cell viability was assessed as outlined in section 3.2.4 with modifications using 

CellTiter-Glo® luminescence assay. Briefly, mouse macrophages (RAW 264.7) were 

plated in 96 well plate at 10,000 cells/well. After overnight incubation at 37 °C and 5% 

CO2, culture medium was removed and adhered cells were exposed to nanoemulsions A 

and B (prediluted in complete medium) at different PFPE concentrations and incubated 

overnight. 50 μL of the medium was carefully removed and 25 μL of CellTiter-Glo® 
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analyte was added to each well. The plate was shaken for 20 min at RT to induce cell 

lysis. 60 μL of the cell lysate was transferred to a white opaque 96 well plate and 

luminescence was recorded. 

  

Cell uptake 

To assess the in vitro behavior of the nanoemulsions, cell labeling studies were 

conducted on mouse macrophages. Cells were cultured in 6 well plates at 0.3 million per 

well for 48 h. After aspirating the medium, cultured cells were washed with medium and 

DPBS. Cells were exposed to nanoemulsion B (prediluted in medium) with concentration 

of PFPE ranging from 0.09 to 1.4 mg/mL. 2 mL of nanoemulsion B containing medium 

was added to each well. Cells were incubated for 24 h at 37 °C and 5% CO2. Cells from 

all samples were counted using neubauer hemocytometer. 19F NMR sample was prepared 

as outlined in section 3.2.4. 

 

19F NMR measurements of labeled cells 

NMR tubes with the labeled cell lysate (~400 μL) prepared as described above 

were subjected to 19F NMR analysis to quantify the total fluorine content in the cells. The 

number of 19F per cell was calculated using Equation 3.6 (section 3.2.4). 

 

NIRF measurements of labeled cells 

NMR tubes containing labeled cells, TFA and water were directly imaged on the 

flat bed imaging system. Briefly, the NMR tubes were aligned and carefully taped to a 

paper, placed in the sample compartment and imaged. Images at 785 nm excitation 
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wavelength and emission above 810 nm were collected. Imaging parameters include an 

intensity setting of 8 and 2.5 mm focus offset. Images were quantified by drawing ROI 

around the sample to obtain integrated fluorescence intensity. Cells that are not exposed 

to the nanoemulsion were used for background correction. 

 

Fluorescence microscopy 

Images of nanoemulsion labeled mouse macrophages were captured using 

confocal microscopy (Leica TCS SP2 spectral confocal microscope, Leica Microsystems) 

to assess the intracellular distribution of the nanoemulsion. Macrophages were cultured 

for 24 h on glass cover slips (Fisherfinest, 22x22-1) placed in a 6-well plate at a 

concentration of 105 cells per well. Cultured macrophages were exposed to nanoemulsion 

C (21 μL nanoemulsion/mL medium; 2 mL total) for 24 h. After removing 1 mL 

medium, cells were fixed in 1 mL of 4% paraformaldehyde for 30 min. The medium in 

the cultured confocal plates (with glass cover slips) was carefully removed and washed 

with DPBS / 1% FBS. A stock solution of FITC dye conjugated mouse antimouse 

CD45.1 antibody (CD45-FITC) in DPBS / 1% FBS was prepared at 1 μg/mL 

concentration. Cells in each well were exposed to 1 mL of the stock solution and left 

undisturbed at RT. After 15 min, dye solution was removed and washed with DPBS / 1% 

FBS twice. Each cover slip was transferred to a microscopy slide with antifade mounting 

medium (ProLong® Gold, Invitrogen). Images were captured on a spectral analyzer 

confocal microscope by Dr. John A. Pollock. For visualizing FITC, excitation was 

achieved with the blue Ar laser 488 nm and emission window of 500 nm to 590 nm. 

Visualizing the Cellvue® Burgundy dye was achieved with the red HeNe 633 nm laser 
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excitation and emission window of 640 nm to 850 nm. Emission windows were selected 

in order to avoid spectral overlap between FITC and Cellvue® Burgundy detection. A 

transmission DIC image was acquired simultaneous to each confocal scan. 

To further investigate the presence of droplets in the specific intracellular 

compartments, lysosomal labeling was performed. Macrophages were seeded on glass 

bottom confocal plates (P35G-1.0-14-C, MatTek Corporation) for 24 h at a concentration 

of 0.25 x 106 cells per well. Cultured macrophages were exposed to nanoemulsion C for 

24 h. After aspirating the medium and repeated washings with DPBS, cells were exposed 

to Lysotracker® Green DND-26 (150 nM). After 1 h incubation, cells were washed and 

fixed in 4% paraformaldehyde for 30 min. Fixed cells were washed with DPBS / 1% FBS 

and exposed to Hoechst dye (1 μg/mL) dissolved in DPBS / 1% FBS for 5 min. Cells 

were washed and stored in DPBS at 4 ºC until imaged. Imaging was performed on 

Spinning Disk Confocal microscope (Andor Revolution XD) with 60x oil immersion 

objective (NA 1.49). The emission filters were 447/60 nm band pass filter in the 405 

channel (Hoescht 33342), 794/160 nm band pass filter in the 640 channel (Cellvue® 

Burgundy), and 525-50/600-45/690 nm triple band pass filter in the 488 channel 

(Lysotracker® Green DND-26). 

 

PGE2 assay 

To investigate the in vitro therapeutic efficacy of the drug carrier, effect of 

nanoemulsions on PGE2 production by macrophages was assessed. Cells were plated in 6 

well plates at 0.3 million cells/well and incubated overnight. Cells were exposed to 

nanoemulsion B at 1.4 mg/mL PFPE concentration (9.28 μM celecoxib), dimethyl 
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sulfoxide (DMSO), and free drug dissolved in DMSO (9.28 μM). Fresh medium was 

added to unexposed cells. After overnight incubation, all wells were washed (2x) with 

medium and DPBS.  Bacterial toxin, LPS, at 1 μg/mL diluted in medium (2 mL total) 

was added to each well with cells (exposed and unexposed) and incubated. Unexposed 

cells treated with LPS were designated as control and unexposed cells without LPS 

activation were designated as untreated. After 4 h incubation, supernatant was collected 

and analyzed using commercially available PGE2 ELISA kit. Samples were analyzed at 

two different dilutions (1:5 and 1:10) and two replicates of each dilution were used. 

Assessment of PGE2 production in the supernatant and data analysis was performed 

according to the manufacturer instructions. In a separate experiment, macrophages were 

exposed to either of the nanoemulsions A and B at 1.4 mg/mL PFPE concentration. LPS 

treatment was performed post cell labeling with nanoemulsions A or B for 3 h. Fresh 

medium was added to unexposed cells (untreated). PGE2 production was quantified in the 

supernatant using PGE2 ELISA kit. Mean and standard error of mean (SEM) were 

obtained for each treatment. 

 

Statistical analysis 

One-way analysis of variance (ANOVA) with Tukey's multiple comparison test 

was conducted to evaluate statistical significance between treatments for PGE2 assay 

using GraphPad Prism version 4. Statistical significance was defined at p < 0.05. 

4.3 Results and Discussion 

A novel COX-2 inhibiting PFC theranostic nanoemulsion with dual imaging 

capabilities (NIRF and 19F MR) was prepared to label macrophages upon exposure and 
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inhibit their COX-2 activity. Each component in this design has a unique role in 

achieving theranostic potential of the final nanoemulsion. The PFPE nanoemulsion 

contains three key components: (a) the anti-inflammatory drug celecoxib (b) an NIRF dye 

for fluorescence imaging and (c) PFPE to quantitatively image deep tissues using 19F 

MRI. The design included a combination of two imaging agents for future utilization of a 

wide array of techniques such as fluorescence microscopy and imaging, flow cytometry, 

19F NMR and MRI to characterize the formulation and achieve complementary 

information about in vitro and in vivo performance. Commercially available lipophilic 

dyes fluorescing in the NIR region, CellVue® NIR815 (excitation maximum (Ex) =786 

nm, emission max (Em) = 814 nm) or Burgundy (Ex = 683 nm, Em = 707 nm), were 

selected. 

A proposed nanoemulsion droplet structure schematic is shown in Figure 4.1. The 

schematic shows PFPE core of the droplet surrounded by HC oil corona and stabilized by 

surfactants (outermost layer) in the aqueous medium. It is known that PFCs show greater 

hydrophobicity than lipophobicity, which suggests they would have lower affinity for 

mixing with water than oils.142,143 Furthermore, in fluorous phase chemistry literature, it 

was demonstrated that fluorocarbons can form a distinct liquid phase when mixed with 

water and organic solvents.208 Based on these chemical properties of PFCs, PFPE was 

hypothesized to be in the core of the droplet (Figure 4.1). Recent study by Zarzar et al.209 

showed that emulsions containing mixtures of pure PFC (perfluorohexane) and a non-

fluorinated HC (hexane) in aqueous medium displayed droplet structure dependent on the 

type of surfactant utilized. Similar to our proposed droplet structure (Figure 4.1), this 

study demonstrated that perfluorohexane forms core of the emulsion droplet, while 
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hexane forms the corona, when hydrocarbon surfactant, sodium dodecyl sulfate, was 

used. As a result of the preferentially reduced interfacial tension between hydrocarbon 

and aqueous surfactant solution, the authors conclude that perfluorohexane resides in the 

core of the droplet.209 Furthermore, the reported interfacial tensions of fully fluorinated 

PFCs with aqueous surfactant solutions are higher (~17-20 mN/m)190 compared to 

interfacial tension between PFC and HC oil (7 mN/m).210 Based on the 

superhydrophobicity of PFCs and low interfacial tensions with HC oil, fully fluorinated 

PFPE is expected to preferentially segregate in the core of the droplet to avoid less 

favorable interaction with aqueous environment. 

 

 
Figure 4.1. Proposed schematic of PFPE nanoemulsion droplet structure.128 

 

The challenging task of stabilizing immiscible hydrocarbon oil (Miglyol 810N) 

and PFPE was achieved by using a combination of CrEL and P105 under high shear. 

CrEL is a polyethoxylated lipid produced by reacting castor oil and ethylene oxide in 

1:35 molar.211 It is used in pharmaceutical preparations as solubilizer for hydrophobic 

drugs and emulsifying agent.211 It is important to rationalize the use of CrEL in this 

formulation, because of the studies showing associated toxicity. CrEL is associated with 

hypersensitivity reactions, hyperlipidemia, abnormal lipoprotein patterns, aggregation of 
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erythrocytes and peripheral neuropathy, which were observed with paclitaxel 

formulation, Taxol.211 The amount of CrEL in Taxol is as high as 26 mL per 

administration, with each mL of formulation containing 527 mg of CrEL.211,212 Paclitaxel 

formulations with reduced amount of CrEL showed significantly decreased allergic 

reactions suggesting that CrEL related toxicity is dose dependent.213,214 The formulation 

reported in this work used only 13.8 mg of CrEL per mL emulsion, which is significantly 

lower (~ 38 fold less compared to Taxol). Based on these calculations and prior 

reports,213,214 we expect that allergic reactions are unlikely with the PFPE formulations 

reported here.  

 

Nanoemulsion preparation and characterization 

Nanoemulsions with and without drug/dye (B, C and A respectively) are shown in 

Table 4.1. Nanoemulsion A acts as a drug and dye free control for nanoemulsion B; 

nanoemulsion C (containing Cellvue® Burgundy) was formulated to obtain confocal 

images of labeled cells due to the unavailability of confocal excitation laser for Cellvue® 

NIR815. During processing, use of organic solvents and thin film emulsification method 

was avoided as residual solvents in the final formulation could lead to cell toxicity in test 

cultures. DLS measurements showed an average initial droplet size and PDI less than 150 

nm and < 0.15 respectively for nanoemulsions A, B and C, similar to C8-PFTE 

formulation reported in chapter 3. A representative size distribution graph in Figure 4.2A 

shows monomodal size distribution. Small droplet size helps end-process sterilization by 

filtration214, which is needed for future in vivo experiments. Shelf life was determined by 

following the droplet size and PDI upon storage at 4, 25 and 37 °C (Figure 4.2B). The 
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inclusion of drug and dye in the nanoemulsion had no appreciable effect on droplet size 

changes over time upon storage at 4 °C (Figure 4.2). Nanoemulsions A and B displayed 

good stability at 4 °C, with mean droplet size and PDI below 160 nm and 0.15 

respectively. However, samples stored at 25 and 37 °C showed temperature-dependent 

increase in size (Figure 4.2C-D). Increase in storage temperature increases the rate of oil 

diffusion from the droplets and rate of droplet collisions, which increases the droplet size. 

Therefore, the nanoemulsions are recommended to be stored at 4 °C. Nanoemulsions A 

and B, sterically stabilized by nonionic surfactants, showed a moderate zeta potential 

value around -17±6 mV. 

 

 

Figure 4.2. Characterization of nanoemulsions A and B using DLS. 

A. Representative size and B. zeta potential distribution of nanoemulsions A (black) and 

B (red). C. Droplet size changes with days for nanoemulsion A and D. Nanoemulsion B. 

Error bars represent PDIw/2.128 
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Reverse phase HPLC was utilized to evaluate drug loading in nanoemulsion B. 

All the formulation ingredients were individually run for any possible interference with 

the celecoxib peak. Excipients did not show UV absorbance around 252 nm. A 

representative chromatogram of the nanoemulsion sample is shown in Figure 4.3. 

Predicted celecoxib concentration based on calibration model was found to be  

139.3±8.7 μg/mL nanoemulsion. The validation data is shown in Table 4.2. 

 

 

Figure 4.3. Representative chromatogram of celecoxib from extracted nanoemulsion 

sample. 

 

Table 4.2. Compilation of assessed HPLC method parameters. 

 Parameters Result Criteria 

Linearity (0.15-5 

μg/mL) 

R2 of regression 

analysis (peak area 

vs. concentration) 

> 0.999 > 0.99 

LOD Calibration curves 45.7 ng/mL  

LOQ Calibration curves 138.5 ng/mL  

Accuracy at 3 

levels (n=3/level) 
Recovery 100.2-101.1% 95-105% 

Intermediate 

precision (inter-

day) 

Overall %RSD 3.8% <5% 
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Nanoemulsions were further characterized by 19F NMR and NIRF imaging. A 

representative 19F NMR peak and NIRF image of nanoemulsion B is shown in Figure 

4.4A. A linear relationship was obtained for fluorine nuclei and NIRF signal for the 

dilution series (Figure 4.4B). Based on this result, we believe that the NIRF imaging can 

be used to assess the concentration-uptake relationship in cells without the need for 19F 

NMR. For absolute quantification, 19F NMR is preferred due to the absence of 

background. In summary, DLS results confirm the formation of nanoemulsion with stable 

droplet size. 19F NMR and NIRF imaging clearly showed the incorporation of PFPE and 

NIRF dye in the nanoemulsion. HPLC analysis quantified the drug content in 

nanoemulsion B. 

 

 

Figure 4.4. Characterization of nanoemulsion B for imaging functionalities. 

A. Representative 19F NMR spectrum and NIRF image of diluted nanoemulsion. B. 

Linear relationship between 19F atoms and RFU quantified in serial dilutions of 

nanoemulsion in TFA containing media.128 
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In vitro toxicity and uptake studies in macrophages 

Before performing in vitro biological tests, colloidal stability of nanoemulsions in 

cell culture medium was evaluated by monitoring changes in droplet size. No 

considerable change in droplet size and PDI was noted under cell culture relevant 

conditions (Table 4.3). This is crucial as any structural changes in the nanodroplets 

during incubation with cells could give misleading results on the nanodroplet cellular 

uptake and toxicity profile, which would further render the nanoemulsions unsuitable for 

in vivo testing. As shown in Figure 4.5, no considerable effect on cell viability was 

detected after 24 h exposure to nanoemulsions. Cell viability was between 92-104% of 

the control group (untreated cells). 

 

Table 4.3. Average droplet diameter and PDI of nanoemulsions A and B before and 

after incubation in media.  

Media incubation Nanoemulsion A Nanoemulsion B 

 Average diameter 

(nm) 

PDI  Average diameter 

(nm) 

PDI  

Before  144.6 0.11 123.8 0.15 

After  140.6 0.13 128.7 0.14 

 

 

Utilizing 19F NMR and NIRF imaging, cellular uptake of nanoemulsion B was 

characterized. Representative 19F NMR and NIRF image of labeled cells is shown in 

Figure 4.6A. PFPE line shape and peak position at -91.5 ppm was unchanged upon 

uptake in cells when compared with PFPE in nanoemulsion B (Figure 4.4A). This result 

suggests the chemical stability of PFPE in cells, which is crucial for their use as an 

imaging tracer. Both 19F NMR and NIRF measurements of labeled cells showed a 

concentration-dependent increase in uptake of the nanoemulsion (Figure 4.6B).215 Since 
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macrophages can internalize colloidal formulations through receptor-mediated 

endocytosis, concentration-dependent saturation of uptake is expected. To facilitate 

comparison between 19F NMR and NIRF, uptake vs. concentration data was fitted with a 

one-site binding saturation model. This model is appropriate for NP uptake occurring 

through receptors as the receptors get saturated at high concentration of nanoemulsion, 

thus leading to saturation of uptake. The amount of nanoemulsion internalized is 

proportional to the amount bound to the receptor. It should be noted that NP uptake is 

triggered due to the binding of several receptors leading to receptor clustering and 

endocytosis. To apply a one-site binding model, a set of receptors bound by NP can be 

assumed as a single receptor. According to the one-site binding saturation model, the 

amount of internalized nanoemulsion (Y) is given by: 

Y =  
Ymax ∗ X

Km + X
                                                                                                                Equation 4.1 

where, Y is uptake (19F or RFU normalized to cell number), Ymax is the maximum uptake, 

X is the concentration of PFPE, Km is the concentration of PFPE required to obtain half-

maximum uptake (Ymax/2). 

The uptake-concentration relationship obtained with 19F NMR and NIRF methods 

showed good fitting to this model (R2 > 0.98) as shown in Figure 4.6C-D. The x-axis of 

these graphs is shown as amount of PFPE, which is proportional to the amount of 

emulsion. Km obtained from this model was very similar for 19F NMR and NIRF data (2.6 

vs. 2.7 mg/mL PFPE) as shown in Figure 4.6C-D. This result indicates that NIRF and 19F 

NMR can be used interchangeably to assess uptake, thus supporting the use of 

complementary imaging methods for data validation. Interestingly, good correlation was 

obtained without chemically conjugating PFPE and fluorescent dye as reported earlier.170 
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Based on these results, it can be postulated that the nanoemulsion was not destabilized 

before entering the cell in the labeling medium. Any instability of nanoemulsion would 

lead to poor or no correlation between 19F NMR and NIRF signals due to the differences 

in uptake of imaging agents. A strong correlation between the two imaging agents is a 

requisite to utilize the nanoemulsion for in vitro and in vivo dual mode imaging studies. 

 

 
Figure 4.5. Macrophage cell viability post 24-hour exposure to nanoemulsions A and 

B. 

Each data point represent mean of at least three replicates and the error bars are SD of the 

mean. Values are reported as percent control (0 mg/mL PFPE).128 
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Figure 4.6. Characterization of cellular uptake of nanoemulsion B. 

A. Representative 19F NMR of cells labeled with nanoemulsion B. TFA reference peak is 

set at −76.0 ppm. NIRF image of cells labeled with nanoemulsion B in NMR tube. B. 

Dose-dependent increase in cell uptake demonstrated by 19F NMR and NIRF (n=2). C 

and D. Cellular uptake from panel B fitted to a one-site binding saturation model.128 

 

Presented nanoemulsions have lower amount (7.2% w/v) of PFPE than earlier 

reported cell tracking formulations.169 However, we found that at a very low PFPE 

concentration of only 1.4 mg/mL, significant cell uptake (1.0 x 1011 fluorine atoms per 

cell) is achieved. With this labeling efficiency, approximately 7.5 x 105 cells per voxel 

are required to obtain in vivo 19F MR images at 11.7 T.151,163 These findings suggest that 

this formulation platform could be utilized for cell tracking of ex vivo labeled cells. The 
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utility of this nanoemulsion to detect in situ labeled macrophages would require further 

investigation because the detection sensitivity also depends on the severity of 

inflammation, extent of macrophage infiltration and injection volume (discussed in 

chapter 5). 

Although 19F NMR and NIRF imaging of the nanoemulsion labeled cells showed 

dose-dependent cell labeling, conclusions about membrane-adsorbed versus internalized 

nanodroplets cannot be made from this data alone. Therefore, fluorescence confocal 

microscopy was performed on macrophages exposed to nanoemulsion. To more closely 

match the excitation and emission capabilities of the confocal microscope system, an 

alternate drug loaded nanoemulsion (nanoemulsion C, Table 4.1) was prepared with 

Cellvue® Burgundy dye (683 nm / 707 nm). Cells exposed to nanoemulsion C were 

stained with anti-CD45.1 antibody conjugated with FITC dye (CD45-FITC) to visualize 

cell membrane. CD45 is a protein tyrosine phosphatase, receptor type C cell membrane 

associated protein. The nanoemulsion uptake was visualized by Cellvue® Burgundy dye.  

Figure 4.7 clearly shows the presence of the CD45 protein (green) and the 

Cellvue® Burgundy labeled nanodroplets (red) in the cytoplasm. As a control, cells not 

exposed to nanoemulsion were labeled with CD45-FITC. No evidence of NIRF signal 

was observed in the control group. The presence of nanoemulsion as distinct entities, 

which is also evident in the transmitted DIC view of the cells (Figure 4.8A), indicates 

their presence in endosome-like compartments.  Simultaneous presence of CD45 protein 

and nanoemulsion droplets (green and red fluorescent signals) further supports the 

speculation that nanodroplets are present in the endocytic compartments. CD45 

internalization has been previously reported.216 Three-dimensional view of the cell 
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revealed that the nanodroplets are within the cytoplasm, specifically in the maximum 

projection cross-sectional view of the cell (Figure 4.8B). In a separate experiment, 

presence of nanoemulsion droplets in the intracellular compartments was assessed by 

labeling acidic endosomal/lysosomal compartments with Lysotracker® Green. It appears 

that nanoemulsion droplets are distributed in the entire volume of the cytoplasm and no 

preferential accumulation in the lysosomes was observed after 24 h (Figure 4.8C). 

 

 

Figure 4.7. Confocal microscopy of macrophages exposed to nanoemulsion C. 

A. Cells labeled with anti-CD45 (FITC) green and incorporated nanoemulsion C 

containing celecoxib and Cellvue® Burgundy dye represented as red. Cells not exposed 

to the nanoemulsion C exhibit CD45 labeling with FITC (green) but no red signal. 

Transmitted light DIC image acquired simultaneously shows field of view (Bar = 30 μm). 

Image by Dr. John A. Pollock, 2013.128 
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Figure 4.8. Confocal microscopy to assess intracellular localization of nanoemulsion 

C. 

A. Cells labeled with CD45-FITC (green) and incorporated nanoemulsion C containing 

Cellvue® Burgundy dye exhibit broad expression of CD45 as well as concentrated 

fluorescent signal coincident with Cellvue® Burgundy, indicating internalization of 

CD45 protein and nanoemulsion C. The transmitted light DIC view of the cell reveals the 

black refractive droplets, coincident with the red and green fluorescent signals (Bar =  

5 μm). B.  A single cell imaged in serial section and rendered by maximum-projection to 

represent all of the Cellvue® Burgundy labeled droplets viewed from above and 90° 

cross-section, to reveal that the droplets are distributed throughout the cell cytoplasm. C. 

Cells showing concentrated red fluorescence from nanoemulsion C, not clearly localized 

with acidic compartment label, Lysotracker® Green DND-26. Nucleus labeled with 

Hoechst dye is shown in blue (Bar = 5 μm). Panels A and B images by Dr. John A. 

Pollock, 2013.128 
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COX-2 inhibition in macrophages 

The potential anti-inflammatory effect of celecoxib-loaded nanoemulsion B on 

the production of PGE2 by LPS activated macrophages was studied (Figure 4.9A). LPS 

activated cells showed significant increase (p < 0.001) in PGE2 as compared to untreated. 

A statistically significant difference (p < 0.001) between nanoemulsion B and LPS 

treated control was observed. Cells labeled with nanoemulsion B produced, on average, 

50.6±8.2 pg of PGE2 per mL as compared to 504.5±41.2 pg/mL by LPS activated control. 

Exposing LPS activated macrophages to DMSO (vehicle for free drug) has not shown 

any effect on PGE2 production compared to control. Although, PGE2 reduction by 

nanoemulsion B is not statistically different from free drug, nanoemulsion mediated 

celecoxib delivery may be advantageous in reducing systemic exposure to the drug and 

related side effects. Additionally, dual mode imaging capabilities allow for non-invasive 

imaging of nanoemulsion biodistribution. In a separate experiment, effect of 

nanoemulsions A and B on PGE2 production was studied (Figure 4.9B). Nanoemulsion B 

showed significant reduction in PGE2 production compared to nanoemulsion A and 

control (Figure 4.9B). Nanoemulsion A has not shown any significant contribution to 

changes in PGE2 levels proving that the drug free vehicle is inert towards PGE2 

production. These results clearly demonstrate that the presented theranostic PFPE 

nanoemulsion is internalized by macrophages and act to inhibit COX-2 through celecoxib 

delivery. 
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Figure 4.9. Effect of nanoemulsion-mediated celecoxib delivery on PGE2 production 

by LPS activated macrophages. 

A. PGE2 produced by LPS-activated macrophages exposed to nanoemulsion B, free drug 

dissolved in DMSO and DMSO. Cells not exposed to LPS were designated as untreated. 

* # $ represent statistical significance comparisons (p < 0.001) between treatments. B. 

Separate experiment comparing nanoemulsion A and B. Each data point represents the 

mean ± SEM of at least four independent measurements.128 

 

4.4 Conclusion  

In this chapter, a novel celecoxib carrying nanoemulsion formulation equipped 

with dual mode imaging capabilities is prepared and characterized. The prepared 

nanoemulsions showed good stability for 70 days. Correlation of dose-dependent cellular 

uptake between NIRF and 19F NMR signals showed the complementary nature of dual 

mode imaging functionality. 19F NMR, NIRF imaging and confocal fluorescence 

microscopy evidently demonstrated the uptake of nanoemulsion droplets by 

macrophages. Nanoemulsion delivery of celecoxib is established in macrophages by their 

inhibitory effect on PGE2 production. Before in vivo studies ensued, a modified 

nanoemulsion incorporating additional fluorescent dye was prepared, which is described 

in chapter 5. 
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5 Dual fluorescent PFPE nanoemulsions for improved optical imaging 

capabilities 

 

5.1 Introduction 

In this chapter, we addressed a common problem associated with standard 

epifluorescent microscopy methods for cell and tissue imaging, which use excitation 

lasers and filters that do not alternately support NIRF dye detection. In chapter 4, we 

found that in a cellular imaging experiment, full excitation of the NIRF dye by a standard 

633 nm laser is difficult to achieve, which led to low fluorescent signal from labeled cells 

and possibly in future histology samples. Commonly used epifluorescent microscopes 

lack the optics required for NIRF imaging. To overcome the problem, a lower 

wavelength dye (e.g. Cellvue® Burgundy) was introduced to the system in order to 

match the optical properties of available fluorescence instruments. Although lower 

wavelength dyes are advantageous for experiments involving tissues and cells, NIRF 

dyes are required for in vivo imaging to obtain images with reduced background 

fluorescence. Therefore, in some reports, two dyes are introduced in the formulation to 

facilitate in vivo imaging as well as ex vivo histology and flow cytometry.171 However, 

the presence of two dyes in the same environment has higher chance for chemical and 

optical interaction. To avoid these issues, the PFPE nanoemulsion (chapter 4) was 

modified with distinct fluorescent reporters with non-overlapping fluorescence spectra, 

introduced into distinct oil phases of the PFC nanoemulsion. Having each oil phase 

separately labeled by a fluorescent dye allows for improved correlation between in vivo 

imaging and histological data. Dual fluorescent labeling can improve intracellular 
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tracking of the nanodroplets and it can be used to assess nanoemulsion integrity in cells 

and tissues. Furthermore, long-term stability of NIRF dye in biological samples can be 

deduced by comparing the stability with lower wavelength dye. The in vivo imaging 

potential of the nanoemulsion is discussed at the end of the chapter. Development and in 

vitro characterization shown in this chapter was originally published elsewhere.217 

5.2 Materials and methods 

5.2.1 Materials 

Cy3-PFPE conjugate was synthesized by Michael J. Patrick at Carnegie Mellon 

University per Patrick, and Janjic et al.218 and Janjic et al.170 synthetic methods, and used 

without further purification. DiR (1,1'-Dioctadecyl-3,3,3',3'-

Tetramethylindotricarbocyanine Iodide) lipophilic tracer was purchased from Invitrogen 

and used without further purification. RAW 264.7 cells were cultured similar to section 

3.2.1. Fluorescence measurements were performed on Tecan Safire2 fluorescence plate 

reader at Carnegie Mellon University. 

5.2.2 Preparation and characterization of dual fluorescent nanoemulsions 

 

Nanoemulsion preparation 

Nanoemulsions were prepared at 25 mL scale following the method described in 

section 4.2.2. with some modifications. PFPE oxide (0.98 mL) and Cy3-PFPE (0.02 mL) 

were blended by vortex mixing in a 50 mL eppendorf tube. A mixture of 1 mL Miglyol 

810N and 100 μL of 5 mM DiR dye in absolute ethanol (20 μM) was added to the Cy3-

PFPE/PFPE mixture and vortex mixed. The remaining procedure is same as described in 

section 4.2.2. For stability studies, samples were stored at 4 °C. To prepare drug-
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containing nanoemulsion, 5 mg celecoxib was dissolved in 1 mL of Miglyol 810N by 

overnight stirring and the nanoemulsion prepared following above procedure. 

 

Nanoemulsion characterization  

Nanoemulsions were characterized for droplet size, PDI, zeta potential, NIR 

imaging on a LiCOR Odyssey® imager at an 800 nm emission wavelength, 19F NMR and 

19F content determination as noted in sections 3.2.1 and 4.2.2. Fluorescence 

measurements (by Michael Patrick) were performed on Tecan plate reader using a 10 nm 

bandwidth.  Nanoemulsions were diluted 20 μL into 480 μL (4% v/v) of de-ionized 

water, and 150 μL of diluted sample was measured.  Excitation spectra were obtained 

with an emission wavelength of 590 nm for Cy3 and 790 nm for DiR. The excitation 

wavelengths were scanned with a 2 nm step from 400 nm to 570 nm for Cy3 and 400 nm 

to 770 nm for DiR. Emission spectra were obtained with an excitation wavelength of 530 

nm for Cy3 and 730nm for DiR, and emission wavelengths were scanned with a 2 nm 

step from 550 nm to 850 nm for Cy3 and 750 nm to 780 nm for DiR. Fluorescence signal 

stability measurements were determined by fluorescence synchronous scan (excitation 

500 to 830 nm, with emission at a 20 nm offset and 4 nm step) using samples prepared as 

above in duplicate.  Detector gain setting was automatically calculated by the instrument 

for the first time point and the same value kept for follow-up measurements.  Correlation 

of fluorescence signals with nanoemulsion concentration was determined by preparing 

serial dilutions of nanoemulsion in deionized water and using 100 μL of sample in 

triplicate for fixed Ex/Em wavelength measurements at 544/564 nm (Cy3) and  

748/768 nm (DiR). 
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Confocal microscopy 

To visualize the cellular uptake of nanoemulsion, confocal microscopy was 

recorded for nanoemulsion-labeled macrophages (RAW 264.7). Briefly, 0.1 million 

macrophages were seeded in 6-well plate on a coverslip and incubated at 5% CO2 and  

37 °C. After 48 h, medium was aspirated, and cells washed with DPBS. Macrophages 

were exposed to nanoemulsion containing medium at 1.4 mg/mL concentration of PFPE. 

Dye-free nanoemulsion was used as a control, and macrophages that were not exposed to 

nanoemulsions were treated as negative control. Cover slips were transferred to glass 

slides and mounted with Prolong Gold. Dr. John A. Pollock performed confocal imaging. 

Imaging was achieved with 543 nm excitation and emission detection from 550-625 nm 

on a Leica SP2 spectral confocal for the detection of the Cy3 dye. DiR was detected with 

633 nm excitation and emission detection from 650-850 nm, with simultaneous 

acquisition of transmitted DIC images of the cells. Multicolor merge was achieved with 

Leica image software version 2.3 and the image contrast/brightness was adjusted in 

Adobe® Photoshop CS6.  

5.3 Results and discussion 

PFC nanoemulsions have been labeled by fluorescent dyes before, either by 

introducing the fluorescent dye into the surfactant layer160 or the fluorocarbon core of the 

PFC nanodroplet.170 In the present PFC nanoemulsion, two fluorescent dyes are 

introduced, a cyanine dye (Cy3)219 and a NIRF carbocyanine dye (DiR) into two distinct 

oil phases of the nanoemulsion. Cy3 is conjugated directly to PFPE and DiR was added 

to the Miglyol oil. Fluorescent dye conjugated to the PFPE chain is expected to remain 

entrapped in the PFPE core of the nanoemulsion droplet, following typical fluorous phase 
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colloidal behavior.152,170 The Miglyol oil phase carries the NIRF tracer (DiR) and 

celecoxib, while the PFPE phase carries the Cy3-PFPE. 

5.3.1 Colloidal and imaging characterization of dual fluorescent nanoemulsions 

The present nanoemulsion is designed to serve two roles: the carrier of COX-2 

inhibitors to macrophages, and a triple-imaging agent for fluorescent in vitro imaging of 

labeled cells and tissues, in vivo NIRF and 19F MR imaging. Figure 5.1 shows the 

colloidal stability of the dual fluorescent nanoemulsion. The presence of celecoxib did 

not significantly affect the droplet size, PDI, and zeta potential of the nanoemulsion. 

Average droplet size was around 175 nm and PDI was 0.2. The zeta potential was 

negative (-43 ± 7.4 mV).  Compared to the nanoemulsion reported in chapter 4, a larger 

zeta potential value was observed, possibly due to the presence of multiple fluorescent 

dyes in this complex system. Nanoemulsions stored at 4 °C and followed for at least 45 

days showed no significant change in droplet size or PDI during that period (Figure 5.1). 

 

 

Figure 5.1. Droplet size changes with days of dual fluorescent nanoemulsions stored 

at 4 ° C. Originally published elsewhere. 217 
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Fluorescence measurements were conducted to evaluate the stability of the two 

fluorescent dyes present in the nanoemulsion. Our goal was to assure that the entire 

formulation remains stable over time, including all three imaging modalities, to assure 

reproducibility of in vivo studies. Nanoemulsions with and without the drug were stored 

at three different temperatures, 4 °C, RT and 37 °C.  Storage at higher temperatures (RT 

and 37 °C) led to loss of DiR fluorescence, Figure 5.2A (top). Figure 5.2A (bottom) 

shows visual color differences in representative nanoemulsion samples stored at the three 

different temperatures, indicating changes in the incorporated dyes. Synchronous 

excitation and emission scan measurements confirmed the presence of Cy3-PFPE, 

revealed some DiR conversion into a lower wavelength emitting product, DiI-(5) (peak 

around 650 nm). However, Figure 5.2C-D shows retention of normal spectral behavior of 

both dyes when incorporated into the nanoemulsion.  Ex and Em of the dyes in the 

nanoemulsion are 552 nm and 564 nm for Cy3, and 750 nm and 768 nm for DiR. 

Fluorescence measurements show that nanoemulsions stored at 4 °C retained 

fluorescence signals for both Cy3 and DiR dyes. Fluorescent signals of Cy3-PFPE barely 

decreased (4%) upon storage for 49 days at 4 °C. Whereas, DiR showed a reduced 

fluorescence of 23% compared to day 0. Most NIRF dyes have stability issues.220 For 

example, indocyanine green and cyanine 5 dyes have shown to undergo photobleaching 

and degradation mechanisms leading to reduced fluorescence intensity.221,222 Therefore, 

presence of highly stable Cy3 can be advantageous for histological assessments, where a 

tissue undergoes several processing steps, which might degrade the labile NIRF dyes. It 

should be noted that NIRF dye is indispensible in the formulation in order to reduce 
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interference from autofluorescence in in vivo imaging. This combination is therefore an 

improvement to our nanoemulsion reported in chapter 4. 

 

 

Figure 5.2. Optical assessment of dual fluorescent PFPE nanoemulsions. 

A. NIR fluorescence image of nanoemulsions stored at different temperatures taken at 

800 nm emission using Li-COR Odyssey® NIR imager (top). Representative photo of the 

nanoemulsion samples stored at 4 °C, RT and 37 °C (left to right) showing changes in 

color resulting from DiR changes. B. Synchronous excitation / emission scan of Cy3 and 

DiR in nanoemulsions with and without the drug. C. Excitation and D. Emission spectra 

showing both dyes in the nanoemulsion (fluorescence measurements by Michael J. 

Patrick, CMU, 2013).217 

 

In this study, optical and 19F MR properties of dual fluorescent theranostic 

nanoemulsions were evaluated in vitro. In order to use fluorescence and 19F MRI as 
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complementary imaging techniques, a linear correlation between imaging signals and 

nanoemulsion concentration is expected. As shown in Figure 5.3, we observed a linear 

relationship between nanoemulsion concentration and 19F atoms, DiR, and Cy3 

fluorescence signal intensities. Lack of this relationship would potentially render the 

theranostics inflexible, in utilizing the imaging techniques interchangeably. 

Similar to the results from chapter 4, confocal microscopy showed the presence of 

nanoemulsion droplets in the cytoplasm of macrophages (Figure 5.4) as distinct entities. 

In the transmitted light (DIC) image (Figure 5.4A bottom row), macrophages labeled 

with emulsions showed granularity in the cytoplasm, compared to untreated macrophages 

(no emulsion), confirming the uptake of nanoemulsion droplets. Macrophages with dye-

free nanoemulsion did not show fluorescence, although granularity was observed in the 

DIC image (Figure 5.4A middle). Macrophages labeled with the dual fluorescent 

nanoemulsion showed fluorescence corresponding to DiR and Cy3 dyes (Figure 5.4A 

right column). Interestingly, a merged image showed that Cy3 and DiR signals are mostly 

co-incident indicating their co-presence (Figure 5.4B) in the endocytic compartments and 

probably in the nanoemulsion droplets. This image cannot conclusively prove that Cy3-

PFPE and DiR are present in the nanodroplet together due to the resolution and 

instrument sensitivity issues to detect < 200 nm droplets. However, a qualitative 

assessment regarding the co-presence of both dyes from PFPE and HC phases in the 

nanoemulsion droplets indicate the integrity of nanoemulsion droplets during cell 

labeling. 
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Figure 5.3. Linear correlation of imaging signals with nanoemulsion concentration. 

Linear correlation is observed for A. 19F atoms (n=2). B. Cy3 (n=3). C. DiR (n=3). Errors 

bars are standard deviation from mean.217 
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Figure 5.4. Confocal images of macrophages exposed to dual fluorescent 

nanoemulsion. 

A. Confocal fluorescence images of RAW 264.7 macrophages exposed to culture 

medium (left column), nanoemulsion with no dyes (middle), and dual fluorescent 

celecoxib nanoemulsion (right). The scale bar = 11.37  μm. B. Merged image showing 

coincident DiR and Cy3 signals (scale bar = 5.43  μm). Image by Dr. John A. Pollock, 

2013.217 
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5.3.2 Evaluation in a neuropathic pain rat model 

For experimental details and results, see chapter 7. The goal of this study was to 

evaluate if nanoemulsion can be detected at the inflamed site using the two imaging 

functionalities. A neuropathic pain model was utilized, where ligation of sciatic nerve 

causes local inflammation and neuropathic pain. Of note, we evaluated a fluorescent 

PFCE nanoemulsion in this model for simultaneous imaging and therapy (reduced 

inflammation and pain), which is partly described in chapter 7. Doctoral thesis by Kiran 

Vasudeva contains the full details of the study. In the current study, fluorescence was 

observed at the inflammatory site confirming the delivery of nanoemulsion. Live animal 

fluorescence imaging and ex vivo tissue imaging (Figure 7.10) separately confirmed the 

presence of nanoemulsion at the injured sciatic nerve, but not in the contralateral nerve 

and the sciatic region of healthy animal. However, 19F NMR assessed after tissue 

collection showed undetectable 19F signal in the injured nerve. These results necessitated 

further studies to be conducted to increase the 19F MRI sensitivity, which is described in 

chapters 6 and 7. 

5.4 Conclusions 

The study clearly shows that the nanoemulsion platform developed in chapter 4 is 

amenable to modifications to obtain a dual fluorescent theranostic system. The reported 

theranostic nanoemulsion was designed to offer flexibility for in vitro and in vivo 

inflammation imaging, and histological analysis using three distinct imaging 

functionalities (visible and NIRF, and 19F MR). Despite the multifunctional nature, the 

nanoemulsion displayed moderate storage stability based on size analysis for at least  

45 days. Both dyes were detected in the nanoemulsion and in cells. The spectral 



 

  115 

characteristics of the two dyes in the nanoemulsion were retained following processing 

and storage at low temperature. Due to the degradation of DiR dye to a lower wavelength 

product, careful consideration has to be given for possible spectral interference during 

imaging. The pilot in vivo experiment showed encouraging results for the utility of this 

nanoemulsion to detect inflammation using NIRF imaging. However, the complementary 

imaging method (19F MR) requires further investigation to increase imaging sensitivity 

(described in chapters 6 and 7). 
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6 Development and in vitro characterization of PFPE nanoemulsion 

for increased MR sensitivity 

 

6.1 Rationale 

Our goal was to design, develop and evaluate fluorescent PFC theranostic 

nanoemulsions for macrophage imaging and monitoring of therapeutic efficacy. In 

chapters 3, 4, and 5, our efforts to develop stable non-toxic nanoemulsions were 

encountered with problems pertaining to toxicity, cost, drug solubility and imaging 

functionality. The results from these studies provided valuable information to be 

considered for successful theranostic design. For example, the choice of the components 

needs careful investigation in order to attain drug solubility, while realizing formation of 

a stable and non-toxic nanoemulsion. Due to the instability of NIRF (DiR) dye, a balance 

has to be maintained to achieve optimum stability and in vivo imaging. In this chapter, 

the formulation from chapter 4 is further modified with increased amount of PFPE and a 

lower wavelength carbocyanine dye (DiD) to resolve 19F MR sensitivity problem as well 

as instability of NIRF dye. In vivo evaluation of the developed theranostic is presented in 

chapter 7. 

As mentioned before, formulations utilized for in situ macrophage labeling 

contain high amount of PFCs, 10-40% v/v (18-72% w/w). The high concentration of 

PFCs is required due to the inherent insensitivity of NMR principles. The amount of 19F 

at the inflamed site depends on the extent of macrophage infiltration. If passive 

accumulation through damaged vasculature is involved in the accumulation, then the 

extent of EPR in the inflammation model also dictates the nanoemulsion accumulation, 
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thus affecting the sensitivity. The concentration of PFPE reported in chapters 4 and 5 is 

4% v/v, which is significantly lower than the formulations reported in the literature. 

Additionally, the low EPR effect and macrophage infiltration in the localized nerve 

inflammation would have led to low accumulation of nanoemulsion, thus affecting the 

MR sensitivity. Previously, a fluorescent nanoemulsion containing high PFC content  

(20 % v/v) detected neuronal injury by 19F MRI and fluorescence.223 Therefore, we 

proposed to prepare nanoemulsions with increased amount of PFPE. 

 

Nanoemulsion design 

The droplet size and stability of the nanoemulsion could be affected by the 

amount of surfactant (seen in chapter 3) and processing conditions. An increase in 

surfactant amount could be required in order to stabilize the increased interfacial area due 

to proposed use of high PFPE content. The effect of surfactant amount and processing 

conditions on the PFPE nanoemulsion size and stability is not investigated in the previous 

chapters. We initially proposed to evaluate the effect of these factors on droplet size, PDI 

and stability by employing statistical design of experiments. Specifically, we proposed to 

use Box-Behnken design with three factors (surfactant, pulses, PFPE) and three levels as 

shown in Table 6.1. The levels for PFPE are selected between 8-12.5% v/v  

(15-22.5% w/v), which is still lower than literature reported concentrations for PFCE223 

because PFPE has two-fold greater 19F atoms compared to PFCE. The amount of Miglyol 

was not changed. Surfactant levels were proposed based on oil-to-surfactant ratio (O/S) 

and the total amount utilized in the nanoemulsion. Due to the presence of CrEL, 

concentration more than 5-6% w/v were not preferred. The range of O/S (3.4 to 13.1) 
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obtained includes the O/S (3.4) for formulations reported in chapters 4 and 5. Based on 

this design, three nanoemulsions were experimented and one of them met the desired 

criteria. Therefore, the design was not completed. This nanoemulsion was further 

modified with fluorescent dye for dual mode imaging and evaluated for colloidal 

stability, toxicity, effect on phenotype, and uptake kinetics in RAW 264.7 cells. 

 

Table 6.1. Proposed factors and levels for nanoemulsion optimization 

Factors/levels Old formulation Low Medium High 

PFPE (w/v) 7.2 15 18.75 22.5 

Surfactant (w/v) 2.3 2 3.75 5.5 

Pulses 30 30 38 46 

 

6.2 Materials and methods 

6.2.1 Materials 

All chemicals and cell culture reagents were obtained from commercial sources 

and used without purification.  DiD (1,1'-Dioctadecyl-3,3,3',3'-

tetramethylindodicarbocyanine  perchlorate) dye was purchased from Life Technologies. 

Cytochalasin B was obtained from Sigma Aldrich. Griess Reagent System for nitrite 

measurements was purchased from Promega (Madison, WI, USA). Phycoerythrin 

conjugated Rat anti-mouse CD86 (CD86-PE) antibody and Rat IgG2a,k conjugated to PE 

(isotype control) were obtained from BD Biosciences (San Jose, CA, USA). RAW 264.7 

cells were cultured as previously reported in chapters 3, 4, and 5. The sources of all other 

reagents are same as mentioned in chapters 3, 4, and 5. 
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6.2.2 Preparation and characterization of fluorescent PFPE nanoemulsions 

 

Preparation of nanoemulsions 

Nanoemulsion formulation components and their amounts are shown in Table 6.2. 

Nanoemulsions were prepared as discussed in chapter 4 with some modifications. 

Celecoxib (5 mg) was solubilized in neat hydrocarbon oil, Miglyol 810N (0.95 g), by 

overnight stirring. For drug-free nanoemulsions, neat Miglyol 810N with or without the 

DiD dye was used. For dye-loaded nanoemulsions, DiD dye (100 μL of 2.5 mM ethanol 

stock) was added to Miglyol 810N with or without the solubilized drug and vortexed in 

the dark. PFPE, in required amounts (Table 6.2), was added and vortexed followed by the 

addition of surfactant mixture in 2 mL portions. The surfactant mixture contained 3% w/v 

CrEL and 2% w/v Pluronic® P105 dissolved in de-ionized water. After the addition of 

deionized water, the mixture was vortexed and processed on a microfluidizer 

(Microfluidics, M110S) for 30, 38 or 46 pulses at 6 bar inlet pressure. The total volume 

of the prepared nanoemulsions was 25 mL. The obtained nanoemulsions were sterile 

filtered (0.22 μm, Millipore) after equilibration for one day at 4 °C.  pH of the drug-free 

nanoemulsion (DFNE) and celecoxib-loaded nanoemulsion (CXBNE) were recorded 

after filtration. 

 

Colloidal characterization  

Size and zeta potential analyzed similar to chapter 4. To assess serum stability, 

nanoemulsions were dispersed in complete cell culture media at 1:40 dilution, stored at 

37 °C, and the sizes were recorded without further dilution. Similarly, nanoemulsions 



 

  120 

were dispersed in buffered solutions at pH 5.0 and 7.4 at 1:40 dilution, incubated at 37 °C 

and sizes recorded at predetermined intervals. Samples for follow-up stability analysis 

were stored at 4, 25 and 37 °C. For formulation optimization studies, samples were also 

stored at 60 °C and analyzed for droplet size and PDI.  

 

Drug loading 

Briefly, 50 μL of nanoemulsion was dispersed in methanol in a glass centrifuge 

tube and vortexed for 1 min. This dispersion was subjected to centrifugation at 2000 rpm 

for 5 min at 4 °C to separate PFPE oxide. The supernatant was assayed without further 

dilution in triplicate using HPLC method reported in section 4.2.2. 

 

Nanoemulsion characterization for fluorescent properties 

To assess fluorescent properties, nanoemulsions were diluted with de-ionized 

water (8% v/v) and 150 μL of this dispersion was measured for fluorescence excitation 

and emission on Tecan Safire2 plate reader using a 10 nm bandwidth. Emission spectrum 

was obtained by measuring fluorescence intensity from 630-798 nm with 4 nm step size 

using excitation wavelength of 610 nm. The excitation spectrum was obtained by 

measuring fluorescence intensity for wavelengths 400-668 nm with 4 nm step size using 

emission wavelength of 690 nm. To assess fluorescence of dye in solution, the stock 

solution of DiD dye (2.5 mM in ethanol) was dispersed 40 μL in 460 μL of ethanol. This 

solution was further diluted 40 μL with 460 μL of di-water. 150 μL of this dispersion was 

assessed for fluorescence emission. To obtain nanoemulsion spectra, 40 μL of 
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nanoemulsion (10 μM DiD dye) was diluted with 460 μL of di-water and 150 μL of this 

dispersion was assessed for fluorescence. 

 

In vitro cytotoxicity 

The effect of nanoemulsions on the viability of RAW 264.7 macrophages was 

evaluated after a 24 h incubation at 37 °C with different concentrations of nanoemulsion 

dispersed in whole media. Control cells were not exposed to any treatments. Cells were 

plated at 10,000/well in 96 well plates and incubated overnight for adhesion, followed by 

24 h incubation with treatments. After incubation, cells were washed twice with DPBS 

(1x). CellTiter-Glo® analyte was added (40 μL/well) to induce cell lysis by shaking in 

the dark for 20 min at RT. The obtained cell lysates (80 μL) were transferred to a white 

opaque plate and luminescence recorded. To assess the effect of nanoemulsion on cell 

number, a microscopy cell counting experiment was conducted after labeling the cells 

with Hoechst dye, which stains the nucleus. In this experiment, cells exposed to 

nanoemulsion as mentioned above in 96 well plates were fixed in 150 μL of 4% PFA and 

50 μL cell culture media. Plates were incubated at RT for 20 min, washed twice with 

DPBS and exposed to Hoechst nuclear staining dye (5 μg/mL in DPBS) for 20 min at RT 

in dark. Cells were washed twice with DPBS and stored in 100 μL of DPBS at 4 °C until 

imaging on EVOS fluorescence microscope.  

 

CD86 expression and nitric oxide release 

In order to evaluate if nanoemulsion delivery affects any inflammatory mediators, 

nitric oxide (NO) release and CD86 cell surface markers were assessed in macrophages. 
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Cells plated in 6-well plates were incubated with DFNE or CXBNE (9.3 μM celecoxib) 

overnight. Cells exposed to LPS (200 ng/mL) were used as positive control, while the 

negative control cells were left untreated. Supernatants were analyzed for NO 

concentration using commercially available Griess reagent according to manufacturer 

instructions. Cells were collected by trypsinization and labeled with PE-conjugated anti-

CD86 antibody or isotype control. After repeated washings with centrifugation (300g, 5 

min) in DPBS / 2% FBS, cells were fixed with 2% paraformaldehyde, washed and re-

suspended in DPBS. Samples were analyzed using flow cytometry (BD™Accuri) and 

50,000 events were recorded. Nanoemulsion was detected in FL4, while CD86 

fluorescence was recorded in FL2 channel. Gating was applied based on forward scatter 

(FSC) and side scatter (SSC) as shown in Figure 6.1. The mean fluorescence of gated 

cells was utilized for analysis. A moderate 20% reduction in viability was observed with 

LPS at 200 ng/mL. 

 

 

Figure 6.1. Gating strategy employed in flow cytometry based on FSC and SSC of 

cells. 
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Cellular uptake 

Time- and concentration-dependent uptake kinetics of nanoemulsions was 

determined in macrophages. RAW 264.7 cells were grown in 6-well plates (0.3 x 

106/well), incubated overnight for attachment, and followed by exposure to different 

doses of nanoemulsion (0, 2, 4, 6, 8 mg/mL PFPE) for 24 h in triplicates. Cells were 

trypsinized and washed by centrifugation. Cells were lysed using lysing buffer containing 

Triton-X100 (1%) (Sigma-Aldrich). A portion of the lysate was used for measuring 

protein content using Bradford protein assay (Bio-Rad, Hercules, CA). Cell lysates  

(150 μL) were transferred to a clear bottom 96-well plate and fluorescence intensity was 

recorded on a plate reader (Tecan Safire 2) at excitation wavelength of 610 nm and 

emission wavelength of 670 nm. The obtained fluorescence intensity was normalized to 

protein content (RFU/μg) and plotted against nanoemulsion concentration. For time-

dependent uptake, cells were grown in 12-well plates (0.25 x 106/well). After overnight 

incubation, cells were exposed to nanoemulsion at single dose (4.2 mg/mL PFPE) for 

different time points (5, 15, 30, 60, 120, 240, 360 and 420 min) in triplicates. Cells were 

collected by trypsinization, re-suspended in DPBS / 2% FBS, and washed twice by 

centrifugation (300g, 5 min). Cells were fixed with 2% PFA and analyzed by flow 

cytometry (BD Accuri™). 20,000 events were recorded in the gated region (Figure 6.1) 

and the nanoemulsion was detected in FL4. Data were plotted as mean fluorescence at 

each time point for triplicate samples. 

To assess the effect of phagocytosis inhibition on uptake, cells were plated in 12 

well plates (0.2 x 106 cells) and left for attachment overnight. After aspiration of media 

and washing with DPBS, cells were exposed to different doses of nanoemulsion with or 
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without cytochalasin B (5 μg/mL) for 2.5 h in triplicates. Cells were collected by 

trypsinization, washed twice by centrifugation (300g, 5 min, 4 °C) in DPBS / 2% FBS, 

and fixed with 2% PFA. Cells re-suspended in DPBS were analyzed by flow cytometry 

(BD Accuri™). Nanoemulsion was detected in FL4 and 30,000 events per sample were 

collected in the gated region (Figure 6.1). The concentration of cytochalasin B was 

chosen based on a dose-dependent toxicity assessment performed in these cells for 2.5 h. 

Effect on cell viability was assessed by luminescent assay as described in chapter 3. 

 

Confocal microscopy 

RAW 264.7 macrophages (0.2 x 106 cells) were seeded on glass coverslips in a 24 

well plate and left for adhesion overnight. Cells were then incubated with nanoemulsion 

(30 μL) in culture media (1 mL) for two hours at 37 °C. Cell were then washed with 

DPBS and fixed with 4% paraformaldehyde (PFA) for 20 min at RT and stained with 

Hoechst for nuclei visualization. For kinetic studies, cells were incubated with 

nanoemulsion (30 μL in 1 mL medium) for 5, 15, 30 and 60 min at 4 and 37 °C, fixed 

with 4% PFA, and stained with DAPI. After washing with DPBS, coverslips were 

mounted using Diamond anti-fading medium (Invitrogen, Grand Island, NY). 

Fluorescence was monitored using a Zeiss Apotome system equipped with a Zeiss HPO 

PL APO 63x oil immersion lens (numerical aperture 1.4-0.6). For co-localization with 

acidic compartments, cells were seeded on a glass bottom dishes and left for adhesion. 

Cells were then incubated with nanoemulsion (30 μL in 1 mL medium) for 45 min at  

37 °C, and Lysotracker Green DND-26 (1 μM) (Invitrogen, Grand Island, NY) was added 

for 15 min at 37 °C. Cells were washed with DPBS and immediately imaged using a 
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Zeiss Apotome system equipped with a Zeiss HPO PL APO 63x oil immersion lens 

(numerical aperture 1.4-0.6). Kinetics study and co-localization study was performed by 

Dr. Wissam Beaino at University of Pittsburgh. 

 

PGE2 assessment 

To assess the effect of CXBNE delivery on COX-2 inhibition, PGE2 was 

quantified in activated macrophages (RAW 264.7). Cells were plated at 0.3 million/well 

in 6 well plates and left to adhere overnight. Cells were exposed to DFNE, CXBNE, 

DMSO, and free celecoxib in DMSO or media. Celecoxib was used at 10 μM in 

nanoemulsion and free drug treatment groups. After 24 h exposure, cells were washed 2x 

with DPBS and exposed to LPS containing media (0.5 μg/mL) or media alone. LPS was 

used at 0.5 μg/mL. After 3.5 h, supernatant was collected and analyzed according to 

manufacturer instructions (PGE2 ELISA kit) for PGE2 assessment. 

6.3 Results and discussion 

6.3.1 Preparation and characterization of nanoemulsions 

The PFPE nanoemulsions reported in chapters 4 and 5 required further 

optimization to increase detection sensitivity using in vivo 19F MRI. In an attempt to 

achieve this, three design points were experimented from Table 6.1. However, the full 

design was not completed as one of the three tested nanoemulsions met the desired 

criteria. Our criteria was size < 150 nm, PDI < 0.2 and stability at 60 °C for at least one 

month. All nanoemulsions were devoid of multiple size populations showing monomodal 

distribution and displayed PDI less than 0.15 (Table 6.2). Nanoemulsions prepared with 

2% w/v surfactant (NE2 and NE3) showed smaller droplet size compared to 3.75% w/v 
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(NE1) (Table 6.2). We observed an increase in average size of approximately 20 nm in 

nanoemulsion with increased surfactant amount (NE1), while NE2 and NE3 showed 

comparable average droplet size (Table 6.2, Figure 6.2A). At elevated temperature  

(60 °C), size was monitored for at least 2 months in order to select the nanoemulsion with 

superior stability. NE1 did not show significant increase in size for up to 2 months 

compared to NE2 and NE3, which increased size within two weeks of high temperature 

exposure (Figure 6.2B), demonstrating high colloidal stability of NE1. To compare 

storage stability of the nanoemulsions, droplet size was monitored for samples stored at 

4, 25, and 37 °C (Figure 6.2C-E). The droplet size for all nanoemulsions tested showed 

no significant changes at 4 and 25 °C. However, samples stored at 37 °C showed an 

increase in size for NE2 and NE3, while NE1 remained stable throughout the test period 

of one month (Figure 6.2C-E). All the nanoemulsions showed a negative zeta potential 

(Table 6.2). Based on the results from these three formulations, it appears that high 

surfactant amount (low O/S) is required for high colloidal stability under storage and at 

elevated temperature. However, in comparison to PFPE formulations in chapters 4 and 5, 

the optimized nanoemulsion has higher O/S (5.96 vs. 4.78) i.e. lower amount of 

surfactant to total oil content. 

 

Table 6.2. DLS characterization of nanoemulsions NE1, NE2 and NE3. 

Code PFPE 

(%w/v) 

Surfactant 

(%w/v) 

Pulses O/Sa Size 

(nm) 

PDI Zeta potential      

(mV) 

NE1 18.75 3.75 38 5.96 156 0.12 -14.0 

NE2 18.75 2 30 11.17 136 0.10 -12.1 

NE3 18.75 2 46 11.17 133 0.10 -12.8 
aO/S = Oil to surfactant ratio. Oil phase includes Miglyol 810N and PFPE oxide 
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The effect on cell viability was comparable for nanoemulsions with low and high 

surfactant amounts (Figure 6.3). We observed an increase in cell metabolic activity with 

these nanoemulsions. In order to assess if this increase in metabolic activity is due to 

increased cell number, a separate experiment was conducted. Cell number was obtained 

for each treatment in triplicates by counting the nuclei of fluorescently stained cells. An 

increase in cell number at some concentrations of nanoemulsion was observed  

(Figure 6.3B) for NE1. A plausible explanation for this cellular behavior is the gas-

dissolving capability of PFCs. During processing and storage, nanoemulsions could 

dissolve oxygen. An increased cell metabolic activity and number could be the result of 

the oxygen supplied to cells in culture. Of note, this increase in cell metabolic activity 

and numbers is not a toxic event and hence further studies to explore the associated 

mechanisms were not attempted. Based on these results, the composition and processing 

conditions of NE1 were selected as optimized to prepare fluorescent nanoemulsions for  

in vitro and in vivo studies. 

The optimized nanoemulsion was modified for fluorescence imaging using a 

lipophilic fluorescent dye, DiD. The addition of the dye reduced the droplet size by 20-25 

nm, probably due to its adsorption in the surfactant layer. A small reduction in zeta 

potential was also observed compared to dye-free nanoemulsions (-6 mV vs. -14 mV). 

There was no influence of drug incorporation on average droplet size and zeta potential 

(Figure 6.4A). The stability of the nanoemulsions was investigated by monitoring 

average size changes with time at 4 °C storage, serum exposure, and variation in 

dispersant pH. Both DFNE and CXBNE displayed high stability under storage at 4 °C 

(Figure 6.4B). Even after 100 days, the size distribution by intensity showed a single 
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peak (Figure 6.4C). A small increase in size of less than 15 nm was noted after 100 days 

and PDI remained below 0.15. Incubation of nanoemulsions with serum-containing 

media showed a small reduction in size (Figure 6.4D). However, the serum did not affect 

the size distribution (Figure 6.4E). Average droplet size and size distribution of 

nanoemulsions remained unaltered after incubation at pH 5.0 and 7.4 for 5 days (Figure 

6.4F). The pH of the undiluted nanoemulsions was between 6.75 and 7.1, which is close 

to physiological pH of 7.4. These results clearly indicate that the nanoemulsion is stable 

under different stress conditions and was acceptable for in vitro and in vivo biomedical 

applications. 
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Figure 6.2. Size and stability of dye-free PFPE nanoemulsions. 

A. Size distribution of nanoemulsions NE1 (red), NE2 (blue), and NE3 (green). B. 

Nanoemulsion droplet diameter changes with time stored at 60 °C. Storage stability of 

nanoemulsions C. NE1, D. NE2, and E. NE3 stored at 4, 25 and 37 °C. Error bars 

represent PDIw/2. 
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Figure 6.3. Effect of dye-free PFPE nanoemulsions on macrophage viability. 

A. Cell viability assessed for NE1 and NE2 by quantitation of ATP. B. Effect of cell 

growth based on nuclei counts of NE1 exposed cells. C. Representative microscopy 

image of nuclei for nanoemulsion-exposed and untreated cells showing visible difference 

in cell number. Data is obtained from at least triplicate measurements. 
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Figure 6.4. Characterization of the optimized fluorescent dye-loaded nanoemulsions, 

DFNE and CXBNE, using DLS. 

A. Zeta potential distribution of DFNE (red) and CXBNE (green). B. Graph showing 

droplet diameter changes with time (days) for nanoemulsions stored at 4 °C. C. 

Comparison of size distribution for CXBNE at day 0 vs. day 112, showing single peak. 

D. Droplet diameter changes in serum containing cell culture media at 37 °C. E. Overlay 

of size distribution for media exposed CXBNE showing monomodal distribution. F. 

Droplet diameter changes of CXBNE incubated in pH 5.0 and 7.4 buffer at 37 °C. 
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Nanoemulsions were characterized by 19F NMR spectroscopy and fluorescence. 

19F NMR of the nanoemulsions (not included) showed characteristic peaks similar to the 

spectrum of pure PFPE oxide.205 In order to determine the appropriate fluorescence 

conditions for in vitro and in vivo studies, emission and excitation spectra for DFNE and 

CXBNE were determined. Ex/Em of 648 / 668 nm were observed for both nanoemulsions 

(Figure 6.5A-B). The presence of drug did not show any shift in the emission and 

excitation spectra. A slight blue shift was observed compared to the free dye (Figure 

6.5C) dissolved in ethanol/water mixture (654 / 678 nm), possibly due to the presence of 

surfactants in the nanoemulsion. However, the fluorescence properties remained in the 

NIR region, which is ideal for in vivo imaging due to the reduced autofluorescence. 

 

 

Figure 6.5. Fluorescence characterization of DiD dye in nanoemulsions and solution. 

A. Excitation and B. Emission spectra. C. Comparison of emission spectra for DiD dye in 

ethanol/water mixture and nanoemulsion. 
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6.3.2 In vitro evaluation in RAW 264.7 macrophages 

The optimized nanoemulsion, with and without celecoxib, was tested at different 

doses in macrophages and did not affect their viability after 24 h exposure (Figure 6.6A). 

In order to ascertain that these nanoemulsions did not produce any pro-inflammatory 

effects, NO release and CD86 expression changes were monitored after 24 h of exposure. 

A non-toxic concentration of LPS was used and cells were activated for 18 h. NO and 

CD86 were chosen as the markers for macrophage activation. LPS was used as a positive 

control to induce the pro-inflammatory phenotype in macrophages, which leads to 

increased CD86 expression and NO release. CD86 expression and NO release were not 

altered by nanoemulsions (Figure 6.6B-C). CD86 and NO levels were comparable to 

untreated cells, and significantly lower than LPS-activated cells, which clearly indicate 

that nanoemulsions do not stimulate pro-inflammatory phenotype in macrophages. 

 

 

Figure 6.6. Effect of DFNE and CXBNE on macrophage viability and activation. 

A. Viability of RAW 264.7 macrophages exposed to DFNE and CXBNE for 24 h (n = 4). 

B. Nitric oxide release from macrophages exposed to nanoemulsions for 24 h (n = 3). 

Data in panels A and B is shown as mean ± SD C. CD86 expression in macrophages 

exposed to nanoemulsions for 24 h. Cells not exposed to any treatment are designated as 

NT (no treatment). 
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To understand the uptake and intracellular fate of nanoemulsions, cellular uptake 

studies were conducted in RAW 264.7 macrophages. Fluorescence analysis of cells 

exposed to nanoemulsion showed an identical emission profile (Figure 6.7A) to that of 

dye in solution and nanoemulsion (Figure 6.5). Whereas, untreated cells did not display 

fluorescence. This result confirms that the fluorescent properties of the theranostics are 

not altered and can be detected in cells using fluorescence microscopy. Confocal 

microscopy showed that the nanoemulsions were readily internalized by macrophages 

(Figure 6.7B) and localized to acidic endosomal/lysosomal compartments (Figure 6.7B-

C). This experiment was conducted 45 minutes after labeling the cells with the 

nanoemulsion. Typically, NPs sort through the endosomal-lysosomal compartments, 

unless a lysosomal escape mechanism is made part of the system. Based on the 

pharmacological effect we observed in the cells (demonstrated in the next section), it is 

likely that the nanoemulsion could physically dissociate and release the drug to act on the 

COX-2 enzyme. In order to probe the exact mechanism, a time-dependent co-localization 

study with endosomal and lysosomal-specific antibodies has to be conducted. 
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Figure 6.7. Characterization of nanoemulsion uptake in macrophages using 

fluorescence methods. 

A. Comparison of fluorescence emission of cells treated with or without CXBNE 

showing Em at 670 nm. B. Confocal microscopy of cells incubated with nanoemulsion 

(30 μL/mL) for 2 h at 37 °C. C. Confocal images showing co-localization of 

nanoemulsion (red) with acidic compartments (green) labeled with Lysotracker Green-

DND. Merged image show the co-localized pixels (yellow). Nuclei are stained with 

DAPI (blue). Images are recorded by Dr. Wissam Beaino, University of Pittsburgh, 2014. 

 

19F NMR of cells exposed to nanoemulsion also confirmed the uptake based on 

characteristic peaks of PFPE (not included). Two possible mechanisms of nanoemulsion 

internalization exist in macrophages. Nanoemulsions can enter cells either passively 

through membrane penetration or actively via phagocytosis, endocytosis and 

pinocytosis.224 In order to identify the mechanism of internalization, RAW 264.7 

macrophages were incubated with the nanoemulsion for 5, 15, 30, and 60 min. At 37 °C, 
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nanoemulsion was easily detected at the cell membrane as early as 5 min, and the 

internalization increased overtime with a punctuated fluorescent staining pattern 

indicative of localization in discrete vesicular compartments, suggestive of an endocytic 

pathway of internalization. At 4 °C, barely detectable levels of nanoemulsion was 

observed after 5 min, and minimal internalization was noted after 60 min (Figure 6.8A). 

These results demonstrate predominantly energy-dependent active mechanisms of 

nanoemulsion internalization in macrophages. In addition, dose- and time-dependent 

uptake of nanoemulsion was observed in macrophages (Figure 6.8B-C). The cell-

associated fluorescence reached saturation at higher nanoemulsion concentrations, which 

is typical for an endocytic pathway of uptake.225 A similar uptake profile was observed 

with the PFPE nanoemulsion reported in chapter 4, Figure 4.6, suggesting a related 

mechanism of uptake of these nanoemulsions. A linear increase in uptake with time was 

observed at a single concentration of nanoemulsion; within 2 h of exposure, more than 

90% of cells were shown to be positive for nanoemulsion. The uptake is expected to 

saturate with increased incubation time and higher concentration. The highest incubation 

time used was below 12 h in order to avoid variation in cell number across time points 

due to the excepted cell division at longer time points. 

One of the key mechanisms of NP uptake in macrophages is phagocytosis. To 

assess if phagocytosis is involved in the internalization of nanoemulsions, cellular uptake 

was compared in the presence and absence of the phagocytosis inhibitor cytochalasin B. 

Cellular uptake was significantly lower with cytochalasin B (Figure 6.8D). In the 

presence of cytochalasin B, nanoemulsion uptake was reduced at least by 70%, and this 

result was observed at all tested nanoemulsion concentrations, confirming that the uptake 
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is predominantly mediated through phagocytosis. Based on the presented results, it can be 

proposed that nanoemulsion enters the cells via an endocytic mechanism and moves 

intracellularly via the endosome-lysosome pathway. 

The pharmacological effect of celecoxib delivery was evaluated by quantitation of 

PGE2 in activated macrophages. Similar to our previously reported results in chapter 4, 

CXBNE produced significant reduction in PGE2 produced by LPS-activated 

macrophages compared to DFNE (Figure 6.9). This reduction was comparable to free 

drug delivered in DMSO. Together, these data strongly suggest that the nanoemulsion, 

efficiently internalized by macrophages in a dose- and time-dependent manner and 

inhibiting COX-2 enzyme activity can produce anti-inflammatory effects in vivo. To test 

the in vivo efficacy of these nanoemulsions as imaging and therapeutic agents, a paw 

inflammation mouse model was used, which is described in chapter 7.  
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Figure 6.8. Cellular uptake kinetics of nanoemulsions. 

A. Confocal images of cells exposed to nanoemulsion for 5, 15, 30, and 60 min incubated 

at 4 and 37 °C (Microscopy by Dr. Wissam Beaino, University of Pittsburgh, 2014). B. 

Dose dependent uptake of nanoemulsion in macrophages. Dose is represented on x-axis 

as PFPE (mg/mL). C. Time-dependent uptake of nanoemulsion (4 mg/ml PFPE) in 

macrophages. D. Comparison of uptake between cells exposed to different doses of 

nanoemulsion with or without phagocytosis inhibitor cytochalasin B (5 μg/mL). Uptake 

was performed for 2.5 h. Data in panels B, C, and D is from triplicates expressed as  

mean ± SD. 
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Figure 6.9. Comparison of PGE2 in supernatants of LPS activated macrophages 

pretreated with celecoxib in solution and nanoemulsion. 

Cells that are not exposed to LPS are designated as no-treatment (NT). All the groups 

were compared with one-way ANOVA and Tukey’s post-hoc multiple comparison test 

with statistical significance set at p < 0.05. Data is represented as mean ± SEM (n = 3). 

 

6.4 Conclusions 

The optimized nanoemulsions with increased PFPE content showed comparable 

droplet size and PDI to nanoemulsions reported in chapter 4. These nanoemulsions were 

shown to be stable under storage, serum exposure and varying pH. The individual 

imaging signatures namely 19F MR and fluorescence excitation/emission were well 

conserved in the nanoemulsion and cells. Most importantly, nanoemulsions did not 

induce toxicity and inflammatory markers. The cellular uptake was shown to be dose- 

and time-dependent occurring predominantly through phagocytosis. In addition to 

internalization by macrophages, the multimodal theranostic was able to achieve 
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pharmacological activity in macrophages. With these encouraging results, the theranostic 

nanoemulsion was tested in a mouse inflammation model as described in chapter 7. 
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7 In vivo evaluation of PFC nanoemulsions in inflammatory models 

 

7.1 Introduction 

In this chapter, in vivo application of the theranostic nanoemulsions developed in 

chapters 5 and 6 is described. Specifically, PFPE nanoemulsion developed in chapter 6 

was assessed for its capability to detect macrophages in inflammation and monitor 

changes in macrophage infiltration using optical in vivo imaging. This study was 

conducted in collaboration with Dr. Carolyn Anderson and Dr. Wissam Beaino at the 

University of Pittsburgh. The imaging potential of dual fluorescent PFPE nanoemulsion 

developed in chapter 5 is also demonstrated in a neuropathic pain rat model. Furthermore, 

the utility of a previously reported fluorescent PFCE theranostic nanoemulsion to detect 

neuronal injury and assessment of pain behavior in response to celecoxib delivered to 

macrophages will be discussed. The studies in neuropathic pain rat model were 

conducted in collaboration with Dr. John A. Pollock, Kiran Vasudeva and Muzamil 

Saleem at Duquesne University. 

7.2 Materials and methods 

7.2.1 Inflammation models 

A mouse paw inflammation model was generated by subcutaneous (s.c.) injection 

of complete Freund’s adjuvant (CFA) or carrageenan (CG) in the right hind paw. In these 

studies six to eight week old female ICR animals and SKH1 hairless (immune-

competent) were purchased from Charles River Laboratories (Horsham, Pennsylvania). 

All animal studies were performed under the Guide for the Care and Use of Laboratory 

Animals under the auspices of Division of Laboratory Animal Resources (DLAR) of the 

http://www.dlar.pitt.edu/
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University of Pittsburgh. Mouse imaging was performed on IVIS® Lumina XR (Perkin 

Elmer, Waltham, MA, USA) at University of Pittsburgh Cancer Institute.  

 A neuropathic pain rat model included neuronal injury by sciatic nerve ligation. 

The studies with this model were performed by Kiran Vasudeva as previously 

described.223 Rats were imaged on LiCOR Pearl® Impulse imaging station (LI-COR 

Biosciences, Lincoln, NE, USA) at Duquesne University. 

7.2.2 In vivo studies in a mouse paw inflammation model 

7.2.2.1 Pilot study to assess the imaging potential of nanoemulsion 

In the pilot study, ICR animals were divided into two groups receiving either CFA 

or CG. Animals were injected with DFNE (150 μL) via tail vein under anesthesia. After 

12 h, each group (n=3/group) received CFA (50 μL) or CG (40 μL) via s.c. injection in 

the right hind paw, while the left hind paw received normal saline. Animals were imaged 

at 2, 6, 9, 12, 24, 27, 30, and 48 h post-inflammation using the same imaging parameters. 

Paw thickness was measured before the injection of adjuvants and at all imaging time 

points. Lateral, translateral and ankle thickness was noted using Vernier calipers. Imaging 

was performed on IVIS® Lumina XR (Perkin Elmer, Waltham, MA). For each mouse, 

X-ray, white light and fluorescence images were co-registered. Imaging parameters 

included F/stop 2, medium binning, 3 sec exposure, high lamp level, and excitation and 

emission of 640 and 700 nm respectively. Settings were optimized to obtain an image 

that did not lead to detector saturation. To avoid saturation from the bladder and the 

abdominal region, a black cloth was used to cover these areas during imaging (Figure 

7.1). At the end of the study, representative paws were collected for ex vivo 19F NMR 

analysis. After 24 h, one animal from each group was sacrificed for cell collection and 
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development of flow cytometry method to detect nanoemulsion labeled macrophages. In 

vivo images were quantified by drawing a region of interest (ROI) around the inflamed 

leg and the contralateral control leg (Figure 7.1). Total fluorescence radiant efficiency 

was calculated after background subtraction. Data are presented as the fluorescence ratio 

of inflamed to control leg. 

 

 

Figure 7.1. Representative fluorescence/white light image showing in vivo imaging 

method and ROIs used for quantification. 

 

7.2.2.2 In vivo study to evaluate theranostic potential of nanoemulsions 

SKH1 hairless mice were injected via tail vein with CXBNE (150 μL, 437.6 μM) 

(n = 5) or DFNE (150 μL) and free celecoxib dissolved in a surfactant mixture containing 

CrEL and P105 (115 μL) (n= 5) 12 h prior to paw inflammation induction by CFA. Live 

animals under anesthesia were imaged using in vivo fluorescence imaging using an 

IVIS® Lumina XR (Perkin Elmer; Waltham, MA) imaging station with 640 nm and  
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700 nm filters for excitation and emission, respectively. Images were acquired at 2, 6, 10, 

24, 34, 48 and 72 h post CFA injection. Imaging parameters (exposure 1 sec, binning 

medium, lamp high, F/stop 2) were maintained for all time points. Images were 

quantified as described above. Mice were sacrificed (n = 3) after 72 h imaging time point, 

and organs were collected and imaged using the IVIS® Lumina XR imaging station, and 

then weighed. ROIs were drawn around each organ, and total radiant efficiency was 

calculated and normalized to the organ weight. The total dose was calculated by 

quantifying the fluorescence of a standard nanoemulsion dilution imaged with the same 

imaging parameters.  

 

Ex vivo histological analysis 

Following the in vivo studies at 72 h post-inflammation, mice injected with either 

CXBNE or DFNE and free celecoxib dissolved in the surfactant mixture were sacrificed 

and the inflamed paw was collected and snap frozen. In a separate experiment, SKH1 

hairless mice were injected with DFNE (150 μL), and paw inflammation was induced by 

injection of CFA (50 μL) s.c. in the right hind paw. After 24 h, mice were sacrificed; 

spleens and paws were collected and snap frozen.  

Dr. Wissam Beaino at University of Pittsburgh performed histology. Briefly, 

tissues were embedded in optimal cutting temperature (OCT) medium. 10 µm sections 

were obtained using a cryotome. Sections were fixed and stained for macrophages and 

neutrophils using CD68 and Gr1 antibodies, followed by secondary fluorescent 

antibodies for microscopy using a Zeiss Apotome system equipped with a Zeiss HPO PL 

APO 40x or 63x oil immersion lens (numerical aperture 1.4-0.6). 
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Statistical Analysis 

A Two-way repeated-measures ANOVA with Bonferroni post-hoc test was 

utilized to compare mean fluorescence intensity of groups treated with DFNE or CXBNE 

at each imaging time point. Imaging time point and treatment were chosen as factors for 

this analysis. A student’s t-test was used to compare mean fluorescence intensity of 

organs between groups treated with DFNE or CXBNE. Statistical significance level was 

set at p < 0.05 and data was analyzed using GraphPad Prism 6.  

7.2.3 In vivo imaging in a neuropathic pain rat model 

In vivo neuropathic pain model was utilized as a proof of principle study to assess 

whether the dual fluorescent nanoemulsion (prepared in chapter 5) can be detected in vivo 

at the inflammation site. Additionally, a previously published DiR-labeled PFCE 

nanoemulsion215 from our lab was also utilized in this model to assess the effect of 

celecoxib delivery on pain behavior changes.  

The following procedure was performed by Kiran Vasudeva in Dr. John Pollock’s 

laboratory. Briefly, on 8th day post-sciatic nerve ligation, 0.3 mL of the nanoemulsion 

(chapter 5) was injected via tail vein. A healthy rat was used as the control. After 72 h, 

anesthetized animals were imaged on LiCOR Pearl® small animal imaging station. Due 

to the limited field of view, only a portion of the rat could be imaged. Rats were laid on 

the side and images were collected ensuring sciatic nerve regions are captured within the 

obtained image. Fluorescence (800 nm) and white light images were co-registered at 

focus offset -1. After live animal imaging, tissues, namely left and right sciatic nerves, 

lungs, kidneys, heart, liver and spleen, from both animals were collected and stored in 2% 

PFA in DPBS fixing solution at 4 °C. 



 

  146 

The same procedure was utilized to evaluate the DiR-labeled PFCE 

nanoemulsion. Kiran Vasudeva, in her dissertation thesis, described experimental details 

and full results of the study. Figure 7.11 shows the author credits for this work. Briefly, 

animals receiving sham surgery and sciatic nerve ligation were used. Sham rats were used 

as control for pain behavior. Pain behavior was tested according to the protocol published 

in Vasudeva et al.223, before the surgery and different days (up to 12 days) after the 

surgery. Sham rats did not receive any treatment. On day 8, rats with induced neuropathic 

pain were injected via tail vein, either drug-free or drug-loaded PFCE nanoemulsion or 

free drug dissolved in the surfactant mixture. Pain behavior was assessed on day 9, 10, 

11, and 12. At the end of the study, sciatic nerves were collected from drug-free and 

drug-loaded nanoemulsions and assessed for 19F content and NIRF imaging. Sciatic 

nerves were fixed, weighed and transferred to NMR tubes with fixing solution. 

 

Ex vivo tissue 19F NMR and NIRF imaging 

The collected organs were cut into thin slices to fit into 5 mm NMR tubes. 

Inflamed sciatic nerves were cut, while the control and non-inflamed ones are placed 

intact in the NMR tubes. All the tissues were weighed on a digital balance, followed by 

the addition of fixing solution. These NMR tubes were imaged on LiCOR Odyssey® in 

800 nm channel. ROIs were drawn using instrument software and the integrated 

fluorescence was obtained. Same tubes with tissues were assessed for 19F content using 

19F NMR. For reference, a sealed capillary containing 0.02% v/v aq. TFA was placed 

inside the NMR tube. The height of the tube was adjusted such that the tissue sample is 
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with in the active region of NMR machine. NMR was performed on Bruker 500 MHz 

with delay time of 10 sec and 128 scans. 

7.3 Results and discussion 

7.3.1 In vivo studies in a mouse paw inflammation model 

To test the in vivo diagnostic and therapeutic potential of the theranostic 

nanoemulsion, a murine inflammation model was utilized. The goal of these studies was: 

1) to test the efficiency of nanoemulsions to detect the inflammation loci and 2) to image 

the response to celecoxib delivery i.e. changes in macrophage infiltration. Our working 

hypothesis is summarized in Figure 7.2. 

 

 

Figure 7.2. Schematic showing the proposed theranostic potential of PFPE 

nanoemulsion. 

 

In the pilot study, CFA and CG were compared to assess the severity of 

inflammation based on the nanoemulsion fluorescence from the inflamed paw. CFA is an 

emulsion containing inactivated mycobacterium tuberculosis and it has been shown to 

induce local inflammation leading to increased leukocyte recruitment.226,227 CG is a sugar 

and widely employed to induce local inflammation in rodents and arthritis in rats.228 
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Drug-free fluorescent PFC nanoemulsion, DFNE, was injected (tail vein) 12 h prior to 

inducing paw inflammation in order to label the monocytes/macrophages with 

nanoemulsion and subsequently monitor their infiltration to the inflamed site. 

Fluorescence imaging showed higher paw fluorescence from right paw injected with 

adjuvant (CFA/CG) compared to left paw receiving normal saline (Figure 7.3A). As 

shown in Figure 7.3B, paw thickness increased immediately after the adjuvant injection. 

Inflammation was higher and persisted longer with CFA compared to CG (Figure 7.3C). 

Ex vivo 19F NMR of a paw tissue section from CFA-injected animal showed peaks from 

PFPE (Figure 7.3D), further confirming the presence of nanoemulsion at the inflamed 

site. Due to the high fluorescence observed, CFA was utilized for further studies. 

To test the theranostic potential of the nanoemulsion, hairless SKH1 mice were 

used because our study showed background fluorescence due to shaving-induced skin 

irritation in ICR mice complicating the fluorescence quantification from the paw region. 

In these mice, first we evaluated the potential of the nanoemulsion to be delivered to 

macrophages. Immunofluorescence staining of the inflamed paw and spleen from mice 

injected with the nanoemulsion showed a strong and major co-localization of the 

nanoemulsion with macrophages and undetectable co-localization with neutrophils 

(Figure 7.4). These results show that the nanoemulsion is specifically internalized by 

macrophages in vivo at the site of inflammation and in spleen and is suitable to image and 

deliver therapeutics to macrophages. It should be noted that other antigen presenting or 

phagocytic cells like DCs and B cells, which are not investigated in our study, could also 

internalize the nanoemulsion. 
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Figure 7.3. Pilot in vivo study showing characterization of CFA and CG mouse 

models. 

A. Representative X-ray/fluorescence composite images show high fluorescence signal 

from CFA and CG injected paw compared to saline. B. Evolution of paw thickness for 

CFA and CG injected animals. C. Paw fluorescence changes with time of individual 

animals. D. Representative 19F NMR of paw section showing presence of specific PFPE 

peaks. Data in panel B is represented as mean ± SD from three animals until 27 h and two 

animals thereafter. 

 

With these results, the theranostic potential of the nanoemulsion in vivo in an 

inflammation setting was assessed by delivering celecoxib to macrophages and 

monitoring the subsequent therapeutic response using longitudinal fluorescence imaging. 

We evaluated this effect by comparing changes in fluorescence from inflamed paws 

between free drug and drug encapsulated in the nanoemulsion. In order to visualize 



 

  150 

macrophage accumulation changes in the group receiving free drug, a drug-free 

nanoemulsion, DFNE (vehicle), was also co-administered. Based on the live animal 

imaging at different time points, a visible difference in fluorescence intensity was seen 

between the groups with time (Figure 7.5A). For both groups, we did not observe a 

statistically significant difference in the ratio of fluorescence intensity between inflamed 

paw and control paw until 10 h (Figure 7.5B). At the 24 h, significant reduction in the 

fluorescence ratio was observed for the group receiving CXBNE, which further reduced 

at 34 h time point and persisted till 72 h (Figure 7.5B). In the animals receiving free drug, 

paw fluorescence remained high at all the time points. The fluorescence intensity was 

assessed for both the nanoemulsions in order to exclude the contribution of differential 

nanoemulsion fluorescence to the observed fluorescence changes between the animal 

groups. Fluorescence intensity was observed to be slightly higher in CXBNE, which 

further supports the claim that CXBNE group showed reduced fluorescence with time 

compared to DFNE.  

A plausible rationalization for the differences observed between the two groups 

could be attributed to the elimination of celecoxib from the body in the free drug group. 

Because there was a 12 h lag time before inducing inflammation, systemic concentration 

of celecoxib would have reduced (t1/2 = 11.2 h for celecoxib) compared to celecoxib 

encapsulated in the nanoemulsion. Nanoemulsion-mediated celecoxib delivery is 

advantageous because it may reduce the drug elimination and also increases target 

accumulation, which leads to lower frequency of administration in future studies to 

induce anti-inflammatory effects.  
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Figure 7.4. Tissue analysis for nanoemulsion accumulation in macrophages and 

neutrophils. 

Representative immunofluorescence sections of inflamed paw and spleen from mouse 

injected with nanoemulsion 24 h post-inflammation. Nanoemulsion was injected 12 h 

pre-inflammation. Sections were stained with anti-CD68 for macrophages and anti-Gr-1 

for neutrophils. Merge images shows co-localization (arrows) of the nanoemulsion (red) 

with macrophages (green) in inflamed paw and spleen and no co-localization (arrow 

head) of nanoemulsion (red) with neutrophils (green). Histology by Dr. Wissam Beaino, 

University of Pittsburgh, 2014. 
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Figure 7.5. In vivo NIRF imaging of DFNE and CXBNE in mouse paw inflammation 

model. 

A. Representative fluorescence/X-ray images showing the accumulation of nanoemulsion 

in the site of inflammation (right paw) at different time points. B. Ratio of quantified 

fluorescence of inflamed paw compared to non-inflamed paw. Data is shown as mean ± 

SD (n = 5). 

 

 

The biodistribution study revealed that the majority of the nanoemulsion is 

accumulated in liver and spleen (Figure 7.6A). This result is expected because these 

organs are sites at which macrophages accumulate to the greatest extent. Interestingly, the 
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percent-injected dose accumulated in the spleen was higher for the group receiving 

CXBNE compared to the free drug (Figure 7.6B). Recently, it has been reported that 

monocytes/macrophages of spleen, in addition to blood monocytes, are recruited to the 

injured site during inflammation.229 We speculate that the increased nanoemulsion-

associated fluorescence in the spleen of these animals is due to the reduced recruitment of 

nanoemulsion-internalized monocytes/macrophages to the inflamed paw, owing to the 

reduced production of chemokines required for macrophage recruitment. This result also 

coincides with the decrease in macrophage infiltration of the inflamed paw observed in 

CXBNE group compared to the free drug group (Figure 7.5B). 

Finally, a 19F MR image of the excised paw was registered in 8 min and 32 sec as 

shown in Figure 7.7. A clear presence of PFPE can be seen throughout the excised paw, 

indicating that 19F MRI can detect the nanoemulsion with increased PFPE content. 

Because the image was obtained in reasonable amount of time (clinically applicable time 

scale), nanoemulsions could be utilized for longitudinal live animal imaging using 19F 

MRI for quantitative assessment of nanoemulsion at the inflamed site. Unlike NIRF, this 

method is applicable to image and quantify surface and deep tissue inflammation. 
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Figure 7.6. Biodistribution of DFNE and CXBNE. 

A. Representative fluorescence images of different organs showing nanoemulsion 

biodistribution at 72 h after inducing inflammation evaluated by fluorescence ex vivo 

imaging. B. Biodistribution of nanoemulsion in different organs. Data is shown as mean 

± SD (n = 3). 

 

 

 

Figure 7.7. Representative 1H/19F MRI composite image of excised inflamed paw.  

Images were obtained at 4 x 4 cm field of view in 8 min and 32 sec on Bruker Biospec 

Avance III 7-T. PFPE is seen in the paw as red hot iron signal superimposed on the 

anatomical 1H MRI shown in grey. Image by Dr. Kevin Hitchens, Pittsburgh NMR 

Center for Biomedical Research, Carnegie Mellon University, 2014. 
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Histological analysis of the inflamed paw revealed a high level of macrophage 

infiltration (Figure 7.8). A majority of the nanoemulsion droplets are co-localized with 

macrophages (CD68+) expressing the target enzyme, COX-2. Further, CXBNE and 

DFNE showed accumulation specifically in macrophages compared to neutrophils 

(Figure 7.9), similar to the histology data from 24 h after inflammation (Figure 7.4). The 

combination of in vivo imaging and histological studies confirm that the nanoemulsion is 

efficiently taken up by macrophages in the inflamed tissue. In vivo live animal data 

indicate that by delivering celecoxib in a nanoemulsion, macrophage infiltration is 

reduced over time. We showed that the theranostic system not only delivered celecoxib to 

the target cells, but also facilitated the visualization of therapeutic response (reduced 

macrophage infiltration). Most importantly, the combined therapy and response 

monitoring was achieved after a single dose administration of the theranostic system. We 

acknowledge that the approach presented in this study utilized theranostic injection prior 

to inducing inflammation, which is contrary to the common mode of treatment, where 

therapeutic intervention ensues after the disease state is established. Prior labeling of 

blood monocytes was expected to facilitate visualization of these labeled monocytes 

fluxing to the inflamed site and reduces interference due to accumulation of 

nanoemulsion at the inflamed site through EPR. Yet, this approach has clinical 

significance, for example, to monitor macrophages in post-surgery and transplantation 

settings. In the next section, combined imaging and diagnostic features were 

demonstrated in a neuropathic pain model, which is more representative of clinical 

treatment setting for chronic pain. 
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Figure 7.8. Histology of excised paw 72 h after CFA injection showing nanoemulsion 

accumulation in COX-2 expressing macrophages. 

Representative immunofluorescence sections of inflamed paw from mouse injected with 

DFNE and CXBNE (purple) and stained for macrophages (Rat anti mouse-CD68, green) 

and COX-2 (Goat anti mouse-COX-2, red). Merged panel shows the co-localization of 

nanoemulsion fluorescence (DiD) with macrophages and COX-2 staining. Experiment by 

Dr. Wissam Beaino, University of Pittsburgh, 2014. 
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Figure 7.9. Histology of paw 72 h after inducing inflammation to assess 

nanoemulsion accumulation in macrophages and neutrophils. 

Representative immunofluorescence sections of inflamed paw stained for macrophages 

(Rat anti mouse-CD68, green) or (Rat anti mouse-Gr-1-FITC, green) show nanoemulsion 

co-localization with macrophages (arrows), but not neutrophils (arrow head) in the 

merged panel.  

 



 

  158 

7.3.2 In vivo studies in a neuropathic pain rat model 

A neuropathic pain model was utilized to test the imaging potential of dual 

fluorescent PFPE nanoemulsion reported in chapter 5. As described in chapter 5, live 

animal imaging showed fluorescence at the surgical site (right sciatic nerve), but not in 

the contralateral side of the neuropathic pain animal (Figure 7.10). Both sciatic nerve 

regions of control rats were also lacking fluorescence signal. This result confirms that the 

nanoemulsion is specifically accumulated at the injured site. Ex vivo fluorescence (Figure 

7.10) of the nerves also validate this result. Unfortunately, 19F NMR did not detect PFPE 

at the inflamed site. Spleen and liver of both rats showed significant accumulation of 

nanoemulsion by fluorescence and 19F NMR. This led to the speculation that PFPE is 

below the detection limits at the inflamed site in this animal model. Previously Dr. Janjic 

and Dr. Pollock’s group223 has employed a nanoemulsion incorporating 20% v/v PFCE 

for successful detection of nerve injury in this model. The results from this study were 

crucial to design new nanoemulsions in chapter 6 to increase 19F MRI sensitivity. 
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Figure 7.10. In vivo and ex vivo NIRF imaging of neuropathic pain rat model to 

assess dual fluorescent PFPE nanoemulsion accumulation. Arrow points to the 

surgical site showing fluorescence at the injured sciatic nerve in chronic constriction 

injury (CCI) rat. 

 

This model was also utilized to investigate the pain sensitivity changes in 

response to COX-2 inhibition in macrophages using a celecoxib theranostic 

nanoemulsion.215 This theranostic system is prepared with same ingredients as 

nanoemulsions reported in chapter 4, 5, and 6, but PFCE was utilized instead of PFPE. 

Animals with neuropathic pain were injected with free drug or drug-loaded or drug-free 

fluorescent PFCE nanoemulsions. Animals injected with free-drug also received drug-

free fluorescent PFCE nanoemulsion (vehicle) to facilitate imaging. Sham animals were 
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used as controls for pain behavior testing. As shown in Figure 7.11, animals experienced 

less pain with celecoxib-loaded nanoemulsion compared to free drug and drug-free 

nanoemulsion starting on day 8 (2nd day after nanoemulsion injection). Representative 

sciatic nerves (from one animal) from drug-loaded and free drug treated groups were 

analyzed by ex vivo 19F NMR, 19F MRI and NIRF imaging. The results from three 

methods show a reduction in imaging signal in the animals receiving celecoxib 

nanoemulsion compared to free drug. There was also a significant difference in CD68 

macrophages between these groups (Kiran Vasudeva, Dissertation 2015). These results 

indicate that by inhibiting COX-2 in macrophages, macrophage infiltration as well as 

pain sensitivity will be reduced, validating the theranostic potential of the nanoemulsion 

in a different inflammation model.  
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Figure 7.11. Imaging and pain behavior assessment of theranostic PFCE 

nanoemulsion in a neuropathic pain rat model. 

A. Pain sensitivity test performed in rats with sham surgery (grey) and sciatic nerve 

ligation (red blue, light blue), chronic constriction injury (CCI). Mechanical 

hypersensitivity is quantified based on paw withdrawal in response to filament poking. 

Reduction in withdrawal threshold is read as increase in pain. Comparison between rats 

(neuropathic pain) injected with and without celecoxib-loaded theranostic using B. Ex 

vivo NIRF, C. 19F MRI, D. 19F NMR and E. CD68-macrophages. Author credits: 

Behavior testing by Kiran Vasudeva and Muzamil Saleem, nanoemulsion designed by Dr. 

Jelena M. Janjic and Sravan kumar Patel, in vivo NIRF imaging, ex vivo NIRF and 19F 

NMR by Sravan Kumar Patel, in vivo NIRF imaging by Dr. John A. Pollock, 19F MRI by 

Dr. Kevin Hitchens, CMU, and histology for CD68 detection by Kiran Vasudeva.  

 

7.4 Conclusions 

As hypothesized, theranostic nanoemulsions detected inflamed locus in preclinical 

inflammatory models. 19F NMR, MRI, and fluorescence imaging methods unequivocally 
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confirmed the nanoemulsion presence at the inflammation site. In the mouse paw 

inflammation model, theranostic nanoemulsion was specifically localized to macrophages 

compared to neutrophils. In both inflammation models, a temporal reduction in 

fluorescence intensity at the inflammation site with celecoxib-nanoemulsion indicated a 

reduced macrophage accumulation. Further, reduced mechanical hypersensitivity as a 

measure of pain in response to macrophage-targeted drug delivery was observed. This 

result was concomitant with reduced number of macrophages and imaging signal at the 

injured sciatic nerve. Ultimately, the studies presented in this chapter showed that the 

celecoxib-loaded theranostic nanoemulsion produces anti-inflammatory effects i.e. 

reduced macrophage accumulation and the associated pain, while the effect can be 

simultaneously visualized.  
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8 Summary and future directions 

The treatment of chronic inflammatory diseases needs a personalized approach to 

increase therapeutic efficacy and reduce unwanted side effects. NP-based theranostics 

can be effective towards driving disease management strategy to a personalized medicine 

realm by reducing intra- and inter-patient variability.  A common aspect among several 

inflammatory diseases is the infiltration of macrophages that participate in disease 

pathogenesis. Targeting these cells for combined therapeutic and diagnostic purposes is 

an attractive approach applicable to multiple diseases. In this dissertation, the treatment 

aspects of macrophages (i.e. diagnosis and therapy) were carefully exploited to 

demonstrate the concept of simultaneous therapy and therapy response monitoring 

through the use of theranostic nanoemulsions. 

The work presented in this dissertation identified that the inhibition of COX-2 in 

macrophages is an effective strategy for obtaining both therapeutic and diagnostic 

information. Furthermore, the dissertation led to the development of PFC nanoemulsions 

that can be utilized for therapeutic and diagnostic purposes, separately and together. A 

rational methodology was followed from idea conception to theranostic platform design 

and development, and ultimately, to in vivo application. In the first phase of research, 

lipophilic PFC conjugates were synthesized to address specific challenges in the current 

19F magnetic materials pertaining to MR sensitivity, body residence time and formulation 

challenges. After solving the instability problems, nanoemulsions with high droplet 

stability and macrophage labeling potential were produced. This formulation was not 

taken forward to in vivo studies due to the large time and cost investments that would be 

required for large-scale synthesis and pre-formulation studies. Nevertheless, this work led 
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to the development of a stable formulation of a new PFC conjugate. Due to its single 19F 

resonance peak, which is easily distinguishable from the widely used PFCs, the reported 

nanoemulsion can be used as an imaging tracer in multi-spectral 19F MRI applications. 

The developed platform serves as a starting point for future investigations involving drug 

and dye incorporation for the development of a potential theranostic system. 

In the second phase of the work presented in chapters 4, 5, and 6, PFPE 

nanoemulsions were developed and sequentially optimized for increased MR imaging 

efficiency. The developed platform was amenable to the incorporation of additional dye, 

which can facilitate in vivo fluorescence and 19F MR imaging as well as ex vivo histology. 

The formulation could not be detected in a neuropathic pain model using 19F MR. Most 

likely, this was due to the low amount of PFPE in the nanoemulsion, as well as the 

presence of a localized low degree of inflammation. However, this formulation has the 

potential to be used in models with significant inflammation such as cancer and graft 

rejection. To address the MR sensitivity, nanoemulsions with increased PFPE content 

were prepared. In this multimodal theranostic platform, therapeutic and imaging 

functionalities were preserved in cells and tissues. In the mouse paw inflammation model, 

these nanoemulsions showed specific localization in macrophages (CD68+) expressing 

COX-2 compared to neutrophils. With a single dose administration of the celecoxib-

loaded theranostic, we observed a reduction in fluorescence in the inflamed paw with 

time, indicating a reduction in macrophage infiltration. Essentially, infiltrating 

macrophages that would, otherwise, produce pro-inflammatory effects by PGE2 release 

and further recruitment of blood monocytes, were converted into immunotherapeutic 

cells carrying theranostics. Evaluation in a neuropathic model validated our results that 
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the inhibition of macrophage COX-2 leads to a reduction in neuropathic pain and 

macrophage infiltration, which can be sensed by the theranostic nanoemulsion. Our data 

strongly suggest that the delivery of select agents to infiltrating macrophages can 

potentially lead to new inflammatory disease treatments in which macrophage behavioral 

changes are monitored in vivo. For the first time, the work presented here showed both 

simultaneous therapy and response monitoring after a single dose administration.  

One can envision that additional inflammatory drugs could be delivered using the 

above-presented theranostic nanoemulsions, and that select pathways inside these cells 

could be inhibited or modulated for potentially therapeutic effects. Therefore, the work 

presented here sets the stage for a new type of inflammation treatment, with macrophages 

as the therapeutic and diagnostic targets. With PFCs showing ultrasound echogenic 

properties and suitability of the developed theranostic system for photoacoustic imaging, 

a suite of imaging methods could be used for noninvasive detection. The gas-dissolving 

capacity of PFCs could be exploited to deliver oxygen to hypoxic tumor tissue, as well as 

to increase sensitivity to radiation therapy. Given these functionalities, the PFC 

theranostic platform has great potential to be applied in varied inflammatory models. A 

potential future study could employ a graft rejection model to assess if pre-administration 

of theranostic nanoemulsion is able to reduce macrophage burden and rejection at the 

graft site. In addition to providing mechanistic information in preclinical pathological 

settings, application of these theranostics in the clinic could assist physicians in risk 

assessment, decision-making and strategizing treatment options leading to personalized 

medicine. 
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