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ABSTRACT 

 

 

 

 

THE APPLICATION OF FIRST PRINCIPLE MODELING IN COMBINATION WITH 

EMPIRICAL DESIGN OF EXPERIMENTS AND REAL-TIME DATA 

MANAGEMENT FOR THE AUTOMATED CONTROL OF PHARMACEUTICAL 

UNIT OPERATIONS 

 

 

 

By 

 

Brian M. Zacour 

 

May 2012 

 

 

Dissertation supervised by Carl A. Anderson, Ph.D. 

 

 The U.S. Food and Drug Administration has accepted the guidelines put forth by 

the International Conference on Harmonization (ICH-Q8) that allow for operational 

flexibility within a validated design space.  These Quality by Design initiatives have 

allowed drug manufacturers to incorporate more rigorous scientific controls into their 

production streams.   

Fully automated control systems can incorporate information about a process back 

into the system to adjust process variables to consistently hit product quality targets 

(feedback control), or monitor variability in raw materials or intermediate products to 

adjust downstream manufacturing operations (feedforward control).  These controls 

enable increased process understanding, continuous process and product improvement, 
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assurance of product quality, and the possibility of real-time release.  Control systems 

require significant planning and an initial investment, but the improved product quality 

and manufacturing efficiency provide ample incentive for the expense.   

The fluid bed granulation and drying unit operation was an excellent case study 

for control systems implementation because it is a complex unit operation with dynamic 

powder movement, high energy input, solid-liquid-gas interactions, and difficulty with 

scale-up development.  Traditionally, fluid bed control systems have either used first 

principle calculations to control the internal process environment or purely empirical 

methods that incorporate online process measurements with process models.  This 

dissertation was predicated on the development of a novel hybrid control system that 

combines the two traditional approaches.   

The hybrid controls reduced the number of input factors for the creation of 

efficient experimental designs, reduced the variability between batches, enabled control 

of the drying process for a sensitive active pharmaceutical ingredient, rendered 

preconditioned air systems unnecessary, and facilitated the collection of data for the 

development of process models and the rigorous calculation of design spaces.  Significant 

variably in the inlet airstream was able to be mitigated using feedforward controls, while 

process analytical technology provided immediate feedback about the process for strict 

control of process inputs. Tolerance surfaces provided the ideal tool for determining 

design spaces that assured the reduction of manufacturing risk among all future batches, 

and the information gained using small scale experimentation was leveraged to provide 

efficient scale-up, making these control systems feasible for consistent use. 
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Chapter 1: Introduction 
 

 

 

1.1 Statement of the Problem 

 

Throughout its history, the pharmaceutical industry has relied upon traditional 

batch manufacturing processes for the production of solid dosage forms.  In these 

processes, raw materials are processed through several separate unit operations to create 

the final product.  Unit operations for pharmaceutical tablets include particle size 

enlargement (granulation), drying, particle size reduction (comminution), powder 

blending, compaction, and coating among several others.  Most pharmaceutical 

production lines are still predicated on these same systems. 

Typically, each unit operation is considered independently, with the product of 

each unit operation analyzed for quality by several measurements of material attributes 

that are believed to indicate future product performance.  Specifications are defined that 

are believed to represent product quality.  These specifications put limits on product 

measurements, but the link between the specification limits and product performance is 

not often explicitly defined.  Inappropriately defined specifications have the potential to 

allow unsatisfactory materials to be distributed to the public which could have severe 

health consequences.  Conversely, specifications that are too stringent put an unnecessary 

economical burden on the manufacturing company, which is then shifted to the public via 

increased medical costs.  Therefore, it is crucial that the impact of process parameters are 

related to meaningful measures of product performance, which allows specifications to 

guarantee product quality.   
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Well developed controls of manufacturing unit operations are also necessary to 

increase process understanding and limit batch failures. Without measurements on the 

process or integrated control systems, batch failures require extensive investigations to 

determine the root cause of failure.  While major advancements have been achieved in 

drug molecules, drug delivery systems, and drug targeting, very little innovation has 

occurred in manufacturing development to improve efficiency and quality. 

Other industries are well ahead of the pharmaceutical industry in terms of 

manufacturing quality and efficiency.  A study published in 2007 reported that the 

pharmaceutical industry operates at approximately 35,000 defect units per 1,000,000 

produced,
1
 while the semiconductor industry and a number of chemical companies 

achieve Six Sigma production (3.4 defects per 1,000,000 units).  The United States Food 

and Drug Administration (FDA) openly acknowledge this shortcoming and have recently 

encouraged use of the guidelines put forth by the International Conference on 

Harmonisation (ICH-Q8(R2))
2
 that allow for operational flexibility within a validated 

design space.   This allows fully automated control systems that incorporate real-time 

data management to be feasible.  These systems offer the opportunity for continuous 

improvement of the process and resulting drug product by allowing information gained 

during manufacturing through online process measurements to inform the process to 

ensure constant product quality (Feedback Control).
3
  Conversely, incoming variability 

from raw materials, environmental factors, or intermediate products can be identified 

using process analytical technology (PAT) and the downstream manufacturing 

parameters can be adjusted accordingly to assure quality in the final product 

(Feedforward Control).   
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The FDA Quality by Design (QbD) initiatives are risk based, meaning a company 

that rigorously defines the unit operations or product properties that most significantly 

impact product quality and demonstrates sufficient scientific knowledge to control this 

critical variability will be granted greater regulatory flexibility.  The unit operations that 

comprise batch manufacturing depend on a number of critical process, environmental, 

and material parameters whose effects and interactions must be understood to establish 

control.  Well executed design of experiments, online process measurements, data 

management, and control software to create feedback and feedforward models that can 

predict and control the critical quality attributes (CQAs) of the final product are required 

to enable successful implementation of control systems.  Rigorous statistical analyses are 

needed to identify the significant factors and interaction terms and to determine 

meaningful specifications or a design space that guarantees future product quality. 

Control systems, especially those that can provide economic incentives for the 

pharmaceutical company over time, are universally desirable.  Consumers are afforded 

low risk product at reduced costs, regulatory agencies can assess product safety and 

efficacy using scientific methods, and pharmaceutical companies are able to produce 

quality product efficiently, and may even achieve real-time release (RTR).  Initial 

implementation can seem daunting and requires a substantial investment, but if developed 

correctly, automated control systems provide a significant return on investment. 

Automated control systems must be developed to meet the specific needs of a 

given product or unit operation.  Quantitative risk management is defined and optimized 

for each system, independently.  For this reason, this dissertation will consider two unit 

operations, fluid bed processing and powder blending, and two different product 
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formulations to demonstrate the unique development required for each system.  Fluid bed 

processing of pharmaceutical powders is typically more complicated than powder 

blending and has more factors that can potentially affect product quality, so the 

development of a control system for fluid bed processing requires more complicated 

models and communication systems to mitigate the increased risk.  Conversely, 

additional expenses devoted to the powder blending unit operation beyond those needed 

to mitigate risk to the final product are wasted expenditures that a pharmaceutical 

company can avoid.  The specific risks of the drug product must be considered 

simultaneously, as well.  This dissertation aims to provide a blueprint for identification 

and management of critical factors in developing design spaces and automation systems 

for pharmaceutical unit operations.  

First principle calculations are a tool that can be used to increase development 

efficiency while still providing the necessary control of the major mechanisms by which 

unit operations effect product quality.  They reduce the dimensions of DOE, account for 

external fluctuations by adjusting process parameters in real time, and enable direct scale-

up of first principle variables.  Fluid bed processing of pharmaceutical powders is 

affected by the properties of the air used to fluidize the solid powders, so first principle 

controls are particularly advantageous for this unit operation.  Fluctuations in the inlet air 

properties can be measured and used to inform process parameter adjustments to maintain 

consistent product quality.  This can eliminate large systems that precondition inlet 

airstreams, control laboratory environments, or narrow incoming variability.  These 

advantages allow systems to be developed more efficiently while providing benefits to 

product quality. 
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Statistical design of experiments (DOE) is another tool that can be valuable in 

terms of maximizing the value of the development process.  Experimentation relies on 

empirical models to quantify the relationship between important factors of the 

manufacturing operation and final product characteristics, but designs that are created to 

satisfy the needs of the system can provide valuable process understanding in an efficient 

manner.  Interactions between independent variables can have a substantial impact on the 

response variables, and they must be identified through empirical modeling.  This 

information can be used to create feedback control where specifications can be placed on 

the response factors and maintained by adjusting the input variables.  

The process understanding gained by online process monitoring through 

spectroscopy and other methods is invaluable.  Use of such systems lowers the risk of 

batch failures and thereby eliminates the need for expensive investigations.  They allow 

the immediate identification and correction of deviations in product quality attributes.  

Online measurements also allow for RTR in well developed systems, which reduces the 

burden of end product testing and reduces the queue time for batches between unit 

operations.  This can lead to efficient supply chains and better control of inventory, 

providing an economic incentive for pharmaceutical manufacturing companies.  Further, 

these economic benefits can also be extended to consumers through reduced medical 

costs.  The advantages offered by online PAT systems can be beneficial to both fluid bed 

processing and powder blending. 

Automation systems require the incorporation of myriad models, all of which 

include error and uncertainty.  Rigorous statistical analyses are needed to account for 

these uncertainties to define meaningful boundaries, so a design space can assure product 
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quality in future batches.  These models must also be robust so that they may function for 

extended periods of time and be easily transferred to different systems or larger scales, 

and can be easily updated.  Failure in scale-up, transfer, or update may cause the initial 

investment to be lost, which would make these systems infeasible.  Therefore, the process 

understanding gained during initial development must be leveraged to provide maximum 

value in future use. 

To date, drug manufacturing has not improved at the same rate as comparable 

industries, leaving a weakness that must be addressed to achieve satisfactory levels of 

pharmaceutical quality and efficiency.  This dissertation demonstrates how automated 

control systems can be developed using efficient techniques to adjust process parameters 

in real time to ensure product quality while providing scientific justification of a design 

space to satisfy regulatory concerns. 
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1.2  Hypothesis and Objectives 

 

 This dissertation is based on the central hypothesis that the integration of first 

principle calculations with empirical modeling and real-time data management enables a 

control system to provide a high standard of product quality with economic efficiency 

that mitigates the risk identified for a specific formulation and manufacturing 

combination.   

Given the central hypothesis, the objectives of this dissertation were to: 

1. Develop a fully automated, hybrid control system for the fluid bed drying of a 

model drug formulation with stability considerations using efficient methods.  

2. Develop a model for the prediction of downstream product properties from the 

reduced variables that are the process factors of the hybrid controls, for the 

creation of a design space that assures future product quality. 

3. Utilize the hybrid control system to facilitate scale-up experimentation. 

4. Extend the control system to include fluid bed wet granulation and drying and 

demonstrate the development of a design space that incorporates both formulation 

and process factors within a single design space model. 

5. Develop an efficient and optimized blending control system using multiple NIR 

sensors, efficient calibration techniques, and blending homogeneity algorithms. 

The results of the objectives provide a blueprint for the development of automated 

control systems that offer improved product quality with efficient experimental designs.  

This dissertation provides a clear demonstration to the pharmaceutical industry that a 

high degree of product quality is possible in an economically feasible system. 
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1.3  Literature Survey 

 

 

1.3.1  Fluid Bed Granulation and Drying 

 

1.3.1.1  General Fluid Bed Properties 

 

Fluid bed processing of pharmaceutical powders is an excellent case study for the 

development of a fully automated control system because of its complexity and the 

multiple phases typically utilized during processing.
4,5

  A single fluid bed unit operation 

can take raw powders through blending, wet granulation, drying, and cooling.  A fully 

automated control system must be able to define the process at any point during the 

progression, define meaningful end points of each phase before moving into the next 

phase, and incorporate information from process measurements back into the process so 

that the manufacturing parameters can be adjusted to control the process trajectory.  This 

requires a well developed communication system that can synchronize multiple process 

measurements and organize data for analytical and process models.  The models typically 

require comprehensive experimental designs to be performed so that prediction results 

maximize user confidence.  Development of these systems require a substantial initial 

investment, but the rewards in product quality and efficiency can lead to a significant 

return on the investments due to removing batch failures, reduced inventory and storage, 

and real-time release. 

 Fluid bed processing is also important because of the significant advantages that 

can be realized when processing solid powder systems.  Fluidization is the operation by 

which solid particles are transformed into a fluid-like state through suspension in a gas or 

liquid.
6
  For the manufacturing of solid dosage forms in the pharmaceutical industry, 
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fluidization is almost exclusively solid powders suspended in a flowing gas, which is 

usually air.  This dissertation considers this as the operating definition for fluidization.   

Fluidized beds with gases and solids have unusual properties that are useful for 

industrial applications.  Fluidized beds appear as a boiling liquid-like material and exhibit 

liquid-like behavior.  These properties include flow properties, nearly isothermal 

conditions due to rapid mixing, a resistance to rapid temperature changes due to efficient 

heat exchange which makes a large magnitude of heat transport possible.
6
   Many of these 

advantages reduce the risk of hot spots or thermal gradients in high energy drying 

processes while reducing the time needed to dry large batches of moist powders.  These 

properties allow processing at large scales.   

At a certain minimum airflow velocity the frictional forces between the fluid and 

solid particles counterbalance the weight of the particles, the vertical component of the 

compressive force between adjacent particles disappears, and all particles are suspended 

by the fluid.  This is considered incipiently fluidized or at minimum fluidization.
6
  The 

minimum fluidization velocity for a system can be calculated if the material and 

equipment have been adequately characterized,
7
 but it is typically much easier and more 

practical to determine empirically.  With an increase in flow rate beyond minimum 

fluidization, large instabilities within the bed are observed creating bubbling and the 

channeling of gas.  The volume of the bed does not expand much beyond its volume of 

minimum fluidization, but agitation becomes more violent and the movement of solids 

becomes more vigorous as the airflow rate is increased.  

In gas/solid systems, gas bubbles coalesce and grow as they rise.  Fine particles 

flow smoothly down the wall around the rising gas voids, while coarse particles are 
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pushed upward and rain down from the slug when the gas void finally disintegrates.  The 

range and magnitude of optimum operating conditions depends on particle characteristics 

including size distribution, shape, and density,
8-10

 as well as equipment properties 

including geometry, bed depth, and distributor plate arrangement.
6
  Careful planning and 

design of the equipment and operating conditions for a given system of particulates is 

crucial for robust processing at multiple scales. 

Different regimes of fluidizations are displayed in Figure 1.1, which is reproduced 

from Kunii and Levenspiel.
7
  Low airflow velocities increase the risk of losing the 

fluidized bed during processing, while high airflow velocities increase the probability of 

exceeding the terminal velocity of fine particles, causing entrainment in the filter bags.  

The mixing or segregation tendencies of a given system are an equilibrium process that 

depends on processing conditions.  Fluidization velocities near the minimum for a given 

particle size increase the probability of high density particles separating to the bottom of 

the bed.  However, in high velocities the mixing resulting from bubbling and circulation 

dominate.
11

  This mixing is more efficient in larger systems. The range of possible 

fluidization regimes highlights the importance of controlling the application using first 

principle controls from the beginning of use. 

Industrial applications for physical operations in batch processes in the 

pharmaceutical industry, such as granulation and drying, are typically performed in the 

bubbling or turbulent bed regimes.
7,12

  In the bubbling or turbulent regimes, temperature 

is nearly constant throughout the bed due to efficient heat exchange, and a wide size 

distribution of particles is possible for these applications.  These advantages facilitate 

scale-up.  Conversely, a high pressure drop across the distributor plate is necessary to 
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assure uniform gas flow and uniform fluidization of particles.  This leads to large power 

consumption.  This dissertation optimizes the fluidization within the bubbling bed 

regime.
7
 

Figure 1.1. A general flow regime diagram reproduced from Kunii and Levenspiel
4
 for 

the whole range of gas-solid contacting, from percolating packed beds to lean pneumatic 

transport of solids; letters C, A, B, and D refer to the Geldart classifications of solids.  

The abscissa (dp
*
) is a dimensionless measure of particle diameter, while the ordinate (u

*
) 

is a dimensionless measure of particle velocity.  

 

1.3.1.2  Fluidization of Solid Powders 

 

The particle size distribution of the solid system is a strong factor in determining 

the fluidization velocities necessary for robust processing.  Fine particles tend to clump 

and agglomerate in the presence of adsorbed moisture, requiring higher airflow velocities 
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and increased particle entrainment/elutriation.  Large, uniform particles fluidize poorly 

with bumping, spouting, and slugging common.  Addition of fines to large particle 

systems act as a lubricant, allowing for easier fluidization.  Due to this lubrication, wide 

particle size distributions increase the range of possible fluidization velocities, increasing 

the robustness of the operation.
6
  Extensive work is required to characterize and optimize 

a given system. 

The bubbling bed occurs at fluidization velocities between the minimum 

fluidization velocity and ten times the minimum velocity.  The actual magnitude depends 

on the powder properties and bed geometries, and strongly depends on the fraction of 

particles less than 45 µm.
7
  When the minimum bubbling velocity is exceeded, the bed 

height decreases slightly and bubbles become visible.  The rising bubbles cause the 

observed churning, mixing, and flow of solids, which provides the desired mixing and 

contacting properties.  Professor D. Geldart characterized particles into four groups based 

on particle size and density that are very useful in determining fluidization behavior.
9,10

  

While most pharmaceutical or industrial applications contain particles from several or all 

groups, Geldart B or A particles are the most common encountered and their 

characteristics can be used to predict fluidization properties.   

Geldart B particles are considered sand-like, with median particle sizes between 

40-500 µm and densities between 1.4-4 g/mL. These particles fluidize well with vigorous 

bubbling action and bubbles that grow large.  Bubbles form as soon as the gas velocity 

exceeds the minimum fluidization velocity.  Bubbles grow and coalesce as they rise and 

their size is independent of the particle size and roughly linearly related to the distance 

from the distributor plate. 
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Geldart A particles are considered aerotable, and have small particle sizes and low 

densities.  They fluidized smoothly at low velocities and display controlled bubbling at 

higher velocities.  The bed expands considerably before bubbling occurs with the fines 

acting as a lubricant to the other particles.  In Figure 1.1b, it can be seen that bubbling 

beds can be operated stably over a wide range of conditions for Geldart A or B particles. 

For all particle groups, when the fluidization velocity exceeds ten times the 

minimum fluidization velocity, particles are projected into the freeboard above the bed, 

and the amount of particles lost is significantly increased.  To minimize loss of powder, 

the working fluidization velocity should be maintained below the terminal velocity of the 

smallest size particles in a significant fraction of the bed.
7
  The terminal velocity of 

particles is the velocity a particle falls through a fluid (free-fall velocity).  It is inversely 

proportional to particle size and can be expressed by: 
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where *

tu is the terminal velocity, *

pd is a dimensionless particle size,
7
 s is the sphericity 

of the particles, and sphericity must be between 0.5 and 1.  This information can be used 

to reduce the experimental space explored during process development and can be used 

to guide scale-up efforts. 

1.3.1.3  Mixing in a Fluidized Bed 

 

 The performance of the fluidized bed operation depends on the bubbling behavior.  

Control and improvement of performance can only be attained after the gas/solid 

contacting is understood.  The bubbling bed behaves like a bubbling liquid of low 



 

 

 

14 

viscosity.
13

  Bubbles of similar sizes have similar shapes, small bubbles rise slowly 

compared to large bubbles, a train of bubbles may coalesce to give larger bubbles, and 

the rise velocities can be described by the same expressions.  Unlike the liquid-gas 

system, however, there is an interchange of gas between a rising bubble and the dense 

(emulsion) phase in a fluidized bed.   

Bubbling behavior, the movement of gas and solids, and the pressure distribution 

of rising bubbles has been model by Davidson.
14

  The pressure in the lower portion of a 

rising bubble is lower than in higher portions, so gas enters the bubble from the bottom 

and leaves from the top.  Bubbles circulate three times the amount of gas processed by 

the equivalent section of emulsion phase gas, giving rise to dynamic mixing.  The flow of 

gas through the emulsion phase far from any bubbles is essentially laminar. 

 Solids move out of the way as bubbles rise except for the small fraction (0.2-

1.0%) caught inside bubbles.  Solids, however, are caught in the wake of the rising 

bubble and are drawn upward behind the bubble.  They slowly leak from this wake and 

fall back into the general bed, meaning there is a continuous interchange of solids 

between the wake and emulsion regions.  This leads to an increase in turbulent mixing.   

The wake of a rising bubble is also used to explain why trailing bubbles are drawn 

into the leading bubble and coalesce.  The size of bubbles increases with gas velocity and 

with distance from the distributor plate, but varies widely between systems due to 

changes in geometry and particle properties.  Smaller particles (Geldart A) tend to have 

smaller maximum bubble sizes than larger particle system at comparable velocities.  

There are many different methods to calculate an average bubble size for a given system 
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using particle property estimates, initial bubble sizes, and distance from the distributor 

plate.
15

 

 Early attempts at modeling the bubbling bed as a whole used the simple two phase 

model.  This expression assumed that once bubbling began all gas in excess of the 

minimum fluidization velocity pass through the bed in bubbles.
15

 Numerous examples 

have shown that empirical results are more complex than the two phase model indicates.  

The conceptual model developed by Kunii and Levenspiel
15

 for the bubbling bed was 

aimed at estimating features or properties of the bed such as contacting regimes and 

volume fraction of phases using only a few measurements or correlations.  Some of the 

general findings are presented below. 

For typical Geldart B and A particle systems, the bubble gas is less than the 

difference between the fluidization velocity and the minimum fluidization velocity.  The 

emulsion voidage increases with airflow velocity, and the emulsion phase is not stagnant.  

Distinct flow patterns, called gulf streaming, occur.  Figure 1.2, reproduced from Kunii 

and Levenspiel,
15

  displays typical flow patterns in the emulsion phase of a bubbling bed. 

The upflow emulsion regions should be rich in bubbles, and the downflow regions should 

have few, if any, rising bubbles.  This dynamic movement, combined with the vigorous 

mixing from the rising bubbles, creates excellent circulation systems that increase the 

probability of uniform processing of powders.  It should be noted, however, that there is 

an order of magnitude difference in mixing in the vertical and horizontal directions.  

Vertical mixing is significantly more efficient, but the duration of normal batch 

operations still allows for adequate horizontal distribution of materials.  Horizontal 
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mixing is strongly affected by solids ejected into the free board (gas section above the 

bubbling bed) and mixing in the wake of rising bubbles.   

The gulf stream behavior is increased in larger systems because the surface area 

of walls and equipment is decreased in relation to the bed volume.  Walls and equipment 

provide frictional resistance to flow.  As a result, mixing characteristics may change with 

changes in scale, with more efficient mixing present in larger systems.  Internal structures 

may be added to larger fluidization systems to increase the frictional resistance, slow 

bubble rise velocities, and decrease bubble size to promote better gas solid contacting and 

more efficient drying in a pharmaceutical operation.  Scaling factors have been proposed 

by Horio et al.
16

 and Fitzgerald and Crane,
17,18

 which have shown some success in simple 

systems, but the authors agree that much more work is needed in the area of fluid bed 

scale-up, scale-down, and hydrodynamic similarity for practical applications.
15

 

 

 
Figure 1.2.  Reproduced from Kunii and Levenspiel.4  The movement of solids within the emulsion phase 

of bubbling fluidized beds. 

 

The choice of distributor plates at the bottom of the bed and placement of the 

spray nozzle can significantly impact fluidization behavior and granulation properties.
19
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Contacting between gas and solids is most efficient directly above the distributor plate, so 

this region significantly affects the efficiency of the overall process.  Perforated plates 

with a uniform distribution of circular openings are the most common plates because they 

are the least expensive.  The plate must provide a significant pressure drop to allow 

uniform gas flow into the powder bed and to prevent channeling or gas jets.  A large 

pressure drop minimizes the effect that the distributor plate has on gas-solid contacting, 

which is then dependent on the hydrodynamic properties of the bed itself.  This is 

desirable and increases the probability of uniform processing.  While larger pressure 

drops benefit gas distribution, increased pumping power is required for increases in 

pressure drop.  To maximize contacting uniformity, the fraction of open area in the 

distributor plate should be less than 10%. 

Top spray systems that spray binder solution onto the top of the powder bed can 

also promote uniform flow and improved mixing.  Any spray or fluid movement against 

the direction of bulk flow breaks up large bubbles and causes better distribution of 

bubbles within the fluidized bed.  Breaking of large bubbles also reduces the fraction of 

solids that is ejected into the freeboard, thus reducing entrainment and elutriation.  This 

dissertation only considers a top spray granulation system. 

1.3.1.4  Fluidized Bed Granulation and Drying 

 

 The energy requirement to do work in the fluid bed is provided by the heated 

airstream.  In pharmaceutical operations where the addition and removal of water to a 

fluidized bed is the primary mechanism of action (the situation investigated in this 

dissertation), the work can be accomplished via heat or mass transfer between the 
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fluidized solids and the airstream.  Therefore, the contacting of the gas and solid is 

critical in determining the progress of the unit operation.   

 This dissertation considers the fluidized bed granulation and drying of 

pharmaceutical powders using water as the solvent.  Therefore, the heat and mass transfer 

occurs between the solids and surrounding gas to provide the energy for the evaporation 

of water.  The bulk of mass transfer occurs in the emulsion phase of the fluidized bed 

(outside of bubbles), while the bulk of the air that passes through the bed are in bubbles.  

As a result, water must travel from particles to the emulsion gas, emulsion gas to cloud 

gas surrounding bubbles, and finally to bubble gas before leaving the system.
20

  This is 

especially true in fine particle systems where the fraction of gas passing through the bed 

in bubbles increases.  This leads to the conclusion that mass transfer in a given system is 

governed by the type of particles being fluidized and the diffusion between emulsion gas 

and bubble gas.  These properties remain relatively constant for a given formulation, 

except for changes due to inlet air humidity and airflow velocity.  The major source of 

control in terms of energy input comes from the heat transfer mechanism. 

 The heat transfer mechanism has virtually the same contacting properties as 

described by the mass transfer mechanism, but the driving force (difference in 

temperature between airstream and particles) is generally much larger and is easily 

controlled.  From the previous discussions it can be concluded that there is not efficient 

mixing of gas in fine particle systems fluidized in the bubbling bed regime.  This leads to 

inefficient gas/solid contacting.  There is efficient mixing of solid particles, however, and 

the expense of air is low, so fluidized beds still provide advantageous properties for 

pharmaceutical granulation and drying.   
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In the drying phase, fluidized beds have large capacities at relatively low cost, 

high thermal efficiency, and uniform temperature distribution.
12

  This is combined with 

the cooling effect of evaporative drying to reduce the risk of temperature excursions 

experienced by solid particles.
21

  The uniformity of temperature within a fluidized bed 

exists both in the radial and axial direction, even in large systems.
22

  An equilibrium is 

reached very rapidly, so hot air that contacts cold solids reaches the temperature of the 

solids before moving more than 2-3 cm into the bed.
23

   

Each particle goes through two drying regimes during a drying process: the 

constant rate and the falling rate drying periods.  The constant rate drying regime 

removes the free moisture on the surface and in the pores of fluidized solids, and is 

limited by heat transfer.  Therefore, the moisture carrying capacity of the airstream limits 

the drying rate, which varies proportionately with gas velocity and temperature, and 

inversely with bed height.  In this period, the approach to equilibrium is rapid for both 

heat and mass transfer, so the bed and the leaving gas will remain close to the adiabatic 

saturation temperature (web-bulb temperature) of the entering gas stream.
23

   

After the critical moisture content is reached, the drying rate begins to fall 

because of diffusional effects.  The remainder of the water is bound within the solid 

particles and the diffusion of moisture to the surface is slow enough to control the overall 

drying rate.  The moisture loss is close to exponential with time.  The critical moisture 

content is reached when the moisture on the surface of solids is in equilibrium with the 

gas bathing the particle.  The vapor pressure at the surface of the solid particles drops 

below the vapor pressure of the pure liquid at the drying conditions of the inlet gas 
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stream.  The critical moisture content is small for small particle systems and slower 

overall drying rates.
23

 

The high heat capacity of the fluidized bed and the rapid mixing of solids assure 

that the temperature of solids is mostly independent of location in the bed and at any 

instant the solids are all at the same stage of drying.  This means there is very little 

interaction between particles in the bed with respect to drying.  The overall heating of 

solids is determined by the heat capacity of the entering hot gas, not by the kinetics of the 

process, and the time needed to heat a bed of dried solids is proportional to the static bed 

height and inversely proportional to the gas velocity.  The temperature of dried solids 

changes exponentially with time, and the effect of evaporative cooling during the drying 

phase keeps the temperature of solids low.
23

 

These properties allow for strict temperature control and simple scale-up of the 

temperature control system.  A possible source of error in the temperature control is the 

heat transfer between the bed and the walls of the equipment, which can be significantly 

higher than for the gas (air) itself.
22

  Heat loss to the surrounding environment is more 

significant at smaller scales due to the increase in surface area per unit volume.  The heat 

loss in a commercial system is typically a few percent.  The error term can be measured 

simply by running a trial system at several temperatures and calculating the heat transfer 

coefficient. 

In the spray granulation phase, there is a combination of three sets of rate 

processes: wetting and nucleation, consolidation and growth, and attrition and breakage.
5
  

Fluid bed granulation has properties that can be advantageous for all of these processes.  

The efficient and complete solid mixing that takes place in the fluid bed distributes water 
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or binder solution throughout the bed quickly, which leads to uniform wetting and 

nucleation.  The airstream removes large droplets of water that build up unevenly on a 

few particles, and reduces the risk of forming large particles that must be milled later.  

The efficiency with which nucleation and further coalescence occurs is dependent on the 

wetting properties of the solid material, the water additional/removal rate, and the size of 

the water droplets in the spray solution. 

The mechanisms by which coalescence, attrition, and elutriation occur create a 

process where small particles agglomerate with a higher probability than larger particles, 

thereby narrowing the final particle size distribution achieved.
4
  The force of particle 

collisions is proportional to the mass of the particles, so collisions between smaller 

particles exhibit less force and increase the probability of coalescence in the presence of 

moisture on the surface of the particles.  Smaller particles also heat up faster than larger 

particles, increasing the probability of evaporating binding solutions on small 

agglomerates to create solid bridges.  Conversely, collisions between larger particles have 

a greater force, which increases the probability of breakage or attrition.  Therefore, 

precise and narrow particle size distributions are possible in well controlled systems. 

Despite the advantages of fluidized beds, their use for industrial applications has 

not been popular outside of simple drying processes.  This is due to the complexity and 

sensitivity of some systems which leads to problems with control, difficulty in scale-up,
24, 

25
 and the lack of useful scientific models.

6
  In addition, batch processes are not steady 

state experiments, so the optimum fluidization parameters must be constantly varied as 

the total mass and particle properties change.  As a result, the use of fluidized beds have 

traditionally been approached as an art, and due to the significant difference in behavior 
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of large beds compared to small beds, extrapolation to a commercial scale has been 

unreliable.  Development beginning with first principle theory is uncommon. This 

dissertation attempts to address these shortcomings for the pharmaceutical scientist.   

Two separate approaches have been attempted in previous studies to model or 

control the fluid bed unit operation.  The first approach uses first principle calculations 

based on thermodynamic, heat, and mass balance equations to define and control the 

environment inside the fluid bed chamber.  The second approach is purely empirical and 

uses online process measurements, spectroscopy, design of experiments (DOE), and 

process modeling to control the unit operation.  Each method has benefits and 

disadvantages, many of which are complementary, but they have never been used 

together to their full extent in a single system.  This dissertation demonstrates the 

development and implementation of a hybrid control system that uses both first principle 

calculations and empirical data management to limit the drawbacks of each method to 

manufacture pharmaceutical granules within tight specifications. 

 

1.3.2.  First Principle Control Systems for Fluid Bed Processing 
  

First principle calculations have been used to model drying, aqueous film coating, 

and fluid bed processes.  However, they are not used frequently except for very simple 

approximations.  Examples of the controls for this approach are the simple temperature 

difference method,
26-28

 complex thermodynamic environment controls,
29-31

 fluidization 

regimes,
4,7-10,15

 computational fluid dynamics,
32-36

 and transport phenomena.
37, 38

  All of 

these methods use material properties, fluid dynamics, and simple measurements of mass, 

humidity, airflow, and heat at different points of the process to define the thermodynamic 

condition of the bulk gas-solid suspension or surrounding environment.   
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The approach taken in this dissertation utilizes the thermodynamic calculations 

developed by Ebey and referred to as the environmental equivalency factor (EFF).
29,31

 

These calculations were established in 1987 to define the aqueous film coating process.  

The same evaporative drying mechanisms control spray granulation and drying in 

aqueous fluid bed processing.  The derivation of the EEF calculation for a specific fluid 

bed system and the feedback/feedforward mechanism of control will be addressed in 

significant detail in chapter 2. 

First principle controls offer several advantages that are essential for robust and 

efficient processing.  By definition the calculations are based on material and 

environmental properties, so the calculations are universal for all systems.  Separate 

calibrations for new or adjusted formulations are unnecessary. Only the optimum set 

points must be defined independently for new systems.  The equations are also 

independent of scale or specific equipment, meaning all controls based in first principles 

are directly scalable and transferable.  Scaling up processes from lab scales to full 

manufacturing scales has traditionally been a major hurdle for pharmaceutical processes, 

in particular, for fluid bed systems.
24, 25

  Therefore, eliminating any variables that need to 

be adjusted between scales is a major advantage. 

First principle calculations establish control by quantifying the scientific 

mechanisms by which the process performs work.  In the fluid bed example, the internal 

environment, which controls the evaporative drying mechanism and the rate of water 

addition or removal, can be defined to allow the final granule properties to be controlled 

more precisely.  Property fluctuations or failure during development can be explained 

using scientific principles, leading to easier interpretation and greater process 
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understanding.  Complex interactions between processing parameters can be accounted 

for by simply understanding their impact on simpler first principle mechanisms. 

Mechanistic control offers improved performance in terms of inter-batch product 

variability.  Traditional cookbook and even empirical control systems do not account for 

many sources of variability that have the possibility to impact final product properties.  

Even if all process parameters remain constant, small fluctuations in the external 

environment will affect the incoming airstream, thus altering the drying mechanism or 

drying rate without additional controls.  If the mechanism of action in a given system is 

known and quantified, the impact that external variability has on the mechanisms can be 

defined, and process parameters can be adjusted to ensure constant product quality. 

The only alternative for achieving the highest degree of product control is to 

implement systems that assure constant properties for all variables that may impact future 

product quality (raw materials, air, etc.).  While this is impractical, it is common within 

the pharmaceutical industry to reduce environmental or raw material variability instead of 

adjusting the process to account for the variability.  Preconditioning systems that 

maintain constant air temperature and humidity within current good manufacturing 

practice (cGMP) facilities are a standard practice.
39

  These systems are expensive, 

especially for large, commercial facilities, and still do not remove all variability.  Large 

gradients with respect to temperature and humidity are common within large 

manufacturing spaces, especially in the presence of a large work force.  Additionally, 

purchasing raw materials with reduced variability can be expensive or even impossible.  

These are expenses that are unnecessary if the investment into a rigorous first principle 

control system is made. 
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 The final and most substantial economic advantage offered by first principle 

controls is variable reduction.  The amount of development and experimentation can be 

reduced exponentially by reducing the number of process variables investigated.  This is 

again achieved by quantifying the actual mechanisms of action.  As an example, the EEF 

calculation that will be used in this dissertation takes nine measurements – inlet air 

temperature, inlet air humidity, heated air temperature, product temperature, outlet air 

temperature, exhaust air temperature, exhaust air humidity, airflow velocity, and spray 

rate – and calculates a single reduced variable.  Of the nine measurements, four – inlet air 

humidity, heated air temperature, airflow velocity, and spray rate - are factors that would 

typically be altered independently in a purely empirical DOE.  By reducing the number of 

input factors to be explored in a DOE by three, the cost of development can be reduced 

from 128 (2
7
) experiments to 16 (2

4
) experiments (1/8 costs).  While a full factorial 

design would not be practical for a system with 7 variables, it can be seen that the 

benefits of a full factorial design can be realized when the number of variables is reduced 

to 4 without compromising the degree of process understanding acquired. 

 There are several challenges to first principle controls, however.  The calculations 

in this dissertation assume an adiabatic system, which is not rigorously correct.  There is 

heat exchange from the equipment walls to the surrounding environment.  Additionally, 

first principle controls do not typically account for the effects of atomizing air, changes in 

the droplet size of the spray, and changes in the kinetic energy of process air and water 

vapor.  Typically, these are minor factors, but can have more serious effects in sensitive 

processes.   
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The error term associated with the adiabatic assumption can be measured by 

running trial systems, so the drying rate and heating effects on the solid can be controlled 

precisely.  A general heat exchange profile can be determined by running an empty 

system at different airflow velocities and temperatures.  More precise profiles can be 

determined by using trial batches of a given formulation because the heat exchange 

depends on the solid particles colliding against the inside wall of the equipment.  This 

measured error term can then be added to the feedback control system to adjust the 

process parameters accordingly. 

The droplet size of the spray rate has been shown to significantly affect the 

granulation regime,
5,25,40

 which can impact the final particle size distribution and granule 

porosity.  These are often critical quality attributes (CQAs) of the granulation process, so 

additional considerations may be necessary.  The droplet size variable is often treated as a 

nuisance variable and held constant.  This works well to reduce variability between 

batches of a given system, but is problematic for transfer and scale-up.
25

  It is very 

difficult to match spray droplet sizes at different scales while keeping processing time 

constant.  This can only be accomplished by using multiple spray nozzles at different 

locations.  

While first principle calculations provide a quantitative and intuitive description 

of the processing mechanisms, they provide no feedback on actual product properties in 

real time.  First principle control systems do not measure the moisture or chemical 

concentrations in the product, nor do they provide estimates of particle size.  Therefore, 

the definitions of phase and batch end points are difficult to determine and are not 

intuitive.  Additionally, the first principle calculations describe the batch as a bulk system 
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and provide no information on the spread of batch properties.  There is also no access to 

additional information such as material phase changes or chemical decomposition.  This 

information can be critical to optimizing a process, increasing process understanding, or 

identifying a batch trending toward failure.  

The measurements typical of a first principle control system (temperature, 

humidity, etc.) often have slow response times when compared to online spectroscopic 

methods.
41

  As a result, excursions from the process trajectory may be detected after a 

finite time lag.  This can have devastating consequences for a sensitive process.  The risk 

of batch failure may be substantially increased if information about the process lags even 

30 seconds behind the process. 

While the EEF calculations provide an excellent strategy for controlling the 

drying mechanism and rate, which is the single most impactful mechanism in a physical 

fluid bed operation with regards to the final product properties, additional calculations are 

needed to understand and control airflow dynamics and mixing mechanisms.  When 

controlled, these properties limit the amount of solid entrainment/elutriation, narrow the 

final particle size distribution, reduce the risk of uneven processing or temperature 

excursions, and provide insight into potential problems in scale-up and transfer.  Due to 

the complexity of these phenomena, they are addressed through simulation using the 

bubbling bed model,
4
 or through computational fluid dynamics.

32-36
  Both methods 

incorporate material and air properties into simplified expressions for complicated heat 

and mass transfer models, hydrodynamic expressions, and kinetic theory.  The results of 

the simulation are then compared to empirical results, and the assumptions and input 

properties are adjusted accordingly.  This information can provide knowledge about 
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potential problems with dead spots in certain fluid bed geometries or distributor plate 

designs, which is invaluable for initial process design, scale-up, and transfer applications. 

Even in the most rigorous first principle control systems, some amount of 

empirical modeling is necessary to define the optimum set points for the first principle 

variables and to predict downstream product properties using critical material attributes 

(CMAs) and critical process parameters (CPPs).  Expanding on these models and 

including process analytical technology (PAT)
41

 into the control system can reduce the 

risk associated with the shortcomings of purely first principle systems.  Statistical 

treatments of development data also quantify future uncertainty to reduce the risk of 

future batch failures.  This dissertation aims to demonstrate the feasibility of a hybrid 

control system. 

 

1.3.3  Empirical Control Systems for Fluid Bed Processing 
 

The concept of complete empirical controls for fluid bed processors in the 

pharmaceutical industry are more recent than the first principle controls and became 

possible with the success of online spectroscopy, multivariate modeling, and complex 

communication and data management systems.  These systems began with traditional 

DOE studies of fluid bed process factors,
40,42-45

 expanded to include online measurements 

of product properties using spectroscopy,
46-49

 imaging systems,
50,51

 and other probes,
52,53

 

to finally creating fully automated supervisory control and data acquisition (SCADA) 

systems
54,55

 with limited complexity.   

Empirical control systems are based on experimentation, observation, and 

statistical modeling.  Well designed experimental plans are needed to produce reliable 

data for modeling.  These controls are completely defined through empirical data 
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analysis.  This usually requires a stochastic experimental approach to limit the number of 

experiments and developmental costs.  Screening designs
56

 are used to identify 

significant variables from a large pool of variables using a small number of experiments.  

Selected variables from the screening design are then investigated in more 

comprehensive designs such as factorial designs,
57

 response surface designs,
58

 mixture 

designs,
59

 Bayesian designs,
60, 61

 or computer-aided designs
62

 to more adequately probe 

the experimental space.  The observed data is then related to the necessary response 

factors using regression analysis,
63

 analysis of variance (ANOVA),
63

 analysis of 

covariance (ANACOVA),
64

 or nonlinear methods.
65

  Augmentation of the second design 

or a third design may be required to increase model performance in a local region of the 

investigated space.  Finally, response surface methodologies
66

 and estimates of model 

uncertainty and future performance
67

 are often needed to describe the complex behavior 

and interactions of the most significant variables with respect to product quality, and all 

models must be validated with independent batches.
2
  The combination of these designs 

creates a large amount of experimentation, but it is absolutely necessary because 

empirical models are only as good as the variance space from which they are derived.   

The advantages of empirical controls complement those of the first principle 

controls.  Online sensors provide direct moisture,
46,47

 particle size,
50,68

 or other 

measurements of the product in real time for immediate CQA information and the simple 

and intuitive definition of phase end points.  For single wavelength, diode array, or CCD 

detector based instruments, which are commonly selected for online applications, 

measurement and response times can be as short as milliseconds.  Predictions can then be 

generated for the acquired spectra from a previously calculated calibration in a matter of 
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seconds.  This allows the process to be ended or adjusted accordingly prior to 

significantly changing.  The immediate feedback and control action provided by PAT is 

crucial for robust processing and for reducing the risk of negative batch excursions. 

It is also simple to define a phase or batch end point using a meaningful property 

measurement of the product (e.g. moisture content).  This simple and immediate feedback 

reduces end point variability and improves product precision.  Fluid bed drying processes 

have an increased risk of overdrying when NIRS is not used to monitor moisture content 

in real time.  This can lead to unnecessary heating of the granules, which may impact 

chemical or physical stability.
21

   

The information contained in near infrared (NIR) or Raman spectra, common 

online techniques, also includes chemical
69

 and physical phase information to give insight 

into the water-solid interactions for improved process understanding.
70-72

  For example, 

an active pharmaceutical ingredient’s (API) crystalline phase or percent purity can be 

monitored in real time.  If an API is marketed as an anhydrous crystalline form, 

conversion to a more stable hydrate may be thermodynamically favorable, which could 

lead to severe deficiencies with regard to final product dissolution.
71,72,21

  This increased 

process understanding can provide insight into batch failures.  The information can also 

be used to create more robust processes using feedback control to limit the amount of 

phase conversion during processing. 

Online spectroscopic methods typically have small sample volumes in a single 

measurement.  Modern data management systems have very good computational power, 

so large amounts of data are able to be analyzed with ease.  As a result, online methods 

are usually set to sample the system at high frequencies.  This increases the overall 
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sample size interrogated per unit time, and provides valuable information about process 

trends, variability, and the breadth of material properties.  First principle calculations 

consider the system as a single unit, so the data afforded by online methods can be used 

to calculate the precision of product CQAs, for better control of downstream 

performance. 

Finally, every robust control system requires some form of empirical modeling for 

the optimization of CMAs and CPPs, identification of process interactions, the prediction 

of downstream performance attributes, and the calculation of a final design space.  Even 

if all process set points can be described using first principle calculations, which is rare, 

DOE is necessary to efficiently optimize the values for maximum performance and 

identify interactions between parameters.  Additionally, it is likely that empirical models 

are necessary to quantify the relationship between a unit operation’s CPPs and 

downstream/clinical product performance attributes, which are the only quality metrics 

that are rigorously meaningful.  Well constructed DOE and statistical treatments can 

provide this information, enabling the identification of a meaningful design space that 

allows for operational flexibility and corrective action, to assure final product 

performance.  A manufacturing system that attempts to produce downstream CQAs 

within specifications by maintaining constant CPPs is not a control system unless it can 

be assured that there is no input variability that will impact performance, which is not 

practically feasible. 

Disadvantages of empirical controls essentially all relate to cost concerns.  All 

online methods require calibration building, and robust process models require large 

experimental designs.  Spectroscopic calibrations are formulation, equipment, and scale 
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specific, so a new calibration must be created for each system or a rigorous transfer 

technique
73-75

 must be applied.  Multiple sensors are necessary in large systems because 

of sampling concerns and batch uniformity questions, so it can be expensive to calibrate 

each instrument independently.  These costs can make development of purely empirical 

controls economically infeasible.   

Process DOE are large, especially when considering external environment factors.  

Including any variable that could potentially affect the process creates unreasonably large 

designs.  Designs to investigate a large number of parameters can be cost prohibitive.  

Adding to this problem, empirical process models are system dependent and not directly 

scalable.  Therefore, the DOE must be repeated for new equipment, scale-up, or 

formulation adjustments.  These factors make the variable reduction capabilities of first 

principle controls desirable.   

A final disadvantage of the empirical approach deals with the sampling interface.  

Online measurements must be integrated into the process.  This can be accomplished by 

submerging a probe into the process or monitoring the process through a viewing 

window.  The windows can become obstructed by sample build-up, rendering the 

measurement irrelevant, with possible product quality consequences.  This requires a 

number of sensors, so that the process can be managed without one or several 

measurements.  First principle calculations may also be used to continue a process along 

the desired trajectory until a sampling interface can be cleared. 

This dissertation aims to combine empirical controls with first principle controls 

in a single hybrid system to eliminate some of the disadvantages and mitigate the risk 

associated with each control methodology.  The first principle calculations are 
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hypothesized to reduce the variability associated with processing mechanisms, while 

reducing the experimental burden during development and scale-up.  The empirical 

models are hypothesized to reduce the variability associated with end point criteria, while 

providing immediate process feedback and increased process understanding.  The hybrid 

control system will provide the most efficient and rigorous automation system for 

pharmaceutical batch manufacturing to date. 

 

1.3.4  Automated Data Management and Control Systems 
 

A control system is a set of devices, communication systems, and software 

designed to regulate the manufacturing output of a product to consistently meet product 

specifications.  The purpose is to operate the manufacturing system so that the net return 

is maximized in the presence of disturbances and uncertainties, rather than the often cited 

advantage of controlling variables at their set points or to track dynamic set point 

changes.
76

  This is accomplished by scientific design, statistical modeling, and by 

exploiting available online measurements of the system to implement a control strategy, 

which is a planned set of controls, derived from current product understanding that 

assures process performance and product quality.
77

 

Prior to 2004, full control systems were difficult to implement in the 

pharmaceutical industry due to regulatory constraints.  Manufacturing processes were 

approved based on a validated combination of process parameters and had to remain 

fixed, so the process could not be adjusted to mitigate measured input disturbances.  

However, the process analytical technology (PAT)
41

 and quality by design (QbD)
2
 

initiatives from the FDA (and recently, other regulatory agencies) allow operational 

flexibility within a validated design space.  These guidelines have made possible 
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automated control systems that incorporate information about a process back into the 

system to adjust process variables to consistently hit product quality targets, or feedback 

control.
76

  These systems offer continuous improvement of the process as additional 

information is gained throughout production life, which provides companies 

improvements in quality and efficiency,
1,78-80

 and the possibility of real-time release.
41

   

In the pharmaceutical industry a control strategy seeks to link the attributes of the 

product that are important to the patient, to the controls in the manufacturing process that 

are needed to deliver those attributes.
81

  This is the main tenet of the QbD initiative, and 

the effort to describe how the manufacturing operations affect CQAs is a major 

determinate in the amount of regulatory flexibility afforded to the pharmaceutical 

manufacturer.  It is the responsibility of the pharmaceutical company to relate all 

variables that are included in the validated design space to a meaningful metric of product 

risk.  The control strategy’s objective is to then minimize the quantified risk. 

Feedback control is necessary to handle the variability, inaccuracies, and 

uncertainties present in the design process, and to make full use of the capacity of the 

equipment and measurement systems.  There are two options for feedback: negative 

feedback or positive feedback.  In positive feedback, the measured value is added with 

the set point, and in negative feedback the difference between the measured value and the 

set point (system error) is calculated.  Negative feedback is the more popular control 

mechanism because it is more stable and less affected by random variation and error in 

the measurement.
82

  Negative feedback will be considered in all cases in this dissertation. 

Feedback control systems are designed so that certain designated signals (errors) 

do not exceed predetermined levels (specifications).  Making this more difficult is that 



 

 

 

35 

the mathematical models that are used in representing real systems have uncertainty and 

the measurements that are used to inform the models contain errors.  Rigorous review of 

all issues of control system design has been covered extensively.
82, 83

 

The specific design of a control system should be developed based on the needs of 

the process that it is controlling.  The process to be controlled should be studied and the 

types of sensors and actuators that are necessary for the requirements must be selected.  

The system must be adequately modeled and simplified if necessary, and the properties of 

the final model must be determined.  Once the properties are determined, performance 

specifications can be implemented to ensure the required product quality.  Finally, the 

type of controller can be selected that will ensure production within the defined 

specifications.  It is important that a theory of feedback not only leads to good designs 

when possible, but also indicates directly and unambiguously when performance 

objectives cannot be met.
83

 

The current dissertation will use a combination of first principle calculations and 

online process measurements in a combination feedforward/feedback (multicomponent) 

control system with real-time optimization (RTO).
84

  An RTO system is a model based, 

upper-level control systems in a closed loop that provides set points to lower-level 

control systems to maintain the process at its optimum state.
76

  At the lowest level, simple 

logic, linear loops, and proportional-integral-derivative controllers (PID) adjust 

manufacturing controls based on the needs of the upper level models.  The system is 

illustrated in chapter 2. 

A PID controller is a control loop feedback mechanism that is the most common 

for industrial applications.  The controller attempts to minimize the error between a 
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measured process variable and the desired set point.  There are three separate calculations 

that are used to adjust the process variable toward the set point.  The first calculation 

(proportional) depends on the current error, the second (integral) on the accumulation of 

past errors, and the third (derivative) on the prediction of future errors.  The weighted 

sum of these three calculations is used to adjust the process parameter to minimize error 

from the set point.
84

   

   









dt

de
KedtKeKu dip       (1.2) 

In equation 1.2, u is the control variable value, e is the error, and K is the weight for each 

of the three calculations. The weights of these can be adjusted for the needs of a given 

control loop, with the derivative calculation often down-weighted because it is 

significantly affected by process noise.  The final equation for manipulating the control 

variable to approach the set point is called the transfer function.  The PID controller is a 

basic form of feedback control, and is crucial for the automated control of manufacturing 

processes. 

Higher level control loops are needed to determine the values of the set points to 

be passed to the lower level PID controls.  Real-time optimization is the feedback control 

strategy that enables these optimum set points to be calculated.  Traditional RTO required 

the system to reach a steady state before any adjustments were implemented, resulting in 

very long response times.  Recent applications have used high frequency RTO to perform 

real-time evolution, so that the process can be adjusted toward the optimum state 

continuously before a system steady state is reached.
76

  These principles are incorporated 

into the control system described in this dissertation, and the models that are developed 

within these control strategies will be discussed in detail in later sections. 
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Well characterized systems (which often incorporate first principle controls) can 

be improved when feedback control is combined with a feedforward function.  The 

feedforward function is basically an inverse model of the process, and can be used to 

inform the process of variability with respect to incoming material or process factors.  

The advantage of feedforward control is that corrective action is taken for a change in a 

disturbance input before it affects the control parameter.  For example, the heated air 

temperature can be adjusted to maintain a constant drying rate in a fluid bed dryer based 

on a measurement of a change in input air humidity.  Even when there are modeling 

errors, feedfoward control can often reduce the effect of the measured disturbance on the 

output better than feedback control alone.  This leads to more stable processes. 

Feedforward control is always used in combination with feedback control because 

feedback control is always required to track set point changes and suppress unmeasured 

disturbances that are always present in real processes.  Process analytical technology is 

crucial for the successful implementation of either control strategy because it is these 

online measurements of the process or raw materials that provide all of the information 

needed for adjustments.  Without PAT, process or material disturbances could not be 

identified and process improvement would be impossible. 

The system described in this dissertation will use a combination of engineering 

process control and statistical process control.  Engineering process control is applied to 

processes in which successive observations are related over time and where the mean 

drifts dynamically.  It seeks to minimize variability by transferring it from the output 

variable to a related process input.
85

  This is the overall control strategy in the proposed 

multicomponent control system, but statistical process control, which seeks to minimize 
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variability by detecting and eliminating assignable causes of variation on processes that 

vary about a fixed mean, is used to reduce variability within local control loops of 

process inputs at the lowest levels of control loops. 

All extensive control systems for dynamic processes use a hierarchical system of 

control loops of different kinds to achieve full automation.
81

  At the highest level, 

complex models relate product quality measurements to process parameter inputs to 

control the actual manufacturing process.  These controls are called process or 

engineering controls.  An example of these controls is the final moisture content of a 

pharmaceutical granulation that provides the optimum granule properties, and the process 

parameters that are required to reach the optimum moisture content.  These process 

controls are the most difficult to develop and require extensive DOE.  They often include 

complex interactions between process factors in real manufacturing examples, and may 

contain large amounts of uncertainty.  The largest investment is made for development of 

this layer of controls. 

Below the process controls are the analytical controls, which relate spectroscopic 

or process measurements to individual markers of the process trajectory.  Analytical 

models produce the data about product quality that is used to inform the process controls 

to adjust the manufacturing process.  Using the same example, the analytical model 

would be the model that generates a moisture prediction from an online spectroscopic 

measurement.  The complexity of an analytical model depends on the measurement.  

Simple univariate models can be used to predict airflow from pressure differential 

measurements, but more commonly, complex multivariate and chemometric treatments 

are necessary for spectroscopic data.   The investment required for an analytical model 
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should be proportional to the risk or importance associated with the property 

measurement.  If the measurement is informing the process models for the most 

important quality metric, then a high degree of model performance is required.  Each 

analytical model must be validated and maintained to assure future performance. 

Still below the analytical models are the simple ladder logic or PID loops.  These 

loops are used by the control software to maintain the process parameters at their given 

set points.  For example, they inform the heater when to pulse on or cycle off to maintain 

a temperature at a given set point.  The transfer functions associated with PID loops are 

optimized to either reduce the risk of over-adjusting a process measurement, or to reduce 

the time associated with reaching a desired set point.  In most practical systems, the 

control software will optimize the PID loops based on default settings, and must be 

changed by the user if a different performance criterion is required. 

All levels of the control strategy require a maintenance system to assure model 

robustness over time.  The maintenance system is crucial for long term feasibility because 

all systems drift.  Machine parts and motors age, causing them to respond differently to 

process adjustments, so the transfer functions must be updated to maintain performance.  

Additionally, the responses of instruments and sensors drift, requiring model update for 

prediction of product properties.
86

  Finally, new variability that was not included in the 

original models inevitably is encountered, requiring some degree of model update or 

augmentation.  The control system should have a regular maintenance schedule whose 

frequency is related to drift magnitude or frequency. 

The complexity of these systems and the significant development that is necessary 

for successful implementation is the central theme of this dissertation.  The structure of 
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the control system developed and the derivation of the models associated with the control 

system will be discussed rigorously in later sections.  The dissertation will prove that the 

automation system developed provides improvements to both manufacturing quality and 

efficiency in the systems that were investigated. 

 

1.3.5  Gabapentin 
 

Gabapentin (1-(aminomethyl)cyclohexaneacetic acid) is the API that was used in 

several of the manufacturing control and design space studies of this dissertation.  It was 

chosen by the FDA as the drug formulation to study in a quality by design (QbD) project 

through the National Institute for Pharmaceutical Technology and Education (NIPTE) 

titled, “Development of Quality by Design (QbD) Guidance Elements on Design Space 

Specifications Across Scales with Stability Considerations.”  It was chosen because it 

was a marketed drug that had problems due to physical and chemical stability.  The FDA 

believed that manufacturing stress had a direct impact on the stability of gabapentin 

tablets.  This made gabapentin an ideal case study for the development of a 

manufacturing controls strategy because the operation had to be well understood to 

ensure final product stability.    

Gabapentin is in a class of medications called anticonvulsants or antiepileptic 

drugs (AEDs), and it is used to control certain types of seizures in patients who have 

epilepsy.
87,88

  It is indicated as an adjunctive therapy of partial seizures and treats seizures 

by decreasing the abnormal excitement in the brain.  Gabapentin is particularly effective 

against complex-partial seizures as occurring in temporal lobe epilepsy.
89

  It is also 

indicated for the management of pain associated with post-herpetic neuralgia (PHN) by 

changing the way the body senses pain.
87

  Additionally, gabapentin is prescribed for off-
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label uses including relieving the pain of diabetic neuropathy and to treat or prevent hot 

flashes in post menopausal women or women who are being treated for breast cancer.   

The drug was derived by adding a cyclohexyl group to the backbone of γ-

aminobutyric acid (GABA), so that gabapentin would cross the blood-brain barrier, 

unlike GABA, but retain the physicochemical properties of GABA.
89

  It has a molecular 

mass of 171.24 g/mole.  The structures of gabapentin, GABA, and gabapentin’s primary 

degradant are displayed in Figure 1.3.  Gabapentin, however, exhibits no activity at 

GABA receptors in vivo.  It does not modify GABAA or GABAB radioligand binding and 

it is not converted metabolically into GABA or a GABA agonist.  It does, however, 

increase the synthesis of GABA in the human brain, enhance GABA release, and 

potentiate GABAergic inhibition in the portion of the brain thought to be critically 

involved in seizure propagation.  This increases the threshold for seizures and decreases 

seizure propagation.
89

 

 
Figure 1.3. Reproduced from Potschka et al.,89 the chemical structure of GABA, gabapentin, and 

gabapentin lactam. 

 

Gabapentin has a pKa1 of 3.7 and a pKa2 of 10.7.  It is a BCS class III drug,
90

 

meaning it is freely soluble in water but has low permeability with a log of the partition 

coefficient (n-octanol/0.05M phosphate buffer) at pH 7.4 of -1.25.
91

  Combined with the 

fact that it is a low potency drug, gabapentin must be dosed in large amounts to achieve a 
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pharmacological effect.  It also displays delayed pharmacodynamic effects after systemic 

administration because it does not penetrate the blood-brain barrier via passive diffusion 

due to its zwitterionic and hydrophilic properties.  Therefore, it passes via a saturable 

active transport process.
89

 

It is dosed perorally in capsules, tablets, and oral solutions.  Single doses are 

marketed in hard shell capsules containing 100, 300, or 400 mg, elliptical film coated 

tablets containing 600 or 800 mg, or oral solutions containing 250 mg/5 mL.
91

  

Manufacture of 889 mg elliptical tablets containing a 600 mg unit dose of gabapentin is 

the subject of a portion of this dissertation.  The exact formulation will be presented in 

later sections. 

Systemic absorption of gabapentin is not dose proportional, meaning that a lower 

percentage of the total dose is absorbed as dose increases, which is another reason that 

high dose delivery systems are required.  Food has only a slight effect on the rate of 

absorption, so it does not have to be administrated in a specific fed state.  Less than 3% of 

the drug is circulated bound to plasma protein, and the approximate fraction of 

gabapentin in cerebrospinal fluid (CSF) is 20% of the plasma concentration.
91

     

Gabapentin is eliminated from systemic circulation via renal excretion, and the 

drug molecule is unchanged.  Hepatic metabolism of gabapentin in humans does not 

occur.  The half-life is 5-7 hours, which is not affected by dose or multiple dosing.  The 

pharmacokinetics is not affected by gender, and there has been no evidence to indicate it 

is affected by race.  Elimination is strongly influenced by a patient’s renal function, so 

plasma clearance is significantly reduced in elderly patients or patients with impaired 

renal function.  Dosage adjustments are required in these situations.  Clearance is slightly 
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increased in pediatric patients under the age of 5, but children over the age of 5 have 

clearance and plasma concentrations similar to adults.  The elimination rate constant is 

directly proportional to a patient’s creatinine clearance, a measure of renal function.
91

 

The exact mechanism by which gabapentin exerts its anticonvulsant or analgesic 

effect is not well understood, but it prevents seizures with a similar effectiveness 

compared to other marketed anticonvulsants.  It has been tested in a wide array of 

common radioligand binding assays at concentrations up to 100 µM and did not exhibit 

affinity for any of them. 
91

  It does not alter cellular uptake of dopamine, noradrenaline, 

or serotonin.  The only potential source of activity was revealed by in vitro studies of 

radiolabeled gabapentin, where a gabapentin binding site in areas of rate brains including 

the neocortex and hippocampus was shown.  Functional correlates of gabapentin binding 

have yet to be elucidated.  Gabapentin as an adjunctive therapy was shown to 

significantly reduce the frequency of seizures and secondarily generalized tonic-clonic 

seizures in several clinical trials.
91

  It has been shown to reduce seizure generation and 

seizure propagation, leading to its broad anticonvulsant effect. 

For the analgesic effect, gabapentin prevents allodynia and hyperalgesia in animal 

models.  It has not been shown to alter immediate pain related behaviors, but it did 

prevent pain related responses in animal models of neuropathic pain and decreased pain 

related responses after peripheral inflammation.  The relevance of these animal model 

results to humans is not known.  A clinical study for pain management of PHN showed a 

significant decrease in the pain experienced by the treatment group.
91

  

Like all AEDs, gabapentin increases the risk of suicidal thoughts or behavior in 

patients using the drug.  The FDA suggests that patients treated with any AED for any 
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indication should be monitored for the emergence or worsening of depression, suicidal 

thoughts or behavior, or any unusual changes in mood or behavior.  In clinical trials, 

patients in the treatment group had approximately twice the risk of suicidal thinking or 

behavior as those in the placebo group, an increase in one case for every 530 patients.
91

  

Drug reaction with Eosinophilia and Systemic Symptoms (DRESS) or multiorgan 

hypersensitivity has been reported in AEDs including gabapentin.  Gabapentin may cause 

dizziness, somnolence, and other symptoms related to central nervous system (CNS) 

depression.  Other adverse events occurred in children age 3-12 years old and included 

emotional lability, hostility, thought disorders, and hyperkinesia.  An unexpectedly high 

incidence of pancreatic acinar adenocarcinomas was identified in male rats that were 

given gabapentin, so it also has some tumorigenic potential.
91

 

Gabapentin, as a drug substance, is a crystalline solid with four known 

polymorphs.  Form I is a monohydrate, while Forms II-IV are anhydrous.  Form II is the 

marketed and most stable form, but polymorphic transformations have been reported 

following mechanical or thermal stress.
92

  Polymorphic transformations have also been 

demonstrated by the NIPTE research team to depend on the moisture available from the 

environment and excipient interactions.   

Form II has been shown to chemically degrade at a slow rate, while the 

metastable forms have significantly poorer chemical stability.  Therefore, the physical 

stability is crucial in determining the long term chemical stability because chemical 

degradation is typically preceded by conversion of Form II to the metastable Form IV.   

The only chemical degradant of gabapentin known to date is its lactam analogue 

(gabapentin lactam) (3,3-pentamethylene-4-butyrolactam) (Figure 1.3).  Gabapentin 
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lactam is dangerous because it has been shown to exhibit a convulsant inducing effect 

(demonstrated on rats).
89

  A recall of a generic gabapentin product occurred in 2007 due 

to excessive impurities, and it is believed that the quantity of gabapentin lactam exceeded 

the specification prior to the expiration date.
93

 

The FDA believed that the amount of degradation was directly proportional to the 

mechanical and thermal stress experienced during manufacturing, which made it 

interesting as a case study for manufacturing controls and design space development.  

The amount of gabapentin lactam must not exceed 0.4 mole % in the final tablets 

throughout their shelf life.
94

  Completed research by the NIPTE research group as part of 

this dissertation has proven that manufacturing stress does have an effect on the 

magnitude and rate of degradation in gabapentin tablets.   

Gabapentin easily forms gabapentin lactam via intramolecular cyclization.
95,96

  As 

stated previously, degradation of gabapentin Form II is preceded by a polymorphic 

transformation.  In a study of polymorphic transformations resulting from milling, Lin et 

al. showed that milling Form II resulted in trace amounts of gabapentin lactam and 

transformation to form III.
92

  The lactamization was attributed to the heating effect 

induced by milling.  Further milling resulted in further transformation to form IV and an 

additional amount of gabapentin lactam.  Metastable forms of gabapentin show higher 

chemical degradation kinetics over time, so even small amounts of physical 

transformations can impact long term stability.  The polymorphic transformations were 

both retarded or accelerated in the presence of different excipients. 

Hsu and Lin investigated the solid state lactamization kinetics of gabapentin upon 

heating.
97

  There proposed pathway for intramolecular lactamization of gabapentin in the 
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solid state is displayed in Figure 1.4.  Since gabapentin is a zwitterion in the solid state, 

the lactam formation was proposed to occur by the negatively charged carboxyl group in 

the zwitterionic state attacking the protonated amino group.  This eventually leads to 

cyclization and the formation of gabapentin lactam and release of a water molecule.  

There studies again showed that lactamization was preceded by formation of gabapentin 

Form IV.  It appears that this form significantly reduces the activation energy required to 

initiate lactamization.   

 

Figure 1.4. The proposed scheme by Hsu and Lin97 for the intramolecular lactamization of gabapentin in 

the solid state.  

 

The kinetic mechanism by which the overall physical and chemical degradation 

occurs following thermal and mechanical stress during processing and storage is 

hypothesized by the NIPTE research group to be a reversible, autocatalytic branching of 

crystalline gabapentin to an unstable form of gabapentin, followed by a spontaneous 

dehydration of the unstable form to gabapentin lactam.  This process is displayed in 

Figure 1.5.  The unstable form of gabapentin (G*) was not identified as a separate 

polymorphic form in NIPTE studies, but as Form II with significant crystal damage, 

disorder, and higher energy.  This high energy form and subsequent dehydration agree 

with the formerly proposed mechanisms. 

Figure 1.5 illustrates that the amount of gabapentin lactam formed is dependent 

on the ratio of the k1 and k2 rate constants to the k3 rate constant. Manufacturing stress 
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(shear and thermal) is believed to cause a small amount of gabapentin lactam formation 

directly from crystalline gabapentin, but the bulk of the degradation is from the 

disordered crystalline state.  The stress applied creates the disordered gabapentin, and the 

amount formed is dependent on the magnitude of the stress applied and the amount of 

disordered gabapentin from previous stress.  To prevent degradation, k1 must be 

decreased by limiting the amount of stress applied. Once disordered gabapentin is 

formed, the rate constant k2 is then significantly higher than the rate constant for direct 

degradation of Form II, and the only method for reducing the rate of gabapentin lactam 

formation is to recover or heal the stable crystalline form.  Therefore, the larger k3 is in 

relation to k2, the less disordered gabapentin is available for degradation per unit time. 

Gabapentin
(G)

(stable form)

Gabapentin
Lactam (L)

autocatalytic branching
spontaneous dehydration

crystal disorder recovery
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Figure 1.5. The proposed degradation mechanism from gabapentin to gabapentin lactam during processing. 

 

The presence of moisture increases the molecular mobility of the gabapentin 

crystals, so while polymorphic transformations are more probable with added moisture, 

recovery/recrystallization of the stable crystalline form from the disordered state occurs 

at a much higher rate.  The probability of polymorphic transformation of gabapentin at 

moisture contents encountered during processing or storage is very small, so the main 

effect of moisture is to increase k3.  Therefore, moisture remaining in the finished product 

or storage at an elevated humidity actually facilitates crystal recovery of Form II and 

decreases the rate of lactamization during storage.   
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The susceptibility of gabapentin to thermal and mechanical stress, the potential 

interactions with excipients, the dangerous effects of the lactam degradant, and the 

unique effect of moisture with respect to stability make the optimization of 

manufacturing controls critical.  This supports the choice of gabapentin as a good case 

study for manufacturing design space development.  This dissertation will develop an 

automated control system for the fluid bed drying of a model gabapentin formulation and 

determine a design space that assures product stability over the required shelf life. 
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Chapter 2: Hybrid Controls Combining First Principle 
Calculations with Empirical Modeling for Fully 
Automated Fluid Bed Processing 
 

 

 

2.1 Introduction 

 

The pharmaceutical industry has invested a substantial amount of resources in 

recent years to develop manufacturing systems that offer improved product quality while 

limiting costs.  The United States Food and Drug Administration (FDA) has encouraged 

the use of the guidelines put forth by the International Conference on Harmonization 

(ICH-Q8)
2
 that allow for operational flexibility within a design space to allow fully 

automated systems that incorporate real-time data management to be possible.  These 

systems offer the opportunity for continuous improvement of the process and resulting 

drug product by allowing information gained during manufacturing through online 

process measurements to inform the process to ensure constant product quality.
3
 

 Fluid bed processing of pharmaceutical powders is an excellent case study for the 

development of a fully automated control system because of its complexity and the 

multiple phases that are encountered during a given fluid bed process.
4,5

  A single fluid 

bed unit operation can take raw powders through blending, wet granulation, drying, and 

cooling.  A fully automated control system must be able to define the state of the process, 

define meaningful end points of each phase before moving into the next phase, and 

incorporate information from process measurements back into the process so that the 

manufacturing parameters can be adjusted to control the process.  This requires a well 

developed communication system that can synchronize multiple process measurements 
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and organize data for analytical and process models.  The models require comprehensive 

experimental designs to be performed so that prediction results are assured to be accurate 

and robust.  Development of these systems requires a substantial initial investment, but 

leads to a rapid return on investment through improvements in product quality and 

efficiency, reduced batch failures, reduced inventory storage, and the potential for real-

time release. 

 Two separate approaches have traditionally been used to model and control the 

fluid bed unit operation.  The first approach uses first principle calculations based on 

thermodynamic heat and mass balance equations to define and control the environment 

inside the fluid bed chamber.  The second approach is empirical and uses online process 

measurements, spectroscopy, design of experiments (DOE), and process modeling to 

control the unit operation.  Each method has benefits and disadvantages, often 

complimentary, but they have not been used together to their full extent in a single 

system.  This chapter demonstrates the development and implementation of a hybrid 

control system that uses both first principle calculations and empirical data management 

for the manufacture of pharmaceutical granules to tight specifications. 

 First principle controls have been used for several decades to model drying, 

aqueous film coating, and fluid bed processes.  The controls include the temperature 

difference method,
26-28

 thermodynamic environment controls,
29-31

 fluidization regimes,
4
 

computational fluid dynamics,
32-36

 and transport phenomena.
37, 38

  All of these methods 

use material properties and measurements of mass, humidity, and heat at different points 

of the process to define the thermodynamic state of the bulk powder or surrounding 

environment.   
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The thermodynamic calculations used for this dissertation were Ebey’s 

environmental equivalency factor (EFF),
29

 which was established in 1987 for aqueous 

film coating.  The same evaporative drying mechanisms control spray granulation and 

drying in aqueous fluid bed processing.   

 The first principle controls offer several advantages that are essential for robust 

and efficient processes.  By definition the calculations are based on material and 

environmental properties, so the calculations are universal for all systems.  Separate 

calibrations for new or adjusted formulations are unnecessary.  The equations are also 

independent of scale or specific equipment, meaning all controls based in first principles 

are directly scalable and transferable.  Scaling up processes from lab scales to full 

manufacturing scales is a major hurdle for pharmaceutical processes,
24,25

 therefore 

eliminating any variables that need to be adjusted between scales is a major advantage. 

The internal fluid bed environment, which is defined using the EEF calculations, 

controls the evaporative drying mechanism and resulting drying rate to allow the final 

granule properties to be controlled more precisely.  The rate at which water is removed 

from granules is often a significant factor in determining final granule material attributes.  

Even if all process parameters remain constant, small fluctuations in the external 

environment will affect the incoming air stream, thus altering the drying mechanism 

without additional controls.  To maintain a constant drying rate without a control system, 

input air must be preconditioned to have constant properties.  These preconditioning 

HVAC systems are expensive, and thermodynamic controls, which continuously modify 

the air temperature to account for moisture variation, make preconditioning systems 

unnecessary. 
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 The final advantage offered by first principle controls is variable reduction.  This 

is the most significant advantage in terms of reducing experimentation and cost.  As an 

example, the EEF calculation takes nine measurements – inlet air temperature, inlet air 

humidity, heated air temperature, product temperature, outlet air temperature, exhaust air 

temperature, exhaust air humidity, airflow velocity, and spray rate – and produces a 

single value (EEF).  Four of the nine measurements, inlet air humidity, heated air 

temperature, airflow velocity, and spray rate, are factors that would be typically altered 

independently in a purely empirical approach.  By reducing the number of input factors to 

be explored in a DOE by three, the cost of development can be significantly reduced.   

 There are several disadvantages to first principle controls, however.  The 

calculations do not account for effects of atomizing air, changes in the droplet size of the 

spray, changes in the kinetic energy of process air and water vapor, and loss of heat from 

the drying bowl.  Typically, these are minor factors, but can have more serious effects in 

sensitive processes.  These factors can be used to control the final particle distribution to 

narrow specifications with additional optimization.  The measurements associated with 

the first principle calculations do not give actual moisture or chemical concentrations in 

the product, nor do they provide estimates of particle size.  Therefore, the definition of 

phase end points are difficult to determine.  There is also no access to additional 

information such as material phase changes or chemical decomposition.  Finally, 

measurements including temperature, which are critical to the first principle controls, 

often have slow response times, so the full extent of excursions from the process 

trajectory are often detected minutes after they occur.  This can have deleterious 

consequences for a particular batch.  
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Full empirical controls for fluid bed processors have become feasible with the 

success of online spectroscopy, multivariate modeling, and complex communication and 

data management systems.  These systems began with traditional DOE studies of the 

fluid bed process factors,
42

 expanded to include online measurements of critical material 

attributes (CMA) using spectroscopy,
46-49

 imaging systems,
50,51

 and other probes,
52, 53

 to 

finally creating fully automated processes
54, 55

 of limited complexity.   

 The advantages of empirical controls complement those of the first principle 

controls.  Online sensors provide direct moisture and particle size measurements of the 

product in real time for immediate CMA information and the simple and intuitive 

definition of phase end points.  The information contained in near infrared (NIR) or 

Raman spectra, common online techniques, also includes chemical and physical phase 

information and gives insight into the water-solid interactions for improved process 

understanding.
70-72

  For example, an API’s crystalline phase or percent purity can be 

followed in real time.  Finally, the online sensors reflect changes in the process 

immediately.  Any excursion from a desired process trajectory can be identified and 

corrected before the batch is lost.   

 Disadvantages of empirical controls include calibration building and large 

experimental designs.  Spectroscopic calibrations are formulation-, equipment-, and 

scale-specific, so a new calibration must be created for each system, or a rigorous transfer 

technique must be applied.  The process DOE for these systems are large, especially 

when considering external environment factors.  Including any variable that could 

potentially affect the process creates unreasonably large designs.  Adding to this problem, 

empirical process models are not directly scalable.  Therefore, the DOE must be 
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replicated for new equipment, scale-up, or formulation adjustments.  These factors lead to 

substantial costs in development and maintenance.   

 Two final disadvantages of the empirical approach address sampling of the 

process.  Online measurements of full scale fluid bed processes require several probes for 

each measurement to ensure that the measurements represent the bulk material.  This 

requires complex data management systems and calibration transfer techniques.  The 

windows through which the sensors collect data can also become clogged, rendering the 

measurement irrelevant, with possible product quality consequences.   

 This chapter was part of a project through the National Institute for 

Pharmaceutical Technology and Education (NIPTE) titled, “Development of Quality by 

Design (QbD) Guidance Elements on Design Space Specifications Across Scales with 

Stability Considerations.”  The research was originally published in the Journal of 

Pharmaceutical Innovation.
129

  This chapter introduces a hybrid fluid bed drying control 

system that combines first principle calculations with empirical modeling.  The EEF 

calculations allow the internal fluid bed environment to be defined despite external 

environment fluctuations for tight product specifications.  The reduction of fluid bed 

processing parameters allows the empirical models to be created efficiently.  These 

models track granule CMAs in real time to provide immediate process feedback and 

intuitive phase end points.  The system is designed to negate the drawbacks of the 

traditional approaches, while allowing the system to be developed efficiently.  Although 

the controls are designed to take a product through all four fluid bed process phases, this 

chapter will focus on developing drying controls only.  Expansion of the controls to 

blending and spray granulation will be addressed in chapter 5. 
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2.2 Theory 

 

 Data matrices will be represented by bold, capital letters (X), vectors will be bold, 

lowercase letters (x), and scalars will be italics, lowercase letters (x).  A summary of 

variables can be found in Table 2.1.  The nomenclature used in Ebey’s original 

manuscript
29

 is used for the description of the EEF calculations in this chapter. 

Table 2.1. Nomenclature used in this chapter. 

AH Heat-transfer surface area 

AH Mass-transfer surface area 

Cp Specific heat capacity of air 

hH Average heat-transfer coefficient 

hM Average mass-transfer coefficient 

htg Enthalpy of vaporization 

Le Lewis Number 

M Molecular weight of water 

p∞ 
Partial pressure of water vapor at 

heated air stream 

pw 
Partial pressure of water vapor at 

mass-transfer conditions 

R Ideal gas constant 

T∞ Temperature of the heated air stream 

TB Heat-transfer surface temperature 

Tw Mass-transfer surface temperature 

ρ Density of air stream 
.

m  

 
Mass rate of water evaporation 

 

2.2.1.  First Principle Calculations: The Environmental Equivalency Factor (EEF) 
  

 The EEF calculations are based on conservation of mass and the first law of 

thermodynamics, namely the conservation of internal energy.  It is assumed that the 

system is adiabatic and that any deviation from this condition can be modeled linearly.  

Therefore, the temperature, flow rate, and humidity of the inlet airstream and delivery 
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rate of the solution are compared to the temperature and humidity of the exhaust air, and 

the difference is the work performed by the system.  By this description, fluid bed 

granulation and drying are adiabatic evaporative cooling processes, with the evaporation 

rate controlling the quality of the granules. 

 The evaporation of water from the surface of granules results from two competing 

mechanisms, heat and mass transfer.  The heat transfer mechanism is driven by the 

difference in temperature between the heated airstream and the surface of the granules.
29
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The mass transfer mechanism is driven by the vapor pressure differential between the 

heated airstream and the surface of the granules.
29 
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These equations assume ideal behavior in the system. 

 Equations 2.1 and 2.2 can be equated using the mass of water evaporation rate 

(
.

m ) and rearranged to relate the effective area in which the heat transfer mechanism acts 

on the granules to the effective area in which the mass transfer mechanism acts on the 

granules.
29 
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This ratio describes the contribution that each mechanism provides to the drying rate and 

is defined as the EEF.   

 The ratio of the heat and mass transfer coefficients can be written
29 
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with the Lewis number (Le) approximately equal to 1.  Substituting equation 2.4 into 

equation 2.3 results in the EEF calculation that is used to control the fluid bed drying rate. 
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 The EEF calculations were derived for an equilibrium drying system or a steady 

state operation.  Spray granulation and drying are not steady state operations due to the 

substantial change in mass with additional and removal of water.  As a result, the EEF 

calculation is more accurate in determining the overall drying rate during the constant 

rate drying period when heat transfer is the rate limiting mechanism for evaporation of 

water and an equilibrium condition is maintained.  During the falling rate drying period, 

diffusion of water from granule cores to the surface of particles is the rate limiting step, 

and the EEF calculation is less accurate at calculating the drying rate.  The calculations 

still provide information to the control system needed to approach the target drying rate, 

however, and the variability in the drying rate is reduced compared to a constant 

temperature system.  The major value of the EEF calculations is reducing the batch to 

batch variability with respect to the drying rate caused by fluctuations in the inlet air 

humidity over time. 

Empirical testing is necessary to define the optimum EEF value for a given 

system, which is defined by the best final product CQAs or minimum patient risk.  Once 

determined, any of the fluid bed parameters can be adjusted as long as the EEF value 

remains unchanged, the granule properties that are affected by the drying rate will remain 
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unchanged.  Variable EEF programs can be established, as long as the EEF profile for a 

given experiment is the same as the validated process.  The fluid bed system can be run at 

different temperatures and airflow velocities using trial batches to estimate the heat 

exchange with the environment over a range of EEF values.  This knowledge can be used 

to correct the above calculations for errors associated with the adiabatic assumption. 

2.3  Materials and Methods 

 

 

2.3.1  Granule Formulation 
 

The granule formulation for this project consisted of 93.75% gabapentin 

(Hangzhou Starshine Pharmaceutical Co., LTD, Hangzhou, China, Batch 0803023) as the 

API and 6.25% hydroxypropyl cellulose (HPC) (Klucel EF, Ashland Aqualon Functional 

Ingredients, Wilmington, DE, USA) as the binder.  Gabapentin was selected as the API 

because it has processing induced stability concerns, so the control systems were very 

important. 

 Gabapentin and HPC were granulated using a Collette MicroGral (GEA Pharma 

Systems, Columbia, MD, USA), a top driven high shear granulator with a 4L glass bowl.  

The two powders were dry mixed in the granulator by the impeller at 500 rpm for five 

minutes.  Water was sprayed onto the dry mixture using a six-inch atomization nozzle 

(Spraying Systems Co., Wheaton, IL, USA) with a stainless steel, flat, fan spray pattern 

and peristaltic pump (323U/D, Watson-Marlow, Wilmington, MA, US).  The water 

addition rate was 16 mL/min with 15 psi atomization air pressure, and the total water 

amount was 5% by weight.  The impeller speed and chopper speed during granulation 
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was 500 and 1000 rpm, respectively.  The impeller and chopper continued mixing after 

spray granulation was complete for 30 seconds (wet massing period). 

 

2.3.2  Fluid Bed Processor (FBP) 
 

Fluid bed drying was performed using a Diosna Minilab (Dierks & Sohne GmbH, 

Osnabruck, Germany) fitted with an 11 L insert.  The inlet airflow velocity was 

optimized to maintain a constant bed height, and is constant for a given batch size after 

an initial burst to ensure fluidization.  The 450 gram batch sizes required 5 m
3
/hr, while 

the 650 gram batches required 10 m
3
/hr.  The filter bags were cleared using a back 

pressure pulse every 60 seconds at 30 psi for all experiments. 

The FBP contained an internal EGE-Electronik series LN/LG air flow sensor 

(Spezial-Sensoren GmbH, Gettorf, Germany) to measure volumetric airflow velocity in 

the inlet air pipe.  Three internal thermocouples measured temperature of the heated air, 

product temperature, and outlet air.  Two series RHL temperature/humidity transmitters 

(Dwyer Instruments, Inc., Michigan City, IN, USA) were added to the system to measure 

the temperature and humidity of the inlet and exhaust air, respectively.  A series 616 

differential pressure transmitter (Dwyer Instruments, Inc, Michigan City, IN, USA) was 

added to the system to measure the pressure drop across the fluid bed.  Near infrared 

spectra were collected through the front viewing window of the FBP using a model 

NIR256L-2.2T2 spectrometer (Control Development Inc., South Bend, IN, USA).  It is a 

256 element photodiode array spectrometer with an extended InGaAs detector (1085-

2229 nm).  An external halogen light source (Control Development Inc., HL-2000) was 

used with a fiber optic probe (Control Development Inc., South Bend, IN, USA, 6 around 

1 reflectance probe).  A schematic of the FBP and its sensors is presented in Figure 2.1.   
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 The EEF value (which adjusts and controls the heated air temperature to 

maintain a constant drying rate), heated drying end point (NIR predicted moisture 

content), cooling amount (product temperature at discharge), and batch size were factors 

varied in a 2
4
 full factorial design to study the drying factors that were identified during 

risk analysis as potentially influencing granule properties.  The drying DOE and 

measured results are listed in Table 2.2. 

 

Figure 2.1. The FBP schematic of the available input controls, measurements for the EEF calculation, and 

empirical measurements. 

 



 

 

 
Table 2.2. The FBP DOE factor levels and response results.  (Yellow = experiments pooled for error estimates.) 

Two-level 4-Factor Full-Factorial Design 

Combination Run Order  Factors Responses 

    
EEF 
(a) 

Target Mois.  
End pt. (%) (b) 

Batch Size 
(grams) (c)  

Prod. Temp at  
Completion (

o
C) (d) 

Median PS 
(µm) 

Lactam 
Concentration  

(Mole %) 

- 8 0.450 0.5 450 25 289   

a 7 0.175 0.5 450 25 296   

b 13 0.450 1.0 450 25 328 0.019 

ab 14 0.175 1.0 450 25 298   

c 16 0.450 0.5 650 25 334   

ac 2 0.175 0.5 650 25 310 0.028 

bc 1 0.450 1.0 650 25 330   

abc 3 0.175 1.0 650 25 353 0.016 

d 11 0.450 0.5 450 30 274 0.016 

ad 12 0.175 0.5 450 30 290   

bd 4 0.450 1.0 450 30 284 0.021 

abd 5 0.175 1.0 450 30 332   

cd 10 0.450 0.5 650 30 338 0.022 

acd 6 0.175 0.5 650 30 316 0.026 

bcd 9 0.450 1.0 650 30 329 0.016 

abcd 15 0.175 1.0 650 30 351   

Repeat 17 0.450 0.5 650 25   0.018 

Repeat 18 0.450 0.5 650 25   0.016 

Repeat 19 0.450 0.5 650 25   0.017 

Repeat 20 0.450 0.5 650 25   0.019 

6
1
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2.3.3  Control System 
 

A schematic of the control system is presented in Figure 2.2.  The system was set 

to sample data and send commands at a set frequency of 5 seconds.  The FBP internal 

measurements, which included airflow velocity, heated air temperature, product 

temperature, and outlet temperature, were collected by an onboard programmable logic 

controller (PLC) (Allen-Bradley, Rockwell Automation, Milwaukee, WI, USA).  The 

PLC also communicated the process set points to the FBP and contained the necessary 

ladder logic to run the heater and airflow motor.  The PLC sent the FBP process 

measurements and the previous set points to a DeltaV digital automation system 

(Emerson Process Management, Equipment & Controls, Inc., Lawrence, PA, USA) via 

open process control (OPC).   

DeltaV received the process measurements from the PLC and the 4-20 mA 

analogue inputs from the temperature/humidity sensors and differential pressure 

transmitter and transformed the inputs into digital readings.  The DeltaV software 

contained internal logic for safety switches, alarms, and unit conversions, as well as PID 

controllers for the fluid bed set points.  It also tagged readings from the FBP and input 

controls from the control software to organize the communication between these two 

systems. 
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Figure 2.2. A schematic presenting the control systems’ communication network. 

 

The control software for the system was synTQ version 3.5 (Optimal, Bristol, 

UK).  This software synchronized all measurements on the FBP at a fixed cycle, so that 

each measurement could be compared for a specific moment.  SynTQ received all 

process measurements from DeltaV via OPC and received NIR spectra directly from the 

spectrometer.  SynTQ organized the raw data and sent the information to the necessary 

analytical models.  All of the analytical and process models were compiled and input 

directly into the synTQ software.  The analytical models output product or process 

property predictions, which were then passed within synTQ to the process models.  The 

process models took the property predictions and predicted the process parameters 

(airflow velocity and heated air temperature) necessary to continue the process along the 
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trajectory for the next cycle.  These parameter predictions were then passed via OPC 

from synTQ to DeltaV, which translated the parameters for communication to the PLC, 

and the PLC finally adjusted the process parameters as directed. 

Also included within the synTQ software was all of the necessary logic to define 

phase boundaries within a batch.  A given batch’s logic chart is called an orchestration.  

A flow chart depicting the orchestration for all four phases of a fluid bed process is 

shown in Figure 2.3.   In the current chapter, the process began at phase 3 (drying) and 

continued through phase 4 (cooling) before ending.  The orchestration collected all of the 

data inputs and sent them to their proper analytical models to predict product and process 

properties (e.g. granule moisture content, EEF, etc.).  A decision directed the 

orchestration to the proper FBP phase, where the logic conditions for the phase were 

contained.  A logic decision determined how far into a given phase the process was at the 

moment of data collection.  The analytical predictions were then sent to their proper 

process models to predict the process parameters that needed to be sent to the FBP.   

For a full, four phase FBP process, the dry blending phase was set to a constant 

airflow velocity, ambient heat, and no spray for a set amount of time.  It is possible to 

train a NIR chemical concentration model to predict end point homogeneity, and 

moderate heat can be applied to preheat the system.  When the allotted time for blending 

is complete, synTQ moves the system to phase 2, to begin spray granulation.   
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Figure 2.3. FBP synTQ orchestration flow chart.  

6
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For the spray granulation phase, a constant spray rate is used and the airflow 

velocity is adjusted to maintain a constant bed height using the differential pressure 

measurement.  The inlet air temperature is adjusted to maintain a constant EEF after 

accounting for all other factors.  Spray granulation continues until the NIR predicted 

moisture content reaches a predetermined threshold over a set number of consecutive 

cycles.  The parameters over a typical drying batch are displayed in Figure 2.4.  When the 

threshold is reached, synTQ moves the system to phase 3, the drying phase. 

During drying, the liquid addition was ceased, but the airflow velocity continued 

to be adjusted by the differential pressure measurement, while the inlet air temperature 

was altered to maintain a constant EEF.  The phase continued until the NIR predicted 

moisture content reached a minimum threshold and a window containing the previous 

one minute of moisture predictions reached a minimum standard deviation threshold.   

In the current chapter, wet granulate from the high shear granulator was charged 

into the FBP and the orchestration began at phase 3.  An initial burst of maximum airflow 

(100 m
3
/hr) was necessary to fluidize the wet powder, but once fluidized, the granules 

dried rapidly enough that a constant airflow that was dependent on the batch size could 

maintain a constant bed height.  The moisture threshold was adjusted as part of the drying 

DOE with the low moisture level being 0.05% because the dry powder moisture content 

was approximately the same.  The standard deviation threshold was 0.005% moisture 

content.  This assured that the bulk of the granules had reached the threshold.  Once the 

threshold was reached, synTQ moved the system to phase 4, the cooling phase. 

When cooling began, the heater was turned off and the airflow motor was set to 

remain at a constant velocity.  This continued until the product temperature reached a 



 

 

 

67 

minimum threshold.  The static airflow velocity was dependent on the batch size for the 

current system, and the minimum product temperature threshold was adjusted as part of 

the drying DOE. 

 

2.3.4  Data Analysis 
 

The analytical and process models that were included in the control system were 

created using MATLAB v. 7.1 R14 (The Mathworks, Natick, MA, USA) equipped with 

the PLS_Toolbox v. 3.0.4 (Eigenvector Research Inc., Wenatchee, WA, USA) and 

programs written in house.  MATLAB code was compiled using MATLAB Compiler 

(The Mathworks, Natick, MA, USA) for use by the synTQ software.  The DOE results 

were analyzed using the statistical software, jmp 8 (SAS, Cary, NC, USA).  All possible 

main effects and second order interactions were investigated, and variables were screened 

for significance using the p-value statistic at the α-level 0.10.   

 The NIR calibration for moisture content was created by sampling granules from 

several trial drying batches.  The moisture content was measured using loss on drying 

(LOD) on a Computrac Max-2000 moisture analyzer (Arizona Instruments, Chandler, 

AZ, USA).  The model was created using partial least-squares (PLS) regression on 

standard normal variate (SNV) corrected spectra.  The model required one PLS latent 

variable. 

 The heated air temperature needed to maintain a constant EEF value was 

determined by solving the EEF equation (2.5) for the T∞ variable.  This required solving a 

quadratic equation, with the negative solution (-b) being the solution that resulted in the 

meaningful temperature estimate.  Figure 2.4 displays the calculations that are required 
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for controlling the three major process set points - heated air temperature, fluid bed 

phase, and airflow velocity – for a batch in the drying DOE. 

 For systems requiring the spray granulation phase, a simple univariate regression 

with differential pressure being the independent variable and volumetric airflow velocity 

being the dependent variable was necessary to predict the airflow velocity to maintain a 

constant bed height.  The model was trained by running several trial granulations while 

adjusting the airflow velocity to maintain a constant bed height via visual observation.  In 

this chapter, the process began at drying with a maximum moisture content of only 5%, 

so after the initial airflow burst, a static velocity set point was used to maintain a constant 

bed height.    

 

Figure 2.4.  The calculations required for the three main controls of a fluid bed drying operation.  The top 

row displays the calculations necessary to define the heated air temperature.  Nine measurements are used 

to calculate the EEF value, which is then used to calculate the heated air temperature necessary to maintain 

the EEF at it set point.  The second row displays the online moisture monitoring.  NIR spectra are collected 

and generate moisture predictions via a PLS calibration.  When the moisture threshold is reached, the 

process begins cooling.  The third row displays the airflow calculations.  A measurement of the pressure 

differential informs a univariate model to adjust the airflow velocity to maintain a constant bed height. 
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 A 2
4
 full factorial design was created to study the 4 drying factors (Table 2.2).  It 

was assumed prior to experimentation that the third and fourth order interactions would 

not be significant variables, so the experiments to discover these effects were pooled for 

error estimates.   Upon completion of the design, the experiment that resulted in the best 

granule properties (run order 16 in Table 2.2) was repeated with four additional 

experiments to increase the power of the models and estimate experimental precision.   

 Many granule, blend, and tablet response variables were measured as part of the 

NIPTE study to determine the effects of each unit operation.  Reporting the significant 

process models that create the final design space will be addressed in chapter 3, so 

granule median particle size and a stability indicator were chosen as examples of product 

properties than can be controlled using the control system designed in this chapter.   

The median particle size was determined by sieve analysis of 100 gram granule 

samples using U.S. standard test sieves (Fisher Scientific, Pittsburgh, PA, USA & VWR, 

West Chester, PA, USA).  The samples were shaken using a sieve shaker (CSC 

Scientific, Fairfax, VA, USA) for five minutes at level five.  Ten sieve cuts were 

collected for each sample (U.S. standard mesh #s: 18, 25, 35, 45, 60, 80, 120, 170, 230, 

and pan).  A cumulative mass distribution was determined for each sample and the linear 

portion of the distribution was fit by linear least-squares to solve for the median (dm50) 

value.  The four replicate experiments were not sampled for particle size to conserve 

material for further studies.  Therefore, the models to predict median particle size contain 

16 samples (Table 2.2). 

The chemical degradent for gabapentin is gabapentin lactam, so the gabapentin 

lactam concentration (mole %) in the final blends of these dried granule experiments was 
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measured as a response (stability).  The lactam concentration was measured via high 

pressure liquid chromatography (HPLC) with a SpectraSystem P4000 quaternary gradient 

pump, AS3000 variable-volume autosampler, and UV 6000 LP photodiode array 

detection system (Thermo Fisher Scientific Inc., Waltham, MA, USA) by collaborators at 

the University of Iowa using a µBondpak CN-RP 3.9x300 mm column (Waters, Milford, 

MA, USA).  The HPLC method used 5% acetonitrile in phosphate buffer as the mobile 

phase and a flow rate of 1.0 mL/mL and collected UV data at 210 nm.  All of the drying 

experiments were not taken through the blending and compression unit operations for the 

NIPTE study because of material constraints, so the optimum point based on the granule 

particle size distribution, extreme points of the DOE, and all replicates were selected for 

further study.  Therefore, the stability models contained 12 samples (Table 2.2). 

2.4 Results and Discussion 

 

The two response factors chosen for investigation in this study were selected to 

demonstrate the control systems’ ability to create process models using efficient designs 

to predict two of the major properties that are affected during drying: granule physical 

properties and stability.  The process model statistics for the response variables are 

presented in Table 2.3.  Measured versus predicted plots and surface plots depicting the 

modeled experimental space for the response factors are presented in Figure 2.5.   

The results for the prediction of median particle size were consistent with sieve 

analysis. This technique is associated with variability (note the variability within the four 

groups in Figure 2.5a) because a range of particle sizes are present within each sieve 

fraction.  Despite the inherent reference variability, the control system was able to 

identify significant process factors that affected particles size.  The two factors from the 
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drying DOE that were predictors of particles size were batch size and the end moisture 

target (EMT).  The EMT variable was an expected factor when considering particle size 

because residual moisture in the granulation reduced the total drying time, reduced the 

amount of attrition among particles, and led to a higher probability of larger granules 

staying together. 

Table 2.3. Model statistics for two of the response variables investigated during the drying DOE. (*Root 

mean squared error) 

Model Statistics 

  Median PS (µm) Lactam Mole % 

Samples 16 12 

Number of 
Model 

Parameters 
2 3 

R
2
 0.67 0.78 

RMSE* 15.12 µm 0.0023 Mole % 

P-Value 0.0007 0.0057 

   

The batch size (BS) variable’s relationship with particle size was unexpected. For 

the drying operation, a larger mass may have created enough force at the bottom of the 

bowl during powder transfer to create stronger interactions, but the major influence more 

likely resulted from the high shear granulation unit operation.  A change in batch size 

also changed the ratio of the powder fill height to bowl diameter, which changed the 

mixing characteristics in the granulator.  The 200 gram difference in batch size in the 

DOE experiments was a significant difference in a four liter granulator bowl, so the 

mixing characteristics were substantially altered.  This change had the greatest potential 

for affecting particle size from different batch sizes. 

 The models to predict granule stability (lactam mole %) were important for this 

study because the gabapentin lactam degradant is harmful to patients and must be limited 

to less than 0.4 mole %.  All of the samples had significantly less than the required limit 
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(Figure 2.5b), however the time allotted for the study was inadequate to characterize long 

term stability.  Therefore, it was important to understand the drying factors that caused 

changes in stability, so that the amount of lactam or the propensity to form the lactam 

over time as a result of manufacturing could be minimized.  

Considering the complexity of the fluid bed drying unit operation, the reduced 

sample set, and the lack of a large number of replicate experiments, the model statistics 

for predicting stability were satisfactory (Table 2.3).  The three factors that significantly 

affected granule stability include EEF, EMT, and their interaction term.  The effect of the 

EEF variable was expected because it controlled the amount of thermal stress applied 

during fluid bed drying.  Low EEF values, which correspond to higher heated air 

temperature (EEF = 0.175; high drying rate) increased the degradation kinetics and 

created a larger amount of gabapentin lactam in the final blends.  The EEF variable was 

the second most influential drying factor, however, because NIR moisture predictions in 

the drying controls stop the drying process immediately when the granules reach their 

desired moisture threshold.  Therefore, the granule temperatures were kept significantly 

lower than the heated air temperature due to the cooling imparted by evaporation (data 

not shown).  Without the strict, automated controls and online spectroscopy, continued 

heating of dried granules could have resulted in elevated granule temperatures, which 

would have had a severe stability consequence.   
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Figure 2.5.  Measured versus predicted plots for a) Median Particle Size and b) Blend Pre-Stressed 

Gabapentin Lactam Concentration; and surface plots depicting the modeled drying space for the c) Median 

Particle Size and d) Blend Pre-Stressed Lactam Concentration.  The red lines in a) and c) represent the 95% 

confidence interval for the best fit line.  The blue line represents the mean response of the samples. 

  

 The EMT variable was the strongest predictor of gabapentin lactam mole % in the 

blend samples.  Moisture in a pharmaceutical product often effects stability, but for this 

gabapentin formulation higher residual moisture resulted in more stable granules.  This 

result was confirmed repeatedly throughout the NIPTE study and with several stability 

stress tests.  Part of this effect in the drying operation was the result of suppressing the 

temperature of the granules with increased moisture, but increased stability was also 

observed with higher moisture content samples in stability tests where temperature was 

not a factor.  In a separate stability study (data not shown) residual moisture was shown 
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to facilitate crystal recovery of damaged gabapentin crystals back to the stable crystalline 

form.
102

  This prevented higher rates of chemical decomposition. 

 The significance of the interaction term resulted from experiments that were dried 

at higher temperatures (EEF = 0.175) and low residual moisture (EMT = 0.5%) whose 

samples had higher concentrations of lactam than would have been predicted by the main 

effects themselves.  These factors must be controlled together to fully minimize the 

formation of the gabapentin lactam degradant.    

To summarize the results of the process models, samples dried at higher 

temperatures resulted in similar drying times because of extended cooling (data not 

shown,) and resulted in increased lactam formation, so the data showed that drying at 

lower temperatures (EEF = 0.45; low drying rate) was beneficial.  With low drying 

temperatures, the EPTT variable was irrelevant because the product temperature never 

increased beyond the 25
o
C threshold, so cooling was unnecessary.  The batch size 

variable was more significant in the granulation unit operation than the drying unit 

operation.  Residual moisture in the granules (high EMT) resulted in increased stability, 

but had poorer downstream product properties.  High levels of residual moisture cause 

granules to exhibit poor flow behavior, resulting in poor mixing during blending and 

difficulty in filling dies of the rotary tablet press.  Therefore, the drying DOE showed that 

it was important to control the EEF and EMT variables for optimum product properties, 

with lower drying temperatures and a moderate EMT threshold as the optimum drying 

condition. 

The automated drying controls with the hybrid control strategy facilitated the 

creation of the drying DOE, the collection of data, and the analysis of the results.  The 
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system allowed for all data measurements and calculations to be collected simultaneously 

at five second increments for all of the experiments, while providing a wealth of available 

data.  The EEF calculations reduced three process factors – inlet air temperature, inlet air 

humidity, and heated air temperature – to a single factor, which reduced the DOE from 

64 experiments to 16 experiments.  In a real setting, a full factorial design with 6 factors 

would not be performed due to economic concerns, so the 64 experiments is an 

overestimate.  Reducing the number of drying factors to 4 allowed a full factorial design 

to be performed, however, which significantly increases the information available to the 

analyst.  All main effects and first order interactions could be investigated in an 

economically feasible design.  This was important for the gabapentin study because there 

was a strong interaction between the EEF and EMT drying factors.  This interaction may 

not have been indentified with a simple, less rigorous design, which would have limited 

the effectiveness of the control system. 

The EEF calculations also eliminated the need to have laboratory controls of room 

temperature and humidity or a preconditioned air system.  When the moisture content of 

the inlet air fluctuated, the heated air temperature was modified accordingly so that the 

capacity to absorb moisture within the dryer remained the same, thus controlling the 

drying rate.  The controls made expensive building or equipment designs unnecessary.     

Examining the heated air temperature profiles in Figure 2.6a for all 16 

experiments demonstrates the importance of the EEF calculations for maintaining a 

constant drying mechanism across several days and environmental conditions.  The 

experiments were randomized over only nine days, and the heated air temperature needed 

to maintain the two EEF levels was quite variable.  Much of the offsets among the 



 

 

 

76 

temperature profiles within each EEF group in Figure 2.6a were the result of day to day 

fluctuations in laboratory humidity.  The sinusoidal fluctuations resulted from the heater 

controls inability to maintain a constant temperature, while others are due to variable 

drying end points as part of the drying DOE.  If the runs were extended over several 

climate seasons or years, these fluctuations become more severe and increase the 

importance of utilizing an EEF-based control system.  

The high temperature (high drying rate, low EEF) EEF experiments had 

temperature differences between runs as large as 30
o
C to maintain a constant drying rate, 

while the lower temperature (low drying rate, high EEF) EEF experiments had 

temperature differences as large as 20
o
C between runs.  Without the EEF controls, 

experiments would have been dried at a constant temperature and the drying rate would 

have fluctuated substantially between runs, resulting in product variability.  Figure 2.6b 

illustrates the results of simulating the EEF and thus the drying rate of each of the batches 

if a constant temperature was used for all batches within each group.  

The temperature profiles also display the importance of varying the temperature 

during a batch as moisture was removed from the powder bed.  Batch processes are not 

steady state experiments, so the environment inside the FBP changed as more moisture 

was removed.  The temperature had to be adjusted accordingly to maintain a constant 

drying rate.   The NIR prediction of moisture content assured that the process ended 

precisely when it should.  This limited the time that granules were exposed to heat energy 

with low moisture contents, and thus reduced the maximum temperature experienced by 

the granules resulting in stability improvements.  All of these benefits are impossible 
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without the fully automated control system that combines first principle calculations with 

empirical modeling and rigorous designs of experiments. 

 

Figure 2.6.  a) Heated air temperature profiles for the drying DOE separated by the EEF variable.  b) 

Simulated EEF (and thus drying rate) of the 16 batches if a constant temperature was used for each of the 

two groups. 

 

The hybrid control strategy also controlled the major factors and mechanisms that 

affect the granule properties – evaporation rate/drying mechanism, final granule moisture 

content, and the temperature of the product at discharge – instead of controlling process 

factors through empirical models that affect these important mechanisms.  This allowed 

for greater control of product properties and reduced variability between similar runs, 

which facilitated data analysis and allowed for the extraction of significant drying factors 

with fewer experiments and increased statistical power. 

2.5 Conclusion 

 

This study demonstrated the creation of a hybrid control system for fluid bed 

processing that combines first principle calculations with online data collection and 

empirical modeling.  The control system was fully automated and enabled tight control of 

granule properties affected by drying and potentially for all four fluid bed phases.  The 
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system reduced the number of experiments necessary in the DOE by describing the 

drying environment with a single value, eliminated the need to install expensive 

preconditioned air systems, and provided a wealth of information about the process and 

the granule properties via online spectroscopy.  The controls facilitated the identification 

of significant FBP factors for the definition of optimum process conditions, and reduced 

the risk of batch failures due to stability concerns. 

The study demonstrated the control system’s ability to control two significant 

responses from the drying unit operation – particle size and stability – on a formulation 

that required strict controls to minimize process induced instability.  The results of the 

drying DOE showed low variability in granule properties among similar runs, which 

allowed significant process models to be developed with the reduced data set.   The FBP 

controls and sensors facilitated the collection of precise data in an efficient manner, 

which would, ideally, be implemented for the creation of design spaces for the FBP unit 

operation.  
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Chapter 3: Development of a Statistical Tolerance Based 
Fluid Bed Drying Design Space  
 

 

 

3.1 Introduction 

 

Fully automated control systems are feasible and desirable in the pharmaceutical 

industry since the FDA encouraged the use of the guidelines put forth by the International 

Conference on Harmonisation (ICH-Q8)
2
 that allow for operational flexibility within a 

validated design space.  These systems offer opportunities for continuous improvement of 

the process and resulting quality improvement through drug product information gained 

during manufacturing via online process measurements to inform process adjustments to 

ensure constant product quality.
3
  They have also been established to provide an 

economic incentive for pharmaceutical manufacturers.
1, 78-80

 

The process set points within the automated control system are optimized using 

empirical design of experiments to establish the relationship to final product quality 

metrics called critical quality attributes (CQAs).  The process parameters that are 

significant predictors of final product CQAs are identified as critical process parameters 

(CPPs), and they can be adjusted in real time to consistently meet product specifications 

despite external environmental fluctuations, raw material variability, equipment aging, 

and sensor drift.  The entire modeled space is defined as the knowledge space.  

Specification limits are placed on the predicted CQAs, and the combinations of CPPs that 

manufacture product within the CQA specifications constitute the design space.   
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Appropriately developed designs of experiments (DOE) are typically necessary to 

elucidate the relationship between CPPs and CQAs in an economically efficient manner.  

An adequate number of experiments is necessary to investigate all possible main effects 

and first order interactions of the material and process variables that are identified during 

the initial risk analysis.  Information regarding statistical power and the necessary 

confidence in the process model predictions is used to inform the DOE, so that optimized 

models can be created that fulfill user or process needs.  A stochastic DOE approach is 

popular, where a large number of possible factors are screened efficiently, a secondary 

DOE more rigorously investigates the significant factors to create the knowledge space, 

and a third level of experiments are augmented to local regions of the knowledge space to 

increase statistical power in the future operating or design space.  High order process 

interactions are rarely found to be statistically significant, so experiments to investigate 

these effects are typically eliminated to reduce development costs.   

First principle equations that quantitatively describe the mechanisms that affect 

the product properties in a manufacturing process are desirable because they reduce the 

dimensionality of the final DOE.  These equations describe the multidimensional effect 

of traditional input variables that would have to be investigated independently in a purely 

empirical design. 

The current chapter will use a fully automated, hybrid control system to 

incorporate first principle controls for variable reduction and mechanistic control, while 

also using empirical models and online sensors to provide immediate feedback of product 

properties during the process.  This control system was discussed extensively in chapter 

2.  The environmental equivalency factor (EEF)
29

 was used to quantitatively describe the 
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thermodynamic environment within the fluid bed chamber that was the driving force for 

the removal of water, the major mechanism through which the fluid bed drying unit 

operation impacts product quality.  It combined three variables that affected the water 

removal rate (heated air temperature, inlet air humidity, and airflow velocity) into a 

single value.  This substantially reduced the number of experiments necessary for 

establishing a design space.  In addition, the EEF allowed for direct scale-up because it is 

based in first principles, and eliminated the need for a preconditioned air system.  

Environmental fluctuations that impacted the air properties and affected the drying rate 

were measured, and process variables (airflow velocity and heated air temperature) were 

adjusted to maintain a constant drying rate.  All of these qualities of the automated 

control system allowed for substantial reductions in developmental and equipment costs. 

The addition of online sensors to the automated control system allowed for 

product properties to be monitored in real time, so that each phase of the unit operation 

could be ended reproducibly with respect to product CQAs.  The current study used an 

online near infrared (NIR) sensor to monitor the water content of the pharmaceutical 

granules so that the drying operation was ended consistently from batch to batch.  

Additionally, a differential pressure transmitter was used to measure the pressure drop 

across the fluid bed, which was used to predict the airflow velocity that is necessary to 

maintain a constant bed height despite the substantial change in total mass and granule 

density within the dryer as water was removed.  The automated control system reduced 

developmental costs, facilitated data collection and process understanding, enabled 

feedback control for continuous process improvement, and reduced the variability 

between batches.  These advantages allowed for the identification of significant CPPs 
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with fewer repeat experiments during development and assured product quality in future 

production. 

 In addition to good development practices and process/product understanding, 

rigorous statistical analysis was necessary for robust modeling and design space 

identification.  A design space is a global model that incorporates multiple process 

models that are limited by a series of specifications.  As such, it must be developed 

rigorously and maintained over time.
98

  Each prediction within the process models is 

associated with a finite amount of uncertainty, which increases as the predictions move 

away from the center of the model.  Therefore, the knowledge space can be created to 

reflect either the confidence or risk associated with each point in the modeled space.  The 

design space can then be defined by the area of the knowledge space that maximizes user 

confidence with regards to producing CQAs within specifications during future 

production.  This chapter aims to provide a case study for this development. 

This study was part of a project through the National Institute for Pharmaceutical 

Technology and Education (NIPTE) titled, “Development of Quality by Design (QbD) 

Guidance Elements on Design Space Specifications Across Scales with Stability 

Considerations.”  The research was originally published in the Journal of Pharmaceutical 

Innovation.
130  

As part of the requirements of the project, the formulation was fixed, so 

the specifications on the CQAs had to be met through optimization of the CPPs of the 

manufacturing unit operations.  The active pharmaceutical ingredient (API) for the 

formulation, gabapentin, was chosen due to its stability considerations,
89

 so the CQAs for 

the product include stability indicators, final tablet release indicators, and manufacturing 

variables that include particle flow and tablet strength properties. 
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3.2  Materials and Methods 

 

 

3.2.1  Granule Formulation 
 

The granule formulation for this project consisted of 93.75% gabapentin 

(Hangzhou Starshine Pharmaceutical Co., LTD, Hangzhou, China, Batch 0803023) as the 

API and 6.25% hydroxypropyl cellulose (HPC) (Klucel EF, Ashland Aqualon Functional 

Ingredients, Wilmington, DE, USA) as the binder.   

Gabapentin and HPC were granulated using a Collette MicroGral (GEA Pharma 

Systems, Columbia, MD, USA), a top driven high shear granulator with a 4L glass bowl.  

The two powders were dry mixed in the granulator by the impeller at 500 rpm for five 

minutes.  Water was sprayed onto the dry mixture using a six inch atomization nozzle 

(Spraying Systems Co., Wheaton, IL, USA) with a stainless steel, flat, fan spray pattern 

and peristaltic pump (323U/D, Watson-Marlow, Wilmington, MA, USA).  The water 

addition rate was 16 mL/min with 15 psi atomization air pressure, and the total water 

amount was 5% by weight.  The impeller speed and chopper speed during granulation 

was 500 and 1000 rpm, respectively.  The impeller and chopper continued mixing after 

spray granulation completed for a 30 second wet massing period. 

 

3.2.2  Fluid Bed Processor (FBP) 
 

Fluid bed drying was performed using a Diosna Minilab (Dierks & Sohne GmbH, 

Osnabruck, Germany) fitted with an 11 L insert.  The FBP contained an internal EGE-

Electronik series LN/LG air flow sensor (Spezial-Sensoren GmbH, Gettorf, Germany) to 

measure volumetric airflow velocity in the inlet air pipe.  Three internal thermocouples 

measured temperature of the heated air, product temperature, and outlet air.  Two series 
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RHL temperature/humidity transmitters (Dwyer Instruments, Inc., Michigan City, IN, 

USA) were added to the system to measure the temperature and humidity of the inlet and 

exhaust air, respectively.  A series 616 differential pressure transmitter (Dwyer 

Instruments, Inc, Michigan City, IN, USA) was added to the system to measure the 

pressure drop across the fluid bed.  Near infrared spectra were collected through the front 

viewing window of the FBP using a model NIR256L-2.2T2 spectrometer (Control 

Development Inc., South Bend, IN, USA).  It is a 256 element photodiode array 

spectrometer with an extended InGaAs detector (1085-2229 nm).  An external halogen 

light source (Control Development Inc., South Bend, IN, USA; HL-2000) was used with 

a fiber optic probe (Control Development Inc., South Bend, IN, USA; 6 around 1 

reflectance probe).   

The EEF value, drying end point (End Moisture Target (EMT) (%w/w), end 

product temperature target (EPTT) (
o
C), and batch size (g) were factors varied in a 2

4
 full 

factorial design to study the drying factors identified during risk analysis.  The drying 

DOE and major results are listed in Table 3.1.  The inlet airflow velocity was optimized 

to maintain a constant bed height, and is constant for a given batch size after the initial 

constant rate drying period.  The 450 gram batch size required 5 m
3
/hr, while the 650 

gram batches required 10 m
3
/hr.  The filter bags were cleared using a backpressure pulse 

every 60 seconds at 30 psi for all experiments. 



 

 

Table 3.1.  The FBP DOE factor levels and response results.  (Yellow = Experiments pooled for error estimates). 

Two-level 4-Factor Full-Factorial Design 

Combination 
Run 

Order 
Factors Responses 

  EEF (a) 
End Moisture  

Target  
(%w/w) (b) 

Batch 
Size 

(grams)  
(c) 

End Prod.  
Temp Target  

(
o
C) (d) 

Median  
PS (µm) 

Blend 
Lactam 

(mole %) 

Cohesion 
(kPa) 

Tablet Crushing  
Force (kP) 

Compaction 
Force 
(lbs F) 

 

- 8 0.450 0.5 450 25 289     

a 7 0.175 0.5 450 25 296     

b 13 0.450 1.0 450 25 328 0.019 0.377   

ab 14 0.175 1.0 450 25 298     

c 16 0.450 0.5 650 25 334     

ac 2 0.175 0.5 650 25 310 0.028 0.439 

2815 5.52 

2195 4.52 

1435 3.42 

bc 1 0.450 1.0 650 25 330     

abc 3 0.175 1.0 650 25 353 0.016 0.352 

3045 3.84 

2230 5.48 

1700 4.34 

d 11 0.450 0.5 450 30 274 0.016 0.273 
2675 5.06 

1930 4.14 

ad 12 0.175 0.5 450 30 290     

bd 4 0.450 1.0 450 30 284 0.021 0.4 
2955 5.48 

2230 4.42 

abd 5 0.175 1.0 450 30 332     

cd 10 0.450 0.5 650 30 338 0.022 0.289 

3030 5.56 

2425 4.9 

1560 3.56 

acd 6 0.175 0.5 650 30 316 0.026 0.725   

bcd 9 0.450 1.0 650 30 329 0.016 0.373   

abcd 15 0.175 1.0 650 30 351     

8
5
 



 

 

Two-level 4-Factor Full-Factorial Design (Continued) 

Combination 
Run 

Order 
Factors Responses 

  EEF 
End Moisture 
Target (%w/w) 

Batch  
Size 

(grams) 

End Prod. 
Temp Target 

(
o
C) 

Median  
PS (µm) 

Blend  
Lactam  

(mole %) 

Cohesion  
(kPa) 

Tablet Crushing  
Force (kP) 

Compaction 
Force  
(lbs F) 

 

Repeat 17 0.450 0.5 650 25  0.018 0.591 

2655 4.4 

1840 3.9 

1540 3.3 

Repeat 18 0.450 0.5 650 25  0.016 0.506 

2870 5.6 

2160 4.4 

1540 3.4 

Repeat 19 0.450 0.5 650 25  0.017 0.407   

Repeat 20 0.450 0.5 650 25  0.019 0.407   

8
6
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3.2.3  Fluid Bed Processor Control System 
 

The control system was set to sample data and send commands at a set frequency 

of 0.2 Hz.  The FBP internal measurements, which included airflow velocity, heated air 

temperature, product temperature, and outlet temperature, were collected by an onboard 

programmable logic controller (PLC) (Allen-Bradley, Rockwell Automation, Milwaukee, 

WI, USA).  The PLC also communicated the process set points to the FBP and contained 

the necessary ladder logic to run the heater and airflow motor.  The PLC sent the FBP 

process measurements and the previous set points to the DeltaV Ver.9 digital automation 

system (Emerson Process Management, Equipment & Controls, Inc., Lawrence, PA, 

USA) via open process control (OPC).   

DeltaV received the process measurements from the PLC and the 4-20 mA 

analogue outputs from the temperature/humidity sensors and differential pressure 

transmitter and transformed the inputs into digital readings.  The DeltaV software 

contained internal logic for safety switches, alarms, and unit conversions, as well as PID 

controllers.  It also tagged readings from the FBP and input controls from the control 

software to organize the communication between these two systems. 

The control software for the system was SynTQ version 3.5 (Optimal, Bristol, 

UK).  This software synchronized all measurements on the FBP at a fixed cycle, so that 

all measurements within a cycle could be compared for a specific moment.  SynTQ 

received all process measurements from DeltaV via OPC and received NIR spectra 

directly from the spectrometer.  SynTQ organized the raw data and sent the information 

to the necessary analytical models.  All of the analytical and process models were 

compiled and input directly into the SynTQ software.  The analytical models output 
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product or process property predictions, which were then used as inputs for the control 

models.  The control models took the property predictions and predicted the process 

parameters necessary to continue the process along the desired trajectory for the next 

cycle.  These parameter predictions were then passed via OPC from SynTQ to DeltaV, 

which translated the parameters for communication to the PLC, and the PLC finally 

adjusted the process parameters as directed.  The automated, hybrid control system was 

described in detail in chapter 2.  

 

3.2.4  Blending 
 

A 3.5 quart, stainless steel, custom made V-blender was used to mix the dried 

granules with the extragranular excipients: 11.25% microcrystalline cellulose (MCC) 

(Comprecel M102D+, Mingtai Chemical Company Ltd., Taoyuan Hsien, Taiwan), 6.75% 

starch (Lycatab C, Roquette America Inc., Geneva, IL, USA), 4.50% HPC, 2.47% 

crospovidone (Polyplasdone XL, ISP Chemicals, Wayne, NJ, USA), 1.23% Poloxamer 

407 (WLS Enterprises, Indianapolis, IN, USA), 1.01% talc (IMI FABI LLC/Mutcher 

Inc., Benwood, WV, USA), 0.79% magnesium stearate (Mg. St., Mallinckrodt, 

Hazelwood, MO, USA) for powder blending.  The final concentration of Gabapentin in 

the blend was 67.49% and the final concentration of HPC (intra- and extra-granular) was 

9.00%.  

The blender was charged in the same order for each experiment, from the bottom 

of the vessel.  Two SpectralProbe Process NIR spectrometers (Thermo Fisher Scientific, 

Wilmington, MA, USA; Serial numbers 1277 and 1502) were used to monitor the two 

arms of the v-blender in real time. The instruments collected 100 absorption values 

between 1,600 and 2,400 nm in reflection mode (interpolation from 8.71 to 7.31 nm) and 
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were triggered by a light intensity sensor (intensity rises when powder falls against the 

sampling window, enabling collection). Measurements were made through a sapphire 

window in the top of either arm of the blender. Spectra were sent wirelessly to a 

computer and imported into a custom-made acquisition and analysis system.  The system 

had a response time of less than two seconds to allow real-time, online monitoring of the 

blend homogeneity. 

The Root Mean Squared Error from the Nominal Value (RMSNV) algorithm was 

used to monitor blending.
99

 The RMSNV statistic is a weighted, cumulative, pooled 

standard distance metric that takes into account the deviation of the predicted 

concentration of the major components (gabapentin, starch, MCC, and HPC) of a mixture 

from their target concentration, over a given number of rotations (1 minute of blending). 

The blend end point was determined by the trend of the pooled RMSNV of the two 

sensors and defined as the time at which the pooled RMSNV remained constant for a 

minimum of two minutes. 

Models for predicting constituent concentration were developed using an efficient 

calibration approached, which is described in detail in chapter 6.  The CLS/PLS 

algorithm for multivariate modeling was used to calculate the regression vector for each 

component.
100

 All components except magnesium stearate were blended until the 

homogeneity criterion was reached.  Finally, magnesium stearate was added and blended 

for five minutes in an additional lubrication blend that was not monitored by NIRS. 

 

3.2.5  Tablet Compression 
 

The final blends were compressed on a 16-station, instrumented tablet press (B2 

Stokes, Key Industries, Farmingdale, NJ, USA), fitted with load cells to measure the 
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tablet compression forces.  Only one set of 12.7 mm (0.5'') flat faced, beveled edge, 

round punches and a cylindrical die was used.  The press speed was kept constant at 27 

rpm.  Each batch was compressed at 3 compression forces (3000, 2000, and 1500 lbs.).  

Each compression force was allowed to stabilize and then tablets were collected during 

the steady state into one minute time bins for each of the six minutes of compression.  

Tablets were randomly sampled from each time bin for the crushing strength 

measurements. 

 

3.2.6  Data Analysis 
 

The analytical and process models that were included in the control system were 

created using MATLAB v. 7.1 R14 (The Mathworks, Natick, MA, USA) equipped with 

the PLS_Toolbox v. 3.0.4 (Eigenvector Research Inc., Wenatchee, WA, USA) and 

programs written in house.  MATLAB code was compiled using MATLAB Compiler 

(The Mathworks, Natick, MA, USA) for use by the SynTQ software.  The DOE results 

were analyzed using the statistical software, jmp 8 (SAS, Cary, NC, USA).  All possible 

main effects and first order interactions were investigated, and variables were screened 

for significance using the p-value statistic at the α-level 0.10.   

 The NIR calibration for moisture content was created by sampling granules from 

several trial drying batches.  The reference moisture content was measured using loss on 

drying (LOD) on a Computrac Max-2000 moisture analyzer (Arizona Instruments, 

Chandler, AZ, USA).  The predictive model was created using partial least-squares (PLS) 

regression on standard normal variate (SNV) corrected NIR spectra.  The model required 

one PLS latent variable.    
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 A 2
4
 full factorial design was created to study the 4 drying factors (Table 3.1).  It 

was assumed prior to experimentation that all interactions above first order would not be 

significant, so the experiments to discover these effects were pooled for error estimates.   

Upon completion of the design, the experiment that resulted in the best granule properties 

(run order 16 in Table 3.1) was repeated with four additional experiments to increase the 

power of the models and estimate experimental precision.     

Four response factors of each batch were selected during the initial risk analysis 

to represent the product CQAs.  These properties included the median particle size of the 

finished granules, the amount of gabapentin lactam in the final blend (stability indicator), 

the cohesion of the final blend (flow indicator), and the mean tablet crushing strength for 

each compression force within each batch.  The median particle size was determined by 

sieve analysis of 100 gram granule samples using U.S. standard test sieves (Fisher 

Scientific, Pittsburgh, PA, USA & VWR, West Chester, PA, USA).  The samples were 

shaken using a sieve shaker (CSC Scientific, Fairfax, VA, USA) for five minutes at level 

five.  Ten sieve cuts were collected for each sample (U.S. standard mesh #s: 18, 25, 35, 

45, 60, 80, 120, 170, 230, and pan).  A cumulative mass distribution was determined for 

each sample and the linear portion of the distribution was fit by linear least-squares to 

solve for the mass median (dm50) value.  The four replicate experiments were not 

sampled for particle size to conserve material for further studies.  Therefore, the models 

to predict median particle size contained 16 samples (Table 3.1).  

 The chemical degradent for gabapentin is gabapentin lactam, so the gabapentin 

lactam concentration (mole %) in the final blends of these dried granule experiments was 

measured as the stability response.  The lactam concentration was measured via reverse 
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phase high pressure liquid chromatography (HPLC) with a SpectraSystem P4000 

quaternary gradient pump, AS3000 variable-volume autosampler, and UV 6000 LP 

photodiode array detection system (Thermo Fisher Scientific Inc., Waltham, MA, USA) 

at the University of Iowa using a µBondpak CN-RP 3.9x300 mm column (Waters, 

Milford, MA, USA).  The HPLC method used 5% acetonitrile in phosphate buffer as the 

mobile phase and a flow rate of 1.0 mL/mL and collected UV data at 210 nm.  All drying 

experiments were not taken through the blending and compression unit operations for the 

NIPTE study because of material constraints, so the optimum point based on the granule 

particle size distribution, extreme points of the DOE, and all replicates were selected for 

further study.  Therefore, the stability models contained 12 samples (Table 3.1). 

 The flow measurements were performed at Rutgers University.  Cohesion, which 

is inversely proportional to flowability, was measured using the shear cell module of an 

FT4 powder rheometer (Freeman Technology, Malvern, UK) on 85 cm
3
 samples.  

Cohesion is the shear strength at zero consolidation stress of a bulk powder.  It was 

measured using samples from the same dried granule experiments that were taken all the 

way through blending and compression, so their models also contained 12 samples (Table 

3.1).   

Tablet compression and subsequent crushing strength measurements were 

performed at the University of Maryland, Baltimore.  The crushing strength was 

determined using a diametric compression tester (Model HT-300, Key International, Inc., 

Englishtown, NJ, USA). During the test, the compressive force is applied at a constant 

rate.  Fifteen tablets were randomly sampled across all time bins within each compression 

force for each batch and tested to determine the mean crushing strength. 
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3.3 Results and Discussion 

 

In the QbD paradigm of the pharmaceutical industry, the CQAs should reflect 

properties of the final product that have an impact on the effectiveness or safety of the 

product.
101

  These include drug release properties, drug stability, batch uniformity, 

product physical properties that are conducive to handling, packaging, shipping, etc., and 

properties that ease the manufacturability of the dosage form (flow properties, etc.).  It is 

unnecessary to optimize upstream product properties (e.g. granule particle size) that are 

not demonstrated to impact downstream manufacturing or final tablet properties.  

Upstream CPPs, such as fluid bed drying parameters, must be related to final product 

characteristics or downstream product properties that have a clear correlation to final 

product properties.  For this reason, it is ideal to adjust drying CPPs in a DOE and take 

each batch all the way through tablet compression and release testing. 

 A 2
4
 full factorial design (Table 3.1) was developed to investigate the four major 

drying factors that were identified as potential CPPs during risk analysis.  These factors 

included the EEF set point (EEF), the end moisture target (EMT), the end product 

temperature target (EPTT), and the batch size (BS).  The EEF set point controlled the 

drying rate, and the automated controls used the EEF set point to calculate the heated air 

temperature necessary to provide the drying rate, given the airflow velocity and inlet air 

humidity.  The EMT was the NIR predicted moisture content (%w/w) of the granules that 

ended the heating cycle and sent the process into the cooling phase.  The EPTT was the 

product temperature (
o
C) that ended the drying unit operation.  It controlled the length of 

the cooling phase.  Finally, the batch size (g) was investigated over a small range based 

on the usable capacity of the FBP. 
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 High order interaction terms (2
nd

 order and above) were not anticipated to be 

significant, so experiments to investigate these effects were pooled as repeat experiments 

for error calculations.  This provided an efficiency benefit using a priori information.  

Additionally, four true repeat batches were manufactured to determine experimental 

repeatability, which created a total of 20 experimental batches (Table 3.1).  

Ideally, all batches would have been blended and compressed, but due to material 

and time constraints put on the NIPTE research project, only 12 of the 20 batches were 

blended and compressed.  The midpoint experiments and all extremes of the DOE were 

chosen for full tablet manufacturing, and all batches to investigate the interaction of the 

EEF and EMT variables, because these were identified as the most likely CPPs during 

risk assessment. 

 The CQAs were identified during the initial risk assessment and were refined after 

initial trial experimentation.  Gabapentin stability, reflected by limiting the amount of the 

gabapentin lactam degradant in the product, was identified as the most important CQA.  

Tablet and shelf life stability results were not available for this portion of the project, so 

the furthest downstream stability data was the amount of gabapentin lactam (mole %) in 

the final blends.  As mentioned previously, 12 of the 20 batches were blended. 

Table 3.2.  Model statistics for the CQA response variables investigated during the drying DOE.  (*Root 

mean squared error) 

Model Statistics 

 Median PS (µm) Lactam (Mole %) 
Cohesion 

(kPa) 
Tablet Crushing 

Forces (kP) 

Samples 16 12 12 19 

Number of 
Model 

Parameters 
2 3 3 4 

R
2
 0.67 0.78 0.73 0.95 

RMSE* 15 µm 0.0023 Mole % 0.077 0.23 

P-Value 0.0007 0.0057 0.0109 <0.0001 
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The process model to predict gabapentin lactam concentration in the final blends 

based on drying CPPs, as with all process models, were calculated using mixed (forward 

and backward) stepwise regression in jmp 8.  Statistical results for all optimized process 

models are presented in Table 3.2, while the prediction results are presented in Figure 

3.1.   

The drying CPPs with regards to the stability CQA were the EEF and EMT 

variables.  The EEF variable controlled the amount of heat energy used during drying 

(drying rate), so increased heat energy (low EEF) resulted in increased gabapentin lactam 

formation.  The amount of moisture allowed to remain in the granules was inversely 

proportional to the amount of gabapentin lactam formed.  Increased moisture reduced the 

temperature experienced by the granules during drying, reduced the drying time and thus 

particle collisions, and allowed for crystal healing of the gabapentin molecules that had 

been damaged during high shear granulation, which reduced the rate that the degradation 

pathway progressed.
102

  There was also a strong interaction between the EEF and EMT 

variables, causing curvature in the process model (Figure 3.1a).  Therefore, the lowest 

amount of gabapentin lactam was formed at high EEF (low temperature) and larger 

amounts of residual moisture over the studied range. 

The second highest priority among the CQAs was tablet crushing strength.  The 

formulation had a high dose of gabapentin, which limited the mechanical strength of the 

finished tablets.  Additionally, gabapentin is a BCS class III drug (high solubility, low 

permeability), so tablet disintegration and dissolution were not an issue with any of the 

investigated batches.  The drying CPPs for the prediction of tablet crushing strength were 

the same as the stability process model (EEF, EMT, and interaction term) (Figure 3.1b).  
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As expected, increased residual moisture resulted in stronger tablets.  Higher drying rates 

(low EEF, higher temperatures) also resulted in stronger tablets, which may have resulted 

from a decrease in drying time and less work hardening of the granules during drying.  

Therefore, high EMT and low EEF are ideal in terms of the tablet crushing strength CQA 

because it was necessary to maximize the possible tablet strength. 

 

Figure 3.1.  The process models (knowledge space) for each of the 4 CQA response factors: a.) Gabapentin 

Lactam Concentration  b.) Tablet Crushing Force  c.) Blend Cohesion d.) Granule Median Particle Size. 

 

 The third highest priority among the CQAs was final blend flow properties, 

because these impacted tablet manufacturability and the ability to fill compression dies 

efficiently.  Powder cohesion, which is inversely proportional to powder flow, was used 

as the CQA for final blend flow properties.  The EEF, EPTT, and their interaction term 
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were the significant drying CPPs that predicted blend cohesion (Figure 3.1c).  Drying 

batches that were not allowed to cool to ambient conditions (high EPTT) had poor flow 

compared to batches that were cooled.  The upper right corner of the process model in 

Figure 3.1c shows good flow at high EPTT, but this area reflected the results of drying at 

low temperatures.  These batches were dried at close to ambient temperatures, so the 

product temperature never increased to require cooling, despite having the same ending 

target.  Therefore, the ideal combination of drying factors with regards to the flow CQA 

is low EPTT at all EEF levels except for the absolute highest (slowest drying). 

 The final CQA for the drying unit operation was the median particle size of the 

dried granules.  Increased drying times or batches with increased energy input can cause 

elutriation of the granules, which results in an increase in the fraction of fines.  Some 

granule attrition is desirable, however.  The force of a granule collision is proportional to 

the mass of particles, so the largest particles have a higher probability of breaking.  This 

allows large clumps to break and return to the middle of the particle size distribution.  A 

finite number of fine particles were also necessary to assure efficient packing inside 

tablet dies during the compression operation leading to low tablet weight variability. 

  The batch size and EMT variables were identified as drying CPPs to predict the 

median particle size of the dried granules (Figure 3.1d).  The effect of residual moisture 

was expected.  Increased moisture provided more interactions between particles and 

shortened drying times, which resulted in reduced granule attrition and elutriation.  It was 

determined during data analysis that the batch size effect was a function of the wet 

granulation unit operation, not fluid bed drying.  A change in batch size inherently 

changed the high shear granulator bowl fill height to diameter ratio, which changed the 
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mixing dynamics and effected moisture distribution.  Therefore, the batch size variable 

was not considered significant for the drying unit operation. 

  Figure 3.1 constitutes the total knowledge space of the CQAs obtained through 

investigation of the DOE.  The predicted value of all four CQAs can be determined 

within the given knowledge space at any combination of the fluid bed drying CPPs.  The 

single point prediction drying design space can now be identified by using the 

specifications of all four CQAs to limit the process models to determine the combination 

of CPPs that are predicted to result in CQAs that pass specifications.   

 The USP specification for the amount of gabapentin lactam in the final product is 

less than 0.4 mole % over the course of a 2 year shelf life.  Using projections from the 

initial lactam formation kinetic studies for this formulation (data not shown), the 

specification for gabapentin lactam in the final blend was less than or equal to 0.02 mole 

%.   The tablet crushing strength specification was an industry standard that requires 

tablets to have a crushing strength of at least 6 kiloponds to be feasible for future 

handling, packaging, or film coating.  The specifications for cohesion and median particle 

size were determined from trial batches that were compressed on a rotary tablet press.  

Blend cohesion was required to be less than 0.45 kPa, while granule median particle size 

was required to be between 250 and 500 µm.  With these specifications, the single CQA 

design spaces for the fluid bed drying unit operation are presented in Figure 3.2. 

 From Figure 3.2 and from the rankings of the CQAs, it can be seen that drying at 

low temperatures (high EEF) with higher EMT values was necessary to prevent 

gabapentin lactam formation.  This decision to dry at low temperatures and allow residual 

moisture rendered the EPTT variable insignificant because granules dried at low 
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temperatures never reached the high temperature threshold (30
o
C).  The batch size 

variable had already been eliminated as a CPP, so the final drying CPPs were the EEF 

and EMT variables.  The tablet crushing strength specification was also satisfied at high 

EMT values, while needing medium EEF values.  All batches met the granule median 

particle size specification.  For the cohesion specification, only the low EPTT section was 

relevant, so all EEF values except for the very highest (lowest drying rate, upper-left-

hand corner of Figure 3.2c) satisfied the flow CQA. The final single point prediction fluid 

bed drying design space where the combination of the two fluid bed drying CPPs are 

predicted to produce all CQAs within specifications is displayed in Figure 3.3. 

 It is important to note, however, that the knowledge/design space is a combination 

of process models, which by definition, contain uncertainty.  This uncertainty should be 

reflected in the final design space.  The range over which an experimental result may 

reside around the prediction can be defined be either the confidence interval or the 

tolerance interval, and the magnitude of either range depends on the level of confidence 

the user requires, the error associated with the model, the pure process/experimental 

variability, the number of samples in the calibration set, the structure of the calibration 

set, and the distance from the center of the model in the experimental space.  Uncertainty 

can be reduced in certain areas of the modeled space by including a large number of data 

points to reduce model error in this region, but there is a diminishing return.  A model 

cannot produce lower error than reference error or pure process variability.  A completed 

DOE can be augmented with additional samples within desired regions of the modeled 

space to reduce uncertainty in important regions. 
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Figure 3.2.  The single point prediction design space for each of the 4 CQA response factors: a.) 

Gabapentin Lactam Concentration  b.) Tablet Crushing Force  c.) Blend Cohesion  d.) Granule Median 

Particle Size 

 

In linear modeling, the user often assumes a normal distribution of error (pure 

random error) around the predictions, so the width of the confidence or tolerance interval 

is defined by the percent likelihood that the interval will contain the actual experimental 

result.  A typical confidence/tolerance level is 95% (α = 0.05), but the level of 

confidence/tolerance should be defined by the user to fulfill the needs of a given 

application.  As the level of confidence/tolerance required increases, a wider interval is 

used.  The intervals around predictions are not constant either.  As experiments move 

away from the center of the model, the resulting intervals become wider.  Linear models 

define step changes of the response variable away from the mean that result from step 
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changes in the independent variables.  Therefore, larger distances from the mean are 

associated with larger uncertainty. 

 

Figure 3.3.  The single point prediction design space where the predictions of all 4 CQAs meet 

specifications for the combination of the 2 fluid bed drying CPPs (EEF & EMT). 

 

 A confidence interval reflects the probability that the mean of all future batches 

will reside within the given range.
103

  

 ..ˆ
1,1 ESty n           (3.1) 

In equation 3.1, ŷ is the point estimate or prediction, t is the critical value of Student’s t 

distribution that satisfies α, which is the accepted risk of committing a Type I error, n is 

the number of samples, and S.E. is the estimated standard error of the predictions.  For 
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manufacturing processes, the confidence interval does not adequately mitigate process 

risk.  While the user may have a high degree of confidence that the mean of all future 

responses meets specifications; the risk of a single batch failing specifications may not 

have been mitigated.  Therefore, tolerance intervals, which are wider than confidence 

intervals, provide the more appropriate risk evaluation tool to assure batch quality during 

future production.   

 sky ˆ          (3.2) 

In equation 3.2, ŷ is the point estimate or prediction, s is the standard deviation of the 

predictions, and k defines the width of the tolerance interval and is calculated by 
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where n is the number of samples, z is the critical value of the standard normal 

distribution that includes p, the desired proportion of the population, χ
2
 is the critical 

value of the chi-square distribution that is exceeded by probability γ, which is the 

necessary percent confidence.  Tolerance intervals reflect the probability that a certain 

portion (defined by the user) of the future population of batches will meet 

specifications.
67

   

Due to model uncertainty, it is not rigorously correct to define a design space by 

the portion of the knowledge space where the predictions alone satisfy the CQA 

specifications (Figure 3.3).  A tolerance interval must be defined for each prediction, and 

the probability that a portion of future experimental results falls outside of the CQA 

specifications should be considered.  For example, it is possible to define 95% tolerance 

intervals around all of the predictions within the gabapentin lactam knowledge space 
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(Figure 3.4).  This tolerance interval reflects the range around each prediction where 

there exists a 95% probability that 95% of the future batch population will meet the 

required CQA specifications.  The specification on the gabapentin lactam is a one sided 

criterion (<0.02 mole %), so the upper tolerance limit is the only side that is important.  

For any combination of CPPs within the knowledge space, there is a 95% chance that the 

amount of gabapentin lactam produced in 95% of the future batches is below the upper 

confidence surface in Figure 3.4.  This surface should be used to define the one factor, 

tolerance design space, not the actual predictions. 

A continuous “tolerance design space” that reflects the probability that a given 

combination of CPPs will produce CQAs within specifications was produced by creating 

tolerance surface plots for each process model (Figure 3.5), and then combining the 

results for the final tolerance design space (Figure 3.6) that reflects the overall probability 

of 95% of future batches meeting all 4 CQA specifications.  The probability results in 

Figure 3.5 were a function of model uncertainty for each point in the model and also the 

predicted distance from the specification threshold.  If a combination of CPPs resulted in 

less than 50% probability of success, the resulting response was forced to zero.   

Figure 3.6 reflects the final probability that the combination of the two significant 

fluid bed drying CPPs will result in acceptable CQAs for all four response factors.  

Figure 3.6a reflects the overall probability when each of the 4 CQAs was weighed by 

their relative risk (lactam 90%, crushing strength 5%, cohesion 2.5%, and particles size 

2.5%).  For this reason, Figure 3.6a most closely resembles the tolerance surface of the 

gabapentin lactam knowledge space within the region that is acceptable for all CQAs.  

This figure is recommended as the most rigorous form of a design space.  The user can 
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now make an informed decision regarding an acceptable combination of CPPs that results 

in an adequate probability that quality product will be produced in future batches. 

 

Figure 3.4.  The process model (knowledge space) for the prediction of gabapentin lactam concentration 

with the 95% tolerance interval of 95% of the population displayed around the predictions. 

 

  Figure 3.6b reflects the overall probability surface if all CQAs were given equal 

weight.  The overall probability of success goes down when the chance of any of the 4 

CQAs being out of specifications are considered simultaneously.  Therefore, the final 

probability surface or design space has a much lower probability of success.  This 

calculation assumes that the four CQAs are orthogonal and completely independent, and 

therefore the probability of failure for each CQA does not overlap.  It considers the 
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probability of success using four independent comparisons, or the Bonferoni method of 

multiple comparisons.
104

  This is the most pessimistic measure of future success, so it 

may put overly restrictive limits on the manufacturing process.  In reality, the four CQAs 

are correlated as shown in Figure 3.7, so the probability of a portion of the batch failing 

each CQA overlaps, and the probability of success is higher than considering four 

independent comparisons.  As expected, granule median particle size was 50% correlated 

to tablet crushing strength, and tablet crushing strength is also 50% correlated to 

gabapentin lactam formation. 

 

Figure 3.5.  Tolerance surfaces (design spaces) that display the percent probability that the combination of 

CPPs will produce 95% of future batches within CQA specifications for a.) Gabapentin Lactam 
Concentration  b.) Tablet Crushing Force  c.) Blend Cohesion  d.) Granule Median Particle Size. 
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It must be noted that Figure 3.6 represents the real probability of producing 

batches within specifications during future manufacturing under two different criteria.  If 

the desired or necessary probability is not achieved with the optimum criterion, then the 

original calibration set must be augmented and the model regenerated to reduce model 

uncertainty within a local region of the knowledge space. 

 

Figure 3.6.  The final tolerance surface, which creates the final design space.  It displays the probability 

that the combination of the 2 fluid bed drying CPPs (EEF & EMT) will produce 95% of future batches with 

all 4 CQAs within specifications: a.) Shows the probability weighed by the risk of each CQA (Lactam 

90%, Crushing Strength 5%, Cohesion 2.5%, Particle Size 2.5%)  b.) Shows the probability when the 4 

CQAs are given equal weight. 

 

When determining the final operating space, other factors such as manufacturing 

cost, efficiency, equipment constraints, and ease of processing may also be considered to 

reduce the final design space further into an operating target.  Finally, the models that 

create a final design space, as with all models, must be continually maintained and 

updated as equipment ages, raw materials change, or new sources of variance are 

identified. 
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Figure 3.7.  The correlation matrix, which displays the magnitude of the correlation between response 

factors (CQAs).  Response Factor 1 = Median Particle Size; Response Factor 2 = Gabapentin Lactam %; 

Response Factor 3 = Cohesion; Response Factor 4 = Tablet Crushing Strength. 

 

3.4 Conclusions 

 

This chapter provided a demonstration of the development of a rigorous design 

space for a single pharmaceutical unit operation within the QbD paradigm.  The hybrid 

controls and the design of experiments enabled four drying factors and all first order 

interaction terms to be investigated with a limited number of experiments.  The results of 

the small scale experimentation allowed the number of drying factors identified during 

risk analysis (4) to be reduced by 50% for production control and future scale up 
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experimentation.  The automation system allowed the drying process parameters to be 

modified in real time to control the drying rate in the presence of external environmental 

fluctuations.  Further, the chapter has demonstrated reduced dimensionality of the DOE, 

reduced experimental variability that allowed identification of significant factors with 

fewer repeat experiments, eliminated the need for a preconditioned air system, and 

increased total process understanding.     

The study also showed the importance of using statistics to appropriately 

implement the process models that create the knowledge space and final design space.  

Uncertainty must be understood throughout the knowledge space and reflected in its use.  

Thus, a rigorous design space can be identified using tolerance surfaces that maximizes 

the probability of future success and reduces the risk of process failure.  All models must 

be continually maintained to ensure robustness throughout their use.  These principles 

must be implemented to ensure product quality in a QbD pharmaceutical application. 
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Chapter 4: Efficient Scale-Up of a Fluid Bed Drying 
Laboratory Scale Design Space 
 

 

 

4.1 Introduction 

 

The benefits of automated control systems that are developed rigorously have 

been discussed in the previous chapters.  They are the most efficient method for ensuring 

continuous improvement of a manufacturing process and for ensuring constant product 

quality.  Without identifying and measuring variability in real-time and using that 

information to adjust the process accordingly, batch to batch and intrabatch variability 

increases significantly.  Pharmaceutical companies are beginning to accept the benefits of 

these systems and provide the initial investment required.  Quality by Design (QbD) and 

real-time release (RTR) applications are climbing significantly.
105

    

 Rigorous and well constructed design of experiments (DOE) are required to 

define and validate the relationship between drug product raw materials and 

manufacturing critical process parameters (CPPs) with drug product response factors 

known as critical quality attributes (CQAs).  Developmental studies require a substantial 

investment by the pharmaceutical company, so it is imperative for the experimentation to 

be as efficient as possible while still providing the necessary information and statistical 

confidence.  Leveraging the initial investment is important so that the maximum amount 

of information and monetary return can be realized. 

   Developing the raw material and manufacturing controls is most efficient at 

laboratory scale due to equipment and material costs, but the need to scale up the initial 
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controls for use at full production scale is a significant challenge that must be overcome 

to maximize the utility of initial laboratory scale studies.  This challenge has been 

extensively studied in traditional batch manufacturing,
106, 107

 but a universal solution has 

yet to be achieved.  These issues continue to be studied in pharmaceutical development. 

The fluid bed drying unit operation has several challenges that make scale-up 

difficult.  Changes in equipment geometry can drastically change the fluid dynamics and 

mixing characteristics, while the size of the production scale equipment creates 

temperature gradients and hot spots than can impact product quality.  If the challenges 

provided by process scale-up cannot be minimized, development in the quality by design 

(QbD) paradigm becomes exponentially more expensive and less feasible. 

 Chapter 2 developed an automated hybrid control system for the fluid bed 

granulation and drying unit operation that can be developed efficiently at laboratory scale 

and assures product quality.  The control system used the environmental equivalency 

factor (EEF)
29

 to control the rate of water addition/removal despite changes in the input 

air properties from batch to batch to control the major mechanism through which the fluid 

bed unit operation impacts product quality.  Additionally, online near infrared 

spectroscopy (NIRS) was used to monitor the granule moisture content to provide 

immediate process feedback and define phase end points within the manufacturing 

process.  The control system reduced the variability between replicate batches, allowing 

CPPs to be identified in fewer experiments, reduced the dimensionality of the DOE, 

enabled the calculation of process models with a minimum number of experiments, and 

rendered a pre-conditioned air system unnecessary.  
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 In chapter 3, the hybrid control system was used in combination with DOE and 

rigorous statistical analyses to define a design space for the fluid bed drying of a 

gabapentin formulation at laboratory scale.  The development process provided 

substantial process understanding, reduced the CPPs identified during risk analysis by 

50%, and created a statistical tolerance surface so that an informed decision could be 

made regarding the design and/or operating space.  These previous studies have provided 

a template for rigorous and efficient pharmaceutical development of unit operations, but 

the value of these advances is significantly reduced if the challenges of scale-up are not 

overcome. 

 The current chapter aims to demonstrate how the hybrid control system and 

laboratory scale design space can be efficiently scaled-up using the process 

understanding gained during development.   The first principle controls within the hybrid 

system are directly scaleable, a substantial reason that first principle controls are 

universally desirable.  The random fluctuations within a batch are wider at larger scale, 

resulting from larger environmental gradients within larger pieces of equipment, but 

median responses are statistically indistinguishable.  The process data gained from online 

spectroscopy can also provide feedback, regardless of scale, to control the mechanisms of 

the manufacturing process.  More importantly, however, is that the information gained 

from the empirical models gleaned from the laboratory scale DOE can be leveraged 

during scale-up.  Half of the originally identified CPPs were eliminated at laboratory 

scale, and it is unlikely that a main effect would be significant at one scale and not at 

another.  Therefore, the number of experiments that are needed at larger scales can be 

reduced by 75% when comparing full factorial designs (2
2
 versus 2

4
). 
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 A stochastic approach to scale-up can also provide enhanced process 

understanding and more efficient development.  An intermediate scale can be undertaken 

to inform the stakeholders how empirically derived predictors will have to be transferred 

as the scale increases without substantial material costs being incurred.  The CPPs and 

their interactions identified at laboratory scale should still be significant predictors at all 

scales.  However, the regression coefficients that describe their effect on the CQAs 

typically require adjustments.  The shape of the transfer function is expected to be similar 

across substantial scale-up, with the magnitude of the transfer function being proportional 

to the magnitude of the scale-up. Therefore, much of the process understanding needed 

for a successful scale-up can be determined by performing an initial, intermediate scale-

up study. 

 The range studied for each CPP can be significantly reduced upon scale-up.  The 

statistical analysis performed to define the laboratory design space provides the necessary 

proof of the important region of the knowledge space.  This area may shift upon scale-up, 

but the entire knowledge space studied at laboratory scale does not have to be replicated.  

Therefore, a local space that encompasses the initial design space can be studied during 

the initial scale-up, which can inform the stakeholders how the design space will shift and 

increases the statistical confidence within the local space.  Upon scale-up to production 

scale, an even narrower region is expected to be probed using DOE.  That region is 

defined by the initial design space and the transfer functions calculated during the initial 

scale-up. 

This study was part of a project through the National Institute for Pharmaceutical 

Technology and Education (NIPTE) titled, “Development of Quality by Design (QbD) 
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Guidance Elements on Design Space Specifications across Scales with Stability 

Considerations.”  The research was originally published in the Journal of Pharmaceutical 

Innovation.
131  

As part of the requirements of the project, the formulation was fixed, so 

the specifications on the CQAs had to be met through optimization of the CPPs of the 

manufacturing unit operations.  The active pharmaceutical ingredient (API) for the 

formulation, gabapentin, was chosen due to its stability considerations,
89

 so the CQAs for 

the product include stability indicators and manufacturing variables that include particle 

flow and tablet strength properties. 

4.2  Materials and Methods 

 

 

4.2.1  Pharmaceutical Formulation 
 

The granule formulation for this project consisted of 93.75% gabapentin 

(Hangzhou Starshine Pharmaceutical Co., LTD, Hangzhou, China, Batch 0803023) as the 

API and 6.25% hydroxypropyl cellulose (HPC) (Klucel EF, Ashland Aqualon Functional 

Ingredients, Wilmington, DE, USA) as the binder.  The granules, which comprise 71.99% 

of the final blend, were combined with the extragranular excipients - 11.25% 

microcrystalline cellulose (MCC) (Comprecel M102D+, Mingtai Chemical Company 

Ltd., Taoyuan Hsien, Taiwan), 6.75% starch (Lycatab C, Roquette America Inc., Geneva, 

IL, USA), 4.50% HPC, 2.47% crospovidone (Polyplasdone XL, ISP Chemicals, Wayne, 

NJ, USA), 1.23% Poloxamer 407 (WLS Enterprises, Indianapolis, IN, USA), 1.01% talc 

(IMI FABI LLC/Mutcher Inc., Benwood, WV, USA), and 0.79% magnesium stearate 

(Mg. St., Mallinckrodt, Hazelwood, MO, USA) - for powder blending.  The final 
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concentration of Gabapentin in the blend was 67.49% and the final concentration of HPC 

(intra- and extra-granular) was 9.00%. 

 

4.2.2  High Shear Granulation 
 

4.2.2.1  Laboratory Scale (400-600 g batch size) 

 

Gabapentin and HPC were granulated using a Collette MicroGral (GEA Pharma 

Systems, Columbia, MD, USA), a top driven high shear granulator with a 4 L glass bowl.  

The two powders were dry mixed in the granulator by the impeller at 500 rpm for five 

minutes.  Water was sprayed onto the dry mixture using a six inch atomization nozzle 

(Spraying Systems Co., Wheaton, IL, USA) with a stainless steel, flat, fan spray pattern 

and peristaltic pump (323U/D, Watson-Marlow, Wilmington, MA, USA).  The water 

addition rate was 16 mL/min with 15 psi atomization air pressure, and the total water 

amount was 5% by weight.  The impeller speed and chopper speed during granulation 

were 500 and 1000 rpm, respectively.  The impeller and chopper continued mixing after 

spray granulation completed for a 30 second wet massing period. 

4.2.2.2  Intermediate Scale (1 kg batch size) 

 

Gabapentin and HPC were granulated using a Collette High Shear Mixer Gral 10 

(GEA Pharma Systems, Columbia, MD, USA), a top driven high shear granulator with a 

10 L stainless steel bowl.  The two powders were dry mixed in the granulator by the 

impeller at 420 rpm for five minutes.  Water was sprayed onto the dry mixture using a six 

inch atomization nozzle with a stainless steel, flat, fan spray pattern and peristaltic pump 

(Spraying Systems Co., Wheaton, IL, USA).  The water addition rate was 28.5 mL/min 

with 40 psi atomization air pressure, and the total water amount was 5% by weight.  The 
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impeller speed and chopper speed during granulation were 420 and 1500 rpm, 

respectively.  The impeller and chopper continued mixing after spray granulation 

completed for a 30 second wet massing period. 

4.2.2.3  Pilot Scale (9.72 kg batch size) 

 

Gabapentin and HPC were granulated using a Collette High UltimaGral 75 (GEA 

Pharma Systems, Columbia, MD, USA), a top driven high shear granulator with a 75 L 

stainless steel bowl.  The two powders were dry mixed in the granulator by the impeller 

at 290 rpm for five minutes.  Water was sprayed onto the dry mixture using a six inch 

atomization nozzle with a stainless steel, flat, fan spray pattern and peristaltic pump 

(Spraying Systems Co., Wheaton, IL, USA).  The water addition rate was 277 mL/min 

with 50 psi atomization air pressure, and the total water amount was 5% by weight.  The 

impeller speed and chopper speed during granulation were 290 and 1500 rpm, 

respectively.  The impeller and chopper continued mixing after spray granulation 

completed for a 30 second wet massing period. 

 

4.2.3  Fluid Bed Drying 
 

4.2.3.1  Laboratory Scale (400-600 g batch size) 

 

Fluid bed drying was performed using a Diosna Minilab (Dierks & Sohne GmbH, 

Osnabruck, Germany) fluid bed processor (FBP) fitted with an 11 L insert.  The FBP 

contained an internal EGE-Electronik series LN/LG air flow sensor (Spezial-Sensoren 

GmbH, Gettorf, Germany) to measure volumetric airflow velocity in the inlet air pipe.  

Three internal thermocouples measured temperature of the heated air, product 

temperature, and outlet air.  Two series RHL temperature/humidity transmitters (Dwyer 
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Instruments, Inc., Michigan City, IN, USA) were added to the system to measure the 

temperature and humidity of the inlet and exhaust air, respectively.  A series 616 

differential pressure transmitter (Dwyer Instruments, Inc, Michigan City, IN, USA) was 

added to the system to measure the pressure drop across the fluid bed.  Near infrared 

spectra were collected through the front viewing window of the FBP using a model 

NIR256L-2.2T2 spectrometer (Control Development Inc., South Bend, IN, USA).  It is a 

256 element photodiode array spectrometer with an extended InGaAs detector (1,085-

2,229 nm).  An external halogen light source (Control Development Inc., South Bend, IN, 

USA; HL-2000) was used with a fiber optic probe (Control Development Inc., South 

Bend, IN, USA; 6 around 1 reflectance probe).  The EEF value, drying end point (End 

Moisture Target (EMT)) (%w/w), end product temperature target (EPTT) (
o
C), and batch 

size (g) were factors varied in a 2
4
 full factorial design to study the drying factors 

identified during risk analysis.  The drying DOE and major results are listed in Table 4.1.  

The inlet airflow velocity was optimized to maintain a constant bed height, and is 

constant for a given batch size after the initial constant rate drying period.  The 450 g 

batch size required 5 m
3
/hr, while the 650 gram batches required 10 m

3
/hr.  The filter 

bags were cleared using a backpressure pulse every 60 seconds at 30 psi for all 

experiments.



 

 

Table 4.1. Laboratory scale fluid bed drying DOE and selected response variables.  (Yellow = Experiments pooled for error estimates). 

Two-level 4-Factor Full-Factorial Design 

Combination 
Run  

Order 
 

Factors 
Responses 

  
EEF  
(a) 

End 
Moisture 
Target 
(%w/w) 

(b) 

Batch 
Size (g) 

(c) 

End Prod.  
Temp Target  

(
o
C) 

(d) 

Median  
PS (µm) 

Blend 
Lactam 

(mole %) 

Cohesion 
(kPa) 

Tablet Crushing  
Force (kP) 

Compaction 
Force (lbs F) 

(kP) 

- 8 0.450 0.5 450 25 289     

a 7 0.175 0.5 450 25 296     

b 13 0.450 1.0 450 25 328 0.019 0.377   

ab 14 0.175 1.0 450 25 298     

c 16 0.450 0.5 650 25 334     

ac 2 0.175 0.5 650 25 310 0.028 0.439 

2815 5.52 

2195 4.52 

1435 3.42 

bc 1 0.450 1.0 650 25 330     

abc 3 0.175 1.0 650 25 353 0.016 0.352 

3045 3.84 

2230 5.48 

1700 4.34 

d 11 0.450 0.5 450 30 274 0.016 0.273 
2675 5.06 

1930 4.14 

ad 12 0.175 0.5 450 30 290     

bd 4 0.450 1.0 450 30 284 0.021 0.4 
2955 5.48 

2230 4.42 

abd 5 0.175 1.0 450 30 332     

cd 10 0.450 0.5 650 30 338 0.022 0.289 

3030 5.56 

2425 4.9 

1560 3.56 

acd 6 0.175 0.5 650 30 316 0.026 0.725   

bcd 9 0.450 1.0 650 30 329 0.016 0.373   

abcd 15 0.175 1.0 650 30 351     

1
1
7
 



 

 

Two-level 4-Factor Full-Factorial Design (Continued) 

Combination 
Run 

Order 
Factors Responses 

  
EEF 
(a) 

End 
Moisture 
Target 
(%w/w) 

(b) 

Batch 
Size (g) 

(c) 

End Prod. 
Temp Target 

(
o
C) 

(d) 

Median 
PS (µm) 

Blend 
Lactam 
(mole%) 

Cohesion 
(kPa) 

Tablet Crushing 
Force (kP) 

Compaction 
Force (lbs F) 

(kP) 

Repeat 17 0.450 0.5 650 25  0.018 0.591 

2655 4.4 

1840 3.9 

1540 3.3 

Repeat 18 0.450 0.5 650 25  0.016 0.506 

2870 5.6 

2160 4.4 

1540 3.4 

Repeat 19 0.450 0.5 650 25  0.017 0.407   

Repeat 20 0.450 0.5 650 25  0.019 0.407   

 1
1
8
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4.2.3.2  Intermediate Scale (1 kg batch size) 

 

Fluid bed drying for the 1 kg batch size was performed using a Versa Glatt 

Particle Coater (Glatt GmbH, Binzen, Germany) with a 1,251.05 in
3
 conical insert on a 

150 mesh screen (no additional distributor plate).  The FBP did not contain an internal 

airflow sensor or an NIR sensor because the viewing window was not transparent to NIR 

radiation.  A calibration predicting the airflow velocity at different flap % was created by 

measuring the linear velocity of the exhaust air using an Alnor Compuflow 8585 thermo-

anemometer (FLW, Inc., Huntington Beach, CA, USA).  A calibration to predict the 

granule moisture content using the outlet air temperature was created by sampling the 

FBD and recording loss on drying data using the Mark 3 Moisture Analyzer (Sartorious 

Mechatronics, Bohemia, NY, USA).  Two internal thermocouples measured temperature 

of the heated air and outlet air.  Two EasyLog temperature/humidity loggers (Lascar 

Electronics Ltd., Salisbury, UK; EL-USB-2) were added to the system to measure the 

temperature and humidity of the inlet and exhaust air, respectively.  The airflow velocity 

was adjusted to maintain a constant bed height, but remained constant during the falling 

rate drying period with 25% of the airflow flap open.  The EEF value  and drying end 

point (End Moisture Target (EMT) by outlet air temperature) were factors varied in a 2
2
 

full factorial design to study the significant drying factors identified at laboratory scale.  

The drying DOE and major results are listed in Table 4.2.  The filter bags were cleared by 

shaking once every 60 seconds for a five-second duration. 
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Table 4.2.  Intermediate scale fluid bed drying DOE and selected response factors. 

Two-Level, 2-Factor Full Factorial Design with 3 Repeats 

 Factors Responses 

Exp EEF 
End 

Moisture 
Target 

Median 
PS (µm) 

Blend 
Lactam 

(Mole %) 

Blend 
Cohesion 

(kPa) 

Tablet Crushing 
Force (kP) 

Compaction 
Force (lbs F) 

 

1 0.175 0.5% 277 0.026 0.304 4600 13.56 

2 0.175 1.0% 283 0.024 0.487 4450 13.39 

3 0.45 0.5% 302 0.015 0.271 4530 15.69 

4 0.45 1.0% 297 0.016 0.227 

4250 15.26 

3500 12.76 

2200 8.07 

1270 3.78 

5 0.45 0.5% 280 0.016 0.252 

4325 12.32 

3130 9.94 

1950 6.09 

950 1.82 

6 0.45 0.5% 289 0.015 0.262 4725 15.48 

7 0.45 0.5% 293 0.018 0.306 4515 15.84 

 

4.2.3.3  Pilot Scale (9.72 kg batch size) 

 

Fluid bed drying for the 9.72 kg batch size was performed using a Glatt GPCG-

PRO-5 (Glatt GmbH, Binzen, Germany) on a 150 mesh screen with no additional 

distributor plate.  The FBP control system contained an internal airflow sensor that output 

volumetric airflow velocity (f
3
/m), five internal thermocouples that measured temperature 

of the inlet air, heated air, product, outlet air, and exhaust air, and two humidity sensors 

to measure the temperature and humidity of the inlet and exhaust air.  The FBP did not 

contain an NIR sensor.  A calibration to predict the granule moisture content using the 
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product temperature was created by sampling the FBP and recording loss on drying data 

using the Mark 3 Moisture Analyzer (Sartorious Mechatronics, Bohemia, NY, USA).  

The airflow velocity was adjusted to maintain a constant bed height, but remained 

constant during the falling rate drying period at 300 f
3
/m.  Only thee experiments were 

performed at the pilot scale.  Two replicates of the target operating condition were 

performed to test the design space and transfer functions developed during the initial 

scales, while an additional experiment that varied the EEF variable was performed to 

validate that it was directly scaleable.  The experiments and major results are listed in 

Table 4.3.  The filter bags were cleared by shaking for a ten-second duration at 1 minute 

intervals. 

Table 4.3.  Pilot Scale fluid bed drying DOE and selected response factors. 

Two-Level, 1-Factor Design of Experiments with 1 Repeat 

 Factors Responses 

Exp. EEF 
End 

Moisture 
Target 

Median PS (µm) 
Blend 

Lactam  
(Mole %) 

Blend 
Cohesion 

(kPa) 

Tablet Crushing 
Force (kP) 

Compaction 
Force (lbs F) 

 

1 0.175 0.5% 422 0.0229 0.347 3000 10 

2 0.45 0.5% 272 0.0225 0.384 3200 10.5 

3 0.45 0.5% 284 0.0214 0.334 

4700 13.9 

3200 10.6 

2100 7.2 

1250 3.3 

 

 

4.2.4  Fluid Bed Drying Control System 
 

4.2.4.1  Laboratory Scale (400-600 g batch size) 
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The control system at laboratory scale was fully automated and was set to sample 

data and send commands at a set frequency of 5 seconds.  The FBP internal 

measurements were collected by an onboard programmable logic controller (PLC) 

(Allen-Bradley, Rockwell Automation, Milwaukee, WI, USA).  The PLC also 

communicated the process set points to the FBP and contained the necessary ladder logic 

to run the heater and airflow motor.  The PLC sent the FBP process measurements and 

the previous set points to the DeltaVv.9 digital automation system (Emerson Process 

Management, Equipment & Controls, Inc., Lawrence, PA, USA) via open process control 

(OPC).   

The DeltaV system received the process measurements from the PLC and the 4-

20 mA analogue outputs from the temperature/humidity sensors and differential pressure 

transmitter and transformed the inputs into digital readings.  The DeltaV software 

contained internal logic for safety switches, alarms, and unit conversions, and PID 

controllers.  It also tagged readings from the FBP and input controls from the control 

software to organize the communication between these two systems. 

The control software for the system was synTQ v. 3.5 (Optimal, Bristol, UK).  

This software synchronized all measurements on the FBP at a fixed cycle, so that all 

measurements within a cycle could be compared for a specific moment.  The synTQ 

software received all process measurements from DeltaV via OPC and received NIR 

spectra directly from the spectrometer.  It organized the raw data and sent the information 

to the necessary analytical models.  All of the analytical and process models were 

compiled and input directly into the synTQ software.  The analytical models output 

product or process property predictions, which were then passed within synTQ to the 
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control models.  The control models took the property predictions and predicted the 

process parameters necessary to continue the process along the desired trajectory for the 

next cycle.  These parameter predictions were then passed via OPC from synTQ to 

DeltaV, which translated the parameters for communication to the PLC, and the PLC 

finally adjusted the process parameters as directed.  The automated, hybrid control 

system was described in detail in chapter 2.  

4.2.4.2  Intermediate Scale (1 kg batch size) 

 

The FBP at intermediate scale was not instrumented with an automated control 

system.  A custom macro was created using Microsoft Excel 2007 (Microsoft 

Corporation, Redmond, WA, USA) to automatically calculate the EEF value at a given 

moment and the heated air temperature to maintain the EEF value at its set point.  The 

process measurements were manually added to the Excel spreadsheet.  The process 

measurements were recorded and the process factors adjusted at 30-second intervals.  The 

airflow flap was manually adjusted to maintain a constant bed height and a univariate 

model was created to predict the granule moisture content using the outlet air 

temperature. 

4.2.4.3  Pilot Scale (9.72 kg batch size) 

 

The control system at pilot scale was semi-automated.  All measurements were 

automated at a fixed frequency of 0.07 Hz (once every 15 seconds), but process 

adjustments had to be input manually.  The system was controlled using the PITOPS Plus 

OPC control system (PiControl Solutions LLC, Katy, TX, USA).  The automated 

measurements included inlet air temperature, inlet air humidity, heated air temperature, 
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product temperature, outlet air temperature, exhaust air temperature, exhaust air 

humidity, pressure drop across the fluid bed, and volumetric airflow velocity.  The 

measurements were downloaded in real time into Microsoft Excel 2007 every 15 

seconds, and a macro was created to automatically calculate the process set points for the 

next cycle, which were input manually by a technician.  Near infrared spectroscopy was 

not available at pilot scale, so a univariate model was calculated to predict granule 

moisture content using the measured product temperature. 

 

4.2.5  Blending 
 

4.2.5.1  Laboratory Scale (400-600 g batch size) 

 

A 3.5 quart, stainless steel, custom made V-blender was used to mix the dried 

granules with the extragranular excipients.  Two SpectralProbe Process NIR 

spectrometers (Thermo Fisher Scientific, Wilmington, MA, USA; Serial numbers 1277 

and 1502) were used to monitor the two arms of the V-blender in real time.  The 

instruments collected 100 absorption values between 1,600 and 2,400 nm in reflection 

mode (interpolation from 8.71 to 7.31 nm) and were triggered by a light intensity sensor 

(intensity rises when powder falls against the sampling window, enabling collection).  

Measurements were made through a sapphire window in the top of either arm of the 

blender.  Spectra were sent wirelessly to a computer and imported into a custom-made 

acquisition and analysis system.  The system had a response time of less than two 

seconds to allow real-time, online monitoring of the blend homogeneity. 

The Root Mean Squared Error from the Nominal Value (RMSNV) algorithm was 

used to monitor blending.
99

  The RMSNV statistic is a weighted, cumulative, pooled 
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standard distance metric that takes into account the deviation of the predicted 

concentration of the major components (gabapentin, starch, MCC, and HPC) of a mixture 

from their target concentration, over a given number of rotations (1 minute of blending). 

The blend end point was determined by the trend of the pooled RMSNV of the two 

sensors and defined as the time at which the pooled RMSNV remained constant for a 

minimum of two minutes. 

Models for predicting constituent concentration were developed using an efficient 

calibration approach (described in chapter 6) with the CLS/PLS algorithm for 

multivariate modeling.
100

  All components except magnesium stearate were blended until 

the homogeneity criterion was reached.  Finally, magnesium stearate was added and 

blended for five minutes in an additional lubrication blend that was not monitored by 

NIRS. 

4.2.5.2  Intermediate Scale (1 kg batch size) 

 

An IBC Bin Blender and Lifter – Mobile system (Servolift LLC, Wharton, NJ, 

USA) with a 5 L, stainless steel insert was used to mix the dried granules with the 

extragranular excipients.  An ePAT 601 Blend Uniformity Monitoring System (NIR 

Spectrometer) (Expo Technologies, LLC., St. Louis, MO, USA) was used to monitor the 

blender in real time. The instrument collected 226 absorption values between 1,350-1,800 

nm in reflection mode and was triggered by a light intensity sensor (intensity rises when 

powder falls against the sampling window, enabling collection). Measurements were 

made through a sapphire window on the top of the blender. Spectra were sent wirelessly 

to a computer and imported into a custom-made acquisition and analysis system.  The 
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system had a response time of less than two seconds to allow real-time, online monitoring 

of the blend homogeneity. 

The RMSNV algorithm was used to monitor blending.  The four major 

components (gabapentin, starch, MCC, and HPC) of the mixture were used to determine 

the blend end point, which was defined as the time at which the RMSNV (one minute 

time window) remained constant for a minimum of two minutes. 

Models for predicting constituent concentration were developed independently 

from the laboratory scale methods using the same efficient calibration approach and the 

partial least squares (PLS) algorithm.  All components except magnesium stearate were 

blended until the homogeneity criterion was reached.  Finally, magnesium stearate was 

added and blended for five minutes in an additional lubrication blend that was not 

monitored by NIRS. 

4.2.5.3  Pilot Scale (9.72 kg batch size) 

 

A 50 L insert was used with the IBC Bin Blender and Lifter – Mobile system 

(Servolift LLC, Wharton, NJ, USA) at the pilot scale.   The spectrometer, calibration 

method, RMSNV parameters, and decision method was the same as the intermediate 

scale. 

 

4.2.6  Tablet Compression 
 

4.2.6.1  Laboratory Scale (400-600 g batch size) 

 

The final blends were compressed on a 16-station, instrumented tablet press (B2 

Stokes, Key Industries, Farmingdale, NJ, USA), fitted with load cells to measure the 

tablet compression forces.  Only one set of 12.7 mm (0.5'') flat faced, beveled edge, 
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round punches and a cylindrical die was used. The press speed was kept constant at 27 

rpm.  Each batch was compressed at 3 compression forces (Table 4.1).  Each 

compression force was allowed to stabilize and then tablets were collected during the 

steady state into one minute time bins for each of the six minutes of compression.  

Tablets were randomly sampled from each time bin for the crushing strength 

measurements. 

4.2.6.2  Intermediate Scale (1 kg batch size) 

 

The final blends were compressed on a 10-station, Piccola Rotary Tablet Press 

(Model B, Knoll Pharmaceutical Co., Argentina), fitted with load cells to measure the 

tablet compression forces. Only one concave, oval (17.45 x 10.35 mm) punch and die set 

was used. The press speed was kept constant at 25 rpm, and the tablet target mass was 

889 mg.  Each batch was compressed at 3 compression forces (Table 4.2).  Each 

compression force was allowed to stabilize and then tablets were collected during the 

steady state into one minute time bins for each of the six minutes of compression.  

Tablets were randomly sampled from each time bin for the crushing strength 

measurements. 

4.2.6.3  Pilot Scale (9.72 kg batch size) 

 

The final blends were compressed on a Manesty BB4 35 station Tablet Press 

(OYSTAR USA, NJ, USA).  Seven concave, oval (17.45 x 10.35 mm) punch and die sets 

were used.  The press speed was kept constant at 25 rpm, and the tablet target mass was 

889 mg.  Each batch was compressed at 3 compression forces that were adjusted to meet 

3 tablet crushing strength targets (8, 10, and 12 kp) (Table 4.3).  Each compression force 
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was allowed to stabilize and then tablets were collected during the steady state into one 

minute time bins for each of the six minutes of compression.  Tablets were randomly 

sampled from each time bin for the crushing strength measurements. 

 

4.2.7  Data Analysis 
 

The analytical and process models that were included in each control system were 

created using MATLAB v. 7.1 R14 (The Mathworks, Natick, MA, USA) equipped with 

the PLS_Toolbox v. 3.0.4 (Eigenvector Research Inc., Wenatchee, WA, USA) and 

programs written in house.  MATLAB code was compiled for laboratory scale 

automation using MATLAB Compiler (The Mathworks, Natick, MA, USA) for use by 

the synTQ software.  The DOE results at each scale were analyzed using the statistical 

software, jmp 8 (SAS, Cary, NC, USA).  All possible main effects and first order 

interactions were investigated, and variables were screened for significance using the p-

value statistic at the α-level 0.10.   

 The NIR calibration for moisture content at laboratory scale was created by 

sampling granules from several trial drying batches.  The reference moisture content was 

measured using loss on drying (LOD) on a Computrac Max-2000 moisture analyzer 

(Arizona Instruments, Chandler, AZ, USA).  The predictive model was created using 

partial least-squares (PLS) regression on standard normal variate (SNV) corrected NIR 

spectra.  The model required one PLS latent variable.  Granule moisture content was 

measured via loss on drying at intermediate and pilot scale using the Mark 3 Moisture 

Analyzer (Sartorious Mechatronics, Bohemia, NY, USA). 

 Four response factors for each batch were selected during the initial risk analysis 

to represent the product CQAs.  These properties included the median particle size of the 
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finished granules, the amount of gabapentin lactam in the final blend as a stability 

indicator, the cohesion of the final blend as a flow indicator, and the mean tablet crushing 

strength for each compression force within each batch.  The median particle size was 

determined by sieve analysis of 100-g granule samples using U.S. standard test sieves 

(Fisher Scientific, Pittsburgh, PA, USA & VWR, West Chester, PA, USA).  The samples 

were shaken using a sieve shaker (CSC Scientific, Fairfax, VA, USA) for five minutes at 

level five.  Ten sieve cuts were collected for each sample (U.S. standard mesh #s: 18, 25, 

35, 45, 60, 80, 120, 170, 230, and pan).  A cumulative mass distribution was determined 

for each sample and the linear portion of the distribution was fit by linear least-squares to 

solve for the mass median (dm50) value. 

 The chemical degradent for gabapentin is gabapentin lactam, so the gabapentin 

lactam concentration (mole %) in the final blends of these dried granule experiments was 

measured as the stability response.  The lactam concentration was measured via reverse 

phase high pressure liquid chromatography (HPLC) with a SpectraSystem P4000 

quaternary gradient pump, AS3000 variable-volume autosampler, and UV 6000 LP 

photodiode array detection system (Thermo Fisher Scientific Inc., Waltham, MA, USA) 

at the University of Iowa using a µBondpak CN-RP 3.9x300 mm column (Waters, 

Milford, MA, USA).  The HPLC method used 5% acetonitrile in phosphate buffer as the 

mobile phase and a flow rate of 1.0 mL/mL and collected UV data at 210 nm.   

 Blend flow measurements were performed at Rutgers University.  Cohesion, 

which is inversely proportional to flowability, was measured using the shear cell module 

of an FT4 powder rheometer (Freeman Technology, Malvern, UK) on 85 cm
3
 samples.  

Cohesion is the shear strength at zero consolidation stress of a bulk powder.   
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Tablet crushing strength was determined using a diametric compression tester 

(Lab Scale - Model HT-300, Key International, Inc., Englishtown, NJ, USA; Intermediate 

and Pilot Scale – Model VK200, Varian, Inc., Santa Clara, CA, USA). During the test, 

the compressive force was applied at a constant rate.  The oval tablets at intermediate and 

pilot scale were placed parallel to the longest axis.  Fifteen tablets were randomly 

sampled across all time bins within each compression force for each batch and tested to 

determine the mean crushing strength. 

4.3 Results and Discussion 

 

The laboratory scale, intermediate scale, and pilot scale experiments and results 

are displayed in Tables 4.1, 4.2, and 4.3, respectively.  Only two of the four laboratory 

scale drying factors (EEF and EMT) were identified as being CPPs during laboratory 

scale statistical analysis, which eliminated the EPTT and batch size variables from further 

study.  The pilot scale was used to confirm success of the initial laboratory scale design 

space and scale-up transfer functions.  While it was determined in subsequent analyses 

that a higher EMT was optimum, this data was not available when the larger scale 

experiments were identified, so the initial target operating conditions included EEF equal 

to 0.45 and EMT equal to 0.5%. 

 Gabapentin is an active ingredient with process induced chemical instability and 

the degradent, gabapentin lactam, has undesired biological activity, making it very 

dangerous at low concentrations.
89

  Therefore, the gabapentin lactam concentration in the 

final blend was identified as the highest priority CQA during lab scale design space 

development, and was the highest priority process model to be scaled-up.  It was 

expected that the effect from the EEF variable would be the same regardless of scale 
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because it is a variable based in first principles, while the EMT variable could require 

scale adjustments.  The drying moisture target is similar between scales in traditional 

scale-up studies, however.  There was no automation or online NIR monitoring of 

granule moisture content available at the intermediate or pilot scale, so the 

implementation of the target drying conditions was more difficult and less precise. 

 The results from the intermediate scale DOE showed that the lab scale process 

model for the lactam CQA was successful at predicting the intermediate scale results and 

did not need any adjustment.  The 95% confidence intervals for the regression 

coefficients and intercepts if the lab scale model and intermediate scale model were 

developed independently are displayed in Figure 4.1.  It can be seen that the regression 

coefficients are statistically indistinguishable.  Therefore, no transfer function was needed 

to transfer the lab scale model to the intermediate scale. 

 The lactam prediction performance using the laboratory scale model on the 

intermediate and pilot scale is displayed in Figure 4.2.  While the model performed 

adequately, there were several discrepancies.  First, the sizes of the vessels at larger 

scales caused larger gradients within the process equipment, which contributed to the 

increase in variability and prediction error at larger scales.  Additionally, the lack of 

automation at intermediate scale, the lack of online NIR moisture monitoring, and the 

reduced frequency of the command inputs at either larger scale contributed to the poorer 

prediction performance after transfer.  These factors all contributed to the doubled 

prediction error upon scale-up to intermediate scale. 
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Figure 4.1.  A comparison of the 95% confidence intervals for the regression coefficients for the blend 
lactam concentration process model between lab scale and intermediate scale.  The regression coefficients 

are statistically indistinguishable. (LS = Lab Scale; IS = Intermediate Scale) 

 

 The results highlight the importance of online moisture monitoring using NIRS.  

When online spectroscopy was not used at larger scales, a less precise drying endpoint is 

introduced, which increases the risk of over drying.  The tolerance surface that describes 

the probability that 95% of future batches will meet the lactam specification at the 

combination of CPPs for the intermediate scale is displayed in Figure 4.2b.  It can be 

compared to the corresponding tolerance surface from the laboratory scale model in 

Figure 4.2a.  The areas in the upper left of both figures are similar, which supports the 

success of the EEF variable being directly scaleable.  The areas in the bottom right of 

each figure show the greatest difference, which resulted from the inaccuracy of the 
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intermediate scale controls with regards to meeting the drying end point.  Online 

spectroscopy is substantially more accurate when predicting moisture content compared 

to an outlet temperature measurement, so the drying endpoint was more accurate at 

laboratory scale.  Outlet temperatures are held down by the cooling effect of evaporation, 

so warming of the outlet temperature indicates that evaporation has slowed or ended.  

There is a lag time, however, until the temperature of the outlet air responds to the lower 

moisture content, so higher moisture targets are difficult to meet.   

Loss on drying measurements confirmed that the moisture content of the 1.0% 

moisture end points were consistently over dried (data not shown), causing the increase in 

gabapentin lactam formation.  This problem worsened at increased drying rates (lower 

EEF values), because the lag time resulted in increased over drying.  Process analytical 

technology (PAT) and online spectroscopy substantially reduced this risk at laboratory 

scale.  The other three design points from the 2
2 

full factorial design at intermediate scale 

and the three experiments at pilot scale were all accurately predicted as meeting or not 

meeting lactam specifications by the lab scale process model. 

 The second highest priority of the four CQAs was tablet crushing strength.  The 

laboratory process model was challenged because the shape of the tablets changed from 

laboratory scale to the larger scales.  It was determined after completion of the laboratory 

scale DOE that the tablet mass (889 mg) was too large for patients to swallow using the 

round, flat-faced punches that were used during the initial studies.  Capsule shaped 

tablets were used at the intermediate and pilot scales, which introduced a large magnitude 

of new variance to the process model that was not in the original calibration.  An 

advantage of the capsule shaped tablet was that higher crushing strengths were observed 
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using similar compaction pressures, which allowed the tablet crushing strength 

specification (> 6 kP) to be satisfied with greater ease and no formulation adjustments.  A 

transfer function had to be developed to accurately predict capsule shaped tablet crushing 

strength using fluid bed drying CPPs from the laboratory scale process model. 

 

Figure 4.2.  A comparison of the tolerance surface for the lactam concentration CQA process model 

between lab scale and intermediate scale.  Three of the four locations of the 22 full factorial design were 

predicted correctly, and the incorrect prediction resulted from not having online NIR moisture 

measurements. 

 

 Figure 4.3 displays the process by which the transfer function was calculated.  

Figure 4.3a shows the prediction performance of the laboratory scale model applied 

directly to the larger scale data.  It can be seen that the crushing strength of the capsule 

shaped tablets were significantly higher than predicted, which was hypothesized 

correctly.  The intermediate scale data was used to calculate the necessary scale-up 
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transfer function, which was then applied to the pilot scale data with no additional 

adjustments.  Plotting the intermediate scale predictions versus the measured responses 

(Figure 4.3b) shows that the relationship was linear (R
2
 = 0.91).  Therefore, a simple 

slope and bias correction was all that was necessary to transfer the predictions for the 

new tablet shape and scale-up.  The transfer parameters are listed in Figure 4.3b and the 

corrected predictions are displayed in Figure 4.3c.  The simple transfer function showed a 

significant improvement in prediction performance on both the intermediate scale data 

and the pilot scale data, demonstrating that the scale-up transfer function was consistent 

regardless of the magnitude of the scale change.   

 The larger scale prediction error was still significantly larger than at smaller scale, 

but the most significant errors were observed at the end of the model with larger tablet 

crushing strengths.  These values were a great distance from the center of the laboratory 

scale model, so the increased prediction residuals were partially the results of a large 

degree of model extrapolation.  The target tablet crushing strength was between 8-10 kP, 

where the model residuals were much lower.  Therefore, the laboratory scale model in 

combination with the slope and bias correction was able to adequately predict tablet 

crushing strength in the target region.   

 The lowest priority process models were for the cohesion and granule median 

particle size CQAs.  The EPTT variable for the cohesion model and the batch size 

variable for the particle size model were eliminated as CPPs during laboratory scale 

analysis, so these factors were not investigated upon scale up.  Therefore, when 

calculating predictions for these models, the EPTT and batch size factors remained 

unchanged (EPTT = 25
o
C; Batch Size = large group (650 g from lab scale)).  When 
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calculating the effect of the EEF variable for the cohesion model and the EMT variable 

for the particle size model using the data from each scale independently, the regression 

coefficients were statistically indistinguishable (Figure 4.4).  Therefore, both CPPs were 

directly scaleable and required no adjustment between scales. 

 

Figure 4.3.  The calculation of the scale-up transfer function for the tablet crushing strength process model.  

a.) Tablet crushing strength predictions using the laboratory scale model directly;  b.) The scale-up transfer 

function (slope and bias) calculation using the intermediate scale data;  c.) The crushing strength prediction 

after applying the scale-up transfer function. 

 

 There was a significant bias between the granule median particle size predictions 

and measured responses at the larger scales, as highlighted by the difference between 

intercepts and increase in prediction error (Figure 4.4b).  The measured particle size was 

consistently less than the predicted response.  This was because granules produced at the 
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laboratory scale were used with no particle size adjustment for blending and 

compression.  At the larger scales, granules that were greater than 750 µm were removed 

using a sieve because it was required for subsequent compression by the intermediate and 

pilot scale site managers.  This caused a shift in the final particle size distribution as 

measured by sieve analysis, causing the consistent bias.  A simple bias correction could 

have been used to address this change, but it was determined that the laboratory model 

could be used without adjustment due to its low priority and low risk. 

 

Figure 4.4.  A comparison of the 95% confidence intervals for the regression coefficients for the a.) 

cohesion model and b.) granule median particle size model between lab scale and intermediate scale.  The 

regression coefficients are statistically indistinguishable, except for the intercept in the particle size model. 

(LS = Lab Scale; IS = Intermediate Scale) 

 

For the cohesion model, the prediction error at larger scales was approximately 2-

2.5 times larger, which was consistent with the other models investigated.  This was 

attributed to the larger magnitude of natural variability at larger scales and the decrease in 

precision of the controls at larger scales.  Therefore, it was concluded that adjustable 

process parameters that accounted for environmental variability, a first principle variable, 

and a simple transfer function maximized the value of the laboratory scale studies.  This 
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allowed the laboratory scale design space to be applied at larger scales.  The importance 

of online spectroscopy for consistent production at all scales was also demonstrated. 

4.4 Conclusion 

 

A laboratory scale design space was efficiently scaled-up to a pilot scale by 

leveraging the laboratory scale DOE and applying effective transfer functions.  In 

traditional scale-up methodology, DOEs are replicated at all scales.  This study 

demonstrated that with the use of an automated control system that incorporates 

adjustable process parameters, first principle models, online spectroscopy, and an 

intermediate scale to calculate scale effects, scale-up development can be accomplished 

much more efficiently with no reduction in product quality and enhanced process 

understanding.   

Half of the initially identified CPPs during risk analysis were eliminated as 

insignificant using the laboratory scale DOE.  This significantly reduced the number of 

experiments necessary at larger scales and improved development efficiency.  

Additionally, the scale effects were investigated at an intermediate scale, which was 

approximately double from the laboratory scale, and about 1/10 of the pilot scale.  One 

scale-up transfer function was needed due to a change in tablet shape at larger scales, and 

the slope and bias correction that was calculated for the intermediate scale performed 

well at the pilot scale.  By reducing the number of pilot scale experiments to three, 

industrial efficiency was improved further. 

Finally, the use of a first principle model in the initial process controls reduced 

the dimensionality of the DOEs needed at all scales, and made scale-up efforts 

significantly easier because first principle variables are insensitive to scale.  This was 
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confirmed in the current study.  The highest priority process model for gabapentin lactam 

was directly scaled-up and successfully predicted batch success or failure in 3 out of 4 

design points.  The incorrect design point resulted from over drying, which highlights the 

importance of PAT, online spectroscopy, and automated controls for quality production.  

There was increased variability in CQAs at larger scales due to larger equipment 

gradients and less precise controls.  Scientifically rigorous development at early stages 

increased the value of all subsequent studies. 
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Chapter 5: Development of a Fluid Bed Granulation 
Design Space Using CQA Weighted Tolerance Intervals 
 

 

 

5.1 Introduction 

 

To this point, this dissertation has demonstrated an automated control system that 

provides quality and efficiency benefits for the fluid bed granulation and drying unit 

operation, developed a laboratory scale design space for fluid bed drying using DOE and 

advanced statistics to assure risk reduction, and demonstrated how the automated control 

system and laboratory scale design space could be scaled-up efficiently.  Two 

weaknesses of the previous chapters are the limited evidence of the benefits of the 

automated controls for the granulation phase of a full fluid bed process and the lack of 

formulation or material factors in the DOE and design space development efforts.  These 

shortcomings will be addressed in this chapter using an excipient platform and full 4-

phase fluid bed experiments.  The research was originally published in the Journal of 

Pharmaceutical Sciences.
132

 

A major theme of this dissertation is that it is imperative that controls systems be 

efficient and robust so that their implementation over a long period of time is feasible.  

This requires well developed design of experiments (DOE), first principle calculations, 

and rigorous statistical modeling.  Design of experiments is necessary to identify 

important factors, calculate their effects on the response factors, and identify interactions 

between factors.  First principle controls are desirable because they describe the major 

mechanisms by which the manufacturing process impacts product properties, reduce the 
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dimensionality of subsequent DOEs, account for external variability that cannot be 

eliminated, and provide direct scale-up.  Finally, statistical modeling is necessary to 

calculate the probability of success at all combinations within the measured knowledge 

space.  This enables the analyst to make an informed design when defining the 

boundaries of the design space. 

The control system that was used in the current chapter has been described in 

detail in chapter 2, and utilizes the environmental equivalency factor (EEF) as a first 

principle variable.
29

  The calculation reduces four input variables (heated air temperature, 

airflow velocity, spray rate, and inlet air humidity) into a single factor, and calculates the 

heated air temperature needed to maintain a constant drying rate so that the water 

addition and removal rate can be maintained despite significant environmental 

fluctuations.  This removes the need for a preconditioned air system, eliminating a 

substantial cost in large production facilities.  Additionally, online spectroscopy was used 

in the control system to provide direct feedback on in-process material properties, 

identify process deviations immediately, and define meaningful phase end points.  The 

potential for these controls to be efficiently implemented for the control of a 

pharmaceutical drying unit operation with a drug that has stability concerns was 

demonstrated in chapter 3, and the potential for simplified and robust scale-up was 

demonstrated in chapter 4.  

The current chapter seeks to extend these principles to a full, four phase fluid bed 

process that includes powder mixing, spray granulation, heated drying, and cooling.  The 

inclusion of the spray granulation phase is a significant step because it has a substantial 

impact on downstream physical properties including powder flow, packing efficiency, 
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and compactibility.  The EEF controls have been shown to provide excellent control of 

the drying rate during fluid bed drying, and it is hypothesized that these same controls 

can be utilized during spraying to maintain a constant water addition rate, which is a 

major factor in controlling particle agglomeration during granulation.  Small changes in 

the water content of the incoming airstream can significantly impact the water 

addition/removal rate, so controls are needed to account for this variability using 

feedforward control loops to reduce the variability in product properties between batches.  

Online monitoring of granule moisture content is hypothesized to provide a simple 

definition of the granulation and drying end points, removing another source of batch to 

batch variability.   

 It should be noted that the control system described herein does not consider the 

impact of the spray droplet size, which is another factor that can effect particle 

agglomeration during the granulation phase.  Droplet size is highly variable in most spray 

systems, making it difficult to control.  It is also very difficult to match droplet sizes 

when scaling-up because of the substantial differences in equipment size.  Therefore, it is 

the goal of this chapter to demonstrate satisfactory controls of granule particle size 

without varying droplet size as part of the DOE.  The droplet size variable could be used 

to remove another source of variability to control particle size in very sensitive 

formulations that require strict particle size specifications, however.   

 Also included in this chapter’s DOE were two formulation factors (binder 

concentration and excipient ratio).  The two excipients (lactose monohydrate and 

microcrystalline cellulose (MCC)) that were varied within the excipient ratio had 

substantially different wetting properties, which affect the amount of water available on 
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the particle surfaces per unit time, thus impacting particle agglomeration.  The two 

formulation factors are known to affect the granulation process and final product 

properties, but they are often optimized independently during formulation studies.  While 

this can be effective, there are often interactions between formulation and process 

parameters that are overlooked or never identified.  These interaction effects can be 

extremely important and provide an additional degree of control that can be exploited by 

the analyst. 

 The inclusion of formulation and process factors within a single DOE required the 

use of the extended analysis of covariance (ANACOVA) model
64

 to describe the 

interaction of these nominal and continuous variables.  This model allowed the difference 

in the mean response between groups of a nominal factor to be measured while 

simultaneously describing effects of the continuous factors on the response variables 

within the nominal groups. This information substantially improved process 

understanding so that the most appropriate design space boundaries could be defined. 

The final goal of the current study is to demonstrate a scientifically rigorous 

calculation of a design space for the fluid bed process, and specifically the granulation 

phase.  The calculation will use statistical tolerance,
67

 so that the probability of 95% of 

future batches meeting critical quality attribute (CQA) specifications can be defined for 

all combinations of critical process parameters (CPPs) and formulation factors.  The 

necessity of statistical tolerance calculations for the definition of a pharmaceutical design 

space was described in chapter 3, but this is the first study that uses statistical tolerance in 

the definition of a granulation design space that includes both process and formulation 

factors.   
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5.2  Materials and Methods 

 

 

5.2.1  Excipient Platform 
 

An excipient platform was used to investigate formulation factors on the 

granulation and drying design space.  Hydroxypropyl methylcellulose (HPMC) 

(Pharmacoat 606, Biddle Sawyer Corp., New York, NY, USA) was used as the polymeric 

binder.  It was added to the fluid bed bowl with the other excipients as a dry powder.  

Water was used as the spray solution. Microcrystalline cellulose (MCC) (Avicel PH102, 

FMC BioPolymer, Philadelphia, PA, USA) and lactose monohydrate (Granulac 70, 

Meggle Excipients & Technology, Wasserburg, Germany) were the additional 

pharmaceutical excipients.  The binder concentration and the ratio of lactose to MCC 

were factors varied as part of the DOE (Table 5.1).  The batch size for all experiments 

was 650 grams. 

5.2.2  Fluid Bed Processor (FBP) 
 

Fluid bed granulation and drying was performed using a Diosna Minilab (Dierks 

& Sohne GmbH, Osnabruck, Germany) fitted with an 11 L insert.  The FBP contained an 

internal EGE-Electronik series LN/LG air flow sensor (Spezial-Sensoren GmbH, Gettorf, 

Germany) to measure volumetric airflow velocity in the inlet air pipe.  Three internal 

thermocouples measured temperature of the heated air, product temperature, and outlet 

air.  Two series RHL temperature/humidity transmitters (Dwyer Instruments, Inc., 

Michigan City, IN, USA) were added to the system to measure the temperature and 

humidity of the inlet and exhaust air, respectively.  A series 616 differential pressure 

transmitter (Dwyer Instruments, Inc, Michigan City, IN, USA) was added to the system 

to measure the pressure drop across the fluid bed.  Near infrared spectra were collected 
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through the front viewing window of the FBP using a model NIR256L-2.2T2 

spectrometer (Control Development Inc., South Bend, IN, USA).  It is a 256 element 

photodiode array spectrometer with an extended InGaAs detector (1,085-2,229 nm).  An 

external halogen light source (Control Development Inc., South Bend, IN, USA; HL-

2000) was used with a fiber optic probe (Control Development Inc., South Bend, IN, 

USA; 6 around 1 reflectance probe). 

The three powders were blended in the FBP at an airflow velocity of 8 m
3
/hr for 

three minutes.  The system was warmed to 30
o
C during the blending phase.  During spray 

granulation, deionized water was sprayed onto the fluidized powder mixture using a 

peristaltic pump (Watson-Marlow 323, Wilmington, MA, USA) at 10 mL/min. The 

standard, top spray nozzle for the Diosna Minilab was used with an atomization air 

pressure of 1.1 bar.  The EEF set point for granulation and the end moisture target for 

granulation (EMT) were varied as part of the DOE (Table 5.1).  The granule moisture 

content was measured via online near infrared (NIR) spectroscopy.   The EEF set point 

during the drying phase was 0.7, which was optimized during trial experimentation, while 

the end of drying was defined when the NIR predicted moisture content was less than 

3.0% and the standard deviation of moisture predictions over the previous minute was 

less than 0.05%.  The inlet airflow velocity was adjusted to maintain a constant bed 

height during granulation and drying.  The minimum airflow velocity was 10 m
3
/hr and 

the maximum was 45 m
3
/hr.  After the drying end point was reached, the powders were 

fluidized at 8 m
3
/hr until the product temperature and inlet air temperature were less than 

30
o
C.  The filter bags were cleared during all phases using a backpressure pulse every 60 

seconds at 30 psi for all experiments. 



 

 

Table 5.1.  The FBP DOE factor levels and response results.  (*Yellow = Experiments pulled for error estimates) 

Design of Experiments 

 Input Factors Response Factors 

Run 
Order 

Combination 
HPMC 

Concentration 
(%w/w) (a) 

Excipient 
Ratio 

(w/w) (b) 

EEF 
(c) 

End Moisture 
Target 

(Gran) (%w/w) (d) 

Compressibility 
Index 

Particle Size 
d10 (um) 

Particle 
Size 
Span 

4 (1) 5 1:2 1.1 6.0 
25.5 

48 1.4 
26.0 

13 a 15 1:2 1.1 6.0 
23.4 

46 1.7 
24.5 

15 b 5 2:1 1.1 6.0 
21.2 

53 1.9 
19.8 

11 ab 15 2:1 1.1 6.0 
21.0 

52 2.6 
22.2 

14 c 5 1:2 0.8 6.0 
24.2 

46 1.6 
25.0 

10 ac 15 1:2 0.8 6.0 
23.8 

51 1.5 
24.7 

12 bc 5 2:1 0.8 6.0 
22.0 

51 1.8 
23.6 

5 abc 15 2:1 0.8 6.0 
27.0 

48 2.8 
25.8 

1
4
6
 



 

 

Design of Experiments (Continued) 

  Input Factors Response Factors 

Run 
Order 

Combination 
HPMC 

Concentration 
(%w/w) (a) 

Excipient  
Ratio 

(%w/w) (b) 

EEF 
(c) 

End Moisture Target 
(Gran) (%w/w) (d) 

Compressibility 
Index 

Particle Size d10 
(µm) 

Particle 
Size Span 

6 d 5 1:2 1.1 9.0 
25.9 

51 1.5 
24.5 

3 ad 15 1:2 1.1 9.0 
25.5 

49 2.2 
26.2 

9 bd 5 2:1 1.1 9.0 
23.0 

59 1.4 
22.4 

7 abd 15 2:1 1.1 9.0 
26.3 

49 3.5 
26.3 

2 cd 5 1:2 0.8 9.0 
23.4 

56 1.8 
25.3 

16 acd 15 1:2 0.8 9.0 
23.2 

42 2.3 
25.3 

8 bcd 5 2:1 0.8 9.0 
25.9 

55 2.1 
29.7 

1 abcd 15 2:1 0.8 9.0 
22.3 

60 3.4 
22.0 

1
4
7
 



 

 

 

148 

5.2.3  Fluid Bed Processor Control System 
 

The control system was set to sample data and send commands at a set frequency 

of 0.075 Hz (one measurement every 15 seconds).  The FBP internal measurements, 

which included airflow velocity, heated air temperature, product temperature, and outlet 

temperature, were collected by an onboard programmable logic controller (PLC) (Allen-

Bradley, Rockwell Automation, Milwaukee, WI, USA).  The PLC also communicated the 

process set points to the FBP and contained the necessary ladder logic to run the heater 

and airflow motor.  The PLC sent the FBP process measurements and the previous set 

points to the DeltaV v.9 digital automation system (Emerson Process Management, 

Equipment & Controls, Inc., Lawrence, PA, USA) via open process control (OPC).   

DeltaV received the process measurements from the PLC and the 4-20 mA 

analogue outputs from the temperature/humidity sensors and differential pressure 

transmitter and transformed the inputs into digital readings.  The DeltaV software 

contained internal logic for safety switches, alarms, and unit conversions, as well as PID 

controllers.  It also tagged readings from the FBP and input controls from the control 

software to organize the communication between these two systems. 

The control software for the system was synTQ version 3.5 (Optimal, Bristol, 

UK).  This software synchronized all measurements on the FBP at a fixed cycle, so that 

all measurements within a cycle could be compared for a specific moment.  SynTQ 

received all process measurements from DeltaV via OPC and received NIR spectra 

directly from the spectrometer.  SynTQ organized the raw data and sent the information 

to the necessary analytical models.  All of the analytical and process models were 

compiled and input directly into the synTQ software.  The analytical models output 
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product or process property predictions, which were then passed within synTQ to the 

control models.  The control models took the property predictions and predicted the 

process parameters necessary to continue the process along the desired trajectory for the 

next cycle.  These parameter predictions were then passed via OPC from synTQ to 

DeltaV, which translated the parameters for communication to the PLC, and the PLC 

finally adjusted the process parameters as directed.  The automated, hybrid control 

system was described in detail in a chapter 2. 

 

5.2.4  Data Analysis 
 

The analytical and process models that were included in the control system were 

created using MATLAB v.7.1 R14 (The Mathworks, Natick, MA, USA) equipped with 

the PLS_Toolbox v.3.0.4 (Eigenvector Research Inc., Wenatchee, WA, USA) and 

programs written in house.  MATLAB code was compiled using MATLAB Compiler 

(The Mathworks, Natick, MA, USA) for use by the synTQ software.  The DOE results 

were analyzed using the statistical software, jmp 8 (SAS, Cary, NC, USA).  All possible 

main effects and first order interactions were investigated, and variables were screened 

for significance using the p-value statistic at the α-level 0.10.   

 The NIR calibration for moisture content was created by sampling granules from 

five trial batches, which also varied in their excipient concentrations.  The reference 

moisture content was measured using loss on drying (LOD) on a Computrac Max-2000 

moisture analyzer (Arizona Instruments, Chandler, AZ, USA).  The predictive model was 

created using partial least-squares (PLS) regression on standard normal variate (SNV) 

corrected NIR spectra.  The model required three PLS latent variables.    
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 A 2
4
 full factorial design was created to study the 4 input factors (Table 5.1).  The 

input factors included a nominal formulation factor (excipient ratio), a continuous 

formulation factor (binder (HPMC) concentration), and two continuous process factors 

(EEF, EMT).  It was assumed prior to experimentation that all interactions above first 

order would not be significant, so the experiments to discover these effects were pooled 

for error estimates.    

Three response factors for each batch were selected to represent the product 

CQAs.  These properties included a powder flow indicator (compressibility index), the 

fraction of fines in the finished granules (dm10), and a metric for the width of the granule 

particle size distribution (span).  The compressibility index
108, 109

 is a measure of the ratio 

of the dried granules tapped density to their bulk density.   
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The bulk density of the final granule samples were measured by pouring granules through 

a baffle system into 100 mL graduated cylinders.  Approximately 90 mL samples were 

collected and their masses were measured using an electronic scale (Mettler PM16K, 

Mettler-Toledo Inc., Columbus, OH, USA).  Tapped density was measured by tapping 

the filled graduated cylinders 525 times using a tap densitometer (Vanderkamp 10705, 

LABEQUIP LTD, Markham, Ontario, Canada) and recording the tapped volume.  Two 

bulk and tapped density measurements were measured for each granule batch.  

The other two CQAs were determined by sieve analysis of 100 g granule samples 

using U.S. standard test sieves (Fisher Scientific, Pittsburgh, PA, USA & VWR, West 

Chester, PA, USA).  The samples were shaken using a sieve shaker (CSC Scientific, 

Fairfax, VA, USA) for five minutes at level five.  Ten sieve cuts were collected for each 
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sample (U.S. standard mesh #s: 18, 25, 35, 45, 60, 80, 120, 170, 230, and pan).  A 

cumulative mass distribution was determined for each sample and three portions of the 

distribution were fit by linear least-squares to solve for the particle size that included 10% 

(dm10), 50% (dm50), and 90% (dm90) of the cumulative mass distribution.  The width of 

the particle size distribution was described by using the metric, span,
110

 which has 

traditionally been used to describe the width of the size distribution of droplets, 

suspensions, and inhalants.  

 






 


50

1090

m

mm

d

dd
Span        (5.2) 

5.3 Results and Discussion 

 

The measured response variables (CQAs) are listed in Table 5.1, and a summary 

of each models’ performance are listed in Table 5.2.  The CQAs represent the properties 

that are most significantly affected by a wet granulation operation.  Ideally, the 

formulation and process factors would have been related to final tablet properties or 

biological performance attributes because they are more relevant, but taking the 

granulation batches through the compression unit operation was beyond the scope of this 

study.  Additionally, the design space that was calculated for the current study only 

considered formulation and process factors related to the spray granulation phase of the 

fluid bed process.  A comprehensive design space for the fluid bed unit operation would 

include process factors from the drying phase as well, but the expansion of the 

dimensionality of the DOE was unnecessary for the aims of the current chapter.  A 

demonstration of the drying effects on product CQAs and the calculation of a design 

space using a similar control system has been reported in chapter 3. 
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A major tenet of this study was the inclusion of nominal, formulation factors and 

continuous process factors within the same DOE.  Many traditional product development 

efforts have proceeded stepwise through formulation optimization and then process 

optimization.  Stepwise methods overlook possible interactions between formulation 

factors and manufacturing parameters which often substantially affect product CQAs and 

could result in a lack of control.  While it is not typical to have this degree of flexibility 

with regards to the pharmaceutical formulation within a design space of a batch process, 

the knowledge gained by identifying interactions between formulation and process 

factors leads to improved process understanding.  This in turn, facilitates development of 

optimal formulations and the location of design space boundaries. 

Table 5.2.  Model statistics for the three process models that predict the granule CQAs 

Model Statistics 

  
Compressibility 

Index 
dm10 Span 

Samples 32 16 16 

Number of 
Model 

Parameters 
5 4 5 

R
2
 0.33 0.47 0.95 

RMSE* 1.85 3.93 µm 0.19 

P-Value 0.0513 0.0491 <0.0001 

 

 There are two types of possible interactions between nominal and continuous 

variables that significantly impact the model and require the use of the extended analysis 

of covariance (ANACOVA) model.
64

  Each interaction type was identified in different 

models within the current study and are displayed in Figure 5.1.  The model to predict the 

particle size dm10 (Figure 1b) had an effect from the EMT variable that was parallel 

between the two excipient ratios.  The effect satisfied the assumption of parallelism 

within ANACOVA, which means the main effect from the EMT variable was adjusted by 
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the difference in mean particle size dm10 between excipient ratio groups, and an 

interaction effect was not required.   

The model to predict compressibility index (Figure 5.1a) had a reverse 

interaction
111

 between excipient ratio and EEF, which did not satisfy the parallelism 

assumption and required the use of the extended ANACOVA model with an interaction 

term.  This means that the effect of the EEF variable on compressibility index changed 

directions between excipient ratio groups, which was crucial information for identifying 

an optimum formulation and appropriate design space.   

Finally, the model to predict particle size span (Figure 5.1c) had a same-direction 

interaction
111

 between excipient ratio and HPMC concentration.  This also did not satisfy 

the parallelism assumption and required the use of the extended ANACOVA model with 

an interaction term.  The effect of the HPMC concentration variable on particle size span 

was in the same direction between excipient ratio groups, but the effect was much greater 

in the high lactose (2:1 ratio of lactose:MCC) excipient ratio group. 

The compressibility index was determined to be the CQA with the highest 

priority.  While it has traditionally been used in the pharmaceutical industry as a 

measurement of particle flow, it is more appropriately a measure of packing efficiency.  

If the granule or powder bulk density was similar to the tapped density (low 

compressibility index), then the powder system packed efficiently under low stress.  This 

correlates to efficiency with respect to filling dies in a rotary tablet press, resulting in 

desirable tablet properties (low mass variability, increased strength, etc.)  Therefore, 

lower compressibility index values correlate to better downstream manufacturability.  

The U.S. Pharmacopeia (USP) has seven levels of the compressibility index, with values 
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less than or equal to 25 referred to as passable, and values greater than 25 considered 

poor.
108

  Thus, the specification threshold for the compressibility index CQA was 25. 

 

Figure 5.1.  The different interaction effects between nominal variables and continuous variables.  a.) The 

reverse interaction effect of the EEF variable on compressibility index between different excipient ratios.  

b.) The parallel effect of the EMT variable on the particle size dm10 between different excipient ratios.  c.) 

The same direction interaction effect of the HPMC concentration variable on particle size span between 

different excipient ratios. 

 

 The model that predicted compressibility index included three main effects 

(excipient ratio, EEF, EMT) and two interaction effects (excipient ratio*EEF, 

EEF*EMT).  The significance of the nominal variable (excipient ratio) meant that there 

was a significant difference between the mean compressibility index of the two excipient 

ratio groups, so a knowledge space that displays the process model predictions is 
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displayed separately for each excipient ratio (Figures 5.2a and 5.3a).   As noted 

previously, the interaction between excipient ratio and EEF was a reverse interaction.  

Therefore, the mean difference of compressibility index between groups was not as large, 

but the effect of the EEF variable was reversed.  This can be observed in the difference 

along the EEF dimension in Figures 5.2a and 5.3a.  There was no interaction between the 

excipient ratio and the EMT variable, so the effect along the EMT dimension in Figures 

5.2a and 5.3a was similar.  The interaction between EEF and EMT caused the curvature 

that was observed in the knowledge space of the two figures. 

 The EMT defined the end point of the spray granulation phase, so a high EMT 

allowed for more water to be added to the fluidized powders and increased particle 

agglomeration.  This additional agglomeration caused an increase in the number of large 

particles (>500 µm) and a reduction in the fraction of fines, which reduced the packing 

efficiency (increased compressibility index).  It was expected that the EMT variable 

would have a similar effect on the different excipient ratio groups, which was proven to 

be true. 

 The high lactose excipient ratio group had substantially better wetting properties 

than the high MCC group.  Lactose is a disaccharide sugar with 8 hydroxyl groups per 

molecule, making it polar and increasing its affinity for water molecules.  

Microcrystalline cellulose is a naturally occurring polymer derived from wood pulp with 

a high degree of internal bonding in the crystalline structure, reducing its affinity for 

water molecules.  Water interacted with lactose much more easily than MCC, which 

allowed liquid bridges to form between lactose particles with a higher probability.  

Therefore, the granulation process was more efficient with respect to the amount of water 
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added in the high lactose excipient ratio, resulting in larger and more spherical particles.  

These properties, combined with favorable flow properties of pure lactose compared to 

MCC, caused an increase in the packing efficiency over the range encountered.   

 

Figure 5.2.  The process model predictions (knowledge space) for the three CQAs of the high lactose 

excipient ratio batches.  The predictions of a.) compressibility index, b.) particle size dm10, and c.) particle 

size space also include the 95% tolerance surfaces that include the space where there is a 95% probability 

that 95% of future batches will reside.  The particle size dm10 CQA includes both the low and high 
tolerance surfaces because it is a two sided specification, while the compressibility index and particle size 

span CQAs only include the high tolerance surface. 

 

Reduced EEF values resulted in improved compressibility index in the high MCC 

group.  The EEF variable controlled the energy of the input air stream during the spray 

granulation phase.  A low EEF corresponded to a higher energy input, which was 

primarily achieved through an increase in the heated air temperature.  Therefore, at low 

EEF, water was removed from the system at a higher rate.  The spray rate remained the 
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same for all experiments, so the length of the spray granulation phase and the amount of 

water added were increased to achieve a similar granule moisture content at the endpoint.  

This extra time allowed batches with higher MCC ratios (which granulated with reduced 

efficiency) to grow particles to a more ideal size.  As a result, packing efficiency 

increased at low EEF in the high MCC excipient ratio batches.   

 

Figure 5.3.  The process model predictions (knowledge space) for the three CQAs of the high MCC 

excipient ratio batches.  The predictions of a.) compressibility index, b.) particle size dm10, and c.) particle 

size span also include the 95% tolerance surfaces that include the space where there is a 95% probability 

that 95% of future batches will reside.  The particle size dm10 CQA includes both the low and high 

tolerance surfaces because it is a two sided specification, while the compressibility index and particle size 

span CQAs only include the high tolerance surface. 

 

 Conversely, the increased energy input and time in the granulation phase was not 

favorable for the high lactose excipient ratio batches.  This was the result of the high 

efficiency with which lactose granulated, which caused an increase in the number of 
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particles greater than 500 µm at extended times, widened the particle size distribution, 

and reduced the packing efficiency.  This effect was exacerbated at high moisture targets 

because the change in the duration of spraying was greater.  These factors created the 

interaction between EEF and EMT. 

The compressibility index predictions from the model are displayed in the lower 

surfaces of Figures 5.2a and 5.3a.  All models contain uncertainty due to random error or 

experimental errors, and this uncertainty was not constant throughout the entire modeled 

space.  Uncertainty was dependent on distances from the center of the model and the 

location of calibration samples.  Therefore, it was inappropriate to use the model 

predictions themselves to define a design space.  For this reason, a tolerance interval
67

 

was calculated that described a range of response values that contained a 95% probability 

that 95% of all future responses will be included.  Because the specification for the 

compressibility index CQA was one-tailed (<= 25), only the high tolerance threshold was 

calculated.  It is displayed as the upper surface in Figures 5.2a and 5.3a.  This surface was 

used to determine a design space that reduced the risk of future batch failure. 

 Figures 5.4a and 5.5a display tolerance surfaces for the compressibility index 

process model of the high lactose and high MCC excipient ratio batches, respectively.  

The probability of each combination of CPPs producing future product that passes the 

compressibility index specification is shown in these figures.  They are used to define the 

single factor design space.  The high lactose excipient ratio provides an increase in the 

probability of meeting the compressibility index specification at all locations, and within 

these batches, high EEF and low EMT give the optimum combinations for this CQA. 
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The second highest priority CQA was the particle size that included 10% of the 

cumulative mass distribution (dm10) of a batch from the sieve analysis.  This was used as 

a measure of the fraction of fines.  A low dm10 indicated a large fraction of fines.  The 

dm10 CQA has a two-tailed specification (45 <= dm10 <= 60) because a low fraction of 

fines resulted in poor packing efficiency and poor tablet quality, but a large fraction of 

fines resulted in poor flow properties and increased the probability of segregation.  The 

specification thresholds were optimized for this specific formulation. 

 

Figure 5.4.  The single CQA tolerance surfaces (design spaces) for the high lactose excipient ratio that 
displays the probability that 95% of future batches will meet the CQA specification at the given location: 

a.) Compressibility Index; b.) Particle Size dm10; c.) Particle Size Span. 

 

   The model to predict dm10 contained three main effects (excipient ratio, HPMC 

concentration, EMT).  The prediction results, low tolerance surfaces, and high tolerance 
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surfaces are displayed in Figures 5.2b and 5.3b.  Not surprisingly, the excipient ratio 

again had the strongest effect on dm10.  The high MCC batches did not granulate 

efficiently and therefore have a larger fraction of fines (low dm10).  The EMT variable 

was directly proportional to dm10, which was expected because increased spraying 

allowed for more particle agglomeration and a smaller fraction of fines.  Conversely, the 

HPMC concentration was inversely proportional to dm10.  This was unexpected because 

it would seem that an increase in the binder concentration would reduce the number of 

fines.  The high HPMC concentration (15%) was still a minor component of the batch, 

however, so it is hypothesized that while there was additional particle agglomeration in 

the bulk of the batch, the fraction of fines was not reduced by higher binder 

concentrations. 

 The tolerance surface (single factor design space) for the dm10 process model is 

depicted in Figures 5.4b and 5.5b for the high lactose and high MCC batches, 

respectively.  The optimum space within the high lactose batches (Figure 5.4b) was in the 

middle of the investigated space.  Locations where dm10 was predicted to be high (high 

EEF, low HPMC) had an increased probability of failing the high specification, while 

locations where dm10 was predicted to be low had an increased probability of failing the 

low specification.  For the high MCC batches, there was a much greater probability of 

failing the low specification, so the optimum region was in the bottom right of Figure 

5.5b.  Overall, there was a greater probability of successfully meeting the dm10 

specifications within the high lactose batches, so the optimum process space was at 

intermediate EMT and HPMC concentration values with the high lactose excipient ratio. 
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 The final CQA for this project was the particle size span, which was an indicator 

of the width of the particle size distribution.  A narrow particle size distribution (low 

span) was desirable because it significantly reduces the risk of future batch segregation, 

while maintaining adequate flow, packing efficiency, and compaction properties.  

Therefore, the span specification was one-tailed (<= 3), and defined the magnitude of the 

width of the distribution as being no more than 3 times the median particle size. 

 

Figure 5.5.  The single CQA tolerance surfaces (design spaces) for the high MCC excipient ratio that 

displays the probability that 95% of future batches will meet the CQA specification at the given location: 

a.) Compressibility Index; b.) Particle Size dm10; c.) Particle Size Span. 

 

 The model that predicted the span of the particle size distribution included three 

main effects (excipient ratio, HPMC concentration, EMT) and two interaction effects 

(excipient ratio*HPMC, HPMC*EMT).  The predictions and the high tolerance surfaces 
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are presented in Figures 5.2c and 5.3c.  The main effects were all intuitive.  Generally, 

any effect that caused more particle agglomeration widened the particle size distribution 

because the starting particle size distribution for all batches was narrow at small particle 

sizes.  There was very little particle size growth in the high MCC batches, so the span of 

the particle size distribution remained small.  Higher HPMC concentrations created more 

particle agglomeration, so the span of the particle size distribution at higher HPMC 

concentration was larger.  This same effect was observed for the EMT variable. 

 The interaction effect between the HPMC concentration variable and the EMT 

variable was in the same direction as the main effects, but the combined effect of high 

HPMC and EMT or low HPMC and low EMT was greater than the predicted effect when 

they were considered independently.  The HPMC effect on the span of the distribution 

was in the same direction for both excipient ratios (Figure 5.1c), but the magnitude of the 

effect was much greater in the high lactose batches.  This violates the assumption of 

parallelism in ANACOVA, which necessitated the excipient ratio*HPMC concentration 

interaction term in an extended ANACOVA model.  The high MCC batches granulated 

inefficiently regardless of the HPMC concentration, so the change in HPMC 

concentration did not impact the high MCC batches as substantially. 

 The tolerance surfaces (single factor design spaces) for the particle size span CQA 

for the high lactose and high MCC batches are depicted in Figures 5.4c and 5.5c, 

respectively.  There is a very high probability of meeting the span specification at all 

points of the knowledge space within future high MCC batches.  The same high 

probability of success exists with future high lactose batches, but only at combinations at 

low HPMC concentration and low EMT.  All of these locations are at points where 
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particle agglomeration was reduced, the number of large particles (>500 µm) was 

reduced, and the span of the distribution was narrow. 

 To create the final design space the tolerance surfaces for the three CQAs were 

combined and decisions on optimum formulation parameters were made.  As stated 

previously, it is impractical to include variability with respect to formulation 

concentrations in a design space for a batch process.  Therefore, the knowledge gained 

from the DOE was used to choose an optimum excipient ratio and an optimum HPMC 

concentration, and the combination of the EEF and EMT variables at these optimum 

points created the design space.   

 

Figure 5.6.  The final design space for the high lactose excipient ratio that displays the probability that 

95% of future batches will meet all CQA specifications at the given location:  a.) CQAs are given equal 

weight;  b.) CQAs are weighed by risk. 

 

There was a much higher probability of passing the compressibility index and 

dm10 specifications at the high lactose excipient ratio, and the probability of passing the 

particle size span specification was also high at certain locations in the high lactose 

excipient ratio.  Therefore, the 2:1 ratio of lactose to MCC was identified as the optimum 

excipient ratio.  It was determined that 8% was the optimum HPMC concentration by 

analyzing the tolerance surfaces for the dm10 and particle size span models (Figures 5.4b 
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and 5.4c).  Therefore, the probabilities of passing the dm10 and particle size span 

specifications for all EMT values at the optimum formulation were multiplied with the 

probabilities of passing the compressibility index specification at all EMT and EEF 

values.  The result was the probability of passing all three CQA specifications in 95% of 

future batches.  This combined tolerance surface created the final design space and is 

displayed in Figure 5.6a. 

 

Figure 5.7.  The final design space for the high MCC excipient ratio that displays the probability that 95% 

of future batches will meet all CQA specifications at the given location:  a.) CQAs are given equal weight;  

b.) CQAs are weighed by risk. 

 

The direct combination of probabilities via multiplication gave equal weight to all 

CQAs, which may not be appropriate for some formulations.  The compressibility index 

was identified as being the most significant CQA, followed by dm10 and particle size 

span.  Therefore, an additional tolerance surface was calculated and displayed in Figure 

5.6b, which gives 50% of the total weight to the compressibility index CQA, and 25% to 

each of the other CQAs.  This figure more closely resembles the compressibility index 

tolerance surface, and more adequately describes the risk of the process.  For both figures 

(5.6a and 5.6b), the optimum region that maximized the probability of future success is 
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located at high EEF and low EMT values. This local region would be where the operating 

space would be identified, and the total area of the operating space would depend on the 

degree of risk associated with a failure mode.  The combined tolerance surfaces for the 

high MCC batches are displayed in Figures 5.7a and 5.7b, and the low probabilities of 

success prove again that the high lactose excipient ratio was optimal. 

Table 5.3.  The correlation matrix for the three response factors 

Response Factor Correlation Matrix 

 
Compressibility 

Index 
dm10 

Particle 

Size Span 

Compressibility 

Index 
1.00 -0.30 0.05 

dm10 -0.30 1.00 0.11 

Particle Size 

Span 
0.05 0.11 1.00 

 

 Conservative methods for calculating the combined tolerance surfaces are 

described here because it was assumed that all CQAs were independent and uncorrelated.  

Therefore, it considered the risk of failure for each CQA specification independently, and 

lowered the overall probability of success.  Most manufacturing response variables have 

some degree of correlation, which was the case for this particular example (Table 5.3).  

Therefore, there is at least a 30% probability that failure of one CQA will have 

simultaneous failures of other CQAs, which reduces the number of future batches that 

have at least 1 failure mode.  The probabilities within the combined tolerance surface 

could be adjusted accordingly, but reporting the most conservative results will reduce 

greatly the risk of underestimating future failures.  If the desired probability of success 



 

 

 

166 

was not met, additional experiments must be augmented to the original DOE at the local 

region where a high probability of success is necessary (operating space).  This would 

reduce the model error in the operating space and shift the center of the model toward the 

operating space, both of which would lower uncertainty. 

5.4 Conclusion 

 

The quality by design (QbD) paradigm in the pharmaceutical industry is moving 

product development in a much more rigorously scientific direction that requires well 

designed experiments and control systems, but results in higher degrees of product 

quality and substantial economic incentives over time.  The current chapter described a 

hybrid control system that was developed efficiently and was able to control the fluid bed 

granulation and drying unit operation through four manufacturing phases.  The control 

system made use of a first principle relationship to control the major mechanism of the 

manufacturing process using a single variable.  Online spectroscopy provided increased 

process understanding and immediate feedback for control of phase end points.  

Combined, these controls resulted in reduced variability with respect to manufacturing 

quality using a limited number of experiments. 

The DOE that was developed to optimize the manufacturing process for the given 

combination of materials included both formulation and process factors.  The subsequent 

analysis of the data identified significant interactions between variables including a 

nominal formulation factor and continuous process factors.  This information would not 

have been identified in traditional stepwise developmental efforts, which could have 

resulted in misidentifying the optimum combination of formulation and process factors in 

the final design space.  Additionally, a rigorous statistical analysis that utilized extended 
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ANACOVA models and tolerance intervals around the response factor predictions was 

used to define the optimum design space that reduced the risk of future batch failure to a 

specified level. 
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Chapter 6: Efficient Near Infrared Spectroscopic 
Calibration Methods for Pharmaceutical Blend 
Monitoring 
 

 

 

6.1 Introduction 

 

The benefits of a hybrid control system that combines first principle calculations 

and empirical modeling for the fluid bed granulation and drying unit operation have been 

well established in the previous chapters.  The described control systems were designed 

specifically for the needs of the unit operation and were ideal for the complexities 

associated with fluid bed granulation and drying.  The level of complexity, the type of 

online measurements, and the control strategy may not be necessary for all formulations, 

systems, or unit operations, however.  A control system must be designed for each system 

to meet all of the quality requirements while incurring the smallest possible costs. 

The powder blending unit operation for most pharmaceutical formulations is a 

system that lacks the level of complexity associated with fluid bed granulation and 

drying.  It is a unit operation that is required for almost all solid formulations in the 

pharmaceutical industry, and inputs mechanical stress to charged powders via vessel 

rotation to assure a homogeneous distribution of solid components throughout the batch 

for further processing.  Powder mixing is never the same from batch to batch, so a control 

system is needed to simply monitoring the homogeneity of the blend in real-time so that 

the blend can be stopped when a satisfactory and consistent level of homogeneity is 

reached for every batch.  This chapter will discuss a method for efficient and robust 
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development of a multivariate spectral calibration, the most challenging and cost 

consuming step in the development of a control system for powder blending. 

The use of near infrared (NIR) spectroscopy in the pharmaceutical industry has 

become increasingly popular over the past several decades.
112

  Little or no sample 

preparation is needed, which allows for efficient data collection and the ability to monitor 

processes online.  However, there can be a substantial cost in generating and maintaining 

robust quantitative multivariate NIR calibrations.  This chapter seeks to demonstrate 

efficient means of generating calibrations and maintaining them through the life-cycle of 

the method. 

Large sample sets are typically created using experimental design techniques.
113

  

These sets contain enough samples to span the expected variance of chemical and 

physical characteristics, while also including several replicate samples.  In a system that 

has four chemical components and two physical components, a calibration set with only 

two levels of each component would require a minimum of 70 independent samples.  The 

sample size increases exponentially when additional component levels are added (as is 

frequently necessary for more sensitive calibrations).  Additionally, it is necessary to 

generate a validation set and calibration transfer samples (for update or transfer).  

Considering all of the samples required, the development and maintenance of a robust 

NIR calibration can be an expensive undertaking. 

 A potential advantage that a pharmaceutical analyst has for reducing the required 

number of design points is access to pure components samples.  The highest 

concentration point for all chemical components is available by scanning pure 

components, thereby requiring minimal preparation.  Similarly, scans of all other pure 
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components serve as zero concentration points for the analyte(s) of interest.  The 

concentration for constituents that is the point of interest (e.g. the final formulation for a 

pharmaceutical blend or tablet) for each component is typically available during process 

development.  Therefore, three concentration levels are available for all chemical 

components without creating new samples.  Utilizing these available samples is the basis 

of this efficient calibration study.  This technique is intended to be a low cost effort 

during research and development to provide satisfactory predictions during process 

development.  It is not intended to be a final method used for product testing or process 

optimization, but the initial models can be updated with additional samples created by 

design to improve model sensitivity over a specific concentration range.   

This chapter demonstrates the development and performance of efficient NIR 

calibrations for pharmaceutical blend monitoring.  It addresses the performance of several 

popular multivariate calibration algorithms including partial least-squares (PLS) 

regression, classical least-squares (CLS) regression, augmented classical least-squares 

(ACLS) regression, classical least-squares/partial least-squares (CLS/PLS) regression, 

artificial neural networks (ANN), and least-squares support vector machines (LSSVM).  

Due to the differences in the calculation of the regression vectors for each algorithm, 

some are more appropriate for the creation of robust calibrations with reduced sample 

sets.  A critical analysis of the performance of each algorithm is provided, as well as a 

discussion of the blend end point determination.   

The transfer ability of the two best performing models is presented as an 

additional indication of model robustness.  Calibration transfer is a vital portion of any 

online spectroscopic method because multiple NIR instruments are necessary and each 
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instrument drifts over time, requiring a change or update in the calibration.  The ease at 

which this transfer process is successful is a major contributor to the success of the 

method and is a strong indicator of the original calibration’s robustness.    

This study was part of a major research project through The National Institute for 

Pharmaceutical Technology and Education (NIPTE) funded by the U.S. Food and Drug 

Administration.  The project title is “Development of Quality by Design (QbD) Guidance 

Elements on Design Space Specifications Across Scales with Stability Considerations.”  

It is focused on improving pharmaceutical product quality and maximizing process 

innovation and continuous quality improvements by developing control systems and 

process design spaces across several unit operations and several scales.  The research was 

originally published in the Journal of Pharmaceutical Innovation.
133

 

6.2 Theory 

 

6.2.1.  Multivariate Calibration Algorithms 
  

The PLS algorithm is the most widely used calibration algorithm for quantitative 

predictions using spectral data because of its data reduction capabilities and its 

performance in prediction statistics.  Partial least-squares regression is a bilinear 

modeling algorithm based on Herman Wold’s general PLS principle.
114

  A thorough 

review of the PLS algorithm is provided by Bjorsvik and Martens.
115

  

 The PLS algorithm calculates the regression vector by maximizing the covariance 

between the spectral data matrix and the reference data.  Therefore, a PLS calibration is 

only as good as its reference data.  An accurate and robust PLS calibration must have 

reference samples covering the entire concentration range that will be encountered in 

future predictions.  The greater the number of concentration levels and replicates over the 
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range, the better the prediction statistics.  Therefore, the PLS algorithm was hypothesized 

to be less effective for efficient calibrations using reduced samples sets. 

The CLS algorithm has not been widely applied for NIR calibrations in the 

pharmaceutical industry because it is very difficult to estimate the pure component 

contribution for all spectrally active components in the sample matrix.  Spectral shapes 

imparted by an instrument, light source, sample particle size, etc. are very difficult to 

determine when creating a calibration model, and thus CLS calibrations typically result in 

reduced accuracy statistics.  Classical least-squares regression assumes that the Y 

variable(s) is a random variable with a distribution that depends on the X variable(s), 

which is considered non-random and controlled by the experimenter.  The CLS algorithm 

is based upon explicit linear additive models (Beer’s Law) that require quantitative 

knowledge of all spectrally active components in the calibration set,
75

 and the regression 

vector becomes the portion of each components’ pure component spectra that is 

orthogonal to the other pure components.   

The ACLS technique, developed by Haaland and Melgaard,
75, 116, 117

 is a method 

intended to enhance the CLS algorithm.  The calibration procedure and calculation of the 

pure component matrix is the same as with the CLS algorithm, but ACLS allows the user 

to augment the predicted pure component matrix with empirically derived spectral 

shapes.  For example, if a user determines that a difference between two lots of an 

excipient is causing prediction errors, samples of each lot can be collected and the 

difference spectrum or loading(s) from a principal component analysis (PCA) can be 

added to the predicted pure component matrix, K̂ .  This effectively orthogonalizes the 

regression vector for all other components to the newly derived spectral interference 
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shape.  This can be repeated for all known interferences during calibration or prediction 

(prediction augmented CLS: PACLS). 

 The ACLS and PACLS techniques make calibrations more robust, but often lower 

prediction accuracy statistics because more of the measured pure component signal is 

removed from the regression vector due to orthogonalization.  Therefore, the major 

drawback with the CLS algorithm is not solved, but a very intuitive calibration transfer 

and/or update method is introduced.  A calibration transfer or update can be 

accomplished with a reduced sample set by simply deriving the spectral shape of the new 

instrument or interference and adding it to the pure component matrix. 

Another simple improvement aimed at utilizing the advantages of CLS and PLS 

together is the hybrid (CLS/PLS) algorithm, also developed by Haaland and Melgaard.
100, 

118, 119
  In this method, a CLS, ACLS, or PACLS model is developed as discussed 

previously.   A subsequent PLS model is calculated to relate the spectral residuals from 

the initial CLS model to the concentration residuals for each component.  The predicted 

concentration residuals are then added to the original CLS predictions. 

 The PLS step of the hybrid algorithm models the structured noise remaining in the 

spectral data matrix, X, after the CLS model is calculated.  This structured noise is 

affecting predictions and results from additional spectrally active components (particle 

size, instrument, etc.) that are not included in the predicted pure component matrix.  The 

hybrid algorithm is hypothesized to be the ideal candidate for the creation of efficient 

calibrations using reduced sample sets.  The inclusion of measured pure component scans 

in the CLS step allows the model to be specific for each component, while the PLS step 

can reduce prediction errors for better accuracy and precision.  The ability to augment the 
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CLS portion of the hybrid algorithm makes it ideal for efficient calibration transfer or 

update, which is especially important for reduced sample set calibrations where 

significant spectral interference shapes may be encountered during prediction.    

Artificial neural networks are pattern recognition methods that have been adapted 

to solve regression problems.  It is a nonlinear modeling technique that may be more 

appropriate for complex data matrices.  As stated in its name, ANN mimic the function of 

biological neural networks by being constituted of individual neurons positioned on 

interconnected layers. A typical ANN has an input layer, one or more hidden layer(s), 

and an output layer. The number of neurons on the input and the hidden layers can vary. 

Compared to PLS and CLS based methods, ANN do not assume linearity between inputs 

and outputs and can successfully be deployed in situations where the distribution of the 

residuals is not normal. Numerous publications show cases where ANNs provided more 

accurate and precise results than linear techniques.
120-123

  

 Artificial neural networks are particularly subject to overfitting and a good 

validation strategy must be developed. They perform poorly when trying to predict values 

outside of the training range, while linear methods can extrapolate quite well. Finally, due 

to the large number of elements to estimate during the development of an ANN, the 

number of samples must be large.
124

  However, its ability to model non-linear 

relationships can be highly beneficial in efficient calibrations where it is highly 

hypothetical that the relationship between spectral data and sample concentration is linear 

between 0 and 100%.  

Support vector machines (SVM) were originally developed for binary 

classification situations.
125

  The idea behind SVM is to determine samples that define the 
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most appropriate cluster limits (support vectors) as well as reduce the misclassification 

rate. In regression situations, support vector regression (SVR) and least-squares support 

vector machines (LSSVM) try to find the best fit of the data by limiting the number of 

samples outside an error range set by the user.  

Least-squares support vector machines has been developed to perform on data 

presenting non-linear relationships with a limited number of observations. The main 

advantage of LSSVM is that only two parameters need to be determined. Its main 

drawback is the computation time; it is exponentially proportional to the size of the 

dataset and can take several hours to perform on a set of several hundred samples. This 

problem is minimized using reduced sample sets.  Cogdill and Dardenne
126

 provided a 

good overview of LSSVM.  Shawe-Taylor et al.
127

 and Suykens et al.
128

 are references 

for theoretical aspects of support vector machines. 

 

6.2.1  Blend End Point Determination 
 

The Root Mean Squared Error from the Nominal Value (RMSNV) statistic for 

blend end point determination is a moving window, weighted error statistic.
99

  It is 

calculated by: 

 RMSNV = 
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 (6.1)

 

where W is the weight given to a component and i is the number of data points used in a 

single window.  The reference concentration for a given component (Yn) is the nominal 

concentration of the component in the final blend and is compared to the predicted 

concentration value for that species ( ).  The weight for a given component can be 

adjusted based on the requirements and/or performance of the measurement.  The 
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blending end point is reached when the RMSNV statistic reaches a pre-determined 

minimum threshold over the previous window.  The adjustable parameters make the 

RMSNV statistic ideal for meeting the needs of a specific blending operation. 

6.3  Materials and Methods 

 

6.3.1.  Pharmaceutical Formulation 
  

 The formulation contained eight components, and Gabapentin (Hangzhou 

Starshine Pharmaceutical Co., LTD, Hangzhou, China, Batch 0803023) was the active 

pharmaceutical ingredient (API).   Granules comprising 93.75% API and 6.25% 

hydroxypropyl cellulose (HPC) (Klucel EXF, Ashland Aqualon Functional Ingredients, 

Wilmington, DE, USA) were manufactured using a bottom driven, high shear granulator 

(Diosna P1-6, Dierks & Söhne GmbH, Osnabruck, Germany, 6 L bowl) and tray dried at 

Purdue University.  The granules were created as part of a design of experiments to 

optimize the wet granulation unit operation for this formulation.  Three granulation 

batches of 1.2 Kg were granulated with 1.0%, 2.0%, and 2.5% water by weight, 

respectively.  All three batches were dried to 0.5% moisture by weight.  The median 

particle size for the three batches were 233 µm, 450 µm, and 590 µm, respectively.  

These batches were then sampled for the small scale blend experiments.  

The granules, which comprise 71.99% of the blend, were combined with the 

extragranular excipients: 1.23% Poloxamer 407 (WLS Enterprises, Indianapolis, IN, 

USA), 2.47% crospovidone (Polyplasdone XL, ISP Chemicals, Wayne, NJ, USA), 6.75% 

starch (Lycatab C, Roquette America Inc., Geneva, IL, USA), 11.25% microcrystalline 

cellulose (MCC) (Comprecel M102D+, Mingtai Chemical Company Ltd., Taoyuan 

Hsien, Taiwan), 1.01% talc (IMI FABI LLC/Mutcher Inc., Benwood, WV, USA), 4.50% 



 

 

 

177 

HPC, 0.79% magnesium stearate (Mg. St., Mallinckrodt, Hazelwood, MO, USA) - for 

powder blending.  The final concentration of Gabapentin in the blend was 67.49% and 

the final concentration of HPC (intra- and extra-granular) was 9.00%. 

 

6.3.2  Blending, Sampling, and Instrumentation 
 

Blending was performed at the Duquesne University Center for Pharmaceutical 

Technology (DCPT) with a 5.5 L bin blender (L.B. Bohle LLC, Warminster, PA, USA) 

with DeltaV (Emerson Process Management, Equipment & Controls, Inc., Lawrence, PA, 

USA) controls.  The blender was run at 15 rpm for 15 minutes with all components 

except Mg. St. to ensure that each blend was completely homogenous.  Magnesium 

stearate was then added to the blender and an additional 5 minute lubrication blend was 

performed.  The lubrication blend was not considered in any of the following data 

analysis. 

 

6.3.2.1  Side Sensor 

 

Blends that were performed for data collection by the side sensor were completed 

using a small scale blend simulator that was mounted inside the 5.5 L bin blender against 

the side axis window.  The small scale blends had a total mass of 30 grams, with an 

approximate fill volume of 85%.  The system was designed to make the calibration 

processes as efficient, with respect to raw materials, as possible. 

 Pure component scans of each material and the pharmaceutical granules were 

collected by filling the blend simulator with 30 grams of a given component.  Granule 

scans for each granulation batch were collected by filling the blend simulator with 30 

grams of granules.  Data were collected with the same procedure as the blends.  This 
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procedure allowed for the pure component and granule scans to be similar in terms of 

physical properties and noise as compared to the dynamic or tumbling blends.  The 

calibration curves for gabapentin and HPC had four concentration points (other 

components (0%), blend concentration (67.49% API, 9.00% HPC), granule concentration 

(93.75% API, 6.25% HPC), pure component (100%)), while the calibration curves for all 

other excipients had three concentration points (other components (0%), blend 

concentration (nominal %), pure component (100%)). 

Diffuse reflectance NIR spectral data were collected using a model NIR256L-

2.2T2 spectrometer from Control Development Inc. (South Bend, IN, USA).  It is a 256 

element photodiode array spectrometer with an extended InGaAs detector (1085-2229 

nm).  An external halogen light source (Control Development Inc., HL-2000) was used 

with a fiber optic probe (Control Development Inc., South Bend, IN, USA, 6 around 1 

reflectance probe).  The side sensor was stationary, with the fiber optic probe placed 

against a sapphire window on the rotation axis of the blender.  The spot size for this 

system was approximately 400 µm.  Spectra were collected with 16 coadditions averaged 

for a single scan with an integration time of 0.028 seconds.  A single scan was collected 

every five seconds.  A dark reference was collected by disconnecting the lamp from the 

fiber optic probe and a light reference was collected by measuring the diffuse reflectance 

from a 99% Spectralon Reflectance Standard (Labsphere Inc., North Sutton, NH, USA).  

Reference scans were collected once daily. 

 

6.3.2.2  Top Sensor 

 

Blends that were performed for data collection by the top sensor were lab scale 

blends with a total mass of approximately 800 g.  The fill ratio of these blends in the 5.5 



 

 

 

179 

L bin blender was less than 50%.  The top sensor was set to collect spectra when inverted 

to assure that each scan had powder directly in front of the sensor.  At 15 rpm, the scans 

were collected at four second intervals.  Pure component and granules scans were 

collected by filling the blender and spinning at 15 rpm in the same procedure that was 

performed on the small scale blend simulator.  The calibration curves for the top sensor 

had the same concentration levels for each component as the side sensor calibrations.   

Diffuse reflectance NIR spectral data was collected using the Blend Uniformity 

Analyzer from Control Development Inc. (South Bend, IN, USA).  It is a 256 element 

photodiode array wireless spectrometer with an InGaAs detector (910-1680 nm) and an 

internal dual tungsten halogen lamp.  This spectrometer was attached to the lid of the 

blender and rotated with the blender.  The spot size for this system was 25 mm.  Spectra 

were collected with 16 coadditions averaged for a single scan with an integration time of 

0.033 seconds.  The dark and light reference scans are internal for the top sensor and 

were collected once daily. 

 

6.3.3  Data Analysis 
 

All of the data analysis was performed using MATLAB v. 7.1 R14 (The 

Mathworks, Natick, MA, USA) equipped with the PLS_Toolbox v. 3.0.4 (Eigenvector 

Research Inc., Wenatchee, WA, USA), LSSVM Lab v1.5 (Katholieke Universiteit 

Leuven, Belgium),
128

 the neural network toolbox v5.1 (The Mathworks, Natick, MA, 

USA), and programs written in house. 



 

 

 

Table 6.1.  The number of spectra and independent samples for the calibration set, test set, and prediction set for the top and side sensor. 

  

Top Sensor Data Sets 

Calibration Set 
Test 
Set 

Prediction 
Set 

Pure Component Scans 
Blend 
Scans 

Granule 
Scans 

Blend 
Scans 

Full Blend 
Profile 

API HPC MCC Starch Poloxamer Crospovidone Talc         

Number of 
Spectra 

19 23 18 16 12 16 15 68 53 30 227 

Number of 
Independent 

Samples 
1 1 1 1 1 1 1 4 3 2 1 

  

Side Sensor Data Sets 

Calibration Set 
Test 
Set 

Prediction 
Set 

Pure Component Scans 
Blend 
Scans 

Granule 
Scans 

Blend 
Scans 

Full Blend 
Profile 

API HPC MCC Starch Poloxamer Crospovidone Talc         

Number of 
Spectra 

28 30 30 30 30 30 30 30 133 35 367 

Number of 
Independent 

Samples 
1 1 1 1 1 1 1 2 3 3 1 
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8
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The calibration set for the side sensor consisted of 371 spectra from 12 

independent samples.  The wavelength range was truncated to the 1151-2229 nm range to 

eliminate the noisy portion of the detector at shorter wavelengths.  Further information on 

the calibration set, test set, and prediction set are included in Table 6.1.  The blend scans 

in the calibration set represent the final minute of 2 independent blends.  The 1.0% and 

2.0% moisture content granulation batches supplied the granules for these 2 blends, 

respectively.   

The calibration set for the top sensor contained 240 spectra from 14 independent 

samples.  The wavelength range was truncated to the 924-1656 nm range to remove the 

noisy ends of the spectrometer.  Further information on the top sensor data sets can be 

found in Table 6.1.  The blend scans in the calibration set represent the final minute of 

four independent blends.  Each granulation batch was represented in one of the four 

independent blends, with the 2.0% moisture content batch represented twice. 

Calibrations for both instruments were created using the algorithms described 

previously to predict each of the concentrations of the four major blend components 

(Gabapentin, MCC, HPC, and Starch), which comprise 94.49% of the final blend.  The 

other minor components were present in concentrations less than 2.5%, which is too low 

for consideration in this context.  The prediction performances for the reported efficient 

calibrations are of magnitudes that would constitute a significant portion of these low 

concentrations.   

The calibrations for each of the four major components were optimized for the 

minimum cross-validation error independently by preprocessing methods, augmentation, 

number of modeling factors, etc.; even calibrations using the same algorithm.  For 
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example, the spectral preprocessing and number of latent variables were optimized for 

the gabapentin PLS calibration; similarly, the same parameters were independently 

optimized for the starch PLS calibration. For ANN and LSSVM, a randomly selected 

stop set of 20% of the calibration was used to tune the parameters. The stop set acted like 

a 1-block cross validation approach and allowed model parameters to be tuned. Both non-

linear approaches were developed based on principal component scores.  For ANN, 10 

independent generations were created to ensure that results were not based on a local 

minimum. All parameters (for ANN: network structure, momentum, learning factor, 

transfer function, etc.; for LSSVM: kernel and regularization factor) were independently 

tuned for each parameter and each material.  

 The calibration performance was reported with multiple statistics including the 

coefficient of determination (R
2
), root mean squared error of the calibration (RMSEC), 

standard error of the calibration (SEC), bias, slope, and offset.   The test performance was 

reported using the R
2
, root mean squared error of prediction (RMSEP), standard error of 

prediction (SEP), bias, slope and offset statistics.  Finally, the spectra collected from a 

separate full blend that is not in the calibration or test sets was used for prediction 

purposes to study the effect of the blend end point determination using different 

algorithms. 

 For all calibration algorithms studied in this manuscript, the RMSNV statistic was 

determined using the four major components of the pharmaceutical blend with each 

component receiving an equal weight (1/4).  The moving window contained enough 

samples to comprise one minute of blending (12 samples for the side sensor; 15 samples 

for the top sensor). 
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Different test sets were used for the side and top sensor.  The side sensor utilized 

the final 15 scans of two additional independent, small scale blends created using 

granules from the 1.0% and 2.0% moisture granulation batches and the final five scans of 

a third independent blend with granules form the 2.0% moisture granulation batch (35 

total spectra) as an independent test set.  An additional independent blend using granules 

from the 2.0% moisture granulation batch was used as a prediction set for determining 

blend homogeneity.  For the top sensor, the final 15 spectra from two separate blends 

using granules from the 1.0% and 2.0% moisture granulation batches, respectively, were 

used as an independent test set and a third independent blend using granules from the 

2.0% moisture granulation batch was used for prediction of the blend end point. 

 

6.3.4  Calibration Transfer 
 

The two best performing algorithms from the calibration study were studied 

further in a calibration transfer study.  The common wavelength range (1151-1680 nm) 

between the two sensors’ truncated calibration sets were used so that the calibrations 

could be applied to both instruments.  Calibration transfer was attempted from the side 

sensor to the top sensor (S-T) and from the top sensor to the side sensor (T-S) for all 

transfer techniques.  The same test and prediction sets were used to evaluate the 

performance of the transferred calibrations with the RMSEP, SEP, and bias statistics 

reported.   

Each calibration was applied directly to the other spectrometer data as the 

simplest possible prediction scenario.  Robust calibrations were created using different 

numbers of spectra from both instruments’ calibration sets (100%, 50%, and 25%) as a 

baseline to compare the performance of the transfer techniques.  For each transfer 
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technique, the 10 samples from the calibration set having the lowest residuals were 

removed to create the transfer set.  Each calibration was then transferred using bias 

correction, direct standardization (DS), and piecewise direct standardization (PDS),
73, 74

 

and the results were compared for performance.  Standardization samples were removed 

prior to developing calibrations.  Thus, all calibration models were developed without the 

10 best samples. 

6.4  Results and Discussion 

 

6.4.1.  Calibration Study 
  

Performance results from the calibration study can be found in Table 6.2, which 

contains the pooled calibration statistics for the four major components for both sensors.  

The top sensor data contained less noise than the side sensor data; as a result, the 

calibration statistics were generally better for the top sensor.  There were exceptions, and 

the differences between the two instruments depended on the multivariate algorithm 

employed. 

 In all models, the error statistics were notably lower for nonlinear methods (ANN 

and LSSVM) than for the linear multivariate algorithms.  The ANN models had the 

lowest error statistics, but these models lacked sensitivity, which was observed when 

predicting full blend profiles (Figures 6.1 and 6.2).  The ANN models predicted all 

samples in a range around the blend point as having the nominal blend concentration, so 

blends that were not homogenous would have been predicted to be homogenous by the 

ANN method.  The ANN algorithm has many more parameters to optimize than linear 

methods, which are not intuitive and require an extensive validation method.  The 

number of independent samples that were available in this efficient calibration setting did 
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not allow for a rigorous ANN optimization.  The ANN algorithm was not considered 

further. 

Table 6.2.  The pooled calibration performance statistics across the 4 major blend components for both 

sensors using multiple calibration algorithms. 

  

Top Sensor Calibration Statistics 

Pooled Statistics for 4 Major Components 

PLS CLS 
Aug-
CLS 

CLS/PLS 
Aug 

CLS/PLS 
LSSVM ANN 

C
a
li

b
ra

ti
o

n
 

R
2
 0.9869 0.9853 0.9850 0.9945 0.9936 0.9999 0.9999 

RMSEC 0.0399 0.0426 0.0431 0.0261 0.0279 0.0042 0.0036 

SEC 0.0399 0.0427 0.0431 0.0261 0.0279 0.0042 0.0036 

Bias 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 

Slope 1.0000 0.9585 0.9850 0.9945 0.9936 1.0001 1.0030 

Offset 0.0000 0.0030 0.0030 0.0011 0.0013 0.0000 0.0000 

T
e
s
t 

 

R
2
 0.9893 0.9875 0.9892 0.9689 0.9701 0.9999 1.0000 

RMSEP 0.0323 0.0397 0.0379 0.0455 0.0448 0.0080 0.0004 

SEP 0.0322 0.0385 0.0366 0.0457 0.0449 0.0078 0.0004 

Bias 0.0021 -0.0104 
-

0.0103 
0.0006 0.0026 0.0016 0.0000 

Slope 0.9337 0.9089 0.9109 0.9772 0.9747 0.9967 1.0000 

Offset 0.0177 0.0122 0.0118 0.006 0.0086 0.0024 
-

0.0004 

  

Side Sensor Calibration Statistics 

Pooled Statistics for 4 Major Components 

PLS CLS 
Aug-
CLS 

CLS/PLS 
Aug 

CLS/PLS 
LSSVM ANN 

C
a
li

b
ra

ti
o

n
 

R
2
 0.9700 0.9844 0.9843 0.9927 0.9953 0.9999 0.9996 

RMSEC 0.0632 0.0458 0.0461 0.0313 0.0252 0.0034 0.0074 

SEC 0.0632 0.0459 0.0461 0.0313 0.0252 0.0034 0.0074 

Bias 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Slope 1.0000 0.9844 0.9843 0.9927 0.9953 1.0000 1.0002 

Offset 0.0000 0.0029 0.0030 0.0014 0.0009 0.0000 
-

0.0001 

T
e
s
t 

 

R
2
 0.9756 0.9179 0.9778 0.9795 0.9843 0.9972 0.9998 

RMSEP 0.0416 0.0738 0.0408 0.0383 0.0339 0.0180 0.0035 

SEP 0.0412 0.0741 0.0392 0.0384 0.0336 0.0180 0.0034 

Bias 0.0054 0.0016 -0.0116 0.0017 0.0055 0.0009 0.0008 

Slope 0.9641 0.9660 0.9672 1.0460 1.0403 0.9563 1.0007 

Offset 0.0137 0.0096 -0.0034 -0.0092 -0.0039 0.0113 0.0006 
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Figure 6.1.  RMSNV trends of a single independent blend using multiple calibration algorithms on side 

sensor data.  The solid boxes in the zoomed portion of the figure represent the blend end point as 

determined by each algorithm.  The end point is defined when the RMSNV over the previous minute is less 

than or equal to the test error for the respective calibration.  The solid line represents a strictly arbitrary 

threshold for RMSNV. 

 

 The performance of the CLS algorithm was comparable to that of PLS.  This 

demonstrates the advantage that CLS based algorithms have over PLS with reduced 

sample sets and pure component spectra.  Even without spectral shapes in the K̂  matrix 

that represent physical effects such as particle size and density, the prediction results 

were acceptable.   
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Figure 6.2.  RMSNV trends of a single independent blend using multiple calibration algorithms on top 

sensor data.  The solid boxes in the zoomed portion of the figure represent the blend end point as 

determined by each algorithm.  The end point is defined when the RMSNV over the previous minute is less 

than or equal to the test error for the respective calibration.  The solid line represents a strictly arbitrary 

threshold for RMSNV. 

 

Test and prediction results for CLS were improved by augmenting additional 

spectral shapes from other spectrally active factors, but the effects were different for each 

component.  Calibration performance was improved further by adding the PLS step to the 

ACLS calibrations for the ACLS/PLS hybrid algorithm.  The PLS step made minor 

corrections to the original ACLS predictions to account for errors caused by the 

regression vector still containing spectral variation from other components that were not 
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represented in the K̂ matrix.  These components included spectral baseline effects from 

different blend runs, changes in the residual moisture between blends, and changes in the 

physical properties of the component powders, most notably the granules.  The 

improvements were greater when dealing with the noisier data from the side sensor.  It 

should be noted that all models showed acceptable prediction performance for blend 

homogeneity monitoring, even with as few as 12 and 14 independent samples.  Using the 

CLS based methods and taking care in calibration optimization, combined with the use of 

pure component scans, led to useful calibrations based on a minimal number of samples 

(efficient calibration). 

 

6.4.1.1  Side Sensor Analysis 

 

For the side sensor, the starch, MCC, and HPC CLS calibrations were improved 

by augmenting the spectral shapes extracted from the differences between blends derived 

by a PCA.  An additional spectral shape derived from a PCA on different sieve cuts of the 

granules was added to the MCC calibration to represent the scattering effects from 

particle size differences.  The improvements by these ACLS calibrations for both sensors 

demonstrate the power of the method.  This was particularly noticeable when using small 

sample sets.  The improvements over PLS were more substantial using the side sensor 

data.  These data were noisier, which lead to spurious correlations between the X and Y 

data that were observed in the PLS predictions.  The utility of the CLS based models was 

not diminished by these noise effects to the same degree because the pure component 

scans forced correlation between the regression vector and appropriate spectral variation. 

Error statistics of LSSVM were approximately ten-fold lower than other 

algorithms in calibration, but were five times greater from calibration to test results. The 
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other algorithms did not show this magnitude of error increase.  This was a sign of 

overfitting due to the side sensor having a higher noise magnitude, and LSSVM extracted 

spurious correlations as useful information. 

 

6.4.1.2  Top Sensor Analysis 

 

The starch and HPC calibrations were improved by augmenting the spectral 

shapes that represented the mean difference among the four independent blends that were 

included in the calibration set for data from the top sensor.  The spectral difference 

between independent blends resulted from differences in the baseline of the spectra on a 

given day and differences in scattering properties from particles size and bulk density 

differences, especially because some blends differed in mass by 200 grams.  These 

shapes were derived by concatenating the spectra from these blends into a matrix and 

performing PCA on the data.  The blends have the same nominal concentrations, but were 

clearly separated in score space in the first two principal components.  When the loadings 

for these two components were added to the K̂ matrix the calibration statistics were 

similar or slightly worse because of the removal of pure component signal from the 

regression vector.  However, the calibrations were more robust, showing better prediction 

and test results.   

In contrast with the side sensor, LSSVM on the top sensor displayed limited 

overfitting because calibration and test error were much closer than on the side sensor. 

While still providing lower error statistics, LSSVM was much more sensitive to spectral 

noise than most of the other modeling techniques. 

 

6.4.2  Blend End Point Determination 
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The performance of the calibration significantly effected the determination of the 

blending end point using the RMSNV statistic.  The RMSNV profiles resulting from the 

predictions on the blend monitored using the side sensor are displayed in Figure 6.1, 

while the RMSNV profiles using the top sensor data are displayed in Figure 6.2. 

The ending criterion, or RMSNV threshold, should reflect the model’s test 

statistics, an empirically derived relationship with future product variability, and/or the 

necessary performance of the blend in subsequent unit operations.  An arbitrary error 

threshold used for all blends is insufficient.  The side sensor blend profiles (Figure 6.1) 

show that differences in model error can lead to substantial differences in the blend end 

point determination using an arbitrary threshold such as 5% (see the solid line in Figure 

6.1).  The PLS, LSSVM, and ANN algorithms would have stopped the blends before the 

blend was homogenous, while the CLS based algorithms would have never stopped the 

blends because the error in the models was always greater than the threshold.  Figure 6.2 

displays the effect an arbitrary threshold had using the top sensor data.  All algorithms 

would have stopped the blend prematurely because the lower noise of the top sensor 

instrument allowed all of the algorithms to reach the 5% threshold quickly.     

Without having tablet variability data to train a blend variability model, a more 

appropriate ending criterion was the test error for a given model.  When a RMSNV point, 

which pools the error over the four major components and one minute worth of data 

collection, was less than or equal to the test error of the calibration, the blend was 

determined to be homogenous.  This indicates that the blend had reached a maximum 

discernable homogeneity, based on the analytical method employed.  Figures 6.1 and 6.2 
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demonstrate the blend end point as determined by each algorithm with this criterion by 

the solid squares. 

 

6.4.2.1  Side Sensor Performance 

 

The side sensor calibrations demonstrated how increases in the amount of noise 

present in the data matrix can affect the performance of the multivariate algorithms.  The 

presence of significant noise caused all of the algorithms to perform similarly, with all 

RMSNV trends correlated at greater than 91.8% (Table 6.3).  The small, subtle variations 

associated with minor components diffusing throughout the blend were masked and as a 

result, the multivariate algorithms were only able to correlate the larger sources of 

variation to the reference values.  The only major differences between RMSNV profiles 

were differences in prediction bias (Figure 6.1), which created offsets in the trends while 

the features remained similar. 

The CLS algorithm produced the highest error statistics while the nonlinear 

methods had the lowest.  Both augmenting the CLS algorithm and using the secondary 

PLS step improved the error statistics for CLS, but the CLS/PLS hybrid algorithm did a 

better job of monitoring the minor blend fluctuations throughout the process.  The ACLS 

algorithm had the lowest correlations with other algorithms, while PLS, CLS/PLS, and 

ACLS/PLS were highly correlated.  The PLS algorithm modestly outperformed the other 

linear algorithms when comparing overall error. 

There was a significant difference in the blend end points as determined by each 

algorithm that was the result of differences in prediction bias and the determination of the 

ending error threshold.  While all algorithms showed similar trends, the valleys or local 

minima in the RMSNV trends met the ending threshold at different times because of the 
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differences in the test performance and the blend prediction bias.  The CLS algorithm 

determined that blend homogeneity had been achieved quickly because the test error for 

CLS was highest, which defined a higher error threshold.  The PLS and LSSVM 

algorithms indicated the ending criterion had been reached quickly because there was a 

low prediction bias for this blend.  The ACLS, CLS/PLS, ACLS/PLS, and ANN 

algorithms analyzed the blend as requiring longer to reach homogeneity.  

Table 6.3.  Correlations between RMSNV trends using a single blend and multiple 

calibration algorithms for both sensors. 

Top Sensor RMSNV Correlations Between Algorithms 

  PLS CLS ACLS CLS/PLS ACLS/PLS LSSVM ANN 

PLS 1.0000 0.8303 0.8851 0.8957 0.8183 0.3556 0.4203 

CLS 0.8303 1.0000 0.9838 0.9232 0.9456 0.4336 0.5167 

ACLS 0.8851 0.9838 1.0000 0.9446 0.9441 0.3906 0.4650 

CLS/PLS 0.8957 0.9232 0.9446 1.0000 0.9540 0.4090 0.4809 

ACLS/PLS 0.8183 0.9456 0.9441 0.9540 1.0000 0.2972 0.4026 

LSSVM 0.3556 0.4336 0.3906 0.4090 0.2972 1.0000 0.9470 

ANN 0.4203 0.5167 0.4650 0.4809 0.4026 0.9470 1.0000 

Side Sensor RMSNV Correlations Between Algorithms 

  PLS CLS ACLS CLS/PLS ACLS/PLS LSSVM ANN 

PLS 1.0000 0.9912 0.9183 0.9936 0.9923 0.9294 0.9867 

CLS 0.9912 1.0000 0.9352 0.9920 0.9927 0.9383 0.9807 

ACLS 0.9183 0.9352 1.0000 0.9280 0.9375 0.9817 0.9406 

CLS/PLS 0.9936 0.9920 0.9280 1.0000 0.9990 0.9329 0.9801 

ACLS/PLS 0.9923 0.9927 0.9375 0.9990 1.0000 0.9406 0.9820 

LSSVM 0.9294 0.9383 0.9817 0.9329 0.9406 1.0000 0.9550 

ANN 0.9867 0.9807 0.9406 0.9801 0.9820 0.9550 1.0000 

 

A more rigorous validation procedure that included more than 2 independent 

samples at the blend point would have provided a more accurate model performance 

metric, which would have allowed the algorithms to determine blend end points over a 

narrow time range.  Adding a concentration standard deviation statistic over each one 
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minute time window as an additional minimum end point criterion would also make the 

end points for each algorithm more precise. 

 

6.4.2.2  Top Sensor Performance 

 

The top sensor data (Figure 6.2) show that all of the multivariate algorithms 

performed adequately when using data with a lower magnitude of noise and a larger spot 

size.  Reduced noise resulted in fewer spurious correlations to the reference data, while a 

larger spot size reduced the inherent variation observed between measurements.  The 

linear multivariate algorithms predicted blending trends that were highly correlated 

(Table 6.3), while the nonlinear methods showed fewer trends and had lower correlations.  

The PLS algorithm did not determine a blend end point, however, due to a prediction bias 

for the entire blend run that never allowed the RMSNV statistic to get within 1% of the 

test error.  All other algorithms established the blend end point within a 75 second range 

(20-95 sec.).  The short blending times were not surprising for these blends because the 

fill ratio of the powder in the blender was less than 50% and the larger spot size resulted 

in a larger scale of scrutiny.   

The nonlinear methods determined the end point criterion was reached quickly 

because the models lacked adequate sensitivity in the concentration range around the 

nominal blend end point.  The problem with simple, three-level calibrations over the 

entire concentration range (0%-100%) is that they traditionally have low prediction 

accuracy and sensitivity, with biases in predictions being common.  For the nonlinear 

methods, the subtle spectral changes associated with small changes in chemical 

concentrations in NIR spectra did not produce a proportional response in the predictions 

because the calibrations were not trained to recognize these changes appropriately.  The 
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algorithms recognized samples with a high concentration of a single component as being 

very similar to the pure component, and therefore output predictions that were close to 

100%.  This resulted in an over-prediction bias for one component and an under-

prediction bias for other components.  The same problem was observed near the nominal 

concentration point.  The nonlinear methods suffered from this problem more severely. 

These models no longer showed any trends after the blends had begun to approach the 

nominal concentration.  Due to the number of parameters that need to be optimized for 

the nonlinear methods, reduced sample set calibrations are not appropriate.   

Efficient calibration typically is improved by creating a small number of 

independent samples around the concentration point of interest.  This allows the 

calibration to more accurately predict samples close to this concentration level.  The 

range of these samples is a function of users’ need.  For accurate and precise predictions 

of all new samples, the range of concentrations in the calibration set around the point of 

interest must encompass all anticipated new sample concentrations.  This approach will 

result in robust calibrations that are selective, accurate, and precise with a reduced 

number of samples.  While all of the multivariate algorithms can benefit from additional 

samples, the present chapter demonstrates that the ACLS/PLS algorithm’s performance 

was satisfactory without requiring additional samples. 

All of the linear multivariate algorithms in Figure 6.2 showed a one minute period 

of decreasing blend variability after the initial concentration change.  The CLS based 

algorithms, which used the pure component scans as a significant advantage in the 

efficient calibration setting, were most sensitive to the slight concentration changes 

around the blend end point and would stop the bed at the more appropriate end point of 
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95 seconds.  If the blend was stopped before this point, some of the minor excipients 

would not have had the opportunity to fully diffuse throughout the blend, resulting in 

homogeneity problems that could create problems with the final dosage forms.  

The differences among the blend end points determined by the linear algorithms 

were strictly the results of prediction biases as proven by the high overall correlations 

between these trends (Table 6.3).  As stated previously, a more rigorous validation 

process, the inclusion of a prediction standard deviation metric, and the addition of 

samples to the calibration set would cause these predicted end points to converge. 

This calibration performance study demonstrated the utility of efficient 

calibrations while highlighting the importance of understanding the instruments’ noise 

characteristics, scale of scrutiny, and resulting capabilities.  When using an instrument 

with increased noise, reduced sample set calibrations were more appropriate because the 

instrument limited the performance of the component predictions.  All of the algorithms 

presented using the side sensor data performed adequately, and additional expenses used 

in model building would be wasted.  When an instrument (top sensor) with a higher 

signal to noise ratio was used, the calibration process and multivariate algorithm became 

more critical.  The CLS based algorithms took advantage of pure component scans to 

create sensitive models with reduced sample sets.  Like all quality by design (QbD) 

projects, an adequate risk analysis must be completed prior to performing an 

experimental design, so that the user knows the performance level required of the 

analytical models that inform the process. 

 

6.4.3  Calibration Transfer Study 
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The two best performing algorithms (ACLS/PLS and LSSVM) from the 

calibration study were investigated further in a calibration transfer setting. This is an 

additional indicator of model robustness.  Ease of transfer is an important property for an 

NIR model in the pharmaceutical industry.   If a new calibration must be created at each 

instance that an instrument fails, requires maintenance or a calibration update, or a 

different instrument must be utilized, the costs become prohibitive. 

 For this study, several calibration transfer techniques were compared against 

robust calibration designs (calibrations including data from both sensors) to determine 

which of the two algorithms were easier to transfer.  Transfers were created for predicting 

side sensor data using the top sensor calibrations (T-S) and for predicting top sensor data 

using side sensor calibrations (S-T).  Due to the differences in noise patterns, the S-T 

transfers were not successful (data not shown).  The failure of the S-T transfer was 

anticipated, because a transfer of a calibration created on a poorer instrument to an 

instrument of higher quality will inherently be limited by the lower quality instrument.   

 The T-S transfer results are listed in Table 6.4 and the resulting RMSNV trends 

for the independent blend are displayed in Figure 6.3.  Table 6.4 shows that most of the 

errors incurred by the transfer process were in the Gabapentin predictions.  The errors 

were mostly the result of a large prediction bias.  There were minimal increases in the 

prediction variability when transferring the calibrations.  This result was confirmed in 

Figure 6.3 because the RMSNV profiles resulting from the direct prediction of side 

sensor data from the top sensor calibrations showed the same trends as the prediction 

results using the side sensor calibration.  Only an offset due to a prediction bias was 

observed.   The results for the transfer of the ACLS/PLS algorithm using PDS 3 and PDS 
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5 and for the transfer of the LSSVM algorithm using DS and all PDS parameters showed 

low error statistics; however, it is important to note that the low error was due to a lack of 

sensitivity, which is visualized in Figure 6.3.  Only the PDS 5 error statistics are provided 

in Table 6.4.  Other iterations of the optical standardization methods provided similar 

error statistics. 

 When data from the side sensor were added to the top sensor calibration set to 

create robust calibrations, the blend predictions showed all of the same fluctuations, but 

with slight increases in error resulting from an increase in noise in the calibration matrix.  

There was very little difference when adding all of the side sensor calibration data, half of 

the data, or a quarter of the data.  This showed that both the ACLS/PLS and LSSVM 

calibrations could be efficiently updated with additional information. 

 The ideal solution was to simply transfer the original calibration using 

mathematical techniques, so a small number of spectra from only the blend concentration 

level could be used to train the transfer.  The 10 samples having the lowest prediction 

residuals from the side sensor calibration set were used to train each method.  A simple 

bias correction of the predictions was all that was necessary to create transferred RMSNV 

trends that were highly correlated with the robust calibration trends.  The optical 

standardization methods (DS and PDS) were not as successful for transferring these 

calibrations.  Due to the differences in instrument noise and band broadening between 

instruments, these techniques smoothed away the spectral information containing the 

subtle concentration changes that created the blending profiles. 



 

 

 

Table 6.4.  Calibration transfer performance for the ACLS/PLS and LSSVM algorithms using several transfer techniques.  Calibrations created using top sensor 

data are used to predict component concentrations in side sensor data. 

 

1
9
8
 

Top To Side Sensor Transfer Performance 

API 

  Direct Prediction Robust (all) Robust (Quarter) Bias Correction PDS 5 

  ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM 

RMSEP 0.25 0.08 0.06 0.02 0.07 0.03 0.06 0.04 0.02 0.01 

SEP 0.06 0.04 0.06 0.02 0.07 0.02 0.06 0.04 0.01 0.00 

Bias 0.24 -0.07 0.01 -0.01 0.01 0.02 0.00 -0.01 0.02 0.00 

MCC 

  ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM 

RMSEP 0.05 0.03 0.04 0.01 0.03 0.01 0.03 0.03 0.01 0.00 

SEP 0.03 0.03 0.03 0.01 0.03 0.01 0.03 0.03 0.01 0.00 

Bias 0.04 0.00 -0.02 0.00 -0.01 0.01 0.00 0.01 0.01 0.00 

HPC 

  ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM 

RMSEP 0.14 0.03 0.06 0.01 0.06 0.01 0.05 0.04 0.04 0.00 

SEP 0.05 0.03 0.06 0.01 0.06 0.00 0.05 0.03 0.03 0.00 

Bias -0.13 0.01 0.03 -0.01 0.02 0.00 0.01 -0.02 0.02 0.00 

Starch 

  ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM ACLS/PLS LSSVM 

RMSEP 0.04 0.03 0.09 0.01 0.10 0.00 0.03 0.03 0.03 0.00 

SEP 0.03 0.02 0.07 0.01 0.07 0.00 0.03 0.02 0.03 0.00 

Bias -0.02 0.01 -0.06 0.00 -0.07 0.00 0.00 0.01 -0.01 0.00 
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Figure 6.3.  The RMSNV trends generated by transferring calibrations created using top sensor data to data 

collected on the side sensor using several transfer techniques.  a.) The transfer prediction results for the 

ACLS/PLS calibration.  b.) The transfer prediction results for the LSSVM calibration. 

 

The transfer results showed that both the ACLS/PLS and LSSVM calibrations 

were robust and easily transferred.  The success of the simple bias correction method 

demonstrated that both calibrations were correlated strongly to the net analyte signal 

(NAS) of each component because new spectral variation encountered by different 

instrumental data merely resulted in a prediction bias.  All of the relevant (with respect to 

the analyte of interest) spectral variation was still recognized by the models. 

The LSSVM transfer results were more similar to the original predictions because 

the original predictions using LSSVM lacked sensitivity to subtle concentration variation.  

The major spectral variations that the LSSVM algorithm was trained to model were 

similar between instruments.  The ACLS/PLS transfer results showed that the models 

retained their original sensitivity to subtle concentration changes, which is an important 

property in blend monitoring because it is the trend information that is important.  To 
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mitigate the problem of a prediction bias, the absolute RMSNV threshold can be scaled to 

account for the offsets in blend trends. 

These results support the conclusion that sensitive and robust calibrations can be 

created efficiently with a limited number of independent samples if pure components are 

available and the proper modeling algorithms are used.  Classical least-squares based 

algorithms were most appropriate for the efficient calibration setting, while nonlinear 

algorithms were limited for this application.  Modest improvements to the results are 

noted with additional calibration samples. 

6.5 Conclusion 

 

Sensitivity is the most important model property in blend process monitoring so 

that subtle concentration changes caused by the distribution of blend constituents can be 

recognized.  Depending upon the algorithm, accuracy is also an important feature of a 

calibration.  Specifically, the RMSNV algorithm requires both sensitivity and accuracy to 

achieve an optimum end point calculation. However, the trend information gathered by a 

blend monitoring system is most important so that the end point can be determined when 

the blend stops changing. 

This chapter demonstrates that sensitive and robust multivariate spectral 

calibrations can be created from limited sample sets when pure component scans are 

available.  Classical least-squares based methods produced the most sensitive calibrations 

using an efficient calibration strategy. The accuracy of CLS calibrations were further 

improved when using the ACLS/PLS algorithm.  Nonlinear methods produced low error 

statistics based on the samples available in an efficient calibration approach, but lacked 

adequate sensitivity without additional samples.   
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The chapter also highlighted the need to understand the capabilities of the 

instrumentation and the requirements of a given product or system.  Efficient calibrations 

are ideal for a scenario in which the precision of a calibration is limited by the hardware 

(including the sampling system).  This study demonstrates that following an efficient 

calibration effort, accuracy and precision are improved in diminishing returns through 

additional calibration samples.  Efficient calibration offers a means of reducing the 

resources required to generate a quantitative calibration.  This is particularly important 

for the long term success of quantitative spectral analysis in the pharmaceutical industry. 

Finally, this chapter demonstrates that the investment incurred for an optimum 

control system is process dependent.  In pharmaceutical powder blending, a robust 

method for monitoring blend homogeneity is required to reduce the variability between 

batches and assure content uniformity in the final dosage forms.  This can be developed 

using online NIRS, rigorous model development, a rigorous end point criterion, and a 

blend-stop communication system.  Any additional complexities that are built into the 

control system are unnecessary, and do not justify the additional expense. 
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Chapter 7: Summary 
 

 

The pharmaceutical industry has shown significant progress in recent years with 

regards to the discovery of new drug molecules, dosage systems, biological targeting 

methods, and advanced disease treatments.  Despite these advances, the industry 

continues to lag behind comparable industries in terms of manufacturing innovation, 

quality production, and industrial efficiency.  In the past, restrictions put on 

manufacturers by the FDA and comparable regulatory agencies to “lock in” validated 

systems did not enable companies to implement production line improvements.  The 

regulatory agencies have acknowledged this shortcoming and are currently encouraging 

the use of the ICH guidelines that allow flexibility within a validated design space.  It is 

now the responsibility of pharmaceutical manufactures to design rigorous and efficient 

manufacturing systems to meet the standards of current industrial practice while also 

realizing a financial return. 

In the current QbD paradigm as part of the Critical Path Initiative, the amount of 

regulatory flexibility offered to companies is directly proportional to the risk associated 

with the given process.  The manufacturer must demonstrate that an adequate level of 

process understanding has been reached throughout development, and that this 

understanding has led to a quantitative description of the relationships between raw 

material, process, and product factors, which are then related to clinical performance.  

This understanding requires rigorous planning of measurement systems, control systems, 

and DOE from initial stages so that the complex relationships between all of the 

aforementioned factors can be described clearly. 
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This dissertation has demonstrated the importance of rigorous scientific design 

and understanding at all levels of process or product development.  A system should be 

developed to meet the needs of the product or the operation.  In chapter 6, a simple 

control system that was based on maximizing the information available through multiple 

online NIR sensors using a limited number of samples was developed for pharmaceutical 

blending.  By understanding the information that was available to the pharmaceutical 

analysts with no additional effort and comprehending the differences between 

multivariate modeling algorithms, a robust and sensitive homogeneity monitoring system 

was able to be developed with a minimal investment.  This would allow different batches 

to be stopped at precisely the same level of homogeneity even when there were 

substantial differences between powder properties and blend times.  A greater degree of 

production quality and process understanding was enabled.  

More complex operations require control systems with increased complexity.  A 

formulation for the delivery of gabapentin is an example of a system with an API that is 

sensitive to manufacturing conditions because gabapentin has process induced chemical 

instability that is directly related to its physical stability.  Complicating matters, the 

chemical impurity, gabapentin lactam, has reversed biological activity and is required to 

be less than 0.4 mole % in the final dosage form for a two year shelf life.  Therefore, 

rigorous DOE was necessary to quantify the relationships between unit operations and 

gabapentin stability to assure product safety. 

A hybrid control system that is the first of its kind was developed in chapter 2 for 

the fluid bed drying of a model gabapentin formulation.  Fluid bed processing is a 

complex unit operation with a large degree of energy input that requires care during 
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development, but offers significant advantages in the process of commercial scale 

batches.  The hybrid control system combined first principle calculations with empirical 

modeling, data management, and online sensing that allowed for strict control of the 

drying process.  The first principle calculations provided control of the major mechanism 

by which the process impacted product quality, while offering substantial economic 

benefits by reducing the dimensionality of the DOE and eliminating the need for 

preconditioned air systems.  The empirical controls allowed the process set points to be 

optimized with a limited number of experiments, and the online sensing provided 

additional process understanding, immediate feedback, and precise definitions of process 

end points between batches.  The control system maximized the advantages of traditional 

control strategies, while eliminating the major drawbacks, and provided a significant 

improvement in production quality with minimal developmental costs. 

This dissertation also demonstrated the importance of rigorous statistical analyses 

for the calculation of process models, the definitions of design space boundaries, and the 

assurance of future product quality.  Even with the most extensive DOE and development 

efforts, models contain uncertainty that must be accounted for when making decisions 

regarding future production.  Statistical tolerance calculations can provide the analyst  

with information about the probability of meeting specifications in future batches, which 

is crucial in making informed decisions.  Without this information, design space 

boundaries could be too lenient and lead to an increase number of failed batches. 

Due to the care and rigor required during development, a substantial financial 

investment is required.  For this reason, failure during scale-up or commercialization can 

have dire financial consequences for a pharmaceutical company.  This dissertation 
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demonstrated that the hybrid control system also offers advantages for scale-up 

development with a limited financial investment.  The first principle calculations are 

directly scalable, and a stochastic approach can be used to do a small magnitude scale-up 

that trains all of the transfer functions for scale-up regardless of magnitude.  This 

provided substantial material and cost savings. 

The benefits of the hybrid control system extended to the spray granulation phase, 

where particle agglomeration was controlled using the same EEF calculations and online 

measurements.  Additionally, this dissertation demonstrated the importance of material 

properties in the processing behavior of spray granulation, which necessitates material 

factors being included in developmental DOE.  Material properties often have strong 

interactions with processing factors, which significantly impact final product quality and 

necessitate the use of extended ANACOVA modeling.  Understanding these relationships 

and how they are quantified provides benefits for the production of pharmaceutical 

products in a QbD setting, and provides the evidence that is required by regulatory 

agencies for allowing flexibility and the constant improvement of production lines. 

 The use of PAT in QbD development efforts is critical so that process or product 

variability can be identified and addressed appropriately.  Without measurements that are 

implemented at strategic locations, this variability can go undetected, which then 

magnifies the variability in final products and reduces product quality.  Online 

measurements of the production stream are absolutely necessary for any feedback or 

feedforward control to be implemented.  Thus, PAT is absolutely necessary for the 

development of control systems for continued product improvement, and any 

development effort in the QbD paradigm.   
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  The work demonstrated in this dissertation facilitates the movement of the 

pharmaceutical industry toward the desired state, as defined by the FDA’s Critical Path 

Initiative and the ICH.  It is a demonstration of the next step in manufacturing innovation 

so that the pharmaceutical industry can compete in terms of quality and efficiency with 

other industries.  The rigor that is necessary in the development of control systems 

requires extensive work, but the potential rewards are substantial.  Continued use of 

systems like those described in this dissertation offer great promise to the pharmaceutical 

industry. 
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