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Abstract 

Dissertation Supervised by Professor Aleem Gangjee 

An introduction, background and research progress in the areas of antifolates, 

receptor tyrosine kinase (RTK) inhbitors and antimitotic agents has been discussed .  

Thymidylate synthase (TS), dihydrofolate reductase (DHFR) and glycinamide 

ribonucleotide formyltransferase (GARFTase) are important folate dependent enzymes 

that are targets for cancer chemotherapy and the treatment of infectious diseases. 

Classical antifolates, in most cases, are substrates for folypoly-γ-glutamate synthase 

(FPGS) and rely on folate transporter systems to enter cells. As a part of this study, 

twenty-eight compounds were designed on the basis of existing clinically active 

compounds and crystal structures, synthesized and evaluated as single and/or muliple 

targeted classical and nonclassical antifolates to decrease toxicity and improve the 

activity and selectivity of existing therapeutic agents. In addition, these structures 

provides an extension to the structure activity relationship in the antifolate area. 

RTK inhibitors and antimitotic agents are important antitumor agents 

and are extensively used in the clinic for the treament of various types of cancers.  Pgp 

overexpression is one of the common reasons for drug resistance to existing antitumor 

agents and consequently the reason for some chemotherapeutic failures. A furo[2,3-

d]pyrimidine compound was discovered to have dual RTK inhibitory activity along with 

antimitotic activity that circumvent pgp over expression. Antimitotic activity via the 

binding at the colchicine site is one of the mechanisms of action. Molecular modelling 

and biological evaluation suggest the importance of conformational restriction for activity. 

Fifty-seven furo[2,3-d]pyrimidines and six thieno[2,3-d]pyrimidines were designed on 
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the basis of crustal structures and synthesized as potential RTK inhibitors with antimitotic 

antitumor activity. Four pyrrolo[2,3-d]pyrimidines were designed and synthesized as 

antimitotic anticancer agents that also reverse pgp action. 
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I. BIOCHEMICAL REVIEW  

1. Folate metabolism 

Because of its critical importance in the biosynthesis of purine and pyrimidine 

nucleic acids, folate metabolism is an attractive target for chemotherapy. Folate 

coenzymes are required in more than twenty interrelated enzymatic reactions in cellular 

metabolism. These reactions are necessary to maintain de novo synthesis of the essential 

building blocks of deoxyribonucleic acid (DNA) as well as the synthesis of certain 

important amino acids.1 Antimetabolites that interfere with this complex metabolism 

pathway are known as antifolates and are clinically useful as antimicrobial, antifungal, 

antiprotozoal, and antitumor agents.2,3 Today, almost sixty years after the discovery of 

aminopterin (AMT),4 the first important antifolate, the folate cycle remains an attractive 

target for drug development. 

1.1 Folic acid and folates 
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Figure 1. Structure of folic acid.  

Folic acid (FA) is a water-soluble vitamin of the B-complex group for life 

sustaining process. In its various cofactor forms, FA is essential for different biological 

process and functions, including purine and pyrimidine biosynthesis and hence DNA 

synthesis and cell replication.1,5,6 
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FA was first reported more than 70 years ago as an anti-anemia agent in animals 

and as a growth factor in bacteria. It is also present in common foods such as peas, 

oranges, broccoli, and whole-wheat products. FA was named after folium, the Latin term 

for leaf, because in 1941, Mitchell et al7 isolated the species from spinach leaves. Folates 

are obtained through two distinct pathways in eukaryotes and prokaryotes. Higher plants, 

fungi and bacteria synthesize folates de novo; however, mammalian cells (including 

human) are incapable of synthesizing FA and hence have to acquire preformed FA from 

the diet.8  

From a structure point of view, FA consists of three elements: a hetero-bicyclic 

pteridine, a p-aminobenzoic acid (PABA) and a glutamic acid (Figure 1). Because of its 

structural features, FA is also called pteroylglutamic acid. FA can be regarded as the 

parent compound of a group of naturally occurring folates and exists in several oxidative 

states, including 7,8-dihydrofolate (FH2), 5,6,7,8-tetrahydrofolate (FH4), 5-

methyltetrahydrofolate (N5-CH3-FH4), 5,10-methylenetetrahydrofolate (N5,N10-CH2-FH4), 

5-formyltetrahydrofolate (N5-CHO-FH4), 10-formyltetrahydrofolate (N10-CHO-FH4), 5-

formiminotetrahydrofolate (N5-CH=NH-FH4) and others. All these folate cofactors are 

essential to the role of folate in metabolism. 

 Folates differ from FA in several respects: reduction states of the pteridine ring 

(oxidized, 7,8-H2, and 5,6,7,8-H4) may occur, one-carbon units may be attached to N5 

(N5-CH3-FH4, N
5-CHO-FH4 and N5-CH=NH-FH4) or N10 (N10-CHO-FH4) or both 

(N5,N10-CH2-FH4), and additional glutamate residues (poly-γ-glutamates) may be 

attached to the glutamate moiety by unusual γ-peptide bonds, giving folate 

polyglutamates. 
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Figure 2. Biological conversion of folic acid to tetrahydrofolate.  

Tetrahydrofolate is the central component of folate metabolism and is synthesized 

from FA through enzymatic process. Intracellular reduction of the pyrazine portion of the 

pteridine ring is catalyzed by a nicotinamide adenine dinucleotide phosphate (NADPH)-

specific dihydrofolate reductase (DHFR) to form dihydrofolate, which is further reduced 

by DHFR to generate tetrahydrofolate (Figure 2).9 

Tetrahydrofolate functions as the coenzyme in the utilization of one-carbon units 

and is capable of carrying single carbon units in various cofactor forms including N5-

CH3-FH4, N
5,N10-CH2-FH4, N

5-CHO-FH4, N
10-CHO-FH4 and  N5-CH=NH-FH4. In these 

folates cofactor forms, the one carbon unit may be attached to N5 or N10 or both 

positions. The conversion between folate cofactors are catalyzed by several different 

enzymes, as shown in Figure 3. 
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Figure 3.  Folates metabolism.  SHMT: Serine Hydroxymethyltransferase; MTHFR: 

Methylenetetrahydrofolate Reductase; GARFTase: Glycinamide-ribonucleotide Formyl 

Transferase; AICARFTase: Amino-imidazole-carboxamide-ribonuleotide Formyl 
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Transferase; AICAR: Aminoimidazole-4-carboxamide ribosyl-5-phosphate; dTMP: 2’-

Deoxythymidylate 5’-monophosphate; dUMP: 2’-Deoxyuridylate-5’-monophosphate; 

dTMP: 2’-Deoxythymidylate 5’-triphosphate; GAR: Glycinamide Ribosyl-5-phosphate; 

DNA: Deoxyribonucleotide; IMP: Inositol monophosphate. 

Folates are utilized as cofactors for one carbon unit transfer in a number of 

enzymatic processes, including the metabolism of amino acids (glycine, serine, 

methionine, and histidine), the biosynthesis of nucleic acid (purine nucleotide and the 5-

methyl group of thymine) and the formation of formylmethionyl-tRNA.  

 During nucleic acid biosynthesis, folate cofactors play an important role in the 

conversion of 2’-deoxyuridylate-5’-monophosphate (dUMP) to 2’-deoxythymidylate-5’-

monophosphate (dTMP) catalyzed by thymidylate synthase (TS) utilizing N5,N10- CH2-

FH4 as the cofactor (Figure 4). This enzyme is unique among those which utilize FH4 

cofactor in that N5,N10-CH2-FH4 acts as the source of the methyl group as well as the 

reductant, by concerted transfer of its methylene moiety and the 6-hydrogen atom in the 

form of hydride to form the 5-methyl group of dTMP. TS catalyzes the only de novo 

synthesis of dTMP in dividing cells.  

Severe deoxythymidine-triphosphate (dTTP) depletion due to TS inhibition, in the 

absence of salvage, leads to “thymineless death”.8 Unlike the deprivation of many other 

nutritional requirements, the deprivation of thymidine has a lethal effect rather than 

biostatic effects. Thymine starvation has both direct and indirect effects on dividing cells. 

The direct effects involve both single- and double-strand DNA breaks. The former may 

be repaired effectively, but the latter lead to cell death. 
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Figure 4. TS catalyzed biosynthesis of dTMP from dUMP.  

Methotrexate (MTX) and 5-fluorouracil (5-FU) cause a decrease in dTTP levels 

and a concomitant increase in dUTP, which is incorporated into DNA. This leads to 

extensive DNA damage as a result of the active process of excision repair at the many 

uracil-containing sites in DNA, and thus trigger a DNA damage induced apoptosis. 

During the TS catalyzed reaction, N5,N10-CH2-FH4 is oxidized to FH2 and is 
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converted back to FH4 by the action of DHFR, which functions to maintain the 

intracellular reduced folate pool. Thus the inhibition of DHFR leads to a partial depletion 

of the intracellular reduced folate pool which consequently limits cell growth.10 Both 

human TS and human DHFR are crucial enzymes for cell growth and hence both 

represent attractive targets for developing chemotherapeutic agents.11 

Another cofactor, N10-CHO-FH4 transfers one carbon units necessary in the de 

novo biosynthesis of purine nucleotides (Figure 5). These carbons comprise the C-8 

carbon and C-2 carbon of purines. Glycinamide-ribonucleotide transformylase 

(GARFTase) catalyzes the conversion of glycinamide ribosyl-5-phosphate (GAR) to 

formyl-glycinamide ribosyl-5-phosphate (fGAR), utilizing N10-formyl-FH4. GARFTase 

occurs in mammals as a trifunctional protein which catalyzes three different steps in 

purine biosynthesis, including the second and the fifth steps of purine biosynthesis in 

addition to the third step. The fGAR formed is further converted to amino-

imidazolecarboxamide ribosyl-5-phosphate (AICAR). Amino-imidazolecarboxamide 

ribosyl-5-phosphate formyl transferase (AICARFTase) is responsible for the catalysis of 

the last two steps in de novo purine biosynthesis. AICARFTase utilizes N10-CHO-FH4 and 

converts AICAR to formyl-amino-imidazolecarboxamide ribosyl-5-phosphate (fAICAR). 

The fAICAR formed continues along the purine biosynthetic pathway leading to the 

formation of inosine-5’-monophosphate (IMP), the precursor of adenosine-5’-

triphosphate (ATP) and guanosine-5’-triphosphate (GTP) necessary for ribonucleic acid 

(RNA) synthesis and of 2’-deoxyadenosine-5’-triphosphate (dATP) and 2’-

deoxyguanosine-5’-triphosphate (dGTP) necessary for DNA synthesis.11,13  

,



 8

Figure 5. De novo synthesis of purines. 

Mammalian cells have developed sophisticated folate uptake and retention system 

due to the importance of folate in the maintenance of single carbon metabolism.6,11 

Transport into the cell is usually accomplished by one of three carrier proteins present on 

the cell surface, reduced folate carrier (RFC), the membrane folate receptor (FR), and the 

proton coupled folate transporter (PCFT). The reduced form of FA including N5-CH3-FH4 

and N10-CHO-FH4 are actively taken up into the cell via the RFC system.14 FA, however, 
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has a higher affinity for the FR, which has a higher affinity for the oxidized form of the 

folate cofactor than the reduced form. 

Once inside the cell, FA or its cofactors are converted to the poly-γ-glutamyl 

species by the enzyme folylpoly-γ-glutamate synthetase (FPGS), which adds glutamic 

acid residues to the gamma carboxylic acid via amide bonds. The number of glutamate 

residues varies widely in naturally occurring folates. Usually 4-8 glutamate residues are 

added to the gamma carboxylic acid group of the FA. The polyglutamylated folate 

species have higher binding affinity to some folate dependent enzymes and have 

increased intracellular retention time.6,15,16  

Folylpolyglutamate hydrolase (FPGH), which is an enzyme found in the 

lysosomes, catalyzes the hydrolysis of folates polyglutamates back to their 

monoglutamate form.17 Through an ATP dependent process, folate monoglutamates can 

efflux from the cell via multidrug resistance protein (MRP) including P-glycoprotein 

(Pgp).19 

 

1.2. Antifolates 

Folate metabolism has long been recognized as an attractive target for cancer 

chemotherapy because of its crucial role in the biosynthesis of nucleic acid precursors. 20-

23 Antimetabolites that interfere with this complex metabolism pathway are known as 

antifolates and are clinically useful as antimicrobial, antifungal, antiprotozoal, and 

antitumor agents.24-27 Selective inhibition of folate-dependent enzymes in microbial cells, 
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cancer cells, and protozoan cells, provides opportunities for the design and synthesis of 

compounds which can be used to treat disorders like cancer and psoriasis, microbial and 

protozoan infections.  

Based on their mechanism of transportation and the ability to undergo 

polyglutamylation, antifolates are classified into classical antifolates and nonclassical 

antifolate. Classical antifolates contain an intact L-glutamate side chain , while 

nonclassical antifolates contains a lipophilic side chain.5,13 As shown in Figure 6, 

classical antifolates are typified by MTX, AMT, edatrexate, N10-propargyl-5,8-

dideazafolate (PDDF), raltitrexed (ZD1694, Tomudex) (RTX), pemetrexed (LY231514, 

Alimta) (PMX), GW1843, lometrexol (LMX) and plevitrexed (ZD9331). This group of 

analogs closely resembles the structure of endogenous folates and their metabolites. 

Classical antifolates are actively taken up into cells by folate transporter systems present 

on the cell surface.14,15 The nonclassical antifolates are represented by structures such as 

AG337, nolatrexed (AG331, Thymitaq), pyrimethamine, trimethoprim (TMP), piritrexim 

(PTX) and trimetrexate (TMQ) (Figure 7). Nonclassical antifolates do not utilize the 

folate active transport systems (RFC and FR) and are presumably taken up by passive 

and/or facilitated diffusion.14,15 
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Figure 6. Representative examples of classical antifolates. 

To overcome resistance associated with classical antifolates, non-classical 

antifolates have been developed as antitumor agents. In addition, nonclassical antifolates 

also provide selective treatment for pathogenic infections caused by organisms such as 

Pneumocystis carinii (P. carinii), Toxoplasma gondii (T. gondii), and Mycobacterium 

avium (M. avium).17 Such infections are prevalent opportunistic infection in patients with 

compromised immune system, such as acquired immune deficiency syndrome (AIDS) 

patients, patients undergoing chemotherapy and organ transplant patients. The treatment 



 12

with antifolates of these infections takes advantage of the selective inhibition of pathogen 

DHFR over human DHFR.5  

    

Figure 7. Representative examples of nonclassical antifolates (and their principal 

target(s)).  

1.3. Dihydrofolate Reductase (DHFR) 

DHFR functions as a catalyst for the reduction of dihydrofolate to 

tetrahydrofolate. The inhibition of DHFR leads to partial depletion of intracellular 

reduced folates with subsequent limitation of cell growth. Except for archaebacteria and a 

few parasitic protozoa, DHFR has been universally found in all organisms with the first 
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crystal structure reported more than three decades ago.28 Since then, various x-ray crystal 

structures and solution NMR structures of DHFR from different species (bacteria, avian 

and mammalian) have been reported. The structures of DHFR bound to a variety of 

ligands, including cofactor(s) and their analogs, as well as inhibitors are recorded in the 

literature.28-59 These X-ray crystal structures as well as NMR structures have provided 

insight into the various aspects of the structure and function of DHFR and have been 

extensively reviewed 

1.3.1. Structure of DHFR 

DHFR (EC 1.5.1.3) is a monomeric protein containing 159-250 amino acid 

residues with a molecular weight in the range of 18000-22000 Daltons. The overall 

tertiary structure from all known sources is very similar. The homology among vertebrate 

DHFR is 75-90% while in bacteria the homology decrease to 25-40%, with the highest 

homology observed at the N-terminal and least homology at the C-terminal.60,61 The 

tertiary structure of DHFR has a α/β structure with the core made up of an eight-stranded 

β-sheet consisting of seven parallel strands, and one antiparallel strand at the C-terminal. 

It also contains at least four α-helices. Mammalian DHFR has longer sequences with the 

additional amino acid residues packed in the linkages between the βstrands. The active 

site can be described as a 15Å deep cleft stretching across one side of the enzyme. The 

binding site has a hydrophobic core with H-bond forming polar regions at both ends. The 

hydrophobic nature of the active site amino acid residues indicate that cofactors or 

inhibitors may bind with enzyme through hydrophobic and van der Walls interactions. 

This hydrophobic pocket serves as a binding site for the substrate  folates or the 
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antifolates and nicotinamide portion of NADPH. The polarity of the substrate binding site 

is complementary to that of the folate or inhibitor.62 The pteridine moiety and the 

glutamate side chain portions of the folate are surrounded by backbone carbonyls and 

polar side chains, while the benzoyl moiety of the folate forms hydrophobic interactions 

with the side-chains of surrounding non-polar hydrophobic residues. These 3D-structures 

of DHFR are used in structure-based drug design and to acquire information on inhibitor 

binding, enzyme-inhibitor-cofactor complexes and in particular to determine differences 

in amino acid location between parasite and host DHFR.   

1.3.2. Species-difference among DHFR 

To develop antiinfectious agents with selectivity for pathogen DHFR over human 

DHFR, the species-differences of the amino acid sequences among various DHFR in the 

active site has been exploited, which accounts for the differences in binding affinity for a 

variety of inhibitors against DHFR from different sources. Since the first report of 

diaminopyrimidine antifolates with selective, potent antibacterial and antiprotozoal 

activity but poor inhibitory activity against mammalian cells by Hitching and coworkers 

in 1979,63 selective inhibition of pathogen DHFR has become a rational approach to drug 

development. As an example of such an approach, TMP (Figure 7) was developed as a 

potent antibacterial agent since its binding affinity for bacterial DHFR is five orders of 

magnitude greater than for mammalian DHFR. Patients with compromised immune 

system often suffer from P. jirovecii, T. gondii, and M. avium infections. Thus, the 

differences among these pathogen DHFR and human DHFR could be exploited to afford 

selectivity. 
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a. Pneumocystis carinii DHFR. 

P. carinii DHFR is a small molecule of 24-26 KDa, consisting of 206 amino acids, 

and is similar to rat liver (rl) DHFR in size. P. carinii DHFR binds TMP and PTX in a 

fashion similar to that observed in bacterial enzyme,64,65 although the P. carinii DHFR 

active site is intermediate in size between those of human (L1210) DHFR and bacterial 

(E. coli) DHFR. While most of the residues of the P. carinii DHFR involved in catalysis 

and binding are conserved in both human and P. carinii DHFR, x-ray crystal structures41 

indicate that the polar Asn64 residue in human DHFR, located just outside the binding 

site, is replaced by a nonpolar Phe69 in P. carinii DHFR.  

TMP (Figure 7), in combination with sulfamethoxazole, is the agent of choice in 

the treatment of P. carinii pneumonia (PCP), although it is a relatively weak P. carinii 

DHFR inhibitor  (IC50 = 12 µM) and has modest selectivity (14-fold) compared to 

rlDHFR.66 TMQ, a much more poent but even less selective nonclassical antifolate, used 

along with leucovorin (LV) is an alternate therapy for moderate to severe PCP in patients 

who cannot tolerate TMP-sulfamethoxazole or pentamidine. TMQ (IC50 = 42 nM) is a 

potent inhibitor of P. carinii DHFR but is devoid of selectivity. It has been approved for 

the treatment of PCP when administered with the reduced folate LV to rescue host cells.67 

Since P. carinii, presumably lacks the carrier mediated uptake mechanisms67 necessary 

for classical antifolates, it does not take up LV.   

Recent study showed that Pneumocystis jirovecii (P. jirovecii) is the real 

opportunistic pathogen that infects human, while P. carinii is the pathogen that is derived 

from and infects rats.68 According to Cody et al69, the recombinant human-derived 

pneumocystis DHFR (P. jirovecii DHFR) differs from rat-derived P. carinii DHFR by 
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38% in amino acid sequences. 

b. Toxoplasma gondii DHFR. 

T. gondii belongs to genera of protozoan parasite and has a bifunctional DHFR-

TS enzyme with the DHFR domain located at the N-terminus while the TS domain is at 

the C-terminus.70 The DHFR domain and the TS domain are separated by a junction 

polypeptide.71,72 The native protein is a dimmer of two such subunits. Roos and 

coworkers have reported the primary structure of the DHFR-TS gene from T. gondii .73 

Both enzyme domains of the DHFR-TS protein resemble the enzyme in eukaryotes with 

subtle differences, which could be exploited to design selective inhibitors. The major 

differences lie in the α-helices B and C, adjacent to the active site, which are known to 

participate in ligand interactions.74,75 In the absence of the crystal structures of T. gondii 

DHFR, homology modeling and multiple sequence alignment studies were carried out to 

afford insight into the binding mode of inhibitors with T. gondii DHFR with inhibitors. It 

was found that a hydrophobic residue Phe91 aligns with Phe69 in P. carinii DHFR. 

Therefore, it should be possible to design inhibitors that interact productively with Phe69 

in P. carinii DHFR and its putative counterpart hydrophobic residue in T. gondii DHFR 

thus providing selectivity not only for P. carinii DHFR, but perhaps also for T. gondii  

DHFR over human DHFR.  

Several different DHFR inhibitors showed inhibitory activities against T. gondii 

DHFR. TMQ (IC50 = 10 nM), PTX (IC50 = 4.3 nM), TMP (IC50 = 2.8 µM), and 

pyrimethamine (IC50 = 0.39 µM, Figure 7), have activity against isolated T. gondii DHFR 

and against the growth of T. gondii cells in culture.76 
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1.3.3. The catalytic mechanism of DHFR. 

 

Figure 8. The reaction catalyzed by DHFR. 

 

The catalytic mechanism of DHFR (Figure 8) has been chemically and 

structurally studied in detail. DHFR catalyzes a hydride transfer from NADPH to the C6 

of FH2, and at a much slower rate to the C7 of folate to form FH4.
77,78 The generally 

accepted mechanism involves the initial protonation of N5 followed by a hydride transfer 

from the C4 of the cofactor NADPH to the adjacent C6. Studies on the effects of pH and 

deuterium isotope analysis on catalysis of 7,8-FH2 reduction by E. coli DHFR suggest 

that the protonation at N5 either immediately precedes, or is concerted with, hydride 

transfer to C6. By analogy, a similar mechanism involving pre-protonation of N8 has 

been suggested as a means of promoting hydride transfer to C7 in folates. The hydride 

transfer from NADPH is much more facile to C6 of 7,8-FH2 than to the C7 of folate.77,78 

Three major differences between the mechanisms of folate reduction and FH2 

reduction are listed below: (A) pre-protonation of the ring nitrogen of the substrate 

adjacent to the hydride accepting carbon leads to a transition state stabilizing the 

hydrogen bond for folate, but to an unfavorable ionic-nonpolar interaction for FH2, which 

favors delocalization of the positive charge to C6. (B) Ab initio calculations showed that 
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the protonation of N5 of FH2 leads to a relatively localized positive charge build-up on 

the adjacent C6. The hydrogen bond of the N8 to the enzyme, which is suggested to 

stabilize the transition state for folate reduction, offers a path for further positive charge 

delocalization of the N8-protonated folate, thereby depleting the already partial positive 

charge on C7. (C) While the C-N bonds of the substrate that are reduced are not strictly 

syn or anti, the C6-N5 bond is closer to syn, while the C7-N8 bond is more anti. The 

angle defined by the donor-hydride acceptor atoms is 154° for hydride transfer to C6 of 

FH2, which is considerably closer to the optimal value of 158° observed for syn hydride 

transfers than the 209° angle for hydride transfer to C7 of folate is to the optimal value of 

173° required for anti hydride transfer transition states. In spite of the differences in the 

mechanism of the reduction of folate and FH2, a common feature of both hypothetical 

transition states is the partial overlap of the pteridine and the nicotinamide binding sites, 

which allows for the dihydronicotinamide ring, with its potential "hydride", to be 

positioned close to the N5-C6 double bond of the pteridine ring.78 Protonation of the N5 

was first proposed to occur via the Asp27 (E. coli). However, Filman et a1. and Bystroff 

et a1. have noted that the distance between the Asp and the N5 of 7,8-FH2 is too large 

(6.3 Å) for direct protonation. Alternatively, they proposed an indirect mechanism for 

protonation via water molecules. NMR studies later detected two water molecules with 

long residence times (> 2 ns) bound to the active site of the enzyme, one of which has 

been implicated as the likely proton donor in the catalytic reduction.79 

1.4. Thymidylate Synthase (TS) 

TS (EC 2.1.1.45), a key enzyme in folate metabolism, present in almost all living 

organisms including bacteria, DNA viruses and protozoa.80 It catalyzes the reductive 
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methylation of dUMP to dTMP, which is further phosphorylated to thymidine-5’-

diphosphate (dTDP) and thymidine-5’-triphosphate (dTTP). The dTTP formed is utilized 

by DNA polymerase and is incorporated into DNA. The TS catalyzed reaction is a key 

step in DNA biosynthesis and the only de novo biosynthetic pathway to dTMP. TS 

inhibition results in a thymineless state, which prevents the growth of actively dividing 

cells.81-83 This effect is probably due to increased DNA fragmentation resulting from 

dTTP depletion, which increases misincorporation of 2’-deoxyuridine-5’-triphosphate 

(dUTP). TS maintains the 2’-deoxyadenosine-5’-triphosphate/thymidine triphosphate 

ratio inside the cell, thus indirectly controls the incorporation of the component bases into 

DNA.83 Due to its critical biological importance, TS has always been regarded as an valid 

target in anticancer chemotherapy. Several antimetabolites have been developed as TS 

inhibitors targeting both dUMP as well as folate cofactor (antifolates) binding site.  

1.4.1. Structure of TS 

The TS enzyme is a homodimmer with a molecular weight of 74,000 daltons and a 

primary sequence of approximately 316 amino acids long.84-86 The dimmer interface 

consists of an extensive β-sheet. The primary structures of TS enzymes including those 

from humans, bacteriophages, and plants have been determined. TS enzymes from 

different species are highly conserved both in terms of structure and mechanism: 27 

amino acids are completely conserved in TS from all species, and 165 (80%) are 

conserved in more than 60% of the organisms. Most notably, of 32 amino acid residues in 

the dUMP active site, 16 are conserved.86 
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The crystal structures of TS from various sources are available in the free enzyme 

form as well as in complex with cofactors and inhibitors.87-92 The X-ray crystal structures 

of TS from several prokaryotic species, including Escherichia coli (E. coli),93 and 

eukaryotes, such as Lactobacillus casei (L. casei),94,95 Leishmania major (L. major),96 P. 

carinii,97 and T4 phage,98 are known in the literature. The crystal structures of PMX and 

RTX with human TS are also known.99,100 The existing crystal structures of TS in the 

native form or with ligands are important for the understanding of both TS mechanism 

and the inhibition of TS.101-106 More importantly they allow a structure-based rational 

design of TS inhibitors. 

Through site-directed mutagenesis, the function of each residue in the TS substrate 

binding site has been studied. Cys 198, Asn 229, Arg 178’ and Arg 179’, Glu 60 and Val 

316 (lcTS numbering) were determined to be the most important residues in dUMP 

binding site. During the enzymatic reaction, the nucleophilic attacks of Cys 198 to the 

uracil ring resulted in the formation of a covalent bond between the enzyme and the 

substrate, thus no mutation is tolerated at Cys 198. Asn 229 (lcTS numbering) is another 

important residue in maintaining TS activity. Asn229 is an essential amino acid residue in 

the substrate binding site and is a part of a hydrogen bond network.  Substitution of 

Asn229 by other amino acids causes a reduced or complete loss of catalytic activity,107-109 

but the resulting mutants can still catalyze the methylation reaction of 3-methyl dUMP. 

This amino acid also plays a very important role in enzyme specificity,110,111 when 

replaced by Asp, the enzyme is no longer a deoxyuridylate methylase, but a cytidylate 

methylase, whose substrate is dCMP instead of dUMP. Two other amino acid residues, 

Arg 178’ and Arg 179’ (lcTS numbering), belong to the opposite subunit and interact 
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with the phosphate group of the deoxyribose ring. When these two amino acids are 

replaced, the catalytic activity decreased.112 The importance of other amino acids in the 

active site has been studied also.113,114   

Various spectroscopic methods including fluorescence,115 UV-Vis,116 circular 

dicroism,117 and NMR118 have detected the contribution of the C-terminal residue Val 

316 (lcTS numbering) in the course of catalysis has been studied. Val 316 participates in 

the conformational change of the enzyme, which is necessary for the catalytic reaction, 

upon covalent binding of N5, N10-methylene-FH4 to the binary complex TS-dUMP. When 

this conformational change takes place, the cofactor launches an electrophilic attack on 

the C5 of dUMP. X-ray crystallographic studies have revealed that in the TS-folate-

FdUMP ternary complex the carboxy terminus residue shifts as far as about 4 Å from its 

original position in the unbound form towards the dUMP active site.115-118  

1.4.2. Catalytic Mechanism of TS 

The catalytic mechanism of human TS is summarized in Figure 9. Sequential binding of 

substrate (dUMP) and cofactor (N5,N10-CH2-THF) with TS enzyme induces a 

conformational change to form a non-covalent ternary complex (TS-dUMP-cofactor).9 In 

the initial step, the substrate dUMP is activated at the C5 position by a nucleophilic attack 

on the C6 of the uracil ring of dUMP by Cys195 of human TS. N10-protonation changes 

the cofactor from an inactive tricyclic form to the active bicyclic form 2 in which the 

cofactor N5,N10-CH2-FH4 is in the iminium ion form at N5. This results in the 

transformation of the non-covalent ternary complex into an unstable covalent ternary 

complex.  
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Figure 9. The catalytic mechanism of human TS. 
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The activated C5 of Michael-type adduct 1 is then trapped by the N5-iminium ion 

of the reduced cofactor to form intermediate 3. The proton at the C5-position of dUMP is 

abstracted by a base in the active site.The enzymatic reaction is completed by the 

reduction of the methylene of 5 via hydride transfer from C6 of the reduced cofactor 6, 

which is simultaneously oxidized at the N5
−C6 bond to form FH2. At the same time β-

elimination of the sulfhydryl anion cys195 from C6 in 7 occurs to reform the double bond 

affording the product, dTMP, which is then released from the active site. 

1.4.3. Typical TS inhibitors  
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Figure 10. The structures of 5-FU and FdUMP. 

 In 1957 Heidelberger and coworkers synthesized 5-Fluorouracil (5-FU, Figure 10), 

which belongs to the fluoropyrimidine class of antineoplastic agents.119, 120 5-FU is an 

antitumor agent with distinct antifolate and antipyrimidine properties. This agent 

represents the first class of clinically used TS inhibitors. It was proposed that a 

chemically modified uracil molecule might be effective in disrupting tumor DNA 

biosynthesis, thus 5-FU was rationally designed as a TS inhibitor. After it was introduced 

in the clinic, for 50 years, 5-FU still remains a useful agent with broad-spectrum activity 
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against many solid tumors, including colorectal, pancreas, breast, head and neck, gastric, 

and ovarian cancers.121 The 5-FU prodrug Capecitabineis orally effective. 

The mechanisms of action of 5-FU include inhibition of TS, incorporation into DNA, 

and/or incorporation into RNA.122 The specific dose, administration route, and schedule 

all play important roles in determining the final mode(s) of action,123-126 The native form 

of 5-FU is inactive, thus it must be converted to various nucleotide forms inside the cell. 

For example, 5-fluoro-2’-deoxyuridine-5’-monophosphate (FdUMP) is a critical 

nucleotide metabolite as it forms a covalent ternary complex with TS in the presence of 

N5, N10-methylene-FH4, resulting in inhibition of the enzyme. Through a series of 

enzymatic steps, FdUMP is phosphorylated to 5-fluoro-2’-deoxyuridine-5’-triphosphate 

(FdUTP). The incorporation of FdUTP into DNA leads to the inhibition of DNA 

synthesis and function. The inhibition of TS results in an accumulation of dUMP , which 

can be subsequently converted to dUTP and  misincorporated into DNA and result in the 

formation of single and double strand DNA breaks. 

In both in vitro and in vivo studies, an inverse relationship between the level of TS 

enzyme activity in tumor cells and 5-FU sensitivity has been revealed.126, 127 This 

relationship has also been confirmed in the clinic. In breast and colorectal cancer patients, 

a strong correlation has been observed between the expression level of TS and response 

to chemotherapy based on 5-FU. When treated with 5-FU-based chemotherapy, 

pretreatment levels of TS protein appear to be highly prognostic for patients with early-

stage rectal cancer,128 metastatic colorectal cancer,129, 130 non-small-cell lung cancer,131 

breast cancer,132 gastric cancer133-135 and head and neck cancer.136 Thus multiple pieces of 

evidence have confirmed that TS is the target of 5-FU. 



 25

The usage of LV in combination with 5-FU further supports the importance of TS 

inhibition in the mechanism of 5-FU. LV is intracellularly converted to the reduced folate 

5, 10-methylenetetrahydrofolate, which then forms a ternary complex with FdUMP, the 

metabolite of 5-FU, and the target TS. Through this mechanism, the maximum enzyme 

inhibition state can be achieved. This effect of maintaining the enzyme in an inhibited 

state is critical as the TS-catalyzed reaction provides the essential nucleotide precursors 

for DNA biosynthesis. Subsequent work confirmed that when used in combination with 

LV, the cytotoxicity of 5-FU was significantly enhanced.136  

Capecitabine a 5-FU prodrug is used clinically in the treatment of advanced breast or 

colorectal cancer. Novel combinations of 5-FU or its analogs with agents that have 

different mechanisms of actions (for example topoisomerase inhibitors, natural 

nucleosides, Platinum etc.) could also provide potential opportunities for improving the 

outlook of patients with various types of cancer.142  

RTX is a more water-soluble analogue of PDDF and a less potent inhibitor of TS. 

Due to its improved water solubility, RTX does not cause renal toxicity. Similar to some 

classical antifolates, it is transported into cells via the RFC and undergoes rapid 

polyglutamylation by the enzyme FPGS. In its monoglutamate form, RTX is a mixed, 

noncompetitive inhibitor of human TS with a Ki of 90–100 nM. Polyglutamylation to 

higher glutamate forms improves its potency against TS by up to 100-fold. Compared to 

the monoglutamate form, the retention time of polyglutamylated RTX within cells is also 

significantly prolonged.143 

RTX went through two phase I clinical trials, one in the UK144 and the other by the 

National Cancer Institute in the United States.145  In both studies, RTX was administered 
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as a 15-min infusion every 3 weeks. The dose-limiting toxicities in both trials included 

anorexia, fatigue, diarrhea, and myelosuppression. In the subsequent phase II trials, RTX 

displayed good activities in previously untreated patients with advanced colorectal and 

breast cancers with an overall response rates of 20–26%.146, 147 Grade III/IV diarrhea, 

leukopenia, asthenia, and reversible elevation of serum transaminases were among the 

major toxicities. In 12% of the patients grade III/IV nausea and vomiting were observed 

and a maculopapular rash was noted in 14%. RTX was approved as first-line therapy for 

advanced colorectal cancer in several European countries, Australia, Canada, and Japan.  

PMX is another TS inhibitor used in the clinic. While PMX inhibits TS, it also 

inhibits other folate-dependent enzymes including DHFR, ACARFTase, and GARFTase. 

Like  RTX, it gain entry into cells through the function of RFC under normal pH and 

requires polyglutamylation for maximal inhibitory effects on the various target enzymes. 

It has shown activity in vitro against colon, renal, liver, and lung cancers.155 

Based on the phase I clinical studies, the main toxicities associated with PMX 

include neutropenia, anorexia, thrombocytopenia, fatigue, gastrointestinal toxicity, and a 

reversible elevation of liver enzymes.156  

In a phase II clinical studies, when PMX was used as single agent to treat previously 

untreated patients with non-small-cell lung cancer, it produced a 23% response rate. 157,158 

A slightly higher partial response rate was observed in studies combining PMX with 

cisplatin (39%).159 Another phase II study of PMX in advanced colorectal carcinoma 

showed a response rate of 15%.160   PMX is approved in the USA for mesothelioma, 

breast cancer, colon cancer, pancreatic cancer and non-small cell lung cancer.  
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1.5. Glycinamide-ribonucleotide Transformylase (GARFTase) 

Glycinamide-ribonucleotide transformylase (GARFTase) is a folate-dependent 

enzyme in the de novo purine biosynthetic pathway. It catalyzes the formyl transfer 

reaction that converts GAR to fGAR in the purine biosynthesis pathway, utilizing N10-

formyl FH4 as the cofactor. Cancer cells grow rapidly and require large amounts of 

purines, which are crucial components for the synthesis of DNA and RNA. Because 

cancer cells grow rapidly and require large amounts of purines to maintain such growth, 

the de novo purine biosynthetic pathway has attracted considerable attention as a target 

for cancer chemotherapy.166 The inhibition of GARFTase in the de novo biosynthesis of 

purine thus has been considered an effective approach for cancer treatment. 

1.5.1. The structure of GARFTase 

Human GARFTase is located at C-terminus of a trifunctional enzyme  human 

GART (HsGART) encoded by purD-purM-purN with a molecular weight of 108 kD 

(1010 amino acids). 167 In addition to GARFTase activity, the trifunctional polypeptide 

also encodes GAR synthase (GARS, PurD, E.C. 6.3.4.13) and aminoimidazole 

ribonucleotide synthetase (AIRS, PurM, E.C. 6.3.3.1) activities.167  

Because E. coli and human GARFTase share a 38% sequence identity, the E. coli 

GARFTase structure was considered an appropriate model for its eukaryotic counterpart. 

However, recent kinetic (17) and structural(18) studies revealed a number of important 

differences between the human and E. coli enzymes. 168,169 Monomeric E. coli GARFTase 

undergoes dimmerization below pH 6.8, while rh GARFTase remains be to a monomer at 
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a wide range of pH values. The active site loop-helix (residues 110-131) that undergoes 

pH-dependent order-disorder transition in E. coli GARFTase always adopts the same 

conformation under a wide range of pH conditions (pH 3.5-8) in the human enzyme. 

More importantly, the folate-binding loop, which intimately interacts with bound folate 

analogues, adopts different conformations in the unliganded human GARFTase from 

those described previously for E. Coli GARFTase.168 

The human GARFTase domain of the trifunctional enzyme is readily available 

through cloning and overexpression.168,170 The structures of human GARFTase in 

complex with various ligands including β-GAR168, 10-trifluoroacetyl-5,10-dideaza-

acyclic-5,6,7,8-tetrahydrofolic acid (10-CF3CO-DDACTHF)171, and a series of folate 

inhibitors172 at different pH have been reported.   

Welin et al.167recently reported the structures of two functional domains of 

HsGART: GARS and AIRS. Together with the previously reported the structures of the 

GARTfase domain of HsGART 168,170, a completes structural characterization of the 

individual functional units of HsGART was achieved, which allows for a structural 

understanding of substrate specificity and catalytic mechanism, as well as for a structure-

based drug design. Although the construction of full-length HsGART via crystalization of 

the enzyme in the intact form was not successful, Welin and coworkers 167revealed the 

overall architecture of the trifunctional protein in the low-resolution via combining small 

angle X-ray scattering (SAXS) data with the high-resolution crystal structures. 
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1.5.2. Catalytic Mechanism of GARFTase 

The catalytic mechanism of GARFTase has been reported by Shim and co-

workers (Figure 11)169 

 Figure 11. Proposed mechanism of GARFTase. 

The formylation reactions catalyzed by the purN-encoded GARFTase are 

believed to proceed via a direct transfer mechanism. This would implicate the 

involvement of a negatively-charged tetrahedral intermediate. Nucleophilic attack by the 

amino group of GAR upon the formyl carbon of N10-CHO-FH4 leads to the formation of 

tetrahedral intermediate 8,which is further converted to fGAR and FH4 with the cleavage 

of the formyl carbon-N10 bond. 

1.5.3. Typical GARFTase inhibitors  

The discovery of the first potent and selective inhibitor, 5,10-

dideazatetrahydrofolic acid (DDATHF) in 1980’s validated GARFTase as an anti-cancer 

target.173 This compound exhibits effective activity in vivo against solid murine and 
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human tumors, which rely on  de novo purine synthesis. In contrast, the salvage pathway 

is the primary source of purines in most normal cells. LMX (Figure 6), the 6R 

diastereomer of DDATHF, has been in and out of clinical trials due to its toxicity. 

1.6. Folates and antifolates transport systems 

A high concentration of the folate pool is necessary for the normal activity of the 

cell. Since animal and humans lack the de novo biosynthesis of folates, cellular uptake of 

folates is essential for these species to maintain the concentration of the folate pool and to 

maintain normal tissue regeneration and cell growth. Because the α- and γ-carboxyl 

groups of the glutamate side chain are negatively charged at physiological pH, folates 

poorly penetrate biological membranes by diffusion alone. Transport of folates into the 

cell is usually accomplished by three carrier proteins present on the cell surface: 

RFC,174,175FR176,177 and PCFT.178 The biochemical and functional properties of these 

three transporters are compared in Table 1. 

Goldman et al. 174 first reported the functional properties for murine leukemia 

cells in 1968. RFC, a member of the major facilitator superfamily of transporters, is 

characterized by its anion exchange property. As an integral transmembrane protein, RFC 

has a high affinity for reduced folates (Km ~1-5 µM) and a low affinity for FA (Ki ~ 200 

µM) with a neutral pH optimum. 

Ubiquitously expressed in normal tissues and tumor cells, RFC is the major 

transport system for folates in mammalian cells. More importantly, most antifolate drugs 

for cancer chemotherapy, including MTX, PMX, RTX and others, use RFC as the 
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primary transporter. A compromised RFC level or function is a common reason for 

antifolate resistance. For example, impaired RFC function is an important mechanism of 

tumor resistance to MTX and other antifolates in vitro.174 

Table 1.  Folate transporters in mammalian cells. 

RFC FR PCFT 

Integral protein Anchored in plasma 

membranes by a glycosyl 

phosphatidylinositol (GPI) 

anchor.174,176 

A member of the 

superfamily of facilitative 

carriers.178,179 

Anion exchange mechanism  Endocytotic mechanism  H+ symporter 

The primary transporter of folates 

and antifolates.174 

 Transport wide range of 

folates and antifolates  

High affinity for reduced folates 

(Km ~1-5 µM); Low affinity for 

FA (Ki ~ 200 µM) 

High affinity for FA (1 nM) 

and reduced folates (5-10 

nM) 

 

Ubiquitously expressed in normal 

tissues and tumor cells. 174 

Most normal cells do not 

express FRα; FRα are over 

expressed of on the surface 

of some tumor cells. 176 

Has wide but likely more 

restricted expression than 

hRFC. 178,179 

Optimum at physiological pH 

(~7.4)  

 Optimum at acidic pH 

(5.5~6.5). 179,180 
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FRs are anchored in plasma membranes by a glycosyl phosphatidylinositol (GPI) 

anchor and mediate an endocytic mechanism. It shows high affinity for FA (1 nM) and 

reduced folates (5-10 nM).  The FRs are high affinity folate binding proteins encoded by 

three distinct genes(α, β and γ).180 FRα  is overexpressed in some epithelial tumors, 

especially the kidney, placenta and choroid plexus,  and has a restricted distribution in 

normal tissues, which provides an opportunity for the development of antifolates 

specifically targeted at FRα overexpressing tumours.181-183 Antifolate toxicity mainly 

occurrrs in fast proliferating tissues such as bone marrow and gut. This could be 

because:(1) most antifolates are primarily transported into cells by the ubiquitously 

expressed RFC. (2) Proliferating tissues are highly dependent on the enzymes that the 

antifolates target. Thus antifolates that are specifically transported by FRα should show 

very low toxicity to normal tissues.  

PCFT was recently identified as the third transporter for folates. As a proton-

folate symporter that functions optimally at acidic pH (5.5~6.5), PCFT serves as the 

major transport system of folates at the acidic pH in the upper small intestine. 178,179 

Although PCFT is widely expressed, the expression pattern is likely more restricted than 

hRFC. Since acidic microenvironment is characteristic of solid tumors, PCFT may play 

an important role in solid tumor cancer treatment. Recently it is reported that at pH 5.5, 

PCFT increased the inhibitory activity of PMX, which illustrats the unique property of 

PCFT as a transporter of antifolates. 
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1.7 Folyl poly-γγγγ-glutamate synthetase (FPGS)  

FPGS catalyzes the production of poly-γ-glutamates of folates and antifolates 11, 16, 

184 and in some cases increases TS inhibitory activity for certain antifolates.185-188 

Classical antifolates, such as RTX and PMX, that have an N-benzoyl-L-glutamic acid 

side chain usually function as substrates for FPGS, the polyglutamates lead to high 

intracellular concentrations of these antitumor agents and increases TS inhibitory activity 

(RTX, 60-fold and PMX 130-fold) compared to their monoglutamate forms.   Although 

polyglutamylation of certain antifolates (such as RTX and PMX) is necessary for their 

cytotoxic activity, it has also been implicated in toxicity to host cells, because of the 

longer cellular retention time of such polyanionic poly-glutamate metabolites. In addition, 

tumor cells develop resistance to antifolates (such as PMX) that depend on 

polyglutamylation for their antitumor effects by producing low concentration or defective 

FPGS, thus limiting the usefulness of such antifolates.189-193  

Besides TS, polyglutamylation of antifolates can also increase the affinity of 

antifolates to other folate dependent enzymes including AICARFTase, GARFTase and 

methylenetetrahydrofolate reductase (MTHFR). Compared to its monoglutamate (Ki = 30 

µM) form, the diglutamate of MTX  (Ki = 6 µM) has a 5-fold increase in DHFR  

inhibition.194 In addition to DHFR inhibition, the polyglutamate of MTX also inhibits TS, 

AICARFTase and MTHFR, which greatly increases the cytotoxicity of MTX. Similarly, 

the polyglutamates of PMX inhibits several folate requiring enzymes including TS, 

DHFR, GARFTase and AICARFTase to a greater extent than the monoglutamagtes.195 
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Figure 12. Mechanism of polyglutamylation by FPGS. 

 The mechanism of polyglutamylation by FPGS is shown in Figure 12. 

FPGS exists in both cytosolic and mitochondrial forms and is an ATP-dependent enzyme. 

The mechanism of polyglutamylation involves the binding of the folate or antifolate to 

the protein, subsequent activation by Mg-ATP, and then the attachment of L-glutamate to 

the γ-COOH. Folates attack the terminal phosphate of ATP catalyzed by FPGS to form an 

acyl-phosphate intermediate 10 and liberate ADP.196-198 This activated mixed anhydride 

(10) is then attacked by the nucleophilic nitrogen of the co-substrate L-glutamate 11 to 

form a tetrahedral intermediate 12, which then collapses to release polyglutamylated 

folates 13 and inorganic phosphate. 
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Due to the low-abundance and inherent instability, mammalian FPGS has not 

been isolated from natural source in sufficient quantities for crystallographic studies.199 

Although the dog liver enzyme has been cloned and purified200 and recently a human 

cDNA encoding enzyme has been overexpressed in bacterial and insect cells.201 In 

contrast highly purified enzyme from L. casei and E. coli are available, with the first x-

ray crystal structure of the L. casei enzyme published in 1998.202The specificities of these 

bacterial enzymes for folate substrates are markedly different from the mammalian 

enzyme. Compared to E. coli FPGS, the catalytic efficiency of the human enzyme is 

higher for dihydrofolate, AMT, and MTX due to lower Ki values. 203 

2. Tubulin and microtubule. 

Every nucleated cell in the human body has two types of spherical tubulin 

proteins, α and β tubulin. The spherical α and β tubulin assemble together to form 

heterodimmers, which undergoes energy dependent polymerization via complex 

polymerization dynamics. The tubulin heterodimmers line up in a head-to-tail 

arrangement to give the protofilaments, which group together to form a C-shaped protein 

sheet, and then curl around to give a pipe-like structure known as a microtubule with an 

external diameter of around 24 nm (Figure 13). At the time that tubulin adds to the 

microtubule ends, the hydrolysis of bounded GTP supplies energy for microtubule 

polymerization.204
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Figure 13. Polymerization of microtubles.204 

The pipe-like microtubule has two ends, the “plus” (+) end and the “minus” (-) 

end. “Plus” (+) end is the end of microtubules with β tubulin exposed to solvent while the 

other end of microtubules is called “minus” (-) end.205 After the microtubules are formed, 

the heterodimmers can be added or removed at either end of microtubules. Two kinds of 

non-equilibrium dynamics are known for microtubules: ‘dynamic instability’ and 

‘treadmilling’.206 Dynamic instability is the stochastic switching of microtubules between 

the growing and shrinking states. 207 Treadmilling is the process that tubulin subunits 

continuously flux from one end of the polymer to the other, due to net differences in the 

critical subunit concentrations at the opposite microtubule ends. This unidirectional flow 

of subunits is most readily detected at steady state under conditions where the polymers 

maintain a constant length.208 

Dynamic instability and treadmilling are compatible behaviors, thus a specific 

population of microtubules can show primarily treadmilling behavior, dynamic-instability 
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behavior or both. By changing the parameters of these two dynamics, cells rearrange the 

microtubule network and quickly respond to environmental and developmental stimuli.207 

2.1. Microtubule and mitosis. 

The cell cycle process in which cells divide and distribute their chromosomes into 

two daughter cells is referred to mitosis. To ensure that the separation occurs in an 

ordered fashion, the chromosomes become aligned before partitioning can occur. Such 

alignment of replicated chromosomes and their separation into two daughter cells are 

called mitosis, which can be observed in virtually all eukaryotic cells.209 Both the 

alignment and separation processes are the consequence of interactions between 

chromosomes and filamentous microtubules.  

 

 

Figure 14. Stages of mitosis.210 
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The stages of mitosis are shown in Figure 14. The first phase of mitosis is called 

prophase, when the nucleolus fades and chromatin (replicated DNA and associated 

proteins) condenses into chromosomes. Each replicated chromosome comprises two 

chromatids, both with the same genetic information. Microtubules of the cytoskeleton, 

responsible for cell shape, motility and attachment to other cells during interphase, 

disassemble. And the building blocks of these microtubules are used to grow into a 

biconical array known as a spindle from the region of the centrioles.  

Prometaphase is the second stage in mitosis, when the nuclear envelope breaks 

down. At this stage, some mitotic spindle fibers elongate from the centrioles and attach to 

kinetochores, with other spindle fibers elongate and overlap each other at the cell center. 

At the prometaphase, the nucleus is no longer recognizable. 

During the next stage, metaphase, all chromosomes are aligned in one plane at the 

center of the cell by the tension of spindle fibers. Once all chromosomes are arranged at 

the exact position, the cell abruptly enters anaphase. At anaphase, microtubules shorten, 

the kinetochores separate, and the daughter chromosomes are pulled apart and begin 

moving to the cell poles. 

Telophase is the final stage of mitosis, when the microtubules pulled the daughter 

chromosomes to arrive at the opposite poles of the cell and disappeared. The formation of 

new nuclear envelops around the daughter chromosomes is the mark of the end of mitosis. 

In the process of mitosis the duplicated chromosomes of cells are divided into two 

identical sets and then divided into two daughter cells. Microtubules and their 
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polymerization dynamics play a pivotal role in this process of cell replication.211 Thus the 

disruption in microtubules formation or their dynamics can interrupt the process of 

mitosis. This is even more important in tumor cells, because most tumor cells are fast 

growing and dividing cells. When mitosis in tumor cells are inhibited, the chromosomes 

can not separate, the cell can not reproduce and hence the tumor can not grow. The 

crucial involvement of microtubules in mitosis makes them a target for antitumor agents.   

2.2. Mechanism of antimitotic drugs. 

 

Figure 15. The binding sites of three major types of antimiotic drugs.204 

Antimitotic drugs that target microtubules and mitosis cause either microtubule-

stabilizing or microtubule-destabilizing effect. Most antimitotic drugs are classified into 

three major classes upon their binding sites on microtubules. The classification of a 

particular drug is dependent upon where it binds to microtubules. The common binding 

sites for antimitotic agents include the vinca alkaloid binding site, the colchicines binding 

site and the paclitaxel binding site (Figure 15). 
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2.2.1. The vinca alkaloid binding site. 

 

Figure 16. Structures of representative vinca alkaloids. 

Vinca alkaloids are a group of antimitotic agents with microtubules 

depolymerization effects. This group of drugs are used in the clinic or are under clinical 

investigation for cancer treatment.  Vinblastine, vincristine, and vindesine are 

representative vinca alkaloids, the structures of which are shown in Figure 16. Other 

vinca alkaloids also include vinorelbine and vinflunine. Among them vinblastine 

(Velban), vincristine (Oncovin) and vinorelbine (Navelbine) are in clinical use while 

vinflunine is in phase III clinical trial. The binding of this class of compounds to soluble 

tubulin is rapid and reversible. Vinca alkaloids also bind with polymerous microtubules 

and rapidly and reversibly incorporate into the tubulin heterodimmers of microtubule. 

The β-subunit, where vinca alkaloids bind to microtubule is called Vinca-binding 

domain.212 Vinca alkaloids also directly bind to the α-subunit of microtubules with high 

affinity in vitro, although such binding is not sufficient to suppress the growth of 

microtubules. The binding of vinca alkaloids with microtubules induce a conformational 



41 
 

change in tubulin, which lead to microtubule depolymerization and the subsequent 

destruction of mitotic spindles. 

2.2.2 The colchicines binding site. 

 

Figure 17. Structure of colchicine. 

Colchicine (Figure 17) is a highly water-soluble tubulin-binding alkaloid,213 

which was found in the autumn crocus, a flower which resembles the true crocuses. 

Colchicine blocks or suppresses cell division by inhibiting the development of spindles as 

the nuclei are dividing. Thus it inhibits the division of the nucleus and mitosis. Colchicine 

binds to the soluble tubulin in solution, slowly changes the conformation of tubulin and 

then incorporates into the structure of microtubules (Figure 15, b). The involvment of 

tubulin-colchicine complexes in the formation of microtubules might induce a 

conformational change of microtubules, which slow the addition of new tubulin and 

suppresses the dynamics of microtubules. Due to its high toxicity and narrow therapeutic 

index colchicine has not been approved for the treatment of cancer. Instead, it is used in 

the treatment of gout. 
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2.2.3. The paclitaxel binding site. 
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Figure 18. Structures of paclitaxel and docetaxel. 

Paclitaxel, also known as taxol, was initially isolated from the bark of the pacific 

yew in 1967. Paclitaxel is widely used in the clinic for the treatment of different types of 

tumors including ovarian, breast and non-small cell lung cancer. Paclitaxel binds to the 

inside of the microtubule surface and stabilizes the structure of the microtubules by 

inhibiting the depolymerization to tubulin. The binding of paclitaxel leads to the 

stabilization of microtubules and an increase in net microtubule polymerization. Thus, the 

ability of the cells to break down the mitotic spindle during mitosis is inhibited by 

paclitaxel. With the spindle still in place, the cells can not divide into daughter cells. In 

contrast to drugs like colchicine and the Vinca alkaloids, which block mitosis by 

destabilizing the microtubules, paclitaxel is a microtubule stabilizing agent and has a 

different mechanism of action. Docetaxel, a semi-synthetic analogue of paclitaxel, is a 

clinically well established anti-neoplastic agent for the treatment of breast, ovarian and 
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non-small cell lung cancer. Similar to paclitaxel, docetaxel also serves as a microtubule 

stabilizing agent and prevents the mitotic spindle from being broken down.  

2.2.4. Other binding sites. 

Because most antimitotic agents bind to microtubules at the sites mentioned 

above, they are commonly categorized depending on whether they prevent the binding of 

vinca alkaloids, colchicine or paclitaxel to microtubules. However, some of the 

antimitotic agents do not have any effects on preventing the binding of these three classes 

of drug. Instead they have affinity for a separate, distinct region of tubulin. Although the 

binding site and mode of action of these drugs are not clear yet, they may bind covalently 

to certain reactive groups on the protein, particularly the tubulin sulfhydryl groups. 212 

2.3. Drug resistance to antimitotic agents. 

Drug resistance is one of the major problems associated with antimitotic agents. 

The resistance to antimitotic agents can arise due to several different reasons. 213 

Multidrug or multiple drug resistance (MDR) is a major drawback of cancer 

chemotherapy to a variety of drugs including the clinically used anti-microtubule agents. 

Ultimate failure of chemotherapy with antimitotic drugs often results due to MDR. MDR 

arises from intrinsic or acquired mechanisms of resistance. A major mechanism of MDR 

occurs via the overexpression of Pgp, which are an energy dependent (ATP), 

unidirectional transmembrane efflux pump. 214-216 Overexpression of Pgp has been 

reported in a number of tumor types, particularly after patients have received 

chemotherapy. 217-219 In addition, the expression of Pgp has been reported to be a 
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prognostic indicator in certain cancers and is associated with poor response to 

chemotherapy. 2220, 221 The over expression of a series of homologous proteins termed 

multidrug-resistance-proteins (MRPs) have also been reported to be a mechanism of 

MDR.222, 223 The first MRP termed MRP1 was identified in a drug resistant lung cancer 

cell line that does not express Pgp.224  All these transporters bind drugs within the cell 

and release them to the extracellular space in an ATP dependent fashion. Tumor cells 

preexposed to cytotoxic compounds often overexpress these efflux pumps to manifest 

resistance in the presence of cytotoxic agents.  

The mutation in the genes that encode the α- and β-tubulin subunits is another 

common mechanism for antimitotic agent drug resistance. The mutation in the genes 

leads to structure changes in tubulin so that antimitotic agents can not recognize the 

binding site on the microtubule and hence the tumors develop drug resistance. 225, 226 

The altered expression pattern of tubulin isotypes is also responsible for the 

resistance to antimitotic agents. There are multiple isotypes of α- and β-tubulins 

expressed in varying ratios in different mammalian tissues.227 Vertebrates have at least 

six of α- or β-tubulin isoforms, with a distinct pattern of expression. Although the 

functional significance of multiple β-tubulins has not been fully defined, there is evidence 

that the individual isotypes contribute to differences in microtubule dynamics and drug 

binding.228 Under an altered tubulin isotype expression pattern, the binding efficiencies of 

anti-microtubule drugs might be ameliorated.  

βIII tubulin expression is associated with resistance to taxane-based 

chemotherapy and is an independent prognostic factor for predicting poor progression-
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free survival after docetaxel treatment alone.229 According to a recent review, the 

correlation between βIII tubulin expression and response to anti-microtubule agents in 

advanced cases of non-small cell lung cancer (NSCLC) was noticed230. The corelation 

between a higher βIII tubulin expression level and a poorer outcome in patients with 

advanced NSCLC treated with paclitaxel-based or vinorelbine-based regimens were also 

reported . 229 

3. Antiangiogenesis  

The biological process of new blood vessels formation from pre-existing 

vasculature is termed as angiogenesis.231, 232 Angiogenesis occurs in normal adults only 

during wound healing, pregnancy and corpus luteum formation. Through the production 

of several proangiogenic and antiangiogenic factors, the complex cascade of 

physiological angiogenesis is tightly controlled and regulated. Unregulated angiogenesis 

is associated with several disease states and results in a number of pathological processes, 

including cancer, diabetic retinopathies, endometriosis, psoriasis, atherosclerosis, and 

rheumatoid arthritis.233 

The cascade of angiogenesis is a complex process involving multiple steps. In the 

initial step, the stressed cells (injured cells or tumor cells) release proangiogenic factors, 

which then diffuse into nearby tissues. Upon the binding of proangiogenic factors with 

receptors on the endothelial cells of pre-existing blood vessel, the activation of these 

receptors as well as the secretion and activation of various proteolytic enzymes are 

initiated. These proteases then catalyze the degradation of basement membrane and the 

extracellular matrix in the parent vessels. The activated endothelial cells migrate through 
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the surrounding matrix and form a capillary sprout.  These endothelial cells also 

proliferate when they migrate and eventually form new, lumen-containing vessels. 

Finally, the endothelial cells deposit a new basement membrane and secrete growth 

factors,  that attract supporting cells to stabilize the new vessels. The vital importance of 

angiogenesis in tumor biology (such as the growth, invasion and metastasis) was first 

described in 1971 by Folkman.231 To grow beyond 1-2 mm,3 tumors require the 

formation of new blood vessels to supply nutrients.233 In addition, metastasis requires 

angiogenesis to allow entrance into the circulation and to form tumors at sites distal to the 

primary tumor. Thus angiogenesis and metastasis contribute to the poor prognosis seen in 

patients with highly angiogenic tumors.234 The inhibition of tumor angiogenesis has been 

considered an attractive target for the treatment of cancer. Since rarely does angiogenesis 

occur in normal adult, antiangiogenic cancer therapy is expected to provide selective 

treatment and have minimal side effects, compared with conventional chemotherapeutic 

agents. In addition, endothelial cells, the direct targets of antiangiogenic agents, are non-

tumor cells and are expected to have less ability to mutate in order to produce resistance 

compared with tumor cells. Thus, antiangiogenic agents have afforded a new paradigm 

for the treatment of cancer.235,236   

Intensive research efforts have been carried out to develop modulators to inhibit 

tumor angiogenesis and to regulate angiogenic disorders, in the last decade.237, 238 

Angiogenic signals are transmitted to the endothelial cells from the extracellular domain 

to the nucleus. This signal transduction is mediated by the membrane receptors including 

receptor tyrosine kinases (RTKs).239,240  RTKs are primary mediators of angiogenic 
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signaling network, and thus inhibitors of RTKs are the predominant antiangiogenic 

agents. 

3.1. Receptor Tyrosine Kinases (RTKs)   

 

 

 

 

Figure 19. General structure of RTKs. 

RTKs are membrane-spanning high-affinity cell surface receptors. RTKs not only 

function as key regulators of normal cellular processes but also play a critical role in the 

development and progression of many types of cancer. To date approximately twenty 

RTK families have been identified to include 58 different RTKs, which include platelet-

derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR), 

vascular endothelial growth factor receptor (VEGFR), insulin receptor (InsR) and 

epidermal growth factor receptor (EGFR) among several others (Figure 20).239, 241 The 

different RTK subfamily members have a similar molecular architecture including a 

ligandbinding domains in the extracellular region, a single transmembrane helix, and a 

cytoplasmic region (Figure 19).240 
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Figure 20. Receptor Tyrosine Kinase Families. 240  

Human receptor tyrosine kinases (RTKs) contain 20 subfamilies, shown in Figure 

20 schematically with the family members listed beneath each receptor. Structural 

domains in the extracellular regions, identified by structure determination or sequence 

analysis, are marked according to the key.240 The intracellular domains are shown as red 

rectangles. EGFR, epidermal growth factor receptor; InsR, insulin receptor; PDGFR, 

platelet-derived growth factor receptor; VEGFR; vascular endothelial growth factor 
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receptor; FGFR, fibroblast growth factor receptor; KLG/CCK, colon carcinoma kinase; 

NGFR, nerve growth factor receptor; HGFR, hepatocyte growth factor receptor, EphR, 

ephrin receptor; Axl, a Tyro3 PTK; TIE, tyrosine kinase receptor in endothelial cells; 

RYK, receptor related to tyrosine kinases; DDR, discoidin domain receptor; Ret, 

rearranged during transfection; ROS, RPTK expressed in some epithelial cell types; LTK, 

leukocyte tyrosine kinase; ROR, receptor orphan; MuSK, muscle-specific kinase; LMR, 

Lemur. Other abbreviations: AB, acidic box; CadhD, cadherin-like domain; CRD, 

cysteine-rich domain; DiscD, discoidin-like domain; EGFD, epidermal growth factor-like 

domain; FNIII, fibronectin type III-like domain; IgD, immunoglobulin-like domain; 

KrinD, kringle-like domain; LRD, leucine-rich domain.  

Specific high-affinity binding site for the growth factor locates on the 

extracellular domain. As different sequence motifs have been identified within this 

domain, the extracellular ligand-binding site reveals the structural diversity of RTKs. The 

extracellular regions of RTKs may comprise cysteine-rich domains (CRD), EGF-like 

domains (EGFD), immunoglobulin-like domains (IgD), cadherin-like domains (CadhD), 

discoidin-like domains (DiscD), fibronectin-type III-like domain (FNIII), and kringle-like 

domains (KrinD) among others. 

The transmembrane domain consists of about twenty-five hydrophobic amino 

acids residues embedded in the membrane lipid bilayer and plays an active role in 

signaling. They contribute to stabilize the full-length receptor dimers and to maintain a 

signaling-competent dimeric receptor conformation.242 
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  The intracellular domain consists of a reasonably conserved tyrosine kinase 

domain and additional amino acid sequences that function as regulatory regions. The 

catalytic tyrosine kinase domain displays conservation between RTKs and is composed 

of about 250 amino acids. Sequence alignment has revealed that there are thirteen 

residues conserved in most RTKs. Crystal structure resolution of Insulin and FGF 

receptor fragments allowed homology models for the general structure of catalytic 

domains. The kinase domain is composed two lobes delimiting a central cleft. In the 

central cleft, the protein substrate and the complex ATP-Mg2+ ions are brought together 

and the phosphor-transfer reaction takes places. The N-terminal lobe contains glycine-

rich motif and lysine residues which are critical for ATP binding. Protruding into the 

central cleft is the ‘catalytic loop’, in which an aspartic residue is the catalytic region and 

other residues allow recognition of tyrosine substrate. The C-terminal lobe contains a 

second loop, known as the ‘kinase activation loop’, frequently including one to three 

tyrosines endowed with regulatory functions.243  

3. 2. Activation mechanism of RTKs 

There is substantial evidence that activation of RTKs occurs through ligand-

induced dimmerization (Figure 21). 244 Unbound receptor monomers are free to float in 

the lipid bilayer of the plasma membrane, where random reciprocal contacts occur in 

proportion to the number of receptor molecules present. Dimmerization can take place 

between two identical receptors, between different members of the same receptor family 

or even between a receptor and an accessory protein. In each family of RTKs, the binding 

of ligand, dimerization and activiation of RTK are specific. 
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 Figure 21. Mechanism activations of RTK.244 Inactive receptor monomers (green) are in 

equilibrium with inactive (green) or active (blue) receptor dimers. The active receptor 

dimers exist in a conformation compatible with trans-autophosphorylation and 

stimulation of PTK activity (blue). Ligand binding stabilizes active dimer formation and 

hence PTK activation.244 

For most receptors, ligand binding induces a conformational change that stabilizes 

the dimeric form. In the inactive state, this tyrosine prevents exogenous protein substrates 

from accessing the catalytic site, and the steric hindrance inhibits autophosphorylation of 

this residue. After ligand binding and the dimmerization of receptors, this tyrosine is 

trans-autophosphorylated and the equilibrium shifts towards a conformation that allows 

binding of exogenous substrates.  
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3.3. RTKs and human cancer 

In normal cells, the activity of RTKs and their mediated cellular signaling is 

precisely coordinated and tightly controlled. Deregulation of this RTK signaling system, 

either by stimulation through autocrine–paracrine growth factor loops and/or genetic 

alteration, result in deregulated tyrosine kinase activity. Ullrich and coworkers made the 

first connection between a viral oncogene, a mutated RTK and human cancer in 1984.245 

Since then it is well known that aberrant signaling by RTKs is critically involved in 

human cancer and other hyper-proliferative diseases.233 One of the common results of the 

RTKderegulation is that they result in RTKs with constitutive or strongly enhanced 

signaling capacity, which leads to malignant transformation. 247Therefore, they are 

frequently linked to human cancer and also to other hyperproliferative diseases such as 

psoriasis. The tumor cells are known to use RTK transduction pathways to achieve tumor 

growth, angiogenesis and metastasis. The gene amplification and/or overexpression of 

RTKs occur in many human cancers, which might increase the response of cancer cells to 

normal growth factor levels. Additionally, overexpression of a specific RTK on the cell 

surface increases the incidence of receptor dimmerization even in the absence of an 

activating ligand. In many cases this results in constitutive activation of the RTK leading 

to aberrant and uncontrolled cell proliferation and tumor formation. The genetic 

alterations, including deletion or mutations, within the extracellular domain and the 

catalytic domain especially of the ATP-binding motif are another cause of uncontrolled 

cell proliferation and tumor formation. Autocrine-paracrine stimulation occurs when a 

RTK is aberrantly expressed or overexpressed in the presence of its ligand, or when 

overexpression of the ligand occurs in the presence of its associated receptor. For 
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example, it has been shown in many solid tumors that elevated levels of both growth 

factor receptor and its ligand are expressed concomitantly.235,236,240 

3.4. Epidermal Growth Factor Receptor (EGFR)  

EGFR is one of four closely related human epidermal growth factor receptor 

(HER or Erb) family RTKs and is a receptor tyrosine kinase that regulates fundamental 

processes of cell growth and differentiation.248 The four EGFR family members share an 

overall structure of two cysteine-rich stretches in the extracellular region (Figure 

22).Under normal physiological conditions, activation of the EGFR family is controlled 

by spatial and temporal expression of their ligands, members of the EGF-related peptide 

growth factor family.240 These peptides are produced as transmembrane precursors, and 

are released as soluble growth factors after proteolytical cleavage. The mammalian EGFR 

ligands include epidermal growth factor (EGF), transforming growth factor α (TGF-α), 

hepairin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR), beta-cellulin 

(BTC), epiregulin (EPR) and epigen. The neuregulins (NRG) binds to HER3 and HER4 

(NRG1 and NRG2) or only HER4 (NRG3 and NRG4). The orphan HER2 (ErbB) has no 

ligands so far, and it is only activated following its heterodimmerization with another 

ligand-bound EGFR family receptor. Dimerization of ErbB receptors is mediated entirely 

by the receptor. 240  
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Figure 22. Mammalian family of epidermal growth factor receptors (EGFRs) and 

ligands.249 

Over recent years, much evidence has been gathered to implicate the EGFR and 

its family members in the development and progression of numerous human tumors. 250, 

251 Aberrant expression of EGFR in several types of cancer gene amplification has been 

implicated in the development, progression or aggressiveness of head and neck cancer, 

non-small cell lung cancer, breast cancer, colon cancer, glial tumors, prostate and 

epithelial cells cancer. Based on the clinical epidemiology and feasibility, the EGFR has 

been viewed as an ideal and viable target in drug discovery programs and represents one 

of the more advanced targets being explored clinically.252,253 The role of EGFR in cell 

proliferation makes this an attractive target in other hyperproliferative disorders as well 

such as psoriasis. 
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3.5. Platelet-Derived Growth Factor Receptor (PDGFR) 

Platelet-derived growth factor (PDGF) is a family of cationic dimeric protein 

which exists as various combinations, such as AA, BB and AB.254  

 

 

 

 

 

 

 

 

 

Figure 23. The structures of PDGFRs and their ligands A and B.255  

PDGFRs have important functions during the embryogenesis, in particular for the 

development of kidneys, blood vessels, lungs, and CNS. The α-receptor plays important 

roles in the development of neural crest-derived cells and somites, and β receptor is 

crucial in the development of the mural cells of fibroblasts and blood vessels. 
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Overactivity of PDGFRs has been linked to several different disorders. In progression of 

glioblastoma and sarcomas, this action often causes autocrine stimulation of tumor cell 

growth. Overactivity of PDGFR signaling is a hallmark in a variety of diseases and has 

been implicated in atherosclerosis and several fibrotic conditions, including lung fibrosis, 

kidney fibrosis, liver cirrhosis, and myelofibrosis.256, 257  

3.6. Vascular Endothelial Growth Factor Receptor (VEGFR) 

The VEGF is a family of angiogenic proteins that now includes six secreted 

cysteine knot glycoproteins: VEGF-A, B, C, D, E and placental growth factor (PlGF).258 

It is well established that VEGF is a survival factor for endothelial cells in both 

developing tissues and tumor vessels. Because of its critical role in angiogenesis, VEGF 

is considered the master regulator of angiogenesis during growth and development, as 

well as in disease states such as cancer, diabetes, and macular degeneration.258 

 

 

 

 

 

 

Figure 24. The Structure of VEGFRs and their factors.259 
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VEGF isoforms are the key factor involved in the regulation of many aspects of 

physiological and pathological angiogenesis by activating with their five endothelial 

growth factor receptors (VEGFRs) (Figure 24): VEGFR-1 (Flt-1, Fms-like tyrosine 

kinase), VEGFR-2 (KDR, kinase insert domain-containing receptor or Flk-1, fetal liver 

tyrosine kinase), VEGFR-3 (Flt-4), Neuropilin-1 and Neuropilin-2. The ligands that bind 

to VEGFR-1 are VEGF-A, VEGF-B, and also the related PIGF; whereas VEGFR-2 binds 

VEGF-A, VEGF-C, VEGF-D and VEGF-E. VEGFR-3 only binds VEGF-C and VEGF-D, 

and Neuropilin-1 and Neuropilin-2 bind VEGF-A, VEGF-E and PIGF.  

Dimmerization of VEGFRs resulted in autophosphorylation on cytoplasmic 

tyrosine residues. Signal transduction through VEGFR affects several important functions 

and interactions between vascular, immune and neuronal cells. The function of VEGFRs 

in the angiogenesis process includes the production of proteases needed for the 

breakdown of blood vessel basement membranes, expression of certain integrins 

associated with angiogenesis, and stimulation of cell migration and proliferation. 260-262 

VEGFR-2 plays an abundant role in the most common forms of cancer. 

Overexpression of VEGFR-2  is frequently observed in the most common forms of 

cancer, whereas normal tissue displays only marginal expression of VEGFR-2. Moreover, 

the level of VEGFR-2 overexpression is often related to the stage of disease and the 

patient’s prognosis.263 
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3.7. Fibroblast Growth Factor Receptor (FGFR) 

The fibroblast growth factor receptors (FGFRs) are receptors that bind to 

members of the fibroblast growth factor (FGF) family of proteins. The family of FGFs 

comprises of at least 23 secreted glycoproteins including FGF-1 through FGF-23, and 

this number continues to increase.264 The FGFRs include the four highly conserved 

transmembrane receptor tyrosine kinases FGFR1, FGFR2, FGFR3, and FGFR4 and one 

additional receptor, FGFR5 (FGFRL-1), which is able to bind FGFs but  is devoid of 

kinase activity. 265 As for many other RTKs, dimmerization followed by conformational 

alterations of the FGFR appears to be an important requirement for activation of the 

tyrosine kinase activity.  

FGF1 and in particular FGF2 are potent proangiogenic factors while FGF4 and −8 

are less so.236  FGFs are known to promote in vitro endothelial cell migration, 

proliferation, and differentiation. In a similar way to VEGF, FGFs appear to play a major 

role in vivo in the regulation of angiogenesis.266 

Since RTKs have been implicated in a variety of cancer indications and other 

inappropriate mitogenic signaling disorders, RTKs and the activated signaling cascades 

represent promising targets for the development of therapeutic agents. Small molecule 

inhibition of a single RTK has been shown to be clinically effective as a novel approach 

to cancer chemotherapy.  

Based on the mechanism of RTKs signal generation, several approaches of 

prevention of interception of cancer-relevant signaling have been pursued. These 
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approaches target either the extracellular ligand-binding domain, the intracellular tyrosine 

kinase or the substrate-binding region, such as monoclonal antibodies and antibody 

conjugates that are directed against the extracellular domain of RTKs. The development 

of adenosine triphosphate (ATP) competitive tyrosine kinase inhibitors (TKIs), which 

mimic ATP and compete for binding in the kinase active site, appears to be a promising 

approach for drug intervention. Thus several small-molecule TKIs have been developed 

to selectively interfere with the intrinsic tyrosine kinase activity and thereby block 

receptor autophosphorylation and activation of downstream signal transduction. 

 

 

Figure 25. The structures of representative EGFR inhibitors. 

 

Gefitnib and erlotinib are examples of small molecule of EGFR inhibitors. Both 

gefitnib and erlotinib are approved by the FDA for the treatment of non-small cell lung 

cancer. 267 

 



60 
 

N

HN

O

NO

N

BrF

N
H

N
H

O

Semaxanib Vandetanib  

Figure 26. The structures of representative VEGFR-2 inhibitors. 

 

Indolinones and quinazolines have been developed as potent VEGFR-2 inhibitors. 

Both semaxanib and vandetanib are important examples of VEGFR-2 inhibitors (Figure 

25). Semaxanib (Figure 25) has undergone clinical trials as an antitumor agent, however, 

the study was discontinued due to ineffaciousness.268, 269 Vandetanib was developed as a 

potential treatment for non-small cell lung cancer and showed promising result. 

 

Figure 27. The Structure of PDGFRβ inhibitor: Imatinib. 

 

Imatinib, a PDGFR inhibitor, has been approved by FDA for the treatment of 

chronic myelogenous leukemia (CML), gastrointestinal stromal tumors (GISTs) and a 

number of other malignancies . 

In recent years, a number of RTK targeting small molecular inhibitors including 

Crizotinib270, Sunitinib271, Pazoparib272, Sorafenib273, Vemurafenib274, Vandetanib275, 
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Lapatinib276 and Panzopinib277 were approved by the FDA for the treatment of various 

typy of cancer.  

1.2. ATP binding sites. 

Despite two major obstacles, which include lack of access to the intracellular 

targets and the lack of selectivity of inhibition, the ATP-binding site of RTKs has been 

shown to be a viable target for rational drug design. Of the two obstacles, the selectivity 

issue has proven to be the more difficult one.278 The commonality as well as diversity 

among the ATP-binding sites of kinases has allowed the development of pharmacophore 

models for rational drug design.279 This along with  reports of the x-ray crystal structures 

of protein kinases has validated that the ATP-binding site of RTKs is indeed an attractive 

target for small molecule drug design. A number of scaffolds including indoline, 

quinazolines and fused pyrimidines have been shown to be effective ATP competitive 

inhibitors of RTKs. 280,281 

 

Figure 28: The general ATP-binding site of RTKs. The ATP-binding site of protein 

kinases. ATP is in pink. 282 
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ATP binds to protein kinases within a deep cleft formed between the two lobes of 

the protein kinase. Apart from a bidentate donor-acceptor hydrogen bonding motif in the 

hinge region the interactions with the nucleotide are of a lipophilic/van der Waals nature 

(Figure 28).  

Although the ATP-binding site is highly conserved among the kinases, several key 

diversities exist in the regions proximal to the ATP-binding site. For practical drug 

discovery purposes, the binding site of ATP can be divided into the following features: 

1. Adenine region. This hydrophobic region contains the two key hydrogen bonds 

formed by the interaction of the N1 and N6 amino group of the adenine ring with the 

backbone NH and carbonyl group of the adenine anchoring hinge region of the RTKs. 

Although not used by ATP, some of the backbone carbonyl groups of residues in the 

hinge region can also serve as a hydrogen bond acceptor for inhibitor binding. 

2. Hydrophobic region 1 pocket/selectivity pocket. This pocket is not used by ATP, 

but is exploited by several of the kinase inhibitors. It plays an important role in inhibitor 

design and selectivity. 281 

3. Hydrophobic region 2. This region is a slot that opens to solvent. As it is not 

used by ATP, it can also be exploited to gain binding affinity. 

4. Sugar region. In most of the RTKs, this region is hydrophilic except in EGFR. 

This peculiarity has been exploited in the EGFR kinase project for the design of potent 

and selective inhibitors. 

5. Phosphate binding region. This region appears to be the least important in 

terms of binding affinity, due to high solvent exposure. However, it is useful to improve 
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selectivity or to gain additional affinity in an inhibitor. The triphosphate group of ATP is 

constrained by a glycine-rich loop and is bound by the conserved array of basic amino 

acid residues, which, together with an invariant tyrosine (part of the tyrosine-

phenylalanine-glycine triad) that deprotonates the phosphoacceptor OH group, are 

involved in the catalytic process.  
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II.CHEMICAL REVIEW  

The chemistry related to the present work is reviewed and includes synthetic 

approaches to the following heterocyclic systems and relevent reactions. 

A. Synthesis of furo[2,3-d]pyrimidines 

B. Synthesis of pyrrolo[2,3-d]pyrimidines 

C. Synthesis of thieno[2,3-d]pyrimidines 

D. Sulfenilation reactions 

E. Name reactions 

A. Synthesis of Furo[2,3-d]pyrimidines 

A few examples of the synthesis of furo[2,3-d]pyrimidines are known in the 

literature. A broad classification for the synthetic strategy for construction of this ring 

system is: 

1. Route A: From furan precursors 

2. Route B: From pyrimidine precursors 

1. From furan precursors (Route A) 

 
Scheme 1. Synthesis of 6-substituted furo[2,3-d]pyrimidines 15. 
 
 

In 1966, Gewald reported the synthesis of 15 (Scheme1) by the reaction of 14 

with formamide in acetic anhydride.283 This reaction represents the first synthesis of a 

furo[2,3-d]pyrimidine starting from a furan precursor.  
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Scheme 2. Synthesis of 6-substituted furo[2,3-d]pyrimidines 17. 
 

The reaction between a 2-amino-3-nitrile-substituted furan and formamide has 

been utilized by several other groups to give furo[2,3-d]pyrimidines with a 2-hydrogen-4-

amino-substitution. As shown in Scheme 2, Miyazaki and coworkers284 reported the 

synthesis of 17 in 69% yield by using the above mentioned method. 

 

Scheme 3. Synthesis of 4-amino-5-substituted furo[2,3-d]pyrimidines 20. 

 

Furan precursors with 2-amino-3-nitrile-substitutions also react with 

triethylorthoformate to give 4-amino-substituted furo[2,3-d]pyrimidines. Miyazaki et 

al285 also reported the synthesis of furo[2,3-d]pyrimidine 20 via condensation between 18 

and 19 (Scheme 3). 
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 Scheme 4. Synthesis of furo[2,3-d]pyrimidine-4-amine derivative 23. 

 

Han and coworkers286 reported a novel synthesis of furo[2,3-d]pyrimidin-4-amine 

derivative 23 (Scheme 4) by microwave irradiation. The reaction starts from readily 

available amines and substituted 2-aminofuran-3-carbonitrile which are converted into 

corresponding formamidines in DMF using benzenesulfonyl chloride and then cyclized 

with benzylamine to target compound. 

 

The proposed reaction mechanism for the synthesis of furo[2,3-d]pyrimidine 23  

is shown in Scheme 5. First, the nitrogen of amine attack the carbon of formamidine to 

give species 24. Then an intramolecular reaction of 24 is folloewd by ring closure forms 

25 followed elimination of dimethylamine, to yield product 26 (imino-product 26 is a 

kinetic product). Second, water as a nucleophile attacks the pyrimidine ring, and opens 

the ring to afford a ring-opened species 27. Third, a subsequent electrocyclization to 28 

and elimination of water yielded the thermodynamic stable product 23 (favored at high 

temperature). 
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Scheme 5. Proposed mechanism for the synthesis of furo[2,3-d]pyrimidine-4-amine 

derivative 23. 

 

 

Scheme 6. Synthesis of furo[2,3-d]pyrimidines 30. 

In 1980, Dave et al287 reported a facile synthesis of 2-methyl-4-amino-furo[2,3-
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d]pyrimidine 30 (Scheme 6) via the condensation of 29 and acetonitrile under strong 

acidic HCl (g) conditions. 287 

 

 
 

Scheme 7. Synthesis of furo[2,3-d]pyrimidines 32. 

 

The synthesis of furo[2,3-d]pyrimidine 32 (Scheme 7) was first reported by 

Manhas and Amin in 1977.288 Compound 32 was obtained via the condensation of 2-

amino-3-amide substituted furan 31 and DMF. 
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Scheme 8. Synthesis of furo[2,3-d]pyrimidines 34. 

Martin-Kohler and coworkers289 reported a facile synthesis of furo[2,3-

d]pyrimidines 34 (scheme 8) via condensation of furan 33 and formamide under acid 

conditions. 
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Scheme 9. Synthesis of furo[2,3-d]pyrimidines 37. 

 

 In 2005, Foloppe and coworkers290 reported the synthesis of furo[2,3-

d]pyrimidines 37 (scheme 9) through the condensation between furan 35 and methyl 

formate followed by thermal cyclization via intermediate 36. 

 
 

 
 
Scheme 10. Synthesis of furo[2,3-d]pyrimidines 42. 

 
 

In 2009, Dang and Liu291 reported a novel approach for the synthesis of furo[2,3-

d]pyrimidines 42 via Diels–Alder reactions of 2-aminofurans  38 with 1,3,5-triazines 39. 

The reaction mechanism was envisioned to entail cascade reactions involving an inverse 
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electron demand Diels–Alder (IDA) reaction to give intermediate 40,  followed by the 

elimination of ammonia to afford intermediate 41, and a final retro Diels–Alder 

reaction.292. 

 
2. From pyrimidine precursors (Route B) 

 A majority of the literature methods for the synthesis of furo[2,3-d]pyrimidines 

start from pyrimidine precursors. 
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Scheme 11. Synthesis of 6-substituted furo[2,3-d]pyrimidines 45.  
 

 

In 1982, Sakamoto and coworkers293 reported a facile approach for the synthesis 

of 6-substituted-furo[2,3-d]pyrimidines 45 (scheme 11) via a two step reaction starting 

from iodo-pyrimidine 43. Sonogashira coupling of 43 and phenylacetylene afforded 

intermediate 44, which was converted to 45 via thermal cyclization.  

 

 

Scheme 12. Synthesis of 6-substituted furo[2,3-d]pyrimidines 48. 
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In 2003, Petricci and coworkers294 reported the synthesis of 6-substituted-

furo[2,3-d]pyrimidines 48 (scheme 12) via cascade reactions involving microwave 

assisted Sonogashira coupling and intramolecular cyclization.  

 

 

Scheme 13. Synthesis of furo[2,3-d]pyrimidines 54 and 55. 
 

Liu and coworkers295 reported a modified approach for the synthesis of multi-

substituted-furo[2,3-d]pyrimidines 54 and 55 (scheme 13) via Sonogashira coupling of 

iodopyrimidines and acetylenes, followed by metal catalyzed intramolecular cyclization. 

These iodopyrimidines precursors 52 were in turn obtained via condensation of amidines 

49 with β ketoesters 50, followed by iodination. 

 

 

Scheme 14. Synthesis of 6-substituted furo[2,3-d]pyrimidines 58. 
 

 

Eger and coworkers296 reported the novel synthesis of  furo[2,3-d]pyrimidines 58 
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(scheme 14) by intramolecular cyclocondensation of 5-(2-bromovinyl)-uracil 57, which 

in turn was synthesized via the decarboxybromination of  5-(2-bromovinyl)-uracil 56. 

  

 

Scheme 15. Synthesis of 6-substituted furo[2,3-d]pyrimidines 62. 

 

 Bisagni and coworkers276 reported the synthesis of 4,6-dimethyl-2-substituted 

furo[2,3-d]pyrimidines 62 analogues (scheme 15) via a two-steps strategy. Condensation 

of β-ketoester 59 with amidines  60 afforded 5-acetone pyrimidines 61. 

Cyclocondensation of the corresponding  pyrimidine precursors in sulfuric acid afforded 

the desired 4,6-dimethyl-2-substituted furo[2,3-d]pyrimidines 62.  

 

 

Scheme 16. Synthesis of 6-substituted furo[2,3-d]pyrimidines 65. 

 

Grindey and coworkers298 reported a facile synthesis of 2-amino-4-oxo-furo[2,3-

d]pyrimidine 65 (scheme 16) via the oxidative cyclization of 2-amino-4,6-dihydroxy-5-

(2,3-dihydoxypropyl)-pyrimidine 63. Periodate oxidation of 63 resulted in spontaneous 
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cyclization to afford furo[2,3-d]pyrimidin-4-one 65 via the intermediate aldehyde.  

B. Synthesis of pyrrolo[2,3-d]pyrimidines 

As deazapurine analogues, pyrrolo[2,3-d]pyrimidines have shown various 

biological activities and have found clinical use.  Due to their important biological 

properties, a large body of literature exist for the synthesis of pyrrolo[2,3-d]pyrimidines. 

Generally, the synthesis of the pyrrolo[2,3-d]pyrimidine ring system can be achieved 

through following methods. 

1. Route A: From pyrrole precursors 

2. Route B: From pyrimidine precursors 

3. Route C: From furan precursors 

1. Route A: From pyrrole precursors 

 

 Scheme 17. Synthesis of pyrrolo[2,3-d]pyrimidines 69. 

 

Tolman et al299 in 1968 reported the ring closure of 2-amino-5-bromo-3,4-

dicyanopyrrol with formamidine acetate in 2-ethoxyethanol at reflux temperature.  The 

reaction furnished 4-amino-6-bromo-5-cyanopyrrolo[2,3-d]pyrimidine 69 (scheme 17) in 

65% yield. 
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Scheme 18. Synthesis of 2,5-dimethyl-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 74. 

  

Girgis et al. 300 in 1989 reported the synthesis of 2,5-dimethyl pyrrolo[2,3-

d]pyrimidine 74 (Scheme 18) from 2-acetylamino-3-cyano-4-methylpyrrole 73 by with 

85% phosphoric acid. The pyrrole 73 was in turn obtained by the reaction of either 2-(2-

oxopropyl)isoindoline-1,3-dione 70 or 1-(methoxyamino)propan-2-one 71 with 

malononitrile to give 2-amino-4-methyl-1H-pyrrole-3-carbonitrile 72, which was reacted 

with acetic anhydride to afford 73.  

 

Scheme 19. Synthesis of 2-methyl-5-amino-pyrrolo[2,3-d]pyrimidine 76. 

 

Dave et al 287 in 1980 reported a general procedure for the synthesis of condensed 

pyrimidines. The condensation between acetonitrile and substituted pyrrole 75 (scheme 

19) under HCl (g) condition afforded pyrrolo[2,3-d]pyrimidine 76 in 60% yield. 
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Scheme 20. Synthesis of 2-methyl-5-amino-pyrrolo[2,3-d]pyrimidine 78. 

 

Bookser et al301 in 2005 reported the synthesis of pyrrolo[2,3-d]pyrimidine 78 

(scheme 20) via the condensation between substituted pyrrole 77 and triethylorthoformate 

under acidic conditions.  

 

 

Scheme 21. Synthesis of 4-(2-(2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-

5-yl)ethyl)benzoic acid 82. 

 

Barnett et al. 302 in 1993 reported the synthesis of 4-(2-(2-amino-4-oxo-4,7-

dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl)benzoic acid 82 (scheme 21) via a 

guanidine cyclization of a preformed 3-carbethoxy-2-thiopyrrolidine intermediate 81 as 
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the key step. 

2. Route B: From pyrimidine precursors 

  

 

 

Scheme 22. Synthesis of pyrrolo[2,3-d]pyrimidines 85. 

 

In 1964, Noell et al. 303 first reported the synthesis of pyrrolo[2,3-d]pyrimidines 

85 (Scheme 22) by the reaction of 2-amino-6-alkylamino-4-hydroxypyrimidines 83 with 

chloroacetaldehyde 84.  

 

 

 

Scheme 23. Synthesis of 2-(methylthio)-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 87. 

 

Noell and coworkers303 also reported the synthesis of pyrrolo[2,3-d]pyrimidine 87 

(Scheme 23) from 2-methylthio-6-amino-4-pyrimidone 86 and chloroacetaldehyde 84.  
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Scheme 24. Synthesis of pyrrolo[2,3-d]pyrimidines 91. 

 

Gibson and coworks304 in 1998 reported the reaction of the diaminopyrimidine 88 

(Scheme 24) with nitrosoalkenes 89 to provide a short synthesis of pyrrolo[2,3-

d]pyrimidine 91 via  pyrimidine intermediate 90.  

 

 

 

Scheme 25. Synthesis of 7-substituted-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 98. 

 

Duffy and coworkers305 in 1974 reported the synthesis of 2-amino-7-substituted-

3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 98 from 2-amino-4,6-dichloro-5-(2,2-

diethoxyethyl)pyrimidine 95 (Scheme 25). 5-Allyl-2-amino-4,6-dihydroxypyrimidine 92, 
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prepared by the reaction of guanidine hydrochloride with diethyl allylmalonate, was 

converted to the 4,6-dichloro derivative 93 by treatment with POCl3, and diethylaniline in 

the presence of PCl5. The (2-amino-4,6-dichloropyrimidin-5-yl)acetaldehyde 94 was 

obtained from 93 by ozonolysis of the allyl group. Compound 94 was reacted with 

ethanol at reflux to give the corresponding acetal 95, which was converted to 96 with the 

treatment of substituted amines followed by cyclization to give 2-amino-4-chloro-7-

alkyl-7H-pyrrolo[2,3-d]pyrimidine 97 by treatment with dilute aqueous HCl at room 

temperature. The hydrolysis of 97 using 1 N HCl at 100 °C afforded 98. 

 

 

Scheme 26. Synthesis of pyrrolo[2,3-d]pyrimidines 102. 
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Miwa et al.306 in 1993 reported utilizing the spontaneous cyclization of 6-amino-

5-pyrimidylacetaldehydes for the synthesis of pemetrexed (Scheme 26). The key step in 

the synthesis of the acetal protected aldehyde 100 was a photo-initiated free radical 

addition of ethyl bromocyanoacetate to the corresponding enol ether 99. The reaction of 

the enol ether 99 with ethyl bromocyanoacetate in methanol under ultraviolet irradiation 

regioselectively afforded the acetal functionalized ethyl cyanoacetate 100. Condensation 

of 100 and guanidine at reflux afforded the acetal protected 6-amino-5-

pyrimidylacetaldehyde 101. Acid catalyzed deprotection of the dimethyl acetal and t-

butyl moieties of 101 afforded 4-[2-(2-amino-4-oxo-pyrrolo[2,3-d]pyrimidin-5-yl)-ethyl]-

benzoic acid 102 via the free aldehyde.  

 

 

 

Scheme 27. Synthesis of pyrrolo[2,3-d]pyrimidines 105. 

 

Sakamoto et al. 307 in 1993 reported (Scheme 27) the synthesis of pyrrolo[2,3-

d]pyrimidines 106 by utilizing an intramolecular cyclization of protected 5-acetaldehyde 

pyrimidines 105. Compound 105 was in turn synthesized by palladium(0) catalyzed 

coupling of the appropriate 2,4-disubstituted-5-bromo-6-acetamido pyrimidines 103 with 

(Z)-1-ethoxy-2-(tributylstannyl)ethane 104.  
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Scheme 28. Synthesis of 2,4 -dimethyl-6-substitued-7H-pyrrolo[2,3-d]pyrimidine 111. 

 

Kondo et al. 308 in 1989 reported the synthesis of 2,4-dimethyl-6-substitued-7H-

pyrrolo[2,3-d]pyrimidine 111 (Scheme 28) via a photoinduced or thermal cyclization of 

4-azidopyrimidines 110 containing an olefinic functionality at the 5-position. 

Intermediate 110 was in turn obtained by a palladium catalyzed cross-coupling between 

the 5-iodopyrimidine 107 and appropriate stannanes 108, followed by nucleophilic 

displacement of the 4-chloro of pyrimidine 109 with sodium azide.  

 

 

Scheme 29. Synthesis of 4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine 118. 
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Gangjee et al. 309 in 2000 reported the synthesis of 2-amino-4-methyl-pyrrolo[2,3-

d]pyrimidine 118 (Scheme 29) via a novel ring closure method. The synthesis 

commenced with the condensation of 2-acetylbutyrolactone 112 with guanidine carbonate 

113 to afford 2-amino-5-(2-hydroxyethyl)-6-methylpyrimidin-4(3H)-one 114. 

Chlorination with POCl3 afforded the dichloro compound 4-chloro-5-(2-chloroethyl)-6-

methylpyrimidin-2-amine 115. Compound 115 was condensed with benzylamine to 

afford 2-amino-4-methyl-7-(N-benzyl)pyrrolidinyl[2,3-d]pyrimidine 116. Oxidative 

aromatization of compound 116 with MnO2 afforded the 7-benzyl-4-methyl-7H-

pyrrolo[2,3-d]pyrimidin-2-amine 117. Compound 118 was obtained following 

debenzylation of 117 with Na metal in ammonia. 

 

 

Scheme 30. Synthesis of pyrrolo[2,3-d]pyrimidine 125. 

 

Kim and Santilli 310 in 1971 reported the synthesis of multiple substituted 



82 
 

pyrrole[2,3-d]pyrimidine 125 (Scheme 30) via Dieckmann condensation of pyrimidine 

124.The condensation between amidine 119 and hemiacetalester 120 afforded 

hydroxylpyrimidine 121, which was converted to 4-chloro analogue when treated with 

POCl3. Upon treatment with amine 123, 4-chloropyrimidine was converted to 

intermediate 124, which cyclized under basic condition to afford pyrrolo[2,3-

d]pyrimidine 125 in 97% yield. 
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Scheme 31. Synthesis of 2-(2-amino-4-oxo-4,7-dihydro-1H-pyrrolo[2,3-d]pyrimidin-6-

yl)acetic acid 128. 

 

Gangjee et al. 311 in 2001 reported the synthesis of 2-(2-amino-4-oxo-4,7-dihydro-

1H-pyrrolo[2,3-d]pyrimidin-6-yl)acetic acid 128 (Scheme 31)from the condensation of 

2,6-diaminopyrimidin-4(1H)-one 126 with ethyl 4-chloro-3-oxobutanoate 127 in the 

presence of sodium acetate. 

 

 

Scheme 32. Synthesis of 2-amino-4-oxo-4,7-dihydro-1H-pyrrolo[2,3-d]pyrimidine-5-

carbonitrile 131. 
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In 2001, Gangjee et al. 312 also reported the synthesis of 2-amino-4-oxo-4,7-

dihydro-1H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile 131 (Scheme 32) from the 

condensation of compound 129 with 2-chloro-3-oxopropanenitrile 130 under basic 

condition. 

 

 

Scheme 33. Synthesis of 2-amino-6-substituted benzyl-3H-pyrrolo[2,3-d]pyrimidin-

4(7H)-one 135. 

  

Gangjee et al.313 in 2003 reported the synthesis of 2-amino-6-substituted benzyl-

3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 135 (Scheme 33) from the condensation of 1-

bromo-3-substituted phenylpropan-2-one 133 with 134. Compound 133 was in turn 

obtained from the corresponding substituted benzyl acetic acid 132 reacting with thionyl 

chloride followed by the treatment of diazomethane and HBr (Conc.). 

 



84 
 

COOEt

CHO
n

COOEt

n

NO2

1. CH3NO2, EtOH

2. CH3SO2Cl EtOAc/H2O N

NH2N NH2

OH

136 137

NO2

COOEt

n

1. aq NaOH

2. added to H2SO4

3. aq NaOH to pH7

HN

N N
H

O

H2N

COOH

n

n = 2

N

NH2N NH2

OH

139

140

138

 

Scheme 34. Synthesis of pyrolo[2,3-d]pyrimidine 140. 

 

              Taylor et al. 314 in 1999 reported a new and efficient  synthesis of pyrrolo[2,3-

d]pyrimidine 140 from aldehyde 136 (Scheme 34). A Henry reaction of 136 with 

nitromethane gave the nitro alcohol that was dehydrated by mesylation followed by 

treatment with triethylamine to yield 137.  Michael addition of  pyrimidine 138 with 137 

afforded 139, which was then converted to pyrrolo[2,3-d]pyrimidine 140 via  a one-pot 

three-step reaction. 

 

 

Scheme 35. Synthesis of pyrrolo[2,3-d]pyrimidine 142 via thermal Fisher indole 

cyclization. 
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Crooks et al. 315 reported the synthesis of tricyclic 5,6-fused pyrrolo[2,3-

d]pyrimidine 142 (Scheme 35) via a thermal Fischer-indole reaction. Due to the 

limitation of  thermal Fisher-indole cyclization, including steric rearrangement and high 

reaction temperatures, in the synthesis of pyrrolo[2,3-d]pyrimidines, acid-catalyzed 

Fischer-indole cyclizations have been developed as an alternate strategies for the of 

synthesis 142 in moderate to good yields. 316  

3. Route C: From furan precursors 

 

 

Scheme 36. Synthesis of 2,4-diaminopyrrolo[2,3-d]pyrimidine 148 from furan precursor. 

 

In 1995, Taylor and coworkers 317 reported a general method to synthesize 5,6-

disubstituted 2,4-diamino-pyrrolo[2,3-d]pyrimidines 148 (Scheme 36) from furan 145. 
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The condensation between guanidine and 2-amino-3-cyanofuran 145 afforded 

pyrrolo[2,3-d]pyrimidine 148. The key intermediate 145 was in turn obtained by the 

condensation of α-hydroxy-ketones 143 with malononitrile. 

The reaction involved a ring-opening, ring-recyclization sequence whereby the 

starting furan 2-amino nitrogen (shown in Scheme 36) becomes the pyrrole nitrogen of 

the final product and one of the guanidine nitrogens becomes the N-1 of the fused 

pyrimidine ring 148.317 

C. Synthesis of thieno[2,3-d]pyrimidines 

A broad classification for the synthetic strategy for construction of thieno[2,3-

d]pyrimidines is: 

1. Route A: From thiophene precursors 

2. Route B: From pyrimidine precursors 

1. From thiophene precursors (Route A) 

 

 

Scheme 37. Synthesis of thieno[2,3-d]pyrimidine 151. 

 

2-Amino-5,6-disubstituted thieno[2,3-d]pyrimidines 151 (Scheme 37) are 

synthesized via cyclocondensation of appropriate thiophenes 149 with an amidine 
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derivative 150.318  The thiophenes in turn can be synthesized from aldehydes or ketones 

through the Gewald reaction.319 The amidines 150 can be guanidines (R = NH2) or 

chloroformamidine hydrochloride (R = Cl). Depending on the nature of the X group in 

thiophene 149, the 4-substitution (Y) in 151 can be H, NH2 or OH.  

 

 

 Scheme 38. Synthesis of thieno[2,3-d]pyrimidine 155. 

Zhang and coworkers320 reported the synthesis of 2-amino-thieno[2,3-

d]pyrimidines 155 through the condensation between amidines and substituted 

thiophenes (Scheme 38).Thiophene intermediate 154 in turn was synthesized from ketone 

152, sulfur and 153 via the Gewald reaction condition.318 The target 2-amino-5,6-

disubstituted thieno[2,3-d]pyrimidines 155 was obtained by the condensation of 154 with 

guanidine (R = NH2) or chloroformamidine hydrochloride (R = Cl). 
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Scheme 39. Synthesis of thieno[2,3-d]pyrimidine 159. 

Ishikawa and coworkers321 in 1980 reported a novel synthesis of 2-amino-4-

phenyl substituted thieno[2,3-d]pyrimidines 159 (Scheme 39). The condensation between 

urea 158 and aminocarbonyl thiophenes 157 was utilized to synthesize thieno[2,3-

d]pyrimidine 159.  
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Scheme 40. Synthesis of thieno[2,3-d]pyrimidine 162. 

Dave and coworkers322 reported a novel facile method for the synthesis of 2-alkyl 

thieno[2,3-d]pyrimidine in 1980. The cyclization between orthoaminocarboxylate 

thiophenes 160 (Scheme 40) and substituted nitriles 161 in the presence of HCl  afforded 

thieno[2,3-d]pyrimidines 162. Depending on the substitution groups on the carbonitrile 

161, different alkyl group can be introduced into the 2-postion in thieno[2,3-d]pyrimidine 

162 . When acetonitrile was used as substrate 2-methyl-5,6-disubstituted thieno[2,3-

d]pyrimidines were obtained. When the R groups in 160  were good leaving groups such 

as OR, NH2, 4-oxo-substituted thieno[2,3-d]pyrimidines were obtained. 
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Scheme 41. Synthesis of thieno[2,3-d]pyrimidine 165. 

 

A novel approach for the synthesis of 2-substituted thieno[2,3-d]pyrimidines was 

reported by  Cruceyra and coworkers. 323 The 2-substituted-4-oxo-thieno[2,3-

d]pyrimidines was synthesized via condensation of thiophene 163 with aldehyde 164. 

(Scheme 41). Various aliphatic and aromatic aldehydes can be utilized for the synthesis of 

thieno[2,3-d]pyrimidines. Acetaldehyde afforded 2-methyl-5,6-disubstituted thieno[2,3-

d]pyrimidines 165. 

 

 Scheme 42. Synthesis of thieno[2,3-d]pyrimidine 169. 

 

 In 1978, Corral and coworkers324 reported a modified approach for the synthesis 

of 2-alkyl thieno[2,3-d]pyrimidine 169 by using an acid chloride as the cyclization 

reagent instead of an aldehyde (Scheme 42). The amino group of the thiophene 166 

reacted with acid chloride 167 to form the intermediate amide 168, which cyclized with 
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NH3 to afford thieno[2,3-d]pyrimidine 169.  When thiophenes 168 have good leaving 

groups as R3 substitution, 4-oxo- thieno[2,3-d]pyrimidines  were obtained. Compound 

168 with methyl substitution as R3 afforded 2-methyl-5,6-disubstituted thieno[2,3-

d]pyrimidines. 

 

 

Scheme 43. Synthesis of thieno[2,3-d]pyrimidine 173. 

 

Konno and coworkers325 reported the synthesis of 2-methyl-4-oxo-6-

phenylthieno[2,3-d]pyrimidine 173 (Scheme 43) from intermediate 172, which in turn 

was synthesized through the condensation of thiophene 170 with acetic anhydride 171. 

 

 

Scheme 44. Synthesis of thieno[2,3-d]pyrimidine 176 

 

In 1975, Robba and coworkers326 reported the synthesis of thieno[2,3-

d]pyrimidine 176 (Scheme 44). Thiophene 174 reacted with formic acid to give amide 

175, which then cyclized with formamide to afford 176.  
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Scheme 45. Synthesis of thieno[2,3-d]pyrimidine 178. 

 

Horiuchi and coworkers327 reported the one-pot synthesis of 178 via the 

condensation of thiophene 177 and formamide (Scheme 45) in 2009.  

 

  
 
Scheme 46. Synthesis of thieno[2,3-d]pyrimidine 181. 
 
 

In 1998, Briel and coworkers328 reported the synthesis of 2-phenyl substituted 

thieno[2,3-d]pyrimidine 181 via the condensation of thiophene 179 with benzamidine 

hydrochloride 180 (Scheme 46).  

2. From pyrimidine precursors (Route B) 

Scheme 47. Synthesis of thieno[2,3-d]pyrimidine 185. 
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Taylor and coworkers329 reported the synthesis of thieno[2,3-d]pyrimidine 185  

(Scheme 47) as TS inhibitors and analogues of pemetrexed. Condensation of 2-

substituted-4-hydroxy-6-mercaptopyrimidine 182 with α-chloroketone 183 gave 

pyrimidine sulfide 184, which cyclized in the presence of p-toluenesulfonic acid to give 

185. 

 

Scheme 48. Synthesis of thieno[2,3-d]pyrimidine 189. 

 

A novel approach for the synthesis of thieno[2,3-d]pyrimidine 189 was reported 

by  Sakamoto and coworkers330 in 1986 (Scheme 48). The intermediate 188 was 

synthesized by Sonogashira coupling of iodopyrimidines 186 and ethynyl-trimethyl-

silane 187, followed by the cyclization with NaSH. 

 

 

Scheme 49. Synthesis of thieno[2,3-d]pyrimidine 193. 

 

Ried and coworkers331 In 1988 reported a novel approach for the synthesis of 
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thieno[2,3-d]pyrimidine 193 (Scheme 49) via the intramolecular cyclization of 192, 

which in turn was synthesized through the condensation between 5-carbonitrile-6-

mercaptopyrimidnes 190 and chloroacetone 191.   

 

 

Scheme 50. Synthesis of thieno[2,3-d]pyrimidine 196. 

 

A similar approach was reported by El-Dean and coworkers332 for the synthesis of 

thieno[2,3-d]pyrimidine 196 (Scheme 50). The condensation of substituted 

mercaptopyrimidine 194 and chloro-acetonitrile 195 afforded 5-amino-4-methyl-2-

phenyl-thieno[2,3-d]pyrimidine-6-carbonitrile 196.  

 

 

Scheme 51. Synthesis of thieno[2,3-d]pyrimidine 199 

 

Briel and coworkers333 reported the synthesis of thieno[2,3-d]pyrimidine  199 

(Scheme 51), which afford a further modification for the cyclization of  the thieno[2,3-

d]pyrimidine ring system. Chloroacetic acid methyl ester 198 reacted with 5-ethylester-6-

mercaptopyrimidnes 197 afforded thieno[2,3-d]pyrimidine ring,  a 5-hydoxy substitution 
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was achieved (Scheme 51).  

 

 

 

Scheme 52. Synthesis of thieno[2,3-d]pyrimidine 203. 

 

Ried and coworkers331 reported a modified synthesis of thieno[2,3-d]pyrimidine. 

5-Carbonitrile-6-chloropyrimidine 200 (Scheme 52) reacted with ethyl 2-mercaptoacetate 

201 to form the intermediate 202, which was further cyclized to afford 203. 

  

Scheme 53. Synthesis of thieno[2,3-d]pyrimidine 211. 

 

 Van Straten and coworkers334 reported the synthesis of 211 (Scheme 53) through 

a similar procedure. Condensation of amidine 204 with aldehyde 205 and ethyl 

cyanoacetate 206 in the presence of K2CO3 gave pyrimidone 207, which was further 
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converted to 5-carbonitrile-6-chloropyrimidine 208  when treated with POCl3. Upon 

base-mediated nucleophilic substitution and cyclization, intermediate 208 afforded 

thieno[2,3-d]pyrimidine 211.  

  

 

Scheme 54. Synthesis of thieno[2,3-d]pyrimidine 219. 

 

Van Straten and coworkers334 reported the synthesis of 219 (Scheme 54) by the 

procedure depicted in Scheme 54. Aldol condensation of 212 and 213 afforded α,β-

unsaturated ketone 214, which condensed with 2-cyanothioacetamide 215 to afford 

thiopyridones 216. Nucleophilic substitution of 216 and α-chloroester 217 followed by 

intramolecular cyclization afforded 219.  

D. Sulfenilation reaction to introduce side chain substitution 

A few synthetic strategies are known in the literature to introduce thioester side 

chain substitution to pyrrolo[2,3-d]pyrimidines and other fused bicyclic pyrimidines. A 

broad classification for the synthesis of such system is: 

1. Route A: Direct sulfenilation  

2. Route B: Indirect sulfenilation via halogen substituted intermediate 
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1. Direct sulfenilation 

 

Scheme 55. Synthesis of nonclassical 5-arylthio substituted 2-amino-4-oxo-6-

methylpyrrolo [2,3-d]pyrimidine antifolates 223. 

In 2004, Gangjee et al.335 reported the synthesis of several nonclassical and a 

classical antifolate (Scheme 55) through a direct sulfenilation reaction. Compound 220 

was converted to its pivaloyl protected derivative 221 to protect the amino group and to 

also improve the poor solubility of 220 for subsequent transformations. Sulfenilation was 

carried out with fused pyrimidine 221 and thiophenols 222 in a solution of ethanol/water 

with 2 equiv of iodine at 80 °C for a period of 16 h. Compound 221 was reacted with a 

variety of substituted thiophenols 222 to afford the 5-arylthiosubstituted compounds 223 

in reasonably good yield with concomitant deprotection of the 2-pivaloyl group. 

2. Indirect sulfenilation via halogen substituted intermediates 
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Scheme 56. Synthesis of classical and nonclassical 5-arylthio substituted 2-amino-4-oxo-

6-methylthieno [2,3-d]pyrimidine antifolates 227. 

 

In 2008, Gangjee et al.336 reported the synthesis of several nonclassical and a 

classical antifolate (Scheme 56) through indirect sulfenilation reaction via Ullmann 

coupling between arylbromide 225 and appropriate arylthiols in the presence of Cu2O and 

K2CO3 in DMF under microwave irradiation at 180 °C for 30 min.  

The required 2-amino-5-bromo-6-methylthieno[2,3-d]pyrimidin-4(3H)-one, 225 

in turn was synthesized from 224 through  bromination with Br2 in acetic acid. The 

bromination of 224 under microwave irradiation with bromine in acetic acid at 150 °C for 

30 min afforded 225 in a yield of 80%.  
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Scheme 57. Synthesis of classical and nonclassical 5-arylthio substituted 2-amino-4-oxo-

6-ethylthieno [2,3-d]pyrimidine antifolates 232. 

 

In 2009, Gangjee et al. 337 reported an alternate strategy for the synthesis of 

nonclassical and classical antifolates 232 (Scheme 57) via indirect sulfenilation reaction 

between aryliodide 230 and appropriate arylthiols in the presence of palladium catalyst.  

Mercuration of 228 with mercury(I) acetate in glacial acetic acid at 100 oC for 3 h, 

followed by treatment with NaCl solution, afforded 5-chloromercury-thieno[2,3-

d]pyrimidine 229. Without separation, 229 was treated with iodine in CH2Cl2 at room 

temperature for 5 h to afford 230 in 42% yield (over two steps). Palladium-catalyzed 

cross coupling reactions of 230, the appropriate arylthiols 231, and i-Pr2NEt in DMF in 

the presence of Pd2(dba)3 and Xantphos under microwave irradiation at 190 oC for 1 h 

afforded 5-arylthio substituted 2-amino-4-oxo-6-ethylthieno[2,3-d]pyrimidine antifolates 

232 in yields of 67-87%. 

E. name reactions 
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The chemistry related to the present work will be reviewed and includes 

1. Gewald reaction. 

2. Sonogashira coupling. 

3. Ullmann coupling. 

4. Swern oxidation. 

1. Gewald reaction. 

 

 

 

Scheme 58. A general model of the Gewald reaction.  

 

Gewald reaction is a multi-component condensation reaction between sulfur, an 

α-methylene carbonyl compound and an α-cyanoester in the presence of morpholine as 

catalyst to give 2-aminothiophenes.319 The Gewald reaction is the most convergent and 

well-established approach for the preparation of multiple substituted 2-aminothiophenes. 
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Scheme 59. The proposed mechanism of the Gewald reaction. 

 

The reaction mechanism of the Gewald reaction has been recently elucidated As 

shown in Scheme 59, the first step is a Knoevenagel condensation between the α-

methylene carbonyl compound 238 and an α-cyanoester 239 to produce intermediate 240. 

Through an unknown mechanism, intermediate 240 reacts with elemental sulfur to afford 

intermediate 241, which is further converted to 2-aminothiophenes via cyclization and 

tautomerization. 

New procedures of the Gewald reactions have been developed under microwave 

or solvent free conditions.  In 2007, Sridhar et al. reported338 the first application of KF-

alumina as a base for the preparation of 2-aminothiophenes by microwave accelerated 

multi-component condensation. Although the reactions proceeded well under 

conventional heating at reflux in ethanol, the microwave condition offered an efficient 

and convenient modification to the Gewald reaction as it can be carried out with very 
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short reaction times and excellent yields.  

2. Sonogashira coupling. 

 

 

 

Scheme 60. A general model for Sonogashira cross-coupling. 

 

In 1975, Sonogashira et al. 339 reported the synthesis of symmetrically substituted 

alkynes via a coupling reaction between acetylene gas and aryl iodides or vinyl bromides 

in the presence of catalytic amounts of Pd(PPh3)Cl2 and CuI under mild conditions. Thus, 

the copper-palladium catalyzed coupling of terminal alkynes with aryl and vinyl halides 

to give enynes is called the Sonogashira cross-coupling. Typically, two catalysts, a 

zerovalent palladium complex and a halide salt of copper(I), are necessary for the 

reaction. The reaction also requires basic medium to neutralize the hydrogen halide 

produced as the byproduct of this coupling reaction. The reactivity order of the aryl and 

vinyl halides is I ≈ OTf > Br >> Cl.349 

 



102 
 

 

 

Scheme 61. Mechanism of Sonogashira cross-coupling.340 

 

Sonogashira cross-coupling is believed to involve oxidative addition-reductive 

elimination pathway (Scheme 61), although the mechanism is not clearly understood.  

. 

 

Scheme 62. Synthesis of N-(7-benzyl-4-methyl-5-(phenylethynyl)-7H-

pyrrolo[2,3-d]pyrimidin-2-yl)-N-pivaloylpivalamide 249. 

 

In 2007, Gangjee et al. 341 reported the synthesis of N-(7-benzyl-4-methyl-5-

(phenylethynyl)-7H-pyrrolo[2,3-d]pyrimidin-2-yl)-N-pivaloylpivalamide 249 (Scheme 62) 

from N-(7-benzyl-5-iodo-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-yl)-N-
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pivaloylpivalamide and phenylacetylene 248 via a Sonogashira cross-coupling in the 

presence of tetrakis(triphenylphosphine)palladium(0) and CuI as catalysts in 

dichloromethane (Scheme 62). 

3. Ullmann coupling. 

 

X
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Scheme 63. A general model for Ullmann coupling. 

 

Ullmann-coupling is the copper-catalyzed nucleophilic aromatic substitution 

between various nucleophiles with aryl halides (Scheme 63).342, 343 The Ullmann coupling 

involves the formation of a C-O, C-N and C-S bond by the reaction between an aryl 

halide with phenol, aniline and thiophenol. Typically Ullmann coupling requires harsh 

reaction conditions including high temperatures (> 200 oC), strong bases, and long 

reaction times. In addition, the classical Ullmann reaction is limited to electron deficient 

aryl halides and can only affords moderate yields. The application of modern variants of 

the Ullmann reaction employing palladium and nickel have widened the substrate scope 
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of the reaction and rendered reaction conditions more mild. 344 

Although the reaction mechanism of the Ullmann reaction has been extensively studied, 

the exact mechanistic pathway is unknown.345 According to radical scavenger 

experiments and electron spin resonance, radical mechanisms have been ruled out. 

Although the exact nature (oxidation state) of the Cu-intermediate is not known, the 

reaction is proposed to involve the formation of an organocopper compound (RCuX), 

which reacts with the other aryl reactant in a nucleophilic aromatic substitution. 

In 2008, Gangjee et al. 336reported the synthesis of several nonclassical and a classical 

antifolate via Ullmann coupling between arylbromide 225 (Scheme 53) and arylthiol 

nucleophiles in the presence of Cu2O and K2CO3 in DMF under microwave irradiation at 

180 °C for 30 min. 

 

 

 

Scheme 64. Synthesis of thioether 257. 

 

Palomo et al.346  have reported the formation of a C-S bond via Ullmann coupling 
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(Scheme 64) at lower temperature (80-110 oC) with high yield. 

. 

 

 

Scheme 65. Synthesis of thioether 260  under microwave assisted Ullmann coupling 

condition.  

Microwave assisted organic synthesis has been widely used in organic synthesis, 

resulting in faster and cleaner reactions. In 2010, Chen and coworkers347 reported Nickle 

catalyzed Ullmann coupling (Scheme 65).  

4. Swern oxidation. 

Swern oxidation is an oxidation procedure to convert primary or secondary 

alcohols to the corresponding aldehydes or ketones using dimethyl sulfoxide DMSO and 

oxalyl chloride.348 The reaction has mild character and can tolerate a wide range of 

functional groups. 

From a mechanistic point of view, the Swern oxidation proceeds through three 

steps (Scheme 66): the activation of DMSO, the activation of the alcohol and formation 

of the product. 

 

 



106 
 

 

 

 

Scheme 66. The mechanism of Swern oxidation. 

 

In the first stage, DMSO reacted with oxalyl chloride to form intermediate 264 , 

which quickly decomposed to release CO2 and CO  and to produce 
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dimethylchlorosulfonium chloride 265.  

After the addition of alcohol into the reaction medium, the 

dimethylchlorosulfonium chloride 265 reacted with the alcohol to give the key 

alkoxysulfonium ion intermediate 267,which was deprotonated to give the sulfur ylide 

269 upon treatment with base. The sulfur ylide 269 decomposed to give dimethyl sulfide 

and the desired aldehyde or ketone. 
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III. STATEMENT OF THE PROBLEM 

1. 6,5,6-tricyclic Benzo[4,5]thieno[2,3-d]pyrimidines as Dual Thymidylate Synthase 

and Dihydrofolate Reductase Inhibitors  

 Folate metabolism is an attractive target for chemotherapy, because of its critical 

importance in the biosynthesis of purine and pyrimidine nucleic acids. Antifolates that 

target folate metabolism have found clinical utility as antitumor, antimicrobial, and 

antiprotozoal agents.5,13,20,21,22 Among the folate dependent enzymes, thymidylate 

synthase (TS) and dihydrofolate reductase (DHFR) have been of particular interest. TS is 

a key enzyme in the de novo synthesis of 2’-deoxythymidine-5’-monophosphate (dTMP) 

from 2’-deoxyuridine-5’-monophosphate (dUMP).26,349 The reaction requires 5,10-

methylenetetrahydrofolate (5,10-CH2THF) as a cofactor for one carbon unit transfer and 

represents the only de novo pathway for intracellular dTMP synthesis. DHFR catalyzes 

the reduction of dihydrofolate to tetrahydrofolate, and is indirectly responsible for dTMP 

synthesis by maintaining the reduced folate pool.25 

Raltitrexed (RTX),350 pemetrexed (PMX)351 and methotrexate (MTX)352 (Figure 29) are 

examples of TS and/or DHFR inhibitors used in the clinic. RTX, approved in several 

European countries, Australia, Canada, and Japan for the treatment of advanced 

colorectal cancer, is a TS inhibitor that undergoes rapid polyglutamylation by the enzyme 

folylpolyglutamate synthetase (FPGS).186,353  PMX, in combination with cisplatin, was 

approved for the treatment of malignant pleural mesothelioma and also for non-small cell 

lung cancer. With TS inhibition as the primary mechanism of action, PMX was reported 

to inhibit several other folate-dependent enzymes including DHFR, glycinamide 

ribonucleotide formyltransferase (GARFTase), and aminoimidazole 



109 
 

carboxamideribonucleotide formyltransferase (AICARFTase).351 Similar to RTX, 

polyglutamyltion by FPGS is essential for the cytotoxicity of PMX. 
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Figure 29.   Antifolates 

 

Classical antifolates, such as RTX and PMX, that have an N-benzoyl-L-glutamic 

acid side chain usually function as substrates for FPGS, which leads to high intracellular 

concentrations of these antitumor agents and increases TS inhibitory activity for some 
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antifolates (RTX, 60-fold and PMX 130-fold) compared to their monoglutamate 

forms.187,188,350,351   Although polyglutamylation of certain antifolates (such as RTX and 

PMX) is necessary for their cytotoxic activity, it has also been implicated in toxicity to 

host cells, because of the longer cellular retention time of such polyanionic poly-

glutamate metabolites.190 In addition, reduced expression of FPGS in tumor cells can lead 

to resistance to FPGS dependent classical antifolates such as PMX.192,193,194 

To circumvent the potential tumor resistance problems associated with FPGS, 

classical antifolates should have high enzyme inhibitory potency as their monoglutamate 

forms and not require polyglutamylation by FPGS to exert their antitumor activity.354,355 

 It has been of interest not only to design potent TS and DHFR inhibitors but also 

to design and synthesize single agents that have potent dual TS and DHFR inhibitory 

activity in a single molecule. Such dual inhibitors could act at two different sites (TS and 

DHFR) and might be capable of providing “combination chemotherapy” in single agents 

without the pharmacokinetic, overlapping toxicities and other disadvantages of two 

separate agents.354 This strategy may also lead to an improved toxicity profile. 

 Typically, antifolates that contain a 2-methyl-4-oxo substitution in the pyrimidine 

ring (such as RTX) are TS inhibitors, while 2-amino-4-oxo substitution in the pyrimidine 

ring (such as PMX) may provide affinity for both TS and DHFR.   2,4-Diamino 

substitutions on the pyrimidine ring of antifolates is usually associated with DHFR 

inhibitory activity.     

 In an attempt to prevent or minimize the potential problems associated with FPGS, 

including tumor resistance, and to develop dual TS and DHFR inhibitors, Gangjee et 

al.354 reported the synthesis of a classical antifolate N-{4-[(2-amino-6-methyl-4-oxo-4,7-
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dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)thio]benzoyl}-L-glutamic acid, 274 (Figure 29), 

as a potent inhibitor of isolated hTS (IC50 = 42 nM) with a reasonable inhibition of 

human recombinant DHFR (IC50 = 2.2 µM) in its monoglutamate form thus providing 

dual inhibitory activity of TS and DHFR. Compound 274 was equipotent with 272 

(Figure 29), a potent TS inhibitor, against hTS and was more potent than the clinically 

used RTX and PMX against isolated hTS in their monoglutamate forms. Molecular 

modeling (SYBYL 6.91)356 suggested that the 6-methyl group in compound 274 makes 

important hydrophobic contacts with Trp109 in hTS and also serves to lock the 5-position 

side chain into favorable, low energy conformations. Both these factors probably 

contribute to the high inhibitory activity of 274 in its monoglutamate form against hTS. 

 

 

 

Figure 30. Stereoview compound 274 superimposed on pemetrexed (not shown) in 

human TS (PDB1JU6395), indicating the interaction of the 6-CH3 with Trp109. 



112 
 

 

 A potential advantage of compound 274 over RTX and PMX is that it is not a 

substrate for hFPGS, from CCRF-CEM cells, at concentrations up to 1045 µM.354   The 

lack of hFPGS substrate activity of 274 was attributed, in part, to the presence of the 6-

methyl group on the pyrrolo[2,3-d]pyrimidine of 274. The 6-methyl group of 274 

probably creates steric hindrance in its binding to the active site of hFPGS. Alternatively, 

the 6-methyl group of 274 may force the 5-position side chain into a conformation that is 

not conducive for binding to hFPGS. The fact that PMX, a pyrrolo[2,3-d]pyrimidine, 

much like 274, lacks a 6-methyl group and is a substrate for FPGS lends credence to the 

involvement of the 6-methyl moiety in preventing FPGS substrate activity in 274. 

 Tricyclic 273 (Figure 29) is a classical TS inhibitor with Ki = 0.09 nM.354 

Although this compound is an excellent substrate for FPGS, it is subject to the addition of 

only one additional glutamic acid. Moreover, the high potency of 273 does not rely on 

polyglutamation. The monoglutamate form is equi-potent with the diglutamate form.116 

Compound 273 is a noncompetitive TS inhibitor and its activity is not affected by the 

concentration of 5,10-CH2THF.357,358 In addition, it has been demonstrated that 

overexpression of the multidrug resistance proteins, MRP1 and MRP2, can confer tumor 

resistance to short term (4 h), but not long term (72 h), exposure of 273.19 

In the course of our structure-based drug design program it was of interest to 

synthesize classical antifolates 275-278 with a benzo[4,5]thieno[2,3-d]pyrimidine 

scaffold (Figure 31),  as structural hybrids of 273 and 274.  Compounds 275 and 276, 

similar to 273, have a 2-methyl-4-oxo pyrimidine ring which is generally associated with 

TS inhibition. In contrast, 277 and 278 have a 2-amino-4-oxo substituent, which could 
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afford dual TS and DHFR inhibition, as observed for 274 and PMX. 

 

 

 

 

Figure 31.   Target classical antifolates with the tricyclic benzo[4,5]thieno[2,3-

d]pyrimidine scaffold. 

 

    The 2-substitutions on 275-278 would access the importance of hydrogen-

bonding at this position (277, 278) versus hydrophobic binding (275, 276) to biological 

activity.    The size of a sulfur atom in 275-278 is larger than a nitrogen atom and smaller 

than two carbon atoms, thus the thiophene B-ring in benzo[4,5]thieno[2,3-d]pyrimidines 

275-278 mimics both the smaller pyrrolo B-ring in 274 and the larger quinazoline B-ring 

in 273 (Figure 32). 
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Figure 32. Superimposition of benzo[4,5]thieno[2,3-d]pyrimidine (red), pyrolo[2,3-

d]pyrimidine (green) and benzo[f]quinazoline (cyan). 

 

 Similar to the C-ring in 273 and the 6-methyl group in 274, the benzo C-ring in 

275-278 makes hydrophobic contacts with Trp109 in hTS and restricts the side chain to a 

conformation conducive for potent TS activity but perhaps not for FPGS substrate 

activity.  

 To explore the effects of side chain flexibility on biological activity, 275 and 277 

have the same benzoylglutamate side chain as 274, while 276 and 278 have a more 

conformationally restricted 2-isoindolinyl-L-glutamate side chain like 273. Unlike other 

classical TS inhibitors, the glutamate side chain in 273 is part of an isoindolinone system, 

which restricts the side chain conformation. The crystal structure of the ternary complex 

TS-dUMP-273 (PDB: 1SYN) 359 revealed that the binding of 273 and the nucleotide 

induced a closed conformation of the TS protein, similar to other antifolates. Surprisingly, 

however, the binding surface of 273 includes a hydrophobic patch from Val 77 that is 

normally buried and not on the surface.359 
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Figure 33. Stereoview of compound 276 (blue) superimposed on 273 (purple) in ecTS 

(green). Figure prepared with MOE 2008.10.356 

 

 As shown in Figure 33, molecular modeling using MOE 2008.10356 revealed that 

when the central ring in 273 is truncated to a 5-member ring in the benzo[4,5]thieno[2,3-

d]pyrimidine 276, and the substitution is moved from the 6-position  to the 5-position, the 

resulting compound binds to TS in a manner similar to 273. 
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Figure 34. Proposed binding mode with DHFR. The “Normal mode” is defined as the 

binding mode of folic acid (a 2-amino-4-oxo pyrimidine system) to human DHFR. The 

“flipped” mode is defined as the binding mode when folic acid is rotated about the C2-

NH2 bond by 180o. 

 

Molecular modeling suggested that although 2-methyl substituted compounds 275 

and 276 can not form a salt bridge with Glu30 of hDHFR at the N1 and 2NH2, like MTX, 

the 2-amino compounds 277 and 278 can bind just like folate (PDB: 1U72) in which the 

2-amino-4-oxo group binds to the enzyme with hydrogen bonding and the heterocycle 

and the benzoyl moieties bind to Phe31, Phe34 and Ile 60.   The α-carboxylic acid of the 

glutamate makes ionic contact with Arg70. According to molecular modeling, a second 

mode of binding would involve a 180° rotation about the C-2, NH2 bond (Figure 34), 

whereby the sulfur of the thiophene ring is now superimposed on the 4-oxo group of 

folate, with all other interactions being the same. It is important to note that binding of 

277 and 278 in the flip mode (Fig. 32) also allows the sulfur of the thiophene ring to 

mimic the 4-amino of MTX. To determine which of these two modes of binding the 
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molecule adopts to bind hDHFR, 277 and 278 were each cocrystalized with isolated 

hDHFR (Dr. Vivian Cody).     

 

2. Classical and Nonclassical 2-Amino-4-oxo-5-arylthio-substituted-6-propyl 

thieno[2,3-d]pyrimidines as Dual Thymidylate Synthase and Dihydrofolate 

Reductase  Inhibitors and Potential Agent for Toxoplasma gondii Infection  

As mentioned before, classical antifolates that have an N-benzoyl-L-glutamic acid 

side chain such as RTX and PMX are, in most cases, able to function as substrates for 

folylpolyglutamate synthetase (FPGS),350, 351 which leads to high intracellular 

concentrations of these antitumor agents and increases TS inhibitory activity for some 

antifolates (RTX 60-fold and PMX 130-fold) compared to their monoglutamate forms. 

Although polyglutamylation of certain antifolates is necessary for their cytotoxic activity, 

it has also been implicated in toxicity to host cells, because such polyanionic poly-

glutamate metabolites have a longer cellular retention time and do not efflux from normal 

cells. Additionally, tumor cells can develop resistance to classical antifolates which 

depend on polyglutamylation for their antitumor effects by decreasing FPGS expression. 

The problem of resistance in tumors, due to low or defective FPGS, has placed 

limitations on the use of classical antifolates, which depend on polyglutamylation for 

their cytotoxicity. Classical antifolates also require carrier systems such as reduced folate 

carrier (RFC) to gain entry into the target cells. A decreased expression in folate 

transporter systems represents another mechanism for drug resistance.  
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Figure 35. The structure of Nolatrexed. 

 

Lipophilic nonclassical antifolates were designed to overcome the problem of 

drug resistance associated with classical antifolates. These lipophilic nonclassical 

antifolates lack the polar glutamate side chain found in classical antifolates and hence do 

not depend on FPGS for their inhibitory activity of the target enzymes. Additionally, they 

also do not require the RFC system for active uptake into the cell since they are lipophilic 

and are passively transported into cells. Nolatrexed (Figure 35) is the first nonclassical 

TS inhibitor in clinical trials as an antitumor agents.364, 365 

Nonclassical dual TS and DHFR inhibitors also have the potential to treat opportunistic 

infections in immunocompromised patients such as those with acquired 

immunodeficiency syndrome (AIDS). The principal cause of death in patients with AIDS 

is opportunistic infections caused by Pneumocystis carinii (P. carinii) and Toxoplasma 

gondii (T. gondii).366-368 Due to the limits of current therapies,67,369-371 it is of considerable 

interest to incorporate selectivity and potency into a single nonclassical antifolate that can 

be used alone to treat these infections. 



119 
 

 

Figure 36. The structure of thieno[2,3-d]pyrimidine antifolates. 

 

Gangjee et al. 337recently discovered the potent TS inhibitory activity of a series 

of 2-amino-4-oxo-5-arylthio-substituted-6-ethylthieno[2,3-d]pyrimidine analogues. 

Compound 279 (Figure 36) is a potent dual inhibitor of human TS (IC50 = 54 nM) and 

human DHFR (IC50 = 19 nM). Molecular modeling using (SYBYL 8.0)356 indicated that 

the 6-methyl group in 279 and the 6-ethyl group in 280 make important hydrophobic 

contacts with Trp109 in human TS and also sterically restrict the rotation of the 5-

position side chain so that it adopts a favorable conformation for binding to human TS.  

Gangjee et al.337 previously reported the crystal structure of 279 and 280 bound to 

natural and mutant human DHFR (PDB: 3GHW & 3GHC). In both crystal structures, 

thieno[2,3-d]pyrimidine inhibitors were shown to bind with DHFR in the “normal” folate 

orientation. The crystal structures also indicated that the 6-substitutent interacted with a 

small hydrophobic pocket composed of Ile7, Thr56 and Val115 (Figure 37). 

To determine the optimum size of the 6-alkyl group for TS and DHFR inhibitory 

activity, classical 6-isopropyl substituted thieno[2,3-d]pyrimidines 281 (Figure 36) and 

nonclassical  analogues were also synthesized and evaluated.  
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Figure 37. Stereoview: X-ray crystal structure of 280 with double mutant human 

DHFR (PDB : 3GHC), generated by MOE 2008.10.363  

 

 

Figure 38. Stereoview: docking structure of 281 (gray) in human DHFR and 279 (blue) 

complex  in the “flipped” mode (PDB : 3GHW), generated by MOE 2008.10.363 

 

Molecular modeling revealed that compound 281 could not bind to human DHFR 
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in the “normal” mode, because of the steric clash between the bulky 6-isopropyl group 

and the narrow hydrophobic pocket (Ile 7, Thr 56 and Val 115). Instead, compound 281 

adopts a “flipped” mode to bind with human DHFR compared to folic acid. Docking of 

281 into the crystal structure of 279 (blue) in human DHFR (PDB : 3GHW) shows the 

sulfur atom of the thieno ring to be close to the 4-oxo group of 279 (Figure 38). In this 

binding mode, the Glu30 residue also interacts with the 2-NH2 and N1 moieties of 281. 

The p-aminobenzoyl ring along with thieno[2,3-d]pyrimidine ring makes hydrophobic 

interactions with Phe31,  Phe34, and Ile60, and the α-COOH forms an ionic bond with 

Arg70 just as compound 279 does with human DHFR in the “normal” binding mode. The 

flipped mode of 281 resulted in a 10-fold decrease in its activity compared with 

compounds (279, 280) having a straight chain substitution at 6-position. 

To further explore the optimal size at the 6-position, classical and nonclassical 6-

n-propyl straight chain substituted thieno[2,3-d]pyrimidines 282-291 (Figure 36) were 

designed.  

 

 

Figure 39. Stereoview: compound 282 bound to human DHFR in “normal” mode (PDB : 

3GHW), generated by MOE 2008.10.363 
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Molecular modeling also revealed that when the 6-substitution was a straight 

chain propyl group, the compounds retain the ability to bind the human DHFR in the 

“normal” binding mode and restore human DHFR inhibitory activity. In the “normal” 

binding mode (Figure 39), compound 282 binds just like folic acid (PDB : 1DRF), 279 

(PDB : 3GHW) and 280 (PDB : 3GHC). In this binding mode the 2-NH2 and the N3 

moieties form hydrogen bonds with Glu30. The α-carboxyl group of 282 interacts with 

Arg70 in an ionic bond and the thieno[2,3-d]pyrimidine and the phenyl ring make 

hydrophobic contacts with Phe31, Phe34, and Ile60 (Figure 39) in the binding pocket. 

The 6-propyl substitution contacts with Ile7 and Val115 in the hydrophobic pocket. 

Gangjee et al. have previously shown that nonclassical analogues of 274 (Figure 

29) with electron withdrawing groups in the phenyl ring of the side chain also enhance 

human TS inhibitory activity. SAR studies indicated that analogues with electron 

withdrawing groups at the 3- and/or 4-positions of the phenyl side chain provide 

optimum inhibitory potency against human TS. Certain analogues with electron 

withdrawing substitutions on the phenyl ring demonstrated greater potency against 

human TS than the clinically used RTX and PMX. In contrast to the requirements for 

human TS inhibition, electron donating substituents such as methoxy, methyl, and bulky 

substituents such as naphthyl are conducive for DHFR inhibition; hence nonclassical 

analogues containing these substituents were also synthesized in the 2-amino-4-oxo-5-

arylthio-substituted-6-propyl thieno[2,3-d]pyrimidine series. As indicated above for the 

classical analogue 282, it was anticipated that the nonclassical analogues 283-291 would 

also provide dual inhibitory activity against human TS and human DHFR. 
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3. Nonclassical 2-Amino-4-oxo-5-arylthio-substituted-6-methyl furo[2,3-

d]pyrimidines as Dual Thymidylate Synthase and Dihydrofolate Reductase  

Inhibitors  

Continuing the long standing goal of the Gangjee group to design and synthesize 

single agents with dual inhibitory activity against TS and DHFR as mentioned above, a 

series of 2-amino-4-oxo-5-arylthio-substituted-6-methyl furo[2,3-d]pyrimidines were 

designed. The furo[2,3-d]pyrimidine scaffold could be considered an isostere of the 

pyrrolo[2,3-d]pyrimidine system and thieno[2,3-d]pyrimidine ring systems. 

 

 

Figure 40. The structure of furo[2,3-d]pyrimidine antifolates. 

 

To develop potential dual TS and DHFR inhibitors, compound 292 (Figure 40) 

was designed as an isostere of 274 to determine the importance of the pyrrole 7-NH in 

274 for binding to human TS and DHFR. The replacement of the NH of a pyrrolo[2,3-

d]pyrimidine with an O to afford the furo[2,3-d]pyrimidine was also anticipated to 

evaluate the importance of a hydrogen bond donor (NH) versus a hydrogen bond acceptor 

(O). SAR studies in the pyrrolo[2,3-d]pyrimidine  series showed that nonclassical 

analogues of 274 with electron withdrawing groups at the 3- and/or 4-positions of the 

phenyl ring of the side chain provide optimum inhibitory potency against human TS. 

Hence nonclassical analogues containing these substituents were also synthesized in the 



124 
 

furo[2,3-d]pyrimidine series. Since electron donating substituents such as methoxy and 

bulky substituents such as naphthyl are conducive for DHFR inhibition, nonclassical 

analogues containing these substituents were also designed in the a-Amino-4-oxo-5-

arylthio-substituted-6-methyl furo[2,3-d]pyrimidine series. 

 

 

Figure 41. Proposed binding mode of 2-Amino-4-oxo-5-arylthio-substituted-6-methyl 

furo[2,3-d]pyrimidines. The “Normal mode” is defined as the binding mode of 

pemetrexed and raltitrexed to human TS and folic acid (a 2-amino-4-oxo pyrimidine 

system) to human DHFR. The “flipped” mode is defined as the binding mode when 

pemetrexed, raltitrexed or folic acid is rotated about the C2-NH2 bond by 180o. 

 

For 2-amino-4-oxo-5-substituted-6-alkyl furo[2,3-d]pyrimidines two possible 

binding modes are shown in Figure 41. The 2-amino-4-oxo mode is defined as the normal 

mode and is proposed for TS and DHFR binding. A rotation about the C2-NH2 bond by 

180o affords the flipped mode, which is also proposed for DHFR binding. 
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Figure 42. Stereoview of compound 292 (gray) superimposed on 274 (green) in ecTS. 

Figure prepared with MOE 2008.10.363 

 

As shown in Figure 42, molecular modeling using MOE 2008.10363 revealed that 

when the NH of a pyrrolo[2,3-d]pyrimidine was replaced with an O in the furo[2,3-

d]pyrimidine, the resulting compound could bind to TS in a manner similar to 274. 

The 6-methyl substitution in the furo[2,3-d]pyrimidine antifolates makes hydrophobic 

contacts with Trp109 in hTS and restricts the side chain to a conformation conducive for 

potent TS activity but perhaps not for FPGS substrate activity.  
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Figure 43. Stereoview: compound 292 bound to human DHFR in “normal” mode (PDB : 

1U72), generated by MOE 2008.10.363 

 

 Molecular modeling suggested that compound 292 could also bind to human 

DHFR in either the “normal” folate binding mode (Figure 43)  or the “flipped” folate 

binding mode (Figure 44).  In the “Normal” binding mode compound 292 could bind just 

like folate (PDB: 1U72) in which the 2-NH2 and N3 moieties form hydrogen-bonds with 

Glu30 and the benzoyl moiety binds to Phe31, Phe34 and Ile 60.   The α-carboxylic acid 

of the glutamate makes ionic contact with Arg70. 



127 
 

 

 

Figure 44. Stereoview: compound 292 bound to human DHFR in the “flipped” mode 

(PDB : 1U72), generated by MOE 2008.10 

 

 On the basis of molecular modeling, a second mode of binding would involve a 

180° rotation about the C-2, NH2 bond (Figure 44), whereby the oxygen of the furan ring 

is now superimposed on the 4-oxo group of folate, with all other interactions being the 

same. It is important to note that binding of 292 in the flip mode (Figure 44) also allows 

the oxygen of the furan ring to mimic the 4-amino of MTX.  In this binding mode, the 

Glu30 residue interacts with 2-NH2 and N1 moieties of 292. The aminobenzoyl ring 

along with thieno[2,3-d]pyrimidine ring makes hydrophobic interactions with Phe31, 

Phe34 and Ile60 and the α-COOH forms an ionic bond with Arg70 just as MTX does 

with human DHFR. 
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4. 2,4-Diamino-6-substituted bicyclic pyrimidines as dihydrofolate reductase 

inhibitors. 

The principal cause of death in patients with acquired immune deficiency 

syndrome (AIDS) are opportunistic infections caused by Pneumocystis jirovecii (pj) 

previously known as Pneumocystis carinii (pc), Toxoplasma gondii (tg) and 

Mycobacterium avium (mav) complex (MAC).367,372 Selective inhibition of pathogen 

DHFR may provide a cure for such infections.  

 

 

Figure 45. The structure of TMQ, TMP, PTX and pyrimethamine. 

 

Several DHFR and TS inhibitors have found clinical utility as antitumor and 

antiopportunistic agents. Nonclassical lipophilic DHFR inhibitors are currently used to 

treat opportunistic infections caused in AIDS patients.373 Current therapy for these 

opportunistic infections includes the selective but weakly potent monocyclic agents TMP 

and pyrimethamine. Both TMP and pyrimethamine are weak inhibitors of pcDHFR and 

tgDHFR and must be used with sulfonamides to provide a synergistic effect. However, 
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the combination therapy is successful in only 50-75% of the AIDS population and 

produces severe side effects in several cases. Up to 60% are unable to tolerate the 

combination therapy due to severe, adverse drug reactions. 

Piritrexim (PTX) and trimetrexate (TMQ) are also nonclassical DHFR inhibitors. These 

are highly potent but lack selectivity toward the pathogen enzyme and show host toxicity. 

TMQ is coadministered with leucovorin, the classical folate cofactor (6R,6S)-5-formyl-

5,6,7,8-THF, which selectively rescues host cells from TMQ toxicity.371 Unfortunately, all 

these combinations cause serious toxicities that force the cessation of treatment in many 

cases.37  

The existing regimen used to treat opportunistic infections in AIDS and other 

immunocompromised patients is suppressive rather than curative and the therapy must be 

continued indefinitely. Thus, it is of considerable interest to design single agents that have 

both the desired selectivity of TMP and the potency of TMQ. Patients with AIDS are 

often infected with multiple opportunistic infections, it is highly desirable to develop 

single agents that simultaneously target two or more opportunistic pathogen DHFR.  

However, the absence of any animal models for human Pneumocystis jirovecii 

pneumonia and the lack of crystal structures of pjDHFR and tgDHFR make the design of 

such analogs very difficult. 

 

Figure 46. The structure of nonclassical 2,4-diamino-pyrido[2,3-d]pyrimidines 299-306. 
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Gangjee et al.145 as well as others,18,135,377 have reported the investigation and 

structure-activity/selectivity relationships of several structural classes of DHFR inhibitors. 

Recently a series of pyrido[2,3-d]pyrimidines have been reported as potent and selective 

pjDHFR inhibitors.69 Among them, compound 299 shows 2190-fold selectivity against 

pjDHFR, which is about 4-times higher than the selectivity index of clinically used TMP. 

Compared to 299 and TMP, the pjDHFR selectivity of 300 is not very high and its 

selectivity index is only 154. However, this compound has nanomolar pjDHFR inhibitory 

activity and is much more potent than TMP. These series of compounds also prove that 

pjDHFR and pcDHFR are different enzymes in different pathogen and drugs can behave 

quite differently against pcDHFR and pjDHFR.  

Table 2: DHFR inhibitory activity of 299, 300 and TMP69 

 IC50(µM) 

compound rDHFR rhDHFR pcDHFR pjDHFR h/pj 

299 4.7 4.6 0.184 0.004 2190 

300 1.29 0.54 0.08 0.0035 154 

TMP 129 188 22.4 0.33 564 

 

To further explore the structure activity relationship (SAR) of this series of 

compounds and to improve the potency and selectivity against pjDHFR, structure 

modifications of 299 and 300 were carried out by using analogue design. The 

replacement of the nitrogen atom on the pyrido[2,3-d]pyrimidine ring with a carbon 

resulted in compounds 301 and 302. This substitution causes the electron distribution on 
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the ring system to be altered and the loss of hydrogen bond formation at the 8-position. In 

addition, compounds 301 and 302 can be considered structural mimics of TMQ.  Having 

the same 2,4-diamino quinazoline structure as TMQ, 301 and 302 were proposed to 

maintain high pjDHFR activity. By adding an additional nitrogen to the 5-position of the 

lead compound 299 and 300, pteridine analogues 303 and 304 were designed. To explore 

the effects of different hetero atoms on the side chain, the nitrogen atom on the side chain 

of 303 was replaced by oxygen and sulfur to afford 305 and 306. The replacement of the 

side chain NH of 303 a pyrrolo[2,3-d]pyrimidine with an O or S was also anticipated to 

evaluate the importance of a hydrogen bond donor (NH) versus hydrogen bond acceptor 

(O, S). 

5. Importance of the Side Chain Aryl Group for Folate Receptor Targeting and 

GARFTase Inhibitory Activity in Classical Thieno[2,3-d]pyrimidine Antifolates   

More than twenty interrelated enzymatic reactions in cellular metabolism require 

folate coenzymes. These reactions are essential to maintain de novo synthesis of 

deoxyribonucleic acid (DNA) and amino acids.1  

Glycinamide-ribonucleotide transformylase (GARFTase) is the first folate-

dependent enzyme in purine biosynthesis and catalyzes the conversion of glycinamide 

ribosyl-5-phosphate (GAR) to formyl-glycinamide ribosyl-5-phosphate (fGAR), utilizing 

N10-formyl-FH4  as a cofactor. The inhibition of GARFTase has potential importance in 

cancer treatment since it could lead to a depletion of purine nucleotide pools, which can 

limit nucleotides for DNA synthesis and repair.374 High concentrations of the folate pool 

are necessary for normal activity of the cell. Since humans lack the de novo biosynthesis 

of folates, cellular uptake of these derivatives is essential for tissue regeneration and cell 
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growth. Transport into the cell is usually accomplished by three carrier proteins present 

on the cell surface: reduced folate carrier (RFC), the membrane folate receptor (FR) and 

the proton-coupled folate transporter (PCFT).267 

Reduced folate carrier (RFC) is ubiquitously expressed in normal tissues and 

tumor cells. It has long been recognized as the major transport system for folates in 

mammalian cells176 and the primary transporter of classical antifolate drugs used for 

cancer chemotherapy, such as methotrexate (MTX), pemetrexed (PMX), raltitrexed (RTX) 

(Figure 1). The decrease of RFC levels or functions is a common mechanism of antifolate 

resistance.176,180  

Compared to the ubiquitously expressed RFC, α-folate receptor (FRα) has a 

restricted tissue distribution pattern. The FRα is overexpressed in some epithelial cells, 

especially the kidney, placenta and choroid plexus, and has a restricted distribution in 

normal tissues, which provides an opportunity to develop antifolates specifically targeted 

at FRα overexpressing tumors. Agents that are specific for the FRα are highly selective 

for tumors that overexpress FRα with the potential of little or no toxicity to normal 

cells.376,377 PCFT was recently identified as a third transporter for folates. It was reported 

that PCFT increases the intracellular concentration of PMX at pH 5.5, which illustrated 

the unique property of PCFT as a transporter of antifolates.375 

 

 

Figure 47. The structure of antifolates 307-313 
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Deng et al377  reported a series of 6-substituted thieno[2,3-d]pyrimidine 

antifolates 307-313 (Figure 47) as potent and selective inhibitors of cells that express FRs 

α and β. The thieno[2,3-d]pyrimidines 307-313 are unique and distinct from all other 

clinically used classical antifolates, including the pyrrolo[2,3-d]pyrimidine (PMX), 

quinazoline (RTX), and pteridine (MTX) antifolates, in that they are neither substrates for 

RFC nor PCFT. In this series, compound 309 with a four carbon bridge is the most potent 

inhibitor of cells expressing FRs α and β, and this activity is directly related to 

intracellular GARFTase inhibition.377 

 

 

Figure 48. The structure of antifolates 314-317. 

 

To further investigate the structural requirements of the thieno[2,3-d]pyrimidine 

antifolates for FR transport and GARFTase inhibition, particularly the importance of the 

aromatic ring in the side-chain, a series of compounds 314-317 (Figure 48) with different 

aryl substitutions were designed, synthesized and evaluated. The aryl group in side-chain 

is believed not only to allow the appropriate relative orientation of the thieno[2,3-
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d]pyrimidine scaffold (part A) and the glutamate portion (part B), but also allow 

important interactions with the transporter and the target enzyme.  

 

Table 3. The angle of aryl disubstitutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Table 3, the angle between part A and part B is a measurement of the 

relative spatial orientation of A and B. For 314, although A and B substitutions have the 

same angle (180o) as the parent 309, the existence of an extra CH3 in 314 ortho to the 

Compound  Ar angle 

309 

 

180o 

314 

 

180o 

315 

 

120o 

316 

 

147.4o 

317 

 

125.5o 
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alkyl chain in part A may restrict the free rotation of the otherwise flexible alkyl linker. 

Moreover, this methyl group could provide extra hydrophobic binding with the 

transporter FR and/or the enzyme GARFTase. 

Depending on the angle, the overall distance between A and B in 315, 316 and 

317 are slightly different, which may also affect the binding affinity of the compounds 

with the transporter and/or target enzyme. 

 

 

 

Figure 49. Structural alignment between 2,5-disubstituted thiophene (purple) and  para-

disubstituted benzene (green), generated by MOE 2008.10. 

 

  In 315, a meta disubstitution pattern was adopted such that the angle between the 

two parts A and B is 120o. 2,5-Disubstuted thiophene can mimic para-disubstituted 

benzene (Figure 49), while 2,5-disubstituted furan can mimic meta-disubstituted benzene 

(Figure 50). Thus, the benzoyl ring in 309 was bioisoterically replaced by a thienoyl ring 

or a furoyl ring, the resulting compounds 316 and 317 were able to explore 147.4o and 

125.5o angles (Table 3) as well as the potential interactions between the hetero atoms in 
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the aryl ring and the transporter and/or enzyme.   

 

 
 

Figure 50. Structural alignment between 2,5-disubstituted furan (purple) and 1,3-meta-

disubstituted benzene (green), generated by MOE 2008.10. 

 
6. Importance of the Glutamate Moiety for Folate Receptor Targeting and 

GARFTase Inhibitory Activity in Classical Thieno[2,3-d]pyrimidine Antifolates 

As mentioned above, a series of thieno[2,3-d]pyrimidines 307-313 (Figure 47)  

were preparedas potent and selective inhibitors of cells that express FRs α and β.369 This 

series of thieno[2,3-d]pyrimidine antifolates 307-313 are neither substrates for RFC nor 

PCFT, which is unique from all the other clinically used classical antifolates evaluated, 

including the pyrrolo[2,3-d]pyrimidine PMX, the quinazoline RTX, and the pteridine 

MTX antifolates. In this series, compounds 308 and 309 with a 3- or 4-methylene bridge 

were consistently the most potent inhibitors of cells expressing FRs α and β, and this was 

associated with potent inhibition of GARFTase.  
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Figure 51. The structure of antifolates 318-322 

 

To further investigate the structural requirements of the thieno[2,3-d]pyrimidine 

antifolates for GARFTase inhibition and selective FR binding, particularly the 

importance of the carboxylic acid moieties in the glutamate, a series of analogues 318-

322 (Figure 51) with variation in the carboxylic acids of the L-glutamate moiety were 

designed, synthesized and evaluated. Compounds 318 and 319 have a CH3 or  H at the α-

position instead of a carboxylic acid group to explore the importance of glutamate α-

carboxylic acid. Compounds 320-322 maintain the α-carboxylic acid but have variations 

(CH3 in 320, H in 321 and SH in 322) at the γ-carboxylic acid position.  

 

7. Synthesis of N-aryl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amines as RTK inhibitors. 

Angiogenesis, the formation of new blood vessels from pre-existing vasculature, 

is essential for solid tumor proliferation and plays a key role in the growth of solid tumors, 

tumor invasion and metastasis.378,379 Solid tumors depend on the newly formed 

vasculature network around the tumor mass to provide nutrients and to remove metabolic 

waste in order to grow beyond a few millimeters in diameter. 380  
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The activation of RTKs regulates the transduction of signals from the extracellular domain of 

endothelial cells to the nucleus and represents the most pronounced factor that triggers 

angiogenesis.238  

 

 

 

Figure 52. Representative RTK inhibitors. 

 

The inhibition of RTK disrupts angiogenesis and provides an approach for the treatment 

of cancer. Previously, most of the development of RTK inhibitors was focused on targeting single 

RTKs. Inhibitors targeting single RTK do not allow for off target inhibition of other RTKs and 

hence have little toxicity issues. However, tumors often survive through an alternative signaling 

pathway to afford angiogenesis and thus develop resistance to these single targeting RTK 

inhibitors. Recently, preclinical studies have shown that the simultaneous inhibition of multiple 
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kinases by a single-agent has the potential to increase antitumor activity and delay resistance. 

Thus, multitargeting RTK inhibitors become the current paradigm in cancer chemotherapy. FDA 

has approved sunitinib and sorafenib as multitargeted agents which show clinical benefit with 

minor side effects as multi-kinase inhibitors (Figure 52). 381,382 

The ATP-binding site of RTKs is an attractive target for small molecule drug design. 

Structure determination of ATP-RTK complexes have revealed the regions within or close to the 

binding cleft not fully occupied by ATP. These unoccupied regions show structural diversity 

between members of the kinase family. The commonality as well as diversity among the ATP-

binding sites of kinases has allowed the development of pharmacophore models for rational drug 

design.259  The model proposed consists of an Adenine region which is a hydrophobic binding 

site for the adenine ring of ATP as well as for the heterocyclic scaffold of RTK inhibitors such as 

quinazolines and pyrimidines. The N1- and N6- amino nitrogen of the adenine ring of ATP are 

hydrogen bonded to two amino acid residues of the Hinge region (Figure 53). The Sugar binding 

pocket in the ATP binding site accommodates the sugar moiety of ATP and the Phosphate 

binding region binds the triphosphate moiety of ATP. In addition, a hydrophobic site I extends in 

the direction of the lone pair of the N7 of ATP and a Hydrophobic site II lies below the Adenine 

region. Both hydrophobic regions are unoccupied by ATP in the binding site.  
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Figure 53. ATP from IRK modeled into VEGFR-2 using SYBYL 6.7. 

 

Before the crystal structures of VEGFR2 or PDGFRβ with ATP or with quinazoline or 

pyrrolo[2,3-d]pyrimidine inhibitors became available, Gangjee et al modeled ATP from IRK into 

VEGFR-2 based on the proposed general pharmacophore for RTKs using SYBYL 6.7. For 

binding of ATP in VEGFR-2,  the corresponding hinge region residues are Glu 917 and Cys 919 

(Figure 53). These are important binding sites for ATP and ATP-competitive inhibitors and serve 

to anchor the heterocyclic portion of the molecule and appropriately orient the other parts of the 

molecule in the ATP binding site.  
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Figure 54. The structure of 6-5 bicyclic RTK inhibitors 323-325. 

 

Compound 323-325 have been reported as 6-5 bicyclic RTK inhibitors. Compound 325 

with a furo[2,3-d]pyrimidine scaffold was reported as an EGFR inhibitor with IC50 = 5-10 nM. 

On the basis of the general pharmacophore model and known 6-5 bicyclic RTK inhibitors, a 

series of furo[2,3-d]pyrimidine analogs of 326-334  were designed as RTK inhibitors. 

 

 

Figure 55. The structure of furo[2,3-d]pyrimidine RTK inhibitors 326-335 

 

These inhibitors contain a furo[2,3-d]pyrimidine scaffold rather than the purine scaffold 

of ATP with a 2,4,6-trisubstitution. The 2-substitution of 326-335 was designed as a methyl 

group, which is not present in most other 6-6 or 6-5 ring system RTK inhibitors reported. On the 

basis of molecular modeling, there is sufficient space in the ATP binding site of RTKs to 
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accommodate a 2-methyl group. In addition, further functionalization of the 2-methyl group can 

afford access to Hydrophobic region II thus perhaps increase the binding affinity with the 

enzymes and provide selectivity among different RTKs. Unlike 325, compounds 326-334 have a 

6-methyl substitution instead of a 6-phenyl substitution. Compared to a phenyl group, a methyl 

group has a smaller size, and can be accommodated in the phosphate or sugar binding site of 

multiple RTKs. Compounds 326-334 were designed to fit into the ATP binding site of multiple 

RTKs. In addition, the 6-methyl group provides a handle for further functionalization. When 

necessary, this methyl group can be converted to other groups to increase binding affinity with 

the enzyme or gain selectivity among different RTKs.  

Similar to most of the known ATP competitive RTK inhibitors, 326-334 have a 4-anilino 

substitution. Different anilino substitutions at the 4-postion of the pyrimidine A-ring were 

expected to be involved in RTK binding at the Hydrophobic Region I and to influence inhibition, 

selectivity as well as the antitumor activity. Palmer et al.383 reported in 1997 that small lipophilic 

electron-withdrawing groups at the 3-position of the anilino moiety in tricyclic ring system are 

beneficial for EGFR inhibition. Bold384 reported that small lipophilic electron-withdrawing 

groups at the 4-position of the anilino moiety are also beneficial for VEGFR-2 and PDGFRβ 

inhibition. Thus, anilines with electron-withdrawing groups at either the 3- or 4-position were 

selected in compounds 329-331 and 334. For comparison, compound 326 and 333 with a phenyl 

group and 4’-methoxy phenyl substitution were also included as 4-substitution on pyrimidine A 

ring. Compound 327 with a naphthalene substitution was design to determine the bulk tollerance 

in Hydrophobic region I among different RTKs.  Similar to erlotinib, a 2-acetylenyl substitution 

was designed in compound 328. The indole ring rather than a substituted phenyl ring has been 

reported to provide potent and selective RTK inhibition.385 Thus in compound 332, an indole ring 
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was designed as the 4-substitution on pyrimidine A-ring through a nitrogen linkage.  

 

 

 

Figure 56. The proposed binding mode of 335. 

 

Compared to other compounds in the series, in compound 335, an additional methyl 

group was designed on the aniline-nitrogen. This methyl group was introduced to restrict free 

rotation of the 4-position C-N bond as well as the 1’-position C_N bond (Figure 56) and 

influence the conformation of the compound. Thus an additional methyl group on the aniline-

nitrogen could force the phenyl ring into the Hydrophobic site I and increase RTK inhibition, 

although the displacement of NH hydrogen with a methyl group could destroy hydrogen bond 

donor ability in the hinge region. 
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8. N-(4-methoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine hydrochloride for 

improved water solubility. 

 

 

Figure 57. The Structure of N-(4-methoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine 

hydrochloride 336.  

To define the mode(s) of binding and binding conformation with RTKs, an aniline N-

methylated analog was designed in a series of furo[2,3-d]pyrimidine RTK inhibitors. Although 

compound 335 has an additional methyl group on the aniline-nitrogen, it showed moderate 

inhibition against certain RTKs. Compound 335 is a moderate inhibitor of RTKs and the 

inhibition potency of this compound is comparable to the NH analogs and the standard.  Unlike 

typical RTK inhibitors and other compounds in the series, compound 335 showed potent 

antiproliferative activity, thus implying an additional mechanism of action. In the preclinical 

screening program of the National Cancer Institute in its 60 tumor cell line panel, 335 inhibited 

the proliferation of most of the 60 cancer cell lines with a GI50 of less than 500 nM.  

The promising biological results for compound 335 against the NCI 60 cancer cell lines 

prompted further investigation this compound in vivo. However, this was hindered by its poor 

physiochemical properties. Compound 335 has poor water solubility (<1 mg/mL) and tends to 

absorb trace amount of hexane and HCl. Thus, it is desirable to covert 335 to its more water 

soluble hydrochloride salt 336 (Figure 57). 
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9. Synthesis of N-(substitutedphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine as 

antimitotic anticancer agents. 

 

 

Figure 58. The structures of microtubule targeting agents.  

 

 Tubulin binding agents belong to a very important class of antitumore agents and are 

widely used in clinic for cancer chemotherapy. Half of all human tumors have mutations in the 

p53 gene, and the most effective drugs in p53 mutant cell lines are  tubulin-binding agents.386  

Based on their binding sites, most antimicrotubule agents can be divided into three classes, 

taxoids, the vinca alkaloids and inhibitors that bind at colchicine site. 206, 387, 388    The first group 

includes paclitaxel (Taxol) and docetaxel (Taxotere), as well as the epothilones. Paclitaxel and 

other taxoids (and the epothilones) bind to the interior of the microtubule, 389,390 and the tubulin 

β-subunit. Unlike the other two classes of antimicrotubule agents, the taxoids stimulate tubulin 

polymerization and are designated microtubule-stabilizing agents. They are useful in the 

treatment of breast, lung, ovarian, head and neck and prostate carcinomas among others.   The 
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second class are the vinca alkaloids including vincristine, vinblastine, vindesine and vinorelbine. 

The vinca alkaloids also bind at the β tubulin  but is distinct from that of taxoids. The vinca 

alkaloids are important in the treatment of leukemias, lymphomas, non-small cell lung cancer 

and other cancers. A diverse collection of small molecules, including cochicine and 

combrestatatins, bind to the colchicine site  on  β-tubulin at its interface with α-tubulin, distinct 

from the vinca site.  Similar to the vinca alkaloids, colchicine site agents inhibit tubulin 

polymerization. Colchicine itself is not used as an antitumor agent but is used in the treatment of 

gout and familial Mediteranean fever. Although there are no clinically approved antitumor 

agents that bind to the colchicine site, several of these agents are currrently in clinical trials.391, 

392 Combretastatins, as exemplified by combretastatin A-4 (CA4) and its phosphorylated prodrug 

combretastatin A-4 phosphate (CA4P) are currently in  clinical trials,206  which demonstrates the 

importance of developing colchicine site agents as antitumor agents.  

  Multidrug resistance (MDR) is a major limitation of cancer chemotherapy, and MDR 

tumors are usually resistant microtubule disrupting agents. Overexpression of P-glycoprotein 

(Pgp) represents one of the major mechanism of tumor resistance. An elevated Pgp level has 

been reported in the clinical setting in a number of tumor types, particularly after patients have 

received chemotherapy. 217,393  In addition, Pgp expression has also been reported to be a 

prognostic indicator in certain cancers and is associated with poor response to 

chemotherapy.394,395 Due to the overwhelming lack of success of Pgp inhibitors in the clinic,  

new microtubule targeting agents unsusceptible to Pgp-mediated resistance  are desired.393,396  

Such agents will fill an unmet need in the clinic for patients that develop resistance due to Pgp 

overexpression. The expression of  βIII-tubulin is involved in resistance to taxoids and vinca 

alkaloids in multiple tumor types including non small cell lung,397-399 breast,400  and ovarian 
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cancers.401,402  Stengel et al.403 and Lee et al.404  showed that colchicine  site agents circumvent 

βIII-tubulin resistance, which indicated the critical importance of developing new agents that 

bind to the colchicine site as an alternative to the taxoids for the treatment of refractory cancers.    

 Poor water solubility is an additional problem associated with several of the currently 

used antitubulin agents,  particularly the taxoids. It is necessary to formulate such drugs in 

Cremophor or polysorbate, which can cause hypersensitivity reactions and require long 

administration times.  Thus  the development of water soluble microtubule targeted agents are 

highly coveted, and attracted enormous  research effort. 

Table 4. Tumor cell inhibitory activity GI50 (nM) of 335 (NCI). 

Panel/ Cell 
line 

GI50 

(nM) 
Panel/ Cell line GI50 

(nM) 
Panel/ Cell line GI50 

(nM) 
Panel/ Cell line GI50 

(nM)  
NSCLC  Renal Cancer   Ovarian cancer  Prostate Cancer  
A549/ATCC 37.6 786 - 0 43.6 IGROV1  PC-3  
EKVX 64.8 A498 19.5 OVCAR-3 29.1 DU-145 26.2 
HOP-62 32.2 ACHN 55.9 OVCAR-4 60.4 Breast Cancer  
HOP-92  CAKI-1 16.3 OVCAR-5 55.8 MCF7 42.2 
NCI-H226 84.1 RXF 393  OVCAR-8 36.6 MDA-MB-231/ATCC 44.3 
NCI-H23 40.7 SN 12C 56.7 NCI/ADR-RES  HS 578T 15.3 
NCI-H322M   TK-10  SK-OV-3 25.2 BT-549 48.0 
NCI-H460 33.1 UO-31 75.2 Melanoma   MDA-MB-468 34.9 
NCI-H522 <1 Colon Cancer  LOX IMVI 54.9 Leukemia  
CNS Cancer  COLO 205 20 MALME-3M 42.3 CCRF-CEM 25.3 
SF-268 33.6 HCC-2998 28.5 M14 23.3 HL-60(TB) 17.3 
SF-295 13.8 HCT-116 34 MDA-MB-435  K-562 13.2 
SF-539 20.0 HCT-15 25.3 SK-MEL-2 33.9 MOLT-4 67.9 
SNB-19 33.3 HT29 32.5 SK-MEL-28 37.7 RPMI-8226 42.8 
SNB-75 53.2 KM12 21.1 SK-MEL-5 22.9 SR 32.0 
U251 30.8 SW-620  29.8 UACC-62 14.6   

 

 Compound 335 was originally designed as an inhibitor of multiple RTKs and  to explore 

the effects of the N-methyl group on the binding conformation with RTKs. Compound 335 

showed moderate activities against RTKs and the inhibition potency of this compound is 

comparable to the NH analogs and the standard. Unlike typical RTK inhibitors and other 
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compounds in the series, 335 showed potent antiproliferative activity.  Compounds 335 showed 

potent GI50s in most of the NCI 60 cancer cell lines (Table 4).  

 Table 5. NCI COMPARE analysis result for 335. 

Rank Vector Correlation  Cell line 

1 vincristine sulfate S67574 -3M TGI 2 days AVGDATA 0.600 49 

2 maytansine S 153858 -4M TGI 2 days AVGDATA 0.494 49 

3 vinblastine sulfate S49842 -5.6M TGI 2 days AVGDATA 0.458 49 

 

 The potent activities of 335 prompted a COMPARE analysis,405 which showed 

vincristine sulfate to have the closest Pearsons correlation coefficient with 335. Other 

compounds, such as vinblastine sulfate and maytansine, also tubulin binding agents, were ranked 

as the next closest correlation (Table 5). This clearly warranted the evaluation of 335 as a tubulin 

binding agent. 

Table 6. Microtubule depolymerization activities of 335. 

Compound EC50 for microtubule 
depolymerization 

Combretastatin A-4 7nM 

335 103.2 nM  

 

 Compounds 335 caused dramatic reorganization of the interphase microtubule network, 

similar to the effects of colchicine and CA4P.  The EC50 (concentration required to cause 50% 

loss of cellular microtubules) (Table 6) was calculated to be 7 nM for CA4P, 396 103 nM for 335.   

Compounds 335 is a potent microtubule depolymerizers in cells, confirming the COMPARE 

analysis results. 
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Table 7. The resistnace index of 335 in SK-OV-3 isogenic cell line pair. 

 SKOV  

(nM)  

SKOV+pgp (nM) Resistance Index 

335 36.7 171 4.7 

Taxol 2.2 4400 2000 

 

The ability of 335 to circumvent Pgp-mediated drug resistance was evaluated by using an 

SK-OV-3 isogenic cell line pair (Table 7).  In this cell line pair the resistance index (Rr) of 

paclitaxel, a well known Pgp substrate is greater than 2000 while Rr values of 4.7 was obtained 

with 335, consistent with the Rr values obtained with other colchicine site agents, CA4P and 

2ME2 of 1.5-2.6.  These data suggest that 335 is a poor substrates for transport by Pgp and thus 

has advantages over some clinically useful tubulin-targeting drugs like paclitaxel.   

 

Table 8. The biological activities of 335 as a colchicine site binding agent 

 

compound Inhibition tubulin assembly 
IC50(µM)±SD 

Inhibition of colchicine binding % 

inhibition  ±SD 

  1 µM 5 µM 

Combretastatin A-4 1.0 ± 0.09 88 ± 2 99 ± 0.2 

335 2.4 ± 0.01 63 ± 5 88 ± 3 
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Studies were conducted to determine if 335 inhibited the polymerization of purified 

bovine brain tubulin, as would be predicted from the effects in cells.  These biochemical studies 

provide an indication of a direct interaction of the compounds with tubulin. An initial study 

indicated that 335 is a potent inhibitors of purified tubulin assembly.  Compound 335 was also 

compared with CA4P as inhibitors of assembly in a quantitative study (Table 8). In this assay, 

335 inhibited tubulin assembly about as well as CA4P (Table 8).    The data in Table 4 also 

shows that 335 binds at the colchicine site on tubulin, since it inhibited  [3H]colchicine binding  

to the protein, although not as potently as CA4P. 

 

 

 

Figure 59. The structures of compound 337-342.  

 

To further improve the biological activity of 335 and to determine the pharmacophore, an 

additional series of compounds were designed through analog design. A topliss strategy was 

applied to determine the effects of substitution group on the phenyl ring and to determine the 

optimal substitutions. In this series, besides the parent 4-methoxy analogue 335, six other 

analogues were designed to explore the electronic effects and steric effects. Compound 337 has 

an unsubstituted phenyl ring. Compound 338 and 339 have an electron donating methyl groups 

at the phenyl 3’- or 4’-position respectively. Compound 340 contains a single electron 

withdrawing chlorine substitution at the 4’-position. Compound 341 contains electron 
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withdrawing chlorine groups present at both the 3’- and 4’-positions. Compound 342 contains a 

bulky naphthyl substituent attached at the 1’-position in order to determine the bulk tollerance of 

the colchicine binding site.  

 

10. Synthesis of conformational restricted N-(substituted)-2,6-dimethylfuro[2,3-

d]pyrimidin-4-amine as antimitotic anticancer agents. 

As mentioned above, the furo[2,3-d]pyrimidine 335 showed antiproliferative activity 

against the NCI-60 panel of tumor cells at low nanomolar levels and was active in taxol resistant 

tumor cell lines that over express Pgp. Compound 335 has additional advantages over clinical 

antimitotic agents, such as taxol, in that it is easily to be synthesized and is readily converted to 

the water soluble salt form. Microtubule depolymerization through the binding at the colchicine 

site was determined to be the primary mechanism of action for 335. 

Compared to the NH analogue, the N-methylated compound 335 showed spectacular 

antimitotic antitumor activity, which could be attributed, in part, to conformational restriction. A 

1HNMR study was carried out to explore the conformation of 333 and 335 (Figure 60). In 

compound 333, the σ bonds (C1’-N and N-C4 bonds) connecting the phenyl ring and the 

pyrimidine ring are both free rotatable. While these bonds was restricted in 335, where an 

additional methyl group was introduced on the N4-position. According to the 1HNMR spectrum, 

the furo[2,3-d]pyrimidine 5-H in 335 is more shielded than in 333, which suggested a nearby 

diamagnetic anisotropic cone. Due to the bulk of the N-methyl group, the conformation of 335 is 

restricted and the phenyl ring in 335 has to position itself on the top of 5-H proton, which leads 

to the shielding effect. 
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Figure 60. The conformations of compound 333 (A) and 335 (B) and 1HNMRS. 
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Figure 61. The structure of 343-349 

 

These larger groups require more space and further restrict the free rotation of C-N-C 

single bonds. In addition, these bulky group have larger hydrophobic surface and provide 

additional hydrophobic interactions with the protein. These compounds with larger N-

substitutions may have greater affinity for the target protein and have more potent biological 

activities, compared to N-methylated compound. 

An alternate strategy to explore the influence of conformational restriction was to restrict 

the free rotation of single bonds by incorporating them in ring systems. The single bonds in the 

ring system are no longer free rotatable. By changing the ring size and bond orders, the 

conformation of the compounds can be further attennuated. With optimal ring size and bond 

order, the low energy conformation of the compound is close to the biologically active 

conformation and affords potent activity. To further determine the optimal conformation, 

compound 347-349 (Figure 61) were designed. The N-methyl group and phenyl ring in 

compound 335 was linked through one additional carbon to afford compound 347, which has a 

dihydroindole ring system. A two carbon atoms linker afforded tetrahydroquinoline 349. 

Compound 348 has an indole ring to fix the position of the 4-methoxy phenyl. 
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11. Synthesis of N-(substituted)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine as antimitotic 

and anticancer agents. 

 

Figure 62. The structure of 350-362 

 

As mentioned above, 335 showed potent antimitotic antitumor activity. A topliss study 

was carried out to determine the optimal substitution on the phenyl ring and the importance of 

the 4-methoxy group. Replacement of 4’-methoxy group of 335 with hydrogen, electron 

donating methyl group or electron withdrawing 4’-chloro or 3’,4’-dichloro substitutions resulted 

in compounds that lost both the antimitotic and antiproliferative activities. This result clearly 

indicated the critical importance of the 4’-methoxy group for biological activities. Thus it was of 

interest of determine the reason for the importance of the 4’-methoxy group and how it 

contributes to the activity. In an attempt to further clarify the interaction of the 4’-methoxy group 

with the colchicine binding site, compounds 350-362 was designed.  The methoxy group was 

moved to the 2’- or 3’-positions in 350 and 351 respectively to determine the optimal 
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substitution position. The methoxy oxygen  in 335 has two possible functions: providing 

interactions with the protein at the binding site through hydrogen bond or providing a linker 

between the methyl group and the phenyl ring and to position the methyl group in an appropriate 

region in the binding site. Due to the different hydrogen bonding possibilities, atom size and 

bond angles between oxygen, carbon, sulfur and nitrogen, compounds 352-354 were designed 

via a bioisosteric replacement of oxygen with carbon, sulfur and  nitrogen. Compounds 355 and 

356 were designed to explore the importance of the methyl group of the phenyl 4-methoxy 

substitution. It is hypothesized that the methyl group can interact with hydrophobic amino 

residues in the binding site. Thus, changing the methyl group to large alkyl groups could increase 

the hydrophobic interactions. To verify the hypothesis and to explore the size of the hypothetic 

hydrophobic pocket, compounds 355 and 356, containing ethyl and  propyl groups, were 

designed. Compound 335 was determined to be an inhibitor of the polymerization of purified 

bovine brain tubulin. In a quantitative study, compound 335 inhibited tubulin assembly about as 

well as CA4P. In addition, 335 was shown to bind at the colchicine site on tubulin, since it 

inhibited  [3H]colchicine binding  to the protein. A structure activity relationship analysis 

indicated that colchicine, CA4P and several other colchicine site binding inhibitors have 

multimethoxy substitutions in their structures. Given the fact that 335 is a colchicine site binding 

inhibitor and contains one methoxy group, it is of interest to introduce additional methoxy 

groups  in 335 to perhaps mimic colchicine and other related analogues. Thus 357-359 (Figure 

62) with either dimethoxy or trimethoxy substitutions were designed.  

The bond connecting the 4-methoxy group and the phenyl ring is free rotatable. To 

restrict the free rotation of the σ bond and to explore the optimal binding conformation,  

compound 360-362 (Figure 62) with fused bicyclic systems as 4-substitutions on the furo[2,3-
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d]pyrimidine as the scaffolds were designed. The 4’-methoxy group in 335 was converted to the 

oxygen-methylene group and severed as part of the   ring system in 360-362. The benzodioxole 

in 360, dihydrobenzofuran in 361 and benzofuran in 362 not only mimic the function of the 4’-

methoxy group in 335 but perhaps also provide additional binding interactions with the target 

protein.  

 

12. Synthesis of N-(4-methoxyphenyl)-N,2,6-trimethyl-5,6-dihydrofuro[2,3-d]pyrimidin-4-

amine as antimitotic anticancer agents. 

 

 

Figure 63. The structure of 363 and 364 

Gangjee et al.406 recently reported the discovery of a potent antitubulin (R,S)-N-(4-

methoxyphenyl)-N,2,6-trimethyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-aminium chloride 

363 (Figure 63).  

Similar to  N-(4-methoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine 335 

mentioned above, 363 is a colchicine site binding, microtubule depolymerizing agent that 

inhibited the growth of cancer cells with GI50 in the nanomolar range. In addition, 363 

overcomes the two most clinically relevant tumor resistance mechanisms that limit activity of 

microtubule targeting agents: overexpression of P-glycoprotein (Pgp) and βIII-tubulin. 
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Compound 335 and 363 share several common structure features including the 2,6-dimethyl 

substitution, 4-methoxyaniline substitution and the N-methyl substitution. The only difference 

between them is that the pyrimidine ring in 335 is fused to a unsaturated furan ring while the 

pyrimidine ring in 363 is fused to a saturated cyclopentane ring. A structural hybridid of 335 and 

363 afforded 5,6-dihydrofuro[2,3-d]pyrimidine 364, in which the pyrimidine ring is fused to a 

saturated ring system containing oxygen.  

13. The synthesis of substituted furo[2,3-d]pyrimidin-4-amine as antimitotic anticancer 

agents. 

N
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N

OMe

373

 

Figure 64. The structure of 365-373 

In an attempt to further explore the SAR of substituted furo[2,3-d]pyrimidin-4-amine as 

antimitotic anticancer agents and to improve the biological activity of 335, a series of 

compounds 365-373  (Figure 64) were designed. Compound 365-367 were designed to 

determine the importance of the 2-methyl in 335. The replacement of the 2-methyl group in 335 

with a hydrogen, an amino group and a phenyl substitution resulted in the design of 365, 366 and 

367 respectively.  

It was hypothesized that the introduction of a 2-NH2 group on the pyrimidine ring could 

provide additional hydrogen bond interactions with the colchicine binding site. Compound 367 
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has a phenyl substitution at the 2-position to explore the size limit and the effects of large 

hydrophobic group at this position. Compound 368-372 has the same 2-hydrogen as 365 and 

various electron donating and withdrawing groups on the 4-anilino ring.  Compound 373 has a 2-

hydrogen and 5-methyl substitution. This compound is the region isomer of 365 and can verify 

the importance of 6-methyl group in the lead compound. In addition, when the 6-methyl group 

was moved to the 5-position, the methyl group was anticipated to exert steric effects on the 

adjacent 4-substituted aniline thereby influencing the conformation of the compound and this 

could be reflected in perhaps higher activity.   

14. The synthesis of substituted thieno[2,3-d]pyrimidin-4-amine as antimitotic 

anticancer agents. 

As mentioned above, the furo[2,3-d]pyrimidine 335 showed antiproliferative activity 

against the NCI-60 panel tumor cells at low nanomolar levels and remained active in taxol 

resistant tumor cell lines that overexpress Pgp. Microtubule depolymerization through the 

binding at colchicine site was determined to be the primary site of action for this compound. A 

structure-activity relationship study revealed that the conformationally restricted analogue 349 

(Figure 61), in which the N-methyl group and the phenyl ring were connected through two 

carbon atoms via a tetrahydroquinoline ring, showed potent antiproliferative activity against the 

NCI-60 tumor cells (Table 9) . 
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Table 9. Tumor cell inhibitory activity GI50 (nM) of 349 (NCI). 

 

Panel/ Cell 
line 

GI50 

(nM) 
Panel/ Cell line GI50 

(nM) 
Panel/ Cell line GI50 

(nM) 
Panel/ Cell line GI50 

(nM)  
NSCLC  Renal Cancer   Ovarian cancer  Prostate Cancer  
A549/ATCC <10 786 - 0 <10 IGROV1 <10 PC-3 <10 
EKVX <10 A498 <10 OVCAR-3 <10 DU-145 <10 
HOP-62 <10 ACHN <10 OVCAR-4 <10 Breast Cancer  
HOP-92 62.4 CAKI-1 <10 OVCAR-5 <10 MCF7 <10 
NCI-H226 <10 RXF 393  OVCAR-8 <10 MDA-MB-231/ATCC <10 
NCI-H23 <10 SN 12C <10 NCI/ADR-RES <10 HS 578T <10 
NCI-H322M  TK-10 <10 SK-OV-3  BT-549 <10 
NCI-H460 <10 UO-31  Melanoma   MDA-MB-468 <10 
NCI-H522 <10 Colon Cancer  LOX IMVI <10 Leukemia  
CNS Cancer  COLO 205 <10 MALME-3M  CCRF-CEM <10 
SF-268 11.1 HCC-2998 <10 M14 <10 HL-60(TB) <10 
SF-295 <10 HCT-116 <10 MDA-MB-435  K-562 <10 
SF-539 <10 HCT-15 <10 SK-MEL-2 <10 MOLT-4 11.9 
SNB-19 <10 HT29 <10 SK-MEL-28 <10 RPMI-8226 <10 
SNB-75 <10 KM12 <10 SK-MEL-5 <10 SR <10 
U251 <10 SW-620  <10 UACC-62 <10   

 

 

Compound 349 was equipotent as CA4P  and twice as potent as 335 as an inhibitor of 

tubulin assembly in a quantitative study (Table 10). Compound 349 also inhibited the binding of 

[3H]colchicine  to the protein as potently as CA4P. The quantitative study suggested that 349 is a 

more potent inhibitor than 335. 

 

 

Figure 65. The structure of 374-377. 
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Table 10. The biological activities of 349 as a colchicine site binding agent 

 

Compound Inhibition tubulin assembly 
IC50(µM)±SD 

Inhibition of colchicine binding % 

inhibition  ±SD 

  1 µM 5 µM 

Combretastatin A-4 1.0 ± 0.09 88 ± 2 99 ± 0.2 

335 2.4 ± 0.01 63 ± 5 88 ± 3 

349 1.1 ± 0.1 85 ± 3 96 ± 1 

 

 

Thus the thieno[2,3-d]pyrimidine scaffold in this study was also of interest. This scaffold 

is an isostere of the furo[2,3-d]pyrimidine system of 335 and 349 and could afford more potential 

antimitotic anticancer inhibitors. Thus, compound 374 and 375 (Figure 65) were designed as 

isosteres of 335 and 369 to determine the importance of the furan oxygen in the furo[2,3-

d]pyrimidine for binding to tubulin. The replacement of the O of a furo[2,3-d]pyrimidine with a 

S to afford the thieno[2,3-d]pyrimidine was also anticipated to evaluate the importance of 

electron distribution in the ring system. In addition the larger size of the sulfur atom compared to 

the oxygen allows the thieno[2,3-d]pyrimidines to more closely mimic the size of a 6-6-ring 

system, which may influence the conformation of the 4’-methoxy aniline substitution. As 

regional isomer of 374 and 375, compound 376 and 377 can verify the importance of the 6-

methyl group in the lead compounds. In addition, when the 6-methyl group was moved to the 5-



 

161 
 

position, the methyl group was anticipated to exert steric effects on the adjacent 4-substitution 

thereby influence the conformation of the 4-anilino moiety and perhaps biological activities.  

 

15. 7-substituted-5-arylethyl-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amines as antimitotic 

agents. 

 

 

Figure 66. The structure of 378-382.407 

 

Gangjee et al.407 discovered compounds 378-382 (Figure 66) as novel antitumor 

antimitotic agents that also reverse tumor resistance. Compounds 378-382  caused dose 

dependent losses of microtubules in the cells and showed excellent to moderate inhibitory 

activity against tumor cells in the NCI preclinical 60 cell line panel. In addition, these 

compounds do not bind to the colchicine, taxol or vinca alkaloid or GTP or ATP binding sites on 

tubulin, and hence have a different binding site from that of all other known antimitotic agents. 

In addition, these compounds were also compared in human tumor cell lines with cell lines 

resistant to antimitotic agents due to overexpression of Pgp or MRP1 such as the NCI/ADR and 

MCF-7/VP cells. It was found that compounds 378 and 381 were the most potent compounds 

against all the tumor cell lines with nanomolar and submicromolar inhibitory activity, 

respectively. Compound 381 in addition to its antitumor activity, was the most effective for 
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reversing P-glycoprotein-mediated resistance to vinblastine.408 

  

N

N

CH3

H2N
N

n

R

383 n = 0 R = 2-OMe
384 n = 0 R = 3,4,5-triOMe
385 n = 2 R = 2-OMe
386 n = 2 R = 3,4,5-triOMe
387 n = 3 R = 2-OMe
388 n = 3 R = 3,4,5-triOMe

 

Figure 67. 7-Substituted benzyl-5-(2-methoxyphenethyl)-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-

2-amines 383-388. 

 

N7-desbenzyl analogs of 379-383 were also synthesized and previously evaluated and 

were 100- to 10,000-fold less active than the corresponding benzylated compounds against the 

growth of tumor cells, which indicated the importance of the  N7-benzyl substitution for tumor 

inhibitory activity.  Thus, compounds 383-388 with variation of the chain length between N7-

position and phenyl substitution were designed to explore initial structure-cytotoxicity and 

structure-resistance reversibility for other antimitotics with respect to the phenyl substitutions on 

the N7-benzyl of the lead analog 381. 
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IV. CHEMICAL DISCUSSION 

1. 6,5,6-tricyclic Benzo[4,5]thieno[2,3-d]pyrimidines as Dual Thymidylate Synthase 

and Dihydrofolate Reductase Inhibitors 

It was envisioned that target compounds 275-278 would be synthesized via coupling 

between the benzo[4,5]thieno[2,3-d]pyrimidine scaffold and the glutamate side chain. 

Reagents and conditions:

(a) ethylcyanoacetate, morpholine, sulfur, ethanol, 45 oC to rt, 12 h;

(b) chloroformamidine hydrochloride, DMSO2, 150
oC; (c) (Piv)2O, reflux, 3 h.

O

S

EtOOC

H2N

HN
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O

R S

a b
*

*
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Scheme 67. Synthesis of tricyclic thieno[2,3-d]pyrimidines 391 and 392. 

 

The synthesis of benzo[4,5]thieno[2,3-d]pyrimidines started from commercially available α-

methyl cyclohexanone (±)-389 (Scheme 67) to the thiophene intermediate (±)-390 via a Gewald 

reaction319 in 81% yield. The reaction was attempted in several different solvents and bases, for 

example, methanol and triethyl amine, with the optimized results obtained with ethanol and 

morpholine. Cyclization of  390  via the partially aromatized tricyclic intermediate was expected 

to afford benzo[4,5]thieno[2,3-d]pyrimidines. To explore this strategy, (±)-391 (Scheme 67) was 

synthesized via the condensation of 390 and chloroformamidine hydrochloride.409   

Aromatization of (±)-391 was expected to afford 393 (Scheme 67). 

Rosowsky et al.410 reported aromatization of  tetracyclic thieno-[2,3-d]pyrimidine via SeO2 
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in acetic acid at reflux. Attempts at this reaction for the conversion of 391 to 393 were 

unsuccessful. Gangjee et al.407 reported the oxidation of dihydropyrrolo[2,3-d]pyrimidines to 

their aromatic congeners via MnO2 oxidation. However, MnO2 oxidation for the aromatization of 

391 was also unsuccessful. DDQ is reported411 to serve as a dehydrogenation agent to effect 

aromatization.   Reaction of 391 with DDQ at reflux in dioxane for up to 24 h afforded no new 

product (TLC). Other solvents with different boiling points including THF, DMSO and DMF 

among the others were also attempted at reflux and under microwave conditions. Trace amounts 

of a new product was observed under certain conditions, however, the yields were poor and 

precluded characterization. 

The poor solubility of (±)-391 in organic solvents could, in part, be responsible for the 

failure of aromatization. Thus, the 2-amino group in (±)-391 was protected with a pivaloyl group 

at reflux with the anhydride (Piv)2O (Scheme 67) to give 392, which was then subjected to DDQ 

oxidation under different reaction conditions. Unfortunately, no desired product was obtained. 

 

 

 

Scheme 68. Synthesis of tricyclic thieno[2,3-d]pyrimidines 397 and 398. 
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The failure of the previous strategy prompted investigation of an alternate method, where 

the bicyclic scaffold was aromatized first (Scheme 68). Bicyclic intermediate (±)-390 had good 

solubility in most organic solvents. With toluene as the solvent and MnO2, SeO2 or DDQ as the 

oxidant, under bench-top conditions or microwave irradiation no desired product was obtained.   

A literature search revealed Pd/C oxidation.412,413    This allowed the conversion of (±)-390 to the 

fully aromatized 395.  The solvent and time of the reaction were optimized for the aromatization 

with the optimal conditions being  mesitylene as solvent at reflux for 48 h. Compared with (±)-

390, the 1H NMR of 395 showed the disappearance of protons at 1.54-3.17 ppm and the 

appearance of three aromatic protons at  6.98-7.43 ppm, which confirmed aromatization. In 

addition, the appearance of benzylic protons at  2.38 ppm as a singlet also confirmed 

aromatization.   With 395 in hand, cyclization was carried out to afford the tricyclic scaffold.   

The substitution at the 2-position of the  benzo[4,5]thieno[2,3-d]pyrimidine are predicated by the 

reactant. Cyclization of 395 (Scheme 68) with chloroformamidine hydrochloride afforded the 2-

amino-4-oxo benzo[4,5]thieno[2,3-d]pyrimidine 393 in 60% yield. Pivaloylation of 393 with 

(Piv)2Oafforded 394.   The reaction of 395  in acetonitrile with hydrochloric acid gas afforded 

the 2-methyl-4-oxo product 396 in 57% yield.   The 2-methyl and 5-methyl groups of 396 occur 

in the 1H NMR at  2.35 ppm and 2.95 ppm respectively like similar dimethyl substituted 

quinazolines and benzoquinazolines.414-417   Free radical bromination of 394 and 396 with N-

bromosuccinimide (NBS) and a catalytic amount of benzoyl peroxide afforded intermediates 397 

and 398 respectively.414-417   By limiting the amount of NBS to just over one equivalent, the 5-

methyl moiety of 396 was selectively brominated to afford 398, similar to that reported for 

quinazolines and benzoquinazolines.414-417 The 2-methyl moiety of 398 occurs in the 1H NMR at 

2.69 ppm and the 5-methylene protons occur at 5.84 ppm similar to the corresponding 
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quinazolines and benzoquinazolines.414-417 

 

 

 

Scheme 69. Synthesis of side-chain 403. 

 

 

 

 

Scheme 70. Synthesis of classical analogues 275-278. 

 

The benzoylglutamate side chain for 275 and 277 is commercially available, however the 

2-isoindolinylglutamate side chain for 276 and 278 was synthesized via a literature method 

(Scheme 69).414   Esterification of 399 with SOCl2 in methanol afforded 400 in 91% yield. 

Radical bromination of 400 with N-bromosuccinimide (NBS) and a catalytic amount of benzoyl 
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peroxide afforded 401 in 48% yield. The 1H NMR of 401 showed the disappearance of protons at 

2.69 ppm (CH3) and appearance of methylene protons at 4.86 ppm (CH2Br). Treatment of 401 

with excess diethyl L-glutamate hydrochloride and K2CO3 in DMF at room temperature afforded 

isoindoline 402 as an orange oil in 56% yield. The 1H NMR of 402 showed the appearance of 

protons at δ 4.51-4.83 ppm (isoindoline CH2) and δ 5.09-5.14 ppm (Gluα-CH). Reduction of the 

nitro group in 402 afforded the amine 403 in 92.5% yield. 

As shown in Scheme 67, N-alkylation418 of 397 and 398 followed by hydrolysis of the ethyl 

ester (and the removal of pivaloyl protecting group in 277-278) with 1 N NaOH and subsequent 

acid workup afforded target compounds 275-278.   The presence of glutamate in the side chain 

was confirmed from 1H NMR. The expected NH at δ 6.74-7.40 ppm, exchanged with D2O, and 

the benzylic protons occurred as a doublet at δ 5.13-5.24 ppm, which converts to a singlet upon 

D2O exchange, indicated the success of the coupling reaction. High resolution MS (HRMS) and 

the presence of the requisite protons of the side chain via NMR confirmed the structure of 275-

278. 

 

2. Classical and Nonclassical 2-Amino-4-oxo-5-arylthio-substituted-6-propyl 

thieno[2,3-d]pyrimidines as Dual Thymidylate Synthase and Dihydrofolate 

Reductase  Inhibitors and Potential Agent for Toxoplasma gondii Infection 
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 Scheme 71. Synthesis of thieno[2,3-d]pyrimidine 406. 

Commercially available pentaldehyde 404 (Scheme 71) reacted with sulfur, ethyl 

cyanoacetate and morpholine in EtOH for 24 h at room temperature under Gewald319 reaction 

conditions to afford 405 in 78% yield. Cyclization of 405 with chloroformamidine hydrochloride 

afforded the thieno[2,3-d]pyrimidine 406 in yield of 80% (Scheme 71). 

 

 
 

Scheme 72. Synthesis of key intermediate 408. 
 

 

Prior to thiolation at the 5-position, a two-step reaction was employed to introduce an 

iodo moiety on 408 (Scheme 72). Recently, Gangjee et al.337 reported a mercuration 

methodology that could be adopted for the synthesis of the key intermediate 2-amino-6-propyl-5-

iodothieno[2,3-d]pyrimidin-4(3H)-one 408.. Compound 406 was reacted with mercuric acetate at 

150 oC and then treated with brine. The resulting solid 407 was collected by filtration and was 
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used for iodination without further purification. Iodine was added to the solution of 407 in 

CH2Cl2 and 408 was obtained in 68% yield (two-step reaction) (Scheme 72). The 1H NMR of the 

compound 408 showed the disappearance of the C5 proton at 6.78 ppm, which confirmmed the 

substitution at the 5-position. Compound 408 was also characterized by elemental analysis. 

 

Scheme 73. Synthesis of nonclassical analogues 283-291 via Ullmann coupling. 

 

With the intermediate 408 in hand, two different coupling conditions, Buchwald coupling 

and Ullmann coupling could be employed for conversion of the 5-iodo substitution to the 5-thiol. 

A comparison of the two strategies suggested that Ullmann coupling had advantages of higher 

yields and ease of handling since the Buchwald reaction required evacuation and backfilling with 

nitrogen (3 cycles). Ullmann coupling343 of 408 and the appropriate arylthiols in the presence of 

CuI and K2CO3 in DMF under microwave irradiation at 100 oC for 60-120 min afforded 283-291 

in yields that ranged from 75-91% (Scheme 73).  
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Scheme 74. Synthesis of classical analogue 282 via Buchwald coupling. 
 

 

For the synthesis of the classical compound 282, the required intermediate 409 (Scheme 

74) was prepared through the Ullmann coupling in 49 %yield. The 1H NMR spectrum of 409 

showed the presence of two aromatic doublets at 7.05 ppm and 7.77 ppm, which along with the 

other protons confirmed the structure of 409.  Hydrolysis of the ethyl ester of 409 with 1 N 

NaOH in ethanol followed by acid workup gave the corresponding acid 410 in 97% yield. With 

2-Cl-4,6-dimethoxy-1,3,5-triazine and 4-methylmorpholine as the coupling reagents, acid 410 

was coupled with diethyl-L-glutamate hydrochloride to afford compound 411 in 62% yield. The 

1H NMR spectrum of 411 revealed the expected peptide NH doublet at δ 8.60 ppm and δ 8.62 

ppm, which exchanged on the addition of D2O. The splitting pattern of Gluα-CH was simplified 

on addition of D2O since the exchange of NH proton removes the coupling. Hydrolysis of 411 in 

1 N NaOH followed by acid workup gave target compound 282 in 89% yield. Compound 282 

was also characterized by elemental analysis. 
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3. Nonclassical 2-Amino-4-oxo-5-arylthio-substituted-6-methyl furo[2,3-d]pyrimidines as 

Dual Thymidylate Synthase and Dihydrofolate Reductase  Inhibitors  

 

 

Scheme 75. Retro synthetic analysis to nonclassical 2-amino-5-arylthio-6-methylfuro[2,3-

d]pyrimidin-4(3H)-one analogues. 

 

 From a retrosynthetic point of view (Scheme 75), two general strategies were envisioned 

for the synthesis of nonclassical 2-amino-5-arylthio-6-methylfuro[2,3-d]pyrimidin-4(3H)-one 

analogues 292-298. The first strategy (Strategy A) involved the direct sulfenilation of 2-amino-4-

oxo-furo[2,3-d]pyrimidine 412 with the corresponding thiols to afford 292-298. The second 

strategy (Strategy B) involved a coupling of the 5-halogensubstituted-furo[2,3-d]pyrimidine 413 

with the corresponding thiols. It was anticipated that the required 5-halogensubstituted-furo[2,3-

d]pyrimidine for Strategy B could be synthesized via halogenation of furo[2,3-d]pyrimidine 412. 

Thus, furo[2,3-d]pyrimidine 412 was the key intermediate for the synthesis of 292-298 in both 

strategies. 
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Scheme 76. The synthesis of intermediate 412. 

 

A literature search revealed that there was no synthesis or other report for this 

intermediate. The synthetic method utilized in this study (Scheme 76) was sparked by the report 

of the synthesis of 2-methyl-4-oxo-furo[2,3-d]pyrimidines from the Zimmerman group.3 

Propargyl malonate 414 was condensed with guanidine carbonate at reflux in methanol to afford 

the corresponding 5-propargyl-2-aminopyrimidine 415 in 40% yield. However, unlike the 2-

methyl analogue described by Zimmerman et al., thermocyclization of 415 in DMSO did not 

afford the corresponding annulated furo analogue 412 but gave instead starting materials. 

Cyclization in conc. H2SO4, however, afforded intermediate 412 in 60% yield on gram scale. The 

reaction generates a considerable amount of heat that presents a possible physical hazard. It was 

thus decided to protect the 2-amino group of 415 prior further cyclization. It was interesting to 

note that during the pivaloylation, instead of the pivaloyl protected compound 417 as the major 
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product, a direct ring closure product 416 was isolated in good yield (67%) afterseparation from 

417. 

With the intermediate 416 in hand, the 2-pivaloyl protecting group was easily removed in 

base to afford 412 in a yield of 76%. A possible explanation for the unexpected furan formation 

during pivaloylation could be that under the reaction conditions (high temperature, 120-130 oC 

oil bath) the acetylene moiety of 415 tautomerized to the ketene which could be partially 

stabilized by the conjugated aromatic system, the adjacent hydroxyl oxygen then undergoes an 

intramolecular cyclization with the reactive ketene to give the annulated compound 416. Inspired 

by these initial results, an alternate direct thermocyclization of 415 was also attempted under 

microwave irradiation in 2 N NaOH at 180 oC, which affords 412 in a yield of 92%. The only 

limitation of this microwave condition is that it could not be used for the scale up to gram 

quantities of 412. 

NB
S/
DM

F

Br2 /HOACreflux

 
 

Scheme 77. Attempted halogenation reactions on 412. 
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With the key intermediate 412 in hand, it was initially anticipated that different arylthiols 

could be easily appended to the 5-position of 412 via an oxidative addition reaction using iodine 

in ethanol/water at reflux as reported by Gangjee et al.335-337 Unfortunately, all attempts at this 

oxidative addition using a variety of reaction conditions of time and temperature variations were 

unsuccessful. Failure of the above method led us to explore a new alternative strategy that 

involved the halogenation of the 5-position of intermediate 412 to give 418 or 419 (Scheme 77) 

followed by displacement with the appropriate arylthiols using Ullmann coupling or Buchwald 

reaction. 

The initial approaches for the synthesis of 418 were bromination via NBS in DMF at 

room temperature or under reflux for 24 h (Scheme 77). Unfortunately, neither of these reactions 

afforded 418. NIS did not afford 419 under similar reaction conditions either. Bromine in acetic 

acid under microwave irradiation at 150 oC for 30 min was also attempted but to no avail 

(Scheme 77).  

 

Scheme 78. The synthesis of 419. 
 
 

A two step iodonation reaction via mercury intermediate was successfully applied in the 

synthesis of the 5-iodo-thieno[2,3-d]pyrimidine 408 (Scheme 72). Thus the same strategy was 

applied for the synthesis of 419. Compound 412 (Scheme 78) was reacted with mercuric acetate 
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at 100 oC and then treated with brine. The resulting solid 420 was collected by filtration and 

without further purification was iodinated with iodine in CH2Cl2 to afford 419 in 68% (over two-

steps). 

 

Scheme 79. The synthesis of 293-298. 
 
 
 

With the intermediate 419 in hand, attention was turned to the synthesis of target 

nonclassical analogues 293-298 and intermediate 420 for the synthesis of the classical analogue. 

The Ullmann coupling of 419 with appropriate thiols in the presence of Cu2O and K2CO3 in 

DMF under microwave irradiation at 150 oC for 1 h afforded target compounds in moderate to 

good  yields (57%-70%).  

4. 2,4-Diamino-6-substituted bicyclic-pyrimidines as dihydrofolate reductase inhibitors. 

Gangjee et al.280 reported the synthesis of 2,4-diamino-6-substituted-pyrido[2,3-

d]pyrimidines through the reductive amination of the intermediate 2,4-diaminopyrido[2,3-

d]pyrimidine-6-carbonitrile with appropriately substituted anilines. It was anticipated that 2,4-

diamino-6-substituted-quinazoline could be synthesized through a similar reaction by the 

reductive amination of the 2,4-diaminoquinazoline-6-carbonitrile or 2,4-diaminoquinazoline-6-

aldehyde with the appropriately substituted anilines. 



 

176 
 

N

N

NH2

H2N

N
H

R

reductive amination

N

N

NH2

H2N

H
H3N

R

N

N

NH2

H2N

CN

O

functional group conversion

functional group conversion

N

N

NH2

H2N

NO2

421
422

423

424

301 R=2',5'-diCl
302 R=3',4',5'-triCl

 
Scheme 80. Retro synthetic analysis to 2,4-diamino-6-substituted quinazoline 301 and 302 

(Strategy A). 

 
A search of the literature revealed that 421 and 423 (Scheme 80) are commercially 

available. However, the commercial sources of 421 and 423 are overseas and the prices are 

prohibitively high. A further literature search revealed that 2,4-diamino-6-nitroquinazoline 424, 

the precursor for  2,4-diaminoquinazoline-6-carbonitrile also have a very limited commercial 

source and prohibitive price. It was therefore decided to develop another synthetic strategy for 

the synthesis of the target compounds 301-302.  
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Scheme 81. Retro synthetic analysis to 2,4-diamino-6-substituted quinazoline 301 and 302 

(Strategy B). 

 

From a retrosynthetic point of view (Scheme 81), it was anticipated that a benzyl 

bromination of 426 would afford the 6-bromomethyl substituted quinazoline 425, which could 

undergo N-alkylation with appropriate anilines to afford the desired compounds. 

 

 

Scheme 82. Initial attemps for the synthesis of 425. 

 

 Compound 426 (Scheme 82) was commercially available and was used directly in the 

bromination step, which however was unsuccessful. Radical reaction using NBS with catalytic 

amounts of AIBN in DMF at room temperature resulted in retention of the methyl group at the 

benzyl position, while no reaction occurred using several other conditions (e.g., NBS/Bz2O2, 
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DMF under microwave conditions 180 oC, 2 h; Br2/AcOH under microwave condition 150 oC, 1 

h or reflux); and the starting material 426 was recovered unchanged. Typically the free radical 

bromination reaction was carried out in nonpolar solvents such as benzene and carbon 

tetrachloride. Because compound 426 is almost insoluble in the above mentioned nonploar 

solvents, the bromonation raction has to be carried out in polar solvents, such as DMF and acetic 

acid, which may quench the free radio before the chain reaction was initiated.   

 

 

Scheme 83. The synthesis of 428. 

Failure of the above methods led to the exploration of a new alternate strategy where the 

free amino groups in quinoline 426 could be protected prior to any transformation. Compound 

426 with the 2, 4-diamino groups has poor solubility in organic solvent and the existence of free 

amino moiety might interfere with the bromination reaction, both these two aspects probably 

contributed to the failure of the benzylic bromination. It was thus decided to protect the amino 

groups in 426 with pivaloyl group. Starting from commercially available 6-methylquinazoline-

2,4-diamine, 427 was obtained by the protection of the 2,4-diamino groups. The reaction was 

carried out at reflux with pivaloyl anhydride. The protection of the diamino group not only 

boosts the solubility of the compound in nonpolar organic solvents but also avoids the possible 
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side reactions with the amino groups. The reaction between 427 and NBS was carried out in 

CH2Cl2 solution with benzoyl peroxide (Bz2O2) as the free radical initiator to afford intermediate 

428, the structure of which was confirmed by 1HNMR. Under free radical bromination condition, 

the bromine atom was introduced to the benzylic position rather than aromatic positioins. On 

1HNMR spectrum, an integration of three protons in 427 changed to an integration of two 

protons, with all the other aromatic protons and aliphatic protons unchanged.  

 

 

Scheme 84. The synthesis of 301 and 302 

 

The synthesis of the target compounds 301 and 302 were accomplished as indicated in 

Scheme 84. N-alkylation of the appropriate aniline benzyl bromide 428 was carried out at reflux 

in DMF to afford desired the intermediates 429 and 430. Pivaloyl deprotection under basic 

condition converted 429 and 430 to the target compounds 301 and 302 respectively.  
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Scheme 85. Retro synthetic analysis to 2,4-diamino-6-pteridines 303 and 306. 

 

From a retrosynthetic point of view (Scheme 85), it was anticipated that target 

compounds 303-306 could be synthesized via the nucleophilic displacement of 6-bromomethyl 

substituted pteridine 431, which in turn could be synthesized via bromination at the benzylic 

position catalyzed by a free radical initiator.  

 

 

 
 
Scheme 86. Initial attemps for the synthesis of 431 
 
 

Compound 431 was commercially available and was used directly in the bromination step, 

which turned out to be unsuccessful. Radical reaction using NBS with catalytic amounts of 

AIBN in DMF at room temperature resulted in retention of the methyl group at the benzyl 

position, with no reaction. Several other conditions (e.g., NBS/Bz2O2, DMF under microwave 
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conditions 180 oC, 2 h; Br2/AcOH under microwave condition 150 oC, 1 h or reflux); resulted in 

the starting material 433 being recovered unchanged. 

 
 

 
 
Scheme 87. Attemps for the synthesis of 435. 
 
 

Failure of the above methods led to the exploration of an alternate strategy where the free 

amino groups in pteridine 433 was protected prior to any further transformation. Compound 433 

with the 2,4-diamino groups is poorly soluble in organic solvent and the existence of free amino 

groups could interfere with the bromination reaction. As discussed above, both these reasons 

contributed to the failure of the bromination step. It was thus decided to protect the amino groups 

in 433 with pivaloyl groups, as the strategy was showned to be effective in the synthesis of 428. 

Starting from commercially available 6-methylquinazoline-2,4-diamine, 434 was obtained by the 

protection of the 2,4-diamino groups. The reaction was carried out at reflux in pivaloyl anhydride. 

Although the protection of the diamino group boosts the solubility of the compound in organic 

solvent, the attempted bromination of 434 were unsuccessful under various condtions. The 

existance of pteridine ring nitrogens may quenched free radicals in the reaction system and 

prohibited further chain reaction at the benzylic position.  
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Scheme 88. The synthesis of 303-306. 

 

Failure of the above methods led to the exploration of yet another alternate strategy and is 

shown in Scheme 88. Reaction of commercially available (2,4-diaminopteridin-6-yl)methanol 

(436) with PPh3Br2 afforded 6-(bromomethyl)pteridine-2,4-diamine 431 as the key intermediate. 

The nucleophilic displacement of 431 with approriate anilines, phenols and thiophenols afforded 

target compounds 303-306.   

5. Importance of the Side Chain Aryl Group for Folate Receptor Targeting and GARFTase 

Inhibitory Activity in Classical Thieno[2,3-d]pyrimidine Antifolates 

 

Esterification of commercially available 437 (Scheme 89) was achieved in methanol in 

the presence of SOCl2 to afford methyl ester 438. Subsequent Sonogashira coupling of 438 with 

439 were in acetonitrile in the presence of PdCl2, CuI and PPh3 gave 440. Pd/C catalyzed 

hydrogenation converted 440 to the corresponding alcohol 441. A Swern oxidation of 441 with 

DMSO and oxalyl chloride afforded the corresponding aldehydes 442. 
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Scheme 89. The synthesis of intermediate 442. 

 

With key aldehydes 442 in hand, a reaction of 442 (Scheme 90) with ethyl cyanoacetate 

and sulfur in the presence of morpholine was carried out according to the general procedure of 

Gewald and coworkers to afford the thiophene  intermediate 443. Cyclization of 443 with 

chloroformamidine hydrochloride afforded the thieno[2,3-d]pyrimidines 444. Hydrolysis of the 

methyl ester of 444 with 1 N NaOH in ethanol followed by acid workup gave the corresponding 

acids 445. Coupling of 445 with diethyl-L-glutamate followed by saponification afforded the 

desired product 317.  
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 Scheme 90. The synthesis of intermediate 317. 
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6. Importance of the Glutamate Moiety for Folate Receptor Targeting and GARFTase 

Inhibitory Activity in Classical Thieno[2,3-d]pyrimidine Antifolates 

 

Scheme 91. The synthesis of thieno[2,3-d]pyrimidine 452 

 

Allyl alcohol 448 was treated with palladium diacetate, ethyl 4-iodobenzoate 447, LiCl, 

LiOAc and Bu4NCl in DMF to afford the aldehyde 449.   A modified reaction temperature of 80 

oC from that reported in the literature improved the yield.  Aldehyde 449 was then reacted with 

sulfur, ethyl cyanoacetate and morpholine in EtOH for 24 h at room temperature under 

Gewald319 reaction conditions to afford 450. Cyclization of 450 with chloroformamidine 

hydrochloride afforded the thieno[2,3-d]pyrimidines 451 in 80% yield. Hydrolysis of the ethyl 
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ester of 451 with 1 N NaOH in ethanol followed by acid workup gave the corresponding acid 

452. 

Reagents and conditions:

(a) SOCl2, MeOH, 4 h; (b)4-methylmorpholine, 2-Cl-4,6-dimethoxy-1,3,5-triazine, DMF, 10 h;
(c) 1 N NaOH, EtOH, 12 h.; (d) DTT, 4 h
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Scheme 92. The synthesis of 322 
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The synthesis of compound 322 is shown in Scheme 92. Commercially available 

homocystine was converted to the corresponding dimethyl ester 454 by reacting with SOCl2 in 

methanol solution. Peptide coupling of 452 and 454 in anhydrous DMF solution afforded 

disulfide 455, which was further converted to 322 through deprotection and reduction. The 

reduction of the disulfide was carried out in aqueous solution using DTT as the reducing agent at 

pH = 9.  

 

7. Synthesis of N-aryl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amines as RTK inhibitors. 

 

 

 

Scheme 93. Retro synthetic analysis to N-aryl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amines 326-

335. 

 

 From a retrosynthetic analysis (Scheme 93), the desired N-aryl-2,6-dimethylfuro[2,3-

d]pyrimidin-4-amines 326-335 could be synthesized from 2,6-dimethyl-4-chloro-furo[2,3-

d]pyrimidine 458 via neucleophilic displacement. Compound 458 is a versatile intermediate and 

should react with a large variety of nucleophiles, thus 458 is the key intermediate for the 

synthesis of 326-335.  
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Scheme 94. The synthesis of 2,3-dimethyl-4-chloro-furo[2,3-d]pyrimidine 458.  

 

The synthesis of compound 458 is shown in Scheme 94. A two step reaction starting from 

dimethyl propargyl malonate 414 was successfully employed in the synthesis of 2-amino-4-oxo-

6-methyl-furo[2,3-d]pyrimidine 412 (Scheme 76). It was anticipated that the same strategy could 

be extended to the synthesis of 2,6-dimethyl-4-oxo-furo[2,3-d]pyrimidine 461. The condensation 

of dimethyl propargyl malonate 414 and acetamidine hydrochloride 459 was attempted as a route 

to pyrimidine 460. The use of anhydrous MeOH and sodium metal are essential for  the 

cyclization of the pyrimidine ring. With dihydroxyl pyrimidine 460 in hand, the next step was the 

intramolecular cyclization to give the furo[2,3-d]pyrimidine 461. Two different strategies were 

developed for this cyclization. One was the cyclization under H2SO4 (Conc.) at r.t, and the other, 

the cyclization in 2N NaOH at 150 oC under microwave irradiation. The conversion under acidic 

conditions not only provide high yieldss (87%) of 461 but also leads itself to scale up and was 

used for the synthesis of gram quantities of 461 for in vivo evaluation. However, the use of large 

amount of H2SO4 (Conc.), especially for the scale up conditions, resulted in reaction temperature 
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control difficuties and  posed a potential physical hazard. Due to the disadvantage of acid 

cyclization, using 2 N NaOH was developed for the conversion of 460 to 461. The reaction was 

carried out under aqueous reaction conditions and the choice of base and reaction temperature 

was of critical importance for the cyclization. Several inorganic and organic bases including 

NaOH, Na2CO3, Ce2CO3, NaOMe and NEt3 were attempted, with the best result obtained for 

NaOH. The optimal reaction temperature was above 150 oC. The desired product was not 

observed on TLC when the reaction was carried out at reflux or at 120 oC. Through the use of 

microwave irradiator, the reaction media could be heated to the required temperature (150 oC) in 

a fast and efficient manner. However, the attempt to further increase the reaction temperature was 

unsuccessful, due to the high pressure in the reaction vial of the microwave reactor.   

 

Scheme 95. The synthesis of N-aryl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amines 326-335. 
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Chlorination of 461 with POCl3 afforded 2,6-dimethyl-4-chloro-furo[2,3-d]pyrimidine 

458 (Scheme 95). This key intermediate was reacted with the appropriate nucleophiles to give 

the target compounds 326-335. The reaction of 458 and the appropriate nucleophiles was carried 

out in iPrOH or nBuOH at reflux in the presence of a catalytic amount of HCl. 

  

8. N-(4-methoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine hydrochloride for 

improved water solubility. 

Compound 335 is soluble in several different organic solvents, including methanol, 

acetone, ethyl acetate, ether and others. It was anticipated that the hydrochloric acid salt of 335 

could have less solubility in organic solvent. Thus treatment of organic solutions of 335 with acid 

should afford the corresponding salt form, which could precipitate from the organic solvent.  

 

 

Scheme 96. The synthesis of hydrochloric acid salt 336. 

 

Treatment of 335 with HCl (g) in anhydrous ether (Scheme 97) afforded the hydrochloric 

acid salt 336. Several different conditions were attempted to obtain 336 and are compared in 

table 11.  In the initial attempt, 100 mg of 335 was dissolved in anhydrous ether to obtain a clear 

solution. After hydrochloric acid gas was bubbled through the solution, the formation of a white 



 

191 
 

precipitate was observed. However, the precipitate instantly redissolved. Similar phenomena 

were observed when the amount of 335 was increased up to 300 mg (entry 2 in table 1). Another 

method (entry 3 in table) was attempted to obtain 336 by using iPrOH as the solvent and 

concentrate HCl as the acid source. However, no precipitate was observed under these conditions.  

Table 11. Attempted conditions for the synthesis of 336. 

Entry amount solvent HCl source Yield 

1 100 mg ether G precipitate redissolved 

2 300 mg ether G precipitate redissolved 

3 100 mg iPrOH Conc. No precipitation 

4 2 g ether G 96% 

 

A literature search revealed that hydrochloric acid gas can react with ether to form an 

oxonium salt, which can dissolve a small amount but not large amounts of organic salts. Thus, 

the amount of 335 was increased to 2 g (entry 4 in table 1). Using ether as the solvent and HCl (g) 

as the acid source, 336 was obtained in 96% yield. Although the 1HNMR spectrum did not show 

a distinguishable peak for the newly formed 1-N+H proton, 335 and 336 have distinct melting 

point (108 oC for 335 and 273 oC for 336). In addition, elemental analysis confirmed the 

stoichiometry of the salt as exact one molecule of hydrochloride per molecule of 336 with an 

additional 0.3 molecule of water. 

Salt 336 has excellent water solubility (>2.5 mg/mL) and can be prepared as an aqueous 

solution for in vivo testing.  

 



 

192 
 

 

9. Synthesis of N-(substitutedphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine as 

antimitotic anticancer agents. 

 

Scheme 97. The synthesis of N-aryl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amines 338-342. 

 

Target compounds 337-342 were synthesized using the method described for the 

synthesis of 335, via the reaction of 2,3-dimethyl-4-chloro-furo[2,3-d]pyrimidine 458 and the 

appropriate N-methyl anilines (Scheme 97). The starting material 458 was treated with the 

appropriate N-methyl anilines and a catalytic amount of HCl in iPrOH or nBuOH at reflux. After 

the removal of the reaction solvent, the residue was purified through chromatography or 

recrystalized from ether to afford the target compounds in moderate to good yields (57%-74%). 

Anilines with electron donating group give high yilds, while the yields in anilines with electron 

withdrawing groups are lower. The structures of the 338-342 were confirmed by 1HNMR and 

elemental analysis. After substituions, anilino aromatic protons can be clearly detected on the 

1HNMR spectrum around 6-7 ppm. 

10. Synthesis of conformationally restricted N-(substituted)-2,6-dimethylfuro[2,3-

d]pyrimidin-4-amine as antimitotic anticancer agents. 

Compound 333, the key intermediate for the synthesis of 343-346, was synthesized from 

propargyl malonate via a four step strategy as described before (Scheme 92 and Scheme 93). The 
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reaction of  333 with NaH in anhydrous DMF resulted in the releasing of hydrogen gas and the 

deprotonation of 333 (Scheme 98). 
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Scheme 98. The synthesis of N-aryl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amines 343-346. 

 

The resulting reaction mixture was then treated with the appropriate alkyl iodide to afford 

target compounds 343-346.  

 

Scheme 99. The synthesis of N-aryl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amines 347-349. 

With the intermediate 458 in hand, two different strategies, Ullmann coupling and 

neucleophilic displacement were developed for the synthesis of 347 and 349 (Scheme 99). The 

two strategies afforded identical products and in similar yields. Ullmann coupling of 458 and the 
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appropriate nucleophiles in the presence of CuI and K2CO3 in DMF under microwave irradiation 

at 100 oC for 60-120 min afforded 347 and 349 in moderate yields. The nucleophilic 

displacement at reflux in iPrOH and a catalytic amount of HCl provided slightly improved yields 

(63% and 48% respectively).  

 

Scheme 100. The attempted synthesis of 348. 

Gangjee et al.407 reported the oxidation of dihydropyrrolo[2,3-d]pyrimidines to their 

aromatic congeners via MnO2 oxidation. In addition, stoimetric amount of Pd/C was reported as 

a dehydrogenation agent to effect aromatization.  Thus, the direct oxidation of 347 to form 348 

was attempted (Scheme 100). Reaction of 347 with MnO2 at reflux in dioxane for up to 24 h 

afforded no new product (TLC). The oxidation of 347 in the presence of Pd/C did not provided 

the desired product 348 either. 

 

Scheme 101. The synthesis of compound 348. 
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The failure of the above two strategies promoted us to develop a procedure for the 

synthesis of 348. The deprotonation of 5-methoxyindoline with NaH in DMF resulted in the 

formation of indoline anion, which then reacted with 358 via a nucleophilic displacement to 

afford 348 in good yield. The structure of 348 was confirmed by 1HNMR and elemental analysis.  

 

11. Synthesis of N-(substituted)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amines as antimitotic 

anticancer agents. 

 

 

Scheme 102. Retro synthetic analysis to N-(substituted)-2,6-dimethylfuro[2,3-d]pyrimidin-4-

amines 350-362. 

 

From a retrosynthetic point of view (Scheme 102), two general strategies were 

envisioned for the synthesis of N-(substituted)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amines 350-

362. The first strategy (Strategy A) involved the direct nucleophilic displacement of 4-chloro-
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2,6-dimethylfuro[2,3-d]pyrimidine 358 with the appropriate N-methyl anilines to afford 292-298. 

The second strategy (Strategy B) involved the reaction of 4-chloro-2,6-dimethylfuro[2,3-

d]pyrimidine 358 and the appropriate aniline followed by N-methylation. Thus, 4-chloro-2,6-

dimethylfuro[2,3-d]pyrimidine 358 was the key intermediate for the synthesis of 350-362 in both 

strategies. 

N

N

N

O

R

350 R = 2-OMe
351 R = 3-OMe

N

N

Cl

O

358

a

Reagents and conditions: (a) the apropriate N-methylaniline, iPrOH, 1 drop of HCl, reflux.;  

Scheme 103. The synthesis of 350 and 351.  

 

Compound 358 was synthesized from propargyl dimethyl malonate via a 4 step sequence 

as described before (Scheme 94). With 358 in hand, compounds 350 and 351 were synthesized 

via strategy A. Compound 358 reacted with 3-methoxy-N-methyl aniline or 2-methoxy-N-methyl 

aniline in iPrOH at reflux to afford 350 and 351 respectively.  

With 354 as the only exception, compounds 352-362 (Scheme 104) were synthesized via 

a two step strategy starting from 358. The reaction of 358 and appropriate anilines in iPrOH at 

reflux afforded 466-473 (with 468 as the only exception). Intermediates 466-476 were 

subsequently treated with NaH and MeI to afford 352-362. 
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N

N

O

XHN 474 X = OCH2

475 X = CH2CH2

476 X = CHCH

O

N

N

N

O

R

N

N

Cl

O

358

352 R = 4-CH2Me
353 R = 4-SMe
354 R = 4-NHMe
355 R = 4-OEt
356 R = 4-OPr
357 R = 2,4-diOMe
358 R = 3,4-diOMe
359 R = 2,3,4-triOMe

N

N

HN

O

R
466 R = 4-CH2Me
467 R = 4-SMe
468 R = 4-NHMe
469 R = 4-OEt
470 R = 4-OPr
471 R = 2,4-diOMe
472 R = 3,4-diOMe
473 R = 2,3,4-triOMe

a b

N

N

O

XN 360 X = OCH2

361 X = CH2CH2

362 X = CHCH

O

N

N

Cl

O

358

 

 Scheme 104. The synthesis of 352 and 362.  

 

Several different strategies and reaction conditions were attempted for the synthesis of 

468 and the corresponding 354 noted above and are summarized in Scheme 105. The reaction of 

358 and anilines 477 or 478 were complex and no isolatable products were obtained, because 

both these anilines have two reactive anilino nitrogens.  However when one of the reactive 

nitrogen was converted to the nitro group or when both aniline nitrogens were converted to the 

pivaloyl protected amides, the resulting compounds did not reacted with 358 under conventional 

conditions.  In the case of 4-nitroaniline, the 4-nitro group is a strong electron withdrawing group, 

which decrease the electron density on the anilino nitrogen and hence nucleuphilicity.  In the 

case of pivaloyl protected amides, the amide nitrogen was no longer a nucleuphile. 
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N

N

Cl

358

1) BuOH, HCl, reflux
2) NaH, DMF, methylsulfate

1) BuOH, HCl, reflux
2) NaH, DMF, methylsulfate

complex reaction

complex reaction

NH2H2N

NH2N

H

NO2H2N

1) BuOH, HCl, reflux
2) NaH, DMF, methylsulfate

no reaction

477

478

479

NH2H2N

NHHN

O O

1) BuOH, HCl, reflux
2) NaH, DMF, methylsulfate

no reaction

O

N

N

Cl

358

O

N

N

Cl

358

O

N

N

Cl

358

O

480  

Scheme 105. The attempted synthesis of 468 and the corresponding 354. 

 

12. Synthesis of N-(4-methoxyphenyl)-N,2,6-trimethyl-5,6-dihydrofuro[2,3-d]pyrimidin-4-

amine as antimitotic anticancer agents. 

A retrosynthetic analysis (Scheme 106) suggested that the desired N-(4-methoxyphenyl)-

N,2,6-trimethyl-5,6-dihydrofuro[2,3-d]pyrimidin-4-amine 364 could be synthesized from 2,6-

dimethyl-4-oxo-5,6-dihydrofuro[2,3-d]pyrimidine 483 via chlorination and subsequent 

nucleophilic displacement. Thus, compound 483 was the key intermediate for the synthesis of 

364. 
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Scheme 106. Retro synthetic analysis to N-(4-methoxyphenyl)-N,2,6-trimethyl-5,6-

dihydrofuro[2,3-d]pyrimidin-4-amine 364. 

A literature search revealed that there was no synthesis or other report for intermediate 

483. We had successfully developed a microwave promoted synthesis of 2-methyl-4-oxo-

furo[2,3-d]pyrimidines in 2N NaOH starting from propargyl diethyl malonate (Scheme 94). 

 

 

Scheme 107. The attempted synthesis of 2,6-dimethyl-4-oxo-5,6-dihydrofuro[2,3-d]pyrimidine 

483.   

 Thus, it appeared attractive to adopt this methodology for the synthesis of the 

corresponding 5,6-dihydrofuro[2,3-d]pyrimidine from allyl dimethyl malonate 485 (Scheme 107). 

Allyl dimethyl malonate 485 was condensed with guanidine carbonate at reflux in methanol to 

afford the corresponding 5-allyl-2-methylpyrimidine 484 in 40% yield. According to Baldwin 



 

200 
 

rule, both 5-exo-trig and 5-exo-dig are energy favorable for ring closure. However, unlike the 5-

propargyl analogue described earlier, cyclization of 484 in 2N NaOH did not afford the 

corresponding annulated dihydrofuro analogue 483.  

 

 

Scheme 108. The synthesis of 2,6-dimethyl-4-oxo-5,6-dihydrofuro[2,3-d]pyrimidine 364.  

The failure of the above method prompted the development of a hydrogenation reaction 

to convert the furo[2,3-d]pyrimidine 335 to the reduced 364. A literature search discovered no 

prior reports on the selective reduction of furo[2,3-d]pyrimidine, Thus a screening of the 

reduction condition is necessary. Both pyrimidine ring and furan ring in the furo[2,3-

d]pyrimidine are unsaturated rings, hence are reducable. Various combination of catalyst loading, 

reaction solvents, reaction pressure and reaction time were attempted to achieve the conversion 

from 335 to 364.  The reaction required high reaction pressure (55 psi) and extended reaction 

time (overnight) . 

 

13. The synthesis of substituted furo[2,3-d]pyrimidin-4-amine as antimitotic anticancer 

agents. 
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Scheme 109. Retro synthetic analysis to 365-367. 

 

 

 

Scheme 110. The synthesis of 365-367. 
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It was envisioned that compounds 365-367 (Scheme 109) could be synthesized from 2-

substituted-4-oxo-furo[2,3-d]pyrimidines 412, 489 and 490 via chlorination and subsequent 

nucleophilic displacement. The required 2-substituted-4-oxo-furo[2,3-d]pyrimidines could be 

synthesized similar to 2-methyl-4-oxo-furo[2,3-d]pyrimidine  described earlier (Scheme 94). 

Compounds 489 and 490 (Scheme 110) were synthesized via a two step reactions starting 

from propargyl malonate 414. Condensation of dimethyl propargyl malonate 414 and the 

appropriate amidines 491 or 492 in MeOH at reflux afforded the 493 and 494, which were 

further cyclized in 2N NaOH, as described for the synthesis of 335, to afford 489 and 490. 

1HNMR showed that compound 493 and 494 exist in different tautomeric forms. In 

DMSO solution, 493 exists in the dihydroxyl pyrimidine form. In the dihydroxyl pyrimidine 

form, the two hydroxyl groups in 493 are identical, thus these two protons should only show one 

singlet on 1HNMR spectrum, which was confirmed by the D2O exchangable singlet at 11.94 ppm. 

While the 1HNMR spectrum of 494 showed two seperate D2O exchangable peaks at 11.61 ppm 

and 12.52 ppm, which are the characteristic of lactam form. When treated with POCl3, 489 and 

490 were chlorinated at the 4-position to give 495 and 496. Reaction of 495 and 496 with N-

methyl-4-methoxylaniline in iPrOH at reflux afforded 365 and 367. 

 

Scheme 111. The synthesis of 366. 
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For the synthesis of 366, compound 412 (Scheme 76) was the key intermediate, the 

synthesis of which was described in Scheme 76. Direct chlorination of 412 gave very low yields, 

hence the pivaloyl protected intermediate 416 (Scheme 112) was selected as the starting material 

for subsequent chlorination and nucleophilic displacement reactions. Similar to the synthesis of 

365 and 367, the treatment of 416 with POCl3 afforded the 4-chlorinated 497, which reacted with 

N-methyl-4-methoxylaniline in iPrOH at reflux to afford 366. 

 

Scheme 112. The synthesis of 368-372. 

 

Compounds 368-372 (Scheme 112) were synthesized under the same reaction conditions 

as described for 365, with the appropriate N-methylanilines. 

 

Scheme 113. The synthesis of intermediate 501. 
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Intermediate 499 was synthesized by the published method from acetol 498 and 

malononitrile. The cyclization of 499 with formamidine free base afforded furo[2,3-d]pyrimidine 

501 instead of expected pyrrolo[2,3-d]pyrimidine as per Taylor et al.317 The structure of 501 was 

confirmed by 1HNMR and elemental analysis. Compared to guanidine, which favors the 

formation of pyrrolo[2,3-d]pyrimidine, formamidine has less neucleophilicity and is also less 

basic. Both of these two properties may play a role in stabilizing the intermediate and favor the 

maintenance of furan ring, although the exact mechaism for this ring closure reaction is not clear 

yet. 

 

 

Scheme 114: The synthesis of 373. 

Compound 501 (Scheme 113) was as a suitable intermediate for elaboration to 503 and 

373. Under Ullman coupling reaction condition, the amino group of 501 was coupled with 502 

using copper (I) iodide and L-proline as a chelating ligand in the presence of potassium 

carbonate in DMF to afford 503 (Scheme 114). Compound 503 was N-methylated with sodium 

hydride followed by dimethyl sulfate to obtain 373. 
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14. The synthesis of substituted thieno[2,3-d]pyrimidin-4-amine as antimitotic anticancer 

agents. 

 

N

N S

Cl

508

N

N S

HN

O

509

N

N S

N

OMe

374

N

N S

N

OMe

376

Reagents and conditions: (a) S, Morpholine; (b) HCl (g), CH3CN; (c) POCl3, reflux;

(d) 4-methoxyaniline, iPrOH, reflux; (e) NaH, DMF,Dimethylsulfate;

(f) 6-methoxy-1,2,3,4-tetrahydroquinoline, iPrOH, reflux
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O
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CHO
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a b
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Scheme 115: The synthesis of target compounds 374 and 376. 

Compounds 374 and 376 were prepared as shown in Scheme 115. Commercially 

available propaldehyde reacted with sulfur, ethyl cyanoacetate and morpholine in EtOH for 24 h 

at room temperature under Gewald reaction conditions to afford 506 in 73% yield. The reaction 

of 506  in acetonitrile with hydrochloric acid gas afforded the 2-methyl-4-oxo product 507 in 

63% yield. Chlorination of 507 with POCl3 for 3 h afforded 508 (84%). Reaction of 508 with 4-

methoxylaniline in iPrOH in the presence of 2-3 drops of conc. HCl afforded 509 (74%). When 

sequentially treated with NaH and methyl sulfate, 509 was converted to 374 in 47% yield. The 2-
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methyl and 6-methyl groups of 374 occur in the 1H NMR at 2.34 ppm and 2.44 ppm.  The 

reaction of 508 with 6-methoxy-1,2,3,4-tetrahydroquinoline produced 376. 

 

Reagents and conditions: (a) S, Morpholine; (b) HCl (g), CH3CN; (c) POCl3, reflux;

(d) 4-methoxyaniline, iPrOH, reflux; (e) NaH, DMF,Dimethylsulfate;

(f) 6-methoxy-1,2,3,4-tetrahydroquinoline, iPrOH, reflux
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Scheme 116: The synthesis of target compounds 375 and 377. 

 

Compounds 375 and 377 were prepared as shown in Scheme 116. Acetone reacted with 

sulfur, ethyl cyanoacetate and morpholine in ethanol for 24 h at room temperature under Gewald 

319reaction conditions to afford 511 in 70% yield. The reaction of 511 in acetonitrile with 

hydrochloric acid gas afforded the 2-methyl-4-oxo product 512 in 59% yield. Chlorination of 

512 with POCl3 for 3 h afforded 513 (80%). Reaction of 513 with 4-methoxylaniline in iPrOH in 

the presence of 2-3 drops of conc. HCl afforded 514 (74%). When sequentially treated with NaH 
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and methyl sulfate, 514 was converted to 375 in 42% yield. The 2-methyl and 5-methyl groups 

of 375 occur in the 1H NMR at 2.34 ppm and 2.48 ppm.  The reaction of 513 with 6-methoxy-

1,2,3,4-tetrahydroquinoline produced 377 in 62% yield. 

15. 7-Substituted-5-arylethyl-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amines as antimitotic 

agents. 

  

Scheme 117: The synthesis of compounds 516-518. 

 

 The synthesis of the target compounds 516-518 (Scheme 117) were accomplished from a 

previously reported intermediate,407 4-chloro-5-(2-chloroethyl)-6-methylpyrimidin-2-amine 515. 

Condensation of the appropriately substituted benzylamines with 515 in the presence of 

triethylamine at reflux in nBuOH afforded the bicyclic 7-substituted benzyl-4-methyl-6,7-

dihydro-5H-pyrrolo[2,3-d]pyrimidin-2-amines 516-518 (34%~74%) (Scheme 118). Compounds 

516-518 had very poor solubility in organic solvents including AcOEt and dichloromethane, and 

required a highly polar solvent system (methanol/dichloromethane) to isolate the compounds 

from column chromatography.  
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 Scheme 118. Synthesis of 525-527. 

 

Oxidation of 516-518 (Scheme 118) with MnO2 at reflux in 1,4-dioxane for 24 h afforded 

aromatized compounds 519-521 (29%~60%). Treatment of 519-521 with pivaloyl chloride 

afforded a mixture of monoprotected and diprotected products, which are very difficult to 

seperate. Compounds 519-521 were reacted with pivaloyl anhydride at reflux to afford 

monoprotected compounds 522-524 (36%~72%). Using X-ray crystal structure, Gangjee et al.418 

demonstrated that selective iodonation at 5-position occured, when the 2-amino group was 

protected with mono or di pivaloyl group and NIS was used as iodonation agent. Thus 

regioselective iodination of 522-524 with NIS, with protection from air and light, gave 

compounds 525-527 (34%~83%).  
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Scheme 119. The synthesis of 383-388. 

 

Sonogashira coupling of compounds 525-527 (Scheme 119) with 2-ethynylanisole 

or 3,4,5-trimethoxylethynylbenzene in the presence of Pd/C, copper(I) iodide, and 

triethylamine in acetonitrile gave compounds 528-533 (54%~92%) (Scheme 119). The 

use of other palladium catalysts including Pd(OAc)2 and PdCl2 also gave compounds 

528-533 in good yield. The sequential hydrogenation and deprotection in 1N NaOH 

converted 528-533 to 383-388. 
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V. SUMMARY 

  A total of Ninety-one new final target compounds were designed, synthesized and 

characterized from these projects. These compounds are as follows: 

1. N-(4-{[(2-methyl-4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-5-

yl)methyl]amino}benzoyl)-L-glutamic acid (275) 

2. (2S)-2-(5-{[(2-methyl-4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-5-

yl)methyl]amino}-1-oxo-1,3-dihydro-2H-isoindol-2-yl)pentanedioic acid (276) 

3. N-(4-{[(2-amino-4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-5-

yl)methyl]amino}benzoyl)-L-glutamic acid (277)   

4. (2S)-2-(5-{[(2-Amino-4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-5-

yl)methyl]amino}-1-oxo-1,3-dihydro-2H-isoindol-2-yl)pentanedioic acid (278) 

5. 2-Amino-5-(phenylsulfanyl)-6-propylthieno[2,3-d]pyrimidin-4(3H)-one (283) 

6. 2-Amino-5-[(4-nitrophenyl)sulfanyl]-6-propylthieno[2,3-d]pyrimidin-4(3H)-one (284) 

7. 2-Amino-5-[(3,4-dichlorophenyl)sulfanyl]-6-propylthieno[2,3-d]pyrimidin-4(3H)-one 

(285) 

8. 2-Amino-6-propyl-5-(1-naphthylsulfanyl)thieno[2,3-d]pyrimidin-4(3H)-one (286) 

9. 2-Amino-6-propyl-5-(2-naphthylsulfanyl)thieno[2,3-d]pyrimidin-4(3H)-one (287) 

10. 2-Amino-5-[(4-fluorophenyl)sulfanyl]-6-propylthieno[2,3-d]pyrimidin-4(3H)-one (288) 

11. 2-Amino-5-[(4-methoxyphenyl)sulfanyl]-6-propylthieno[2,3-d]pyrimidin-4(3H)-one (289) 

12. 2-Amino-5-[(4-chlorophenyl)sulfanyl]-6-propylthieno[2,3-d]pyrimidin-4(3H)-one (290) 

13. 2-Amino-6-propyl-5-(4-bromophenyl sulfanyl)thieno[2,3-d]pyrimidin-4(3H)-one (291) 

14. 2-Amino-6-methyl-5-(phenylsulfanyl)furo[2,3-d]pyrimidin-4(3H)-one (293) 

15. 2-Amino-6-methyl-5-(naphthalen-1-ylsulfanyl)furo[2,3-d]pyrimidin-4(3H)-one (294) 
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16. 2-Amino-5-[(4-methoxyphenyl)sulfanyl]-6-methylfuro[2,3-d]pyrimidin-4(3H)-one (295) 

17. 2-Amino-6-methyl-5-(pyridin-4-ylsulfanyl)furo[2,3-d]pyrimidin-4(3H)-one (296) 

18. 2-Amino-5-[(3,4-dichlorophenyl)thio]-6-methylfuro[2,3-d]pyrimidin-4(3H)-one (297) 

19. 2-Amino-5-[(4-chlorophenyl)sulfanyl]-6-methylfuro[2,3-d]pyrimidin-4(3H)-one (298) 

20. 6-{[(2,5-Dichlorophenyl)amino]methyl}quinazoline-2,4-diamine (301)  

21. 6-{[(3,4,5-Trichlorophenyl)amino]methyl}quinazoline-2,4-diamine (302)  

22. 6-{[(3,4,5-Trichlorophenyl)amino]methyl}pteridine-2,4-diamine (303)  

23. 6-{[(2,5-Dichlorophenyl)amino]methyl}pteridine-2,4-diamine (304)  

24. 6-[(2,5-Dichlorophenoxy)methyl]pteridine-2,4-diamine (305) 

25. 6-{[(2,5-Dichlorophenyl)sulfanyl]methyl}pteridine-2,4-diamine (306) 

26. N-({5-[3-(2-amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-yl)propyl]furan-2-

yl}carbonyl)-L-glutamic acid (317) 

27. N-{4-[3-(2-amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-yl)propyl]benzoyl}-L-

homocysteine (322) 

28. 2,6-Dimethyl-N-phenylfuro[2,3-d]pyrimidin-4-amine (326)  

29. 2,6-Dimethyl-N-(naphthalen-1-yl)furo[2,3-d]pyrimidin-4-amine (327)  

30. N-(3-ethynylphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (328)  

31. 2,6-Dimethyl-N-[4-(trifluoromethyl)phenyl]furo[2,3-d]pyrimidin-4-amine (329)  

32. N-(3-chloro-4-fluorophenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (330)  

33. N-(4-chlorophenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (331) 

34.  N-(1H-indol-4-yl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (332) 

35.  N-(4-methoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (333) 

36. N-(3-fluorophenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (334)  
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37. N-(4-methoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (335) 

38. N-(4-methoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine hydrochloride (336) 

39. N,2,6-trimethyl-N-(4-methylphenyl)furo[2,3-d]pyrimidin-4-amine (338) 

40. N,2,6-trimethyl-N-(3-methylphenyl)furo[2,3-d]pyrimidin-4-amine (339)  

41. N-(4-chlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (340) 

42. N-(3,4-dichlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (341) 

43. N,2,6-trimethyl-N-(naphthalen-1-yl)furo[2,3-d]pyrimidin-4-amine (342) 

44. N-ethyl-N-(4-methoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (343)  

45. N-(4-methoxyphenyl)-2,6-dimethyl-N-propylfuro[2,3-d]pyrimidin-4-amine (344) 

46. N-butyl-N-(4-methoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (345 ) 

47. N-(4-methoxyphenyl)-2,6-dimethyl-N-(propan-2-yl)furo[2,3-d]pyrimidin-4-amine (346) 

48. 4-(5-Methoxyindolin-1-yl)-2,6-dimethylfuro[2,3-d]pyrimidine (347) 

49. 4-(5-Methoxy-1H-indol-1-yl)-2,6-dimethylfuro[2,3-d]pyrimidine (348)    

50. 4-(6-Methoxy-3,4-dihydroquinolin-1(2H)-yl)-,2,6-trimethylfuro[2,3-d]pyrimidines (349)  

51. N-(4-ethylphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (466) 

52. 2,6-Dimethyl-N-[4-(methylsulfanyl)phenyl]furo[2,3-d]pyrimidin-4-amine (467)   

53. N-(4-ethoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (469) 

54. 2,6-Dimethyl-N-(4-propoxyphenyl)furo[2,3-d]pyrimidin-4-amine (470)   

55. N-(2,4-dimethoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (471)   

56. N-(2,4-dimethoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (472)   

57. 2,6-Dimethyl-N-(3,4,5-trimethoxyphenyl)furo[2,3-d]pyrimidin-4-amine(473)   

58. N-(4-ethylphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (352)   

59. N,2,6-trimethyl-N-[4-(methylsulfanyl)phenyl]furo[2,3-d]pyrimidin-4-amine (353)   
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60. N-(4-ethoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (355)   

61. N,2,6-trimethyl-N-(4-propoxyphenyl)furo[2,3-d]pyrimidin-4-amine (356)   

62. N-(2,4-dimethoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (357)   

63. N-(3,4-dimethoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (358)   

64. N,2,6-trimethyl-N-(3,4,5-trimethoxyphenyl)furo[2,3-d]pyrimidin-4-amine (359)   

65. N-1,3-benzodioxol-5-yl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (474) 

66. N-(2,3-dihydro-1-benzofuran-5-yl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (475)   

67. N-1-benzofuran-5-yl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (476) 

68. N-1,3-benzodioxol-5-yl-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (360)   

69. N-(2,3-dihydro-1-benzofuran-5-yl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (361)   

70. N-1-benzofuran-5-yl-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (362) 

71. N-(4-methoxyphenyl)-N,2,6-trimethyl-5,6-dihydrofuro[2,3-d]pyrimidin-4-amine (364)   

72. N-(4-methoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (365) 

73. N-(4-Methoxyphenyl)-N,6-dimethyl-2-phenylfuro[2,3-d]pyrimidin-4-amine (367)  

74. N4-(4-methoxyphenyl)-N4,6-dimethylfuro[2,3-d]pyrimidine-2,4-diamine (366) 

75. N-(3,4-dichlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (368) 

76. N,2,6-trimethyl-N-(4-methylphenyl)furo[2,3-d]pyrimidin-4-amine (369) 

77. N-(4-chlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (370)   

78. N-(3,4-dichlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (371)   

79. N-(3,4-dichlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (372)   

80. N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine (503) 

81. N-(4-methoxyphenyl)-N,5-dimethylfuro[2,3-d]pyrimidin-4-amine (373) 

82. N-(4-methoxyphenyl)-2,6-dimethylthieno[2,3-d]pyrimidin-4-amine (509)   
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83. N-(4-methoxyphenyl)-N,2,6-trimethylthieno[2,3-d]pyrimidin-4-amine (374) 

84. N-(4-methoxyphenyl)-2,5-dimethylthieno[2,3-d]pyrimidin-4-amine (514)  

85. N-(4-methoxyphenyl)-N,2,5-trimethylthieno[2,3-d]pyrimidin-4-amine (375)   

86. 1-(2,5-Dimethylthieno[2,3-d]pyrimidin-4-yl)-6-methoxy-1,2,3,4-tetrahydroquinoline 

(377)  

87. 4-Methyl-7-phenyl-5-[2-(3,4,5-trimethoxyphenyl)ethyl]-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (384) 

88. 5-[2-(2-Methoxyphenyl)ethyl]-4-methyl-7-(2-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-

2-amine (385) 

89. 4-Methyl-7-(2-phenylethyl)-5-[2-(3,4,5-trimethoxyphenyl)ethyl]-7H-pyrrolo[2,3-

d]pyrimidin-2-amine (386) 

90. 5-[2-(2-Methoxyphenyl)ethyl]-4-methyl-7-(3-phenylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-

2-amine (387)  

91. 4-Methyl-7-(3-phenylpropyl)-5-[2-(3,4,5-trimethoxyphenyl)ethyl]-7H-pyrrolo[2,3-

d]pyrimidin-2-amine (388) 

Among them four benzo[4,5]thieno[2,3-d]pyrimidines were designed and synthesized as dual 

TS and DHFR inhibitors. Ten thieno[2,3-d]pyrimidines were designed and synthesized as dual 

TS and DHFR inhibitors. Six furo[2,3-d]pyrimidines were designed and synthesized as dual TS 

and DHFR inhibitors. Six 2,4-diamino-6-substituted bicyclic pyrimidines were designed and 

synthesized as selective pjDHFR inhibitors. Two thieno[2,3-d]pyrimidines were designed and 

synthesized as GARFTase inhibitors with folate receptor (FR) specificity and antitumor activity. 

Fifty-seven furo[2,3-d]pyrimidines and six thieno[2,3-d]pyrimidines were designed and 

synthesized as RTK inhibitors with antimitotic antitumor activity. Four pyrrolo[2,3-
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d]pyrimidines were designed and synthesized as antimitotic anticancer agents that also reverse 

pgp action. 

During this study, a novel synthetic procedure for the synthesis of benzo[4,5]thieno[2,3-

d]pyrimidines were successfully exploited. The novel cyclization of furo[2,3-d]pyrimidine via 

H2SO4 (Conc.) or 2N NaOH have been developed. One of the furo[2,3-d]pyrimidine compounds 

showed dual RTK inhibitory activity and antimitotic activity. The compound showed a two digit 

nanomolar GI50 against most tumor cells in the preclinical NCI 60 tumor cell panel. 

Conformational resitriction in some of the moleculars led to increased inhibitory activities as 

RTK inhibitors as well as antimitotic activity. Several compounds were discovered that 

overcome the resistance mechanism s of tumor to standard antimicrotubule  agents. In addition, 

highly coveted water soluble antimicrotubules were also synthesized. 
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VI. EXPERIMENTAL SECTION  

 All evaporations were carried out in vacuo with a rotary evaporator. Analytical samples 

were dried in vacuo (0.2 mmHg) in a CHEM-DRY drying apparatus over P2O5 at 80 oC.  Melting 

points were determined on a MEL-TEMP II melting point apparatus with a FLUKE 51 K/J 

electronic thermometer and are uncorrected.   Nuclear magnetic resonance spectra for proton (1H 

NMR) were recorded on either a Bruker WH-400 (400 MHz) spectrometer or a Bruker WH-300 

(300 MHz) spectrometer.  The chemical shift values are expressed in ppm (parts per million) 

relative to tetramethylsilane as an internal standard: s, singlet; d, doublet; t, triplet; q, quartet; m, 

multiplet; br, broad singlet. Mass spectra were recorded on a VG-7070 double-focusingmass 

spectrometer or in a LKB-9000 instrument in the electron ionization (EI) mode. Chemical names 

follow IUPAC nomenclature. Thin-layer chromatography (TLC) was performed on Whatman Sil 

G/UV254 silica gel plates with a fluorescent indicator, and the spots were visualized under 254 

and 365 nm illumination. All analytical samples were homogeneous on TLC in three different 

solvent systems. Proportions of solvents used for TLC are by volume. Column chromatography 

was performed on a 230-400 mesh silica gel (Fisher, Somerville, NJ) column.  Elemental 

analyses were performed by Atlantic Microlab, Inc., Norcross, GA. Element compositions are 

within 0.4% of the calculated values.  Fractional moles of water frequently found in the 

analytical sample of antifolates could not be prevented in spite of 24-48 h of drying in vacuo and 

was confirmed where possible by the presence in the 1H NMR spectra. All solvents and 

chemicals were purchased from Aldrich Chemical Co. or Fisher Scientific and were used as 

received. For all the compounds submitted for biological evaluation, a single spot in three 

different solvent systems with three different Rf values confirmed >95% purity. 

 Ethyl 2-amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (390). A 
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mixture of sulfur (1.1 g, 36 mmol), 2-methylcyclohexanone (4.04 g, 36 mmol) , ethyl 

cyanoactetate (4.07 g, 36 mmol) and EtOH (150 mL) were placed in a round bottom flask and 

warmed to 45 oC and treated dropwise with morpholine (3.1 g, 36 mmol) over 15 min. The 

mixture was stirred for 5 h at 45 oC and 24 h at room temperature. Unreacted sulfur was removed 

by filtration, and the filtrate was concentrated under reduced pressure to afford an orange solid. 

The residue was loaded on a silica gel column packed with silica gel and eluted with 10% ethyl 

acetate in hexane. The fractions containing the desired product (TLC) were pooled and 

evaporated to afford 390 (6.97 g, 80.9 %) as an orange solid; mp 69.9-71 oC; Rf 0.44 

(hexane/EtOAc 3:1); 1H NMR (DMSO-d6): δ 1.08-1.10 (d, 3 H, 4-CH3), 1.25-1.28 (t, 3 H, 

COOCH2CH3), 1.57-1.78 (m, 4 H), 2.39-2.43 (m, 2 H), 3.15-3.17 (m, 1 H), 4.10-4.24 (q, 2 H, 

COOCH2CH3), 7.23 (s, 2 H, NH2 exch). 

 2-Amino-5-methyl-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one 

(391).   A mixture of 390 (0.74 g, 3.28 mmol) and chloroformamidine hydrochloride (1.51 g, 

13.12 mmol) in DMSO2 (4 g) was heated at 140° C for 4 h.   The mixture was cooled to room 

temperature and water (15 mL) was added and ammonium hydroxide was used to neutralize the 

suspension. The brown solid, obtained by filtration, was washed with water and dried over P2O5 

in vacuum. The solid was dissolved in methanol and silica gel was added. A dry silica gel plug 

was obtained after evaporation of the solvent. The plug was loaded on to a silica gel column and 

eluted with 5% methanol in chloroform. The fractions containing the desired product (TLC) were 

pooled and evaporated to afford 391 (0.46 g, 59.7 %) as a light yellow solid; mp > 300 °C; Rf 0.5 

(MeOH/CHCl3, 1:6); 1H NMR (DMSO-d6) δ 1.18-1.20 (d, 3 H, CH3), 1.59-1.61 (m, 1 H), 1.71-

1.83 (m, 3 H), 2.54-2.64 (m, 2 H), 3.15-3.18 (m, 1 H), 6.39 (s, 2 H, 2-NH2 exch), 10.73 (s, 1 H, 

3-NH exch); Anal. calcd. for (C11H13N3SO · 0.2 H2O): C, 55.30; H, 5.65; N, 17.59; S, 13.42; 



 

218 
 

found: C, 55.19; H, 5.65; N, 17.33; S, 13.17.  

 2,2-Dimethyl-N-(5-methyl-4-oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-

d]pyrimidin-2-yl)propanamide (392).    To a 100 mL round-bottomed flask was added 391 

(0.706 g, 3 mmol) and excess Piv2O (10 mL). The mixture was kept at reflux for 2 h. The excess 

Piv2O was removed under vacuum and the residue was made into silica gel plug. The silica gel 

plug obtained was loaded onto a silica gel column and eluted with 1:8 ethyl acetate/hexane.    

The fraction  containing the desired product were pooled afford 392  (0.956 g, 70.3 %) as a white 

solid; mp 236.6-237.8 °C; Rf 0.31 (hexane/EtOAc 3:1); 1H NMR (DMSO-d6) δ 1.22 (s, 12 H, 4 

CH3), 1.62-1.79 (m, 4 H), 2.58-2.73 (m, 2 H), 3.23 (br s, 1 H),  11.07 (s, 1 H, NH exch), 12.02 (s, 

1 H, NH exch).   

 Ethyl 2-amino-4-methyl-1-benzothiophene-3-carboxylate (395). A mixture of 389 

(0.239 g, 1 mmol), 10 % Pd/C (0.239 g) and mesitylene (50 mL) were placed in a round bottom 

flask and kept at reflux for 1-2 days. The mixture was cooled to room temperature and Pd/C was 

removed by filtration, and the filtrate was concentrated under reduced pressure to afford a brown 

oil. The residue was loaded on a silica gel column and eluted with 10% ethyl acetate in hexane. 

The fractions containing the desired product (TLC) were pooled and evaporated to afford 395 

(0.123 g, 52.1%) as an orange semi solid; Rf 0.38 (hexane/EtOAc 3:1); 1H NMR (DMSO-d6): δ 

1.29-1.32 (t, 3 H, COOCH2CH3), 2.38 (s, 3 H, CH3), 4.25-4.30 (q, 2 H, COOCH2CH3), 6.98-7.04 

(m, 2 H, C6H3), 7.44, 7.45 (d, 1 H, C6H3), 7.43 (s, 2 H, NH2 exch). 

 2-Amino-5-methyl[1]benzothieno[2,3-d]pyrimidin-4(3H)-one (393). A mixture of 395 

(0.49 g, 2.07 mmol) and chloroformamidine hydrochloride (1.19 g, 10.37 mmol) in DMSO2 (2 g) 

was heated at 140° C for 2 h.   The mixture was cooled to room temperature and water (15 mL) 

was added and ammonium hydroxide was used to neutralize the suspension. The brown solid, 
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obtained by filtration, was washed with water and dried over P2O5 vacuum.   The solid was 

dissolved in methanol and silica gel (1.0 g) was added. A dry silica gel plug was obtained after 

evaporation of the solvent. The plug was loaded on to a silica gel column and eluted with 5% 

methanol in chloroform. The fractions containing the desired product (TLC) were pooled and 

evaporated to afford 393 (0.29 g, 60.7 %) as a yellow solid; mp > 300 °C; Rf 0.41 (MeOH/CHCl3, 

1:6); 1H NMR (DMSO-d6) δ 2.87 (s, 3 H, CH3), 6.82 (s, 2 H, 2-NH2 exch), 7.13- 7.17 (m, 2 H, 

C6H3), 7.57, 7.59 (d, 1 H, C6H3), 10.92 (s, 1 H, 3-NH exch). 

 2,2-Dimethyl-N-(5-methyl-4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-2-

yl)propanamide (394). To a 100 mL round-bottomed flask was added 393 (1.34 g, 

5.8 mmol) and excess Piv2O (4 eq). The mixture was kept at reflux for 2 h. The excess Piv2O 

was removed under vacuum and the residue was made into silica gel plug. The silica gel plug 

obtained was loaded onto a silica gel column and eluted with 1:8 ethyl acetate/hexane to afford 

394 ( 1.299 g, 70.9 %) as a white solid, mp 178.3-179.5 °C; Rf 0.35 (hexane/EtOAc 3:1); 1H 

NMR (CDCl3) δ 1.35 (s, 9 H, 3 CH3 of Piv), 3.05 (s, 3 H, CH3), 7.28 (m, 2 H, C6H3), 7.56, 7.59 

(d, 1 H, C6H3), 8.14 (s, 1 H, NH exch), 11.86 (s, 1 H, NH exch). 

2,5-Dimethyl[1]benzothieno[2,3-d]pyrimidin-4(3 H)-one (396). To a 100 mL round 

flask were added 395 (2.35 g, 10 mmol) and CH3CN (50 mL).  Vigorous stirring afforded, a clear 

solution.   Anhydrous HCl  gas was bubbled into the solution for 1 h to give a thick precipitation, 

which then redissolved into the acid solution. Anhydrous HCl gas was added for an additional 3 

h after which the reaction mixture became clear. Evaporation of the solvent under reduced 

pressure afforded a residue that was dissolved in water. Concentrated aqueous NH4OH was 

added to afford a suspension at pH = 8. The precipitate was collected by filtration, washed with 

water and dried over P2O5 in a vacuum to afford 396 (1.0 g, 57%) as a yellow solid; mp  > 300 
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oC; Rf 0.58 (MeOH/CHCl3, 1:6); 1H NMR (DMSO-d6) δ 2.348 (s, 3 H, 2-CH3), 2.95 (s, 3 H, 5-

CH3). 7.29 (m, 2 H, C6H3), 7.78 (s, 1 H, C6H3), 12.54 (s, 1H, 3-NH exch). HRMS calcd for 

C12H10N2OS 231.0592, found 231.0584. 

2,2-Dimethyl-N-(5-methyl-4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-2-

yl)propanamide (397) A solution of  394 (1.1 g, 3.49 mmol) in 1,2- dichloroethane (50 mL) was 

treated with N-bromosuccinimide (0.62 g, 3.49 mmol) and benzoyl peroxide (50 mg), and the 

mixture was maintained at reflux for 1 day. The mixture was cooled to room temperature and 

washed with water, and evaporated to an orange solid. The solid was dissolved in methanol and 

silica gel ( 1.5  g)  was added.  A dry silica gel plug was obtained after evaporation of the solvent. 

The plug was loaded on to a silica gel column and eluted with 6 % ethyl acetate in hexane to 

afford 397 (0.577 g, 41.9 %) as an orange solid; mp 217.8-219.1 °C;  Rf 0.3 (hexane/EtOAc 3:1); 

1H NMR (CDCl3) δ 1.27 (s, 9 H, 3 CH3 of Piv), 5.71 (s, 2 H, CH2Br), 7.30, 7.33 (d, 1 H, C6H3), 

7.43, 7.46 (d, 1 H, C6H3), 7.64, 7.66 (d, 1 H, C6H3), 8.07 (s, 1 H,  NH exch), 11.99 (s, 1 H,  NH 

exch). 

 5-(Bromomethyl)-2-methyl[1]benzothieno[2,3-d]pyrimidin-4(3H)-one (398) To a 100 

mL flask were added  396 (0.736 g, 3.2 mmol) and benzene (30 mL). The suspension was stirred 

at 60 oC for 30 min to afford a clear solution, followed by the addition of N-bromosuccinimide 

(0.620 g, 3.49 mmol) and benzoyl peroxide (50 mg). The mixture was maintained at reflux for 4h 

and then cooled to room temperature and washed with water, and evaporated to afford a yellow 

solid. The solid was dissolved in methanol and silica gel ( 1.5 g)  was added. A dry silica gel plug 

was obtained after evaporation of the solvent. The plug was loaded on to a silica gel column and 

eluted with 6 % ethyl acetate in hexane to afford 398 (393 mg, 39%) as a white solid; mp 217.8-

219.1 °C;  Rf 0.3 (hexane/EtOAc 3:1); 1H NMR (CDCl3) δ 2.69 (s, 3 H, 2-CH3), 5.84 (s, 2 H, 
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CH2Br), 7.44-7.47 (t, 1 H, J = 7.2, C6H3), 7.57-7.58 (d, 1 H, J = 7.2, C6H3), 7.80-7.82 (d, 1 H, J 

= 7.2, C6H3). HRMS calcd for C12H9N2OSBr 307.9619, found 307.9613. 

Methyl 2-methyl-4-nitrobenzoate (400). Thionyl chloride (4.3 g, 36.45 mmol) was 

added dropwise to a stirred solution of 399 (3 g, 16.57 mmol) in MeOH (25 mL) while 

maintaining the internal temperature below 12 oC. When the addition was complete the mixture 

was left to stand at room temperature for 12h to result a white precipitation. The mixture was 

filtered and the filtrate was concentrated under reduced pressure to afford white solid. The solid 

was   washed with hexane and ethyl ether to afford 400 (2.95 g, 91.3 %); mp 153.7-154.4 °C 

(lit.39 mp 153-154 °C); Rf 0.43 (hexane/EtOAc 3:1); 1H NMR (CDCl3) δ 2.69 (s, 3 H, CH3), 3.95 

(s, 3 H, COOCH3), 8.02-8.11 (m, 3 H, C6H3). 

Methyl 2-(bromomethyl)-4-nitrobenzoate (401). A solution of 400 (2.57 g, 13.19 mmol) 

in 1,2-dichloroethane (100 mL) was treated with N-bromosuccinimide (2.3 g, 13.19 mmol) and 

benzoyl peroxide (0.26 g), and the mixture was kept at reflux for 2 days, then cooled, washed 

with water, and evaporated to a yellow oil (3.52 g). The oil was dissolved in acetone and silica 

gel ( 4.0 g)  was added. A dry silica gel plug was obtained after evaporation of the solvent. The 

plug was loaded on to a silica gel column and eluted with 10 % ethyl acetate in hexane to afford 

401 (1.73 g, 48.2 %) as a yellow oil; Rf 0.53 (hexane/EtOAc 3:1); 1H NMR (CDCl3) δ 3.89 (s, 3 

H, COOCH3), 4.86 (s, 2 H, CH2Br), 7.98-8.23 (m, 3 H, C6H3). 

Diethyl (2S)-2-(5-nitro-1-oxo-1,3-dihydro-2H-isoindol-2-yl)pentanedioate (402). The 

oil 401 (0.85 g, 3.1 mmol) was stirred for 16 h with diethyl glutamate hydrochloride (1.54 g, 6.4 

mmol) and powdered K2CO3 (1.7 g, 12 mmol) in DMA (3 mL) under argon. The reaction 

mixture was diluted with water (20 mL) and extracted with ethyl acetate (3 X 20 mL). The 

combined ethyl acetate solutions were washed twice with brine, dried, and evaporated to an 
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orange oil. The oil was dissolved in methanol and silica gel was added. A dry silica gel plug was 

obtained after evaporation of the solvent. The plug was loaded on to a silica gel column and 

eluted with 25 % ethyl acetate in hexane to afford 402 (0.63 g, 55.7 %) as an orange oil; Rf 0.44 

(hexane/EtOAc 1:1); 1H NMR (CDCl3) δ 1.17-1.22 (t, 3 H, COOCH2CH3), 1.26-1.31 (t, 3 H, 

COOCH2CH3), 2.19-2.49 (m, 4 H, CHCH2CH2COOEt), 4.02-4.23 (2q, 4 H, COOCH2CH3),  

4.51-4.83 (dd, 2 H, -CH2-), 5.09-5.14 (m, 1 H, CHCH2CH2COOEt), 8.00-8.03 (d, 1 H, C6H3), 

8.36 (br s, 2 H, C6H3). 

Diethyl (2S)-2-(5-amino-1-oxo-1,3-dihydro-2H-isoindol-2-yl)pentanedioate (403). To 

a Parr hydrogenation bottle was added 402 (0.55 g, 1.51 mmol), 10% Pd/C (0.09 g) and acetyl 

acetate (30 mL). Hydrogenation was carried out at 55 psi for 12 h. After filtration, the organic 

phase was evaporated at vacuum to afford 403 (0.467 g, 92.5 %) as a orange oil; Rf 0.19 

(hexane/EtOAc 1:1); 1H NMR (CDCl3) δ 1.17-1.19 (t, 3 H,COOCH2CH3), 1.20-1.25 (t, 3 H, 

COOCH2CH3), 2.20-2.51 (m, 4 H, CHCH2CH2COOEt), 4.02-4.28 (m, 6 H, 2 COOCH2CH3, NH2 

exch),  4.22-4.51 (dd, 2 H, -CH2-), 5.03-5.07 (m, 1 H, CHCH2CH2COOEt), 6.69-6.73 (m, 2 H, 

C6H3), 7.60, 7.63 (d, 1 H, C6H3). 

General Procedure for the Synthesis of Compounds 275-278. A stirred solution of the 

tricyclic bromide 397 or 398 (0.25 mmol) in dry DMF (5 mL) was treated with the appropriate 

amine 403 or 403a (1 mmol) and K2CO3 (95 mg, 0.69 mmol). The solution was stirred for 1 h at 

80 °C under argon. The cooled reaction mixture was filtered and the filtrate was evaporated to 

obtain an orange solid. The solid was dissolved in methanol and silica gel was added. A dry silica 

gel plug was obtained after evaporation of the solvent. The plug was loaded on to a silica gel 

column and eluted with ethyl acetate: hexane (1: 1).   The fractions containing the desired 

product (TLC) were pooled and evaporated to afford a solid, to which a combined solution of 
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aqueous 1 N NaOH (3 mL) and methanol (12 mL) was added. The mixture was kept at reflux for 

12 h. The methanol was evaporated under reduced pressure and the residue was dissolved in 

water (5 mL). The solution was cooled to 0 oC and carefully acidified to pH 3 with dropwise 

addition of 1 N HCl. The resulting suspension was left at 0 oC for 2 h and the precipitate was 

collected by filtration, washed with water (5 mL) and dried over P2O5/vacuum at 50 oC to afford 

target compounds 275-278. 

N-(4-{[(2-methyl-4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-5-

yl)methyl]amino}benzoyl)-L-glutamic acid (275).  Using the general procedure described 

above with 398 and 403a afforded 275 (37 mg, 37 %) as a yellow solid; mp 219.6-221.3 °C;  Rf 

0.28 (MeOH/EtOAc, 1:6); Rf 0.32 (MeOH/ CHCl3, 1:6 + 1 drop of NEt3);  Rf 0.34 

(MeOH/CHCl3, 1:6 + 1 drop of gl. HOAc); 1H NMR (DMSO-d6): δ 1.22 (s, 1 H, 2-CH3), 1.88-

2.01 (m, 2 H, Gluγ-CH2CH2), 2.29 (m, 2 H, Gluγ-CH2CH2), 4.31 (s, 1 H, Gluα-CH), 5.20 (s, 2 H, 

Benzylic CH2), 6.56-6.58 (d, 2 H, J = 9.0), 7.38-7.40 (d, 1 H, J = 7.5), 7.49 (d, 2 H, 2-NH2 exch), 

7.58-7.59 (d, 2 H, J = 9.0), 7.88 (d, 1 H) 8.02 (s, 1 H, CONH), 8.08 (d, 1H), 12.71 (s, 1 H, 3-NH 

exch); HRMS (ESI, pos mode) m/z [M + H+] calcd for C24H23N4O6S  495.1338, found 495.1345. 

(2S)-2-(5-{[(2-methyl-4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-5-

yl)methyl]amino}-1-oxo-1,3-dihydro-2H-isoindol-2-yl)pentanedioic acid (276).   Using the 

general procedure described above with 398 and 403 afforded 276 (35 mg, 34 %) as a yellow 

solid; mp 236.4-237.7 °C; Rf 0.29 (MeOH/EtOAc, 1:6); Rf 0.32 (MeOH/ CHCl3, 1:6 + 1 drop of 

NEt3); Rf 0.36 (MeOH/CHCl3, 1:6 + 1 drop of gl. HOAc);1H NMR (DMSO-d6): δ 1.22 (s, 3 H, 2-

CH3), 1.95 (m, 2 H, Gluβ-CH2), 2.18 (m, 2 H, Gluγ-CH2), 4.22 (s, 2 H, isoindolinyl CH2), 4.67-

4.69 (m, 1 H, Gluα-CH), 5.21 (s, 2 H, Benzylic CH2), 6.65 (s, 1 H, CH), 6.81 (s, 1 H, NH exch), 

7.30-7.32 (d, 1 H, J = 6.0), 7.37-7.41 (d, 1 H, J = 12), 7.49-7.51 (d, 1 H, J = 6.0), 7.88-7.90 (d, 1 
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H, J = 6.0), 8.03 (s, 1 H),12.76 (s, 1 H, 3-NH exch), HRMS (ESI, pos mode) m/z [M + H+] calcd 

for C25H23N4O6S  507.1333, found 507.1362.     

N-(4-{[(2-amino-4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-5-

yl)methyl]amino}benzoyl)-L-glutamic acid (277).   Using the general procedure described 

above with 397 and 403a afforded  277 (39 g, 32 %) as an orange solid; mp > 300 °C; Rf 0.30 

(MeOH/EtOAc, 1:6); Rf 0.34 (MeOH/ CHCl3, 1:6 + 1 drop of NEt3);  Rf 0.34 (MeOH/CHCl3, 1:6 

+ 1 drop of gl. HOAc);1H NMR (DMSO-d6): δ 1.85-1.98 (m, 2 H, Gluγ-CH2CH2), 2.27-2.32 (m, 

2 H, Gluγ-CH2CH2),4.26-4.34 (m, 1 H, Gluα-CH), 5.10-5.14 (d, 2 H, Benzylic CH2), 6.55 (s, H, 

CH2NH), 6.55-6.58 (d, 2 H, J = 9.0, 2 CH), 6.94 (br s, 2 H, 2-NH2 exch), 7.19-7.24 (t, 1 H, J = 

7.5), 7.38-7.40 (d, 1 H, J = 7.5), 7.56-7.59 (d, 2 H, J = 9.0), 7.68-7.70 (d, 1 H, J = 7.5), 7.97-8.00 

(d, 1 H, J = 6.9, NH exch), 11.19 (s, 1 H, 3-NH exch), 12.66 (s, 2 H, 2COOH exch); HRMS (ESI, 

pos mode) m/z [M + H+] calcd for C23H22N5O6S  496.1291, found 496.1316. 

(2S)-2-(5-{[(2-Amino-4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-5-

yl)methyl]amino}-1-oxo-1,3-dihydro-2H-isoindol-2-yl)pentanedioic acid (278).   Using the 

general procedure described above with 397 and 403a afforded  278 (40 mg, 32 %) as a orange 

solid; mp > 300 °C; Rf 0.27 (MeOH/EtOAc, 1:6); Rf 0.30 (MeOH/ CHCl3, 1:6 + 1 drop of NEt3);  

Rf 0.33 (MeOH/CHCl3, 1:6 + 1 drop of gl. HOAc);1H NMR (DMSO-d6): δ 1.97-2.20 (m, 4 H, 

Gluβ-CH2, Gluγ-CH2), 4.21-4.25 (m, 2 H, isoindolinyl CH2), 4.68-4.71 (m, 1 H, Gluα-CH), 5.13, 

5.14 (d, 2 H, benzylic CH2), 6.64 (br s, 2 H, C6H3), 6.74 (s, 1 H, NH exch), 6.89 (s, 2 H, 2-NH2 

exch), 7.20-7.26 (t, 1 H, C6H3), 7.30-7.33 (d, 1 H, C6H3), 7.39-7.42 (dd, 1 H, C6H3), 7.69-7.72 (d, 

1 H, C6H3), 11.11 (s, 1 H, 3-NH exch), 12.78 (s, 2 H, 2COOH exch). HRMS (ESI, pos mode) 

m/z [M + H+] calcd for C24H21N5O6S, 508.1285; found, 508.1321. 

Ethyl 2-amino-5-propylthiophene-3-carboxylate (405). A mixture of sulfur (1.92 g, 60 mmol), 
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pentanal (5.17 g, 60 mmol), ethyl cyanoactetate (6.78 g, 60 mmol) and EtOH (100 mL) were 

placed in a round bottom flask and warmed to 45 oC and treated dropwise with morpholine (5.23 

g, 60 mmol) over 15 min. The mixture was stirred for 4 h at 45 oC and 24 h at room temperature. 

Unreacted sulfur was removed by filtration, and the filtrate was concentrated under reduced 

pressure to afford an orange oil. The residue was loaded on a silica gel column packed with silica 

gel and eluted with 10% ethyl acetate in hexane to afford 405 (9.97 g, 78%) as a orange liquid; Rf 

0.66 (hexane/EtOAc 3:1); 1H NMR (CDCl3) δ 0.93-0.97 (t, 3 H, CH2CH2CH3), 1.31-1.35 (t, 3 H, 

COOCH2CH3), 1.55-1.64 (m, 2 H, CH2CH2CH3), 2.53-2.57 (t, 2 H, CH2CH2CH3), 4.22-4.28 (q, 

2 H, COOCH2CH3), 5.78 (s, 2 H, NH2 exch), 6.63 (s, 1 H, 4-H). HRMS (EI) calcd for 

C10H15NO2S m/z = 213.0823, found m/z = 213.0828. 

 

2-Amino-6-propylthieno[2,3-d]pyrimidin-4(3 H)-one (406). A mixture of 405 (2.1 g, 9.8 mmol) 

and chloroformamidine hydrochloride (2.3 g, 29 mmol) in DMSO2 (7.5 g, 7.5mmol) was heated 

at 150 oC for 2 h. The mixture was cooled to room temperature and water (30 mL) was added 

and ammonium hydroxide was used to neutralize the suspension. The brown solid, obtained by 

filtration, was washed with water and dried over P2O5 vacuum. The solid was dissolved in 

methanol and silica gel was added. The plug was loaded on to a silica gel column and eluted with 

5% methanol in chloroform to afford 406 (1.63 g, 80%) as a yellow solid; mp > 300 oC; Rf 0.32 

(MeOH/CHCl3, 1:6); 1H NMR (DMSO-d6) δ 0.89-0.93 (t, 3 H, CH2CH2CH3), 1.55-1.64 (m, 2 H, 

CH2CH2CH3), 2.64-2.68 (t, 2 H, CH2CH2CH3). 6.45 (s, 2 H, 2-NH2 exch), 6.79 (s, 1 H, 5-H), 

10.82 (s, 1 H, 3-NH exch); Anal. calcd. for (C9H11N3SO · 0.2 CH3OH): C, 51.23; H, 5.51; N, 

19.48; S, 14.87; found: C, 51.26; H, 5.31; N, 19.34; S, 14.84. 
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2-Amino-5-iodo-6-propylthieno[2,3-d]pyrimidin-4(3 H)-one (408). To a mixture of 406 (2.5 g, 

11.9 mmol) in glacial acetic acid (60 mL) was added mercuric acetate (5.69 g, 17.93 mmol) at 

room temperature. The mixture was heated at 100 oC for 3 h. Then the mixture was poured into a 

brine solution (60 mL) and stirred for 30 min. The yellow solid 407 (4.2 g, 78.9%) obtained by 

filtration was washed with water and hexane and dried over P2O5 vacuum; mp 252.7 oC. 

Compound 407 (3.5 g, 7.8 mmol) was dissolved in CH2Cl2 (100 mL) and I2 (3.85 g, 15.2 mmol) 

was added. The resulting mixture was stirred for 5 h at room temperature. The mixture was 

washed with 2 N NaS2O3 and dried over MgSO4. The plug was loaded on to a silica gel column 

and eluted with 3% methanol in chloroform to afford 408 (2.25 g, 86%) as a yellow solid; mp 

241 oC; Rf 0.26 (MeOH/CHCl3, 1:10); 1H NMR (DMSO-d6) δ 0.91-0.95 (t, 3 H, CH2CH2CH3), 

1.53-1.63 (m, 2 H, CH2CH2CH3), 2.65-2.68 (t, 2 H, CH2CH2CH3), 6.56 (s, 2 H, 2-NH2 exch), 

10.91 (s, 1 H, 3-NH exch). HRMS (EI) calcd for C9H10IN3SO m/z = 335.9668, found m/z = 

335.9641. 

General procedure for the synthesis of compounds 283-291 and 409. 

A mixture of appropriate arylthiols (1.5 eq), K2CO3 (1.5 eq), CuI (1.3 eq) and 408 (1 eq) in dry 

DMF (5 mL) was irradiated in a microwave at 100 °C for 60-120 min. After the reaction mixture 

was cooled to room temperature, the mixture was filtered; the filtrate was concentrated under 

reduced pressure. The solid was dissolved in methanol and silica gel was added. A dry silica gel 

plug was obtained after evaporation of the solvent. The plug was loaded on to a silica gel column 

and eluted with 2 % methanol in chloroform. 

2-Amino-5-(phenylsulfanyl)-6-propylthieno[2,3-d]pyrimidin-4(3H)-one (283). Using the 

general procedure above compound 283 (0.085 g, 54 %) was obtained as a light yellow solid by 

reacting 408 (0.167 g, 0.5 mmol), benzenethiol (0.083 g, 0.75 mmol), K2CO3 (0.103 g, 0.75 
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mmol) and CuI (0.124 g, 0.65 mmol) in DMF (5 mL) under microwave irradiation at 100 °C for 

90 min. Rf 0.39 (MeOH/CHCl3, 1:10); mp > 283.6-284.8 °C; 1H NMR (DMSO-d6) δ 0.82-0.86 (t, 

3 H, CH2CH2CH3), 1.48-1.57 (m, 2 H, CH2CH2CH3), 2.8-2.84 (t, 2 H, CH2CH2CH3), 6.56 (s, 2 H, 

2-NH2 exch), 6.96-6.99 (dd, 2 H, C6H5), 7.05-7.08 (t, 1 H, C6H5), 7.19-7.23 (t, 2 H, C6H5), 10.73 

(s, 1 H, 3-NH exch); Anal. calcd. for (C15H15N3S2O · 0.5 CH3OH): C, 55.83; H, 5.14; N, 12.60; S, 

19.23; found: C, 55.82; H, 4.79; N, 12.39; S, 19.36. 

 

2-Amino-5-[(4-nitrophenyl)sulfanyl]-6-propylthieno[2,3-d]pyrimidin -4(3H)-one (284). 

Using the general procedure above compound 284 (0.109 g, 60.2 %) was obtained as a light 

yellow solid by reacting 408 (0.167 g, 0.5 mmol), 4-nitrobenzenethiol (0.096 g,  0.75 mmol), 

K2CO3 (0.103 g, 0.75 mmol) and CuI (0.124 g, 0.65 mmol) in DMF (5 mL) under microwave 

irradiation at 100 °C for 90 min. Rf 0.39 (MeOH/CHCl3, 1:10); mp 290.1-291.3 °C; 1H NMR 

(DMSO-d6) δ 0.83-0.86 (t, 3 H, CH2CH2CH3), 1.52-1.57 (m, 2 H, CH2CH2CH3), 2.81-2.84 (t, 2 

H, CH2CH2CH3), 6.63 (s, 2 H, 2-NH2 exch), 7.16, 7.18 (d, 2 H, C6H4), 8.06, 8.08 (d, 2 H, C6H4), 

10.81 (s, 1 H, 3-NH exch); Anal. calcd. for (C15H14N4S2O3 · 0.2 H2O): C, 49.22; H, 3.97; N, 

15.31; S, 17.52; found: C, 49,46; H, 3.97; N, 14.98; S, 17.24. 

2-Amino-5-[(3,4-dichlorophenyl)sulfanyl]-6-propylthieno[2,3-d]pyrimidin-4(3H)-one (285). 

Using the general procedure above compound 285 (0.141 g, 73.1 %) was obtained as a white 

solid by reacting 408 (0.167 g, 0.5 mmol), 3,4-dichlorobenzenethiol (0.134 g, 0.75 mmol), 

K2CO3 (0.103 g, 0.75 mmol) and CuI (0.124 g, 0.65 mmol) in DMF (5 mL) under microwave 

irradiation at 100 °C for 90 min. Rf 0.42 (MeOH/CHCl3, 1:10); mp 284.4-284.9 °C; 1H NMR 

(DMSO-d6) δ 0.83-0.86 (t, 3 H, CH2CH2CH3), 1.51-1.56 (m, 2 H, CH2CH2CH3), 2.81-2.85 (t, 2 

H, CH2CH2CH3), 6.62 (s, 2 H, 2-NH2 exch), 6.90, 6.92 (d, 1 H, C6H3), 7.22 (s, 1 H, C6H3), 7.45, 
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7.47 (d, 1 H, C6H3), 10.78 (s, 1 H, 3-NH exch); HRMS calcd for C15H14Cl2N3OS2 385.9950, 

found 385.9974. 

 

2-Amino-6-propyl-5-(1-naphthylsulfanyl)thieno[2,3-d]pyrimidin-4(3 H)-one (286). Using the 

general procedure above compound 286 (0.137 g, 74.9 %) was obtained as a yellow solid by 

reacting 408 (0.167 g, 0.5 mmol), naphthalene-1-thiol (0.12 g, 0.75 mmol), K2CO3 (0.103 g, 0.75 

mmol) and CuI (0.124 g, 0.65 mmol) in DMF (5 mL) under microwave irradiation at 100 °C for 

90 min. Rf 0.39 (MeOH/CHCl3, 1:10); mp > 300 °C; 1H NMR (DMSO-d6) δ 0.80-0.83 (t, 3 H, 

CH2CH2CH3), 1.49-1.56 (m, 2 H, CH2CH2CH3), 2.8-2.83 (t, 2 H, CH2CH2CH3), 6.59 (s, 2 H, 2-

NH2 exch), 6.77,6.79 (d, 1 H, C10H7), 7.28-7.32 (t, 1 H, C10H7), 7.55-7.66 (m, 3 H, C10H7), 7.91, 

7.93 (d, 1 H, C10H7), 8.20, 8.22 (d, 1 H, C10H7), 10.73 (s, 1 H, 3-NH exch); HRMS (ESI, pos 

mode) m/z [M + H]+ calcd for C19H17N3OS2, 368.0886; found, 368.0891. 

 

2-Amino-6-propyl-5-(2-naphthylsulfanyl)thieno[2,3-d]pyrimidin-4(3 H)-one (287). Using the 

general procedure above compound 287 (0.152 g, 83.1 %) was obtained as a light brown solid by 

reacting 408 (0.167 g, 0.5 mmol), naphthalene-2-thiol (0.12 g, 0.75 mmol), K2CO3 (0.103 g, 0.75 

mmol) and CuI (0.124 g, 0.65 mmol) in DMF (5 mL) under microwave irradiation at 100 °C for 

90 min. Rf 0.50 (MeOH/CHCl3, 1:10); mp 257.3-257.6 °C; 1H NMR (DMSO-d6) δ 0.82-0.86 (t, 3 

H, CH2CH2CH3), 1.50-1.60 (m, 2 H, CH2CH2CH3), 2.84-2.88 (t, 2 H, CH2CH2CH3), 6.57 (s, 2 H, 

2-NH2 exch), 7.14, 7.17 (d, 1 H, C10H7), 7.43-7.45 (m, 3 H, C10H7), 7.70-7.81 (m, 3 H, C10H7), 

10.71 (s, 1 H, 3-NH exch); HRMS (ESI, pos mode) m/z [M + H]+ calcd for C19H17N3OS2, 

368.0886; found, 368.0886. 
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2-Amino-5-[(4-fluorophenyl)sulfanyl]-6-propylthieno[2,3-d]pyrimid in-4(3H)-one (288). 

Using the general procedure above compound 288 (0.097 g, 58.1 %) was obtained as a light 

yellow solid by reacting 408 (0.167 g, 0.5 mmol), 4-fluorobenzenethiol (0.096 g,  0.75 mmol), 

K2CO3 (0.103 g, 0.75 mmol) and CuI (0.124 g, 0.65 mmol) in DMF (5 mL) under microwave 

irradiation at 100 °C for 90 min. Rf 0.41 (MeOH/CHCl3, 1:10); mp > 300 °C; 1H NMR (DMSO-

d6) δ 0.83-0.87 (t, 3 H, CH2CH2CH3), 1.49-1.58 (m, 2 H, CH2CH2CH3), 2.83-2.86 (t, 2 H, 

CH2CH2CH3), 6.58 (s, 2 H, 2-NH2 exch), 7.01-7.08 (m, 4 H, C6H4), 10.73 (s, 1 H, 3-NH exch); 

HRMS calcd for C15H15FN3OS2 336.0635, found 336.0656. 

 

2-Amino-5-[(4-methoxyphenyl)sulfanyl]-6-propylthieno[2,3-d]pyrimidin-4(3H)-one 

 (289). Using the general procedure above compound 289 (0.085 g, 48.8 %) was obtained as a 

white solid by reacting 408 (0.167 g, 0.5 mmol), 4-methoxybenzenethiol (0.105 g, 0.75 mmol),  

K2CO3 (0.103 g, 0.75 mmol) and CuI (0.124 g, 0.65 mmol) in DMF (5 mL) under microwave 

irradiation at 100 °C for 90 min. Rf 0.44 (MeOH/CHCl3, 1:10); mp 268.8-269.9 °C; 1H NMR 

(DMSO-d6) δ 0.84-0.88 (t, 3 H, CH2CH2CH3), 1.48-1.57 (m, 2 H, CH2CH2CH3), 2.84-2.87 (t, 2 

H, CH2CH2CH3), 3.68 (s, 3 H, OCH3), 6.54 (s, 2 H, 2-NH2 exch), 6.80, 6.82 (d, 2 H, C6H4), 7.04, 

7.06 (d, 2 H, C6H4), 10.71 (s, 1 H, 3-NH exch); Anal. calcd. for (C16H17N3S2O2 ·  0.4 CH3OH): C, 

54.67; H, 5.20; N, 11.66; S, 17.80; found: C, 54.46; H, 4.85; N, 11.63; S, 17.71. 

2-Amino-5-[(4-chlorophenyl)sulfanyl]-6-propylthieno[2,3-d]pyrimidi n-4(3H)-one (290). 

Using the general procedure above compound 290 (0.118 g, 67.1 %) was obtained as a white 

solid by reacting 408 (0.167 g, 0.5 mmol), 4-chlorobenzenethiol (0.108 g,  0.75 mmol), K2CO3 

(0.103 g, 0.75 mmol) and CuI (0.124 g, 0.65 mmol) in DMF (5 mL) under microwave irradiation 

at 100 °C for 90 min. Rf 0.39 (MeOH/CHCl3, 1:10); mp 297.2-297.4 °C; 1H NMR (DMSO-d6) δ 
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0.83-0.86 (t, 3 H, CH2CH2CH3), 1.51-1.59 (m, 2 H, CH2CH2CH3), 2.81-2.84 (t, 2 H, 

CH2CH2CH3), 6.58 (s, 2 H, 2-NH2 exch), 6.98, 7.00 (d, 2 H, C6H4), 7.26, 7.28 (d, 2 H, C6H4), 

10.71 (s, 1 H, 3-NH exch); Anal. calcd. for (C15H14Cl N3S2O ·  0.05 CHCl3): C, 50.51; H, 3.96; N, 

11.74; S, 17.92; Cl, 11.39; found: C, 50.27; H, 3.93; N, 11.58; S, 17.58; Cl, 11.59. 

2-Amino-6-propyl-5-(4-bromophenyl sulfanyl)thieno[2,3-d]pyrimidin-4(3 H)-one (291). 

Using the general procedure above compound 291 (0.147 g, 88 %) was obtained as a light brown 

solid by reacting 408 (0.167 g, 0.5 mmol), 4-chlorobenzenethiol (0.096 g, 0.75 mmol), K2CO3 

(0.103 g, 0.75 mmol) and CuI (0.124 g, 0.65 mmol) in DMF under microwave irradiation at 

100 °C for 90 min. Rf 0.41(MeOH/CHCl3, 1:10); mp 288.4-289.0 °C; 1H NMR (DMSO-d6) δ 

0.83-0.86 (t, 3 H, CH2CH2CH3), 1.48-1.58 (m, 2 H, CH2CH2CH3), 2.80-2.84 (t, 2 H, 

CH2CH2CH3), 6.58 (s, 2 H, 2-NH2 exch), 6.91, 6.93 (d, 2 H, C6H4), 7.37, 7.40 (d, 2 H, C6H4), 

10.74 (s, 1 H, 3-NH exch); HRMS (ESI, pos mode) m/z [M + H]+ calcd for C15H14BrN3OS2, 

396.9824; found, 396.9815. 

Methyl 4-[(2-amino-4-oxo-6-propyl-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl) 

sulfanyl]benzoate (409). Using the general procedure above compound 409 (0.176 g, 47.3 %) 

was obtained as a white solid by reacting 408 (0.334 g, 1 mmol), methyl 4-mercaptobenzoate 

(0.252 g, 1.5 mmol),  K2CO3 (0.206 g, 1.5 mmol) and CuI (0.248 g, 1.3 mmol) in DMF (7 mL) 

under microwave irradiation at 100 °C for 90 min. Rf 0.38 (MeOH/CHCl3, 1:10); mp 176.6-

178.2 °C; 1H NMR (DMSO-d6) δ 0.81-0.85 (t, 3 H, CH2CH2CH3), 1.49-1.59 (m, 2 H, 

CH2CH2CH3), 2.79-2.83 (t, 2 H, CH2CH2CH3), 3.79 (s, 3 H, COOCH3), 6.60 (s, 2 H, 2-NH2 

exch), 7.05, 7.07 (d, 2 H, C6H4), 7.77, 7.79 (d, 2 H, C6H4), 10.77 (s, 1 H, 3-NH exch). 

4-[(2-Amino-4-oxo-6-propyl-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)sulfanyl] 

benzoic acid (410). To a solution of 409 (0.14 g, 0.3 mmol) in ethanol (10 mL) was added 
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aqueous 1 N NaOH (5 mL) and the reaction mixture stirred at room temperature for 12 h. The 

ethanol was evaporated under reduced pressure and the residue was dissolved in water (5 mL). 

The solution was carefully acidified to pH 3 with the drop wise addition of 1 N HCl. The 

resulting suspension was left at 0 oC for an hour and then the residue was collected by filtration, 

washed with water (5 mL) and dried over P2O5/vacuum at 50 oC to afford 410 (0.105 g, 97.1 %) 

as a yellow solid. Rf 0.43 (MeOH/CHCl3, 1:6+ 1drop of gl. HOAc); mp >300 °C; 1H NMR 

(DMSO-d6) δ 0.84 (m, 3 H, CH2CH2CH3), 1.54 (m, 2 H, CH2CH2CH3), 2.79-2.83 (m, 2 H, 

CH2CH2CH3), 6.60 (s, 2 H, 2-NH2 exch), 7.02, 7.04 (d, 2 H, C6H4), 7.74, 7.76 (d, 2 H, C6H4), 

10.77 (s, 1 H, 3-NH exch), 12.77 (s, 1 H, COOH exch). 

Diethyl N-{4-[(2-amino-4-oxo-6-propyl-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl) 

sulfanyl]benzoyl}-L-glutamate (411). To a solution of 410 (0.1 g, 0.28 mmol) in anhydrous 

DMF (10 mL) was added N-methylmorpholine (0.034 g, 0.34 mmol) and 2-chloro-4,6-

dimethoxy-1,3,5-triazine (0.06 g, 0.34 mmol). The resulting mixture was stirred at room 

temperature for 2 h. N-methylmorpholine (0.034 g, 0.34 mmol) and diethyl-L- glutamate 

hydrochloride (0.068 g, 0.28 mmol) were added to the mixture. The reaction mixture was stirred 

for an additional 3 h at room temperature and silica gel was added to this solution and the 

suspension evaporated under reduced pressure. The plug obtained was loaded on a silica gel 

column and eluted with 2% methanol in chloroform and 411 (0.095 g, 62.1 %) was obtained as a 

yellow solid. Rf 0.33 (MeOH/CHCl3, 1:6); mp > 300 °C; 1H NMR (DMSO-d6) δ 0.83-0.87 (t, 3 

H, CH2CH2CH3), 1.13-1.18 (q, 6 H, 2 COOCH2CH3), 1.51-1.57 (m, 2 H, CH2CH2CH3), 1.93-

2.11 (m, 2 H Gluβ-CH2), 2.39-2.43 (t, 2 H, Gluγ-CH2), 2.80-2.84 (t, 2 H, CH2CH2CH3), 4.00-

4.11 (m, 4 H, 2 COOCH2CH3), 4.35-4.41 (1 H, m, Gluα-CH), 6.61 (s, 2 H, 2-NH2 exch), 7.01, 

7.03 (d, 2 H, C6H4), 7.68, 7.70 (d, 2 H, C6H4), 8.60-8.62 (d, 1H, CONH exch), 10.74 (s, 1 H, 3-
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NH exch). 

N-{4-[(2-Amino-4-oxo-6-propyl-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)sulfanyl]benzoyl}-

L-glutamic acid (282). To a solution of 411 (0.09 g, 0.165 mmol)  in ethanol (7 mL) was added 

aqueous 1 N NaOH (4 mL) and the reaction mixture stirred at room temperature for 3 h. The 

ethanol was evaporated under reduced pressure and the residue was dissolved in water (5 mL). 

The solution was cooled to 0 oC and carefully acidified to pH 3 with drop wise addition of 1 N 

HCl. The resulting suspension was left at 0 oC for 2 h and the residue was collected by filtration. 

Washed with water (5 mL) and dried over P2O5/vacuum at 50 oC to afford 282 (0.072 g, 89.1%) 

as light yellow solid. Rf 0.41 (MeOH/CHCl3, 1:6+ 1drop of gl. HOAc); mp 167.9-170 °C; 1H 

NMR (DMSO-d6) δ 0.83-0.87 (t, 3 H, CH2CH2CH3), 1.51-1.57 (m, 2 H, CH2CH2CH3), 1.86-2.13 

(m, 2 H Gluβ-CH2), 2.30-2.34 (t, 2 H, Gluγ-CH2), 2.80-2.84 (t, 2 H, CH2CH2CH3), 3.54-3.61 (m, 

1 H), 4.32-4.39 (1 H, m, Gluα-CH), 6.58 (s, 2 H, 2-NH2 exch), 7.01, 7.03 (d, 2 H, C6H4), 7.69, 

7.71 (d, 2 H, C6H4), 8.47-8.49 (d, 1H, CONH exch), 10.75 (s, 1 H, 3-NH exch), 12.36 (s, 2H, 

COOH exch); Anal. calcd. for (C21H22N4S6O2 ·1.5 H2O): C, 48.73; H, 4.87; N, 10.82; S, 12.39; 

found: C, 48.49; H, 5.03; N, 10.63; S, 12.39. 

2-Amino-5-(prop-2-yn-1-yl)pyrimidine-4,6-diol (415). A mixture of dimethyl prop-2-yn-1-

ylmalonate 414 (10 g, 60 mmol) and guanidine carbonate (10.8 g, 60 mmol) was heated to reflux 

in MeOH (100 mL) for 24 h. The suspension was then cooled in an ice-bath to room temperature. 

The precipitate formed was collected by filtration and dissolved in 40 mL of water. The pH of 

this solution was adjusted to 3-4 with 1 N HCl whereupon a thick precipitate formed. The 

mixture was filtered and washed with a small amount of water followed by acetone and dried in 

vacuo to afford 3.4 g (40%) of 73c as a light pink powder: mp 291.6-293.3 oC; 1H NMR 

(DMSO-d6) 2.45 (t, 1 H, J = 2.4 Hz), 2.95 (d, 2 H, J = 2.4 Hz), 6.53 (s, 2 H), 10.49 (br, 2H). 
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2,2-Dimethyl-N-(6-methyl-4-oxo-3,4-dihydrofuro[2,3-d]pyrimidin-2-yl)propanamide 

(416). To a 100 mL round-bottom flask was added 415 (3 g, 18 mmol) and pivaloyl anhydride 

(30 mL) and the resulting mixture was refluxed under N2 atmosphere for 2.5 h. TLC showed the 

disappearance of the starting material 415 and the formation of a major spot at Rf = 0.42 

(CHCl3/MeOH 5:1). After evaporation of the solvent, the residue was loaded onto a silica gel 

column and eluted with hexane followed by hexane/EtOAc 2:1. The fractions containing the 

desired spot (TLC) were pooled and evaporated, the resulting residue was recrystallized from 

Et2O/EtOAc to afford 3.0 g (67%) of 416 as light yellow crystals: mp 225-227 oC; Rf = 0.47 

(MeOH/CHCl3 1 : 7); 1H NMR (DMSO-d6) 1.24 (s, 9 H), 2.34 (s, 3 H), 6.50 (s, 1 H), 11.26 (s, 1 

H), 12.19 (s, 1 H). Anal. Calcd. for C12H15N3O3: C, 57.82; H, 6.07; N, 16.86 Found C, 58.10; H, 

6.12; N,16.86. 

2-Amino-6-methyl-furo[2,3-d]pyrimidin-4(3 H)-one (412) 

Method A. 

To a suspension of 416 (2 g, 8 mmol) in 1,4-dioxane (20 mL) was added 50% KOH (15 

mL) and the resulting mixture was refluxed over night. TLC indicated the diminishing of 

starting materials and the formation of a major spot at Rf = 0.12 [(CHCl3/MeOH 

5:1)/(Hexane/EtOAc 2:1) 1:1]. After evaporation of the solvent, the residue was loaded 

onto a silica gel column and eluted with 2% MeOH in CHCl3, followed by 5% MeOH in 

CHCl3. The fractions containing the desired spot (TLC) were pooled and evaporated. The 

resulting residue was recrystallized from EtOAc/Et2O to afford 1.1 g (76%) of 412 as 

yellow crystals: mp > 250 oC (dec); TLC Rf = 0.24 (MeOH/CHCl3 1: 3); 1H NMR 

(DMSO-d6) 2.23 (s, 3 H), 6.25 (s, 1 H), 6.56 (s, 2 H), 10.70 (s, 1 H). Anal. Calcd. for 

C7H7N3O2: C, 50.91; H, 4.27; N, 25.44 Found C, 50.71; H, 4.44; N, 25.05. 
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Method B. 

The microwave reaction vial was charged with 415 (1.05 g, 3.3 mmol) and 15 mL 2 N 

NaOH. The reaction mixture was irradiated in a microwave apparatus at 180 °C, 30 min. 

After the reaction mixture was cooled to ambient temperature, the product was filtered, 

the filtrate was concentrated, and the crude mixture was purified by silica gel column 

chromatography using 2% MeOH in CHCl3 as the eluent. Fractions containing the 

product (TLC) were combined and evaporated to afford 0.98 g (93%) of 412 as a white 

crystals: mp > 250 oC (dec); TLC Rf = 0.24 (MeOH/CHCl3 1: 3); 1H NMR (DMSO-d6) 

2.23 (s, 3 H), 6.25 (s, 1 H), 6.56 (s, 2 H), 10.70 (s, 1 H). HRMS (EI) calcd for C7H7N3O2 

m/z = 165.0538, found m/z = 165.0537. 

2-Amino-5-iodo-6-methylfuro[2,3-d]pyrimidin-4(3 H)-one (419). To a suspension of 

412 (0.9 g, 5.5 mmol) in 20 mL of glacial acetic acid at room temperature was added 

mercuric acetate (1.7 g, 5.5 mmol). The resulting solution was stirred at 100 oC for 3 h, 

then poured into a saturated NaCl (30 mL), and stirred for 20 min. The solid was 

collected by filtration, washed with water (10 mL), hexane (10 mL) and dried to give a 

dark solid (5-chloromercury derivative), which was directly used for iodination reaction 

without further purification. This dark material was dissolved in CH2Cl2 (30 mL) 

containing I2 (1.4 g, 5.5 mmol), stirred for 2 h at room temperature. The solvent was 

evaporated, the residue was washed with 2 N NaS2O3 (15 mL) and dried in vacuo. The 

crude product was purified by column chromatography on silica gel with 3% 

MeOH/CHCl3 as the eluent to afford 0.51 g (32%) of 419 as a white solid: mp 214-215 

°C; Rf 0.47 (MeOH/CHCl3, 1:5); 1H NMR (DMSO-d6) 2.25 (s, 3 H), 6.67 (s, 1 H), 

10.84 (s, 1 H). HRMS (EI) calcd for C7H6IN3O2 m/z = 290.9504, found m/z = 290.9507. 
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2-amino-6-methyl-5-(phenylsulfanyl)furo[2,3-d]pyrimidin-4(3 H)-one (293). The microwave 

reaction vial was charged with 419 (0.2 g, 0.7 mmol), K2CO3 (0.3 g, 2.1mmol) and 12 mL dry 

DMF. The mixture was evacuated and backfilled with nitrogen (3 cycles). Catalyst Cu2O (85 mg, 

0.7 mmol) and benzenethiol (0.3 g, 2.8 mmol) were added and then the reaction mixture was 

degassed twice. The reaction mixture was irradiated in a microwave apparatus at 150 °C, for 1 h. 

After the reaction mixture was cooled to ambient temperature, the product was filtered, the 

filtrate was concentrated, and the crude mixture was purified by silica gel column 

chromatography using 2% MeOH in CHCl3 as the eluent. Fractions containing the product (TLC) 

were combined and evaporated to afford 0.12 g (62%) of 293 as a white solid: Rf = 0.42 

(MeOH/CHCl3, 1:5); mp 121-122 °C; 1H NMR (DMSO-d6) 2.31 (s, 3 H), 6.70 (br s, 2 H, exch), 

7.12-7.27 (m, 5 H, C6H5), 10.76 (s, 1 H).  

2-amino-6-methyl-5-(naphthalen-1-ylsulfanyl)furo[2,3-d]pyrimidin-4(3 H)-one (294). 

The microwave reaction vial was charged with 419 (0.2 g, 0.7 mmol), K2CO3 (0.3 g, 2.1mmol) 

and 12 mL dry DMF. The mixture was evacuated and backfilled with nitrogen (3 cycles). 

Catalyst Cu2O (85 mg, 0.7 mmol) and 4-methoxybenzenethiol (0.45 g, 2.8 mmol) were added 

and then the reaction mixture was degassed twice. The reaction mixture was irradiated in a 

microwave apparatus at 150 °C, for 1 h. After the reaction mixture was cooled to ambient 

temperature, the product was filtered, the filtrate was concentrated, and the crude mixture was 

purified by silica gel column chromatography using 2% MeOH in CHCl3 as the eluent. Fractions 

containing the product (TLC) were combined and evaporated to afford 0.15 g (67%) of 294 as a 

white solid: Rf = 0.47 (MeOH/CHCl3, 1:5); mp 128-129 °C; 1H NMR (DMSO-d6) 2.33 (s, 3 H), 

6.72 (s, 2 H, exch), 7.10-7.12 (d, 1 H, J = 7.2 Hz), 7.34-7.38 (t, 1 H, J = 7.6 Hz), 7.57-7.62 (m, 2 

H), 7.71-7.73 (d, 1 H, 8.0 Hz), 7.94-7.96 (d, 1 H, 7.2 Hz), 8.24-8.26 (d, 1 H, 8.0 Hz), 10.69 (s, 1 
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H). 

2-amino-5-[(4-methoxyphenyl)sulfanyl]-6-methylfuro[2,3-d]pyrimidin-4(3 H)-one (295). The 

microwave reaction vial was charged with 419 (0.2 g, 0.7 mmol), K2CO3 (0.3 g, 2.1mmol) and 

12 mL dry DMF. The mixture was evacuated and backfilled with nitrogen (3 cycles). Catalyst 

Cu2O (85 mg, 0.7 mmol) and 4-methoxybenzenethiol (0.4 g, 2.8 mmol) were added and then the 

reaction mixture was degassed twice. The reaction mixture was irradiated in a microwave 

apparatus at 150 °C, for 1 h. After the reaction mixture was cooled to ambient temperature, the 

product was filtered, the filtrate was concentrated, and the crude mixture was purified by silica 

gel column chromatography using 2% MeOH in CHCl3 as the eluent. Fractions containing the 

product (TLC) were combined and evaporated to afford 0.14 g (64%) of 295 as a white solid: Rf 

= 0.43 (MeOH/CHCl3, 1:5); mp 122-124 °C; 1H NMR (DMSO-d6) 2.32 (s, 3 H), 3.69 (s, 3 H), 

6.66 (s, 2 H, exch), 6.83-6.85 (d, 2 H, J = 8.0 Hz), 7.22-7.24 (d, 1 H, J = 8.0 Hz), 10.69 (s, 1 H).  

2-amino-6-methyl-5-(pyridin-4-ylsulfanyl)furo[2,3-d]pyrimidin-4(3 H)-one (296). The 

microwave reaction vial was charged with 419 (0.2 g, 0.7 mmol), K2CO3 (0.3 g, 2.1mmol) and 

12 mL dry DMF. The mixture was evacuated and backfilled with nitrogen (3 cycles). Catalyst 

Cu2O (85 mg, 0.7 mmol) and pyridine-4-thiol (0.3 g, 2.8 mmol) were added and then the reaction 

mixture was degassed twice. The reaction mixture was irradiated in a microwave apparatus at 

150 °C, for 1 h. After the reaction mixture was cooled to ambient temperature, the product was 

filtered, the filtrate was concentrated, and the crude mixture was purified by silica gel column 

chromatography using 2% MeOH in CHCl3 as the eluent. Fractions containing the product (TLC) 

were combined and evaporated to afford 0.1 g (57%) of 296 as a white solid: Rf = 0.38 

(MeOH/CHCl3, 1:5); mp 140-142 °C; 1H NMR (DMSO-d6) 2.32 (s, 3 H), 6.76 (s, 2 H, exch), 

7.30-7.32 (d, 2 H, J = 7.6 Hz), 7.08-7.10 (d, 1 H, J = 7.6 Hz), 10.82 (s, 1 H). HRMS (EI) calcd 
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for C12H10N4O2S m/z = 274.0524, found m/z = 274.0522. 

2-Amino-5-[(3,4-dichlorophenyl)thio]-6-methylfuro[2,3-d]pyrimidin-4(3 H)-one (297). The 

microwave reaction vial was charged with 419 (0.2 g, 0.7 mmol), K2CO3 (0.3 g, 2.1mmol) and 

12 mL dry DMF. The mixture was evacuated and backfilled with nitrogen (3 cycles). Catalyst 

Cu2O (85 mg, 0.7 mmol) and 3,4-dichlorobenzenethiol (0.5 g, 2.8 mmol) were added and then 

the reaction mixture was degassed twice. The reaction mixture was irradiated in a microwave 

apparatus at 150 °C, for 1 h. After the reaction mixture was cooled to ambient temperature, the 

product was filtered, the filtrate was concentrated, and the crude mixture was purified by silica 

gel column chromatography using 2% MeOH in CHCl3 as the eluent. Fractions containing the 

product (TLC) were combined and evaporated to afford 0.33 g (70%) of 297 as a white solid: Rf 

= 0.42 (MeOH/CHCl3, 1:5); mp 126-128 °C; 1H NMR (DMSO-d6) 2.33 (s, 3 H), 6.77 (s, 2 H, 

exch), 7.09 (dd, 1 H, J = 2.4 Hz, J = 8.8 Hz), 7.38 (d, 1 H, J = 2.4 Hz), 7.49 (d, 1 H, J = 8.8 Hz), 

10.82 (s, 1 H). HRMS (EI) calcd for C13H9Cl2N3O2S m/z = 340.9792, found m/z = 340.9797. 

2-amino-5-[(4-chlorophenyl)sulfanyl]-6-methylfuro[2,3-d]pyrimidin-4(3 H)-one (298). The 

microwave reaction vial was charged with 419 (0.2 g, 0.7 mmol), K2CO3 (0.3 g, 2.1mmol) and 

12 mL dry DMF. The mixture was evacuated and backfilled with nitrogen (3 cycles). Catalyst 

Cu2O (85 mg, 0.7 mmol) and 4-chlorobenzenethiol (0.4 g, 2.8 mmol) were added and then the 

reaction mixture was degassed twice. The reaction mixture was irradiated in a microwave 

apparatus at 150 °C, for 1 h. After the reaction mixture was cooled to ambient temperature, the 

product was filtered, the filtrate was concentrated, and the crude mixture was purified by silica 

gel column chromatography using 2% MeOH in CHCl3 as the eluent. Fractions containing the 

product (TLC) were combined and evaporated to afford 0.14 g (67%) of 298 as a white solid: Rf 

= 0.45 (MeOH/CHCl3, 1:5); mp 135-136 °C; 1H NMR (DMSO-d6) 2.32 (s, 3 H), 6.72 (s, 2 H, 
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exch), 7.13-7.15 (d, 2 H, J = 8.8 Hz), 7.29-7.32 (d, 1 H, J = 8.8 Hz), 10.77 (s, 1 H). HRMS (EI) 

calcd for C13H10ClN3O2S m/z = 307.0182, found m/z = 307.0180. 

Methyl 4-[(2-amino-6-methyl-4-oxo-3,4-dihydrofuro[2,3-d]pyrimidin-5-yl)sulfanyl]- 

benzoate (402). The microwave reaction vial was charged with 401 (0.4 g, 1.4 mmol), 

K2CO3 (0.6 g, 4.2 mmol) and 15 mL dry DMF. The mixture was evacuated and backfilled 

with nitrogen (3 cycles). Catalyst Cu2O (0.19 g, 1.4 mmol) and methyl 4- 

mercaptobenzoate (0.94 g, 5.6 mmol) were added and then the reaction mixture was 

degassed twice. The reaction mixture was irradiated in a microwave apparatus at 150 °C, 

for 1 h. After the reaction mixture was cooled to ambient temperature, the product was 

filtered, the filtrate was concentrated, and the crude mixture was purified by silica gel 

column chromatography using 2% MeOH in CHCl3 as the eluent. Fractions containing 

the product (TLC) were combined and evaporated to afford 0.36 g (75%) of 402 as a 

white solid: Rf = 0.47 (MeOH/CHCl3, 1:5); mp 156-158 °C; 1H NMR (DMSO-d6)  2.31 

(s, 3 H), 3.80 (s, 3 H), 6.73 (s, 2 H), 7.18 (d, 2 H, J = 8.4 Hz), 7.80 (d, 2 H, J = 8.4 Hz), 

10.82 (s, 1 H). HRMS (EI) calcd for C15H13N3O4S m/z = 331.0626, found m/z = 331.0628. 

N,N'-(6-methylquinazoline-2,4-diyl)bis(2,2-dimethylpropanamide) (427) To a 100 mL round-

bottom flask was added 426 (0.342 g, 1 mmol) and pivaloyl anhydride (10 mL) and the resulting 

mixture was refluxed under N2 atmosphere for 2.5 h. TLC showed the disappearance of the 

starting material 1 and the formation of a major spot at Rf = 0.42 (Hexane/AcOEt 5:1). After 

evaporation of the solvent, the residue was loaded onto a silica gel column and eluted with 

hexane followed by hexane/EtOAc 9:1. The fractions containing the desired spot (TLC) were 

pooled and evaporated, the resulting residue was recrystallized from Et2O/EtOAc to afford 0.298 

g (71%) of 427 as a white solid: mp 106.6-107.2 oC; Rf = 0.42 (Hexane/AcOEt 5 : 1); Anal. 
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Calcd. for C19H26N4O2: C, 66.64; H, 7.65; N, 16.36 Found C, 66.48; H, 7.80; N,16.33. 

Compound 427 was used directly for next step without further characterization. 

N,N'-[6-(bromomethyl)quinazoline-2,4-diyl]bis(2,2-dimethylpropanamide) (428). To a 100 

mL flask were added 427 (1.09 g, 3.2 mmol) and benzene (30 mL). The suspension was stirred at 

60 oC for 30 min to afford a clear solution, followed by the addition of N-bromosuccinimide 

(0.620 g, 3.49 mmol) and benzoyl peroxide (50 mg). The mixture was refluxed for 4h and then 

cooled to room temperature and washed with water, and evaporated to afford an yellow solid. 

The solid was dissolved in methanol and silica gel was added. A dry silica gel plug was obtained 

after evaporation of the solvent. The plug was loaded on to a silica gel column and eluted with 

6 % ethyl acetate in hexane to afford 428 (457 mg, 34%) as a white solid; mp 148.1-148.9 °C;  Rf 

0.3 (hexane/EtOAc 3:1); 1H NMR (CDCl3) δ 1.37 (s, 9 H, Piv), 1.38 (s, 9 H, Piv), 4.73 (s, 2 H, 

CH2Br), 7.44-7.47 (t, 1 H, J = 7.2, 8-C6H3), 7.78-7.82 (dd, 1 H, J1 = 7.2, J2 = 2.0, 7-C6H3),8.17 (s, 

1 H, NH, exch), 8.50-8.51 (d, 1 H, J = 2.0, 6-C6H3), 15.78 (s, 1 H, NH, exch). HRMS calcd for 

C12H9N2OSBr 307.9619, found 307.9613. 

N,N'-(6-{[(3,4,5-trichlorophenyl)amino]methyl}quinazoline-2,4-diyl)bis(2,2-

dimethylpropanamide) (429) A stirred solution of 428 (105 mg, 0.25 mmol) in dry DMF (5 mL) 

was treated with 3,4,5-trichloroaniline (194 mg, 1 mmol) and K2CO3 (95 mg, 0.69 mmol). The 

solution was stirred for 1 h at 80 °C under argon. The cooled reaction mixture was filtered and 

the filtrate was evaporated to obtain orange solid. The solid was dissolved in methanol and silica 

gel was added. A dry silica gel plug was obtained after evaporation of the solvent. The plug was 

loaded on to a silica gel column and eluted with ethyl acetate: hexane (7: 1) to afford 83 mg 

(62%) of 429 as a white solid, which was directly used for next step reaction. 

N,N'-(6-{[(2,5-dichlorophenyl)amino]methyl}quinazoline-2,4-diyl)bis(2,2-
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dimethylpropanamide) (430) A stirred solution of 428 (105 mg, 0.25 mmol) in dry DMF (5 mL) 

was treated with 2,5-trichloroaniline (168 mg, 1 mmol) and K2CO3 (95 mg, 0.69 mmol). The 

solution was stirred for 1 h at 80 °C under argon. The cooled reaction mixture was filtered and 

the filtrate was evaporated to obtain orange solid. The solid was dissolved in methanol and silica 

gel was added. A dry silica gel plug was obtained after evaporation of the solvent. The plug was 

loaded on to a silica gel column and eluted with ethyl acetate: hexane (7: 1) to afford 80 mg 

(64%) 430 as a white solid; mp 129.7-130.2 °C;  Rf 0.32 (hexane/EtOAc 3:1); 1H NMR (CDCl3) 

δ 1.32 (s, 9 H, Piv), 1.36 (s, 9 H, Piv), 4.50-4.51 (d, 2 H, J = 7.6, CH2NH), 7.85-7.89 (t, 1 H, J = 

7.6, CH2NH), 6.61 (s, 1 H), 7.17-7.19 (d, 1 H), 7.26 (s, 1 H), 7.42-7.44 (d, 1 H), 7.68-7.70 (d, 1 

H), 8.09 (s, 1 H, NH, exch), 8.46 (s, 1 H), 15.70 (s, 1 H, NH, exch). Compound 430 was used for 

the next step reaction without further characterization. 

6-{[(2,5-dichlorophenyl)amino]methyl}quinazoline-2,4-diamine (301) To a combined solution 

of aqueous 1 N NaOH (1 mL) and methanol (4 mL) was added 429 (80 mg, 0.19 mmol). The 

mixture was refluxed for 12 h. The methanol was evaporated under reduced pressure and the 

residue was suspended in water (5 mL). The solution was cooled to 0 oC and carefully acidified 

to pH 8 with drop wise addition of 1 N HCl. The resulting suspension was left at 0 oC for 2 h and 

the residue was collected by filtration. Washed with water (3 X 1 mL) and dried over 

P2O5/vacuum at 50 oC to afford target 301 as a yellow solid; mp 167.2-167.9 °C;  Rf 0.27 

(MeOH/CHCl3 1:6); 1H NMR (CDCl3) δ  4.35-4.37 (d, 2 H, J = 7.6, CH2NH), 5.74 (br s, 2 H, 

NH2), 6.34 (t, 1 H, CH2NH), 6.52 (s, 1 H), 6.54 (s, 1 H), 6.96-6.98 (d, 1 H, J = 8.4), 7.22-7.24 (d, 

1 H, J = 8.4), 7.28-7.29 (d, 1 H, J = 2.0), 7.74 (s, 1 H); HRMS (ESI, pos mode) m/z [M + H+] 

calcd for C15H14N5Cl2  334.0626, found 334.0617. 

6-{[(3,4,5-trichlorophenyl)amino]methyl}quinazoline-2,4-diamine (302) To a combined 
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solution of aqueous 1 N NaOH (1 mL) and methanol (4 mL) was added 430 (50 mg, 0.11 mmol). 

The mixture was refluxed for 12 h. The methanol was evaporated under reduced pressure and the 

residue was suspended in water (5 mL). The solution was cooled to 0 oC and carefully acidified 

to pH 8 with drop wise addition of 1 N HCl. The resulting suspension was left at 0 oC for 2 h and 

the residue was collected by filtration. Washed with water (3 X 1 mL) and dried over 

P2O5/vacuum at 50 oC to afford target 302 as a yellow solid; mp 178.1-178.7 °C;  Rf 0.29 

(MeOH/CHCl3 1:6); HRMS (ESI, pos mode) m/z [M +] calcd for C15H12N5Cl3  367.0158, 

found 367.0612. 

 
6-{[(3,4,5-trichlorophenyl)amino]methyl}pteridine-2,4-diamine (303) A stirred solution of 

431 (63 mg, 0.25 mmol) in dry DMAC (5 mL) was treated with 3,4,5-trichloroaniline (194 mg, 1 

mmol). The solution was stirred over night at room temperature under argon to obtain a yellow 

suspension. The solid was collected through filtration and then dissolved in methanol and silica 

gel was added. A dry silica gel plug was obtained after evaporation of the solvent. The plug was 

loaded on to a silica gel column and eluted with MeOH: CHCl3 (7: 1) to afford 44 mg (48%) of 

303 as a yellow solid; mp 179.2-179.7 °C;  Rf 0.18 (MeOH/ CHCl3 4:1); 1H NMR (CDCl3) δ 

4.50-4.51 (s, 2 H, CH2NH), 6.66 (s, 2 H, C6H2), 6.93 (s, 2 H, exch), 7.00 (s, 1 H, exch), 7.82 (s, 2 

H, exch), 8.7 (s, 1 H, C4H1); Anal. Calcd. for C13H10Cl3N7: C, 42.13; H, 2.72; N, 26.45; Cl, 28.70. 

Found C, 42.03; H, 2.65; N, 25.13; Cl, 29.87. 

6-{[(2,5-dichlorophenyl)amino]methyl}pteridine-2,4-diamine (304) A stirred solution of 431 

(63 mg, 0.25 mmol) in dry DMAC (5 mL) was treated with 2,5-dichloroaniline (168 mg, 1 

mmol). The solution was stirred over night at room temperature under argon to obtain a yellow 

suspension. The solid was collected through filtration and then dissolved in methanol and silica 

gel was added. A dry silica gel plug was obtained after evaporation of the solvent. The plug was 
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loaded on to a silica gel column and eluted with MeOH: CHCl3 (7: 1) to afford 57 mg (68%) of 

304 as a yellow solid; mp 179.2-179.7 °C;  Rf 0.18 (MeOH/ CHCl3 4:1); 1H NMR (CDCl3) δ 4.6 

(s, 2 H, CH2NH), 6.66 (m, 3 H, C6H2), 6.93 (s, 2 H, exch), 7.35 (s, 1 H, exch), 7.65 (s, 2 H, exch), 

8.7 (s, 1 H, C4H1); Anal. Calcd. for C13H11Cl2N7: C, 46.45; H, 3.30; N, 29.17; Cl, 21.09. Found C, 

45.71; H, 3.32; N, 28.56; Cl, 20.54. 

6-[(2,5-dichlorophenoxy)methyl]pteridine-2,4-diamine (305) 

A stirred solution of 431 (126 mg, 0.5 mmol) in dry DMAC (7.5 mL) was treated with 2,5-

dichlorophenol (163 mg, 1 mmol). The solution was stirred over night at room temperature under 

argon to obtain a yellow suspension. The solid was collected through filtration and then 

dissolved in methanol and silica gel was added. A dry silica gel plug was obtained after 

evaporation of the solvent. The plug was loaded on to a silica gel column and eluted with MeOH: 

CHCl3 (7: 1) to afford 49 mg (29%) of 305 as a yellow solid; mp 184.1-185.7 °C;  Rf 0.19 

(MeOH/ CHCl3 4:1); 1H NMR (CDCl3) δ 5.33 (s, 2 H, CH2O), 6.76 (s, 2 H, NH2 exch), 7.07 (1 

H, d, C6H3), 7.49 (m, 2 H, C6H3), 7.65 (s, 2 H, NH2 exch), 8.7 (s, 1 H, C4H1); HRMS (ESI, pos 

mode) m/z [M + H+] calcd for C13H11N6OCl2  337.0731, found 337.0355. 

6-{[(2,5-dichlorophenyl)sulfanyl]methyl}pteridine-2,4-diamine (306) 

A stirred solution of 431 (95 mg, 0.75 mmol) in dry DMAC (7.5 mL) was treated with 2,5-

dichlorobenzenethiol (178 mg, 1 mmol). The solution was stirred over night at room temperature 

under argon to obtain a yellow suspension. The solid was collected through filtration and then 

dissolved in methanol and silica gel was added. A dry silica gel plug was obtained after 

evaporation of the solvent. The plug was loaded on to a silica gel column and eluted with MeOH: 

CHCl3 (7: 1) to afford 98 mg (37%) of 306 as a yellow solid; mp 164.3-165.7 °C;  Rf 0.19 

(MeOH/ CHCl3 4:1); 1H NMR (CDCl3) δ 4.51 (s, 2 H, CH2S), 6.69 (s, 2 H, NH2 exch), 7.21 (1 H, 
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d, C6H3), 7.22 (s, 2 H, NH2 exch), 7.46 (d, 1 H, C6H3), 7.70 (d, 1 H, C6H3), 8.78 (s, 1 H, C4H1); 

HRMS (ESI, pos mode) m/z [M + H+] calcd for C13H11N6SCl2  353.0143, found 353.0156. 

methyl 5-bromofuran-2-carboxylate (438). Thionyl chloride (2.64g, 22 mmol) was added 

dropwise to a stirred solution of 437 (1.89 g, 10 mmol) in MeOH (20 mL) while maintaining the 

internal temperature below 12 oC. When addition was complete the mixture was left to stand at 

room temperature for 12h to obtain white solid. And the filtrate was concentrated under reduced 

pressure to afford white solid. The solid was washed with hexane and ethyl ether to afford 438 

(1.93 g, 95%); Rf 0.55 (hexane/EtOAc 3:1); 1H NMR (DMSO-d6) δ 3.80 (s, 3 H), 6.84-6.85 (d, 1 

H, J = 3.6), 7.35-7.36 (d, 1 H, J = 3.6).  

methyl 5-(5-hydroxypent-1-yn-1-yl)furan-2-carboxylate (440). A mixture of 438 (0.2 g, 1 

mmol), 439 (0.092 g, 1.1 mmol), PdCl2 (11 mg), PPh3 (44 mg), CuI (11 mg), NEt3 (0.5 mL) and 

CH3CN (2.5 mL) was irradiated to 100oC for 10 min under microwave. The reaction mixture was 

then made in to plug and loaded on a silica gel column and eluted with hexane/EtOAc 5:1 to 

afford 440 (0.18 g, 85%) of  as a yellow liquid; Rf 0.25 (hexane/EtOAc 1:1); 1H NMR (DMSO-d6) 

δ 1.51-1.58 (m, 4 H), 3.39-3.43 (m, 2 H), 3.79 (s, 3 H), 4.42-4.45 (t, 1 H, J = 5.2 Hz, OH exch), 

6.83-6.84(d, 1 H, J = 3.6 Hz), 7.30-7.31(d, 1 H, J = 3.6 Hz).  

methyl 5-(5-hydroxypentyl)furan-2-carboxylate (441). To a Parr hydrogenation bottle was 

added 440 (2.3 g, 11 mmol), 10% Pd/C (0.25 g) and MeOH(80 mL). Hydrogenation was carried 

out at 55 psi for 24 h. After filtration, the organic phase was evaporated at vacuum to afford 441 

(2.09 g, 90%)  as a yellow liquid; Rf 0.25 (hexane/EtOAc 1:1); 1H NMR (DMSO-d6) δ 1.27-1.30 

(m, 4 H), 1.36-1.42 (m, 2 H), 1.55-1.62 (m, 2 H), 2.64-2.68 (t, 2 H), 3.33-3.38 (m, 2 H), 3.76 (s, 

3 H), 4.31-4.34 (t, 1 H, J = 5.2 Hz, OH), 6.33-6.41 (d, 1 H, J = 3.6 Hz), 7.19-7.20 (d, 1 H, J = 3.6 

Hz).  
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methyl 5-(5-oxopentyl)furan-2-carboxylate (442). A solution of CH2Cl2 (29 mL) and oxalyl 

chloride (1.2 mL, 12 mmol) was placed in a 100 mL 3-neck round bottom flask with an ballon 

and two dropping funnels containing DMSO (1.87 mL, 24 mmol) dissolved in CH2Cl2 (8 mL) 

and 441 (2.12 g, 10 mmol) in CH2Cl2 (15 mL). The DMSO was added to the stirred oxalyl 

chloride solution at -60oC. The reaction mixture was stirred for 2 min and 7 was added within 20 

min. Stirring was continued for an additional 15 min. NEt3 (8.4 mL) was added and the reaction 

mixture was stirred for 5 min and the allowed to warm to room temperature. CH2Cl2 (40 mL) 

was added to the reaction mixture and then washed with H2O (10 mL) for 3 times. The organic 

layer was then dried over anhydrous Na2SO4  to give 442 (1.99 g, 95%) as a yellow liquid; Rf 

0.72 (hexane/EtOAc 1:1); 1H NMR (DMSO-d6) δ 1.24 (m, 2 H), 1.60 (m, 4 H), 2.43 (t, 2 H), 

2.68 (t, 2 H), 3.68 (s, 3 H, CH3), 6.34-6.35 (d, 1 H, J = 3.6 Hz ), 7.20-7.21 (d, 1 H, J = 3.6 Hz), 

9.63-9.65 (t, 1 H).  

methyl 5-{3-[5-amino-4-(ethoxycarbonyl)thiophen-2-yl]propyl}furan-2-carboxylate (443). A 

mixture of 442 (2.6 g, 12.38 mmol), sulfur (0.397 g, 12.38 mmol), ethyl cyanoactetate (1.4 g, 

12.38 mmol) and EtOH (100 mL) were placed in a round bottom flask and warmed to 45 oC and 

treated dropwise with morpholine (1.07 g, 12.4 mmol) over 15 min. The mixture was stirred for 

4 h at 45 oC and 24 h at room temperature. Unreacted sulfur was removed by filtration, and the 

filtrate was concentrated under reduced pressure to afford an orange oil. The residue was loaded 

on a silica gel column packed with silica gel and eluted with 10% ethyl acetate in hexane to 

afford 443 (1.7 g, 41%) as a orange liquid; Rf 0.34 (hexane/EtOAc 3:1); 1H NMR (DMSO-d6) δ 

1.20-1.24 (t, 3 H, J = 6.8 Hz, OCH2CH3), 1.49-1.63 (m, 4 H), 2.57-2.60 (t, 2 H, J = 7.2 Hz), 

2.68-2.70 (t, 2 H, J = 7.2 Hz), 3.76 (s, 3 H, OCH3), 4.09-4.15 (q, 2 H, J = 6.8 Hz, OCH2CH3), 

6.33-6.34 (d, 1 H, J = 3.2 Hz), 6.49 (s, 1 H), 7.01 (s, 2 H, 2-NH2 exch), 7.19-7.20 (d, 1 H, J = 3.2 
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Hz). 

methyl 5-[3-(2-amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-yl)propyl]furan-2-

carboxylate (444) A mixture of 443 (1.82 g, 5.4 mmol) and chloroformamidine hydrochloride 

(2.46 g, 21.4 mmol) in DMSO2 (5 g) was heated at 150 oC for 2 h. The mixture was cooled to 

room temperature. Water (40 mL) was added and ammonium hydroxide was used to neutralize 

the suspension. The brown solid, obtained by filtration, was washed with water and dried over 

P2O5 vacuum. The solid was dissolved in methanol and silica gel was added. The plug was 

loaded on to a silica gel column and eluted with 5% methanol in chloroformto to afford 444 

(1.49g, 88%) as a yellow solid; mp 172.9-173.4 oC;  Rf 0.3 (MeOH/CHCl3, 1:6); 1H NMR 

(DMSO-d6) δ 1.61-1.63 (m, 4 H), 2.68-2.73 (m, 4 H), 3.76 (s, 3 H), 6.33-6.34 (d, 1 H, J = 3.6 

Hz), 6.45 (s, 2 H, 2-NH2 exch), 6.79 (s, 1 H), 7.19-7.20 (d, 1 H, J = 3.6 Hz), 10.82 (s, 1 H, 3-NH 

exch).  

5-[3-(2-Amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-yl)propyl]furan-2-carboxylic 

acid (445). To a solution of 444 (1.6 g, 4.81 mmol) in ethanol (130 mL) was added aqueous 1 N 

NaOH (68 mL) and the reaction mixture stirred at room temperature for 12 h. The ethanol was 

evaporated under reduced pressure and the residue was dissolved in water (40 mL). The solution 

was carefully acidified to pH 3 with the drop wise addition of 1 N HCl. The resulting suspension 

was left at 0 oC for an hour and then the residue was collected by filtration, washed with water 

(15 mL) and dried over P2O5/vacuum at 50 oC to afford 445 (1.3 g, 87 %) as a brown solid; 

mp >300 °C; Rf 0.40 (MeOH/CHCl3, 1:6+ 1 drop of gl. HOAc); 1H NMR (DMSO-d6) δ 1.62-

1.63 (m, 4 H), 2.67-2.74 (m, 4 H), 6.29-6.30 (d, 1 H, J = 3.2 Hz ), 6.30 (s, 2 H, 2-NH2 exch), 

6.79 (s, 1 H), 7.09-7.10 (d, 1 H, J = 3.2 Hz), 10.83 (s, 1 H, COOH exch), 12.78 (s, 1 H, 3-NH 

exch). 
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Diethyl N-({5-[3-(2-amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-yl)propyl]furan-2-

yl}carbonyl)-L-glutamate (446). To a solution of 445 (1.05 g, 3.28 mmol) in anhydrous DMF 

(60 mL) was added N-methylmorpholine (0.39 g, 3.93 mmol) and 2-chloro-4,6-dimethoxy-1,3,5-

triazine (0.69 g, 3.93 mmol). The resulting mixture was stirred at room temperature for 2 h. N-

methylmorpholine (0.39 g, 3.93 mmol) and diethyl-L- glutamate hydrochloride (0.78 g, 3.28 

mmol) were added to the mixture. The reaction mixture was stirred for an additional 3 h at room 

temperature and silica gel was added to this solution and the suspension evaporated under 

reduced pressure. The plug obtained was loaded on a silica gel column and eluted with 2% 

methanol in chloroform and 446 (1.02 g, 62 %) was obtained as a yellow solid; mp 185.4-

186.7 °C; Rf 0.33 (MeOH/CHCl3, 1:6); 1H NMR (DMSO-d6) δ 1.18-1.22 (m, 6 H), 1.65 (m, 4 H), 

1.97-2.11 (m, 4 H), 2.36-2.40 (t, 2 H), 2.67-2.74 (m, 4 H), 2.83-2.87 (t, 2 H), 4.0--4.14 (m, 4 H), 

4.34-4.40 (m, 1 H, Gluα-CH), 6.26-6.27 (d, 1 H, J = 3.6 Hz), 6.45 (s, 2 H, 2-NH2 exch), 6.80 (s, 

1 H), 7.06-7.07 (d, 1 H, J = 3.6 Hz), 8.43-8.45 (d, 1 H, J = 7.6, CONH exch), 10.81 (s, 1 H, 3-

NH exch). 

N-({5-[3-(2-Amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-yl)propyl]furan-2-

yl}carbonyl)-L-glutamic acid (317). To a solution of 446 (0.28 g, 0.57 mmoL) in ethanol (22 

mL) was added aqueous 1 N NaOH (11 mL) and the reaction mixture stirred at room temperature 

for 3 h. The ethanol was evaporated under reduced pressure and the residue was dissolved in 

water (8 mL). The solution was cooled to 0 oC and carefully acidified to pH 3 with drop wise 

addition of 1 N HCl. The resulting suspension was left at 0 oC for 2 h and the residue was 

collected by filtration. Washed with water (5 mL) and dried over P2O5/vacuum at 50 oC to afford 

317 (0.23 g, 92%) as light brown powder; mp 224.7-225.6 °C; Rf 0.30 (MeOH/CHCl3, 1:6+ 1 

drop of gl. HOAc); 1H NMR (DMSO-d6) δ1.64 (m, 4 H), 1.88-2.07 (m, 2 H), 2.27-2.31 (m, 2 H), 
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2.67-2.74 (m, 4 H), 4.32-4.35 (m, 1 H, Gluα-CH), 6.26-6.27 (d, 1 H, J = 3.6 Hz), 6.45 (s, 2 H, 2-

NH2 exch), 6.80 (s, 1 H), 7.05-7.06 (d, 1 H, J = 3.6 Hz), 8.27-8.29 (d, 1 H, J = 7.6, CONH exch), 

10.81 (s, 1 H, 3-NH exch), 12.55 (br, 2 H, 2 COOH); Anal. calcd. for (C20H22N4O7S ·0.5 H2O): C, 

50.95; H, 4.92; N, 11.88; S, 6.80; found: C, 50.94; H, 4.74; N, 11.73; S, 7.10. 

Ethyl 4- (5-oxopentyl)benzoate (449) To a 250 mL round bottom flask, fitted with a magnetic 

stir bar, were placed palladium diacetate (0.269 g, 1.2 mmol), the appropriate allyl alcohol 448 

(20 mmol), ethyl 4-iodobenzoate 447 (5.52 g, 20 mmol), LiCl (0.848 g, 20 mmol), LiOAc (3.3 g, 

50 mmol) and Bu4NCl (11.12 g, 40 mmol) and DMF (40 mL). The mixture was stirred 

vigorously at 70 oC for 24 h. The reaction mixture was cooled to room temperature and water (80 

mL), ethyl acetate (100 mL) was added. The ethyl acetate layer was separated, washed with brine 

(30 mL x 3), dried over anhydrous sodium sulfate, and concentrated under reduced pressure to 

afford a brown oil. The residue was loaded on a silica gel column packed with silica gel and 

eluted with 5% ethyl acetate in hexane. The fractions containing the desired product (TLC) were 

pooled and evaporated to afford the product 449 as a colorless liquid (4.36 g, 87.9 %); Rf 0.71 

(hexane/EtOAc 3:1); 1H NMR (CDCl3): δ 1.33-1.36 (t, 3 H, COOCH2CH3), 1.62-1.64 (m, 4 H, 

CH2CH2CH2CH2CHO), 2.38-2.42 (m, 2 H, CH2CH2CH2CH2CHO), 2.66-2.71 (m, 2 H, 

CH2CH2CH2CH2CHO), 4.32-4.37 (q, 2 H, COOCH2CH3), 7.22, 7.24 (d, 2 H, C6H4), 7.94, 7.96 

(d, 2 H, C6H4), 9.79 (s, 1 H, CHO). HRMS (ESI, pos mode) m/z [M + Na]+ calcd for C14H18O3, 

257.1154; found, 257.1144. 

Ethyl 2-amino-5-{3-[4- (ethoxycarbonyl) phenyl]propyl}thiophene-3-carboxylate (450). A 

mixture of 449 (1.58 g, 6.31 mmol), sulfur  (0.20 g, 6.31 mmol) and ethyl cyanoactetate (0.71 g, 

6.31 mmol) and EtOH (5 mL) were placed in a round bottom flask and warmed to 45 oC and 

treated dropwise with morpholine  (1 mmol) over 15 min. The mixture was stirred for 5 h at 45 
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oC and 24 h at room temperature. Unreacted sulfur was removed by filtration, and the filtrate was 

concentrated under reduced pressure to afford an orange oil. The residue was loaded on a silica 

gel column packed with silica gel and eluted with 10% ethyl acetate in hexane. The fractions 

containing the desired product (TLC) were pooled and evaporated to afford the products. 

Compound 450 (1.49 g, 65.32 %) was obtained as an orange liquid; Rf 0.69 (hexane/EtOAc 3:1); 

1H NMR (CDCl3): δ 1.32-1.36 (t, 3 H, COOCH2CH3), 1.37-1.42 (t, 3 H, COOCH2CH3) 1.88-

1.98 (p, 2 H, C6H4-CH2CH2CH2), 2.59-2.64 (t, 2 H, C6H4-CH2CH2CH2), 2.69-2.74 (t, 2 H, C6H4-

CH2CH2CH2), 4.23-4.30 (q, 2 H, COOCH2CH3), 4.34-4.41 (q, 2 H, COOCH2CH3), 5.80 (s, 2 H, 

NH2 exch), 6.65 (s, 1 H, 4-H), 7.23, 7.26 (d, 2 H, C6H4), 8.00, 8.03 (d, 2 H, C6H4). HRMS (ESI, 

pos mode) m/z [M + Na]+ calcd for C19H23NO4S, 384.1245; found, 384.1281. 

Ethyl 4-[3- (2-amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-yl)propyl]benzoate  (451). 

A mixture of 450 (0.54 g, 1.49 mmol) and chloroformamidine hydrochloride (0.68 g, 5.9 mmol) 

(1:4) in DMSO2 was heated at 140° C for 4 h.   The mixture was cooled to room temperature and 

water (15 mL) was added.Ammonium hydroxide was used to neutralize the suspension. The 

brown solid, obtained by filtration, was washed with water and dried over P2O5 vacuum. The 

solid was dissolved in methanol and silica gel was added. A dry silica gel plug was obtained after 

evaporation of the solvent. The plug was loaded on to a silica gel column and eluted with 5% 

methanol in chloroform. The fractions containing the desired product (TLC) were pooled and 

evaporated to afford the 451 (0.43 g, 81.13 %) as a yellow solid; mp 224.4-225.3 °C; Rf 0.53 

(MeOH/CHCl3, 1:6); 1H NMR (DMSO-d6): δ 1.28-1.33 (t, 3 H, COOCH2CH3), 1.86-1.96 (p, 2 H, 

C6H4-CH2CH2CH2), 2.68-2.74 (m, 4 H, C6H4-CH2CH2CH2) 4.26-4.33 (q, 2 H, COOCH2CH3), 

6.46 (s, 2 H, 2-NH2 exch), 6.82 (s, 1 H, 5-H), 7.35, 7.37 (d, 2 H, C6H4), 7.87, 7.89 (d, 2 H, C6H4), 

10.81 (s, 1 H, 3-NH exch). Anal. calcd. for (C18H19N3O3S · 0.4 CH3OH): C, 59.69; H, 5.61; N, 
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11.35; S, 8.66; found: C, 59.73; H, 5.21; N, 11.55; S, 8.60. 

4-[3-(2-Amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-yl)propyl]benzoic acid  (452). To 

a solution of 451 (0.22 g, 0.60 mmol) in ethanol (10-50 mL) was added aqueous 1 N NaOH and 

the reaction mixture stirred at room temperature for 12 h. The ethanol was evaporated under 

reduced pressure and the residue was dissolved in water (5-10 mL). The solution was carefully 

acidified to pH 3 with the drop wise addition of 1 N HCl.  The resulting suspension was left at 0 

oC for an hour and then the residue was collected by filtration, washed with water (5 mL) and 

dried over P2O5/vacuum at 50 oC to afford the free acids 452 as a white solid; mp 292.7-293.4 °C; 

Rf 0.52  (MeOH/CHCl3, 1:6 + 1 drop of gl. HOAc); 1H NMR (DMSO-d6): δ 1.85-1.95 (m, 2 H, 

C6H4-CH2CH2CH2), 2.66-2.73 (m, 4 H, C6H4-CH2CH2CH2), 6.58 (s, 2 H, 2-NH2 exch), 6.82 (s, 1 

H, 5-H), 7.35, 7.39 (d, 2 H, C6H4), 7.85, 7.88 (d, 2 H, C6H4), 10.94 (s, 1 H, 3-NH exch), 12.79 (s, 

1 H, COOH exch). Anal. calcd. for (C16H15N3O3S · 0.7 CH3OH): C, 57.01; H, 5.10; N, 11.94; S, 

9.11; found: C, 56.79; H, 4.75; N, 11.92; S, 9.20. 

(S)-methyl 2-amino-4-(((R)-3-amino-4-methoxy-4-oxobutyl)disulfanyl)butanoate (452). To a 

suspension of 451 (2.68 g, 10 mmol) in 20 ml methanol was added SOCl2 (1.28 g, 11 mmol) 

dropwise at 0 oC. The resulted mixture was stired at ambient temperature till a clear solution 

resulted. TLC indicated a full consumption of 451. The reaction solvent was removed under 

vacuum and the residue solid was slurried in water and then filtered to afford 2.75 g 452 (93%) 

as a white solid, which was dried and used directly in next step withough further characterization. 

Dimethyl (2S,2'S)-4,4'-disulfanediylbis[2-({4-[3-(2-amino-4-oxo-3,4-dihydrothieno[2,3-

d]pyrimidin-6-yl)propyl]benzoyl}amino)butanoate] 455. To a solution of 452 (0.10 g, 0.30 

mmol) in anhydrous DMF (5-10 mL) was added N-methylmorpholine (0.12 mmol) and 2-chloro-

4,6-dimethoxy-1,3,5-triazine (0.12 mmol). The resulting mixture was stirred at room temperature 
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for 2 h. N-methylmorpholine (0.12 mmol) and 452 (0.1 mmol) were added to the mixture. The 

reaction mixture was stirred for an additional 3 h at room temperature and silica gel was added to 

this solution and the suspension evaporated under reduced pressure. The plug obtained was 

loaded on a silica gel column and eluted with 2% methanol in chloroform. The fractions 

containing the desired product (TLC) were pooled and evaporated to afford 0.083g 455 as a 

yellow solid; mp 174.2-176.8 °C; Rf 0.63 (MeOH/CHCl3, 1:6). The resulted compoudn was used 

directly for next step without further characterization. 

(2S,2'S)-4,4'-disulfanediylbis[2-({4-[3-(2-amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-

yl)propyl]benzoyl}amino)butanoic acid] (456) 

To a solution of 455 (0.083 g, 0.16 mmol) in ethanol (5-10 mL) was added aqueous 1 N NaOH 

and the reaction mixture stirred at room temperature for 3 h. The ethanol was evaporated under 

reduced pressure and the residue was dissolved in water (5-10 mL). The solution was cooled to 0 

oC and carefully acidified to pH 3 with drop wise addition of 1 N HCl. The resulting suspension 

was left at 0 oC for 12 h and the residue was collected by filtration. Washed with water (5 mL) 

and dried over P2O5/vacuum at 50 oC to afford 456 (0.071 g, 96.5 %) as a yellow solid; mp 

2442.-246.7 °C; Rf 0.62 (MeOH/CHCl3, 1:6 + 1 drop of gl. HOAc); 1H NMR (DMSO-d6): δ 1.89 

(m, 2 H, SCH2), 2.08-2.23 (m, 2 H, SCH2CH2), 2.69-2.80 (m, 6 H, C6H4-CH2CH2CH2), 4.43 (m, 

1 H, Gluα-CH), 6.56 (s, 2 H, 2-NH2 exch), 6.81 (s, 1 H, 5-H), 7.27 (d, 2 H, C6H4), 7.80 (d, 2 H, 

C6H4), 8.47 (d, 1 H, CONH exch), 10.98 (s, 1 H, 3-NH exch); HRMS (ESI, pos mode) m/z [M + 

H+] calcd for C40H43N8S4O8  891.2087, found 891.2059. 

N-{4-[3-(2-amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-yl)propyl]benzoyl}-L-

homocysteine (322) 

To a solution of 456 (0.083 g, 0.16 mmol) in ethanol (5-10 mL) was added aqueous 1 N NaOH 
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and the reaction mixture stirred at room temperature for 3 h. The ethanol was evaporated under 

reduced pressure and the residue was dissolved in water (5-10 mL). To the solution was added 

DTT (300 mg). The solution was cooled to 0 oC and carefully acidified to pH 7 with drop wise 

addition of 1 N HCl. The resulting suspension was left at 0 oC for 12 h and the residue was 

collected by filtration. Washed with water (5 mL) and dried over P2O5/vacuum at 49 oC to afford 

322 (0.071 g, 96.5 %) as a yellow solid; mp 190.0-192.1 °C; Rf 0.62 (MeOH/CHCl3, 1:6 + 1 drop 

of gl. HOAc); 1H NMR (DMSO-d6): δ 1.24 (s, 1H, SH exch), 1.89 (m, 2 H, SCH2), 2.08-2.23 (m, 

2 H, SCH2CH2), 2.69-2.80 (m, 6 H, C6H4-CH2CH2CH2), 4.55 (m, 1 H, Gluα-CH), 6.59 (s, 2 H, 

2-NH2 exch), 6.84 (s, 1 H, 5-H), 7.31 (d, 2 H, C6H4), 7.81 (d, 2 H, C6H4), 8.55 (d, 1 H, CONH 

exch), 10.95 (s, 1 H, 3-NH exch); HRMS (ESI, pos mode) m/z [M + H+] calcd for C20H23N4S2O4 

447.1161, found 447.1125. 

2-Methyl-6-hydroxy-5-prop-2-yn-1-ylpyrimidin-4(3H)-one (460). A mixture of dimethyl 

prop-2-yn-1-ylmalonate 414 (11.9 g, 60 mmol), sodium metal (1.38 g, 60 mmol) and 

acetamidine hydrochloride (5.68 g, 60 mmol) was heated to reflux in MeOH (100 mL) for 24 h. 

The suspension was then cooled in an ice-bath to room temperature. The precipitate formed was 

collected by filtration and dissolved in 40 mL of water. The pH of this solution was adjusted to 3-

4 with 1 N HCl whereupon a thick precipitate formed. The mixture was filtered and washed with 

a small amount of water followed by acetone and dried over P2O5  to afford 4.1 g (42%) of  

460 as a white solid; mp >300°C; Rf 0.11 (CHCl3/MeOH 6:1); 1H NMR (DMSO-d6) δ 2.23 (s, 3 

H), 3.05 (s, 2 H), 3.32 (s, 1 H), 11.92 (s, 2 H). 

2,6-Dimethylfuro[2,3-d]pyrimidin-4(3 H)-one (461). 

Method A 

To a 25 mL round flask were added 460 (1.64 g,10 mmol) and concentrated sulfuric acid (15 
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mL). The resulting solution was stirred overnight and poured in to 100 mL distilled water and 

extracted by 3 X 30 mL chloroform. The organic layer was pooled and concentrated to afford 

461 (1.36g, 83%) as a yellow powder; mp >300°C; Rf 0.35 (CHCl3/MeOH 6:1); 1H NMR 

(DMSO-d6) δ 2.42 (s, 3 H, CH3), 2.44 (s, 3 H, CH3), 6.63 (s, 1 H, CH), 12.50 (s, 1 H, 3-NH 

exch). 

Method B 

The microwave reaction vial was charged with 460 (541 mg, 3.3 mmol) and 2 N 

NaOH (15 mL). The reaction mixture was irradiated in a microwave apparatus at 180 °C for 30 

min. After the reaction mixture was cooled to ambient temperature, the product was filtered, the 

filtrate was concentrated, and the crude mixture was purified by silica gel column 

chromatography using 2% methanol in chloroform as the eluent. Fractions containing the 

product (TLC) were combined and evaporated to afford 461 (471 mg, 87%) as a yellow powder; 

mp >300°C; Rf 0.35 (CHCl3/MeOH 6:1); 1H NMR (DMSO-d6) δ 2.42 (s, 3 H, CH3), 2.44 (s, 3 H, 

CH3), 6.63 (s, 1 H, CH), 12.50 (s, 1 H, 3-NH exch). 

4-Chloro-2,6-dimethylfuro[2,3-d]pyrimidine  (458). To a 50 mL flask were added 461 (1.64 g, 

1 mmol) and 10 mL POCl3. The resulting mixture was refluxed for 2 h, and the solvent was 

removed under reduced pressure to afford a dark residue. The crude mixture was purified by 

silica gel column chromatography using hexane: acetyl acetate = 20:1 as the eluent. Fractions 

containing the product (TLC) were combined and evaporated to afford 1.55 g (85%) 458 as a 

yellow solid; mp 47.6-48.1°C; Rf 0.26 (Hexane/EtOAC 15:1); 1H NMR (DMSO-d6) δ 2.48 (s, 3 

H), 2.63 (s, 3 H), 6.77 (s, 1 H). 

2,6-dimethyl-N-phenylfuro[2,3-d]pyrimidin-4-amine (326) To a 100-mL round-bottomed flask, 

flushed with nitrogen, were added 458 (127 mg, 0.7 mmol),  aniline (97.6 mg, 1.05 mmol), 
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BuOH (20 mL), and 2-3 drops of concd HCl. The reaction mixture was heated at reflux with 

stirring for 2 h until the starting material 458 disappeared (TLC). The reaction solution was 

allowed to cool to room temperature; the solvent was removed under reduced pressure to dryness 

and the residue was purified by column chromatography on silica gel with 10% AcOEt/Haxene 

as the eluent. Fractions containing the product (TLC) were combined and evaporated to afford 

137 mg (82%) of 326 as a yellow powder: mp 157.9-159.1 °C; Rf 0.16 (AcOEt/Haxene, 1:3); 1H 

NMR (CDCl3) δ 2.32 (s, 3 H), 2.60 (s, 3 H), 5.64 (s, 1 H), 6.88 (s, 1 H, exch), 7.24-7.39 (m, 5 H), 

Anal. Calcd. for C14H13N3O⋅⋅⋅⋅0.1H2O: C, 69.75; H, 5.56; N, 17.43. Found C, 69.76; H, 5.56; 

N,17.40 

2,6-dimethyl-N-(naphthalen-1-yl)furo[2,3-d]pyrimidin-4-amine (327) To a 100-mL round-

bottomed flask, flushed with nitrogen, were added 458 (182 mg, 1 mmol), naphthalen-1-amine 

(150 mg, 1.05 mmol), BuOH (20 mL), and 2-3 drops of concd HCl. The reaction mixture was 

heated at reflux with stirring for 2 h until the starting material 458 disappeared (TLC). The 

reaction solution was allowed to cool to room temperature; the solvent was removed under 

reduced pressure to dryness and the residue was purified by column chromatography on silica gel 

with 10% AcOEt/Haxene as the eluent. Fractions containing the product (TLC) were combined 

and evaporated to afford 214 mg (74%) of 327 as a pale yellow powder: mp 253.6-254.7 °C; Rf 

0.1 (AcOEt/Haxene, 1:3); 1H NMR (CDCl3) δ 2.15 (s, 3 H), 2.60 (s, 3 H), 4.84 (s, 1 H), 7.52 (s, 

1 H, exch), 7.51-8.07 (m, 7 H), Anal. Calcd. for C18H15N3O⋅⋅⋅⋅0.2H2O: C, 74.26; H, 5.26; N, 14.43. 

Found C, 74.25; H, 5.29; N,14.27 

N-(3-ethynylphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (328) To a 100-mL round-

bottomed flask, flushed with nitrogen, were added 458 (182 mg, 1 mmol), 3-ethynylaniline (123 

mg, 1.05 mmol), i-PrOH (20 mL), and 2-3 drops of concd HCl. The reaction mixture was heated 
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at reflux with stirring for 2 h until the starting material 458 disappeared (TLC). The reaction 

solution was allowed to cool to room temperature; the solvent was removed under reduced 

pressure to dryness and the residue was purified by column chromatography on silica gel with 

10% AcOEt/Haxene as the eluent. Fractions containing the product (TLC) were combined and 

evaporated to afford 213 mg (81%) of 328 as a brown solid: mp 108.6-109.7 °C; Rf 0.15 

(AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 2.36 (s, 3 H), 2.50 (s, 3 H), 4.16 (s, 1 H), 6.74 (s, 

1 H), 7.13 (d, 1 H, J = 7.7), 7.36 (t, 1 H, J = 7.7), 7.89 (d, 1 H, J = 7.7), 7.98 (s, 1 H), 9.56 (s, 1 H, 

exch), Anal. Calcd. for C16H13N3O⋅⋅⋅⋅0.4H2O: C, 71.04; H, 5.14; N, 15.53. Found C, 70.81; H, 5.21; 

N,15.19 

2,6-dimethyl-N-[4-(trifluoromethyl)phenyl]furo[2,3- d]pyrimidin-4-amine (329) To a 100-mL 

round-bottomed flask, flushed with nitrogen, were added 458 (182 mg, 1 mmol), 4-

(trifluoromethyl)aniline (169 mg, 1.05 mmol),BuOH (20 mL), and 2-3 drops of concd HCl. The 

reaction mixture was heated at reflux with stirring for 2 h until the starting material 458 

disappeared (TLC). The reaction solution was allowed to cool to room temperature; the solvent 

was removed under reduced pressure to dryness and the residue was purified by column 

chromatography on silica gel with 10% AcOEt/Haxene as the eluent. Fractions containing the 

product (TLC) were combined and evaporated to afford 174 mg (57%) of 329 as a yellow 

powder: mp 144.9-146.7 °C; Rf 0.16 (AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 2.45 (s, 3 H), 

2.50 (s, 3 H), 6.82 (s, 1 H), 7.68 (d, 2 H, J = 7.7), 8.08 (d, 1 H, J = 7.7), 9.85 (s, 1 H, exch), Anal. 

Calcd. for C15H12FN3O: C, 58.63; H, 3.94; N, 13.68. Found C, 58.09; H, 4.07; N,13.40 

N-(3-chloro-4-fluorophenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (330) To a 100-mL 

round-bottomed flask, flushed with nitrogen, were added 458 (182 mg, 1 mmol), 3-chloro-4-

fluoroaniline (152 mg, 1.05 mmol),BuOH (20 mL), and 2-3 drops of concd HCl. The reaction 



 

255 
 

mixture was heated at reflux with stirring for 2 h until the starting material 458 disappeared 

(TLC). The reaction solution was allowed to cool to room temperature; the solvent was removed 

under reduced pressure to dryness and the residue was purified by column chromatography on 

silica gel with 10% AcOEt/Haxene as the eluent. Fractions containing the product (TLC) were 

combined and evaporated to afford 154 mg (53%) of 330 as a pale yellow powder: mp 191.6-

193.1 °C; Rf 0.13 (AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 2.40 (s, 3 H), 2.46 (s, 3 H), 6.70 

(s, 1 H), 7.40 (t, 1 H, J = 7.6), 7.77 (d, 1 H, J = 7.6), 8.19 (d, 1 H, J = 7.6), 9.64 (s, 1 H, exch), 

Anal. Calcd. for C14H11FClN3O: C, 57.63; H, 3.80; N, 14.40. Found C, 57.31; H, 3.82; N,14.27 

N-(4-chlorophenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (331) To a 100-mL round-

bottomed flask, flushed with nitrogen, were added 458 (182 mg, 1 mmol), 4-chloroaniline (133 

mg, 1.05 mmol),BuOH (20 mL), and 2-3 drops of concd HCl. The reaction mixture was heated 

at reflux with stirring for 2 h until the starting material 458 disappeared (TLC). The reaction 

solution was allowed to cool to room temperature; the solvent was removed under reduced 

pressure to dryness and the residue was purified by column chromatography on silica gel with 

10% AcOEt/Haxene as the eluent. Fractions containing the product (TLC) were combined and 

evaporated to afford 172 mg (63%) of 331 as a yellow powder: mp 156.6-157.2 °C; Rf 0.13 

(AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 2.43 (s, 3 H), 2.50 (s, 3 H), 6.77 (s, 1 H), 7.39 (d, 

2 H, J = 8.4), 7.87 (d, 2 H, J = 8.4), 9.74 (s, 1 H, exch), Anal. Calcd. for C14H12ClN3O: C, 61.43; 

H, 4.42; N, 15.35. Found C, 61.10; H, 4.44; N,14.93 

N-(1H-indol-4-yl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (332) To a 100-mL round-

bottomed flask, flushed with nitrogen, were added 458 (127 mg, 0.7 mmol), 1H-indol-4-amine 

(138.6 mg, 1.05 mmol), i-PrOH (20 mL), and 2-3 drops of conc HCl. The reaction mixture was 

heated at reflux with stirring for 2 h until the starting material 458 disappeared (TLC). The 
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reaction solution was allowed to cool to room temperature; the solvent was removed under 

reduced pressure to dryness and the residue was purified by column chromatography on silica gel 

with 10% AcOEt/Haxene as the eluent. Fractions containing the product (TLC) were combined 

and evaporated to afford 122 mg (63%) of 75 as a brown powder: mp 241.0-242.2 °C; Rf 0.16 

(AcOEt/Haxene, 1:1); 1H NMR (CDCl3) δ 2.20 (s, 3 H), 2.61 (s, 3 H), 5.24 (s, 1 H), 6.49 (t, 1 H), 

7.11 (m, 4 H,  1 H exch ), 7.34 (d,1 H), 8.41 (s, 1 H, exch), Anal. Calcd. for C16H14N4O⋅⋅⋅⋅0.2H2O: 

C, 68.17; H, 5.15; N, 19.58. Found C, 67.86; H, 5.18; N,19.58 

N-(4-methoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (333). To a 50 mL flask was 

added 458 (91 mg, 0.5 mmol), 4-methoxyaniline (68 mg, 0.55 mmol) (0.55 mmol) and butanol 

(5 mL). To this solution was added 2 drops of concentrate HCl solution and the mixture was 

refluxed. After TLC indicated the disappearance of starting material amine, the solvent was 

removed under reduced pressure. To the residue obtained was added silica gel and methanol and 

the solvent was removed to make a plug. The plug was loaded on to a silica gel column and 

eluted with 10 % acetyl acetate in hexane to give 333 (110 mg, 82%) as a white powder; mp 

135.2-136.7°C; Rf 0.28 (Hexane/AcOEt 3:1); 1H NMR (DMSO-d6) δ 2.34 (s, 3 H, CH3), 2.39 (s, 

3 H, CH3), 3.74 (s, 3 H, OCH3), 6.52 (s, 1 H, CH), 6.92 (d, 2 H, J = 8.8 Hz, C6H4 ), 7.61 (d, 2 H, 

J = 8.8 Hz, C6H4 ), 9.34 (s, 1 H, 4-NH exch); HRMS calcd for C15H16N3O2  270.1243, found 

270.1252. 

N-(3-fluorophenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (334) To a 100-mL round-

bottomed flask, flushed with nitrogen, were added 458 (182 mg, 1 mmol), 3-fluoroaniline (116 

mg, 1.05 mmol),BuOH (20 mL), and 2-3 drops of concd HCl. The reaction mixture was heated 

at reflux with stirring for 2 h until the starting material 458 disappeared (TLC). The reaction 

solution was allowed to cool to room temperature; the solvent was removed under reduced 
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pressure to dryness and the residue was purified by column chromatography on silica gel with 

10% AcOEt/Haxene as the eluent. Fractions containing the product (TLC) were combined and 

evaporated to afford 157 mg (61%) of 334 as a yellow powder: mp 169.2-170.8 °C; Rf 0.13 

(AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 2.43 (s, 3 H), 2.49 (s, 3 H), 6.82 (s, 1 H), 6.84 (t, 

1 H, J = 8.4), 7.38 (dd, 1 H, J1 = 12.0, J2 = 7.8), 7.57 (d, 1 H, J = 7.8), 7.95 (d, 1 H, J = 12.0), 

9.77 (s, 1 H, exch). Anal. Calcd. for C14H12ClN3O: C, 61.43; H, 4.42; N, 15.35. Found C, 61.10; 

H, 4.44; N,14.93 

N-(4-methoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (335). To a 50 mL flask 

was added 458 (91 mg, 0.5 mmol), N-methyl-4-methoxylaniline (77 mg, 0.55 mmol) and butanol 

(5 mL). To this solution was added 2 drops of concentrate HCl solution and the mixture was 

refluxed. After TLC indicated the disappearance of starting material amine, the solvent was 

removed under reduced pressure. To the residue obtained was added silica gel and methanol and 

the solvent was removed to make a plug. The plug was loaded on to a silica gel column and 

eluted with 10 % acetyl acetate in hexane to give 335 (106 mg, 75%) as a white powder; mp 108-

109°C; Rf 0.36 (Hexane/AcOEt 3:1); 1H NMR (DMSO-d6) δ 2.14 (s, 3 H, CH3), 2.45 (s, 3 H, 

CH3), 3.43 (s, 3 H, NCH3), 3.81 (s, 3 H, OCH3), 4.55 (s, 1 H, CH), 7.04 (d, 2 H, J = 9.2 Hz, 

C6H4), 7.25 (d, 2 H, J = 9.2 Hz, C6H4); HRMS calcd for C16H18N3O2  284.1399, found 284.1387; 

Anal. Calcd. for C16H17N3O2: C, 67.83; H, 6.05; N, 14.83. Found C, 68.21; H, 6.23; N,14.33. 

N-(4-methoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine hydrochloride (336).  

To a 50 mL flask were added 335 (2.0 g, 7.07 mmol) and anhydrous ether (20 mL). The resulting 

mixture was stirred to afford a clear solution. Anhydrous hydrochloric acid gas was bubbled into 

the solution till no more solid precipitated out.  The white solid was filtered out and then dried 

over P2O5 to afford 2.16 g (96%) of 336 as a colorless crystal; mp 287.3-287.7°C; Rf 0.01 
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(CH3Cl/MeOH 6:1); 1H NMR (DMSO-d6) δ 2.14 (s, 3 H, CH3), 2.46 (s, 3 H, CH3), 3.44 (s, 3 H, 

NCH3), 3.80 (s, 3 H, OCH3), 4.55 (s, 1 H, CH), 7.04-7.06 (d, 2 H, J = 8.0 Hz, 2 CH ), 7.26-7.28 

(d, 2 H, J = 8.0 Hz, 2 CH ); Anal. Calcd. for C16H18ClN3O2⋅0.3H2O: C, 59.09; H, 5.77; N, 12.92; 

Cl, 11.02. Found C, 59.02; H, 5.62; N,12.75; Cl, 11.02. 

N,2,6-trimethyl-N-(4-methylphenyl)furo[2,3-d]pyrimidin-4-amine  (338). To a 50 mL flask 

was added 458 (91 mg, 0.5 mmol), N,4-dimethylaniline (67 mg, 0.55 mmol) and BuOH (5 mL). 

To this solution was added 2 drops of concentrate HCl solution and the mixture was refluxed. 

TLC indicated the disappearance of starting material 458, the solvent was removed under 

reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 99 mg 

(74%) of 338 as a white powder; mp 139.4-139.9°C; Rf 0.35 (Hexane/EtOAC 3:1); 1H NMR 

(DMSO-d6) δ 2.16 (s, 3 H, CH3), 2.40 (s, 3 H, CH3), 2.49 (s, 3 H, CH3), 3.47 (s, 3 H, NCH3), 

4.58 (d, 1 H, J = 0.8 Hz, CH), 7.23-7.25 (d, 2 H, J = 8.0 Hz, 2 CH ), 7.32-7.34 (d, 2 H, J = 8.0 

Hz, 2 CH ); Anal. Calcd. for C16H17N3O: C, 71.89; H, 6.41; N, 15.72. Found C, 71.67; H, 6.50; 

N,15.75. 

N,2,6-trimethyl-N-(3-methylphenyl)furo[2,3-d]pyrimidin-4-amine  (339). To a 50 mL flask 

was added 458 (91 mg, 0.5 mmol), N,3-dimethylaniline (67 mg, 0.55 mmol) and BuOH (5 mL). 

To this solution was added 2 drops of concentrate HCl solution and the mixture was refluxed. 

TLC indicated the disappearance of starting material 458, the solvent was removed under 

reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 92 mg 

(69%) of 339 as a white powder; mp 117.6-118.4 oC; Rf 0.37 (Hexane/EtOAC 3:1); 1H NMR 

(DMSO-d6) δ 2.14 (s, 3 H, CH3), 2.34 (s, 3 H, CH3), 2.47 (s, 3 H, CH3), 3.47 (s, 3 H, NCH3), 
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4.55 (s, 1 H, CH), 7.12-7.14 (d, 1 H, J = 7.6 Hz, 1 CH ), 6.967.191 (s, 1 H, 1 CH), 7.25-7.27 (d, 

1 H, J = 8.8 Hz, 1 CH ), 7.37-7.40 (t, 1 H, J1 = 8.8 Hz, J2 = 7.6 Hz 1 CH ); Anal. Calcd. for 

C16H17N3O: C, 71.89; H, 6.41; N, 15.72. Found C, 71.93; H, 6.46; N,15.52. 

N-(4-chlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (340). To a 50 mL flask 

was added 458 (91 mg, 0.5 mmol), 4-chloro-N-methylaniline (78 mg, 0.55 mmol) and BuOH (5 

mL). To this solution was added 2 drops of concentrate HCl solution and the mixture was 

refluxed. TLC indicated the disappearance of starting material 458, the solvent was removed 

under reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 82 mg 

(57%) of 340 as a white powder; mp 162.3-163.5°C; Rf 0.34 (Hexane/EtOAC 3:1); 1H NMR 

(CDCl3) δ 2.22 (s, 3 H, CH3), 2.64 (s, 3 H, CH3), 3.57 (s, 3 H, NCH3), 4.72 (d, 1 H, J = 0.8 Hz, 

CH), 7.20-7.23 (d, 2 H, J = 8.4 Hz, 2 CH ), 7.45-7.43 (d, 2 H, J = 8.4 Hz, 2 CH ); HRMS calcd 

for C15H14ClN3O  287.0825, found 287.0817. 

N-(3,4-dichlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amin e (341). To a 50 mL flask 

was added 458 (91 mg, 0.5 mmol), 3,4-dichloro-N-methylaniline (96 mg, 0.55 mmol) and BuOH 

(5 mL). To this solution was added 2 drops of concentrate HCl solution and the mixture was 

refluxed. TLC indicated the disappearance of starting material 458, the solvent was removed 

under reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 87 mg 

(59%) of 341 as a white crystal; mp 167.4-168.9°C; Rf 0.3 (Hexane/EtOAC 3:1); 1H NMR 

(CDCl3) δ 2.99 (s, 3 H, CH3), 2.64 (s, 3 H, CH3), 3.57 (s, 3 H, NCH3), 4.90 (d, 1 H, CH), 7.11-

7.14 (dd, 1 H, J1 = 8.4 Hz, J2 = 2.4 Hz, 1 CH ), 7.40 (d, 1 H, J = 2.4 Hz, 1 CH ), 7.51-7.54 (d, 1 

H, J = 8.4 Hz, 1 CH ); HRMS calcd for C15H13Cl2N3O  321.0436, found 321.0426. 
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N,2,6-trimethyl-N-(naphthalen-1-yl)furo[2,3-d]pyrimidin-4-amine (342). To a 50 mL flask 

was added 458 (91 mg, 0.5 mmol), N-methylnaphthalen-1-amine hydrochloride (106 mg, 0.55 

mmol) and BuOH (5 mL). The resulting mixture was refluxed. TLC indicated the disappearance 

of starting material 458, the solvent was removed under reduced pressure. To the residue 

obtained was added silica gel and MeOH and the solvent removed to make a plug. This plug was 

separated by column chromatography to give 79 mg (52%) of 342 as a white crystal; mp 148.6-

149.7°C; Rf 0.39 (Hexane/EtOAC 3:1); 1H NMR (CDCl3) δ 1.99 (s, 3 H, CH3), 2.69 (s, 3 H, 

CH3), 3.69 (s, 3 H, NCH3), 4.99 (s, 1 H, CH), 7.44-7.58 (m, 4 H), 7.78-7.80 (d, 1 H, J = 8.0 Hz, 

1 CH ), 7.99-7.97 (d, 1 H, J = 8.0 Hz, 1 CH ); HRMS calcd for C19H17N3O  303.1371, found 

321.04303.1376. 

General procedure for the synthesis of 343-346. To a stirred suspension of 333 (1 mmol) in 2 ml 

DMF was added NaH (1.1 mmol) portionwise at 0 oC. The resulted mixture was stirred at 

ambient temperature till no more gas release. To the above mixture was added the appropriate 

alkyl iodide at ambient temperature. The resulted mixture was stirred at ambient temperature for 

4 hours and then poured onto 10 ml H20 to afford a white precipitate, which was collected 

through filtration and purified by colum chromatography to afford the desired compounds 343-

346. 

N-ethyl-N-(4-methoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (343). Above 

mentioned general procedure was applied to afford 343 as a colorless crystals: mp 87.6-88.7 oC; 

Rf = 0.30 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) 1.13-1.16 (t, 3 H, J = 5.6 Hz, NCH2CH3), 

2.15 (s, 3 H, CH3), 2.47 (s, 3 H, CH3), 3.84 (s, 3 H, OCH3), 3.98-4.01 (q, 2 H, NCH2CH3), 4.47 

(s, 1 H, 5-CH), 7.07-7.09 (d, 2 H, J = 6.8 Hz, C6H4), 7.24-7.26 (d, 2 H, J = 6.8 Hz, C6H4); Anal. 

Calcd. for C17H19N3O2: C, 68.67; H, 6.44; N, 14.13 Found C, 68.79; H, 6.51; N,14.02. 
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N-(4-methoxyphenyl)-2,6-dimethyl-N-propylfuro[2,3- d]pyrimidin-4-amine (344) 

Above mentioned general procedure was applied to afford 344 as a light yellow solid: mp 87.2-

87.9 oC; Rf = 0.30 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) 0.87-0.90 (t, 3 H, J = 6.0 Hz, 

NCH2CH2CH3), 1.57-1.62 (m, 2 H, NCH2CH2CH3 ), 2.15 (s, 3 H, CH3), 2.46 (s, 3 H, CH3), 3.84 

(s, 3 H, OCH3), 3.91-3.94 (t, 2 H, NCH2CH2CH3), 4.46 (s, 1 H, 5-CH), 7.06-7.08 (d, 2 H, J = 7.2 

Hz, C6H4), 7.24-7.26 (d, 2 H, J = 7.2 Hz, C6H4); Anal. Calcd. for C18H21N3O2: C, 69.43; H, 6.80; 

N, 13.49 Found C, 69.52; H, 6.91; N,13.39. 

N-butyl-N-(4-methoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (345)  Above 

mentioned general procedure was applied to afford 345 as an orange crystal: mp 65.2-67.1 oC; Rf 

= 0.30 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) 0.89-0.91 (t, 3 H, J = 5.6 Hz, NCH2 

CH2CH2CH3), 1.28-1.36 (m, 2 H, NCH2CH2CH2CH3 ), 1.52-1.58 (m, 2 H, NCH2CH2CH2CH3 ), 

2.15 (s, 3 H, CH3), 2.46 (s, 3 H, CH3), 3.84 (s, 3 H, OCH3), 3.97-3.98 (t, 2 H, NCH2CH2CH3), 

4.46 (s, 1 H, 5-CH), 7.06-7.08 (d, 2 H, J = 7.2 Hz, C6H4), 7.24-7.26 (d, 2 H, J = 7.2 Hz, C6H4); 

Anal. Calcd. for C19H23N3O2: C, 70.13; H, 7.12; N, 12.91 Found C, 70.12; H, 7.20; N,12.77. 

N-(4-methoxyphenyl)-2,6-dimethyl-N-(propan-2-yl)furo[2,3-d]pyrimidin-4-amine (346) 

Above mentioned general procedure was applied to afford 343 as an orange crystal: mp 131.1-

132.7 oC; Rf = 0.30 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) 1.09-1.11 (d, 6 H, J = 6.4 Hz, 2 

CH3), 2.12 (s, 3 H, CH3), 2.47 (s, 3 H, CH3), 3.84 (s, 3 H, OCH3), 4.20 (s, 1 H, 5-CH), 5.37-5.45 

(m, 1 H, NCH), 7.08-7.10 (d, 2 H, J = 8.8 Hz, C6H4), 7.19-7.21 (d, 2 H, J = 8.8 Hz, C6H4); Anal. 

Calcd. for C18H21N3O2: C, 69.43; H, 6.80; N, 13.49 Found C, 69.23; H, 6.81; N,13.38. 

4-(5-methoxyindolin-1-yl)-2,6-dimethylfuro[2,3-d]pyrimidine (347).  

To a 100-mL round-bottomed flask, flushed with nitrogen, were added 458 (91 mg, 0.5 mmol), 

5-methoxyindoline (82 mg, 0.55 mmol), BuOH (10 mL), and 2-3 drops of concd HCl. The 
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reaction mixture was heated at reflux with stirring for 12 h until the starting material 458 

disappeared (TLC). The reaction solution was allowed to cool to room temperature; the solvent 

was removed under reduced pressure, and the residue was purified by column chromatography 

on silica gel with hexane: acetyl acetate = 20:1 as the eluent. Fractions containing the product 

(TLC) were combined and evaporated to afford 93 mg (63%) 347 as a white powder: mp 201.1-

202.3 °C; Rf 0.5 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) δ 2.42 (s, 3 H), 2.53 (s, 3 H), 3.25 (t, 

2 H), 3.75 (s, 3 H), 4.39 (t, 2 H), 5.53 (s, 1 H), 6.79 (t, 2 H), 6.89 (d, 1 H), 8.48 (d, 1 H). Anal. 

C17H17N3O2 (C, 69.14; H, 5.80; N, 14.23; O, 10.83 

4-(5-methoxy-1H-indol-1-yl)-2,6-dimethylfuro[2,3-d]pyrimidine (348).  To a solution of 5-

methoxy-1H-indole (74 mg, 0.5 mmol) in 5 mL DMF was added NaH (13 mg, 0.55 mmol). The 

resulted suspension was cooled to 0 oC and stirred for 30 min. To the solution was added 458 

(273 mg, 1.5 mmol), the resulted mixture was stirred for another 2 h at ambient temperature. 

After adding 1 mL 1N HCl to terminate the reaction, the solvent was removed under reduced 

pressure. The crude mixture was purified by silica gel column chromatography using hexane: 

acetyl acetate=20:1 as the eluent. Fractions containing the product (TLC) were combined and 

evaporated to afford 66 mg (41%) 348 as a colorless crystal: mp 131.6-133.2 °C; Rf 0.28 

(Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) δ 2.51 (s, 3 H), 2.71 (s, 3 H), 3.81 (s, 3 H), 6.84 (d, 

1 H, J = 2.8 Hz ), 6.95 (dd, 1 H, J1 = 7.2 Hz, J2 = 2.0 Hz), 7.09 (s, 1 H), 7.20 (d, 1 H, J = 2.0 Hz ), 

8.04 (d, 1 H, J = 2.8 Hz ), 8.57 (d, 1 H, J = 7.2 Hz ). Anal. C17H15N3O2 (C, 69.61; H, 5.15; N, 

14.33; O, 10.91) 

4-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-,2,6-trimethylfuro[2,3-d]pyrimidines (349).  

To a 100-mL round-bottomed flask, flushed with nitrogen, were added 458 (91 mg, 0.5 mmol), 

6-methoxy-1,2,3,4-tetrahydroquinoline (90 mg, 0.55 mmol), BuOH (10 mL), and 2-3 drops of 
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concd HCl. The reaction mixture was heated at reflux with stirring for 12 h until the starting 

material 458 disappeared (TLC). The reaction solution was allowed to cool to room temperature; 

the solvent was removed under reduced pressure, and the residue was purified by column 

chromatography on silica gel with hexane: acetyl acetate = 20:1 as the eluent. Fractions 

containing the product (TLC) were combined and evaporated to afford 349 as a pink powder 74 

mg (48%): mp 108.9-109.6°C; Rf 0.5 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) δ 1.90 (m, 2 

H), 2.28 (s, 3 H), 2.48 (s, 3 H), 2.73 (t, 2 H), 3.75 (s, 3 H), 3.94 (t, 2 H), 5.53 (s, 1 H), 6.76 (dd, 1 

H, J1 = 7.2 Hz, J2 = 2.0 Hz ), 6.85 (d, 1 H, J = 2.0 Hz ), 6.05 (d, 1 H, J = 7.2 Hz ). Anal. 

C18H19N3O2 (C, 69.88; H, 6.19; N, 13.58; O, 10.34)  

N-(4-ethylphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine  (466). To a 50 mL flask was 

added 358 (91 mg, 0.5 mmol), 4-ethylaniline (67 mg, 0.55 mmol) and BuOH (5 mL). To this 

solution was added 2 drops of concentrate HCl solution and the mixture was refluxed. TLC 

indicated the disappearance of starting material 5, the solvent was removed under reduced 

pressure. To the residue obtained was added silica gel and MeOH and the solvent removed to 

make a plug. This plug was separated by column chromatography to give 99 mg (74%) of 466 as 

a off-white solid; mp 116.2-116.8 °C; Rf 0.52 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) δ 1.18-

1.21 (t, 3 H, J = 6.0 Hz, CH2CH3), 2.41 (s, 3 H), 2.48 (s, 3 H), 2.57-2.62 (q, 2 H, J = 6.0 Hz, 

CH2CH3 ), 6.65 (s, 1 H, 5-CH), 7.19-7.20 (d, 2 H, J = 6.8 Hz, C6H4 ), 7.67-7.69 (d, 2 H, J = 6.8 

Hz, C6H4), 9.46 (s, 1 H, NH exch); Anal. Calcd. for C16H17N3O: C, 71.89; H, 6.41; N, 15.72. 

Found C, 71.90; H, 6.46; N,15.64.  

2,6-dimethyl-N-[4-(methylsulfanyl)phenyl]furo[2,3-d]pyrimidin-4-amine  (467). To a 50 mL 

flask was added 358 (91 mg, 0.5 mmol), 4-(methylsulfanyl)aniline (76 mg, 0.55 mmol) and 

BuOH (5 mL). To this solution was added 2 drops of concentrate HCl solution and the mixture 
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was refluxed. TLC indicated the disappearance of starting material 5, the solvent was removed 

under reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 97 mg 

(68%) of 467 as a yellow powder; mp 143.2-143.8 °C; Rf 0.4 (Hexane/EtOAC 3:1); 1H NMR 

(DMSO-d6) δ 2.43 (s, 3 H), 2.48 (s, 3 H), 2.49 (sq, 3 H), 6.70 (s, 1 H, 5-CH), 7.28-7.30 (d, 2 H, J 

= 8.0 Hz, C6H4 ), 7.78-7.80 (d, 2 H, J = 8.0 Hz, C6H4), 9.51 (s, 1 H, NH exch); Anal. Calcd. for 

C15H15N3OS: C, 63.13; H, 5.30; N, 14.73, S, 11.24. Found C, 62.99; H, 5.27; N,14.56, S, 11.10. 

N-(4-ethoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine  (469). To a 50 mL flask was 

added 358 (91 mg, 0.5 mmol), 4-ethoxyaniline (75 mg, 0.55 mmol) and BuOH (5 mL). To this 

solution was added 2 drops of concentrate HCl solution and the mixture was refluxed. TLC 

indicated the disappearance of starting material 358, the solvent was removed under reduced 

pressure. To the residue obtained was added silica gel and MeOH and the solvent removed to 

make a plug. This plug was separated by column chromatography to give 112 mg (80%) of 469 

as a off-white powder; mp 160.6-162.1°C; Rf 0.51 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) δ 

1.32-1.35 (t, 3 H, J = 5.6 Hz, OCH2CH3), 2.40 (s, 3 H, 6-CH3), 2.45 (s, 3 H, 2-CH3), 4.00-4.04 (q, 

2 H, J = 5.6 Hz, OCH2CH3 ), 6.50 (s, 1 H, 5-CH), 6.93-6.94 (d, 2 H, J = 6.8 Hz, C6H4 ), 7.61 (d, 

2 H, J = 6.8 Hz, C6H4), 9.34 (s, 1 H, NH exch); Anal. Calcd. for C16H17N3O2: C, 67.83; H, 6.05; 

N, 14.83. Found C, 67.81; H, 6.08; N,14.71 

2,6-Dimethyl-N-(4-propoxyphenyl)furo[2,3-d]pyrimidin-4-amine  (470). To a 50 mL flask was 

added 358 (91 mg, 0.5 mmol), 4-propoxyaniline (83 mg, 0.55 mmol) and BuOH (5 mL). To this 

solution was added 2 drops of concentrate HCl solution and the mixture was refluxed. TLC 

indicated the disappearance of starting material 358, the solvent was removed under reduced 

pressure. To the residue obtained was added silica gel and MeOH and the solvent removed to 
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make a plug. This plug was separated by column chromatography to give 99 mg (67%) of 470 as 

a colorless crystal; mp 136.3-137.1°C; Rf 0.51 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) δ 

0.98-1.00 (t, 3 H, OCH2CH2CH3), 1.70-1.77 (m, 2 H, OCH2CH2CH3 ), 2.40 (s, 3 H, 6-CH3), 2.45 

(s, 3 H, 2-CH3), 3.91-3.94 (t, 2 H, OCH2CH2CH3 ), 6.53 (s, 1 H, 5-CH), 6.93-6.94 (d, 2 H, J = 

7.2 Hz, C6H4 ), 7.61-7.62 (d, 2 H, J = 7.2 Hz, C6H4), 9.33 (s, 1 H, NH exch); Anal. Calcd. for 

C17H19N3O2: C, 68.67; H, 6.44; N, 14.13. Found C, 68.52; H, 6.53; N,14.06. 

N-(2,4-dimethoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine  (471). To a 50 mL flask 

was added 358 (91 mg, 0.5 mmol), 2,4-dimethoxyaniline (84 mg, 0.55 mmol) and BuOH (5 mL). 

To this solution was added 2 drops of concentrate HCl solution and the mixture was refluxed. 

TLC indicated the disappearance of starting material 358, the solvent was removed under 

reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 112 mg 

(77%) of 471 as a off-white powder; mp 97.7-97.9°C; Rf 0.62 (Hexane/EtOAC 1:1); 1H NMR 

(DMSO-d6) δ 2.31 (s, 3 H), 2.37 (s, 3 H), 3.73 (s, 3 H, OCH3), 3.81 (s, 3 H, OCH3), 5.93 (s, 1 H, 

5-CH), 6.55-6.58 (dd, 1 H, J = 6.8 Hz, J = 2 Hz C6H3 ), 7.33-7.35 (d, 2 H, J = 6.8 Hz, C6H3), 

8.78 (s, 1 H, NH exch); Anal. Calcd. for C16H17N3O3: C, 64.20; H, 5.72; N, 14.04. Found C, 

64.57; H, 5.85; N,13.76. 

N-(2,4-dimethoxyphenyl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine  (472). To a 50 mL flask 

was added 358 (91 mg, 0.5 mmol), 3,4-dimethoxyaniline (84 mg, 0.55 mmol) and BuOH (5 mL). 

To this solution was added 2 drops of concentrate HCl solution and the mixture was refluxed. 

TLC indicated the disappearance of starting material 358, the solvent was removed under 

reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 119 mg 
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(82%) of 472 as a gray solid; mp 150.8-151.4°C; Rf 0.50 (Hexane/EtOAC 1:1); 1H NMR 

(DMSO-d6) δ 2.41 (s, 3 H), 2.48 (s, 3 H), 3.75 (s, 3 H, OCH3), 3.78 (s, 3 H, OCH3), 6.57 (s, 1 H, 

5-CH), 6.94-6.96 (d, 1 H, J = 7.2 Hz, C6H3), 7.24-7.26 (dd, 1 H, J = 7.2 Hz, C6H3 ), 7.54 (s, 1 H), 

9.36 (s, 1 H, NH exch); Anal. Calcd. for C16H17N3O3⋅H2O: C, 60.56; H, 6.03; N, 13.24. Found C, 

60.67; H, 6.15; N,13.03. 

2,6-dimethyl-N-(3,4,5-trimethoxyphenyl)furo[2,3-d]pyrimidin-4-amine (473). To a 50 mL 

flask was added 358 (91 mg, 0.5 mmol), 3,4,5-trimethoxyaniline (101 mg, 0.55 mmol) and 

BuOH (5 mL). To this solution was added 2 drops of concentrate HCl solution and the mixture 

was refluxed. TLC indicated the disappearance of starting material 358, the solvent was removed 

under reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 137 mg 

(83%) of 473 as a yellow powder; mp 173.5-173.7°C; Rf 0.03 (Hexane/EtOAC 3:1); 1H NMR 

(DMSO-d6) δ 2.43 (s, 3 H), 2.50 (s, 3 H), 3.65 (s, 3 H, OCH3), 3.80 (s, 6 H, 2 OCH3), 6.71 (s, 1 

H, 5-CH), 7.29 (s, 2 H, C6H2), 9.43 (s, 1 H, NH exch); Anal. Calcd. for C17H19N3O4⋅0.2H2O: C, 

61.32; H, 5.87; N, 12.62. Found C, 61.41; H, 5.94; N,12.30. 

N-(4-ethylphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (352) To a 25 mL round 

bottom flask was weighed 466 (134 mg, 0.5 mmol) and was added DMF (2 mL) to afford a 

solution. The flask was purged with argon for five min followed by cooling down to 0 °C using 

ice bath. Sodium hydride (36 mg, 1.5 mmol) was added to the solution at 0 °C. The solution was 

stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (150 mg, 1.2 mmol) was 

introduced to the reaction mixture with the help of a syringe and the flask was warmed to room 

temperature. The mixture was stirred at room temperature for another 3h at the end of which 1 N 

Hydrochloric acid (5 mL) was added carefully to quench the reaction. The reaction solvent was 
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removed under reduced pressure and the residue was suspended in water (20 mL). The 

suspension was extracted using ethyl acetate (10 mL x 2). Combined organic extracts were 

washed with brine (10 mL) dried (anhydrous sodium sulfate) and concentrated under reduced 

pressure. Silica gel (200 mg) was added and solvent evaporated to afford a plug. Column 

chromatography by elution with hexanes: ethyl acetate (5:1) afforded 60 mg (43 %) of 352 as a 

colorless crystal: mp 105.0-105.7 °C; Rf 0.6 (AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 1.23-

1.26 (t, 3 H, J = 6.0 Hz, CH2CH3), 2.15 (s, 3 H, CH3), 2.49 (s, 3 H, CH3), 2.68-2.73 (q, 2 H, J = 

6.0 Hz, CH2CH3), 3.48 (s, 3 H, NCH3), , 4.53 (s, 1 H, 5-CH), 7.27-7.28 (d, 2 H, J = 6.8 Hz, 

C6H4), 7.36-7.37 (d, 2 H, J = 6.8 Hz, C6H4); Anal. Calcd. for C17H19N3O: C, 72.57; H, 6.81; N, 

14.94. Found C, 72.58; H, 6.83; N,14.77. 

N,2,6-trimethyl-N-[4-(methylsulfanyl)phenyl]furo[2,3-d]pyrimidin-4-amine (353) To a 25 

mL round bottom flask was weighed 467 (143 mg, 0.5 mmol) and was added DMF (2 mL) to 

afford a solution. The flask was purged with argon for five min followed by cooling down to 

0 °C using ice bath. Sodium hydride (36 mg, 1.5 mmol) was added to the solution at 0 °C. The 

solution was stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (150 mg, 1.2 

mmol) was introduced to the reaction mixture with the help of a syringe and the flask was 

warmed to room temperature. The mixture was stirred at room temperature for another 3h at the 

end of which 1 N Hydrochloric acid (5 mL) was added carefully to quench the reaction. The 

reaction solvent was removed under reduced pressure and the residue was suspended in water 

(20 mL). The suspension was extracted using ethyl acetate (10 mL x 2). Combined organic 

extracts were washed with brine (10 mL) dried (anhydrous sodium sulfate) and concentrated 

under reduced pressure. Silica gel (200 mg) was added and solvent evaporated to afford a plug. 

Column chromatography by elution with hexanes: ethyl acetate (5:1) afforded 78 mg (52 %) of 
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353 as a light yellow solid: mp 91.8-91.9 °C; Rf 0.5 (AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) 

δ 2.18 (s, 3 H, CH3 ), 2.49 (s, 3 H, CH3), 2.54 (s, 3 H, CH3), 3.47 (s, 3 H, NCH3), , 4.73 (s, 1 H, 

5-CH), 7.30-7.32 (d, 2 H, J = 6.8 Hz, C6H4), 7.38-7.39 (d, 2 H, J = 6.8 Hz, C6H4); Anal. Calcd. 

for C16H17N3OS: C, 64.19; H, 5.72; N, 14.04, S, 10.71. Found C, 64.26; H, 5.68; N,13.90, S, 

10.80. 

N-(4-ethoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (355) To a 25 mL round 

bottom flask was weighed 469 (141 mg, 0.5 mmol) and was added DMF (2 mL) to afford a 

solution. The flask was purged with argon for five min followed by cooling down to 0 °C using 

ice bath. Sodium hydride (36 mg, 1.5 mmol) was added to the solution at 0 °C. The solution was 

stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (150 mg, 1.2 mmol) was 

introduced to the reaction mixture with the help of a syringe and the flask was warmed to room 

temperature. The mixture was stirred at room temperature for another 3h at the end of which 1 N 

Hydrochloric acid (5 mL) was added carefully to quench the reaction. The reaction solvent was 

removed under reduced pressure and the residue was suspended in water (20 mL). The 

suspension was extracted using ethyl acetate (10 mL x 2). Combined organic extracts were 

washed with brine (10 mL) dried (anhydrous sodium sulfate) and concentrated under reduced 

pressure. Silica gel (200 mg) was added and solvent evaporated to afford a plug. Column 

chromatography by elution with hexanes: ethyl acetate (5:1) afforded 73 mg (49 %) of 355 as a 

colorless crystal: mp 107.6-108.2 °C; Rf 0.64 (AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 

1.36-1.38 (t, 3 H, J = 5.6 Hz, OCH2CH3), 2.16 (s, 3 H, CH3),2.48 (s, 3 H, CH3), 3.45 (s, 3 H, 

NCH3), 4.85-4.10 (q, 2 H, OCH2CH3), 4.58 (s, 1 H, 5-CH), 7.04-7.06 (d, 2 H, J = 7.2 Hz, C6H4), 

7.26-7.28 (d, 2 H, J = 7.2 Hz, C6H4); Anal. Calcd. for C17H19N3O2: C, 68.67; H, 6.44; N, 14.13. 

Found C, 68.89; H, 6.48; N,14.06. 
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N,2,6-trimethyl-N-(4-propoxyphenyl)furo[2,3-d]pyrimidin-4-amine (356) To a 25 mL round 

bottom flask was weighed 470 (149 mg, 0.5 mmol) and was added DMF (2 mL) to afford a 

solution. The flask was purged with argon for five min followed by cooling down to 0 °C using 

ice bath. Sodium hydride (36 mg, 1.5 mmol) was added to the solution at 0 °C. The solution was 

stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (150 mg, 1.2 mmol) was 

introduced to the reaction mixture with the help of a syringe and the flask was warmed to room 

temperature. The mixture was stirred at room temperature for another 3h at the end of which 1 N 

Hydrochloric acid (5 mL) was added carefully to quench the reaction. The reaction solvent was 

removed under reduced pressure and the residue was suspended in water (20 mL). The 

suspension was extracted using ethyl acetate (10 mL x 2). Combined organic extracts were 

washed with brine (10 mL) dried (anhydrous sodium sulfate) and concentrated under reduced 

pressure. Silica gel (200 mg) was added and solvent evaporated to afford a plug. Column 

chromatography by elution with hexanes: ethyl acetate (5:1) afforded 95 mg (61 %) of 356 as a 

light brown solid: mp 100.7-100.8 °C; Rf 0.7 (AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 

0.99-1.03 (t, 3 H, J = 5.6 Hz, OCH2CH2CH3),1.75-1.79 (m, 2 H, J = 5.6 Hz, OCH2CH2CH3), 

2.17 (s, 3 H, CH3), 2.48 (s, 3 H, CH3), 3.45 (s, 3 H, NCH3), 3.99-4.02 (t, 2 H, J = 5.6 Hz, 

OCH2CH2CH3), 4.62 (s, 1 H, 5-CH), 7.05-7.07 (d, 2 H, J = 7.2 Hz, C6H4), 7.27-7.28 (d, 2 H, J = 

7.2 Hz, C6H4); Anal. Calcd. for C18H21N3O2: C, 69.43; H, 6.80; N, 13.49. Found C, 69.42; H, 

6.82; N,13.43. 

N-(2,4-dimethoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (357) To a 25 mL 

round bottom flask was weighed 471 (150 mg, 0.5 mmol) and was added DMF (2 mL) to afford 

a solution. The flask was purged with argon for five min followed by cooling down to 0 °C using 

ice bath. Sodium hydride (36 mg, 1.5 mmol) was added to the solution at 0 °C. The solution was 
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stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (150 mg, 1.2 mmol) was 

introduced to the reaction mixture with the help of a syringe and the flask was warmed to room 

temperature. The mixture was stirred at room temperature for another 3h at the end of which 1 N 

Hydrochloric acid (5 mL) was added carefully to quench the reaction. The reaction solvent was 

removed under reduced pressure and the residue was suspended in water (20 mL). The 

suspension was extracted using ethyl acetate (10 mL x 2). Combined organic extracts were 

washed with brine (10 mL) dried (anhydrous sodium sulfate) and concentrated under reduced 

pressure. Silica gel (200 mg) was added and solvent evaporated to afford a plug. Column 

chromatography by elution with hexanes: ethyl acetate (5:1) afforded 74 mg (47 %) of 357 as a 

orange crystal: mp 166.1-166.4 °C; Rf 0.38 (AcOEt/Haxene, 1:1); 1H NMR (DMSO-d6) δ  2.16 

(s, 3 H, CH3), 2.47 (s, 3 H, CH3), 3.41 (s, 3 H, NCH3), 3.70 (s, 3 H, OCH3), 3.85 (s, 3 H, OCH3), 

4.57 (s, 1 H, 5-CH), 6.62-6.64 (dd, 1 H, J = 6.8 Hz, J = 2.0 Hz, C6H3), 6.75-6.76 (d, 2 H, J = 6.8 

Hz, C6H3), 7.24-7.22 (d, 2 H, J = 2.0 Hz, C6H3); Anal. Calcd. for C17H19N3O3: C, 65.16; H, 6.11; 

N, 13.41. Found C, 65.20; H, 6.16; N,13.21. 

N-(3,4-dimethoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (358) To a 25 mL 

round bottom flask was weighed 472 (150 mg, 0.5 mmol) and was added DMF (2 mL) to afford 

a solution. The flask was purged with argon for five min followed by cooling down to 0 °C using 

ice bath. Sodium hydride (36 mg, 1.5 mmol) was added to the solution at 0 °C. The solution was 

stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (150 mg, 1.2 mmol) was 

introduced to the reaction mixture with the help of a syringe and the flask was warmed to room 

temperature. The mixture was stirred at room temperature for another 3h at the end of which 1 N 

Hydrochloric acid (5 mL) was added carefully to quench the reaction. The reaction solvent was 

removed under reduced pressure and the residue was suspended in water (20 mL). The 
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suspension was extracted using ethyl acetate (10 mL x 2). Combined organic extracts were 

washed with brine (10 mL) dried (anhydrous sodium sulfate) and concentrated under reduced 

pressure. Silica gel (200 mg) was added and solvent evaporated to afford a plug. Column 

chromatography by elution with hexanes: ethyl acetate (5:1) afforded 78 mg (50 %) of 358 as a 

orange crystal: mp 114.2-116.6 °C; Rf 0.28 (AcOEt/Haxene, 1:1); 1H NMR (DMSO-d6) δ  2.17 

(s, 3 H, CH3), 2.48 (s, 3 H, CH3), 3.47 (s, 3 H, NCH3), 3.73 (s, 3 H, OCH3), 3.82 (s, 3 H, OCH3), 

4.64 (s, 1 H, 5-CH), 6.87-6.89 (dd, 1 H, J = 6.8 Hz, J = 2.0 Hz, C6H3), 7.02-7.07 (d, 2 H, J = 2.0 

Hz, C6H3), 7.04-7.06 (d, 2 H, J = 6.8 Hz, C6H3); Anal. Calcd. for C17H19N3O3: C, 65.16; H, 6.11; 

N, 13.41. Found C, 65.11; H, 6.23; N,13.17. 

N,2,6-trimethyl-N-(3,4,5-trimethoxyphenyl)furo[2,3-d]pyrimidin-4-amine (359) To a 25 mL 

round bottom flask was weighed 473 (165 mg, 0.5 mmol) and was added DMF (2 mL) to afford 

a solution. The flask was purged with argon for five min followed by cooling down to 0 °C using 

ice bath. Sodium hydride (36 mg, 1.5 mmol) was added to the solution at 0 °C. The solution was 

stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (150 mg, 1.2 mmol) was 

introduced to the reaction mixture with the help of a syringe and the flask was warmed to room 

temperature. The mixture was stirred at room temperature for another 3h at the end of which 1 N 

Hydrochloric acid (5 mL) was added carefully to quench the reaction. The reaction solvent was 

removed under reduced pressure and the residue was suspended in water (20 mL). The 

suspension was extracted using ethyl acetate (10 mL x 2). Combined organic extracts were 

washed with brine (10 mL) dried (anhydrous sodium sulfate) and concentrated under reduced 

pressure. Silica gel (200 mg) was added and solvent evaporated to afford a plug. Column 

chromatography by elution with hexanes: ethyl acetate (5:1) afforded 108 mg (63 %) of 359 as a 

light yellow crystal: mp 176.5-178.1 °C; Rf 0.19 (AcOEt/Haxene, 2:1); 1H NMR (DMSO-d6) δ  
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2.20 (s, 3 H, CH3), 2.49 (s, 3 H, CH3), 3.50 (s, 3 H, NCH3), 3.74(s, 9 H, 3 OCH3), 4.73 (s, 1 H, 5-

CH), 6.73 (s, 2 H, C6H2); Anal. Calcd. for C18H21N3O4: C, 62.96; H, 6.16; N, 12.24. Found C, 

63.18; H, 6.16; N,12.14. 

N-1,3-benzodioxol-5-yl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (474). To a 50 mL flask 

was added 358 (91 mg, 0.5 mmol), benzo[d][1,3]dioxol-5-amine (75 mg, 0.55 mmol) and BuOH 

(5 mL). To this solution was added 2 drops of concentrate HCl solution and the mixture was 

refluxed. TLC indicated the disappearance of starting material 5, the solvent was removed under 

reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 102 mg 

(72%) of 474 

as a brown solid; mp 185.5-187.1°C; Rf 0.10 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) δ 2.40 

(s, 3 H, CH3), 2.46 (s, 3 H, CH3), 6.01 (s, 2 H, OCH2O), 6.59 (br, 1 H, NH exch ), 6.89-6.91 (d, 1 

H, J = 6.8 Hz), 7.09-7.11 (dd, 1 H, J = 8.4 Hz ), 7.51 (s, 1 H), 9.37 (s, 1 H); Anal. Calcd. for 

C15H13N3O2: C, 63.60; H, 4.63; N, 14.83. Found C, 63.54; H, 4.56; N,14.90. 

N-(2,3-dihydro-1-benzofuran-5-yl)-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (475). To a 50 

mL flask was added 358 (91 mg, 0.5 mmol), 2,3-dihydrobenzofuran-5-amine (74 mg, 0.55 mmol) 

and BuOH (5 mL). To this solution was added 2 drops of concentrate HCl solution and the 

mixture was refluxed. TLC indicated the disappearance of starting material 5, the solvent was 

removed under reduced pressure. To the residue obtained was added silica gel and MeOH and 

the solvent removed to make a plug. This plug was separated by column chromatography to give 

98 mg (70%) of 475 as a brown solid; mp 193.7-195.2°C; Rf 0.10 (Hexane/EtOAC 3:1); 1H 

NMR (DMSO-d6) δ 2.38 (s, 3 H, CH3), 2.44 (s, 3 H, CH3), 3.18-3.23 (t, 2 H, J = 8.4 Hz, 

CH2CH2), 4.52-4.56 (t, 2 H, J = 8.4 Hz, CH2CH2), 6.43 (br, 1 H, NH exch ), 6.74-6.77 (d, 1 H, J 
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= 8.4 Hz), 7.33-7.35 (d, 1 H, J = 8.4 Hz ), 7.57 (s, 1 H), 9.50 (s, 1 H); Anal. Calcd. for 

C16H15N3O2: C, 68.31; H, 5.37; N, 14.94. Found C, 68.39; H, 5.78; N,14.01. 

N-1-benzofuran-5-yl-2,6-dimethylfuro[2,3-d]pyrimidin-4-amine (476). To a 50 mL flask was 

added 358 (91 mg, 0.5 mmol), benzofuran-5-amine (73 mg, 0.55 mmol) and BuOH (5 mL). To 

this solution was added 2 drops of concentrate HCl solution and the mixture was refluxed. TLC 

indicated the disappearance of starting material 5, the solvent was removed under reduced 

pressure. To the residue obtained was added silica gel and MeOH and the solvent removed to 

make a plug. This plug was separated by column chromatography to give 92 mg (66%) of 476 as 

a colorless crystal; mp 173.4-175.0°C; Rf 0.10 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) δ 

2.40 (s, 3 H, 6-CH3), 2.49 (s, 3 H, 2-CH3), 6.55 (br, 1 H, NH exch ), 6.98 (d, 1 H, J = 1.6 Hz, 5-

CH), 7.58-7.60 (d, 2 H, C8H5), 7.99 (d, 1 H, C8H5), 8.11-8.13 (t, 1 H, C8H5), 9.50 (s, 1 H, C8H5); 

Anal. Calcd. for C16H13N3O2: C, 68.81; H, 4.69; N, 15.05. Found C, 68.84; H, 4.77; N,14.96. 

N-1,3-benzodioxol-5-yl-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (360). To a 25 mL 

round bottom flask was weighed 474 (56.6 mg, 0.2 mmol) and was added DMF (2 mL) to afford 

a solution. The flask was purged with argon for five min followed by cooling down to 0 °C using 

ice bath. Sodium hydride (12 mg, 0.5 mmol) was added to the solution at 0 °C. The solution was 

stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (50 mg, 0.4 mmol) was 

introduced to the reaction mixture with the help of a syringe and the flask was warmed to room 

temperature. The mixture was stirred at room temperature for another 3h at the end of which 1 N 

Hydrochloric acid (3 mL) was added carefully to quench the reaction. The reaction solvent was 

removed under reduced pressure and the residue was suspended in water (10 mL). The 

suspension was extracted using ethyl acetate (5 mL x 2). Combined organic extracts were 

washed with brine (5 mL) dried (anhydrous sodium sulfate) and concentrated under reduced 



 

274 
 

pressure. Silica gel (100 mg) was added and solvent evaporated to afford a plug. Column 

chromatography by elution with hexanes: ethyl acetate (5:1) afforded 40 mg (67%) of 360 as a 

colorless crystal; mp 200.0-200.7°C; Rf 0.48 (Hexane/EtOAC 1:1); 1H NMR (DMSO-d6) δ 2.21 

(s, 3 H, CH3), 2.48 (s, 3 H, CH3), 3.44 (s, 3 H, OCH3), 4.76 (s, 1 H, 5-CH), 6.14 (s, 2 H, OCH2O), 

6.82-6.84 (m, 1 H), 7.01-7.04 (m, 2 H); Anal. Calcd. for C16H15N3O3: C, 69.64; H, 5.09; N, 14.13. 

Found C, 64.63; H, 4.98; N,14.14. 

N-(2,3-dihydro-1-benzofuran-5-yl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (361). To a 

25 mL round bottom flask was weighed 475 (43.6 mg, 0.2 mmol) and was added DMF (2 mL) to 

afford a solution. The flask was purged with argon for five min followed by cooling down to 

0 °C using ice bath. Sodium hydride (12 mg, 0.5 mmol) was added to the solution at 0 °C. The 

solution was stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (50 mg, 0.4 

mmol) was introduced to the reaction mixture with the help of a syringe and the flask was 

warmed to room temperature. The mixture was stirred at room temperature for another 3h at the 

end of which 1 N Hydrochloric acid (3 mL) was added carefully to quench the reaction. The 

reaction solvent was removed under reduced pressure and the residue was suspended in water 

(10 mL). The suspension was extracted using ethyl acetate (5 mL x 2). Combined organic 

extracts were washed with brine (5 mL) dried (anhydrous sodium sulfate) and concentrated 

under reduced pressure. Silica gel (100 mg) was added and solvent evaporated to afford a plug. 

Column chromatography by elution with hexanes: ethyl acetate (5:1) afforded 35 mg (59%) of 

361 as a colorless crystal; mp 167.2-168.4°C; Rf 0.16 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) 

δ 2.18 (s, 3 H, CH3), 2.48 (s, 3 H, CH3), 3.21-3.25 (t, 3H, J = 6.8 Hz, CH2CH2), 3.45 (s, 3 H, 

OCH3), 4.61-4.64 (t, 3H, J = 6.8 Hz, CH2CH2), 4.65 (s, 1 H, 5-CH), 6.86-6.88 (d, 1 H, J = 6.8 

Hz), 7.05-7.07 (dd, 1 H, J = 8.4 Hz ), 7.24 (s, 1 H); Anal. Calcd. for C17H17N3O2: C, 69.14; H, 
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5.80; N, 14.23. Found C, 68.97; H, 5.88; N,14.12. 

N-1-benzofuran-5-yl-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (362). To a 25 mL round 

bottom flask was weighed 476 (58.6 mg, 0.2 mmol) and was added DMF (2 mL) to afford a 

solution. The flask was purged with argon for five min followed by cooling down to 0 °C using 

ice bath. Sodium hydride (12 mg, 0.5 mmol) was added to the solution at 0 °C. The solution was 

stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (50 mg, 0.4 mmol) was 

introduced to the reaction mixture with the help of a syringe and the flask was warmed to room 

temperature. The mixture was stirred at room temperature for another 3h at the end of which 1 N 

Hydrochloric acid (3 mL) was added carefully to quench the reaction. The reaction solvent was 

removed under reduced pressure and the residue was suspended in water (10 mL). The 

suspension was extracted using ethyl acetate (5 mL x 2). Combined organic extracts were 

washed with brine (5 mL) dried (anhydrous sodium sulfate) and concentrated under reduced 

pressure. Silica gel (100 mg) was added and solvent evaporated to afford a plug. Column 

chromatography by elution with hexanes: ethyl acetate (5:1) afforded 37 mg (63%) of 362 as a 

colorless crystal; mp 193.0-194.2°C; Rf 0.22 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) δ 2.10 

(s, 3 H, CH3), 3.38 (s, 3 H, OCH3), 4.37 (s, 1 H, 5-CH), 7.03 (s, 1 H), 7.30-7.32 (d, 1 H, J = 6.8 

Hz), 7.69 (s, 1 H), 7.74-7.76 (d, 1 H, J = 6.8 Hz), 8.13 (s, 1 H); Anal. Calcd. for C17H15N3O2: C, 

69.61; H, 5.15; N, 14.33. Found C, 69.54; H, 5.17; N, 14.21. 

N-{4-[(2,2-dimethylpropanoyl)amino]phenyl}-N,2,2-trimethylpropanamide (480). To a 100 

mL round-bottom flask was added 1,4-phenyl-diamine (2.19 g, 18 mmol) and pivaloyl anhydride 

(30 mL) and the resulting mixture was refluxed under N2 atmosphere for 2.5 h. TLC showed the 

disappearance of the starting material 73c and the formation of a major spot at Rf = 0.32 

(AcOEt/Haxene, 1:3). After evaporation of the solvent, the residue was loaded onto a silica gel 
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column and eluted with hexane followed by hexane/EtOAc 5:1. The fractions containing the 

desired spot (TLC) were pooled and evaporated, the resulting residue was recrystallized from 

Et2O/EtOAc to afford 4.38 g (84%) of 480 as colorless crystals: mp 181.3-182.7 oC; Rf = 0.32 

(AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) 0.96 (s, 9 H, Piv), 1.24 (s, 9 H, Piv), 3.07 (s, 3 H, 

CH3), 7.22-7.23 (d, 2 H, J = 6.8 Hz, C6H4), 7.69-7.71 (d, 2 H, J = 6.8 Hz, C6H4), 9.31 (s, 1 H).  

2-Methyl-5-(allyl)pyrimidine-4,6-diol (484). A mixture of 485 (8.6 g, 50 mmol) and 

acetamidine hydrochloride (5.42 g, 60 mmol) was heated to reflux in methanol (100 mL), 

followed by the addition of sodium metal (1.52 g, 66 mmol). The mixture was refluxed for 24 h 

to afford a thick yellow precipitation. The suspension was then cooled in an ice-bath to room 

temperature. The precipitate formed was collected by filtration and dissolved in 40 mL of water. 

The pH of this solution was adjusted to 3-4 with 1 N HCl whereupon a thick precipitate formed. 

The mixture was filtered and washed with a small amount of water followed by acetone and 

dried in vacuo to afford 73c (4.7g, 57%)  as a light yellow powder; mp >300°C; Rf 0.11 

(CHCl3/MeOH 6:1). The comound was used directly in next step without further purification. 

N-(4-methoxyphenyl)-N,2,6-trimethyl-5,6-dihydrofuro[2,3-d]pyrimidin-4-amine  (364). To a 

solution of 335 (283 mg, 1 mmol) in a mixture of MeOH (15 mL) and AcOH (3 mL) was added 

10% palladium on activated carbon (100 mg), and the suspension was hydrogenated in a Parr 

apparatus at room temperature and 55 psi for 20 h. The reaction was stopped, when TLC 

indicated the disappearance of the starting material and the formation of single new spot. The 

reaction mixture was filtered through Celite, washed with 50 mL MeOH.  To this solution was 

added 1 g silica gel and the mixture was evaporated under reduced pressure to dryness. The 

residue was purified by column chromatography on silica gel with hexane: acetyl acetate = 20:1 

as the eluent. Fractions containing the product (TLC) were combined and evaporated to afford 
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364 as a white crystal 252 mg (88%). mp 200.2-200.7 °C; Rf 0.27 (Hexane/EtOAC 1:1); 1H 

NMR (DMSO-d6) δ 1.34 (d, 3 H, J = 6 Hz ), 1.68 (dd, 1 H, J 1= 15.2 Hz, J2 = 6.8 Hz), 2.20 (dd, 

1 H, J 1= 15.2 Hz, J2 = 6.8 Hz),  2.33 (s, 3 H), 3.36 (s, 3 H), 3.82 (s, 3 H), 4.60 (q, 1 H, J = 6 Hz), 

6.96 (d, 2 H, J = 8 Hz ), 7.22 (d, 2 H, J = 8 Hz ).  

2-Methyl-5-(prop-2-yn-1-yl)pyrimidine-4,6-diol (493). A mixture of dimethyl prop-2-yn-1-

ylmalonate  (10 g, 60 mmol) and formamidine hydrochloride (4.8 g, 60 mmol) was heated to 

reflux in MeOH (100 mL), followed by the addition of sodium metal (1.52 g, 66 mmol). The 

mixture was refluxed for 24 h to afford a thick yellow precipitation. The suspension was then 

cooled in an ice-bath to room temperature. The precipitate formed was collected by filtration and 

dissolved in 40 mL of water. The pH of this solution was adjusted to 3-4 with 1 N HCl 

whereupon a thick precipitate formed. The mixture was filtered and washed with a small amount 

of water followed by acetone and dried in vacuo to afford 6.2 g (69%) of 493 as a white powder: 

mp 256.4-257.1°C; Rf 0.11 (CHCl3/MeOH 6:1); 1H NMR (DMSO-d6) δ 2.56-2.58 (t, 1 H, J = 2.8, 

CH), 3.07-3.08 (d, 2 H, J = 2.8, CH2), 7.98 (s, 1 H, CH ), 11.94 (s, 2 H, 2 OH exch). 

6-Methylfuro[2,3-d]pyrimidin-4(3H)-one (489). The microwave reaction vial was charged with 

493 (150 mg, 1 mmol) and 5 mL 2 N NaOH. The reaction mixture was irradiated in a microwave 

apparatus at 180 °C for 30 min. After the reaction mixture was cooled to ambient temperature, 

the product was filtered, the filtrate was concentrated, and the crude mixture was purified by 

silica gel column chromatography using 2% MeOH in CHCl3 as the eluent. Fractions containing 

the product (TLC) were combined and evaporated to afford 124 mg (83%) of 489 as a white 

powder: mp 220-221.3°C; Rf 0.69 (CHCl3/MeOH 6:1); 1H NMR (DMSO-d6) δ 2.36 (s, 3 H, 

CH3), 6.52 (s, 1 H, CH), 7.99 (s, 1 H, CH), 12.49 (s, 1 H, 3-NH exch); Anal. Calcd. for 

C7H6N2O2: C, 56.00; H, 4.03; N, 21.31. Found C, 55.35; H, 4.08; N,18.21. 
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4-Chloro-2,6-dimethylfuro[2,3-d]pyrimidine (495). To a 50-mL round-bottomed flask was 

added 489 (1.5 g, 10 mmol) in 25 mL phosphorus oxychloride. The reaction mixture was heated 

at reflux with stirring in an anhydrous atmosphere for 4 h. All the suspensions were dissolved 

after heating to afford a dark solution. The dark orange solution was allowed to cool to room 

temperature and concentrated in vacuo. Water (40 mL) was then added to the residue at 0 oC with 

vigorous stirring to give an exothermic reaction. Concentrated aqueous ammonium hydroxide 

was added to afford a pH = 5 solution. The aqueous solution was extracted with AcOEt (3 x 20 

mL) and the organic layer was pooled and dried in vacuo. The crude product was purified by 

silica gel column chromatography with 10% AcOEt/Haxene to afford 1.2 g (72%) of 495 as a 

white crystal: TLC Rf 0.24 (Hexane/EtOAC 15:1); mp 45.6-46.3°C; 1H NMR (DMSO-d6) δ 

2.55 (s, 3 H, CH3), 6.53 (s, 1 H, CH), 8.69 (s, 1 H, CH); Anal. Calcd. for C7H5ClN2O: C, 49.87; 

H, 2.99; N, 16.62; Cl, 21.03. Found C, 50.04; H, 3.03; N,16.50; Cl, 20.98. 

N-(4-methoxyphenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (365). To a 50 mL flask 

was added 495 (84 mg, 0.5 mmol), N-methyl-4-methoxylaniline (77 mg, 0.55 mmol) and BuOH 

(5 mL). To this solution was added 2 drops of concentrate HCl solution and the mixture was 

refluxed. TLC indicated the disappearance of starting material 495, the solvent was removed 

under reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 104 mg 

(77%) of 365 as a light yellow crystal; mp 79.1-79.8°C; Rf 0.19 (Hexane/EtOAC 3:1); 1H NMR 

(DMSO-d6) δ 2.19 (s, 3 H, CH3), 3.46 (s, 3 H, NCH3), 3.82 (s, 3 H, OCH3), 4.64 (s, 1 H, CH), 

7.05-7.07 (d, 2 H, J = 8.8 Hz, 2 CH ), 7.29-7.31 (d, 2 H, J = 8.8 Hz, 2 CH ), 8.31 (s, 1 H, CH); 

Anal. Calcd. for C15H15N3O2: C, 66.90; H, 5.61; N, 15.60. Found C, 67.18; H, 5.58; N,15.40. 

6-Hydroxy-2-phenyl-5-(prop-2-yn-1-yl)pyrimidin-4(3H)-one (494). A mixture of dimethyl 
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prop-2-yn-1-ylmalonate (10 g, 60 mmol) and benzenecarboximidamide hydrochloride (9.4 g, 60 

mmol) was heated to reflux in MeOH (100 mL), followed by the addition of sodium metal (1.52 

g, 66 mmol). The mixture was refluxed for 24 h to afford a thick yellow precipitation. The 

suspension was then cooled in an ice-bath to room temperature. The precipitate formed was 

collected by filtration and dissolved in 40 mL of water. The pH of this solution was adjusted to 3-

4 with 1 N HCl whereupon a thick precipitate formed. The mixture was filtered and washed with 

a small amount of water followed by acetone and dried in vacuo to afford 8.6 g (63%) of 494 as a 

white powder: mp >300°C; Rf 0.12 (CHCl3/MeOH 6:1); 1H NMR (DMSO-d6) δ 2.62 (s, 1 H, 

CH), 7.50-7.58 (m, 3 H, C6H5 ), 8.04-8.06 (d, 2 H, J = 7.6 Hz, C6H5 ) 11.61 (s, 1 H, OH exch), 

12.52 (s, 1 H, NH exch) 

6-Methyl-2-phenylfuro[2,3-d]pyrimidin-4(3 H)-one (490). The microwave reaction vial was 

charged with 494 (226 mg, 1 mmol) and 5 mL 2 N NaOH. The reaction mixture was irradiated in 

a microwave apparatus at 180 °C for 30 min. After the reaction mixture was cooled to ambient 

temperature, the product was filtered, the filtrate was concentrated, and the crude mixture was 

purified by silica gel column chromatography using 2% MeOH in CHCl3 as the eluent. Fractions 

containing the product (TLC) were combined and evaporated to afford 196 mg (87%) of 490 as a 

yellow powder: mp 234.1-234.9°C; Rf 0.7 (CHCl3/MeOH 6:1); 1H NMR (DMSO-d6) δ 2.39 (d, 3 

H, J = 1.2 Hz, 6-CH3), 6.59 (d, 1 H, J = 1.2 Hz, 5-CH), 7.50-7.57 (m, 3 H, C6H5 ), 8.09-8.11 (dd, 

2 H, J1 = 7.6 Hz, J2 = 1.2 Hz, C6H5 ), 12.68 (s, 1 H, NH exch). 

 

4-Chloro-6-methyl-2-phenylfuro[2,3-d]pyrimidine (496). To a 50-mL round-bottomed flask 

was added 490 (2.26 g, 10 mmol) in 25 mL phosphorus oxychloride. The reaction mixture was 

heated at reflux with stirring in an anhydrous atmosphere for 4 h. All the suspensions were 
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dissolved after heating to afford a dark solution. The dark orange solution was allowed to cool to 

room temperature and concentrated in vacuo. Water (40 mL) was then added to the residue at 0 

oC with vigorous stirring to give an exothermic reaction. Concentrated aqueous ammonium 

hydroxide was added to afford a pH = 5 solution. The aqueous solution was extracted with 

AcOEt (3 x 20 mL) and the organic layer was pooled and dried in vacuo. The crude product was 

purified by silica gel column chromatography with 10% AcOEt/Haxene to afford 1.65 g (68%) of 

496 as a white crystal: mp 139.4-139.7°C; Rf 0.24 (Hexane/EtOAC 15:1); 1H NMR (DMSO-d6) 

δ 2.53-2.54 (d, 3 H, J =1.2 Hz, 6-CH3), 6.86 (s, 1 H, J =1.2 Hz 5-CH), 7.53-7.55 (m, 3 H, C6H5 ), 

8.33-8.36 (dd, 2 H, J1 = 6.8 Hz, J2 = 2.4 Hz, C6H5 ). 

N-(4-Methoxyphenyl)-N,6-dimethyl-2-phenylfuro[2,3-d]pyrimidin-4-amine (367).  

To a 25 mL round bottom flask was weighed 496 (66 mg, 0.2 mmol) and was added DMF (2 mL) 

to afford a solution. The flask was purged with argon for five min followed by cooling down to 

0 °C using ice bath. Sodium hydride (14.4 mg, 0.6 mmol) was added to the solution at 0 °C. The 

solution was stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (75.7 mg; ≈ 

57µl; 0.6 mmol) was introduced to the reaction mixture with the help of a syringe and the flask 

was warmed to room temperature. The mixture was stirred at room temperature for another 3h at 

the end of which 1 N Hydrochloric acid (5 mL) was added carefully to quench the reaction 

followed by water (20 mL) to afford a precipitate. Product was extracted using ethyl acetate (10 

mL x 2). Combined organic extracts were washed with brine (10 mL) dried (anhydrous sodium 

sulfate) and concentrated under reduced pressure. Silica gel (200 mg) was added and solvent 

evaporated to afford a plug. Column chromatography by elution with hexanes: ethyl acetate (5:1) 

afforded 45 mg of 367 (65 %) as a colorless crystal: mp 151.4-152.7 °C;  Rf 0.22 (hexane: AcOEt, 

3:1); 1HNMR (400 MHz) (DMSO-d6): δ 2.21 (s, 1H, 6-CH3), 3.59 (s, 3H, NCH3), 3.83 (s, 3H, 
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OCH3), 4.67 (s, 1H, 5-CH), 7.07-7.09 (d, 2H, J = 8.8 Hz, C6H4,), 7.35-7.37 (d, 2H, J = 8.4 Hz , 

C6H4), 7.48-7.55 (m, 3H, C6H5), 8.39-8.41 (m, 2H, C6H5). Anal. Calcd for C21H19N3O2: C, 73.03; 

H, 5.54; N, 12.17; Found: C, 73.13; H, 5.61; N, 12.03. 

2,2-Dimethyl-N-(6-methyl-4-oxo-3,4-dihydrofuro[2,3-d]pyrimidin-2-yl)propanamide 

(416). To a 100 mL round-bottom flask was added 415 (3 g, 18 mmol) and pivaloyl anhydride 

(30 mL) and the resulting mixture was refluxed under N2 atmosphere for 2.5 h. TLC showed the 

disappearance of the starting material 415 and the formation of a major spot at Rf = 0.42 

(CHCl3/MeOH 5:1). After evaporation of the solvent, the residue was loaded onto a silica gel 

column and eluted with hexane followed by hexane/EtOAc 2:1. The fractions containing the 

desired spot (TLC) were pooled and evaporated, the resulting residue was recrystallized from 

Et2O/EtOAc to afford 3.0 g (67%) of 416 as light yellow crystals: mp 225-227 oC; Rf = 0.47 

(MeOH/CHCl3 1 : 7); 1H NMR (DMSO-d6) 1.24 (s, 9 H), 2.34 (s, 3 H), 6.50 (s, 1 H), 11.26 (s, 

1 H), 12.19 (s, 1 H). Anal. Calcd. for C12H15N3O3: C, 57.82; H, 6.07; N, 16.86 Found C, 58.10; 

H, 6.12; N,16.86. 

N-(4-chloro-6-methylfuro[2,3-d]pyrimidin-2-yl)-2,2-dimethylpropanamide (497). To a 50-

mL round-bottomed flask was added 416 (249 mg, 1 mmol) in 5 mL phosphorus oxychloride. 

The reaction mixture was heated at reflux with stirring in an anhydrous atmosphere for 3 h. All 

the suspensions were dissolved after heating to afford a dark solution. The dark orange solution 

was allowed to cool to room temperature and concentrated in vacuo. Water (10 mL) was then 

added to the residue at 0 oC with vigorous stirring to give an exothermic reaction. Concentrated 

aqueous ammonium hydroxide was added to afford a pH = 5 solution. The aqueous solution was 

extracted with AcOEt (3 x 5 mL) and the organic layer was pooled and dried in vacuo. The crude 

product was purified by silica gel column chromatography with 10% AcOEt/Haxene to afforded 
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192 mg (72%) of 497 as a brown solid: TLC Rf 0.38 (Hexane/EtOAC 15:1); mp 141.7-143.2°C; 

1H NMR (DMSO-d6) δ 1.23 (s, 9 H, Piv), 2.36 (s, 3 H, CH3), 6.76 (s, 1 H, CH), 10.38 (s, 1 H, 

NH exch).  

N4-(4-methoxyphenyl)-N4,6-dimethylfuro[2,3-d]pyrimidine-2,4-diamine (366). To a 50 mL 

flask was added 497 (134 mg, 0.5 mmol), N-methyl-4-methoxylaniline (77 mg, 0.55 mmol) and 

BuOH (10 mL). To this solution was added 2 drops of concentrate HCl solution and the mixture 

was refluxed. TLC indicated the disappearance of starting material 366, the solvent was removed 

under reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 57 mg 

(57%) of 497 as a white powder; mp 169.5-171.3°C; Rf 0.13 (Hexane/EtOAC 2:1); 1H NMR 

(DMSO-d6) δ 2.06 (s, 3 H, CH3), 3.38 (s, 3 H, NCH3), 3.82 (s, 3 H, OCH3), 4.41 (s, 1 H, CH), 

4.14 (s, 2 H, CH2), 7.03-7.05 (d, 2 H, J = 8.8 Hz, 2 CH ), 7.24-7.26 (d, 2 H, J = 8.8 Hz, 2 CH ); 

HRMS calcd for C16H18N3O2  284.1399, found 284.1387; Anal. Calcd. for C15H16N4O2⋅0.2H2O: 

C, 62.57; H, 5.74; N, 19.46. Found C, 62.69; H, 5.73; N,19.16. 

N-(3,4-dichlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (368). To a 50 mL flask 

was added 495 (84 mg, 0.5 mmol), aniline (51g, 0.55 mmol) and BuOH (5 mL). To this solution 

was added 2 drops of concentrate HCl solution and the mixture was refluxed. TLC indicated the 

disappearance of starting material 495, the solvent was removed under reduced pressure. To the 

residue obtained was added silica gel and MeOH and the solvent removed to make a plug. This 

plug was separated by column chromatography to give 94 mg (79%) of 368 as a light yellow 

crystal; mp 97.7-98.2°C; Rf 0.11 (Hexane/EtOAC 3:1); 1H NMR (CDCl3) δ 2.19 (s, 3 H, CH3), 

3.51 (s, 3 H, NCH3), 4.59 (s, 1 H, CH), 7.8-7.5 (m, 5 H, 5CH ), 8.33 (s, 1 H, CH); Anal. Calcd. 

for C14H13N3O: C, 70.28; H, 5.48; N, 17.56. Found C, 70.43; H, 5.53; N,17.62. 
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N,2,6-trimethyl-N-(4-methylphenyl)furo[2,3-d]pyrimidin-4-amine (369). To a 50 mL flask 

was added 495 (84 mg, 0.5 mmol), N,4-dimethylaniline (67 mg, 0.55 mmol) and BuOH (5 mL). 

To this solution was added 2 drops of concentrate HCl solution and the mixture was refluxed. 

TLC indicated the disappearance of starting material 495, the solvent was removed under 

reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 97 mg 

(77%) of 369 as a yellow solid; mp 77.5-77.9 °C; Rf 0.46 (Hexane/EtOAC 1:1); 1H NMR 

(DMSO-d6) δ 2.18 (s, 3 H, CH3), 2.39 (s, 3 H, CH3), 3.47 (d, 3 H, J = 0.4 Hz,CH3), 4.64-4.65 (t, 

1 H, J = 0.8 Hz, CH), 7.24-7.26 (d, 2 H, J = 8.4 Hz, 2 CH ), 7.32-7.34 (d, 2 H, J = 8.4 Hz, 2 CH ), 

8.32 (s, 1H, CH); Anal. Calcd. for C15H15N3O: C, 71.13; H, 5.97; N, 16.59. Found C, 70.94; H, 

5.98; N,16.60. 

N-(4-chlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (370). To a 50 mL flask 

was added 495 (84 mg, 0.5 mmol), 4-chloro-N-methylaniline (78 mg, 0.55 mmol) and BuOH (5 

mL). To this solution was added 2 drops of concentrate HCl solution and the mixture was 

refluxed. TLC indicated the disappearance of starting material 495, the solvent was removed 

under reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 83 mg 

(61%) of 370 as a light yellow powder; mp 117.6-117.9 °C; Rf 0.19 (Hexane/EtOAC 3:1); 1H 

NMR (CDCl3) δ 2.23 (s, 3 H, CH3), 3.57 (s, 3 H, NCH3), 4.89 (s, 1 H, CH), 7.42-7.44 (d, 2 H, J 

= 8.8 Hz, 2 CH ), 7.45-7.43 (d, 2 H, J = 8.8 Hz, 2 CH ), 8.35 (s, 1 H, CH); Anal. Calcd. for 

C14H12ClN3O: C, 61.43; H, 4.42; N, 15.35; Cl, 12.95. Found C, 61.51; H, 4.44; N,15.31; Cl, 

12.86. 

N-(3,4-dichlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (371). To a 50 mL flask 
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was added 495 (84 mg, 0.5 mmol), 3,4-dichloro-N-methylaniline (96 mg, 0.55 mmol) and BuOH 

(5 mL). To this solution was added 2 drops of concentrate HCl solution and the mixture was 

refluxed. TLC indicated the disappearance of starting material 495, the solvent was removed 

under reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 78 mg 

(51%) of 371 as a colorless crystal; mp 147.6-147.9°C; Rf 0.19 (Hexane/EtOAC 3:1); 1H NMR 

(CDCl3) δ 2.28 (s, 3 H, CH3), 3.52 (s, 3 H, NCH3), 5.20 (s, 1 H, CH), 7.38-7.40 (dd, 1 H, J1 = 8.4 

Hz, J2 = 2.4 Hz, 1 CH ), 7.73-7.75 (d, 1 H, J = 8.4 Hz, 1 CH ), 7.78-7.79 (d, 1 H, J = 2.4 Hz, 1 

CH ), 8.37 (s, 1 H, CH); Anal. Calcd. for C14H11Cl2N3O: C, 54.47; H, 3.60; N, 13.64; Cl, 23.01. 

Found C, 54.84; H, 3.57; N,13.36; Cl, 22.72. 

N-(3,4-dichlorophenyl)-N,2,6-trimethylfuro[2,3-d]pyrimidin-4-amine (372). To a 50 mL flask 

was added 495 (84 mg, 0.5 mmol), 4-(benzyloxy)-N-methylaniline (117g, 0.55 mmol) and BuOH 

(5 mL). To this solution was added 2 drops of concentrate HCl solution and the mixture was 

refluxed. TLC indicated the disappearance of starting material 495, the solvent was removed 

under reduced pressure. To the residue obtained was added silica gel and MeOH and the solvent 

removed to make a plug. This plug was separated by column chromatography to give 112 mg 

(65%) of 372 as a brown solid; mp 148.5-149.1°C; Rf 0.64 (Hexane/EtOAC 3:1); 1H NMR 

(CDCl3) δ 2.18 (s, 3 H, CH3), 3.46 (s, 3 H, NCH3), 4.60 (s, 1 H, CH), 5.20 (s, 2 H, CH2) 7.13-

7.49 (m, 9 H, 9 CH ), 8.30 (s, 1 H, CH); Anal. Calcd. for C21H19N3O: C, 73.03; H, 5.54; N, 12.17. 

Found C, 73.10; H, 5.56; N,12.01. 

5-Methylfuro[2,3-d]pyrimidin-4-amine  (501). Sodium metal (2.3 g; 0.1 M) was added 

cautiously to stirred anhydrous Ethanol (5.8 mL, 0.1 M) over 10 min at room temperature. After 

stirring the resulting slurry for additional 5 min, formamidine hydrochloride (8.05 gm, 0.1 M) 
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was added. The slurry was stirred at room temperature for 30 min after which solution of 499 

(crude; 13 g, ≈ 0.1 M) in anhydrous ethanol (200 mL) was added. The mixture was heated at 

reflux for 8 h. After cooling the reaction mixture to room temperature, silica gel (25 g) was 

added and solvents evaporated under reduced pressure to obtain a plug. Purification was done by 

flash chromatography using 1% methanol in chloroform. The fractions corresponding to the 

product spot were pooled and evaporated under reduced pressure to obtain 501 (5.3 g, 35 %) as 

lustrous pink crystals. TLC Rf  0.29 (CHCl3: MeOH, 10:1); mp 240.2-242.5 °C; 1HNMR (300 

MHz) (DMSO-d6): δ 2.28 (s, 3H, CH3); 7.01 (br, 2H, NH2, exch), 7.52 (s, 1H, C6-CH), 8.12 (s, 

1H, C2-CH). Anal. Calcd for C7H7N3O: C, 56.37; H, 4.73; N, 28.17; Found: C, 56.48; H, 4.74; N, 

28.17. 

N-(4-methoxyphenyl)-5-methylfuro[2,3-d]pyrimidin-4-amine  (503): A 50 mL round bottom 

flask with a stir bar was charged with copper iodide (66.5 mg, 0.35 mmol), anhydrous potassium 

carbonate (480 mg, 3.5 mmol), L-proline (80 mg, 0.7 mmol), 501 (150 mg, 1 mmol) and 502 

(135 mg, 1.1 mmol). The flask was connected to vacuum for 3 min followed by the addition of 

anhydrous DMF (5 mL) using syringe. The flask was purged with argon for 5 min and then 

heated in an oil bath maintained at 110 °C. On heating the suspension became bluish grey which 

lasted for about 2 h. The reaction was stirred for additional 22 h at 110 °C at the end of which the 

mixture was allowed to cool to room temperature. Ethyl acetate (25 mL) was added and the 

mixture was poured into water (100 mL). The product was extracted with ethyl acetate (100 mL 

x 2). The combined organic extracts were washed with brine (100 mL) and dried (anhydrous 

sodium sulfate) and concentrated under reduced pressure. Silica gel (500 mg) was added and 

solvent evaporated to obtain a plug. Purification by column chromatography using hexanes and 

ethyl acetate (10:1 to 2:1) afforded 503 (140 mg, 56 %) as light brown solid. TLC Rf 0.77 
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(CHCl3: MeOH, 10:1); mp 99-101.6 °C; 1HNMR (400 MHz) (DMSO-d6): δ 2.38-2.38 (d, 3H, 

CH3, J = 1.2 Hz); 3.74 (s, 3H, OCH3), 6.91-6.94 (d, 2H, C6H4, J = 8.8 Hz), 7.46-7.48 (d, 2H, 

C6H4, J = 8.8 Hz), 7.65-7.65 (d, 1H, C6-CH, J = 1.2 Hz),  8.23 (s, 1H, C2-CH), 8.38 (s, 1H, 4-

NH, exch). Anal. Calcd for C14H13N3O2: C, 65.87; H, 5.13; N, 16.46; Found: C, 65.94; H, 5.13; 

N, 16.42. 

N-(4-methoxyphenyl)-N,5-dimethylfuro[2,3-d]pyrimidin-4-amine (373): 

To a 25 mL round bottom flask was weighed 503 (51 mg, 0.2 mmol) and was added DMF (2 mL) 

to afford a solution. The flask was purged with argon for five min followed by cooling down to 

0 °C using ice bath. Sodium hydride (14.4 mg, 0.6 mmol) was added to the solution at 0 °C. The 

solution was stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (75.7 mg; ≈ 

57µl; 0.6 mmol) was introduced to the reaction mixture with the help of a syringe and the flask 

was warmed to room temperature. The mixture was stirred at room temperature for another 3h at 

the end of which 1 N Hydrochloric acid (5 mL) was added carefully to quench the reaction 

followed by water (20 mL) to afford a precipitate. Product was extracted using ethyl acetate (10 

mL x 2). Combined organic extracts were washed with brine (10 mL) dried (anhydrous sodium 

sulfate) and concentrated under reduced pressure. Silica gel (200 mg) was added and solvent 

evaporated to afford a plug. Column chromatography by elution with hexanes: ethyl acetate (5:1) 

afforded 3 (20 mg; 37 %) as light brown semisolid; which was triturated with hexanes to afford 

light brown solid. TLC Rf 0.79 (CHCl3: MeOH, 10:1); mp 84-85.6 °C; 1HNMR (400 MHz) 

(DMSO-d6): δ 1.03 (d, 3H, CH3, J = 1.2 Hz); 3.42 (s, 3H, NCH3), 3.75 (s, 3H, OCH3), 6.94-6.96 

(d, 2H, C6H4, J = 9.2 Hz), 7.17-7.19 (d, 2H, C6H4, J = 9.2 Hz), 7.50 (d, 1H, C6-CH, J = 1.2 Hz),  

8.23 (s, 1H, C2-CH). Anal. Calcd for C15H15N3O2 · 0.28 C6H14 · 0.05 HCl: C, 67.84; H, 6.48; N, 

14.22; Found: C, 67.89; H, 6.18; N, 14.06. 
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Ethyl 2-amino-5-methylthiophene-3-carboxylate (506). A mixture of sulfur (1.1 g, 36 mmol), 

propanal (2.09 g, 36 mmol) , ethyl cyanoactetate (4.07 g, 36 mmol) and EtOH (150 mL) were 

placed in a round bottom flask and warmed to 45 oC and treated dropwise with morpholine (3.1 g, 

36 mmol) over 15 min. The mixture was stirred for 5 h at 45 oC and 24 h at room temperature. 

Unreacted sulfur was removed by filtration, and the filtrate was concentrated under reduced 

pressure to afford an orange oil. The residue was loaded on a silica gel column packed with silica 

gel and eluted with 10% ethyl acetate in hexane. The fractions containing the desired product 

(TLC) were pooled and evaporated to afford 4.45 g of 7 (73 %) as an orange solid; Rf 0.45 

(hexane/EtOAc 3:1); 1H NMR (DMSO-d6): δ 1.22-1.25 (t, 3 H, J = 6.8 Hz, COOCH2CH3), 2.17-

2.18 (d, 3 H, J = 1.2 Hz, 2-CH3), 4.12-4.17 (q, 2 H, J = 6.8 Hz, COOCH2CH3), 6.49 (d, 1 H, J = 

1.6 Hz, 3-CH), 7.09 (s, 2 H, NH2 exch). 

2,6-dimethylthieno[2,3-d]pyrimidin-4(3 H)-one (507). To a 100 mL round flask were added 

506 (1.85 g, 10 mmol) and CH3CN (50 mL).  After vigorous stirring, a clear solution was 

afforded. Anhydrous hydrochloric acid gas was bubbled into the solution for 1 h to give a thick 

precipitation, which then redissolved into the acid solution. Anhydrous hydrochloric acid gas was 

continued for an additional 3 h after the reaction solution became clear. After evaporation of the 

solvent under reduced pressure, the residue was dissolved in water. Concentrated aqueous 

ammonium hydroxide was added to afford a pH = 8 suspension. The precipitate was collected by 

filtration, washed with water and dried over P2O5 vacuum to afford 507 (1.1 g, 63%) as a white 

solid; mp  > 300 oC; Rf 0.58 (MeOH/CHCl3, 1:6); 1H NMR (DMSO-d6) δ 2.34 (s, 3 H), 2.44 (s, 3 

H). 7.0 (s, 1 H,5-CH), 7.78 (s, 1 H, C6H3), 12.31 (s, 1H, 3-NH exch).  

4-chloro-2,6-dimethylthieno[2,3-d]pyrimidine (508). To a 50-mL round-bottomed flask was 

added 507 (900 mg, 5 mmol) in 15 mL phosphorus oxychloride. The reaction mixture was heated 
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at reflux with stirring in an anhydrous atmosphere for 3 h. All the suspensions were dissolved 

after heating to afford a dark solution. The dark orange solution was allowed to cool to room 

temperature and concentrated in vacuo. Water (20 mL) was then added to the residue at 0 oC with 

vigorous stirring to give an exothermic reaction. Concentrated aqueous ammonium hydroxide 

was added to afford a pH = 5 solution. The aqueous solution was extracted with AcOEt (3 x 15 

mL) and the organic layer was pooled and dried in vacuo. The crude product was purified by 

silica gel column chromatography with 10% AcOEt/Haxene. Recrystallization from AcOEt 

afforded 831 mg (84%) of 508 as a white crystal: mp 102.1-103.7; Rf 0.54 (Hexane/EtOAC 3:1); 

1H NMR (DMSO-d6) δ 2.59-2.60 (d, 2 H, J = 1.2 Hz, 6-CH3), 2.69 (s, 3 H, 2-CH3), 6.63 (s, 1 H, 

J = 1.2 Hz, 5-CH). 

N-(4-methoxyphenyl)-2,6-dimethylthieno[2,3-d]pyrimidin-4-amine (509). To a 50 mL flask 

was added 508 (99 mg, 0.5 mmol), 4-methoxyaniline (68 mg, 0.55 mmol) and BuOH (5 mL). To 

this solution was added 2 drops of concentrate HCl solution and the mixture was refluxed. TLC 

indicated the disappearance of starting material 5, the solvent was removed under reduced 

pressure. To the residue obtained was added silica gel and MeOH and the solvent removed to 

make a plug. This plug was separated by column chromatography to give 105 mg (74%) of 509 

as a white crystal; mp 164.2-166.8°C; Rf 0.08 (Hexane/EtOAC 3:1); 1H NMR (DMSO-d6) δ 2.50 

(s, 3 H, CH3), 2.57 (s, 3 H, CH3), 3.78 (s, 3 H, OCH3), 6.97-6.99 (d, 2 H, J = 8.8 Hz, C6H4), 7.49 

(s, 1 H, CH),  7.67-7.69 (d, 2 H, J = 8.8 Hz, C6H4), 9.76 (s, 1 H, NH exch) 

N-(4-methoxyphenyl)-N,2,6-trimethylthieno[2,3-d]pyrimidin-4-amine (374): 

To a 25 mL round bottom flask was weighed 509 (57 mg, 0.2 mmol) and was added DMF (2 mL) 

to afford a solution. The flask was purged with argon for five min followed by cooling down to 

0 °C using ice bath. Sodium hydride (14.4 mg, 0.6 mmol) was added to the solution at 0 °C. The 
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solution was stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (75.7 mg; ≈ 

57µl; 0.6 mmol) was introduced to the reaction mixture with the help of a syringe and the flask 

was warmed to room temperature. The mixture was stirred at room temperature for another 3h at 

the end of which 1 N Hydrochloric acid (5 mL) was added carefully to quench the reaction 

followed by water (20 mL) to afford a precipitate. Product was extracted using ethyl acetate (10 

mL x 2). Combined organic extracts were washed with brine (10 mL) dried (anhydrous sodium 

sulfate) and concentrated under reduced pressure. Silica gel (200 mg) was added and solvent 

evaporated to afford a plug. Column chromatography by elution with hexanes: ethyl acetate (5:1) 

afforded 28 mg of 374 (47 %) as a yellow solid: mp 108.6-109.2 °C;  Rf 0.13 (hexane: AcOEt, 

3:1); 1HNMR (400 MHz) (DMSO-d6): δ 2.20-2.21 (d, 3H, J = 1.2 Hz, 6-CH3); 2.51 (s, 3H, 2- 

CH3 ), 3.46 (s, 3H, NCH3), 3.83 (s, 3H, OCH3), 5.16 (d, 1H, J = 1.2 Hz, 5-CH), 7.05-7.07 (d, 2H, 

J = 9.2 Hz, C6H4,), 7.17-7.19 (d, 2H, J = 9.2 Hz , C6H4). Anal. Calcd for C16H17N3OS: C, 64.19; 

H, 5.72; N, 14.04; Found: C, 64.33; H, 5.68; N, 13.90. 

1-(2,6-dimethylthieno[2,3-d]pyrimidin-4-yl)-6-methoxy-1,2,3,4-tetrahydroquinoline (376) 

To a 100-mL round-bottomed flask, flushed with nitrogen, were added 508 (198 mg, 1 mmol), 6-

methoxy-1,2,3,4-tetrahydroquinoline (171 mg, 1.05 mmol), BuOH (20 mL), and 2-3 drops of 

concd HCl. The reaction mixture was heated at reflux with stirring for 2 h until the starting 

material 508 disappeared (TLC). The reaction solution was allowed to cool to room temperature; 

the solvent was removed under reduced pressure to dryness and the residue was purified by 

column chromatography on silica gel with 10% AcOEt/Haxene as the eluent. Fractions 

containing the product (TLC) were combined and evaporated to afford 120 mg (37%) of 376 as a 

light yellow powder: mp 140.5-142.0 °C; Rf 0.21 (AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 

1.91-1.97 (oct, 2 H, J = 6.4, CH2CH2CH2), 2.35 (s, 3 H, CH3), 2.52 (s, 3 H, CH3),  2.74-2.77 (t, 2 
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H, J = 6.4, CH2CH2CH2), 3.76 (s, 3 H, OCH3), 3.92-3.95 (t, 2 H, J = 6.4, CH2CH2CH2), 6.03 (s, 

1 H, CH), 6.68-6.71 (dd, 1 H, J1 = 8.8, J2 = 2.8 , CH), 6.84-6.86 (d, 1 H, J = 8.8, CH), 6.87-6.88 

(d, 1 H, J = 2.8, CH); Anal. Calcd. for C18H19N3OS: C, 66.43; H, 5.88; N, 12.91. Found C, 66.62; 

H, 5.87; N,12.81. 

ethyl 2-amino-4-methylthiophene-3-carboxylate (511). A mixture of sulfur (1.92 g, 60 mmol), 

acetone (3.48 g, 60 mmol), ethyl cyanoactetate (6.78 g, 60 mmol) and EtOH (100 mL) were 

placed in a round bottom flask and warmed to 45 oC and treated dropwise with morpholine (5.23 

g, 60 mmol) over 15 min. The mixture was stirred for 4 h at 45 oC and 24 h at room temperature. 

Unreacted sulfur was removed by filtration, and the filtrate was concentrated under reduced 

pressure to afford an orange oil. The residue was loaded on a silica gel column packed with silica 

gel and eluted with 10% ethyl acetate in hexane to afford 511 (8.1 g, 72%) as a yellow solid; mp 

76.2-76.7 oC;  Rf 0.66 (hexane/EtOAc 3:1); 1H NMR (CDCl3) δ 1.24-1.28 (t, 3 H, J = 6.4, 

OCH2CH3), 2.18 (s, 3 H, CH3), 4.15-4.21 (q, 2 H, J = 6.4, OCH2CH3), 5.93 (s, 1 H, CH), 7.29 (s, 

2 H, NH2 exch).  

2,5-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (512). To a 100 mL round flask were added 

511 (1.81 g, 9.8 mmol) and 30 mL CH3CN.  After vigorous stirring, a clear solution was afforded. 

Anhydrous hydrochloric acid gas was bubbled into the solution for 1 h to give a thick 

precipitation, which then redissolved into the acid solution. Anhydrous hydrochloric acid gas was 

continued for an additional 3 h after the reaction solution became clear. After evaporation of the 

solvent under reduced pressure, the residue was dissolved in water. Concentrated aqueous 

ammonium hydroxide was added to afford a pH = 8 suspension. The precipitate was collected by 

filtration, washed with water and dried over P2O5 vacuum to afford 512 (1.0 g, 57%) as a yellow 

solid; mp  285.4-286.7 oC; Rf 0.58 (MeOH/CHCl3, 1:6); 1H NMR (DMSO-d6) δ 2.34 (s, 3 H, 
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CH3), 2.48 (s, 3 H, CH3). 7.02 (s, 1 H, CH), 12.33 (s, 1 H, 3-NH exch). 

4-Chloro-2,5-dimethylthieno[2,3-d]pyrimidine (513). To a 50-mL round-bottomed flask was 

added 512 (900 mg, 5 mmol) in 15 mL phosphorus oxychloride. The reaction mixture was heated 

at reflux with stirring in an anhydrous atmosphere for 3 h. All the suspensions were dissolved 

after heating to afford a dark solution. The dark orange solution was allowed to cool to room 

temperature and concentrated in vacuo. Water (20 mL) was then added to the residue at 0 oC with 

vigorous stirring to give an exothermic reaction. Concentrated aqueous ammonium hydroxide 

was added to afford a pH = 5 solution. The aqueous solution was extracted with AcOEt (3 x 15 

mL) and the organic layer was pooled and dried in vacuo. The crude product was purified by 

silica gel column chromatography with 10% AcOEt/Haxene. Recrystallization from AcOEt 

afforded 831 mg (84%) of 513 as a yellow crystal: mp 67.4-67.7 °C; Rf 0.5 (Hexane/AcOEt, 3:1);  

1H NMR (DMSO-d6) δ 2.62-2.63 (d, 3 H, J = 1.2, CH3), 2.68 (s, 3 H, CH3), 7.22-7.23 (d, J = 

1.2,1 H, CH). 

N-(4-methoxyphenyl)-2,5-dimethylthieno[2,3-d]pyrimidin-4-amine (514) To a 100-mL 

round-bottomed flask, flushed with nitrogen, were added 513 (198 mg, 1 mmol), 4-

methoxylaniline (129 mg, 1.05 mmol), i-PrOH (20 mL), and 2-3 drops of concd HCl. The 

reaction mixture was heated at reflux with stirring for 2 h until the starting material 513 

disappeared (TLC). The reaction solution was allowed to cool to room temperature; the solvent 

was removed under reduced pressure to dryness and the residue was purified by column 

chromatography on silica gel with 10% AcOEt/Haxene as the eluent. Fractions containing the 

product (TLC) were combined and evaporated to afford 210 mg (74%) of 514 as a brown crystal: 

mp 111.2-111.9 °C; Rf 0.08 (AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 2.43 (s, 3 H, CH3), 

2.69 (d, 3 H, J = 0.8, CH3), 3.77 (s, 3 H, OCH3), 6.94-6.96 (d, 2 H, J = 9.2, 2 CH), 7.15 (d, 2 H, J 
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= 0.8, 2 CH), 7.58-7.61 (d, 2 H, J = 9.2, 2 CH), 8.04 (s, 1 H, NH exch), Anal. Calcd. for 

C15H15N3OS: C, 63.13; H, 5.30; N, 14.73. Found C, 63.30; H, 5.27; N,14.58. 

N-(4-methoxyphenyl)-N,2,5-trimethylthieno[2,3-d]pyrimidin-4-amine (375) To a 25 mL 

round bottom flask was weighed 514 (144 mg, 0.5 mmol) and was added DMF (2 mL) to afford 

a solution. The flask was purged with argon for five min followed by cooling down to 0 °C using 

ice bath. Sodium hydride (36 mg, 1.5 mmol) was added to the solution at 0 °C. The solution was 

stirred for 30 min at 0 °C under argon atmosphere. Dimethyl sulfate (150 mg, 1.2 mmol) was 

introduced to the reaction mixture with the help of a syringe and the flask was warmed to room 

temperature. The mixture was stirred at room temperature for another 3h at the end of which 1 N 

Hydrochloric acid (5 mL) was added carefully to quench the reaction. The reaction solvent was 

removed under reduced pressure and the residue was suspended in water (20 mL). The 

suspension was extracted using ethyl acetate (10 mL x 2). Combined organic extracts were 

washed with brine (10 mL) dried (anhydrous sodium sulfate) and concentrated under reduced 

pressure. Silica gel (200 mg) was added and solvent evaporated to afford a plug. Column 

chromatography by elution with hexanes: ethyl acetate (5:1) afforded 70 mg (47 %) of 375 as a 

yellow powder: mp 113.5-113.9 °C; Rf 0.13 (AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 1.55 

(d, 3 H, J = 0.8, CH3), 2.59 (s, 3 H, CH3), 3.45 (s, 3 H, NCH3), 3.72 (s, 3 H, OCH3), 6.85-6.87 (d, 

2 H, J = 8.8, 2 CH), 6.94-6.96 (d, 2 H, J = 8.8, 2 CH), 7.03 (d, 1 H, J = 0.8, CH); Anal. Calcd. 

for C16H17N3OS: C, 64.19; H, 5.72; N, 14.04. Found C, 64.38; H, 5.73; N,13.81. 

1-(2,5-Dimethylthieno[2,3-d]pyrimidin-4-yl)-6-methoxy-1,2,3,4-tetrahydroquinoline (377) 

To a 100-mL round-bottomed flask, flushed with nitrogen, were added 513 (198 mg, 1 mmol), 6-

methoxy-1,2,3,4-tetrahydroquinoline (171 mg, 1.05 mmol), BuOH (20 mL), and 2-3 drops of 

concd HCl. The reaction mixture was heated at reflux with stirring for 2 h until the starting 
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material 513 disappeared (TLC). The reaction solution was allowed to cool to room temperature; 

the solvent was removed under reduced pressure to dryness and the residue was purified by 

column chromatography on silica gel with 10% AcOEt/Haxene as the eluent. Fractions 

containing the product (TLC) were combined and evaporated to afford 120 mg (37%) of 377 as a 

light yellow crystal: mp 102.6-102.8 °C; Rf 0.29 (AcOEt/Haxene, 1:3); 1H NMR (DMSO-d6) δ 

1.73 (s, 3 H, J = 1.2, CH3), 2.00-2.03 (m, 2 H, J = 5.2, CH2CH2CH2), 2.79 (s, 3 H, CH3), 2.79-

2.82 (t, 2 H, J = 5.2, CH2CH2CH2), 3.69 (s, 3 H, OCH3), 3.78-3.81 (t, 2 H, J = 5.2, CH2CH2CH2), 

6.35-6.37 (d, 1 H, J = 7.2, CH), 6.52-6.55 (dd, 1 H, J1 = 7.2, J2 = 2.4 , CH), 6.80 (d, 1H, J = 2.4, 

CH), 7.15 (d, 1 H, J = 1.2, CH); Anal. Calcd. for C18H19N3OS: C, 66.43; H, 5.88; N, 12.91; S, 

9.85. Found C, 66.66; H, 5.88; N,12.77; S, 9.63. 

General procedure for the synthesis of 516-518: Compound 515 (2.05 g, 10 mmol) was 

dissolved into n-butanol (20 mL). To this solution were added the appropriate amine (10 mmol) 

and triethylamine (6 mL). The mixture was refluxed for 3 days before the solvent was removed 

by evaporation. To the residue was added methanol (50 ml) and silica gel (6 g) and the solvent 

was evaporated to make a plug. The silica gel plug obtained was loaded onto a silica gel column 

and eluted with 1:1:7 ethyl acetate/triethylamine/hexanes. Fractions containing the product (TLC) 

were pooled and the solvent evaporated to afford analytically pure compounds 6, respectively. 

 4-Methyl-7-phenyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-2-amine (516). Compound 516 

was synthesized from 515 and aniline. The general procedure described above was applied to 

afford 768 mg of 516 (34%) as a colorless crystal: Rf 0.17 (EtOAc/TEA/hexane, 3:1:5); mp 

215.4-216.2 °C; 1H NMR (DMSO-d6) δ 2.05 (s, 3 H, CH3), 2.87-2.93 (t, 2 H, J = 11.6 Hz, CH2), 

3.93-3.99 (t, 2 H, J = 11.6 Hz, CH2), 6.07 (s, 2 H, NH2, exch.), 6.94-6.99 (t, 1 H, J = 9.6 Hz, 3’-

CH), 7.29-7.34 (t, 2 H, J = 10.0 Hz, 2’-CH), 7.84-7.87 (d, 2 H, J = 12 Hz, 1’-CH); Anal. Calcd. 
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for C13H14N4: C, 69.00; H, 6.24; N, 24.76. Found C, 69.07; H, 6.29; N, 24.74. 

4-Methyl-7-(2-phenylethyl)-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-2-amine (517). 

Compound 517 was synthesized from 515 and aniline. The general procedure described above 

was applied to afford 1.75 g of 517 (69%) as a colorless crystal. The compound was used directly 

in the next step without further characterization. 

4-Methyl-7-(3-phenylpropyl)-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-2-amine (518). 

Compound 518 was synthesized from 515 and aniline. The general procedure described above 

was applied to afford 1.98 g of 518 (74%) as a colorless crystal. The compound was used directly 

in the next step without further characterization. 

General procedure for the synthesis of 326a-m: Compound 516-518 was dissolved in 

anhydrous 1,4-dioxane in a  250 mL round bottom flask and manganese dioxide was added to the 

solution. The reaction mixture was heated in oil bath at 120 °C for 24 h. The resulting slurry was 

filtered through celite pad. To the filtration was added silica gel (6 g) and the solvent was 

evaporated to make a plug.  The silica gel plug obtained was loaded onto a silica gel column and 

eluted with 1:1 hexane/EtOAc. Fractions containing the product (TLC) were pooled and the 

solvent evaporated to afford analytically pure compound. 

4-Methyl-7-phenyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine (519) 

Using the general procedure described above, compound 516 reacted with MnO2 to afford 519 

(176 mg, 29%) as a colorless crystal: Rf 0.48 (EtOAc/TEA/hexane, 3:1:5); mp 202.6-202.9 °C; 

1H NMR (DMSO-d6) δ 2.47 (s, 3 H, CH3), 6.24 (s, 2 H, NH2, exch.), 6.60-6.62 (d, 1 H, J = 4.8 

Hz, 5-CH), 7.29-7.34 (t, 1 H, J = 10.0 Hz, C6H5), 7.29-7.31 (d, 2 H, J = 4.8 Hz, 6-CH), 7.48-7.53 

(t, 2 H, J = 10.0 Hz, C6H5 ), 7.81-7.84 (d, 2 H, J = 10.0 Hz, C6H5 ); Anal. Calcd. for C13H14N4: C, 

69.62; H, 5.39; N, 24.98. Found C, 69.65; H, 5.48; N, 24.21. 
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4-Methyl-7-(2-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine (520). Using the general 

procedure described above, compound 517 reacted with MnO2 to afford 520 (1.14 g, 60%) as a 

colorless crystal. The resulted compound was used directly in next step without further 

characterization. 

4-Methyl-7-(3-phenylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine (521). Compound 521 

was synthesized from 518 (2.5 g, 14 mmol), manganese dioxide (5.5 g, 63 mmol) using the 

general procedure described above to afford after purification 1.06 g (45%) as a yellow solid: Rf 

0.53 (EtOAc/TEA/Hexane, 3:1:5); mp 129.3-130.5 °C; 1H NMR (DMSO-d6) δ 2.43 (s, 3 H, 

CH3), 3.85 (s, 3 H, OCH3), 5.17 (s, 2 H, CH2Ph), 6.13 (s, 2 H, NH2, exch.), 6.42 (d, 1 H, 5-H), 

6.93 (d, 1 H, 6-H), 6.95-7.32 (m, 4 H, C6H4). Anal. calcd. for (C15H16N4O): C, 67.15; H, 6.01; N, 

20.88; found: C, 66.84; H, 6.02; N, 20.74. 

General procedure for the synthesis of 522-524: To a 100 mL round-bottom flask was added 

519-521 and pivaloyl anhydride (5 eq) and the resulting mixture was refluxed under N2 

atmosphere for 2.5 h. TLC showed the disappearance of the starting material 522-524 and the 

formation of a new spot. After evaporation of the solvent, the residue was loaded onto a silica gel 

column and eluted with hexane followed by 25% ethyl acetate in hexane. Fractions containing 

the product (TLC) were pooled and the solvent evaporated to afford analytically pure compound. 

2,2-Dimethyl-N-(4-methyl-7-phenyl-7H-pyrrolo[2,3-d]pyrimidin-2-yl)propanamide (522) 

Using the general procedure described above, compound 519 reacted with pivalyl anhydride to 

afford 522 (460 mg, 54%) as a light yellow solid: Rf 0.54 (EtOAc/hexane, 3:5); mp 168.4-168.7 

°C; 1H NMR (DMSO-d6) δ 1.07 (s, 9 H, Piv), 2.34 (s, 3 H, CH3), 6.70 (d,  1 H, 5-CH), 7.20 (t, 1 

H, C6H5), 7.39 (t, 2 H, C6H5), 7.71 (d, 1 H, 6-CH), 7.82 (d, 2 H, C6H5). 

2,2-Dimethyl-N-[4-methyl-7-(2-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-2-yl]propanamide 
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(523) 

Using the general procedure described above, compound 520 reacted with pivalyl anhydride to 

afford 523 (849 mg, 36%) as a light yellow solid: Rf 0.62 (EtOAc/ hexane, 3:1:5); mp 148.5-

148.7 °C; 1H NMR (DMSO-d6) δ 1.27 (s, 9 H, Piv), 2.64 (s, 3 H, CH3), 3.14-3.17 (t, 2 H, J = 5.6 

Hz, CH2), 4.42-4.45 (t, 2 H, J = 5.6 Hz, CH2),  7.19-7.35 (m, 5 H, C6H5), 10.05 (br, NH exch). 

2,2-Dimethyl-N-[4-methyl-7-(3-phenylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

yl]propanamide (524). 

Using the general procedure described above, compound 521 reacted with pivalyl anhydride to 

afford 524 (1.3 g, 72%) as a light yellow solid: Rf 0.66 (EtOAc/ hexane, 3: 5); mp 150.1-150.3 

°C; 1H NMR (DMSO-d6) δ 1.24 (s, 9 H, Piv), 2.04 (m, 2 H, CH2), 2.60 (s, 3 H, CH3), 2.54 (m, 2 

H, CH2), 4.17 (t, 2 H, CH2), 6.63 (d, 1 H, 5-CH), 7.27-7.35 (m, 5 H, C6H5), 7.47 (d, 2 H, 6-CH), 

9.73 (br, NH exch). 

General procedure for the synthesis of 525-527: Compound 522-524 was dissolved into 

anhydrous DMF in a 100 mL round bottom flask protected from light with aluminum foil. To this 

solution was added N-iodosuccinimide. The dark brown solution was stirred at room temperature 

under nitrogen for 18 h. The solvent was stripped off in vacuum and the residue was dissolved in 

dichloromethane (100 mL), washed with brine (100 mL x 2). The organic layer was dried over 

sodium sulfate. To the filtration was added silica gel (3.0 g) and the solvent was evaporated to 

make a plug. The silica gel plug obtained was loaded onto a silica gel column and eluted with 

15:1 hexane/EtOAc. Fractions containing the product (TLC) were pooled and the solvent 

evaporated to afford products. 

 

N-(5-iodo-4-methyl-7-phenyl-7H-pyrrolo[2,3-d]pyrimidin-2-yl)-2,2-dimethylpropanamide 
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(525). 

Compound 525 was synthesized from 522 (0.93 g, 2.21 mmol), N-iodosuccinimide (0.58g, 2.43 

mmol) using the general procedure described above to afford after purification 0.90 g (74%) as a 

light yellow solid. The compound was used directly in next step without further characterization. 

N-[5-iodo-4-methyl-7-(2-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-2-yl]-2,2-

dimethylpropanamide (526). Using the general procedure described above, compound 6 

reacted with NIS to afford 526 (327 mg, 34%) as a yellow crystal: Rf 0.17 (EtOAc /hexane, 1:5); 

mp 142.2-142.5 °C; 1H NMR (DMSO-d6) δ 1.21 (s, 9 H, Piv), 2.80 (s, 3 H, 4-CH3), 3.10-3.17 (t, 

2 H, J = 9.9 Hz, CH2), 4.36-4.41 (t, 2 H, J = 9.9 Hz, CH2), 7.24 (m, 5 H, C6H5), 7.58 (s, 1 H, 6-

CH), 9.86 (br, 1 H, NH exch). 

N-[5-iodo-4-methyl-7-(3-phenylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-2-yl]-2,2-

dimethylpropanamide (527). Compound 527 was synthesized from 523, N-iodosuccinimide 

using the general procedure described above to afford after purification 1.22 g (83%) light 

yellow solid. The compound was used directly in next step without further characterization. 

General procedure for the synthesis of 528-533: To a 50-mL round-bottom flask covered with 

aluminum foil were added 525-527, ethynyl benzene, copper (I) iodide and 

tetrakis(triphenylphosphine)palladium(0) dissolved in anhydrous dichloroethane (5 mL) and 

triethylamine. The resulting, dark brown, solution was stirred at room temperature under nitrogen 

for 3.5 h. Then CH2Cl2 (50 mL) was added to the solution and the reaction mixture was washed 

with brine (20 mL x 2), the organic layer separated and dried over Na2SO4 and filtered. The 

filtrate was evaporated in vacuo. To this residue was added silica gel (10 g) and methanol (20 mL) 

and the solvent evaporated to afford a plug. The silica gel plug obtained was loaded onto a silica 

gel column and eluted with 1:1:10 ethyl acetate/triethylamine/hexanes. Fractions containing the 
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product (TLC) were pooled and the solvent evaporated to afford products. 

N-{5-[(2-methoxyphenyl)ethynyl]-4-methyl-7-phenyl-7H-pyrrolo[2,3-d]pyrimidin-2-yl}-2,2-

dimethylpropanamide (528). Using the general procedure described above, 525 reacted with 1-

ethynyl-2-methoxybenzene  to afford 528 ( 65 mg, 54%) as a yellow solid, the compound was 

used directly for next step  hydrogenation without further characterization. 

2,2-Dimethyl-N-{4-methyl-7-phenyl-5-[(3,4,5-trimethoxyphenyl)ethynyl]-7H-pyrrolo[2,3-

d]pyrimidin-2-yl}propanamide (529). Using the general procedure described above, 525 

reacted with 5-ethynyl-1,2,3-trimethoxybenzene  to afford 529 ( 74 mg, 67%) as a yellow solid: 

the compound was used directly for next step  hydrogenation without further characterization. 

N-{5-[(2-methoxyphenyl)ethynyl]-4-methyl-7-(2-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-

2-yl}-2,2-dimethylpropanamide (530). Using the general procedure described above, 526 

reacted with 1-ethynyl-2-methoxybenzene  to afford 532 ( 103 mg, 92%) as a yellow solid, the 

compound was used directly for next step  hydrogenation without further characterization. 

2,2-Dimethyl-N-{4-methyl-7-(2-phenylethyl)-5-[(3,4,5-trimethoxyphenyl)ethynyl]-7H-

pyrrolo[2,3-d]pyrimidin-2-yl}propanamide (531). Using the general procedure described 

above, 526 reacted with 5-ethynyl-1,2,3-trimethoxybenzene  to afford 531 ( 87 mg, 84%) as a 

yellow solid: Rf 0.69 (EtOAc/ hexane, 3: 5); mp 136.2-136.7 °C; 1H NMR (CDCl3) δ 1. 23 (s, 9 

H, Piv), 2.87 (s, 3 H, 4-CH3), 3.24 (m, 2 H, 2 CH2), 3.86 (s, 9 H, 3 OCH3), 4.47 (t, 2 H, CH2), 

6.62 (s, 2 H, C6H2), 7.02 (s,  1 H, 6-CH), 7.06-7.28 (m, 5 H, C6H5), 8.13 (s, 1 H, NH exch). 

N-{5-[(2-methoxyphenyl)ethynyl]-4-methyl-7-(3-phenylpropyl)-7H-pyrrolo[2,3-

d]pyrimidin-2-yl}-2,2-dimethylpropanamide (532). Using the general procedure described 

above, 527 reacted with 1-ethynyl-2-methoxybenzene  to afford 532 ( 94 mg, 86%) as a yellow 

solid: Rf 0.68 (EtOAc/TEA/hexane, 3: 5); mp 128.3.-128.7 °C; 1H NMR (CDCl3) δ 1. 24 (s, 9 H, 
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Piv), 2.45 (m, 2 H, CH2), 2.88 (s, 3 H, 4-CH3), 3.40 (m, 2 H, 2 CH2),  3.87 (s, 3 H, OCH3),  4.22 

(t, 2 H, CH2), 7.90-7.28 (m, 11 H), 7.93 (s, 1 H, NH exch). 

2,2-Dimethyl-N-{4-methyl-7-(3-phenylpropyl)-5-[(3,4,5-trimethoxyphenyl)ethynyl]-7H-

pyrrolo[2,3-d]pyrimidin-2-yl}propanamide (533). Using the general procedure described 

above, 527 reacted with 5-ethynyl-1,2,3-trimethoxybenzene  to afford 533 ( 77mg, 83%) as a 

yellow solid, the compound was used directly for next step  hydrogenation without further 

characterization. 

 General procedure for the synthesis of 534-539. To a Parr hydrogenation bottle was added 

528-533 dissolved in dichloromethane (20 mL) and methanol (20 mL), followed by the addition 

of 5% Pd/C. The mixture was hydrogenated at 50 psi at room temperature for 3h, respectively. 

After filtration through celite, the catalyst was thoroughly washed with hot methanol (20 mL x 3). 

The filtrate was concentrated in vacuo and silica gel (10 g) and methanol (20 mL) were added to 

the residue. The solvent was evaporated to afford a plug. The silica gel plug obtained was loaded 

onto a silica gel column and eluted with 1:1:7 ethyl acetate/triethylamine/hexanes. Fractions 

containing the product (TLC) were pooled and the solvent evaporated to afford product.   

N-{5-[2-(2-methoxyphenyl)ethyl]-4-methyl-7-phenyl-7H-pyrrolo[2,3-d]pyrimidin-2-yl}-2,2-

dimethylpropanamide (534). Compound 534 was synthesized from 528 (44 mg, 0.1 mmol), 30 

mg of 5% palladium on carbon using the general procedure described above to afford after 

purification 36 mg (82%) as a yellow solid. Compound 528 was used directly in the deprotection 

step without further characterization. 

2,2-Dimethyl-N-{4-methyl-7-phenyl-5-[2-(3,4,5-trimethoxyphenyl)ethyl]-7H-pyrrolo[2,3-

d]pyrimidin-2-yl}propanamide (535). 

Compound 535 was synthesized from 529 (50 mg, 0.1 mmol), 30 mg of 5% palladium on carbon 
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using the general procedure described above to afford after purification 42 g (85%) as a yellow 

solid. Compound 535 was used directly in the deprotection step without further characterization. 

N-{5-[2-(2-methoxyphenyl)ethyl]-4-methyl-7-(2-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-

2-yl}-2,2-dimethylpropanamide (536). Compound 536 was synthesized from 530 (47 mg, 

0.1mmol), 30 mg of 5% palladium on carbon using the general procedure described above to 

afford after purification 37 mg (80%) as a yellow solid. Compound 536 was used directly in the 

deprotection step without further characterization. 

2,2-Dimethyl-N-{4-methyl-7-(2-phenylethyl)-5-[2-(3,4,5-trimethoxyphenyl)ethyl]-7H-

pyrrolo[2,3-d]pyrimidin-2-yl}propanamide (537). Using the general procedure described 

above, 531 was hydrogenated to afford 537 ( 48 mg, 91%) as a yellow solid: Rf 0.55 

(EtOAc/TEA/hexane, 3:1:5); mp 117.6-117.9 °C; 1H NMR (CDCl3) δ 1. 39 (s, 9 H, Piv), 2.73 (s, 

3 H, 4-CH3), 2.81 (t, 2 H, 2 CH2), 3.03 (t, 2 H, CH2), 3.09 (t, 2 H, CH2), 3.81 (s, 9 H, 3 OCH3), 

4.39 (t, 2 H, CH2), 6.36 (s, 2 H, C6H2), 6.51 (s,  1 H, 6-CH), 7.15-7.22 (m, 5 H, C6H5), 8.07 (s, 1 

H, NH exch). 

N-{5-[2-(2-methoxyphenyl)ethyl]-4-methyl-7-(3-phenylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-

2-yl}-2,2-dimethylpropanamide (538). Compound 538 was synthesized from 532 (48 mg, 

0.1mmol), 30 mg of 5% palladium on carbon using the general procedure described above to 

afford after purification 43 g (90%) as a yellow solid. Compound 538 was used directly in the 

deprotection step without further characterization. 

2,2-Dimethyl-N-{4-methyl-7-(3-phenylpropyl)-5-[2-(3,4,5-trimethoxyphenyl)ethyl]-7H-

pyrrolo[2,3-d]pyrimidin-2-yl}propanamide (539). Compound 539 was synthesized from 533 

(54g, 0.1mmol), 30 mg of 5% palladium on carbon using the general procedure described above 

to afford after purification 47 mg (88%) as a yellow solid. Compound 539 was used directly in 
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the deprotection step without further characterization. 

General Procedure for the Synthesis of 383-388: To a round-bottom flask was added 534-539 

in methanol (10 mL), followed by the addition of 1 N NaOH (2 mL). The reaction mixture was 

heated at reflux at 80 °C for 24 h. The reaction was then cooled and the MeOH evaporated under 

vacuum. The slurry was diluted with 50ml water, and then extracted with ethyl acetate. The 

organic layer was dried with anhydrous sodium sulfate and evaporated to afford a plug. The 

silica gel plug obtained was loaded onto a silica gel column and eluted with 1:1:7 ethyl 

acetate/triethylamine/hexanes. Fractions containing the product (TLC) were pooled and the 

solvent evaporated to afford analytically pure product. 

5-[2-(2-Methoxyphenyl)ethyl]-4-methyl-7-phenyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(383). Using the general procedure described above, 534 was deprotected to afford 384. Not 

enough material was obtained for subsequent chariacterization and biological evaluation. 

4-Methyl-7-phenyl-5-[2-(3,4,5-trimethoxyphenyl)ethyl]-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (384) 

Using the general procedure described above, 535 was deprotected to afford 384 ( 26 mg, 72%) 

as a yellow solid: Rf 0.28 (EtOAc/TEA/hexane, 3:1:5); mp 137.4-137.9 °C; 1H NMR (DMSO-d6) 

δ 2.71 (s, 3 H, 4-CH3), 2.96 (t, 2 H, CH2), 3.12 (t, 2 H, CH2), 3.85 (s, 9 H, 3 OCH3), 4.83 (br, 2 H, 

NH2 exch), 6.43 (s, 2 H, C6H2), 6.86 (s,  1 H, 6-CH), 7.31 (m, 1 H, C6H5), 7.48 (m, 2 H, C6H5), 

7.67 (m, 2 H, C6H5), Anal. Calcd. for C24H26N4O3: C, 66.88; H, 6.26; N, 13.39 Found C, 68.61; 

H, 6.36; N,12.18. 

5-[2-(2-Methoxyphenyl)ethyl]-4-methyl-7-(2-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (385) 

Using the general procedure described above, 536 was deprotected to afford 385 ( 44 mg, 69%) 
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as a yellow solid: Rf 0.27 (EtOAc/TEA/hexane, 3:1:5); mp 141.6-141.9 °C; 1H NMR (CDCl3) δ 

2.68 (s, 3 H, 4-CH3), 2.89 (m, 4 H, 2 CH2), 3.04 (t, 2 H, CH2), 3.82 (s, 3 H, OCH3), 4.22 (t, 2 H, 

CH2), 4.95 (br, 2 H, NH2 exch), 6.41 (s,  1 H, 6-CH), 6.89 (m, 1 H), 7.10-7.32 (m, 7 H, C6H5); 

HRMS calcd for C24H26N4O 386.2107, found 386.2107.  

4-Methyl-7-(2-phenylethyl)-5-[2-(3,4,5-trimethoxyphenyl)ethyl]-7H-pyrrolo[2,3-

d]pyrimidin-2-amine (386) Using the general procedure described above, 537 was deprotected 

to afford 386 ( 35 mg, 72%) as a yellow solid: Rf 0.28 (EtOAc/TEA/hexane, 3:1:5); mp 140.1-

140.5 °C; 1H NMR (DMSO-d6) δ 1.14 (s, 3 H, 4-CH3), 2.67 (t, 2 H, CH2), 2.84 (m, 4 H, 2 CH2), 

3.72 (s, 9 H, 3 OCH3), 4.12 (t, 2 H, CH2), 5.02 (s,  1 H, 6-CH), 6.24 (s, 2 H, C6H2), 7.03-7.15 (m, 

5 H, C6H5), 7.15 (br, 2 H, NH2 exch); Anal. Calcd. for C24H26N4O3: C, 66.88; H, 6.26; N, 13.39 

Found C, 68.61; H, 6.36; N,12.18. 

5-[2-(2-Methoxyphenyl)ethyl]-4-methyl-7-(3-phenylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (387). Using the general procedure described above, 538 was deprotected to afford 387 

( 66 mg, 83%) as a yellow solid: Rf 0.30 (EtOAc/TEA/hexane, 3:1:5); mp 137.8-137.0°C; 1H 

NMR (CDCl3) δ 2.10 (m, 2 H, CH2), 2.61 (t, 2 H, CH2), 2.68 (s, 3 H, 4-CH3),  2.95-2.97 (m, 4 H, 

2 CH2), 3.82 (s, 3 H, OCH3), 4.02 (t, 2 H, CH2), 4.79 (br, 2 H, NH2 exch), 6.54 (s,  1 H, 6-CH),  

6.88-7.25 (m, 9 H); Anal. Calcd. for C25H28N4O: C, 74.97; H, 7.05; N, 13.99 Found C, 74.80; H, 

7.07; N, 13.78.  

4-Methyl-7-(3-phenylpropyl)-5-[2-(3,4,5-trimethoxyphenyl)ethyl]-7H-pyrrolo[2,3-

d]pyrimidin-2-amine (388). Using the general procedure described above, 539 was deprotected 

to afford 388 ( 27 mg, 52%) as a yellow solid: Rf 0.31 (EtOAc/TEA/hexane, 3:1:5); mp 144.3-

144.6°C; 1H NMR (CDCl3) δ 1.98 (s, 3 H, 4-CH3), 2.51 (m, 4 H), 2.72 (m, 2 H, CH2), 2.91 (m, 2 

H, CH2),  3.71 (s, 9 H, 3 OCH3), 3.91 (t, 2 H, CH2), 5.47 (br, 2 H, NH2 exch), 6.25 (s, 2 H, C6H2), 
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6.41 (s,  1 H, 6-CH),  7.03-7.15 (m, 5 H, C6H5); HRMS (ESI, pos mode) m/z [M + H+] calcd for 

C27H33N4O3  461.2553, found 461.2538. 
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Appendix  

The biological evaluations of the analogs listed in the following tables were performed by Dr. 

Michael Ihnat (Department of Cell Biology, University of Oklahoma Health Science Center) against various 

kinase (VEGFR-1, VEGFR-2, EGFR and PDGFRβ), A431 cytotoxicity and the chorioallantonic membrane 

(CAM) assay (as described below), Dr. Roy L. Kisliuk (Department of Biochemistry, Tufts University School 

of Medicine) against rhTS, rhDHFR,  E. coli TS and E. coli DHFR;  Dr. Sherry F. Queener (Department of 

Pharmacology and Toxicology, Indiana University School of Medicine) against rat liver (rl)DHFR, P. carinii 

DHFR, T. gondii DHFR, and M. avium DHFR;  Dr. Susan Mooberry (Co-leader of Experimental  and 

Developmental Therapeutics, CTRC at UTHSCSA) against  MDA MB 435 breast tumor cells and effects on 

microtubule depolymerization,  Dr.Vivian Cody (Hauptman-Woodward Medical Research Institute), Dr. 

Ernest Hamel and National Cancer Institute (NCI). 
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X-ray Structure Determination and Refinement of 277 and 278. Expression and 

purification of hDHFR were carried out as previously described.41  Recombinant hDHFR was 

washed in a Centricon-10 with 10 mM HEPES buffer, pH 7.4, and concentrated to 11.9 – 12.1 

mg/mL for the two samples.  The hDHFR protein was incubated with NADPH and an excess of 

compounds 277 and 278 for 1hr over ice prior to crystallization using the hanging drop vapor 

diffusion method.  The reservoir solution for inhibitor 277 contained 100 mM KPO4, pH 6.9, 

66% saturated NH4SO4, 3% v/v ethanol and 70% saturated NH4SO4 for compound 278. Crystals 

of hDHFR complex grew over serval days at 14oC and were trigonal, space group H3.  Data 

were collected to 1.35A resolution for both complexes using the remote access robot42-44 at liquid 

N2 temperatures on beamline 9-2 at the Stanford Synchrotron Research Laboratory (SSRL) 

imaging plate system.  The data were processed using Mosflm.45  The diffraction statistics are 

shown in Table 2 for the two complexes. 

 

Table 12.  Data collection and refinement statistics for hDHFR-NADPH-277 and 278 ternary 

complexes. 

Data collection 
 

hDHFR 
NADPH-277 

hDHFR 
NADPH-278 

  

              PDB accession #          3ntz  3nu0              
 Space group   H3        H3    
 Cell dimensions (Ǻ)    84.29   77.79      84.39   78.19  
 Beamline   SSRL 9-2      SSRL 9-2              
 Resolution (Ǻ)   1.35       1.35             
 Wavelength (Ǻ)  0.975       0.975             
 Rsym (%) a,b   0.061 (0.72)      0.066 (0.45)          
 Rmerge    0.053 (0.62)      0.063 (0.39)  
 Completeness (%) a  100.0 (100.0)      100.0 (100.0)  
 Observed reflections  169,016      569,239              
 Unique reflections  45,260       45,587   
 I/(I)    15.3 (1.6)      27.0 (8.6)              
            Multiplicity a                         3.7 (3.7)              12.5 (12.1)              
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Refinement and model quality 
 
 Resolution range (Ǻ)  26.6 – 1.35     33.1 – 1.35       
 No. of reflections  45,259     45,587       
 R-factor c   18.6     18.0        
 Rfree-factor d   20.5     20.9        
 Total protein atoms  1817     1868       
 Total water atoms  164     187 
 Average B-factor (Ǻ2)  18.9     15.7      
    
 Rms deviation from ideal 
 Bond lengths (Ǻ)  0.031     0.035      
 Bond angles (o)  2.84     2.99  
 Luzzati    0.159     0.145      
Ramachandran plot 
 Most favored regions (%)  97.8    97.8                  
Additional allowed regions (%)  2.2    2.2       
Generously allowed regions (%)  0.0    0.0       
Disallowed regions (%)            0.0           0.0              

 

a  The values in parentheses refer to data in the highest resolution shell. 
b  Rsym = ΣhΣi|Ih,i - <Ih>| / ΣhΣi|Ih,i|, where <Ih> is the mean intensity of a set of equivalent 
reflections. 
c R-factor = Σ|Fobs – Fcalc| / ΣFobs, where Fobs and Fcalc are observed and calculated structure factor 
amplitudes. 
d Rfree-factor was calculated for R-factor for a random 5% subset of all reflections. 

The structures were solved by molecular replacement methods using the coordinates for 

hDHFR (u072) in the program Molref.45  Inspection of the resulting difference electron density 

maps made using the program COOT46 running on a MacG5 workstation revealed density for 

the ternary complex in both crystals.  The final cycles of refinement were carried out using the 

program Refmac5 in the CCP4 suite of programs.  The Ramachandran conformational 

parameters from the last cycle of refinement generated by PROCHECK47 showed that more 

than 98% of the residues have the most favored conformation and none are in the disallowed 

regions.  Coordinated for these structures have been deposited with the Protein Data Bank (3ntz, 

3nu0). 
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Table 13. Inhibitory Concentrations of 275-278 (IC50 in µM) against TS and DHFR.a 

 

a The percent inhibition was determined at a minimum of four inhibitor concentrations within 20% of the 50% point. 

The standard deviations for determination of 50% points were within ± 10% of the value given. b Kindly provided by 

Dr. Frank Maley, New York State Department of Health. c Kindly provided by Dr. Karen Anderson, Yale Univerisy, 

New Haven CT. d Kindly provided by Dr. J. H. Freisheim, Medical College of Ohio, Toledo, OH. e Kindly provided 

by Dr. R. L. Blakley, St. Jude Children’s hospital, Memphis TN. f Kindly provided by Dr. M. G. Nair, University of 

South Alabama. g Kindly provided by Dr. J. J. McGuire, Roswell Park Cancer Institute, Buffalo, NY. h Data derived 

from ref 20.  i Kindly provided by Dr. Chuan Shih, Eli Lilly and Co. nd = not determined 

 

 

 

 

 

 

 TS( µM)  DHFR( µM) 

compound humanb E. colib T. gondiic  humand E. colie T. gondiic 
272f 0.072 0.027 0.09  nd Nd nd 
273g 0.085 0.085 nd  nd Nd nd 
274h 0.042 nd nd  2.2 Nd nd 
275 0.26 0.82 1.7  >20(35) 15 1.4 
276 0.8 0.85 3.7  >20(24) >20(38) 1.8 
277  0.068 0.017 0.14  0.09 0.4 0.02 
278  0.034 0.05 0.17  0.1 0.4 0.01 
PMX i 9.5 76 2.8  6.6 2300 0.43 
MTX Nd nd nd  0.022 0.0066 0.022 
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Table 14. Inhibitory Concentrations of 283-291 (IC50 in µM) against TS and DHFR.a 

 

a The percent inhibition was determined at a minimum of four inhibitor concentrations within 20% of the 50% point. 
The standard deviations for determination of 50% points were within ± 10% of the value given. b Kindly provided by 
Dr. Frank Maley, New York State Department of Health. c Kindly provided by Dr. Karen Anderson, Yale Univerisy, 
New Haven CT. d Kindly provided by Dr. J. H. Freisheim, Medical College of Ohio, Toledo, OH. e Kindly provided 
by Dr. R. L. Blakley, St. Jude Children’s hospital, Memphis TN. f Data derived from ref 7. g Data derived from ref 2.  
hData derived from ref 6. nd = not determined. i Kindly provided by Dr. Chuan Shih, Eli Lilly and Co. j Kindly 
provided by Dr. M. G. Nair, University of South Alabama.  

 

 

 

 

 

 

 

  TS(µM)      DHFR (µM)   
       compound humanb E. colib T. gondiic  humand E. colie T. gondiic DHFR 

Selectivity 
(h/t.g.) 

279f 0.04 0.04 0  0.036  0.02 0.2 0.008 2.5 
280g 0.054 0.018 0  0.09  0.019 1.0 0.0021 9   
281h 0.08 0.06 0.096  0.95 >19 (43) 0.19 5 
282 0.084 0.08 0.16  0.029 5.7 0.0057 5   
283 >2.5 (41) >2.5 (0) >2.5 (21)  9.0 12.0 0.03 300 
284 0.23 1.8 0.35  0.57 > 2.7 (0) 0.016 35.6  
285 0.31 >2.2 (33) 1.1  2.6 >26 (23) 0.023 113   
286 >1.4 (16) >1.4 (24) >1.4 (15)  17.0 > 17 (0) 0.017 1000 
287 0.21 2.3 1.8  > 2.6 (0) > 2.6 (0) 0.023 >113  
288 2.0 >2.5 (16) >2.5 (34)  6.0 > 30 (27) 0.024 250 
289 0.46 2.3 1.8  2.8 > 28 (0) 0.014 200 
210 0.92 >2.3 (25) 1.8  > 28 (24) > 28 (0) 0.031 >903  
211 0.23 >2.1 (25) 1.1  2.2 > 25 (17) 0.02 110 

PMX i 9.5 76 2.8  6.6 230 0.43 15  
PDDFj 0.085 0.019 0.43  1.9 23 0.22 8.6  
MTX nd Nd nd  0.02 0.0088 0.033 0.6  

Trimethoprim nd Nd nd  >340 (22) 0.01 6.8 >50 
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Table 15. Inhibitory Concentrations of 292-298 (IC50 in µM) against TS and DHFR.a 

 

 

 

 

a The percent inhibition was determined at a minimum of four inhibitor concentrations within 20% of the 50% point. 
The standard deviations for determination of 50% points were within ± 10% of the value given. b Kindly provided by 
Dr. Frank Maley, New York State Department of Health. c Kindly provided by Dr. Karen Anderson, Yale Univerisy, 
New Haven CT. d Kindly provided by Dr. J. H. Freisheim, Medical College of Ohio, Toledo, OH. e Kindly provided 
by Dr. R. L. Blakley, St. Jude Children’s hospital, Memphis TN. f Data derived from ref 2. nd = not determined. g 

Kindly provided by Dr. Chuan Shih, Eli Lilly and Co. h Kindly provided by Dr. M. G. Nair, University of South 
Alabama.  

 

 

 

 

Table 16:  DHFR inhibitory activity of 301-306 

 DHFR inhibition IC50 µM and selectivity 
 hDHFR RL E.coli tg pc mav pj h/tg h/pj 

301 >30(31) 40 0.15 1.5 28.59 12.04  >20  
302 >27(21) 9.1 1.4 0.54 13.26 9.06  >50  
303 >30(6) 2.35 0.11 1.5 2.49 0.73  >20  
304 >26(30) 0.43 0.087 0.24 0.164 0.31  >108  
305 >30(8) 4.05 2.2 3 5.28 2.89  >10  
306 >28(25) 2.68 0.21 0.28 2.36 2.02  >100  

  

  TS(µM)      DHFR (µM)  
       compound humanb E. colib T. gondiic  humand E. colie T. gondiic 

272f 0.04 0.04  0.036  0.02 0.2 0.008 
292 0.11 0.18   0.72  0.16 22      0.026 
293 0.24 0.96 0.6  0.29 >2.9  0.015 

295 2.2 28 25  >33 (0) >33 (0) 1.7 
296 3.3 13 26  >40 (15) >40 (33) 4.4 
297 0.11 2.3 1.2  2.8 >2.8 (0)  0.028 
298 1.4 22 22  16 >32 (0) 0.32 

pemetrexedg 9.5 76 2.8  6.6 230 0.43 
PDDFh 0.085 0.019 0.43  1.9 23 0.22 
MTX nd nd nd  0.02 0.0088 0.033 

trimethoprim nd nd nd  >340 (22) 0.01 6.8 
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Table 17. FRα binding percentages and IC50s (nM) for thienopyrimidine compounds 314-317 in cell proliferation 
inhibition of RFC- , PCFT- and FR-expressing cell lines.  
 

Antifolate 
 

name FRα 
binding % 

RFC hFRα RFC/ FRα RFC/ FRα PCFT 

   PC43-10 R2 RT16 RT16 
(+FA) 

KB KB 
(+FA) 

IGROV1 IGROV1 
(+FA) 

R2/PCFT4 R2/VC 

314 G64 20.6 N N 21 nd 149 nd nd nd >1000nM >1000nM 

315 G55 31.2 N N N nd N nd nd nd >1000nM >1000nM 

316 G102 nd >1000nM >1000 3.1 nd 2.1 nd nd nd >1000nM nd 

317 G103 nd >1000nM >1000 13.1 nd 6.1 nd N nd >1000nM nd 

308 ZD2 14.5 >1000 >1000 13(3.4) >1000 23(5.5) >1000 4.7(1.9) >1000 >1000nM >1000nM 

309 ZD1 16.3 >1000 >1000 9(2.9) >1000 4.9(1.3) >1000 5.9(1.9) >1000 >1000nM >1000nM 

Methotrexate  nd 12(1.1) 216(8.7) 114(31) 461(62) 6.0(0.6) 20(2.4) 21(3.4) 22(2.1) 120.5(16.8) >1000nM 

Pemetrexed  nd 138(13) 894(93) 42(9) 388(68) 68(12) 327(103) 102(25) 200(18) 13.2(2.4) 974.0(18.1) 

Raltitrexed  nd 6.3(1.3) >1000 15(5) >1000 5.9(2.2) 22(5) 12.6(3.3) 20(4.3) 99.5(11.4) >1000nM 

Lometrexol  nd 12(2.3) >1000 12(8) 188(41) 1.2(0.6) 31(7) 3.1(0.9) 16(6) 248.0(18.2) >1000nM 

Trimetrexate  nd 25(7.3) 6.7(1.3) 13(1) 4.1(1) 58(18) 155(38) 12(4) 8.6(1.9) nd nd 

FR experiments, cytotoxicity assays were performed in the absence and presence of 200 nM folic acid (FA). The data shown are mean values 
from three experiments (plus/minus SEM in parentheses). N = not active. nd = not determined. IC50 data of classical antifolate compounds, 
methotrexate, pemetrexed, raltitrexed, lometrexol, trimetrexate, 308 and 309, were previously published from our laboratory.
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Table 18. FRα binding percentages and IC50s (nM) for thienopyrimidine compounds 318-322 and 456 in cell proliferation inhibition of 
RFC- , PCFT- and FR-expressing cell lines.  
 

Antifolate 
 

name code FRα 
binding % 

RFC hFRα RFC/ FRα RFC/ FRα PCFT 

    PC43-10 R2 RT16 RT16 
(+FA) 

KB KB 
(+FA) 

IGROV1 IGROV1 
(+FA) 

R2/PCFT4 R2/VC 

318 G69 XLZ/AG/156
-239 

35.2 N N 66 N N nd nd nd >1000nM >1000nM 

319  G68 XLZ/AG/156
-238 

36.1 N N 60 N N nd nd nd >1000nM >1000nM 

320 G67 XLZ/AG/156
-237 

16.7 N N 13 N N nd nd nd >1000nM >1000nM 

321 G66 XLZ/AG/156
-235 

19.4 N N 25 N N nd nd nd >1000nM >1000nM 

322 G77 XZ/AG/153-
439 

20.7 
 

N N nd nd N nd N nd >1000nM >1000nM 

456 G76 XZ/AG/153-
435 

15.6 
 

N N nd nd N nd N nd >1000nM >1000nM 

308 ZD2 XLZ/AG/156
-148 

14.5 >1000 >1000 13(3.4) >1000 23(5.5) >1000 4.7(1.9) >1000 >1000nM >1000nM 

309 ZD1 XLZ/AG/156
-146 

16.3 >1000 >1000 9(2.9) >1000 4.9(1.3) >1000 5.9(1.9) >1000 >1000nM >1000nM 

Methotrexate   nd 12(1.1) 216(8.7) 114(31) 461(62) 6.0(0.6) 20(2.4) 21(3.4) 22(2.1) 120.5(16.8) >1000nM 

Pemetrexed   nd 138(13) 894(93) 42(9) 388(68) 68(12) 327(103) 102(25) 200(18) 13.2(2.4) 974.0(18.1) 

Raltitrexed   nd 6.3(1.3) >1000 15(5) >1000 5.9(2.2) 22(5) 12.6(3.3) 20(4.3) 99.5(11.4) >1000nM 

Lometrexol   nd 12(2.3) >1000 12(8) 188(41) 1.2(0.6) 31(7) 3.1(0.9) 16(6) 248.0(18.2) >1000nM 

Trimetrexate   nd 25(7.3) 6.7(1.3) 13(1) 4.1(1) 58(18) 155(38) 12(4) 8.6(1.9) nd nd 

FR experiments, cytotoxicity assays were performed in the absence and presence of 200 nM folic acid (FA). The data shown are mean values 
from three experiments (plus/minus SEM in parentheses). N = not active. nd = not determined. IC50 data of classical antifolate compounds, 
methotrexate, pemetrexed, raltitrexed, lometrexol, trimetrexate, 308 and 309, were previously published from our laboratory.
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Table 19. Tumor cell inhibitory activity GI50 (nM) of 373 (NCI). 

 

Panel/ Cell 
line 

GI50 

(nM) 
Panel/ Cell line GI50 

(nM) 
Panel/ Cell line GI50 

(nM) 
Panel/ Cell line GI50 

(nM)  
NSCLC  Renal Cancer   Ovarian cancer  Prostate Cancer  
A549/ATCC <10 786 - 0 <10 IGROV1 <10 PC-3 <10 
EKVX <10 A498 <10 OVCAR-3 <10 DU-145 <10 
HOP-62 <10 ACHN 16.5 OVCAR-4 96.8 Breast Cancer  
HOP-92 <10 CAKI-1 <10 OVCAR-5 <10 MCF7 <10 
NCI-H226 <10 RXF 393  OVCAR-8 <10 MDA-MB-231/ATCC <10 
NCI-H23 <10 SN 12C <10 NCI/ADR-RES <10 HS 578T <10 
NCI-H322M  TK-10 41.1 SK-OV-3  BT-549 <10 
NCI-H460 <10 UO-31  Melanoma   MDA-MB-468 <10 
NCI-H522 <10 Colon Cancer  LOX IMVI <10 Leukemia  
CNS Cancer  COLO 205 <10 MALME-3M  CCRF-CEM <10 
SF-268 11.1 HCC-2998 <10 M14 <10 HL-60(TB) <10 
SF-295 <10 HCT-116 <10 MDA-MB-435  K-562 <10 
SF-539 <10 HCT-15 <10 SK-MEL-2 <10 MOLT-4 11.9 
SNB-19 <10 HT29 <10 SK-MEL-28 <10 RPMI-8226 <10 
SNB-75 <10 KM12 <10 SK-MEL-5 <10 SR <10 
U251 <10 SW-620  <10 UACC-62 <10   
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Table 20. Cytotoxicity to JC murine mammary adenocarcinoma cells 
 
 

 384 383 388 387 
IC50(µM) 26±5 28±2 3±1 13±3 

 
 

Figure 68. microtubule structures in A10 cells 

   DMSO control                        10nM vinblastine                50µM 388 
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