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ABSTRACT 

 

PERFORMANCE-BASED QUALITY SPECIFICATIONS: THE LINK BETWEEN 

PRODUCT DEVELOPMENT AND CLINICAL OUTCOMES 

 

 

 

By 

Steven M. Short 

December 2009 

 

Dissertation supervised by Carl A. Anderson, Ph.D.  

The design of drug delivery systems and their corresponding dosing guidelines 

are critical product development functions supported by clinical pharmacokinetic (PK) 

and pharmacodynamic (PD) data.  Largely, the importance of variance and covariance in 

product and patient attributes is poorly understood.  The existence of PK/PD diversity 

among myriad patient sub-populations further complicates efforts to gauge the 

importance of product quality variation.  Nevertheless, a platform capable of evaluating 

the effects of product and patient variability on clinical performance was constructed.  

This dissertation was predicated on requests to re-define pharmaceutical quality in terms 

of risk by relating clinical attributes to production characteristics.    

To avoid in vivo studies, simulated experimental trials were conducted using the 

model drug, theophylline, for which data and models could be acquired from the 



 v

literature.  Where comprehensive data were unavailable (e.g., production variability 

statistics), initial estimates were acquired via laboratory-scale experiments.  Model 

asthmatic patients were generated using Monte Carlo simulation and published 

population distributions of various anothropometric measurements, disease rates, and 

lifestyle factors.  

Mathematical constructs for in vitro-in vivo correlations provide a linkage 

between Quality by Design (QbD) product and process models, PK/PD models, and 

patient population statistics.  The combined models formed the foundation for Monte 

Carlo risk assessments, which characterized the risk of inefficacy and toxicity for dosing 

of extended-release theophylline tablets.  Sensitivity analyses revealed that patient 

compliance and content uniformity significantly influenced the probability of observing 

an adverse event.   

The Monte Carlo risk assessment platform defined the link between the critical 

quality attributes (CQAs) and clinical performance (i.e., performance-based quality 

specifications (PBQS)).  The PBQS were subsequently utilized to generate process 

independent design spaces conditioned on inefficacy and toxicity risk.  These design 

spaces, which directly account for the conditional relationships between product quality 

and patient variability, can be transferred to a specific process via models that relate 

process critical control parameters to the CQAs.  Process Analytical Technology, 

therefore, can be integrated into the QbD production environment to control the safety 

and efficacy of the final product.  This work demonstrated that process and product 

knowledge can be used to estimate the risk that final product quality imparts to clinical 

performance. 
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Chapter 1: Introduction 

 

1.1 Statement of the Problem 

“Personal” computers that were once so massive they occupied more space than a 

small house have now been reduced to roughly the dimensions of a sheet of letter paper, 

yet they are orders of magnitude more powerful, not to mention less expensive, than their 

predecessors.  Automobiles, which were once so costly they were a luxury to the most 

affluent of individuals, have since been mass-produced at reasonable prices with 

increased reliability and operational efficiency, revolutionizing the means by which 

practically all people commute.  These are simple and obvious examples of the myriad 

unfathomable achievements that rest in the chronicles of history.    

 Numerous industrial sectors boast of extraordinary long-term progress regarding 

their innovative products and technological developments.  The pharmaceutical industry, 

however, might not be able to do so.  Granted, pioneering products such as osmotic 

tablets, drug eluting stents, and targeted gene delivery devices have all been developed 

near the turn of the century.  Novel goods, however, are not the exclusive gauge of 

advancement.  By and large, the pharmaceutical industry lags well behind other 

manufacturing sectors in terms of “quality.”  A study published in 2007 based on 

available benchmarks reported that pharmaceutical manufacturers operate on a level of 

approximately 35,000 defective units per 1,000,000 produced,1 which is intolerable 

considering that other sectors have already achieved Six Sigma production (i.e., 3.4 

defects for every 1,000,000 units); this is likely a function of the specifications more so 
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than the product.  Moreover, disastrous clinical outcomes, perhaps best epitomized by the 

tragic Vioxx incident, further dilute the universal standard of quality associated with the 

pharmaceutical industry. 

 The Food and Drug Administration (FDA) has candidly acknowledged the lack of 

innovation that has impeded the growth of the pharmaceutical industry.  Accepting partial 

responsibility for the current state, the FDA released a number of reports, initiatives, and 

guidances in the past decade to transform regulatory oversight and outwardly encourage 

reform, innovation, and low-risk, affordable medical products.  The modified regulatory 

architecture is risk-based; the degree of regulatory scrutiny is commensurate to the risk a 

particular product imparts to the public.  Companies that are able to adequately 

demonstrate the safety and efficacy of their products using risk- and science-based 

approaches will, therefore, be granted more regulatory flexibility.  

 In certain industries, faulty merchandise can result in mere inconvenience and 

frustration for the consumer.  Defective (i.e., substandard quality) pharmaceutical 

products, however, may be ineffective or toxic, either of which can have grave 

consequences.  The quality of medical products is typically assessed by a series of tests 

that characterize the products as acceptable or unacceptable.  Acceptability is gauged via 

lower and/or upper specification limits, thresholds set with respect to a target value, 

which are to be derived based on product safety and efficacy.  Product that is within the 

range defined by the specification(s) is deemed acceptable.  Despite all of the collective 

efforts to ensure low-risk medical products, quality in the pharmaceutical industry is 

currently evaluated in such a way that the relationship between product specifications and 

clinical performance is implicit at best.     
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Numerous controllable and uncontrollable factors affect the safety and efficacy of 

pharmaceutical products.  Pharmaceutical production involves the integration of several 

unit operations, each of which functions via a number of confounding 

parameters/variables that, if not controlled, have the potential to negatively influence 

product quality.  Manufacturing requires a thorough understanding of these 

parameters/variables, and an appreciation for their interaction.  Human variability also 

complicates safety and efficacy.  Not all humans respond identically to the same drug 

administered at an equivalent dose; numerous physiologic and pathophysiologic variables 

affect clinical performance.  Thus, these patient-specific factors also must be indentified 

and accounted for.   

Recognizing the potential severity of defective pharmaceutical products, a lack of 

understanding is typically addressed by increasing the strictness of the specification; in 

other words, the range that defines product acceptability is reduced in an attempt to 

mitigate the likelihood of an adverse event.  This, however, is often counterproductive.  

First, if the specifications are not explicitly derived in relation to the product’s safety and 

efficacy, they may be too strict.  Excessive thresholds carry the risk of not approving a 

product based on the misunderstanding the process and/or product.  Contrary, overly 

stringent specifications may result in wasted resources allocated to improve the precision 

of the manufacturing process, which unnecessarily inflates the price of the final product.  

Worse yet, the adjustments may be too lenient, especially for certain high-risk 

subpopulations that were not identified or adequately evaluated during clinical testing.  

This may be caught by the company during post-marketing surveillance, or may be 

revealed through a high-profile incident, such as a death attributed to the drug.  The 
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former would most likely mean costly re-evaluations of the dosing guidelines, the 

manufacturing process, and/or the product itself, which may even need to be temporarily 

pulled from the market.  The latter, however, would almost inevitably result in immediate 

cessation of production and sale imposed by a regulatory consent decree, and potentially 

severe legal ramifications.   

 It is evident that inaccurate or unsubstantiated specifications contradict efforts to 

provide high-quality (i.e., low-risk), affordable medical products.  The FDA, the 

pharmaceutical industry, and the general public unanimously desire safe and efficacious 

medical products.  Given that quality has not been explicitly assessed in terms of clinical 

performance, the current perception of pharmaceutical quality may very well be 

inaccurate, in part, due to the way in which quality is defined and the lack of 

understanding regarding material and process variability.  Inconsistent definitions and 

uninformative appraisals of pharmaceutical quality have initiated requests to standardize 

its definition in terms of risk to safety and efficacy.  This work demonstrates how 

pharmaceutical process and product understanding can be used to supervise 

manufacturing based on the quantifiable risk that final product quality attributes impart to 

clinical performance.   
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1.2 Hypothesis and Objectives 

This dissertation is based on the central hypothesis that pharmaceutical process 

and product understanding can be simultaneously utilized to model the risk that final 

product quality imparts to clinical performance. 

Given the central hypothesis, the objectives of this dissertation were to: 

1. Combine patient-specific factors with a pharmacokinetic model and an in vitro-in 

vivo correlation model to simulate drug plasma concentration profiles, which will 

be used in combination with a pharmacodynamic model to estimate patient risk in 

terms of inefficacy and toxicity.   

2. Utilize Monte Carlo simulation and probabilistic risk assessment modeling to 

estimate the impact that changes in pharmaceutical manufacturing variability 

impart to patients. 

3. Demonstrate how the risk simulation platform can be used to determine the 

conditional risk of product variation on clinical performance for a model solid 

oral dosage system. 

4. Generate design spaces that are conditioned on quantitative estimations of 

inefficacy and toxicity risk. 

Further, the methodologies developed in this work were used as the basis to propose a 

hypothetical scenario that couples Process Analytical Technology with Quality by Design 

such that production can be maintained in a low-risk state. 
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1.3 Literature Survey 

1.3.1 The Pharmaceutical Quality Revolution 

W. Edwards Deming, one of the forefathers of the quality revolution, once said 

that quality “… means a predictable degree of uniformity (variation) and dependability at 

low cost suited to the market.”2  Quality is unquestionably a cornerstone tenet that 

influences commerce, but what exactly is “quality” and more specifically, what does it 

mean to the pharmaceutical industry?  The International Conference on Harmonisation 

(ICH), an organization that seeks to unify the regulatory bodies of Europe, Japan, and the 

United States and their respective pharmaceutical experts in an effort to register 

pharmaceuticals for human use, has posited several definitions during the past decade.  

The ICH Harmonised Tripartite Guideline Q6A defines quality as “the suitability of 

either a drug substance or drug product for its intended use.  This term includes such 

attributes as the identity, strength, and purity.”3  The ICH Harmonised Tripartite 

Guideline Q9 offers an alternative definition: “the degree to which a set of inherent 

properties of a product, system, or process fulfills requirements.”4 

Although a standardized definition of “pharmaceutical quality” has yet to be 

acknowledged, its significance (or the lack thereof) has.  The general public is ultimately 

the customer of pharmaceutical goods (and, therefore, the ones who dictate the level of 

acceptable quality).  It is often assumed, however, that they are unable to adequately 

appraise these products.  Therefore, regulatory authorities have absorbed this function so 

that patients need not be concerned about the medications they consume.  The FDA has 

acknowledged that maintaining a scientific framework that ensures quality (low-risk), 
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innovative, pharmaceutical products is a primary public health objective.  The Agency’s 

ultimate mission (as it relates to the pharmaceutical industry) is to guarantee that the 

products available in the United States are consistently high in quality.5  

It is well understood that “quality cannot be tested into products; it should be 

built-in or should be by design.”6  As a result, numerous regulatory initiatives, reports, 

and guidances have been introduced in the past several decades to recommend (both 

binding and non-binding) procedures and precautions to help ensure quality.  In 1978, the 

FDA published 21 Code of Federal Regulations (CFR), Parts 210 and 211, which outline 

the minimum current good manufacturing practice (CGMP) methods as well as the 

facilities and controls to be implemented for the manufacturing, processing, packaging, 

and/or holding of pharmaceutical products.7  Segments of Parts 210 and 211 have since 

been revised.  Although the CGMP regulations predate ICH Q6A, the underlying 

objective is to guarantee that the final products adhere to the standards of quality set forth 

by the ICH document.  The regulations do not, however, define quality, nor do they 

adequately detail how to achieve quality during development and production.7  

The CGMPs for the 21st Century initiative was launched by the FDA in August of 

2002 to “modernize” the Agency’s role in overseeing pharmaceutical manufacturing and 

product quality.  In addition to underscoring its regulatory responsibility, the initiative 

implicitly stresses the obligatory role of all vested parties to supply quality medical 

products.  To accomplish this, the existing CGMP programs were scrutinized to help 

assemble the regulatory architecture for overseeing manufacturing quality, which 

includes the concepts of risk management and quality systems.  This clearly marked the 

beginnings of a risk-based inspection and enforcement program where regulatory 
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resources were employed in a manner commensurate with the threat to public safety.  

Eventually, the final report entitled Pharmaceutical CGMPs for the 21st Century – A 

Risk-Based Approach was released in 2004 to connect the CFR regulations and the 

Agency’s existing views regarding quality systems.5  

A formal guidance for quality systems, The Quality Systems Approach to 

Pharmaceutical CGMP Regulations, was released in 2006.8  This document introduces 

the quality system as it relates to the pharmaceutical industry, which is a strategic 

business plan that formalizes corporate functions to attain product/service (quality) 

requirements, customer approval, and continuous improvement to ultimately achieve “ … 

the public and private sectors’ mutual goal of providing high-quality drug product to 

patients and prescribers.”  Designed appropriately, a quality system mitigates the risk of 

inferior (i.e., recalled, returned, salvaged, defective) products reaching the general public.  

Consequently, it has the potential to alleviate regulatory oversight considering that the 

robustness of the system is used as a criterion for determining the necessary extent of 

supervision.5  The quality system is also advantageous in that it establishes the foundation 

for implementation of key developmental activities such as Quality by Design (QbD), 

continual improvement, and risk management.8  

Backtracking in time, the FDA introduced several influential reports/guidances 

during the 2004 calendar year.  The first of these was the Critical Path Initiative (via 

Innovation/Stagnation: Challenge and Opportunity on the Critical Path to New Medical 

Products), which intends to expedite the development (i.e., time-to-market) of novel, 

safe, and effective medical products.9  This is to be accomplished, in part, by taking a 

different approach to product development, which includes the use of innovative 
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techniques (e.g., computer models) to investigate the manufacturability, safety, and 

efficacy of candidate molecules and/or drug products.   

The advent of comparability protocols is also integral to the objectives of the 

Critical Path Initiative.  Comparability protocols were established via the Comparability 

Protocols Protein Drug Products and Biological Products – Chemistry, Manufacturing, 

and Controls Information draft guidance in September of 2003.10  A comparability 

protocol “is a comprehensive, detailed, written plan that describes the specific tests and 

studies, analytical procedures, and acceptance criteria to be achieved to demonstrate the 

lack of adverse effect for a specified type of CMC [chemistry, manufacturing, and 

controls] change that may relate to the safety or effectiveness of a drug product.”5  

Hence, a manufacturer can meet the criteria for a more lenient reporting category 

provided that they sufficiently demonstrate how the amendment will alter product quality 

(and, therefore, the risk to public health).  This is accomplished by exhibiting a thorough 

understanding of the drug, its manufacturing methods and controls, and the effects that 

the projected change(s) will have on clinical performance.  In certain scenarios, the 

change may actually be implemented prior to receiving regulatory approval, potentially 

decreasing the time-to-market.10 

September of 2004 brought the release of two documents that are central to the 

pharmaceutical quality revolution, the Pharmaceutical CGMPs for the 21st Century – A 

Risk-Based Approach5 and the Process Analytical Technology (PAT) guidance.6  The 

CGMPs for the 21st century was previously addressed as it relates to the CFR regulations.  

This report is also significant in that it helped launch the QbD Initiative to encourage 

sound development of (quality) pharmaceutical products.5  The QbD architecture 
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encompasses “designing and developing a product and associated manufacturing process 

that will be used during product development to ensure that the product consistently 

attains a predefined quality at the end of the manufacturing process.”8  Subsequently, the 

FDA advocated that “under the QbD paradigm, quality is built into the final product by 

understanding and controlling formulation and manufacturing variables: testing is used to 

confirm the quality of the product.”11  The ICH has also weighed in on QbD, describing it 

as “a systematic approach to development that begins with predefined objectives and 

emphasizes product and process understanding and process control, based on sound 

science and quality risk management.”12  Comprised of several factors including 

identification of critical quality attributes (CQAs), risk assessment, and continuous 

improvement,13 the most renowned component of QbD is perhaps design space.12 

The second 2004 document was the PAT guidance.6  Process Analytical 

Technology is “… a system for designing, analyzing, and controlling manufacturing 

through timely measurements (i.e., during processing) of critical quality and performance 

attributes of raw and in-process materials and processes, with the goal of ensuring final 

product quality.”  The PAT guidance details a scientific, risk-based regulatory framework 

that encourages innovative pharmaceutical development, manufacturing, and quality 

assurance through enhanced process understanding.  The intent is to instill confidence in 

those implementing novel approaches that innovation, when conducted properly, does not 

beget additional regulatory scrutiny.  In fact, manufacturing processes can be controlled 

and validated using the concepts discussed within the guidance.   

Although not a definitive indicator, validating pharmaceutical production 

processes helps to assure quality.  Given its importance, the FDA recently released a draft 
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guidance titled Process Validation: General Principles and Practices.14  Process 

validation “… is defined as the collection and evaluation of data, from the process design 

stage throughout production, which establishes scientific evidence that a process is 

capable of consistently delivering quality products.”  This assumes that (1) quality has 

been integrated into the process (recall that it cannot be tested into a product via in-

process and final-product assessments) and (2) each unit operation is under control such 

that the products adhere to all design characteristics and quality attributes, which include 

the established specifications derived from predetermined (tolerable) process average and 

dispersion estimates.7  All processes, even those founded upon risk- and science-based 

design approaches, should incorporate in-process controls to assure product quality.  

When controlled appropriately, batch-to-batch, lot-to-lot, and unit-to-unit variability is 

such that the units sampled meet or exceed the validation criteria, giving the 

manufacturer, the regulatory authorities, (and in essence, the patient) confidence that the 

distributed products accurately reflect the label claims.  Effective validation requires (1) 

an appreciation of the sources of variability, (2) detectability and sensitivity to variation, 

and  (3) the capacity to “control the variation in a manner commensurate with the risk it 

represents to the process and product.”14  With liberty, the final statement also implies 

that a certain degree of variability is tolerable; acceptability should be proportionate to 

the risk it presents to patients.  Validation also intends to confirm that the process is 

robust to factors that have the potential to stifle yield (e.g., raw material, manufacturing, 

environmental, and/or analytical method variability).  Reductions in market supply 

clearly hurt the manufacturer, but more importantly, they impact the public well-being. 
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Continuous improvement is an underlying theme in each of the aforementioned 

documents and is critical to enhancing quality.  Although the theory of continuous 

improvement is tacit within regulatory guidances, its premise is obvious.  Continuous 

improvement involves the ongoing effort to enhance the efficiency and effectiveness of 

services or manufactured goods, and, therefore, broadly encompasses efforts that 

facilitate understanding, innovation, and the availability of affordable, quality drug 

therapies.  Philosophies and initiatives such as Total Quality Management, Lean 

(Manufacturing), and Six Sigma are integral components of continuous improvement and 

should not be overlooked within the context of pharmaceutical quality (www.asq.org).  

The ultimate goal of continuous improvement is zero-defect production, where all units 

(drug products) conform to the utmost level of quality.   

1.3.1.1 A Specification-Based World 

ICH Q9 states that the “manufacturing and use of a drug product, including its 

components, necessarily entail some degree of risk.”4  It is understood that a certain level 

of variability is inherent to production.  Moreover, the potential sources of variability are 

extensive, which increases the complexity of manufacturing.  Variability, in turn, imparts 

risk to those who manufacture, regulate, prescribe, or consume medical products.  It is 

therefore necessary to account for its influence.  Variability (in essence, quality) is 

commonly evaluated via in-process and end-product tests (e.g., blend uniformity and 

content uniformity analyses, dissolution testing), which are centered on predetermined 

specifications.  A specification is “a list of tests, references to analytical procedures, and 

appropriate acceptance criteria, which are numerical limits, ranges, or other criteria for 

the tests described.”3   
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Despite the importance of specifications, there is little guidance available 

detailing how they are to be determined.  Specifications: Test Procedures and Acceptance 

Criteria for New Drug Substances and New Drug Products: Chemical Substances Q6A3 

and Specifications: Test Procedures and Acceptance Criteria for 

Biotechnological/Biological Products Q6B15 are arguably the foremost documents on 

establishing specifications for the endorsement of non-registered new chemical and 

biological drug products, respectively; specifications for delivery systems that utilize 

well-documented active pharmaceutical ingredients (APIs) are often outlined in 

pharmacopoeias, such as the United States Pharmacopeia-National Formulary (USP-NF) 

monographs.  Within ICH Q6A and Q6B guidelines, specifications are cast as an integral 

component in the overall control strategy of ensuring the consistency and quality of drug 

products; the control strategy includes (but is not limited to) validated manufacturing 

processes and test procedures, good manufacturing practices (GMPs), and raw-material, 

in-process, and stability testing.  ICH Q6A states that the thorough understanding 

acquired during product characterization should be used to establish specifications.  

Guidances only imply that specifications should be derived with careful consideration of 

process critical control parameters (PCCPs) and product CQAs.  Critical quality 

attributes are the physical, chemical, biological, or microbiological properties or 

characteristics that are known to affect product quality whereas process critical control 

parameters are the process variables that affect product CQAs.  As such, PCCPs and 

CQAs should be identified during product development and, subsequently, should be 

controlled within tolerable operational and performance limits using data obtained during 

clinical and toxicological studies. 
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Acceptance criteria for new drug products are typically proposed, with 

accompanying rationalization, by the manufacturer and are approved by the regulatory 

agencies.  They are implemented not to fully characterize a product, but to substantiate its 

quality.  It is important to underscore, however, that testing via well-designed 

specifications is not the entirety of quality assurance.  As stated in ICH Q6A, “the quality 

of drug substances and drug products is determined by their design, development, in-

process controls, GMP controls, and process validation, and by specifications applied to 

them throughout development and manufacture.”3  

Needless to say, specifications serve as surrogates for quality within the current 

paradigm.  All marketed drug products, via representative sampling, have, therefore, 

conformed to the established specifications, providing assurance to the patients that they 

are receiving safe and efficacious products.  That is not to say, however, that the 

practitioners and patients themselves cannot impart additional risk by, for example, 

deviating from established dosing guidelines; dynamics such as this are likely to 

exacerbate risks imparted by manufacturing.  Quality assessments that utilize numerical 

acceptance ranges dichotomize quality as either acceptable or unacceptable; only samples 

that fall within the upper and lower specification limits are deemed fit-for-use.  At best, 

all marketed units of a given product are then, by default, categorized as low-risk or 

quality outputs.  This message is rather misleading given that risk can be readily 

communicated as a continuous rather than a nominal metric.  Moreover, even when all 

other factors are equitable, risk is often disparate within patient populations, which, 

although designed not to, can provide a false sense of security to patients.   
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Although not always the case, the formulae for performance measurements and 

acceptance tests often assume that the response is symmetric with respect to the target or 

average value.  This suggests that both positive and negative deviations from the target 

carry the same intrinsic risk, which, in reality, may be incorrect.  Take, for example, 

capability, which compares process performance to established specifications.  A 

common metric for estimating capability is the process capability index (Cpk) 
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where μ and σ are the mean and standard deviation of the process, which is assumed to be 

normally distributed, and USL and LSL are the upper and lower specification limits, 

respectively.  Cpk can take on values of (-∞, ∞) and is negative only when the process 

mean is beyond the specifications.  While certain capability metrics are meaningful only 

when the process is centered (e.g., Cp or process capability), Cpk reflects that processes 

are not always on target.  

The process capability index, which assesses the specification range in relation to 

the breadth of the process, is taken as the minimum of the two estimates; the estimates 

are equal when the process is centered.  Cpk can be enhanced by (1) reducing short-term 

variability, (2) altering the mean, or (3) relaxing the USL and LSL.  Cpk and/or process 

sigma (via the Six Sigma program) estimates are often used to convey the level of 

repeatability or quality for a production process.  Cpk and process sigma differ only by a 

factor of 3.0; hence, a Cpk of 2.0 is equivalent to a process sigma of 6.0.16  Both metrics 

have statistical interpretation in that they communicate the likelihood of observing a unit 

outside of the specification limits (sometimes referred to as the defect rate), which is 

typically expressed as defects per million observations (DPMO) or defects per billion 
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observations (DPBO).  For example, a Cpk of 2.0 (i.e., process sigma of 6.0) corresponds 

to 2.0 DPBO.  It is important to note that a process sigma of 6.0 corresponds to 3.4 

DPMO when the 1.5 σ shift is applied to account for drifts in the process mean.1  The 

corresponding DPMO or DPBO for any Cpk can be determined from a z table for the 

standard normal distribution. 

Capability, therefore, addresses the issue of how well the process is controlled 

with respect to the specifications by quantifying the measurements that are within the 

limits.  Assuming that the specifications are established to mitigate risk (and that the 

more in control a process is, the less risk it poses), Cpk and risk are inversely related.  

Quality and Cpk, however, are positively correlated.  Recognizing that the USL and LSL 

are typically set equidistant from the target value, Cpk does not take into consideration 

whether the deviation is positive or negative with respect to the mean, despite the fact 

that it can analyze non-centered processes.  Given that risk is likely asymmetric with 

respect to the process mean (e.g., positive and negative deviations from the nominal API 

level may pose different risks), Cpk can be misleading if quality is interpreted, for 

instance, in terms of clinical performance.  While this is irrelevant in certain industries, 

this is critical in regards to pharmaceutical products.     

1.3.1.2 21st Century Pharmaceutical Production 

ICH recently released the Harmonised Tripartite Guideline Q8(R1) to address the 

development of pharmaceutical products and their associated manufacturing methods.12  

One of the key objectives of Q8(R1) is to offer direction for effectively reporting process 

and product knowledge obtained through risk- and science-based design and development 

efforts to regulatory officials.  Additionally, issues that often provide evidence to 



 17

inspectors and reviewers that the applicants have achieved an enhanced understanding are 

highlighted.  Enhanced product and process knowledge combined with effective 

reporting methods mitigate risk to public safety, which can lead to reduced regulatory 

oversight.    

ICH Q8(R1) also supports the QbD initiative.  Not only does process and product 

design help to establish specifications and manufacturing controls, they aid in the 

construction of the design space(s).  A design space is “the multidimensional 

combination and interaction of input variables (e.g., material attributes) and process 

parameters that have been demonstrated to provide assurance of quality.”12  The design 

space(s) is included in the application package and is therefore reviewable.  Since it is 

subject to approval, only intentional deviations outside of the design space constitute a 

post-approval change; inadvertent departures are potential bases for product failure. 

Appendix 1 of ICH Q8(R1) contrasts two very different approaches to 

pharmaceutical development; the minimal (sometimes referred to as the traditional)17 and 

the QbD approach.  The two methodologies are compared side by side in Table 1.1 based 

on six different categories: overall pharmaceutical development, manufacturing process, 

process controls, product specifications, control strategy, and lifecycle management.12  At 

the one extreme, the traditional methodology underscores a rather archaic approach to 

pharmaceutical production.  This approach embraces many of the practices that helped 

spur the pharmaceutical quality revolution.  On the other hand, the QbD methodology 

employs the guiding principles of the quality revolution and serves as a step towards the 

desired state (i.e., risk- and science-based design, control strategies centered on quality, 

real-time release, risk-based regulatory architecture).  While neither methodology 
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accurately summarizes the whole of pharmaceutical production, it is a safe assumption 

that the current state is more aptly outlined by the minimal approach. 

 
Table 1.1 Comparison of the minimal and QbD methodologies for pharmaceutical development.  Amended 
from ICH Q8(R1).  

Aspect Minimal … The Current 
State? 

QbD…A Trend Towards the 
Desired State 

Overall 
Pharmaceutical 
Development 

• Empirically driven 
• Inefficient experimental 

design 

• Mechanistically and 
scientifically driven 

• Multivariate experimental 
design 

• Incorporation of PAT and 
design space 

Manufacturing 
Process 

• Fixed 
• Concerned with 

reproducibility 

• Flexible (within design 
space) 

• Concerned with robustness 
and a quality control 
strategy 

Process 
Controls 

• In-process testing only 
when necessary 

• Off-line analyses 

• PAT system 
• Feed forward and feedback 

via process and control 
models 

Product 
Specifications 

• Principle method of control 
• Derived according to batch 

data 

• Integrated component of 
quality control strategy 

• Derived according to 
desired product 
performance 

Control 
Strategy 

• In-process and final 
product testing 

• Risk- and science-based 
quality control strategy 

• Real-time release 
Lifecycle 
Management 

• Reactive; action taken 
typically only when 
problems arise 

• Post-approval change 

• Continuous improvement  

 

As pharmaceutical production progresses towards the desired state, it is apparent 

that both PAT and QbD will have, at least for the foreseeable future, a central role in 

assuring product quality.  Figure 1.1 illustrates the role of design space with regard to 

risk- and science-based pharmaceutical manufacturing.  PAT is integral to designing, 
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analyzing, and controlling processes.6  As a thorough understanding of the product and 

process is acquired through the PAT system, PCCPs and CQAs are identified.  Research 

and development efforts are essential in gaining product and process knowledge.  

Additional experimentation, however, increases the manufacture’s investment, which is 

why the direction and extent of research needs to be carefully balanced with the potential 

benefits in order to provide affordable, safe, and innovative medical products to the 

public.  Experimental design, which is a key aspect of PAT, should be utilized to obtain 

the maximum amount of information in as few trials as possible.  Experimental design 

undoubtedly extends operational ranges well past that which is implemented during 

controlled production, which enhances sensitivity to the critical parameters/attributes.  

These data are then used to construct the n-dimensional design space, which is comprised 

of inter-related PCCPs (e.g., compaction pressure) and material attributes that are known 

to affect product quality.  The perimeter of the hyperspace is established according to a 

thorough understanding of the inputs and their relationship to a given performance 

metric(s).  Efficient design and modeling not only reduce the ambiguity surrounding the 

boundaries, they increase the robustness of the design space, which minimizes the 

potential for upset (i.e., product of unacceptable quality) due to unanticipated variation.  

The critical-to-quality variables are then monitored (via sensors) and controlled (via 

process and control models) to be within the limits of the design space.  This ultimately 

ensures the desired level of product quality.  Ideally, the design space would be defined 

according to clinical risk. 
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Figure 1.1. The inter-relationship between PAT, design space, and pharmaceutical manufacturing.  Adapted 
from R.C. Lyon, Process monitoring of pilot-scale pharmaceutical blends by near-infrared chemical 
imaging and spectrosocopy, Eastern Analytical Symposium (EAS), Somerset, NJ, 2006. 

Given the overall complexity of pharmaceutical manufacturing, the number of 

material, process, and product attributes/parameters that potentially influence quality is 

sizeable.  Experimental design and risk assessment can be utilized to not only help 

identify those factors that affect product CQAs, but to rank the importance of the 

individual factors based on their significance and elucidate potential confounding 

attributes/parameters.  As development efforts progress and more data become available, 

they can be incorporated to gain additional understanding.  These data also help establish 

the processing conditions under which quality product is reliably produced.  The 

corresponding operational ranges of the PCCPs (as they relate to CQAs) can then be used 

to construct the design space. 

 As ICH Q8(R1) outlines, considerable regulatory flexibility is promised to sound 

submissions that provide justification for the inputs and process parameters that were 

included in (and excluded from) the design space.12  A number of sequential design 

spaces can be generated for each unit operation within a manufacturing process.  Figure 

1.2 was reproduced from ICH Q8(R1), Appendix 2, Example 3.12  It illustrates a design 

space for drying where the target moisture content is 1-2 %.  Assuming that there were 
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additional unit operations downstream from drying, intermediate material outside the 

design space limits would not be suitable for further processing due to excessive impurity 

formation or excessive particle attrition.  Alternatively, a single design space that bridges 

all unit operations is also acceptable.  Figure 1.3, which was reproduced from ICH 

Q8(R1), Appendix 2, Example 2,12 is an example of one such overarching design space 

that was constructed from two single attribute design spaces for friability and dissolution 

testing.  The limits are simply defined as the overlapping ranges of tolerable outputs, 

which were both dependent on the two PCCPs.  Given that both friability and dissolution 

are dependent on a number of inter-related factors, for example, the type and proportion 

of excipients, the homogeneity of the blend, the radial tensile strength of the tablets 

(which itself is dependent on a number of confounding manufacturing parameters, such 

as compaction pressure, turret speed, blending speed, blending time, charge order, 

blender volume, etc.), it is easy to conceptualize how this one design space accounts for 

numerous processing parameters and product attributes.  Regardless of whether several 

consecutive hyperspaces or one overarching hyperspace is utilized, manufacturers can 

specify if they will operate within the entire design space or within some restricted area.  

Despite the flexibility, one thing should always be consistent from design space to design 

space: operation within the limits yields quality product.12 
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Figure 1.2. Example design space illustrating the moisture content as a function of time during drying.  The 
target moisture content is 1 - 2 %.  Intermediate material outside the limits would not be suitable for further 
processing.  This figure was reproduced from ICH Harmonised Tripartite Guideline Pharmaceutical 
Development Q8(R1), November, 2008. 

 

Figure 1.3. Overarching design space determined from two inter-related design spaces.  Friability and 
dissolution were identified as the CQAs while two parameters (labeled 1 and 2) of a wet granulation unit 
operation were identified as the PCCPs (e.g., excipient particle size distribution, water content, granule 
size).  The overlapping regions of the two inter-related hyperspaces are identified here as "Design Space."  
This figure was reproduced from the ICH Harmonised Tripartite Guideline Pharmaceutical Development 
Q8(R1), November, 2008. 
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Whether or not QbD concepts are integrated, the minimum compulsory 

components to be included in pharmaceutical development are:12  

1. A quality target product profile 

2. Potential product CQAs 

3. CQAs of the API, excipients, and other integral components.  This includes 

selection of the appropriate inactive ingredients and their proportions in the final 

delivery system. 

4. A suitable manufacturing route 

5. A control strategy. 

These items are necessary to control the manufacturing process such that component and 

product CQAs are suitable to yield the desired quality target product profile (QTPP).  A 

quality target product profile is “a prospective summary of the quality characteristics of a 

drug product that ideally will be achieved to ensure the desired quality, taking into 

account safety and efficacy of the drug product.”12  As such, product design and 

development efforts are structured around the QTPP.  Overall, quality can not be assured 

when one or more of these elements are, in whole or part, absent.    

While the above strategy can be followed to assure quality, the QbD initiative 

incorporates several supplementary strategies, which help lay the foundation for 

continuous improvement over the lifetime of the product.  The QbD approach 

comprises:12 

1. Systematically assessing and improving the product and process design, which 

includes 
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a. Use of a priori knowledge, experimental design, and risk assessment to 

identify material characteristics and process parameters that are potentially 

critical-to-quality 

b. Determining, either empirically or via first principles, the mechanistic 

relationships between material characteristics and process parameters to 

product CQAs   

2. Developing a control strategy founded upon process and product knowledge and 

quality risk management techniques.  The control strategy may contain design 

space(s) and/or measures for real-time release testing.    

Unlike final product testing, which as the name implies, involves assessing the product as 

or after it leaves the production line, real-time release testing is the assessment of in-

process and/or final product quality via process data, which would consist of various 

PCCPs and CQAs.  As quality is incorporated within the design, the product and its 

intermediates are assessed in real-time (i.e., during processing) to substantiate its quality.  

Real-time release therefore becomes a surrogate for the various analytical procedures 

necessary for final product release.6 

The QTPP is clearly a crucial element in pharmaceutical development whether or 

not QbD tactics are incorporated.  As consumers are more or less incapable of assessing 

quality, the manufacturer (by defining the QTPP) and the regulatory agency (by 

approving the product and its QTPP) ultimately dictate the level of quality that is 

acceptable for patients.  The QTPP should be established according to numerous product 

and performance features, which include: 
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1. “Intended use in clinical setting, route of administration, dosage form, 

delivery systems; 

2. Dosage strength(s); 

3. Container closure system;   

4. Therapeutic moiety release or delivery and attributes affecting 

pharmacokinetic characteristics (e.g., dissolution, aerodynamic performance) 

appropriate to the drug product dosage form being developed; 

5. Drug product quality criteria (e.g., sterility, purity, stability and drug release) 

appropriate for the intended marketed product.”12 

Since the QTPP specifies the desired quality and design space has a critical role in 

assuring product quality, it stands to reason that when pharmaceutical development 

involves QbD, the limits of the design space(s) can be defined by aspects of the QTPP.  

Moreover, the most important facet of the QTPP is the safety and efficacy of the drug 

product.  Therefore, efforts should be made to construct the design space according to the 

attributes and parameters that directly affect safety and efficacy.  After all, safety and 

efficacy are truly the principal benchmarks of pharmaceutical quality. 

1.3.1.3 A New Definition of “Pharmaceutical Quality” 

Quality is equally vital to the manufacturers, regulators, and consumers of 

pharmaceutical products.  Regulatory officials, researchers, and academicians alike 

appreciate the disharmony surrounding pharmaceutical quality.  In an effort to more 

effectively communicate allowable consumer risk, in part, determined through content 

uniformity testing, Williams et al.18 suggested an alternative method where (risk) 

tolerance limits (for content uniformity) would be “based on a better understanding of 
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population and individual dose/response curves for efficacy and toxicity.”  Janet 

Woodcock, Director of the Center for Drug Evaluation and Research (CDER) at the 

FDA, pushed the envelope when she summarized several of the industry’s (quality) 

shortcomings (e.g., quality assessment via end-product testing) and thus, the underlying 

frustrations of many individuals amid the “current state.”19  At the conclusion of her 

article, Dr. Woodcock purposed re-defining pharmaceutical quality in terms of risk by 

relating clinical attributes to production characteristics.  The ideas put forth by Williams 

et al. and Woodcock are, at minimum, revolutionary as they not only present the 

opportunity to directly manage production in terms of product performance, they offer 

the impetus to reform the pharmaceutical industry.  These visions have been largely 

ignored to date. 

Cogdill and Drennen took notice when they laid the foundation for relating 

manufacturing quality and clinical performance of a drug product.20  They described the 

combination of probabilistic risk assessment (PRA) and Monte Carlo simulation (MCS) 

to relate elements such as raw material quality, product design, population statistics, 

dosing guidelines, and patient compliance estimates with pharmacokinetic (PK), 

pharmacodynamic (PD), and in vitro-in vivo correlation (IVIVC) models to remold 

quality in terms of risk.  The objective was to translate manufacturing and drug product 

attributes into estimates of risk of toxicity and inefficacy.  Given the appropriate 

modeling, the interpretability of risk can be enhanced by transforming the metric from a 

nominal (i.e., acceptable or unacceptable) or categorical (i.e., low, medium, high) to a 

continuous (probabilistic) response.  Moreover, the proposed platform departs from the 

current series of univariate measures that do not effectively account for covariance 
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among observations by harnessing multivariate data to simultaneously model the 

confounding factors that influence product performance.  The model-based platform 

could then be used, for example, to define CQA hyperspaces bounded by risk or set 

manufacturing performance targets (e.g., Cpk) based on tolerable risk.  With estimates of 

risk of toxicity and inefficacy, product and process design could then focus on 

minimizing overall risk to the patient.  Risk to patients is both an effective gauge of 

quality and a more detailed means of communicating quality to consumers.  This has the 

potential to redefine the marketplace, in effect reallocating purchasing power to the true 

customer (i.e., the patient), allowing him/her to make informed, risk-based decisions with 

the guidance of clinicians. 

In addition to altering the manner in which consumers perceive pharmaceutical 

products, this novel methodology transforms the system in which products could be 

released and approved.  The current system typically requires a series of sequential tests 

(e.g., content uniformity, assay, dissolution), which if the sampled units are within the 

specifications, the product is determined to be acceptable for release to the general 

public.  Under the new paradigm, the confounding factors (e.g., uniformity, release rate, 

clinical performance) would be modeled (with respect to risk) simultaneously, effectively 

supplanting the need to set numerous specifications.  Product release and approval, 

therefore, would be based on limits of tolerable risk to patient safety.  This is consistent 

with the QbD approach of defining product specifications according the desired product 

(clinical) performance (Table 1.1). 

Dickinson et al. published an article shortly after Cogdill and Drennen concerning 

dissolution testing and its link to clinical performance within the QbD paradigm.21  The 
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objective was to demonstrate that in vitro dissolution testing is sensitive to 

manufacturing, formulation, and in vivo (bioavailability) changes such that the method 

could be used to assure that the safety and efficacy of newly tested products mirrors that 

observed in the preceding clinical assessments.  A functional relationship between the 

pharmacokinetics and pharmacodynamics of a drug is truly required to effectively model 

clinical performance.  As the authors highlighted, however, this relationship is not always 

available during the development stages.  Thus, pharmacokinetic modeling was used as a 

surrogate for analyzing safety and efficacy.  Ultimately, the relationship between 

manufacturing and composition variables and clinical performance was proposed to be 

used to set the boundaries of the operational design space for in vitro dissolution.  The in 

vitro dissolution test, therefore, would be capable of assessing the influence that product 

changes have on clinical performance.  

The authors proposed five strategic components for establishing a methodology 

capable of harnessing in vitro dissolution testing for evaluating clinical performance.21   

1. Using a priori knowledge of the product under development and/or comparable 

products, perform a risk assessment to identify the various risks to clinical quality. 

2. Develop a dissolution method that is sensitive to process and product variables 

that are expected to influence dissolution of the drug.  The method should be 

physiologically relevant.  

3. Ascertain from the in vitro and in vivo data the impact that changes to these 

variables have on clinical performance. 

4. Define the dissolution specifications that ensure clinical performance. 

5. Control dissolution within the limits of the design space to ensure clinical quality. 
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Following a risk assessment to prioritize the product and process variables most 

likely to affect safety and efficacy, four different dosage forms comprised of an 

unidentified model drug were investigated based on their likelihood to alter the 

dissolution release profile (which should affect the pharmacokinetics, and consequently, 

safety and efficacy).  Following in vitro and in vivo analyses (in human volunteers), the 

authors observed comparable in vivo performances amongst the four formulations, 

despite their dissimilar dissolution profiles.  Consequently, the authors did not attempt to 

establish an IVIVC, but concluded that it was not required to define a clinically relevant 

design space since in vitro dissolution testing was able to distinguish the formulation and 

manufacturing differences.  Several different approaches to defining the dissolution 

specifications were presented.  The first is in agreement with the FDA guidance22 for 

situations where a Level A IVIVC has been established.  When this is the case, Cmax or 

AUC should not deviate more than ± 10 %.  When the pharmacokinetics of the drug are 

not appreciably effected by variability in dissolution, as was the case for the model drug 

selected by Dickinson et al., the authors advocate that a “safe space” can be indentified 

where the change in pharmacokinetic parameters is minimal over a defined range of 

dissolution conditions (e.g., t50, t90).  Lastly, a combination of a safe space and an IVIVC 

can be specified to allow the pharmacokinetic parameters to be controlled within ± 10 % 

deviation.  Efforts such as these will reduce the burden of clinical trials, effectively 

promoting more efficient pharmaceutical development and manufacturing.21  
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1.3.2 Theophylline 

1.3.2.1 Background 

Theophylline (Figure 1.4) was formally introduced for the treatment of status 

asthmaticus (i.e., acute asthma) in 1937 following six years of investigational therapy 

during which Drs. Herrmann and Aynesworth observed relief in several patients.23  It 

was, however, administered to humans as early as 1904, where it was noted to cause 

acute poisoning.24  Since its introduction, theophylline has been used more frequently for 

chronic cardiorespiratory disorders25 and, to a lesser extent, for the treatment of neonatal 

apnea.26  A xanthine derivative, theophylline is prescribed for the management of acute 

and chronic bronchospasms linked to asthma and chronic obstructive pulmonary disease 

(COPD).  Despite being largely supplanted by newer bronchodilators (e.g., 

corticosteroids, beta-2 adrenergic agonists), theophylline is beneficial for certain patients, 

including those who fail to adhere to or cannot meet demanding dosing schedules, and 

those who experience inadequate relief from available alternatives.  It is one of the most 

commonly prescribed medications worldwide for the management of airway diseases due 

to its low cost.  While it is generally regarded as a third-line treatment, theophylline is 

sometimes the only affordable alternative to inhaled corticosteroids.27  Additionally, its 

anti-inflammatory and immunomodulatory effects have generated added attention to the 

drug’s clinical potential.25  Theophylline is also frequently utilized as a model drug for a 

variety of research foci, including investigations into the disparity in clearance 

mechanisms between neonates and adults28 and the evaluation of physiologically-based 

PK models. 29,30  
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Figure 1.4. Chemical structure of anhydrous theophylline, C7H8N4O2, CAS registry number 58-55-9. 

Theophylline has been almost universally classified as a bronchodilator, but its 

capacity to manage chronic asthma cannot be fully explained by its modest 

bronchodilator activity.  Although the molecular mechanisms of action for theophylline 

are still in question, the general consensus is that the immunomodulatory, anti-

inflammatory, and bronchoprotective effects collectively contribute to its pharmacologic 

actions.  Theophylline nonselectively inhibits phosphodiesterase, which is responsible for 

cleaving phosphodiester bonds, such as those found in cyclic 3’,5’-guanosine 

monophosphate (cGMP) and cyclic 3’,5’-adenosine monophosphate (cAMP).  At 

therapeutically relevant concentrations, theophylline induces an increase in intracellular 

cGMP and cAMP concentrations, which results in bronchodilation and inhibition of 

inflammatory and immune cells.  Theophylline also acts as a nonselective antagonist of 

adenosine receptors at these concentrations.  Although adenosine has virtually no effect 

on airway smooth muscle of non-asthmatic individuals, it elicits bronchoconstriction in 

asthmatic patients.  Theophylline has also been noted to reduce fatigue in diaphragmatic 

muscles, enhance mucociliary clearance, block the decrease in ventilation that occurs 

with sustained hypoxia, and lessen microvascular leakage of plasma into the 
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airways.25,27,31  Further information regarding the potential mechanisms of action is found 

in the articles by Barnes27 and Barnes and Pauwels.31 

1.3.2.2 Absorption, Distribution, Metabolism, and Excretion  

Theophylline is a water-soluble drug that is rapidly and completely absorbed 

when administered in solution or as fast dissolving uncoated tablets.25,28  Selected 

controlled- or extended-release dosage forms, however, are not 100 % bioavailable; 

certain products have reported fractions of the dose absorbed systemically of as low as 

0.42.32  Absorption occurs throughout the gastrointestinal tract, and the extent of 

absorption has been reported to be comparable in the stomach, the small intestine, and the 

colon.33  Others, however, have observed greater quantities of theophylline absorbed in 

the small intestine when compared to the stomach and colon.34  Theophylline is 

distributed primarily in extracellular fluid with a volume of distribution of approximately 

0.45 to 0.5 L/kg.  It is roughly 40 % protein bound (largely to albumin), but due to age-

related variability, the range is reported to be 40 – 60 %.35  Despite the variability, 

measurements of total serum concentrations are said to accurately reflect the unbound 

fraction.36  Theophylline is typically considered to be rapidly removed from the body; the 

plasma half-life in adults is 7 – 9 hours.35  While this may be accurate for the majority of 

the population, dramatic fluctuations in the elimination rate have been observed and the 

average half-life has been reported to be 1.2 – 65 hours.37   

It is generally accepted that serum concentrations of 10 – 20 mg/L define the 

therapeutic range of theophylline.25,38,39  Researchers, however, have observed responses 

at concentrations as low as 5 mg/L,26,31 and thus, have suggested altering the therapeutic 

window to 5 – 15 mg/L to avoid potentially toxic events,35 which are more probable at 
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higher serum concentrations.  Others are content to report the therapeutic window as 5 – 

20 mg/L.40,41  Toxic effects of theophylline include nausea, vomiting, abdominal cramps, 

diarrhea, headache, arrhythmias, tremor, agitation, hypothermia, seizures, brain damage, 

and mortality.25,42,43  Despite viewpoints that the severity of toxic events was correlated to 

the drug level, it is apparent that typical toxic symptoms associated with lower serum 

concentrations (e.g., nausea, vomiting) do not necessarily precede severe adverse 

reactions (e.g., seizure, death).38   

Although theophylline has been used to manage cardiorespiratory conditions for 

over 70 years, the dose-response relationship remains unclear.  Most references indicate 

that theophylline is primarily (~90 %) metabolized via the liver and the remainder is 

excreted unchanged in the urine.35  While this is reasonably accurate for the general 

population, certain sub-groups (e.g., neonates, those with liver diseases) eliminate 

theophylline differently.  Disposition, metabolism, and excretion of theophylline are 

dependent on a variety of factors and its metabolic pathway interacts with that of 

caffeine, which is also a xanthine derivative.  Caffeine and theophylline are structural 

analogues that differ by a single N-methyl group and both molecules undergo hepatic 

metabolism via similar saturable mechanisms.28 

The following discussion focuses on the metabolism and excretion of 

theophylline, and the relevant conversions between the two analogues.  For particulars 

regarding the elimination of caffeine, please refer to the article by Ginsberg et al.28  The 

predominant mechanism of removal for theophylline in adults is metabolism via the 

cytochrome P450 (CYP) 1A2 enzyme (Figure 1.5).  The three resultant metabolites are 3-

methylxanthine and 1-methyluric acid (via N-demethylation), and 1,3-dimethyluric acid 
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(via 8-hydroxylation); theophylline is converted to the intermediary product 1-

methylxanthine, which is ultimately oxidized (via C8-oxidation) to 1-methyluric acid by 

xanthine oxidase.  1,3-dimethyluric acid, 1-methyluric acid, and 3-methylxanthine 

constitute 45 – 55 %, 15 – 20 %, and 10 – 15 %, respectively, of the urinary metabolites 

in adults.35  While metabolism is almost universally attributed to CYP1A2, other CPY 

enzymes (e.g, CYP1A1, CYP2E1, CYP3A4) and flavin-containing monooxygenases 

(FMO) have been established as minor contributors to the biotransformation of 

theophylline.  For example, several studies indicated that CYP2E1 and CYP3A4, in 

addition to CYP1A2, contribute to the oxidative metabolism of theophylline to 1,3-

dimethyluric acid.44  Further, metabolism of theophylline by both CYP1A1 and CYP1A2 

has been observed.28,44  Given that only minor quantities of CYP1A1 are expressed in the 

liver, these findings suggest that a certain amount of theophylline is metabolized 

elsewhere.  It is common modeling practice, however, to restrict metabolism to the liver 

only.  Caffeine, on the other hand, counteracts the elimination of theophylline as one of 

its primary metabolic pathways yields theophylline (Figure 1.5).28  Since the metabolism 

of caffeine to theophylline elevates blood levels of the latter, consumption of caffeine is 

often times restricted or even prohibited during treatment with theophylline.  

Consumption of soda, tea, and coffee has been reported to yield theophylline serum 

concentrations of less than 3 mg/L.42 
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Figure 1.5. Diagram of the major metabolic pathways for theophylline and caffeine.  CYP represents 
cytochrome P450 and FMO is the acronym for flavin-containing monooxygenases. 

While predominant in adults, the CYP1A2 metabolic pathway is under-developed 

in neonates and infants.  Consequently, theophylline elimination is altered in newborns.  

To begin with, roughly 50 % of the theophylline dose is excreted unchanged in the urine 

of neonates.  Despite the fact that renal elimination is enhanced, it is not as efficient as 

metabolism via CYP1A2, which results in a net decrease in theophylline clearance in 

neonates as compared to adults.  This is manifest by the three- to five-fold increase in the 

half-life of theophylline in neonates (20 – 34 hours compared to 7.3 hours in adults).  

Secondly, upwards of 40 % of the theophylline is metabolized via 8-hydroxylation in 

newborns (presumably by means of CYP2E1 and/or CYP3A4), which has been reported 

to be less than that in adults.  Finally, approximately 5 – 10 % of the theophylline is 
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converted to caffeine and excreted in the urine, which has been observed in both neonates 

and infants.35  This mechanism has never been detected in adults, suggesting that it is 

perhaps a compensatory pathway found only in neonates.28,35  Metabolic enzyme activity 

comparable to that in adults is not normally observed until approximately 3 years of 

age.44     

Inter-patient variability is perhaps best epitomized by the extreme disparity in 

theophylline clearance.43,45  This is substantiated by the work of Jusko et al. who 

observed clearance values ranging from 4 – 143 mL/hr/kg in 200 individuals with diverse 

physiological, pathophysiological, environmental, and behavioral characteristics.46  

Factors other than age (e.g., sex, diet, concomitant drug therapies, recreational drug use, 

obesity, illness, pregnancy) also obfuscate the disposition and elimination of 

theophylline.26,42,43,46,47  For example, polycyclic aromatic hydrocarbons found in tobacco 

smoke have been shown to induce several drug-metabolizing enzymes (i.e., CYP1A1, 

CYP1A2, and CYP2E1), which ultimately increase the clearance rates of theophylline by 

upwards of 80 % in smokers as compared to nonsmokers.48  Elevated clearance rates 

have also been observed in smokers weeks to months following abstention.  Individuals 

subjected to second-hand smoke also have enhanced theophylline clearances.  In addition 

to the direct influence on enzymatic biotransformation, smoking has physiologic 

manifestations, such as vasoconstriction, which decreases blood perfusion to the liver, 

ultimately reducing the elimination of theophylline.  Therefore, the safety and efficacy 

profiles for smokers are distinct, and their dosage regimens must be adjusted 

accordingly.48  
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1.3.2.3 Dosing  

Numerous attempts have been made to define theophylline dosing regimens for 

given sub-populations,37,41,42,49 but none have been proven to be applicable to the general 

population; when tested in independent sub-populations, most patients required dose 

adjustments to bring their serum levels within the defined therapeutic range.43,45,47,49  

Though Bayesian forecasting methods50,51 appear to be most accurate, these dosing 

regimens do not supplant the need to closely monitor serum concentrations to ensure 

proper administration.49  To date, no universal dosing method has been generated for 

theophylline. 

Due to the unpredictable nature of dosage requirements, individualized dosage 

regimens have been posited as a reasonable method of safely dosing patients with 

theophylline.35,39,49,52  “It is important to realize that there are wide interindividual 

differences in theophylline clearance and in the degree of its interaction with other 

agents.  Therefore, data in the literature should be regarded only as a general guide, and 

careful observation for adverse drug reactions and blood level monitoring have to be 

conducted in most patients.”35  Individualized methods, however, are restrictive in that 

they necessitate estimations of serum concentration to ensure proper dosing.  Hurley et 

al. demonstrated in a randomized clinical trial that in contrast to dosages based on serum 

theophylline concentrations alone, utilizing each patient’s estimated theophylline 

clearance enhanced the accuracy of dosing.53  Irrespective of the dosing scheme, 

extensive inter-patient pharmacokinetic variability coupled with the narrow therapeutic 

window complicate the administration of theophylline. 
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Several research groups have attempted to model the clearance of theophylline as 

a result of the significant challenges that inter-patient variability poses to clinicians for its 

accurate dosing.  Chiou et al. introduced a method to rapidly estimate the total body 

clearance of theophylline following constant-rate intravenous (IV) infusion that requires 

two plasma samples and a reasonable estimate of the apparent volume of distribution.37  

This method was demonstrated using rabbits as test subjects.  Similarly, Powell et al. 

assessed three routines for modeling total body clearance in healthy volunteers and 

patients suffering from airway obstruction who were administered theophylline via 

constant-rate IV infusion.45  These methods required up to seven blood samples for the 

analysis of theophylline concentration. 

In addition to modeling the clearance, Powell et al. also studied the effects of 

various (potentially confounding) factors on the clearance and volume of distribution, 

including sex, age, race, smoking habits, bronchitis, asthma, pneumonia, congestive heart 

failure, and severity of bronchial obstruction in 31 healthy volunteers and 26 patients.  

They found that sex, age, race, and the diagnosis of asthma or chronic bronchitis per se 

had no significant effect on clearance, whereas smoking, severe congestive heart failure, 

pneumonia, and severe bronchial obstruction resulted in significant changes.  

Additionally, the authors observed that, with the exception of patients who had severe 

congestive heart failure or pneumonia, changes in theophylline clearance during the 

course of the therapy were minor; no change as a function of time was observed in the 

healthy volunteers.  In contract to clearance, the volume of distribution was not correlated 

with any of the factors examined.  The authors suggested that these data supported the 

argument that changes in half-lives for a given disease state are a result of alterations in 
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clearance rather in the volume of distribution.  Thus, with the exclusion of those patients 

whose clearance is expected to drastically change throughout the course of treatment, 

they conclude that a single theophylline concentration should be adequate for the entire 

IV theophylline therapy.45   

Jusko et al. also performed an extensive retrospective study to model the 

environmental and pathophysiologic factors that affect theophylline clearance in 200 

patients and normal volunteers, including age, sex, liver disease, congestive heart failure, 

obesity, renal function, history of drug, tobacco, marijuana, caffeine, or alcohol use, and 

pregnancy.46  The history of drug use included consideration of oral contraceptives, 

barbiturates, benzodiazepines, phenothiazines, and tricyclic antidepressants.  Clearance 

was modeled using a previously developed nonlinear algorithm.54  The authors noted that 

other factors (e.g., marked dietary changes, respiratory viral illness, thyroid dysfunction, 

acute steroid administration, low arterial PO2, recent ingestion of charcoaled foods) could 

affect the disposition of theophylline; however, they were either not acknowledged as 

factors at the time this study was performed or these data were unavailable.  All but 8 of 

the subjects were Caucasian; therefore, differences attributable to race were not 

examined.  Of the factors assessed, age, liver disease, smoking status, and congestive 

heart failure significantly altered clearance.   

Additionally, Jusko et al. sought to characterize the variability in theophylline 

clearance within the sample population.  Analysis of variance was used to determine the 

order, priority, and interactions of the factors that correlated with theophylline clearance 

to yield the maximum statistical discrimination between groups.55  Clearance estimates 

were subdivided into mutually exclusive subgroups based on the reduction of 
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unexplained variance (p < 0.01).  If a factor was previously accounted for, but had the 

potential to mediate the effects of factors yet to be considered, it could be reintroduced 

for assessment.  Ultimately, the authors generated a clearance cascade, which illustrates 

the mean and standard deviation of total body theophylline clearance for each subgroup.  

This cascade can be reduced to a linear dosing nomogram to aid physicians in effectively 

targeting steady-state theophylline serum concentrations.  The authors concluded that 

variability due to phenothiazines, tricyclic antidepressants, severe renal impairment, or 

oral contraceptives in nonsmokers could not be discounted as these categories were 

inadequately represented.  Furthermore, they cautioned that many of the 

drug/disease/history/physiologic associations had not yet been verified in a prospective 

clinical trial.46 

By means of 16 patients experiencing airway obstruction, Gilman et al.56 

compared the methods of Powel et al.45 and Jusko et al.,46 and a weighted least-squares 

Bayesian approach and the method of Chiou et al.37 for the estimation of theophylline 

clearance following administration of aminophylline via IV infusion.  Percent error was 

used to quantify the predictive error.  Patients suffering from acute congestive heart 

failure, cirrhosis of the liver, pneumonia, sepsis, or severe malnutrition, or those who had 

taken erythromycin or cimetidine were excluded.  The authors concluded that the Jusko et 

al. method out-performed that of Powel et al.; however, the patients were categorized 

into only 7 of the possible 16 terminal nodes of the Jusko et al. clearance cascade.  

Moreover, the Bayesian method was found to be more precise and less biased than the 

Chiou et al. routine; however, the requirement of selecting a prior model for the 

individualized expectations of pharmacokinetic parameters and their corresponding 
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variances limits the applicability of the Bayesian method when these models have not 

been adequately developed. 

The most accepted dosing schedules for theophylline require administration one 

(i.e., q.d.), two (i.e., b.i.d.), or three (i.e., t.i.d.) times per day; however, regimens that 

necessitate multiple daily dosages are believed to exacerbate patient non-compliance.  

However, previous reports have shown that once-daily dosing of theophylline increases 

the likelihood of observing serum concentrations outside the therapeutic window.32,57-59  

This finding has lead researchers to advise twice-daily dosing, which has been shown to 

result in less extensive peak/trough fluctuations, thus increasing the probability of 

maintaining concentrations within the desired range.  Despite the (supposed) reduced risk 

of an inefficacious or toxic event associated with twice-daily dosing, researchers contend 

that higher clinical efficacy is attained with once-daily dosing.58,60,61  Additionally, it has 

been stressed that fluctuations in clinical effects that closely parallel the oscillations in 

serum concentration, which would advocate twice-daily dosing, have not been 

substantiated in published studies.58  

1.3.3 Mathematical Modeling and Numerical Simulation 

The terminology modeling (or model) and simulation are occasionally used 

interchangeably so as to suggest they share a common definition.  While they both are 

abstract representations of real-world systems, each has a distinct meaning and it is 

important to differentiate between them.  These terms are used throughout the remainder 

of this dissertation according to the definitions provided by Peter Bonate, noting that the 

original definition of simulation is expanded.62  A model signifies any mathematical 

construct generated using fundamental processes or data that relates inputs to outputs, 
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whereas simulation is the exploitation of models to examine the long-term impact that 

variability [or uncertainty], treated as an input to the model, has on a system.  The term 

simulation is broadened to include assessments of uncertainty.  Table 1.2, which was 

adapted from Bonate’s work, contrasts the two expressions.62 

 
Table 1.2. Comparison and contrast of the terms modeling and simulation.  Adapted from Bonate, PL. 
2000. Clinical trial simulation in drug development. Pharmaceutical Research 17(3):252 – 256.   

Modeling Simulation 
Sensitive to assumptions Sensitive to assumptions  
Sensitive to black-box criticisms  Sensitive to black-box criticisms 
Uses data Builds upon models based on data 
Useful method for data summarization Useful method to summarize complex 

inter-relationships between variables 
Relates inputs to outputs Incorporates random variability [or 

uncertainty] into a model and assesses its 
effects long-term 

Random variability is a nuisance variable Random variability can be incorporated 
in the simulation 

Looks back in time Looks forward in time 
Can identify which variables are more 
important than others 

Can indentify which variables are more 
important than others 

Cannot be replicated Can be replicated 
 

1.3.3.1 Monte Carlo Simulation 

Mathematical models provide users the opportunity to manipulate inputs to 

examine outputs, which offers greater insight into the functionality of processes and 

systems.  Models are categorized according to the flexibility of their inputs; when all are 

fixed, the model is said to be deterministic, whereas when some or all of the terms are 

characterized by a certain level of random variability, the model is stochastic.  Simulation 

harnesses models to observe an outcome or a prediction based on a given set of 

parameters (i.e., inputs).  Stochastic modeling techniques that utilize random variability 

are typically referred to as MCS.  Stanislaw Ulam and John von Neumann are credited 
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with coining the expression Monte Carlo, which came during their work on the atomic 

bomb at Los Alamos in 1946.  Rugen and Callahan make the distinction, however, that 

Ulam developed the approach earlier while playing solitaire.63  Though the phrase is a 

reference to the gambling casinos in Monaco, it was initially used to simulate random 

neutron diffusion in fissile material.63-65   

The Monte Carlo method is a numerical technique used to solve mathematical 

functions by random sampling.  Although the theory of random sampling was established 

long before the Monte Carlo method, MCS was not practical until the advent of 

computers.  The universal approach of the Monte Carlo method is simple; MCS 

iteratively samples a set of random model parameters from their underlying distributions 

(which are generated a priori), performs a number of deterministic computations using 

the inputs, and stores the resultant outputs.  Thus, a program is constructed to conduct a 

number of independent, random trials, the results of which are accumulated at the 

conclusion of each iteration.  The Monte Carlo method is applicable to any system that is 

affected by random factors.  Unlike deterministic functions, MCS has the distinct 

advantage of estimating the sensitivity or robustness of a system to random variation or 

error through the propagation of uncertainty.  This uncertainty allows stochastic elements 

of a system to better represent practical observations, which can lead to more precise 

conclusions and/or actions.64,65   

 The Monte Carlo method utilizes random variables, which implies that for any 

given trial, the value assumed for a given input is unknown.  The term “random,” 

however, has a more specific meaning in the context of MCS in that the range of 

potential values the variable can assume, along with the probabilities of these values are 
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known a priori.  Truly random numbers or distributions are cumbersome since it is often 

desirable to reproduce calculations performed on a computer; in order to repeat trials 

using random numbers, the numbers would need to be stored during each trial.  Thus, 

MCS is typically conducted with what are known as pseudo-random numbers, which are 

values generated to approximate a particular distribution (e.g., uniform, normal) using 

mathematical formulae that simulate random numbers.  Rather than having to test the 

validity (or randomness) of the random numbers at the start of each trial, pseudo-random 

number generators need only be tested once to confirm their ability to generate a 

sequence of numbers that approximates the properties of random values.  The pseudo-

random numbers can then be re-generated if need be using the same “seed” or point at 

which the algorithm began generating values.64,66  

Pseudo-random number generators do have one significant limitation; the total 

number of values that can be generated using any given seed is finite.  Eventually, 

identical values will be re-generated as the pseudo-random number generator cycles.  

Therefore, the user must verify that the sequence of pseudo-random values generated is 

large enough for the specific application such that earlier trials do not become correlated 

with later trials as a result of re-sampling.  This ensures that the simulation is truly 

stochastic.  Pseudo-random number generators are restricted by the number of bits (n) the 

computer possesses such that a sequence, often times referred to as the period, of pseudo-

random numbers can be no longer than 2n.  Newer algorithms, however, have 

circumvented this issue, utilizing numerous generators for the seed and the integer 

generator such that periods of 264 (Marsaglia's Ziggurat algorithm) and 219,937 – 1 

(Mersenne Twister algorithm) are attainable.64,66  
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The results of any MCS trial are dependent upon the number of times the system 

is perturbed.  The model(s) must be tested a sufficient number of times such that the 

parameters sampled are representative of the general population.  If the sampling is 

inadequate, the output will be misleading since certain input conditions that are likely to 

occur will not have been considered.  While it is not possible to offer a general rule of 

thumb as to the required number of iterations, the simulation should iterate enough times 

to allow the output to stabilize.  Ensuring that the change in the estimate drops below a 

defined threshold for a set number of consecutive iterations is one approach to verifying 

stabilization.64,65 

1.3.3.2 Pharmaceutical Applications of Monte Carlo Simulation 

 Since its formal introduction, the number of applications that harness MCS has 

grown substantially.  Monte Carlo simulation is utilized in many scenarios, including the 

general fields of manufacturing, economics, and science.63  While a thorough review of 

all the applications of MCS is well outside the focus of this dissertation, the following 

discussion offers a brief overview of its major uses within the pharmaceutical industry.  

Additional detail regarding MCS is provided in section 1.3.7.     

 Monte Carlo simulation is a versatile tool that supports numerous aspects of the 

drug discovery and development process.  The preliminary tasks of generating models 

and defining simulation inputs a priori force companies to identify the components that 

are well understood and, likewise, the elements that are uncertain or missing altogether.  

Although MCS is used throughout the drug discovery and development process,67 its 

greatest impact as it relates to pharmaceutics is perhaps in the area of clinical trials, 

commonly referred to as clinical trial simulation.67,68  To start with, MCS can be used to 
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study the economic investments necessary to conduct these trials, with the obvious 

objective of minimizing the total cost.62  Poland and Wada utilized PK, PD, and 

economic models along with MCS to study the effects of the dosing regimen (i.e., once- 

versus twice-daily administration) and patient compliance on the efficacy of an 

antiretroviral drug in Phase II trials.69  The authors concluded that despite enhanced 

patient adherence to the once-a-day dosing schedule, the marginal increase in long-term 

efficacy did not warrant the change from twice- to once-daily administration in view of 

the delayed time-to-market, additional monetary investments, and technical uncertainties 

associated with the new product.  This is an excellent example of how MCS helped 

circumvent additional clinical trials that would have undoubtedly increased development 

expenses.      

Many other facets of clinical trials can benefit from MCS.  Although their explicit 

objectives may not have included minimizing financial investments, there is a consistent 

economic implication in the following cases.  For example, MCS is used to approximate 

the initial dose in humans for phase I studies.  This can be of particular benefit in 

allometric scaling efforts where PK parameters have been well-characterized (typically as 

averages) within the confines of animals, but transferability to humans is uncertain.  

Simulation can help elucidate which parameters have the largest effect on scaling the 

dose to humans by propagating variability through the models.  Moreover, MCS is 

beneficial for determining the dose for phase II and III studies where the test subjects are 

typically patients rather than healthy volunteers.  Therefore, fewer adverse events are 

anticipated from optimizing the dose in silico rather than in vivo, which inevitably 

increases the likelihood that the particular drug will receive approval for marketing.62       
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With a predictive PK model, single- and multiple-dose plasma versus time 

profiles can be generated with the aid of MCS, which can then be used to optimize the 

dose and the dosing schedule to ensure plasma concentrations are within the desired 

therapeutic range.  Gomeni et al. took a similar (but extended) approach where they used 

PK and PD modeling in conjunction with MCS to assess the effects of PK absorption and 

disposition parameters (e.g., fraction of dose available), and inter-individual variability 

on percent receptor occupancy, which had been identified as a surrogate for efficacy.70  

The authors were able to identify the variables that had the largest influence on receptor 

occupancy, which enhanced their company’s understanding of the unidentified drug and 

helped direct future development efforts.    

As evidenced by the work of Poland and Wada, and Gomeni et al., models 

representing various components fundamental to clinical trials (e.g., PK and PD) can be 

integrated with MCS to investigate the effects of various inputs (e.g., patient compliance, 

inter-individual variability) on the clinical effectiveness of a given treatment.  This offers 

the user the unique opportunity to explore numerous circumstances, some of which are 

not ethical in a clinical trial setting.  For instance, MCS can be used to investigate the 

therapeutic outcome of patients missing a given percentage of their doses, which is not 

acceptable in situations where the patient would potentially experience significant 

discomfort or harm.  The ability of simulation to efficiently address the “What if” 

questions in silico rather than in vivo underscores its utility.   

Dutta and Reed utilized MCS to investigate the effects of patient compliance on 

plasma concentrations of valproic acid during treatment with 12-hour enteric-coated 

divalproex sodium tablets.71  PK simulation is an ideal platform to assess the effects of 
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missed doses, and patient/clinician compensations for the omissions, seeing as how 

withholding medication from patients suffering from epilepsy or acute mania is unethical.  

Valproic acid, one of the two APIs in divalproex sodium tablets, has a narrow therapeutic 

window of plasma concentrations of 50 – 100 mg/L.  Given its narrow therapeutic range 

and short elimination half-life of 6 – 16 hours, patient compliance is critical to the safety 

and effectiveness of this modality; low plasma concentrations can result in seizures 

whereas high plasma levels run the risk of inducing clinical toxicity.   

  The authors wanted to examine the PK effects of missing one or two doses in 

conjunction with three different temporary dosing regimen adjustments: (1) one missed 

divalproex dose compensated for by doubling the dose at the next scheduled dose 

administration (12-hour replacement), (2) two consecutive missed divalproex doses offset 

by administering a doubled dose 6 hours following the first missed dose (18-hour 

replacement), and (3) two consecutive missed divalproex doses counteracted by tripling 

the dose at the next scheduled dose administration (24-hour replacement).  Moreover, 

they were interested in the confounding effects (i.e., drug-drug interactions) of hepatic 

enzyme-inducing antiepileptic drugs on valproic acid plasma concentrations.  To 

accomplish this, adjustments were made for certain individuals to simulate the shortened 

elimination half-lives and elevated clearances observed for patients taking antiepileptic 

medications.   

Population mean PK parameters for dose, bioavailability, absorption lag-time, 

first-order absorption rate constant, steady-state volume of distribution of unbound drug, 

protein binding parameters (i.e., the number of binding sites for the two classes of 

binding sites and their corresponding binding association constants), elimination half-life, 
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and clearance of free drug were taken from the literature.  Different doses, elimination 

half-lives, and clearances were implemented for patients with enzyme induction versus 

those uninduced.  The age range of the hypothetical patients was restricted to 11 – 64 

years and body weight was assumed to be 70 kg.  Patients not taking other enzyme-

inducing antiepileptic drugs were administered 562.5 mg every 12 hours (i.e., 16 

mg/kg/day), whereas induced subjects were administered 1125 mg (i.e., 32 mg/kg/day).  

Log-normal distributions representing 20 % inter-patient variability were generated for 

clearance, volume of distribution, albumin concentration, and the protein binding 

parameters using the population averages.  Patients, in effect, were generated by 

randomly sampling the underlying distributions for the parameters estimates, which were 

then used to simulate plasma concentration-time profiles.  Predicted plasma 

concentrations were subjected to 10 % residual error to include real-world variability.  A 

total of 1000 patients were tested.   

The resultant valproic acid plasma concentration-time profiles (Figure 1.6) were 

analyzed to quantify the effects of the missed doses and hepatic enzyme induction in 

terms of the change in steady-state maximum and minimum concentrations (Cmax and 

Cmin, respectively).  The simulated profiles illustrate the dramatic fluctuations in valproic 

acid plasma levels that accompany one or two missed doses and the three temporary 

dosing regimen adjustments.  Although there was no actual link to the PD outcomes, the 

authors assumed that the lower limit for clinical efficacy was 50 mg/L, below which the 

likelihood of a breakthrough seizure is greatly enhanced, and that plasma concentrations 

greater than 100 mg/L increased the probability of toxicity.  Using these criteria, the 

authors concluded that the probability of inefficacy (i.e., seizing) is greatly enhanced 
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when as little as one dose is omitted, especially for those taking antiepileptic medications.  

Uninduced patients are at low to modest risk for toxic events, even when the dose is 

tripled.  Induced patients, however, are likely to experience transient toxicity due to 

elevated plasma concentrations.  Given their observations, Dutta and Reed recommended 

a modified dosing regimen for non-compliant patients who miss one or two divalproex 

doses.  For patients treated with concomitant antiepileptic medications, an omitted dose 

should be offset if the individual recalls the miss up to 12 hours later, noting the risk of 

adverse events.  If the same patient recalls the omission 18 or 24 hours later, the 

patient/clinician is advised against full-dose compensation (i.e., either doubling or 

tripling the dose depending on the time) due to risk of clinical toxicity.  In these 

instances, the clinician is encouraged to consider a partial dose replacement approach in 

conjunction with a return to the scheduled dosing regimen.  As for uninduced patients, 

they should replace the dose upon recalling the miss, even if two consecutive doses are 

omitted.  The authors also pointed out that the simulation could be revised to model 

young pediatric and/or geriatric patients with better estimates of their PK parameters (i.e., 

population-specific variability).71 
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Figure 1.6. Simulated valproic acid (VPA) plasma concentration-time profiles of epileptic patients at 
steady-state (SS) following the miss of one or two scheduled divalproex doses, with replacement 12, 18, or 
24 hours later followed by continuation of scheduled dosing regimen.  (a) VPA concentration-time profiles 
in the mean simulated patient administered 562.5 mg q 12 hours.  (b) and (c) VPA concentration-time 
profiles in the mean simulated patient administered 1125 mg q 12 hours with hepatic enzyme-inducing 
medication.  Panel (c) is the same data shown in (b) with the addition of the inter-patient and residual 
variabilities in VPA concentration-time curves.  The error bars of (c) represent standard deviation (SD).  
Solid line (0-24 h) to dotted line represents baseline steady-state profile (no missed doses) for the mean 
simulated patient, and the solid line (24-72 h) represents the predicted mean change after omitting two 
doses, with replacement 24 h later and resumption of scheduled dosing (triple dose). 

Watanalumlerd et al. employed MCS and PK modeling to study the effects of 

gastrointestinal transit on plasma concentration-time profiles of an orally administered 

combined immediate-release and enteric-coated amphetamine pellet formulation in the 

fed and fasted states.72  Compartmental PK were assumed with first-order absorption of 

the immediate-release pellets, zero-order gastric emptying rate in the fed condition or 
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first-order gastric emptying rate in the fasted condition of enteric-coated pellets into the 

intestine, first-order absorption of the drug after being released from the enteric-coated 

pellets, and first-order elimination.  Once absorption occurs, it is assumed that the PK can 

be described by a one-compartment model.  The PK equations included terms for the 

gastric emptying time as well as the lag time of gastric emptying.  The PK parameters for 

amphetamine (i.e., absorption rate constant, elimination rate constant, apparent volume of 

distribution, and the fraction of the drug absorbed) were obtained by fitting plasma 

concentration data obtained from the available literature.  Constant doses of 20 and 30 

mg were administered for the fed and fasted states, respectively.   

Given that the primary focus of this work was to investigate the effects of gastric 

emptying, only the terms for gastric emptying time and the lag time of gastric emptying 

were varied during the simulations.  The means and standard deviations for gastric 

emptying time and lag time of emptying were also taken from literature.  Separate 

estimates were available for the fed and fasted states, and a total of four lognormal 

distributions were generated for the time parameters.  Variability of 30 % was 

implemented for lag time in the fasted state since an estimate was not accessible; this 

resulted in a range comparable to the other gastrointestinal transit parameters.  Each 

simulated plasma concentration-time curve portrayed the mean of 500 trials, and the 

variability was captured in one of two ways: (1) by displaying standard deviation error 

bars or (2) by plotting the 25th, 50th, and 75th percentiles, for each simulated time point.  

Two lines representing the minimum and maximum simulated concentrations for each 

time point were also provided.72    
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The accuracy of the simulated plasma concentration-time profiles was assessed by 

comparing the percent difference between the actual and predicted time to the maximum 

concentration (Cmax).  A difference of 2.8 % was observed in the fed state, while an 8.4 % 

difference was observed for the fasted condition.  The simulations confirmed the authors’ 

suspicion that the combined formulation, in both the fed and fasted states, would not 

yield a double-pulsed release profile typical for two immediate-release doses 

administered at different times because the dosage system remained intact as it passed 

through the gastrointestinal tract.  Rather, the profiles were characteristic of a typical per-

oral sustained release formulation.  This work confirmed that PK modeling of combined 

immediate-release and enteric-coated pellets should consider the effects of gastric 

emptying and gastrointestinal transit.72   

While the majority of the above examples incorporate several components of the 

drug development process as they relate to clinical trials, the work of Watanalumlerd et 

al.72 exemplifies that any given element can be studied independent of its counterparts.  

Integration is, however, a logical extension of studying each component independently.  

Simulation is expected to enhance the efficiency of the drug development process by 

generating a greater understanding of the drug itself and its safety and efficacy within 

patients.  In doing so, the significant cost associated with producing innovative medical 

products is likely to be reduced.  Simulation can also be harnessed to analyze and reduce 

the intrinsic risk of pharmaceutical products.     

1.3.3.3 Probabilistic Risk Assessment 

Probabilistic risk assessment is a systematic method to quantitatively characterize 

the risk of a given system.  Assuming the risk is detectable, it consists of two 
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components, probability and severity.  Probability describes the likelihood of occurrence 

for an adverse event, whereas severity expresses the magnitude of the outcome.  When 

conducting a PRA, risk is expressed through a risk model, a function comprised of the 

various terms known or thought to impact adverse events.  At least one of the inputs to 

the risk function is described by its probability distribution as opposed to a scalar (e.g., 

central tendency); methods that only use single values as inputs are referred to as point 

estimate techniques.65   

Depending on the underlying objectives, PRA is used to evaluate the variability 

and/or uncertainty of risk estimates.  Variability is defined as the true heterogeneity of a 

variable or a response for a sample or population, while uncertainty is the error associated 

with the parameters or models.  For example, parameter uncertainty may arise due to 

questionable model inputs, which may be a consequence of the representativeness of the 

data for a given sample population.  Model uncertainty could be a result of ambiguity in 

the estimated model coefficients or perhaps the structure of the model used for the risk 

function (e.g., linear versus nonlinear).  It is important to note that uncertainty can be 

reduced (e.g., acquire additional or improved data), whereas variability is inherent to a 

population.  Variability, however, can be better characterized with more data, but cannot 

be reduced or eliminated.  The output of a given PRA trial is the observed range of 

probability distributions, which, depending on the input distributions, characterize 

variability or uncertainty.  The results of PRA can be used to better allocate resources 

(e.g., personnel, finances) and establish performance objectives to mitigate risk.  Thus, 

PRA is an effective means of weighting initial investments based on potential returns.65 
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One of the main objectives when conducting a PRA is to determine the 

distribution(s) of possible risk scores.  This illustrates the range of threats the assessor 

can expect.  It is also essential to understand which factors have the largest impact on 

risk.  This is accomplished through a sensitivity analysis, which is a systematic method to 

delineate the dependency of the risk estimates on variability or uncertainty in the risk 

factors.  It is used to quantify the relative contribution of each model input to risk and to 

understand important sources of variability or uncertainty.  This is imperative since subtle 

changes to one factor may have a significant effect on the risk estimate, whereas other 

factors may be relatively insensitive to large fluctuations.65 

Sensitivity analyses can range from extremely simple techniques to those that 

utilize relatively complex mathematical and statistical approaches.  The latter are more 

common since numerous sources of variability and uncertainty tend to simultaneously 

affect the risk estimate.  Simple techniques might include determining the range of 

possible values or quantifying the percent of total risk for each factor.  More complex 

approaches might include multiple linear regression or some other statistical analysis to 

assess the percent variance in the risk estimate explained by each factor.65   

A common metric used in sensitivity analyses is the sensitivity ratio, which is 

sometimes referred to as the elasticity equation.  The sensitivity ratio (SR) is expressed as  
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where Y1 is the baseline output obtained using baseline values for the input variables, X1 

is the baseline point estimate for the input variable X, X2 is the new value of the input 
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variable X after the change, and Y2 is the new output after changing the value of one of 

the input variables X to X2.  For PRA, the input is a specific value for a given risk factor 

and the output is the risk estimate.  Risk estimates are most sensitive to factors that yield 

the highest absolute value of the SR and least sensitive to those with the lowest absolute 

value of the SR.  Although popular and instructive, the SR has limited applicability.  The 

SR approach assumes independence of the input variables.  Therefore, if two or more 

inputs interact, varying one input while another is held constant can misrepresent the 

actual impact on risk.  When this is the case, confounding variables must be allowed to 

vary simultaneously.65   

Another metric commonly used in sensitivity analyses is the coefficient of 

determination (R2).  With this method (i.e., simple linear regression), the square of the 

correlation coefficient (r) between the various input values for a given factor and the 

result risk estimates is reported; the correlation coefficient itself is powerful because it 

indicates whether the factor is positively or inversely correlated to risk.  Factors with an 

R2 close to 1.0 have are highly sensitive whereas those close 0.0 are nearly insensitive.  

The coefficient of determination for the risk factors can also be represented as the 

percentage contribution to total variance of risk.  Numerous other statistical approaches, 

such as the Spearman rank correlation and multiple linear regression, are also valid for 

performing sensitivity analyses.  The sensitivity analysis methods ultimately employed 

will depend on the level (i.e., discrete or continuous) of the input and output variables and 

the form of the underlying risk model (i.e., linear or nonlinear).65 

Sensitivity analyses performed on inputs to certain risk models, in particular those 

that are nonlinear, have the potential to be highly dependent upon the values used to 
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perturb the model.  For that reason, it is beneficial to examine a broad range of values for 

the inputs to delineate their impact on risk.  Inputs characterized as random variables can 

be described by a specified probability distribution.  As such, the inputs can assume 

values within this distribution and, therefore, can be easily studied using MCS.65  

Likewise, MCS can be used to evaluate the uncertainty in input variables or model 

parameters.   

1.3.3.4 Monte Carlo Simulation and Probabilistic Risk Assessment  

Probabilistic risk assessment has long been used as a standalone gauge of adverse 

events.  Wreathall and Nemeth suggest that this technique has (conceivably) been used 

most frequently within the commercial nuclear power industry;73 this is not to say, 

however, that PRA was not used earlier by other industries.  Beginning in the early 

1970s, the US Atomic Energy Commission sought to estimate the number of accidents 

that could potentially result in the discharge of radioactive materials.  While PRA itself 

can be used to analyze a system (as can MCS), several guidance documents underscore 

the utility of employing it with MCS.  The National Aeronautics and Space 

Administration (NASA) details their use of PRA in conjunction with MCS to help direct 

decisions to ultimately augment safety and program performance.74  Similarly, the 

Environmental Protection Agency (EPA) has applied PRA and MCS to analyze 

ecological risk for the support of risk-based decisions since 199775 and proposed 

equivalent approaches for analyzing risk to human health in 2001.65  The 2001 EPA 

Superfund guidance illustrates how to use MCS to estimate exposure and risk, and 

discusses the role of PRA in their decision making process.  The time, resources, and 

expertise required to effectively perform PRA are noted as drawbacks to this technique.  
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While this may be true, the potential benefits and savings realized by such a program well 

outweigh these requirements. 

Inputs to PRA risk expressions can assume different values based on their locale 

within the population; as such, these inputs are said to be random variables.  A 

continuous variable can be described by its associated probability density function or 

cumulative distribution function, whereas a discrete variable can be characterized by its 

corresponding probability mass function.  These functions describe the probability of the 

parameter assuming a given value.  When defining or selecting the appropriate values or 

distributions for input parameters, there often is an underlying level of ambiguity 

regarding these data.  For example, in situations where data either do not exist or have yet 

to be collected, estimates are often drawn from previous assessments or suitable 

literature.  More appropriate data can be incorporated into the PRA if and when they 

become available.  Thus, it is the responsibility of the individual(s) executing the 

assessment to defend the assumptions that were made and properly communicate their 

implications and constraints.65   

Once the risk equation(s) have been defined and the corresponding input 

distributions have been characterized, MCS can be used to repeatedly extract input 

parameters at random to evaluate their influence on risk.  In other words, each iteration 

tests a potential real-world scenario (e.g., 80 kg, 65 year old asthmatic male with 

congestive heart failure dosed with a theophylline tablet coming from a batch that was 

found to have unacceptable content uniformity) to better understand the risk associated 

with the particular set of conditions.  With the estimated risk distribution, it is then 

possible to determine if appropriate action is necessary.  Results of PRA trials and the 
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actions that follow are dependent on not only the individual or organization conducting 

the assessment, but also the rationale behind its initiation.  For example, the output may 

indicate that the underlying distribution for a given parameter (e.g., content uniformity of 

an active pharmaceutical ingredient) needs to be narrowed to lower the probability of 

observing toxicity in patients.64,65 

 Risk assessment is frequently used to estimate the potential hazards associated 

with various substances, including pharmaceutical compounds.  For example, molecules 

that are identified as potentially carcinogenic, mutagenic, and/or teratogenic are typically 

entered into a risk assessment program to characterize the relative risk between dose and 

response (e.g., development of a tumor).  In order to accomplish this, it is necessary to 

estimate the probability of the expected outcome as a function of the dose administered.  

The elucidation of this relationship, however, fails to deconvolve the underlying 

pharmacokinetic and pharmacodynamic mechanisms that contribute to the undesirable 

response.  Therefore, integration of PK knowledge has been proposed as a means to 

enhance the power of the risk assessment.76   

Kodell et al. conducted a probabilistic dose-response assessment using tumor 

dose-response data from a 2-year rodent bioassay to investigate several methods of 

integrating PK and PD knowledge within a dose-response model.76  The authors used 

MCS to study the impact of linking various combinations of PK and PD models on the 

assessment of risk.  Further, MCS was exploited to randomly generate rodent tumor 

responses based on doses sampled from an assumed PK dose distribution.  They 

concluded that the use of PK data, which related administered dose to in vivo levels, 

reduced the uncertainty associated with assessment of tumor risk.  They also determined 
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the PK models of various complexities did not affect the variability in the risk estimate.  

This was attributed to the binary model for tumor response (i.e., tumor or no tumor). 

 Although the study by Buur et al. does not involve the administration of a drug 

with the intent to treat humans, many of the concepts and methods utilized within are 

directly applicable to the pharmaceutical industry.77  The authors performed a risk 

assessment when they used probabilistic modeling and MCS in conjunction with a 

physiologically-based PK model to predict the withdrawal times of sulfamethazine 

residues in swine tissue.  The FDA regulates the period of time that must elapse before 

feed animals can be harvested for consumption following the administration of certain 

agents to mitigate the risk of adverse reactions in humans (i.e., withdrawal time).  

Sulfamethazine is an antibiotic used for the treatment and prevention of several diseases 

commonly contracted by pigs.  Sulfonamide drugs are of significant interest to regulatory 

officials since they are known to cause a variety of allergic reactions in humans.   

The authors utilized a published physiologically-based PK model and numerous 

published values for the parameters of interest (e.g., hepatic clearance rates, rate of 

absorption, percent plasma protein binding).  A sensitivity analysis was conducted to 

determine the parameters that significantly affected the pharmacokinetics of 

sulfamethazine; specific details regarding the statistical approaches employed were not 

provided.  Lognormal distributions for the statistically significant parameters (inputs to 

the PK model used to predict tissue and plasma concentration) were generated using the 

widest dispersion estimates published so as to output the most conservative withdrawal 

time estimates.  These distributions, therefore, represented the variability within the 

general swine population.  Insensitive parameters were not utilized during the subsequent 
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MCS analyses.  Each MCS trial iterated 1000 times to yield a single withdrawal time.  

The withdrawal time was estimated as the upper limit of the 95th percent confidence 

interval of the time necessary for 99 % of all tissue and plasma concentrations of the 

1000 trials to decrease below the specified threshold.  A series of 100 trials were 

conducted for specific tissues of interest.  The validity of the simulation architecture was 

assessed by comparing the predicted plasma and tissue concentration profiles to 

published mean concentration-time data sets; it was determined that the predicted 

concentrations corresponded well with the reported values.  The authors concluded that 

the mandated withdrawal time of 15 days should be revisited in lieu of the considerable 

public health risk that persists well after this time window.  Although the authors 

acknowledge that their methodology most likely yields more conservative estimates than 

those that might actually be observed, they underscore the fact that their simulation 

architecture can be updated as additional data which better approximate the true 

parameter distributions are acquired.77        

1.3.4 In Vitro-In Vivo Correlation (IVIVC)  

1.3.4.1 Background 

Pharmacokinetic and pharmacodynamic models are generated using clinical data 

acquired with the assistance of healthy volunteers and ailing patients.  While testing in 

humans is a critical component of the drug development process for a new drug 

application (NDA), there is a distinct need for a method capable of assessing the clinical 

effectiveness and reproducibility of medical products within an artificial environment.  

This is especially relevant in the case of abbreviated new drug applications (ANDAs) for 



 62

generic drugs, where clinical studies to establish safety and effectiveness are generally 

not required.  Knowledge obtained during pharmacokinetic, and to a certain extent 

pharmacodynamic, modeling is used to help establish a relationship between in vitro and 

in vivo performance.  Predictive relationships between in vitro and in vivo product 

performance decrease development costs, reduce unnecessary burden to test subjects, and 

expedite product release, all of which underpin public health objectives of the FDA. 

 In vitro-in vivo correlation is the mathematical architecture for relating in vitro 

drug release profiles to absorption in vivo.  The main purpose of IVIVC is to demonstrate 

in vivo bioavailability through in vitro analyses.  Dissolution testing is the conventional in 

vitro test employed by the pharmaceutical industry to assess drug release profiles in view 

of the fact that drug dissolution and release from the dosage form are acknowledged as 

key elements to clinical performance; dissolution was formally recognized as a sensitive 

and reproducible surrogate for assessing bioequivalence in 1993.  Dissolution testing 

supports manufacturing quality control programs, the determination of product release 

characteristics, and certain regulatory considerations.22,78,79   

Dissolution testing monitors the extent or rate of drug release as a function of 

time.  The United States Pharmacopeia (USP) defines 4 different apparatus (1 – 4), the 

basket apparatus, the paddle apparatus, the reciprocating cylinder, and the flow-through 

cell, for general dissolution testing.80  For certain compounds, individual monographs 

dictate the specific requirements for dissolution analyses.  The FDA encourages the use 

of apparatus 1 or 2 for the establishment of an IVIVC; however, apparatus 3 and 4 may 

be employed when the dissolution properties cannot be ascertained with the former 

setups.  Equally important to the setup is the analytical method utilized to monitor drug 



 63

release.  Ultraviolet-visible (UV/Vis) spectroscopy or high pressure liquid 

chromatography (HPLC) are the two most common analytical techniques used to 

measure API concentration within the dissolution media.  Given the overall significance 

of dissolution testing, the methodology and its associated specifications are often justified 

through IVIVC efforts.  In addition to its role in instituting scale-up and postapproval 

changes (SUPAC), establishing biowavers, and setting dissolution specifications,79 

IVIVC has also been associated with enhanced product quality.78   

 Clinical data are traditionally available early on in the drug design and 

development process.  IVIVC efforts commence during the initial stages of development 

and can continue late into the life cycle of a product.  Numerous prototype formulations 

and dosage forms, with various in vitro and in vivo characteristics, are typically 

considered during product development.  Although the majority of IVIVCs reported in 

literature are for per oral dosage forms, research is underway to establish correlations for 

other delivery vehicles (e.g., transdermal patches, biodegradable parenteral depot 

systems).78,79  The IVIVC begins by proposing an in vitro target to meet a desired in vivo 

performance profile or specification; the targets are subject to change, however, as the 

product characteristics are finalized to achieve the intended performance.  The desired 

performance profile may also be modified.  As more and more data are generated, the 

IVIVC is refined to accurately reflect the relationship it seeks to describe. 

1.3.4.2 Classification of IVIVCs 

Numerous approaches to IVIVC modeling are defensible.  Moreover, IVIVCs of 

disparate complexities are suitable depending on the given application.  Both the USP 

and the FDA have released documents intended to help direct participants in constructing 
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an IVIVC appropriate to their needs.  The FDA published a guidance on IVIVC in 1997 

entitled Extended Release Oral Dosage Forms: Development, Evaluation, and 

Application of In Vitro/In Vivo Correlations.22  Likewise, a chapter titled In vitro and In 

vivo Evaluations of Dosage Forms can be found within the USP.81  Within these 

documents, four different levels of IVIVC are acknowledged: A, B, C, and Multiple 

Level C (certain articles recognize a fifth level, D;78 however, since it is a rank ordering 

and, therefore, not a true correlation, level D will not be considered within this work).  

The levels are defined based on the amount of data used to establish the relationship, 

which directly determines the interpretability of the IVIVC function. 

Level A correlations are the most powerful IVIVC and are advocated by the 

FDA.22  As Level A correlations use all in vitro and in vivo data, they represent a point-

to-point relationship between the in vitro dissolution response and the in vivo input rate, 

where the latter is typically expressed as the in vivo release of the drug from the delivery 

vehicle.  Linear correlations, regardless of whether the in vitro and in vivo curves are 

directly superimposable or are rendered so by the implementation of a scaling factor, are 

the most common Level A correlations.  Nonlinear solutions, however, are not incorrect 

and therefore, should not be overlooked in situations where linear correlations are 

infeasible.  Once the association between the in vitro dissolution rate and the in vivo input 

rate is understood, the relationship must be extended to include the portion of drug 

absorbed in vivo (the relationship is not, however, extended to the therapeutic outcome).  

Ultimately, Level A correlations should be completely predictive of a drug’s in vivo 

performance (e.g., plasma drug concentration).  This type of correlation can be used to 



 65

justify a change in the manufacturing route, site of production, incoming raw materials, 

and/or for certain minor formulation amendments. 

Level B correlations are similar to Level A in that they use all in vitro and in vivo 

data; however, they are not defined point-by-point.  Rather, Level B correlations are 

based on statistical moment analyses, particularly the first moment.  For Level B 

correlations, the mean in vitro dissolution time is related to the mean in vivo residence 

time or the mean in vivo dissolution time.  It is critical to note that dissimilar in vivo 

curves can produce comparable mean residence times.  Since Level B correlations do not 

model absolute plasma time curves, they alone cannot be used to justify the same changes 

that can be addressed with Level A correlations. 

   Level C correlations relate one dissolution metric (e.g., t50%, t90%) to one 

pharmacokinetic parameter (e.g., Cmax, Tmax, AUC).  Considering that a Level C is a 

single point correlation, it does not communicate the complete in vivo plasma profile.  

Since only a partial relationship between dissolution and absorption is ascertained, a 

Level C is the weakest of all the correlation levels.  The applicability of a Level C 

correlation is analogous to a Level B correlation.  While neither establish bioequivalence, 

both may be useful in product design, particularly in optimizing formulations.78 

Multiple Level C correlations relate several dissolution time points, preferably a 

minimum of three representing initial, intermediate, and ending time values, to one or 

more pharmacokinetic parameters.  Each time point should be related to the same 

variable when more than one pharmacokinetic parameter is implemented.  A multiple 

Level C correlation established using time points representative of the entire dissolution 
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profile can serve as evidence for a biowaver.  More often than not, a Level A correlation 

is feasible if a Level C correlation has been established.   

1.3.4.3 Approaches to IVIVC Modeling 

Deconvolution and convolution are two common methodologies employed to 

construct IVIVCs.  The former is a two-stage modeling technique, whereas the latter 

involves a single stage.  The first stage of deconvolution entails modeling of the in vivo 

absorption or dissolution time profile.  This can be accomplished using a number of 

pharmacokinetic techniques such as the Wagner-Nelson or Loo-Riegelman methods, or 

general non-compartmental schemes.82  Once the in vivo time profile has been estimated, 

the second stage of the deconvolution method is to determine the relationship between 

the in vivo profile and the in vitro dissolution profile.  The goal is to establish a point-to-

point relationship between the corresponding in vitro and in vivo parameters acquired at 

the same time.  This can be done by way of a simple linear relationship or a more 

intricate sigmoidal (e.g., Hill) function.  Deconvolution methods suffer from restricted 

modeling flexibility (due to the numerous constraints imposed by the methods of stage 

one) and do not convey drug plasma concentrations (as they model fraction dissolved 

versus fraction absorbed), which severely limit the interpretability of the IVIVC.22,83 

Conversely, convolution directly relates the in vitro dissolution profile to the in 

vivo drug plasma concentration time profile through a convolution integral  

 ( ) ( ) ( ) ( ) ( )∫ −=∗=
t

drtCtCtrtC
0

τττδδ     (1.3) 

where C represents the drug plasma concentration, r is the in vivo input rate, τ is the 

dosing time, t is the current time, and Cδ is the instantaneous absorption of a unit quantity 
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of drug, which can be estimated from IV bolus, oral solution, suspension, or rapidly 

releasing (in vivo) immediate release dosage forms.  In other words, total plasma 

concentration C(t) is the summation (i.e., integral) of the remaining fractions Cδ(t-τ) of 

the infinitesimal contributions r(τ)dτ occuring at time τ.22,83  The fundamental objective 

of convolution-based IVIVC methods is to determine the functional relationship that 

connects the in vivo input rate (r) to the in vitro dissolution rate (rdis) such that 

 ( )trfr dis ,=   (1.4) 

The most parsimonious convolution-based IVIVC model involves a linear relationship 

 ( ) ( )traatr dis⋅+= 10   (1.5) 

where the scale (a1) and offset (a0) coefficients are 1 and 0, respectively.  This has been 

termed the basic convolution-based IVIVC method.83  While this is an ideal scenario, the 

scale and offset coefficients may often be different than 1 and 0, respectively.  Due to 

factors that frequently prohibit instantaneous uptake in vivo (e.g., time necessary to 

transport to absorption site) and factors that yield differences in units of measurement 

(e.g., fraction of the dose absorbed), time and amplitude scaling in addition to lag-time 

coefficients are often beneficial to model performance, which can be achieved using the 

equation 

 ( ) ( )tstrstr disr ⋅+⋅= 10   (1.6) 

where s1 and sr are the time and amplitude scaling factors, respectively, and t0 is the 

absorption lag-time term, or the time at which the drug is first absorbed systemically.  

Scaling and offset coefficients should only be applied in situations where they can be 

justified mechanistically and enhance the predictive power of the model.83 
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While deconvolution- and convolution-based methods have been applied for some 

time,22 a novel method known as direct, differential-equation-based IVIVC was proposed 

by Peter Buchwald in 2003.83  Although the direct, differential-equation-based IVIVC 

method is analogous in many ways to the convolution technique, it is unique in that it 

harnesses differential equations, which are linked to a basic pharmacokinetic model that 

describes the system under consideration.  Plasma concentration, therefore, is 

mathematically expressed by a functional pharmacokinetic model that describes the effect 

of the body on the drug itself.  The assumption is made that absorption, distribution, and 

elimination of the drug can best be modeled using compartmentalized pharmacokinetics.  

For ease of demonstration, the following discussion will assume a one-compartment 

model; however, multi-compartment models can be used during differential-equation-

based IVIVC.  

The fundamental architecture of differential-equation-based IVIVC expresses in 

vivo drug plasma concentration as  

 ( ) kCtr
dt
dC

−=   (1.7) 

where k represents the elimination rate constant, and C, r, and t are as were previously 

defined.  In terms of pharmacokinetic modeling, the in vivo input rate (concentration per 

time) for a one-compartment open model with, for example, exponentially decreasing 

input with an absorption rate κ, can be expressed using the common formulae  

 ( ) ( )tktt ee
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V
Dtr κκ
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−⋅
−
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where D0 represents the initial dose and V is the volume term.  For the purposes of 

IVIVC, however, the in vivo input rate (r) is related to rdis through a function analogous to 
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that used in the convolution method (Equation 1.4).  This assumes, however, that 

dissolution, not absorption, is the rate limiting step. 

 Buchwald83 proposed an amended model that includes φabs, a time-dependent 

absorption factor that takes into consideration fluctuations in absorbance as the dosage 

system traverses the gastrointestinal tract 

 ( ) ( ) ( )tstrsttr disrabs ⋅+⋅⋅= 10ϕ   (1.9) 

The time-dependent absorption factor can be as straightforward as a low-pass filter (φabs 

= 1 if t ≤ tcut ; φabs = 0 if t > tcut) or can be something more complex such as a sigmoidal 

step-down function 
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where η is the steepness of the cut-off and tcut is the last time point at which absorption 

occurs.  To minimize the number of parameters that must be optimized, η can be set to a 

constant value.  Due to its extensive surface area, the small intestine is the primary site of 

absorption for many drugs.  The mean small intestine transit time has been reported to be 

3 (±1) hours.84-87  Taking into consideration the range of gastric emptying times, minimal 

systemic uptake would be expected beyond 4 to 10 hours post administration; drugs that 

absorb well within the colon (i.e., certain highly-permeable molecules) would extend the 

aforementioned absorption window.  Thus, the application of a time-dependent 

absorption factor is justifiable for many controlled release delivery systems.  Buchwald 

reported enhanced IVIVC performance when a sigmoidal absorption function (tcut = 6.4 

hours) was used in conjunction with scaling and offset factors.83   

 A total of two equations are necessary to establish an IVIVC for a one-

compartment pharmacokinetic model (Equations 1.7 and 1.9).  Each additional 
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compartment incorporated in the pharmacokinetic model will require one additional 

differential equation to describe the change in concentration as a function of time within 

that compartment.  Estimations of rdis at numerous time points are required to numerically 

solve the IVIVC equations.  The dissolution rate can be estimated by fitting the in vitro 

dissolution profiles with a flexible, continuous function, such as a sigmoidal, quadratic, 

or exponential (e.g., Weibull) expression.  The instantaneous dissolution rates are then 

acquired via the analytical derivative of the fitted function.83   

 The direct, differential-equation-based IVIVC method is restrictive in that it 

assumes compartmental-based pharmacokinetics.  It does, however, yield an estimation 

of the elimination rate constant (k), which can be verified for accuracy using clinical data.  

Moreover, it circumvents the need to convolve or deconvolve mathematical expressions, 

and it directly relates the in vitro dissolution profile to the in vivo drug plasma 

concentration time profile. 

1.3.4.4 Predictability of IVIVCs 

The validity of an IVIVC is demonstrated by its predictability.  Recalling that the 

key objective of an IVIVC is to generate a predictive mathematical function that relates 

in vitro and in vivo performance, validity is centered on the degree of prediction error.  

Validity can be assessed via the data used to construct the IVIVC (referred to as internal 

predictability) or data independent of those used to generate the model (referred to as 

external predictability).  Predictability assessments via internal and/or external methods 

are dependent on the intended use of the IVIVC and the therapeutic index of the drug; 

estimations of internal variability should be performed for all IVIVCs.  Narrow 

therapeutic index drugs require external estimations of prediction error.  Greater detail 
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regarding the requirements of internal versus external predictability can be found in the 

FDA guidance.22  Regardless of the method used, predictability must demonstrate that the 

IVIVC model can accurately predict in vivo performance from in vitro data comprised of 

various release rates and manufacturing conditions.  Generally, this should be 

accomplished using a minimum of three different formulations with release rates that 

vary by, for example, 10 % for each formulation, which should yield a commensurate 

distinction in in vivo performance.  Prediction error can be assessed as the average 

absolute prediction error (% PE) and typically must be less than 10 % to demonstrate 

predictability for both internal and external estimations.  An adequate number of subjects 

should be studied to effectively characterize in vivo performance.  This has been 

accomplished with as few as 6 and as many as 36 individuals, but this is not to say that 

more cannot be evaluated.22  Jaber Emami conducted a thorough review of IVIVC in 

2006 and noted that the majority of the literature articles failed to report (or perhaps even 

assess) predictability.78   

 Dissolution is often used as a quality control gauge to assess batch-to-batch or lot-

to-lot similarity/dissimilarity.  The variability of release at a given time point(s) is 

commonly assessed, where the acceptance specification could be set as ± 10 % deviation 

from the average profile of the clinical/bioavailability samples.  The power of the 

analysis is amplified if a predictive IVIVC has been established.  Given that dissolution 

now conveys in vivo performance, the dissolution release specifications can be 

established with aid from the IVIVC to mitigate in vivo variability.22,79 
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1.3.4.5 IVIVC for Theophylline Dosage Systems 

 Theophylline is categorized as a class I compound according to the 

Biopharmaceutics Classification System (BCS).88  As a class I molecule, theophylline 

exhibits high solubility and high permeability.  Drug dissolution, not absorption, is the 

rate-limiting step to the bioavailability of theophylline;89 when dissolution occurs rapidly, 

however, the rate of absorption is then determined by the frequency of gastric emptying.  

Therefore, an IVIVC is not unexpected for theophylline dosage systems, especially for 

controlled release products where dissolution, not absorption, is the rate-limiting step.    

 El-Yazigi and Sawchuk remarked that even though the bioavailability of 

theophylline had been thoroughly investigated, the potential of establishing a quantitative 

IVIVC had yet to be reported as of 1985.90  This finding was the impetus for 

investigating the effects of pH, apparatus, and stirring speed on the dissolution rate of 

theophylline from assorted commercially available products.  In doing so, the authors 

modeled the cumulative percent theophylline dissolved using a first-order equation.  The 

covariation between the cumulative percent dissolved at various times or the first-order 

rate constant was assessed against different pharmacokinetic parameters (e.g., the fraction 

of the dose absorbed at a given time, dose-normalized area under the curve, peak serum 

levels).  Pharmacokinetic parameters were estimated from the in vivo data, which were 

collected in male New Zealand white rabbits.  At the time of publication, a coefficient of 

determination of 0.9 or greater backed by reproducible predictions of the modeled 

bioavailability parameters signified a good IVIVC.  The authors reported strong Level C 

correlations amongst in vitro and in vivo parameters for the dosage forms assessed under 

a myriad of experimental conditions.  Moreover, good agreement between the actual and 
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predicted pharmacokinetic parameters was reported (for one apparatus at a specified pH 

and a constant stirring rate).90   

 Munday and Fassihi generated IVIVCs for the commercially available controlled 

release product Theo-Dur as well as their own novel controlled release delivery system 

Mintab.89  All in vivo data was collected in canines.  The authors used the rudimentary 

deconvolution-based approach to IVIVC modeling where a one-to-one correspondence 

between the in vitro and in vivo data is desired.  Although the Theo-Dur tablets 

demonstrated good IVIVC, poor correlation between the in vitro dissolution and in vivo 

absorption of the Mintab system was observed.  This was attributed to the incongruent 

dissolution profiles observed across the various dissolution conditions.  The authors did 

not investigate alternative approaches to modeling the Mintab data.  Moreover, they 

neglected to comment on the predictability of the IVIVCs.89   

 Yu et al. investigated the in vitro and in vivo characteristics of four experimental 

oral controlled release theophylline dosage systems (three different hard gelatin capsule 

formulations and one tablet).91  Healthy male beagles were used to collect the in vivo 

data.  The in vitro dissolution profiles of the four different delivery vehicles where shown 

to be unique across the various formulations and dissolution conditions.  Using a 

deconvolution-based IVIVC approach, the authors established a point-to-point (ratio) 

relationship between the cumulative percent theophylline released in vitro and in vivo.  

Although no predictability estimates were determined, the authors concluded that the 

correlation between the in vitro and in vivo data was good based on the visual congruence 

of the point-to-point (ratio) time profiles.91  
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 While the previous investigations utilized animals for the in vivo analyses, 

Hussein and Friedman conducted an IVIVC study of various theophylline formulations in 

both canines and humans.92  Five experimental sustained release theophylline 

formulations and two commercial sustained release products (i.e., Theotrim and Theo-

Dur) were selected.  Two different dissolution media were used to model conditions 

within the gastrointestinal environment.  Distinct mean dissolution profiles were obtained 

for each dosage system using the specified dissolution methodology.  Three male and two 

female dogs and six healthy humans (gender not indicated) were studied to obtain the in 

vivo absorption data.  The percent theophylline absorbed in both humans and canines was 

estimated using the Wagner-Nelson method.  Mean in vitro release and individual in vivo 

absorption profiles were used in conjunction with linear regression to relate the 

percentage released to the percentage absorbed at each time point sampled.  The slopes (± 

standard deviation) and the coefficients of determination for three of the experimental 

formulations and both commercial products were reported; the remaining two 

experimental formulations were only tested in vitro (no explanation provided).  Based on 

the variance explained through linear regression, the authors concluded that IVIVC was 

feasible using bioavailability data obtained both in canines and humans.  No estimates of 

prediction error were reported.92   

1.3.5 Pharmacokinetics 

1.3.5.1 Background 

 The study and understanding of in vivo drug (and metabolite) levels over the 

duration of treatment are key functions in the drug development process.  These 
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concentrations, in turn, influence the clinical outcomes of the therapy and, therefore, must 

be managed so as to be both safe and effective.  Aside from the intricacies of drug 

delivery systems, numerous variables, including behavioral, environmental, physiologic, 

and pathophysiologic factors, can influence the uptake and disposition of medical 

substances.  For example, concomitant drug therapies via drug-drug interactions 

commonly modify the rate of removal of one or several of the drugs from the body, 

which has the potential to drastically affect patient well-being.  Furthermore, many drugs 

perform differently when administered to infant, adolescent, adult, or geriatric patients 

due to changes in organ size and function.  As such, extensive studies must be undertaken 

to identify these factors, as well as those associated with the intricacies of the delivery 

system, and appreciate how (mechanistically) they alter the management of disease.  

More often than not, these studies yield quantitative empirical models that predict drug 

serum/plasma levels for groups of patients under a specific set of conditions.   

Pharmacokinetics denotes the examination of the time course of drug absorption, 

distribution, metabolism, and excretion (ADME) to ultimately elucidate the relationship 

between dose and exposure.  Pharmacokinetics can be grossly divided into two 

components, an experimental and a theoretical element.  The former involves the 

collection and analyses of data, and the methods describing these practices, while the 

latter entails the generation and validation of physiologically-based or empirical models 

that express drug levels following administration.  The pharmacokinetic focus of this 

dissertation is predominantly on the theoretical component.  Thus, the background and 

application of experimental pharmacokinetics, which includes topics such as sampling of 

biological fluids/tissues and the analytical methodologies for measuring drug 
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concentration, will not be addressed.  This work will, however, model plasma rather than 

serum concentrations given that plasma has the ability to perfuse through all tissues in the 

body.  If a dynamic equilibrium is assumed to exist between plasma and the body tissues, 

changes in drug plasma concentration thereby mirror those in the tissues.82,93   

 One of the major outcomes of experimental pharmacokinetics that subsequently 

becomes the impetus for theoretical modeling is the drug concentration time profile, 

which is an illustration of the concentration of drug in the serum/plasma determined at 

precise sampling time points following the administration of one or more doses (Figure 

1.7).  Drug concentration time profiles reflect the substance’s absorption into systemic 

circulation, distribution to the various tissues in the body, and elimination via 

biotransformation and/or excretion, all of which take place simultaneously during 

treatment.  Countless variables affect the shape of these profiles, including the route of 

administration, the dosing intervals, the amount of drug administered, the rate of gastric 

emptying, and the fitness of the individual and the clearing organ(s).  The profiles, or 

more precisely, the data upon which the profiles were generated, are then used as inputs 

to various numerical models that seek to accurately express the change in drug 

concentration as a function of time.  Otherwise, they can be described by scalar metrics 

such as the maximum concentration (Cmax), the time necessary to reach the maximum 

concentration (Tmax), the area under the curve (AUC), and/or the drug clearance rate, all 

of which have particular PK significance.82,93     
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Figure 1.7. Plasma concentration time profile for a dose administered every 12 hours for 15 days simulated 
in silico. 

 The underlying PK are typically described as liner or nonlinear.  Linear kinetics 

are characteristic for a drug whose PK parameters are invariant with the administration of 

different doses.  For example, first-order kinetic equations might adequately describe the 

time course of drug ADME; a plot of the AUC for the plasma concentration-time curve 

versus dose would be linear.  Some drugs, however, display dose-dependent (i.e., 

nonlinear) PK, and the same AUC versus dose plot would be nonlinear over certain 

ranges.  Many of the physiological processes responsible for ADME are conducted by 

carrier-mediated or enzymatic systems, both of which are subject to saturation.  

Additionally, the drug (or other concomitant drugs) may induce a physiologic or 

pathophysiologic change that transforms the kinetics of the drug of interest from linear to 

nonlinear.  These situations are exemplified by a change in the rate of drug elimination.   

For instance, the elimination rate may decrease due to the saturation of metabolic 

enzymes or may increase due to the induction of metabolic enzymes.  Regardless of the 
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directionality, dramatic inaccuracies in the plasma levels may occur if the change is 

inaccurately modeled.82  

As stated, pharmacokinetic models can be empirical or physiologically-based.  

Empirical models are applied to a set of data based solely on their ability to 

mathematically describe the information, regardless of the underlying physiological and 

pathophysiological mechanics.  Alternatively, physiologically-based pharmacokinetic 

models encompass the physical and biochemical functions of the body with respect to 

ADME of drugs and metabolites.  These models may incorporate knowledge regarding 

the rate of blood perfusion for a particular organ or the various types of cells that 

constitute the major organ systems that interact with the drug substance.82,93   

In theory, an infinite number of models can be ascribed to the complex kinetic 

processes of ADME if they are scrutinized on a cellular or sub-cellular level.  

Approaches to modeling, however, normally employ a number of assumptions to 

simplify these processes while concurrently retaining physiological relevance or 

numerical applicability.  The two most notable categories of pharmacokinetic modeling 

are compartmental and non-compartmental models.  Compartmental models reduce the 

body down into a number of systematic or serially-related compartments that reversibly 

interact with one another.  Compartments are hypothetical regions that represent a tissue, 

an organ, or a collection of tissues/organs that display comparable blood flow and affinity 

for a given drug.  Compartmental models assume that the drug is rapidly mixed and is 

homogenously distributed within a compartment of a definite volume.  Moreover, each 

drug molecule has the same likelihood of exiting the compartment.  Rate constants are 

used to express the transfer of drug between compartments and differential equations 



 79

describe the change in drug concentration over time.  The instantaneous concentration of 

drug in the body is, therefore, the summation of concentrations in each of the contributing 

compartments.  Compartment models are open in view of the fact that drug can be 

eliminated from the system.82,93   

There are two general forms of compartmental pharmacokinetics.  The first is 

known as the catenary system, which is structured as a series of coupled compartments 

(analogous to box cars on a train) where input occurs in the first compartment and drug 

can only be transferred to and from adjacent compartments.  Since this format does not 

effectively characterize the manner in which plasma interacts with tissues/organs, 

catenary models are used infrequently.  The other form of compartmental 

pharmacokinetics is referred to as the mammillary system, which consists of, at a 

minimum, one central compartment.  They can also incorporate numerous peripheral 

compartments, all of which have direct (and potentially coincident) access to the central 

compartment.  Mammillary models are the most common structure for compartmental 

pharmacokinetics.82,93 

Non-compartmental pharmacokinetics makes no assumption regarding the nature 

of the distribution of a drug, whereas compartmental modeling presumes that substances 

are distributed amongst one or more compartments.  Non-compartmental PK makes use 

of statistical moments (e.g., area under the moment curve (AUMC), AUC), which are 

mathematical descriptions of a discrete distribution of data.  A statistical moment of 

concentration-time data describes the probability density function, which represents the 

true relationship between concentration and time.  A non-compartmental approach to 

modeling is preferred by some as it is not centered on the same assumptions as 
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compartmental pharmacokinetics, which traditionally applies empirical models that have 

no physiologic relevance.  Non-compartmental modeling can be of particular benefit in 

situations where a single compartment model fails to adequately characterize an entire 

population (e.g., a fraction of the patients are characterized by a two-compartment model, 

while the remainder are more accurately described by a three-compartment model).  

Nevertheless, non-compartmental models use differential equations to express the change 

in concentration (in the body as a whole) over time. 

 The following discussion and accompanying formulae are a straightforward 

example of a one-compartment open model.  While more complex functions, some of 

which are nonlinear (e.g., Michaelis-Menten kinetics), exist, the reader is referred to any 

advanced pharmacokinetic textbook for greater detail.  One-compartment open models 

are particularly useful for drugs administered via IV bolus injection, where the drug is 

introduced into systemic circulation (nearly) instantaneously.  A one-compartment model 

following IV bolus administration is fundamentally characterized by three terms, the drug 

in the body (DB), the apparent volume of distribution (VD), and the elimination rate 

constant (k).  The apparent volume of distribution is the volume in which the drug is 

assumed to be homogeneously distributed, and the elimination rate is the collective total 

of the joint processes of biotransformation and excretion.  The apparent volume of 

distribution does not correspond to a true anatomic space; rather, it signifies the volume 

of the sampling compartment used to estimate the amount of drug in the body, hence the 

annex “apparent.”  Since the human body is more or less at constant volume, it is 

common practice to use an invariable estimate for the VD.  However, certain physiologic 



 81

conditions, such as edema, which results in increases to total body water, can invalidate 

this assumption.82,93 

 The differential equation that describes a one-compartment model with 

instantaneous uptake is 

 B
B kD

dt
dD

−=   (1.11) 

where DB and k are as previously defined.  Following integration, the drug in the body at 

any time (t) is expressed as 

 kt
BB eDD −= 0   (1.12) 

where 0
BD  is the amount of drug in the body at time t = 0.  Mathematically, DB is 

estimated as  

 pDB CVD =   (1.13) 

where Cp represents the concentration of drug in the plasma.  Given these relationships, 

the first-order decrease in plasma drug concentration is expressed as 

 kt
pp eCC −= 0   (1.14) 

where 0
pC  is the concentration of drug in the plasma at time t = 0 once the drug has 

equilibrated within the body.  The VD is estimated using the expression 
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where the dose is administered via IV bolus injection and 0
pC  is estimated by 

extrapolating the plasma concentration versus time curve back to the y axis.82,93   

 Clearance is the pharmacokinetic term for the overall rate of removal of drug 

from the body.  It does not identify the underlying elimination mechanism(s); rather, 
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clearance is purely a numerical expression of the volume of fluid containing drug that is 

removed from the body per unit time.  Although clearance is typically expressed with 

respect to volume, removal can also be conveyed in terms of mass, fraction, or 

concentration per unit time.  Many drugs are removed from the body via a first-order 

process (i.e., the rate of removal is only dependent upon the plasma concentration).  

When expressed as volume per unit time, clearance is assumed to be constant for a first-

order process, which is a direct result of assuming a constant VD; just as was true for VD, 

certain physiologic circumstances can invalidate this assumption.  As such, clearance (Cl) 

from the body is expressed as 

 DkVCl −=   (1.16) 

where k is the first-order elimination rate constant.  The negative sign indicates that drug 

is being removed from the body.  Although the instantaneous rate of drug removal from 

the body (i.e., amount per unit time) will decrease as concentration declines, clearance 

(i.e., volume per unit time) will remain constant so long as elimination is characterized by 

first-order kinetics.  The concept of clearance can be incorporated within the expression 

of plasma concentration for a one-compartment open model to yield 

 ( ) ( )tVCl
Dp

DeVDC /
0 / −=   (1.17) 

where D0 denotes the initial IV dose.  Analogous equations exist for alternative routes of 

administration and for multi-compartment models.  Moreover, the concept of clearance is 

also applicable in non-compartmental pharmacokinetics.82,93  Extensive discussion 

regarding the estimation of clearance (e.g., renal excretion and biotransformation rate 

constants) can be found in pharmacokinetic textbooks and the literature.  The reader is 

referred to these general references for greater detail.     
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1.3.5.2 Pharmacokinetic Models of Theophylline 

Accurate dosing of theophylline has remained a significant challenge since its 

first applications in the early 20th century.  Imprecision can largely be attributed the 

extensive inter-patient variability for the PK of theophylline.  Consequently, substantial 

effort has been devoted to better understanding the underlying relationship between dose 

and exposure. 

Ginsberg et al. investigated the utility of a physiologically-based PK model for 

discriminating PK differences in neonates and adults.  This study was performed using 

two model drugs, caffeine and theophylline, both of which are know to have disparate PK 

in neonates and adults.  Both drugs were selected since caffeine demonstrates a more 

dramatic difference as a function of age, despite the fact that caffeine and theophylline 

are eliminated via similar pathways (refer to section 1.3.2.2).  Since the underlying PK 

mechanisms and the significant confounding factors are, by and large, poorly established 

for neonates when compared to adults, the authors were particularly interested in 

investigating the transferability of in vitro metabolic parameters determined in 

mammalian cells transfected with CYP c-DNAs to whole liver metrics.  This is an 

attractive method since the whole liver metrics can then be adjusted for the differential 

expression levels observed between neonates and adults.   

To accomplish this objective, a 5-compartment physiologically-based PK model 

was generated (i.e., liver, kidney, fat, and rapidly and slowly perfused tissues).  Hepatic 

metabolism was modeled using published in vitro Michaelis-Menten constants (i.e., Vmax 

and Km) for the major metabolic pathways of caffeine and theophylline (i.e., CYP1A1, 

CYP1A2, CYP2E1); all other transfer equations were linear.  The Michaelis-Menten 
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constants were scaled to account for the size of the liver, the amount of microsomal 

protein per gram of liver tissue, the aggregate concentration of CYP enzymes per 

microgram of microsomal protein isolated from the tissue, and the relative amount of 

each CYP enzyme to the total microsomal CYP quantity for a specific age range.  

Metabolism in organs other than the liver was not modeled and the fate of the 

metabolites, with the exception of conversion of theophylline to caffeine in neonates 

(assumed to be first-order), was not considered.  Renal elimination was expressed as a 

first-order process.  Although several of the model coefficients (i.e., the Michaelis-

Menten constants) were adjusted from the published values to optimize model 

performance, the authors concluded that the model described the differential PK 

reasonably well based on the comparison of predicted metabolite and drug levels with 

urinary excretion data.  Adjustments were deemed necessary since the in vitro system did 

not mimic the compensatory pathways that are present in vivo (e.g, conversion of 

theophylline to caffeine, no incorporation of FMO).  The authors also noted that 

metabolism in newborns should be adjusted for gestational variations and postnatal age 

during the first weeks of life.  This study underscores the importance of neonatal PK data.  

Scaling of theophylline data from adults to newborns would overlook the conversion of 

theophylline to caffeine that takes place in this age group.28 

 Bjorkman exercised a similar set of objectives when he generated a generalized 

physiologically-based PK model applicable across a broad range of ages.30  Unlike the 

work of Ginsberg et al.,28 however, all relevant PK parameters (i.e., model inputs) were 

scaled using data obtained from adults as opposed to estimating the parameters from in 

vitro metabolic data.  The physiologically-based model was evaluated with theophylline 
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and midazolam, two drugs that display dissimilar physiochemical and PK attributes (e.g., 

lipophilicity, predominant CYP metabolic enzymes).  As the unbound (i.e., free) fraction 

of theophylline is known to vary with age, a constant unbound fraction of 0.56 was 

assumed for adults, while plasma protein binding for infants and children was modeled 

according to the age-related variability is serum albumin concentration (equation not 

given in original article).  Total theophylline clearance was partitioned to be 85 % hepatic 

and 15 % renal, and clearance was assumed to be linear (i.e., first-order) across all age 

ranges studied.  For subjects from 0 – 9 years, a bi-exponential growth function was used 

to assign the relative contributions of CYP enzymes to the hepatic metabolism of 

theophylline, while 92 % was attributed to CYP1A2 and 8 % to CYP2E1 for individuals 

10 years or older.  Renal clearance for infants of 6-months was increased by 10 % owing 

to the methylation of theophylline to caffeine.   

The model was validated using amassed literature data.  Model performance was 

assessed according to the percent prediction error for the estimation of clearance (Cl), 

volume of distribution at steady state (Vdss), and terminal half-life (t1/2).  The median 

prediction errors for Cl, Vdss, and t1/2 of theophylline were -4.0 %, 3.4 %, and 24 %, 

respectively.  Bjorkman concluded that the model predicted Vdss and Cl well, but noted 

that inter-subject variability of the actual clearance data was considerable.  This is not 

surprising given the findings of studies such as Jusko et al.46 and Chiou et al.37  The error 

of prediction for t1/2 was appreciably larger; inaccuracies in Cl and Vdss, however, are 

compounded in half-life estimations.  Additionally, Bjorkman questioned the legitimacy 

of several reported half-life values cited for neonates and infants, which may be more 

inexact than the predicted values.  While clearance, and to a much lesser extent, terminal 
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half-life of theophylline changed as a function of age, the volume of distribution was 

relatively invariant.30   

 While these examples are far more complex than a linear one-compartment open 

model, several studies have demonstrated reasonable predictive power using this 

technique.  Many of the following articles have been previously addressed in literature 

survey (refer to section 1.3.2) and, therefore, will not be expounded upon other than to 

specify the PK modeling assumptions that were implemented.  The studies conducted by 

Powell et al.45 and Chiou et al.37 utilized a linear one-compartment open model to 

describe theophylline concentrations.  Powell et al. also assumed that clearance and 

volume of distribution were constant for any given individual regardless of the 

theophylline level.  The authors defended their assumptions by referencing the empirical 

observations of a few studies published prior to their work.  The article by Gilman et 

al.,56 which compared the methods of Powel et al.45 and Jusko et al.,46 and a weighted 

least-squares Bayesian approach and the method of Chiou et al.37 for the estimation of 

theophylline clearance, employed a one-compartment open model and assumed linear 

elimination of theophylline.  The authors justified the use of linear elimination based on 

the several reports that theophylline failed to demonstrate saturable elimination in adults.  

The mean age of the patients utilized in the Gilman et al. study was 43.5 ± 15.8 years.  A 

constant volume of distribution of 0.5 L/kg was implemented.   

Brocks et al. performed a PK study in 34 pediatric patients ranging in age from 4 

months to 14 years of age using a one-compartment open model for orally administered 

theophylline.94  The authors generated predicted theophylline serum concentrations using 

both the patient’s individualized volume of distribution (0.3 – 1.54 L/kg) and a 
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standardized value of 0.5 L/kg, and two blood samples.  The mean prediction errors 

between the observed and predicted serum concentrations using the individualized and 

standardized volumes of distribution were -0.509 mg/L and 1.27 mg/L, respectively.  The 

authors concluded that their method can be used to accurately estimate theophylline 

dosages for pediatric patients, despite the fact that it does not require IV data.   

Casner et al. conducted a randomized trial during which the accuracy of a PK 

model for IV theophylline dosing was compared to physician dosing.95  A total of 35 

asthmatic or COPD patients were followed throughout the trial (several were excluded 

due to incomplete data) in one of two randomized groups; the kinetic group was dosed 

according to a computerized version of the Chiou et al. method,37 while the empirical 

group was dosed by physicians instructed to obtain a target concentration of 15 mg/L.  

The physiologic and pathophysiologic characteristics of the two groups were comparable.  

Three serum theophylline levels were determined from blood samples for each patient.  

Prediction error for the two groups was estimated by subtracting the third serum level 

from the target concentration.  The mean absolute values were 14.8 ± 4.4 and 12.6 ± 4.1 

mg/L for the kinetic and empirical groups, respectively.  Despite the fact that the 

computer predicted dosing was closer to the target value, the difference was not 

statistically significant.  Moreover, none of the clinical outcomes (e.g., number of 

subtherapeutic or toxic levels, duration of time in hospital) were statistically different 

between groups.  The authors concluded that PK model for theophylline dosing was of no 

additional clinical benefit.  It is noteworthy, however, that a linear, one-compartment PK 

model was able to match the skill of trained physicians.   
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The investigation of Hurley et al. was similar to the preceding study of Casner et 

al.; Hurley et al. conducted a randomized trial to assess the clinical differences of 

computerized versus physician dosing in 91 asthmatic or COPD patients upon admission 

to the hospital with acute air-flow obstruction.53  The authors also implemented a one-

compartment open model; however, the physicians were not advised to attain a target 

theophylline level.  Patients were initially dosed according to total body weight and then 

their doses were adjusted either by a computerized model (i.e., monitored group) or by a 

physician (i.e., control group).  Hurley et al. observed no statistically significant 

difference in theophylline serum concentrations between the two groups, nor in the 

number of subtherapeutic or superpotent levels.  They did, however, observe a 

statistically significant difference in the lower number of reported subjective side effects 

(i.e., breathlessness, palpitations) in the kinetic (or monitored) group as well as a 

statistically shorter hospital stay in the kinetic group (6.3 days) compared to the empirical 

(or control) groups (8.7 days).  Unlike Casner et al., the authors concluded that “using a 

pharmacokinetic method to determine theophylline dosage for the patient with acute air-

flow obstruction improves the likelihood of achieving a theophylline concentration in the 

therapeutic range, and may hasten the patient’s recovery.”  

 These are but a few of the examples of the PK models that have been generated to 

study theophylline.  Other researchers have also advocated the use of linear, one-

compartment models for the analyses of theophylline delivery systems.32,35,41,51,52,96,97  

Such models are purported to be applicable for both IV and orally administered dosage 

systems.       
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1.3.6 Pharmacodynamics 

1.3.6.1 Background 

A thorough understanding of the physiochemical properties of a drug and how 

they control its ADME is imperative.  Such knowledge, however, offers little insight as to 

how the molecule interacts with the targeted pharmacophore to elicit a physiologic 

response.  Although a mechanistic understanding of the manner in which a drug docks 

with the molecular target is not essential early in the development process, a sponsor 

must quickly identify how patients respond to the drug at a specified dose.  Likewise, it is 

important to understand how the safety and effectiveness of a drug delivery system 

change as it is optimized with respect to a desired exposure-response profile.  Within this, 

it is important to recognize that optimization will most likely affect the onset, magnitude, 

and duration of drug action.       

Once the pharmacokinetics of a drug are reasonably well understood, it is 

important to define the minimum effective concentration (MEC) that results in the 

desired endpoint and the minimum toxic concentration (MTC) that results in any adverse 

(i.e., toxic) event; concentrations between the MEC and MTC delineate the therapeutic 

window.  Numerous drugs exhibit a proportional relationship between the administered 

dose and the observed outcome.  Many individuals, however, respond differently 

(although not necessarily unfavorably) to the same drug administered at equivalent doses 

and it is this inter-individual variability that obfuscates the underlying exposure-response 

relationship.  Moreover, small fractions of the population can respond negatively to a 

given substance at a specified dose, despite the fact that the majority of individuals 

tolerate the treatment.  It is therefore important to integrate pre-clinical data with clinical 
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observations, as they become available, to better understand the relationship between 

exposure and pharmacologic outcome.  A thorough appreciation of the exposure-response 

relationship can help to better pinpoint successful management practices for individual 

patients or sub-populations a priori.48   

Pharmacodynamics is the field of study devoted to the onset, intensity, and 

duration of drug action following exposure.  In other words, PD is a supplement to PK 

that draws a parallel between the drug concentration time profile and pharmacologic 

endpoints to ultimately elucidate the relationship between exposure and response.  This 

bridge between PK and PD helps define the optimum dosing regimen to achieve the 

intended result.  It follows, therefore, that the same intricacies that affect the PK of a drug 

have the potential to influence the PD.  More importantly, these variables can act 

independently on the PD, despite the fact they showed no observable effect on the PK.  

Thus, it is necessary to investigate the potential demographic, physiologic, and pathologic 

factors that affect the exposure-response relationship.48 

Pharmacodynamic research often involves extensive investigations into the 

genetic factors that predispose individuals to respond favorably or unfavorably to a given 

drug.  Even in instances where the response is efficacious per se, pharmacologic 

outcomes that deviate from the projected exposure-response profiles are sometimes 

attributable to genetic polymorphisims of genes that encode receptors specific to the 

drugs and/or metabolites.  Such genetic variations have been known to alter the response 

independent of any change in the PK curve.48   

Adding to the significant challenge of defining an exposure-response profile is 

tolerance.  In certain cases, the observed pharmacologic outcome is modulated as a 
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function of time, despite maintaining the same dosing regimen.  This can be attributed to 

several physiologic or pathophysiologic factors, including an increase or decrease in the 

quantity of receptors, or an alteration in receptor affinity or signal transduction.  Thus, the 

exposure-response profile can be severely misconstrued if these time-dependent effects 

are overlooked.48 

Numerous other phenomena mask the underlying relationship between the PK and 

PD of a particular drug.  For instance, certain molecules elicit no effect below the MEC, 

while others yield a response distinctive from that observed within the therapeutic 

window; these effects are thereby exacerbated by sub-potent dosing and/or patient 

incompliance.  In such instances, a single exposure-response curve inadequately 

characterizes the causal relationship.  Furthermore, although many exposure-response 

curves are linear (or can be transformed to be so) over extended ranges, others are more 

appropriately described by an alternate function (e.g., sigmoid) due to disproportionate 

increases or decreases in response at extreme concentrations.  Selection of an 

inappropriate mathematical function to characterize the exposure response relationship 

can yield an erroneous PD model.     

The ability to ascertain the true exposure-response relationship is dependent upon 

the accuracy of the response estimate.  For example, subjective endpoints (e.g., decrease 

in pain) have higher degrees of uncertainty than measurable responses (e.g., decrease in 

blood pressure).  Responses that are dependent on an individual’s or a physician’s 

perception can complicate efforts to generate an accurate PD curve.  Further, certain 

pharmacologic endpoints are not feasible to measure.  Therefore, to increase the 

practicality or lower the associated risk, surrogate PD endpoints are employed under the 
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assumption that they are predictive of the actual clinical response.  For example, analyses 

of the antitumor effects of chemotherapeutic agents would require routine biopsies, which 

pose too high of a risk to the patient.  To circumvent this risk, clinicians often monitor 

expression levels of white blood cells to gauge patient response.98  Use of surrogate 

endpoints requires an additional level of validation to ensure that they are indeed 

representative of the true pharmacologic outcome.  Regardless of the endpoint employed, 

the success of any therapy is dependent upon, along with other critical links, a precise 

relationship between exposure and response.  

1.3.6.2 Pharmacodynamic Models of Theophylline 

 While numerous studies have focused on understanding the complex relationship 

between theophylline dose and exposure, less research has been devoted to developing 

pharmacodynamic models expressing the link between exposure and response.  This may 

be, to some extent, justified by the fact that researchers generally agree upon the 

therapeutic window that characterizes theophylline and the inefficacious and toxic events 

that occur outside this range.  Consistently dosing within this range, however, has proven 

to be a challenge.  

 The pharmacologic outcomes of theophylline closely parallel serum or plasma 

concentrations.  Both the degree of bronchodilation and the decrease in airway 

responsiveness trend with theophylline concentration.25  In fact, bronchodilation 

increases linearly with logarithmic increases in theophylline concentration, within the 

therapeutic range.35  Over the years of treatment with theophylline, researchers and 

clinicians have concluded that theophylline concentrations of 10 – 20 mg/L are most 

likely to safely provide clinical benefit, although it should be noted that levels as low as 5 
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mg/L are efficacious in certain cases.  Others, however, have campaigned for the lower 

limit of efficacy to be established as 5 mg/L (refer to section 1.3.2).  Thus, the MEC is 

not unanimously acknowledged as 5 or 10 mg/L, or some concentration in between.   

Concentrations in excess of 20 mg/L compromise the safety of treatment as the 

likelihood of toxic side effects increase dramatically above this level.  This is 

demonstrated in Figure 1.8 where the toxic outcomes of 50 adult patients treated with 

theophylline were documented.39  Unfortunately, the occurrence of more severe side 

effects is not always preceded by mild toxic events.  While certain mild side effects (e.g., 

headache nausea) may be offset by the potential clinical benefit, the fact that the onset of 

more severe side effects cannot be accurately predicted has firmly established the MTC at 

20 mg/L, although some have suggested this value should be reduced to 15 mg/L (refer to 

section 1.3.2).  Severe side effects are consistently observed at concentrations well in 

excess of 20 mg/L.   

 

Figure 1.8. Mean theophylline serum concentrations versus the frequency and severity of toxic effects in 50 
adult patients.  Mild toxic events included nausea, vomiting, headache, and insomnia.  Potentially serious 
toxic effects were limited to sinus tachycardia.  Severe toxic side effects included life-threatening cardiac 
arrhythmias and seizures. 
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 A number of studies have evaluated the effects of concomitant therapies on the 

pharmacologic outcome of theophylline, but they are specific to a single drug effect and 

sample population, and thus, have limited applicability.  For example, Hoffman et al. 

investigated the effects of total body gamma irradiation on several drugs in rats.99  They 

concluded that gamma radiation did not affect the theophylline dose necessary to induce 

seizures.  Similarly, Hoffman et al. explored the potential for cyclosporine to potentiate 

the effects of theophylline in rats.100  They observed that administration of cyclosporine 

reduced the theophylline concentration required to induce seizures and suggested that 

cyclosporine may increase the risk for generalized seizures during treatment with 

theophylline.        

A survey of the literature reveals that the majority of PD studies involving 

theophylline focus on bronchodilation in asthmatic patients.  One of the criteria used to 

diagnose asthma as well as monitor its condition is forced expiratory volume in one 

second (FEV1), which is the amount of air that an individual can forcibly expire in one 

second.  FEV1 is typically measured in liters using a spirometer and is reported as a 

percentage of the amount of air that can be forcibly expired after full inspiration.          

 It has long been reported that the degree of bronchodilation (or percentage change 

in FEV1) is linearly related to theophylline concentration when the concentration axis is 

log-transformed.  Indeed, Mitenko et al. observed this relationship in six hospitalized 

asthmatic patients who were administered theophylline IV; no mathematical relationship 

defining the PD model was offered.41  More recently, however, researchers have 

observed findings that challenge this correlation.   
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Flores-Murrieta et al. reported in 1999 that previous researchers had failed to 

model the PD outcomes of theophylline in asthmatic patients presenting with different 

degrees of airway obstruction.101  The authors conducted a study in 15 asthmatic patients 

who were cleared of all confounding diseases.  Patients were divided into two groups, the 

first consisting of 2 males and 6 females (mean age 40 ± 11 years) who displayed FEV1 

values of less than 50 % and the second comprised of 7 females (mean age 30 ± 12 years) 

with FEV1 values between 50 and 70 % of ideal.  A single 250 mg dose of theophylline 

was administered via IV infusion over 30 minutes and plasma drug concentration as well 

as FEV1 was measured for a total of 12 hours.  Plasma concentration-time data were 

modeled using a two-compartment open model consisting of a central and an effect 

compartment.  A two-compartment model was determined to be optimal due to the delay 

between the appearance of theophylline in the plasma and bronchodilation.  Plasma 

concentration in the effect compartment was correlated to FEV1 via a sigmoidal Emax 

expression  
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where E is the pharmacologic response, E0 signifies the baseline response, Emax 

represents the theoretical maximum effect that can be attained, EC50 symbolizes the drug 

concentration at 50 % of the maximum effect, C is concentration at the effect site, and γ 

is the sigmoidicity constant, which dictates the steepness of the curve.  The optimal fits 

for the response curves were determined using nonlinear regression.  Emax 

pharmacodynamic models were previously demonstrated to be practical for correlating 

FEV1 to theophylline concentration.102   
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The authors observed counterclockwise hysteresis loops in both groups when 

FEV1 values were plotted against theophylline plasma concentration (Figure 1.9).  This 

phenomenon suggests that the relationship between bronchodilation and theophylline 

concentration is indirect, possibly due to a delay in the equilibrium between plasma 

concentration and the site of drug action.  Both groups were able to achieve comparable 

FEV1 values when treated with theophylline; however, the EC50 value was higher for the 

severe patients, which increases their risk of experiencing a toxic event.  The PK of the 

two groups were comparable.  While these results confirm the indirect relationship 

observed by two other research groups,103,104 they contradict the general viewpoint that 

the extent of bronchodilation is directly related to theophylline concentration.  The 

authors concluded that by failing to segregate patients according to baseline airway 

function, earlier investigations may have overlooked the true exposure-response 

relationship for theophylline.101   

 

Figure 1.9. Plots of FEV1 verses theophylline plasma concentration to patients with severe (left) and 
moderate (right) airway obstruction.  The arrows indicate the counterclockwise hysteresis. 
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             Despite years of research and a substantial number of literature publications, it is 

evident that the PD, much the same as the PK, of theophylline has yet to be fully 

elucidated.  The author is unaware of any large-scale study assessing the safety and 

effectiveness of theophylline in a broad population encompassing the various 

physiologic, pathophysiologic, and other factors known to influence its action.  As a 

result of these voids, theophylline remains a viable research candidate for PK and PD 

investigations.     

1.3.7 Pharmacokinetic/Pharmacodynamic Simulation 

The individual disciplines of PK and PD are merely two of the many discrete 

components situated on the continuum known as the drug discovery and development 

process.  Integration of these components, however, convolves their contributions and 

offers knowledge that transcends each discipline to provide a more complete picture of 

the drug delivery system and its impact on patient well-being.  Integrated PK and PD 

models bridge the relationship between dose and response.  These models can then be 

used to better guide the development and ultimate utility of a drug delivery system.  For 

example, integrated PK/PD models can be used to minimize the likelihood that a patient 

will experience an adverse event following commencement of a therapy.  The same 

models can be used to understand how response changes between fed and fasted states or 

how the pharmacologic outcomes might be affected as a result of drug-drug interactions 

that alter the ADME of one or several of the concomitant drug therapies.48 

Modern-day computers augment the arsenal of research tools available to 

scientists and clinicians.  Technological advances in the areas of hardware and software 

have nearly eliminated computational deficiencies that were limiting factors several 
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decades ago.  Thus, personal computers are powerful enough to conduct a variety of in 

silico simulations with varying underlying objectives.  Numerical simulation can be 

expected to take a more prominent role in the drug discovery and development process as 

it compliments the FDA’s Critical Path Initiative by utilizing innovative techniques to 

study the manufacturability, safety, and efficacy of candidate molecules and/or drug 

products.9  Pharmacokinetics and pharmacodynamics are two pharmaceutical disciplines 

that utilize computer simulation extensively.   

Once a PK model has been generated, a simulation platform can be constructed to 

assess the impact that random variation to the inputs has on the PK model output(s) (e.g., 

plasma concentration).  The article by Gomeni et al. was previously introduced as it 

pertains to MCS.70  Regarding the details of their PK modeling and simulation, the 

authors first implemented a convolution approach to estimate plasma concentration.  

Specifically, the in vivo delivery rate, which was modeled using the Weibull function, 

and the disposition and elimination time course, which was described by a two-

compartment linear model, were convolved to predict plasma concentration.  The authors 

then perturbed this model via MCS by randomly sampling values for the inputs (e.g., 

fraction of the dose absorbed, Weibull shape and time parameters) to better understand 

their influence on plasma concentration, and subsequently, receptor occupancy.  Log-

normal distributions for each input parameter were generated according to a 

predetermined coefficient of variation for that particular trial.  The simulation evaluated 

plasma concentration for a given patient 24 hours after the 7th dose to better understand 

how variability of the inputs affected receptor occupancy. 
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Alternatively, Peters recently illustrated how physiologically-based PK simulation 

can be used to estimate PK model coefficients with two model drugs, verapamil and a 

proprietary compound no longer in development, in both rats and humans.105  The 

primary objective was to demonstrate that physiologically-based PK simulation of plasma 

concentration-time profiles can reliably differentiate the underlying PK mechanisms, 

most notably the intestinal loss of orally administered drugs from first-pass hepatic 

metabolism, which are more often than not modeled in the same compartment as they are 

difficult to separate within clinical data.  A generalized physiologically-based PK model 

comprised of a 9-compartment absorption model and a 14-compartment (i.e., 14-organ) 

somatic model was constructed to account for factors such the first-pass effect, intestinal 

loss, renal and biliary elimination, enterohepatic recirculation, and conversion of the 

metabolites back to the parent compound.   

For a given drug, the first phase began by iteratively optimizing the estimates of 

clearance and the tissue partitioning coefficients of the 14 organs for IV administration 

using known physiochemical properties of the drug (i.e., permeability and solubility).  

Model performance was evaluated by assessing the goodness of fit for the predicted AUC 

with the mean of the actual AUC values.  Once the predicted profile closely mirrored the 

actual IV plasma curve, the next step used the optimized clearance and distribution 

parameters to simulate the plasma concentration-time profile for oral administration.  

Assuming that solubility and permeability are the only two properties that determine the 

shape of the profile (i.e., that clearance and tissue distribution coefficients are not 

dependent upon the route of administration), differences between the actual and predicted 

concentration-time curves for oral administration should be attributable to intestinal loss 
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factors such as drug-induced gastric emptying delay, enterohepatic recirculation, gut wall 

metabolism, chemical degration, P-glycoprotein efflux, and/or variable absorption across 

the gut.  These model parameters can then be modulated to reveal which factors are more 

than likely responsible for any differences between profiles.  Peters emphasized that this 

method is functional even with inaccurate estimates of clearance and/or tissue 

partitioning coefficients.  Further, she highlighted that physiologically-based PK 

modeling is a suitable approach for deconvolving absorption from distribution, 

metabolism, and excretion phenomena for orally administered drugs.  The specific factors 

affecting the pharmacokinetics of the oral dosage form can then be differentiated through 

additional laboratory experimentation.105  

It is evident that as physiologically-based modeling and simulation progresses, the 

concept of compartments is continually advancing from bodily systems or organs to 

cellular structures (e.g., enzymes, transporters).  This presents the opportunity to model 

and simulate population variability on a cellular level, which will better elucidate how 

these disparities, which could be attributed to numerous factors (e.g., genetics, disease 

states, concomitant drug therapies), affect drug kinetics and action.67   

A quantitative PK model is a prerequisite for predicting the clinical effectiveness 

of a given drug.  Once such a model is available, it can be integrated with 

pharmacodynamic knowledge to study the safety and efficacy of treatment.  Often times, 

simulation utilizes PK and PD models simultaneously to accelerate the drug development 

process.  Such models are typically referred to as PK/PD models, which attempt to link 

the drug dosages to the clinical outcomes.  The value of a PD model is dependent upon 

the merit of the corresponding PK model; a PD model that cannot accurately predict 
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pharmacologic response as a function of drug concentration has limited utility.  Several 

case studies that investigated the potential impact of certain variables (e.g., dosing 

schedule, PK parameters, patient compliance) on the effectiveness of treatment were 

reviewed earlier.   

Another important advantage of PK/PD simulation is its ability to help identify 

specific sub-populations that will benefit from treatment with the compound under 

investigation.  As a rule of thumb, any compound that lacks efficacy will fail in clinical 

trials.  Likewise, categorizing patients who will not respond safely or effectively to a 

given therapy is vital for the sponsor, the regulatory agencies, and the general public.  

With knowledge of a substance’s ADME along with explicit inter-patient characteristics, 

simulation can elucidate specific patient conditions that preclude individuals from 

treatment.  In silico investigations of patient variability in diverse populations has been 

coined population pharmacodynamics.  As Michelson et al. indicates, responder 

populations can be identified using simulated patients generated from hypotheses or by 

fitting observed data to dose-response curves using any number of mathematical 

functions that account for covariates (e.g., age, gender, health factors).106  Tools that 

identify responder populations should not only increase the number of available 

therapies, but should enhance the efficiency and effectiveness of clinical trials, which will 

ultimately hasten the time-to-market.      

Eddy and Schlessinger published what is perhaps one of the most comprehensive 

examples of a simulation platform constructed to study a disease state.107  The authors 

generated an extensive diabetes model and simulation platform referred to as the 

Archimedes model.  While the Archimedes model transcends the classification of PK/PD 
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simulation, it is purposefully offered as a summary to the literature survey since it 

integrates many of the elements addressed thus far.  The authors indicated that the model 

was too large to detail in a single manuscript, but the equations and corresponding 

assumptions are available in an online appendix (http://care.diabetesjournals.org).  The 

Archimedes model was generated according to 3 basic criteria: (1) the model was to 

include all facets of the disease or its management that were considered valuable for 

investigating areas of interest, (2) the model was to be able to delineate clinically relevant 

features of the disease and its management, and (3) the level of detail incorporated was to 

be commensurate with its importance in the design of clinical trials.  The Archimedes 

model was sequentially constructed and utilized in the following five stages: (1) develop 

a nonquantitative or conceptual description of the pertinent biology and pathology of 

diabetes (i.e., the variables and their relationships), (2) identify studies that focused on 

these variables and their underlying connection, (3) use the knowledge found in those 

investigations to link these variables via mathematical functions, (4) program these 

models into the simulation platform, and (5) perform numerical simulation using the 

platform.  Individual models were tested and debugged during phase (4) of this series.  

Although the development criteria and phases were originally couched in terms of the 

Archimedes model, it should be noted that they are directly applicable to alternative 

simulation systems. 

The Archimedes model was constructed using a system of differential equations 

and was coded using an object-oriented language known as Smalltalk.  At the time of 

publication, it included numerous physiologic, pathologic, logistical, administrative, and 

economic factors including disease risk factors, incidence and progression of the disease, 
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glucose metabolism, symptoms, treatments, complications (e.g., coronary artery disease, 

congestive heart failure, deaths from diabetes and its associated complications, 

physiological dysfunctions as a result of disease (change in production of glucose as a 

result of an increase or decrease in insulin, etc.)), and differences amongst health care 

facilities (e.g., tests for pathophysiology of diabetes, re-admission rates).  The structural 

relationship of the variables included in the diabetes model is summarized in Figure 1.10.  

The Archimedes model has the flexibility to assess three different treatment regimes (i.e., 

IV insulin, oral drugs, diet and exercise).  Response to, for example, insulin is initially 

modeled by an individual’s insulin factor from a distribution that characterizes the 

variation of the general population.  This effect is then propagated through the various 

expressions that comprise the Archimedes model to account for confounding factors.  

The authors validated the Archimedes model in a subsequent article using actual clinical 

data from 18 trials.  They concluded that the platform has the capacity to realistically 

model and simulate anatomic and pathophysiologic changes, treatments, and outcomes 

relevant to diabetes and its complications within the context of the available trial data.108  

They also indicated that the Archimedes model has the inherent flexibility to incorporate 

additional underlying knowledge regarding this disease state as it becomes available.107     
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Figure 1.10. Schematic diagram detailing the structural relationship of the factors included in the 
Archimedes model of diabetes.  Circles represent variables and lines indicate relationships.  In general, the 
arrows directed into a variable represent one equation.  Squares indicate other components of the model 
that are too complex to be shown here and have their own corresponding diagrams consisting of tens of 
variables and relationships.  UKPDS and DCCT are acronyms for actual clinical trails and appear as circles 
with dashed boarders.  These two trails were used to help construct the elements of the model illustrated in 
the figure.  Reproduced from the work of Eddy and Schlessinger. 

 This work was founded on the central hypothesis that pharmaceutical process and 

product understanding can be simultaneously utilized to model the risk that final product 

quality imparts to clinical performance.  The subsequent chapters, whole and in part, 

address one or more of the objectives stated in section 1.2.  Chapter 2 describes the 

particular data, models, and assumptions used to construct the risk simulation platform, 

which is the medium used to redefine pharmaceutical quality in terms of risk by linking 

clinical attributes to production characteristics.  Subsequently, the determination of the 
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conditional risk of product variation on clinical performance for the model drug delivery 

system is detailed.  Chapter 3 builds upon the underlying relationships between product 

variation and clinical performance to generate design spaces conditioned on quantitative 

estimates of inefficacy and toxicity risk. 

Multivariate data analysis and calibration are important elements of PAT and 

QbD as spectroscopic techniques are often used to acquire and/or enhance product and 

process knowledge.  Chapter 4, therefore, demonstrates the utility of multivariate data 

analysis for elucidating the effects of various product and process variables on 

spectroscopic measurements.  The influence of experimental design on spectroscopic 

variance is also considered.  Chapters 5 and 6 described the role of net analyte signal 

theory and figures of merit in gauging the performance of calibration models, which will 

likely be integral components of future risk simulation efforts.  Not only is it important to 

understand the performance of calibrations, it is critical to identify how their performance 

influences the prediction of factors that ultimately affect risk.   

The penultimate chapter (7) seeks to unify the preceding topics via a hypothetical 

example revolving around the incorporation of PAT into a QbD production environment 

to ultimately control the clinical performance of the final product.  Here, non-invasive 

spectroscopic techniques are strategically integrated prior to final product release to 

monitor those attributes which are potentially critical to quality.  The corresponding role 

of process and control models in managing inefficacy and toxicity risk of the model drug 

delivery system is also addressed.  Lastly, Chapter 8 provides a summary of the 

aforementioned work. 
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 This dissertation explicitly links product characteristics to clinical performance 

using the proposed methodology.  It is important to emphasize that these theophylline 

data were used to demonstrate one (of potentially several) approaches to directly relating 

product and patient characteristics.  The clinical risk data were not, however, generated 

with the intent to suggest that theophylline regimens should or should not be altered.   
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Chapter 2: A New Definition of Pharmaceutical Quality: Assembly 
of a Risk Simulation Platform to Investigate the Impact of 
Manufacturing/Product Variability on Clinical Performance of a 
Model Theophylline Solid Oral Dosage System 

 

2.1 Introduction 

 Around the turn of the 21st century, an informal retrospective survey of the 

pharmaceutical industry revealed that its progress (particularly with regard to 

manufacturing) was essentially stagnant and paled in comparison to other industrial 

sectors.  Some individuals contend this was obvious and discussed within intellectual 

circles ad nauseum.  Countless more, however, were reluctant to admit or failed to detect 

the issue at hand, and yet others who begrudgingly acknowledged the problem hurriedly 

placed blame on an overly restrictive regulatory system that penalized innovation.  This 

was all set to change.   

Taking initiative and holding themselves partially responsible, the FDA launched 

the CGMPs for the 21st Century campaign in 2002 to, in effect, “modernize” the 

pharmaceutical industry.  The modernization commenced internally, and a new, risk-

based regulatory architecture was created to refocus resources where they were needed 

most; areas that posed the greatest risk to the public.  In turn, pharmaceutical companies 

were encouraged to adopt risk- and science-based approaches for drug discovery and 

development.  Numerous initiatives, reports, and guidances followed (e.g., PAT, QbD), 

many of which promoted innovation and offered examples as to how the associated 

changes fit within the contemporary regulatory environment.  These documents 
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underscore the need for collective change and emphasize several benefits that 

manufactures would reap from innovation.    

“Quality” is explicitly or implicitly addressed in all of these documents.  To date, 

the exact definition of quality in the pharmaceutical industry is unresolved, which is 

burdensome given that one of the primary objectives of the modernization initiative is to 

spur innovation to ultimately enhance pharmaceutical product quality.  This uncertainty 

culminated in 2004 when Dr. Janet Woodcock, Director of the CDER at the FDA 

proposed re-defining pharmaceutical quality with regards to risk by linking production 

characteristics to clinical attributes.19 

It is well understood that the clinical performance of any therapeutic regimen is 

dependent on a number of factors.  For example, patient compliance dramatically 

influences safety and efficacy profiles.  Consequently, researchers and clinicians invest 

time and energy to understand and control compliance rates.  Manufacturing of the drug 

products also imposes a certain degree of risk on clinical performance.  Despite its 

influence, little (if any) effort is devoted to quantifying the risk associated with 

manufacturing processes.  If quality is to be re-defined in terms of risk, probabilistic 

relationships between production and clinical attributes must be established.       

Cogdill and Drennen described an approach for relating manufacturing 

characteristics and clinical performance of a drug product.20  They proposed the 

combination of probabilistic risk assessment (PRA) and Monte Carlo simulation (MCS) 

to relate elements such as raw material quality, product design, population statistics, 

dosing guidelines, and patient compliance estimates with pharmacokinetic (PK), 

pharmacodynamic (PD), and in vitro-in vivo correlation (IVIVC) models to remold 
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quality in terms of risk (Figure 2.1).  The objective was to translate manufacturing and 

drug product attributes into probabilistic risk scores for toxicity and inefficacy.  With 

these estimates, product and process design could then focus on minimizing risk to the 

patient. 

 

Figure 2.1. Schematic of the various model components that comprise the risk simulation platform.  Figure 
adapted from Cogdill, RP; Drennen, JK.  2008.  Risk-based quality by design (QbD): A Taguchi 
perspective on the assessment of product quality, and the quantitative linkage of drug product parameters 
and clinical performance.  Journal of Pharmaceutical Innovation 3 (1): 23 – 29.  Solid arrows represent 
components that are currently linked in the platform, whereas dotted arrows signify components/concepts 
that have yet to be incorporated.  

This work used theophylline as a model drug to illustrate one potential method of 

relating manufacturing characteristics of a solid dosage system to clinical performance in 

simulated asthmatic patients displaying considerable inter-individual variability.  The 

objectives were to (1) describe the structure for harnessing MCS and PRA to estimate 

risks of inefficacy and toxicity and (2) estimate the conditional risk of production 

characteristics on clinical performance for a model solid oral dosage system. 
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2.2 Materials and Methods 

2.2.1 The Weibull Distribution 

 Waloddi Weibull formally introduced what is now referred to as the Weibull 

distribution in a 1939 monograph published by the Royal Swedish Institute for 

Engineering Research.  As Arthur Hallinan, Jr. emphasized, there are (at least) five 

different mathematical formulae used to express the Weibull distribution, all which are 

equivalent following certain transformations.109  It was his opinion that the array of 

formulae most likely created confusion, and, therefore, initial reservation concerning its 

applicability.  Nonetheless, the Weibull distribution has been used to model numerous 

phenomena such as wind speed, failure (or reliability), and dissolution.16,109,110 

Although originally hypothesized as a material function to describe the strength of 

materials subjected to stress, the Weibull distribution is now regarded as a flexible (i.e., 

generalized) statistical distribution.  The distribution was proposed as a three-parameter 

distribution, characterized by a scale parameter (α), a shape parameter (β), and a location 

constant (c), but it is frequently utilized as a two-parameter (c = 0), and, at times, a one-

parameter distribution (α and c = 0).  It should be noted that the symbols used to 

represent these three parameters have varied over time, but these were intentionally 

selected so as to be consistent with the most recent literature.  The following formulae 

will be presented according to the two-parameter functions; a location constant is 

employed to adjust the point at which there is a non-zero probability.  Please refer to the 

article by Arthur Hallinan, Jr. for greater detail regarding the various three-parameter 

Weibull expressions.109   
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The cumulative distribution function (CDF), or the cumulative probability of 

occurrence for a given random variable (V) is described by the two-parameter Weibull 

function  
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where V is the vector of points to be modeled (vi ≥ 0), β is the Weibull slope or shape 

parameter (β > 0), and α is the Weibull scale parameter (α > 0).  Similarly, the derivative 

of the CDF describes the probability density function (PDF), which is the probability 

distribution of a continuous random variable.  The PDF is expressed by the equation 
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where V , β, and α are as previously defined.  A random variable is said to be Weibull 

distributed if its CDF or PDF are adequately represented by Equations 2.1 or 2.2 (or the 

equivalent one or three-parameter functions).  Several methods, including the Weibull 

graph technique, least-squares, and maximum likelihood, can be used to estimate the 

parameters.109 

 The Weibull distribution is considered flexible for a number of reasons.  First, it is 

characterized by only 3 (or less) parameters, which is more straightforward than, for 

example, the five-parameter bi-variate normal distribution.  Second, it mirrors the 

Rayleigh distribution and approximates the Gaussian distribution when the shape 

parameter is 2.0 and 3.6, respectively; these distributions can be classified as specific 

cases of the Weibull.  Its ability to assume a range of values for the shape parameter, 

therefore, allows the distribution to more easily compensate for real-world variability.  

Finally, the Weibull distribution provides a reasonable fit to a variety of observed 
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distributions, which is evidenced by the assorted phenomena it has been used to model.110  

It was for these reasons that the Weibull distribution was selected to model certain data 

for this work. 

2.2.2 Patient Simulation 

Monte Carlo simulation has been shown to be an effective method for generating 

hypothetical patient populations in situations where it may be unreasonable or unethical 

to utilize humans.64,111  For the work herein, MCS will be used to generate asthmatic 

patients ranging in age from 10 to 90 years; patients outside of this range were not 

modeled due to the lack of data pertaining to the targeted factors.  The most significant 

factors affecting the disposition of theophylline, as determined by Jusko et al.,46 will be 

specified to effectively represent inter-patient variability.  All modeling and MCS 

simulations were performed using routines written in-house (Matlab, version 7.1, The 

MathWorks, Natick, MA ; PLS_Toolbox, version 3.0, Eigenvector Research, Inc., 

Manson, WA).  Initially, data classifying the 2007 United States (US) population by age 

and gender were obtained from the US Census Bureau’s International Data Base,112 and 

statistics summarizing the prevalence of asthma within the US population during 2000 - 

2005 were obtained from the Centers for Disease Control and Prevention (CDC).113  Data 

for the prevalence of asthma specific to individuals older than 65 was not further 

delineated; thus, it was assumed that the prevalence (per 1000 subjects) monotonically 

decreased by 1.0 for each 10-year increment exceeding 70 years.  A new distribution that 

approximated the asthmatic fraction of the total population within each age range was 

generated from the product of the US population and age-specific asthma rates.   
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An MCS routine, utilizing the exclusion method, assigned the age of each 

asthmatic patient based on the aforementioned relative distribution.  The maximum 

number of allowable patients for each age range was determined by multiplying the 

number of desired patients by the relative distribution. To generate an initial estimate of 

age for a given patient, a single pseudo-random value was drawn from a uniform 

distribution generated on the unit scale (i.e., “rand.m” function within Matlab), was 

multiplied by the difference between the upper (i.e., 90) and lower (i.e., 10) age limits, 

and was added to the lower age limit.  The estimate of age was rounded to the nearest 

integer.  The “rand.m” function generates values between the closed interval of [2-53, 1-2-

53] and is theoretically capable of generating 21492 values prior to repeating itself.  If the 

estimate did not fall within the desired age range, the routine continued to generate 

estimations by resampling the uniform distribution until a satisfactory estimate was 

achieved.  Likewise, if the estimate was within an age range where the maximum number 

of allowable patients had already been generated, the routine iterated until an acceptable 

age was attained.  The distribution of age for the 100,000-patient population is 

summarized in Table 2.1.  On average, approximately 375,000 iterations were required to 

assign the ages of the 100,000 patients. 

Once the age of each patient was assigned, the gender of every patient was 

determined.  Gender was resolved by drawing a number from a binomial distribution, 

which was generated using the “binornd.m” function in Matlab.  The success probability 

(p) was set to the fraction of males in a specific age range.112  A value of 1 signified a 

male, whereas 0 represented a female.  The distribution of gender for the 100,000-patient 

population is summarized in Table 2.1.
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Table 2.1. Age and gender distributions for the simulated patient population. 
Age Range 

(years) Males Females 
Combined 

Totals 
Fraction of Total 

Population 
Cumulative Fraction of Total 

Population 
Fraction 

Male 
0 - 4 0 0 0 0.000 0.000 0.000 
5 - 9 0 0 0 0.000 0.000 0.000 

10 - 14 5,324 5,226 10,550 0.106 0.106 0.505 
15 - 19 5,305 4,927 10,232 0.102 0.208 0.518 
20 - 24 4,348 4,247 8,595 0.086 0.294 0.506 
25 - 29 3,781 3,692 7,473 0.075 0.369 0.506 
30 - 34 3,251 3,224 6,475 0.065 0.433 0.502 
35 - 39 3,583 3,410 6,993 0.070 0.503 0.512 
40 - 44 3,728 3,846 7,574 0.076 0.579 0.492 
45 - 49 4,117 4,246 8,363 0.084 0.663 0.492 
50 - 54 3,957 4,088 8,045 0.080 0.743 0.492 
55 - 59 3,443 3,714 7,157 0.072 0.815 0.481 
60 - 64 2,634 2,971 5,605 0.056 0.871 0.470 
65 - 69 1,901 2,153 4,054 0.041 0.911 0.469 
70 - 74 1,420 1,643 3,063 0.031 0.942 0.464 
75 - 79 1,034 1,415 2,449 0.024 0.966 0.422 

80 + 1,187 2,185 3,372 0.034 1.000 0.352 
              

0 - 80 + 49,013 50,987 100,000 1.000 1.000 0.490 
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Anthropometric reference data for the conditional distributions of total body weight (kg) 

and body mass index (BMI) of the US population for all ages during 1999 – 2002 were 

obtained from the National Health and Nutrition Examination Survey (NHANES), 

conducted by the National Center for Health Statistics (NCHS), CDC.114  The weighted 

population means, standard errors of the means, and selected percentiles by sex, race, 

ethnic group, age, or age group were reported in this survey.  Results, categorized by 

gender, are reported per year for individuals 1 to 19 and per decade for subjects 20 years 

and older.  The 5th, 10th, 15th, 25th, 50th, 75th, 85th, 90th, and 95th percentiles (i.e., the value 

in an ordered set of measurements for which x % of the observations lie below) were 

presented provided that the NCHS determined that the estimate was reliable.  Unreliable 

figures were those that had a relative standard error (i.e., ratio of the standard error and 

the mean) greater than 30 %.  The percentiles summarizing each age range for both 

weight and BMI were independently modeled using the two-parameter Weibull function 

(Equation 2.1).  The weight and BMI values for males and females were modeled 

separately and the Weibull parameters were estimated using a least-squares approach.  A 

shape and scale parameter were estimated for each age range modeled; the nominal 

percentiles were predicted using the reference percentile values114 and the corresponding 

Weibull parameters to assess the goodness of fit.  Irrespective of gender, the lowest 

coefficient of determination obtained for any of the individual models for weight or BMI 

was 0.951 and the median value across all models was 0.983.  All anthropometric 

modeling was performed prior to the MCS for generating patients.   

To assign weight and BMI metrics, the appropriate Weibull parameters were 

selected, first for weight and then for BMI, based on a patient’s age and gender.  The age- 
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and gender-categorized shape and scale parameters were used to generate a Weibull 

distribution (i.e., “wblrnd.m function in Matlab), from which a single value, representing 

the patient’s weight or BMI, was extracted at random.  Weight and BMI estimates were 

continually resampled until a value that fell within the restricted weight (20 – 130 kg) or 

BMI (10 – 50) range was obtained. 

With the age, gender, weight, and BMI assigned, the remaining factors affecting 

the disposition of theophylline were specified.  Statistics on cigarette smoking, marijuana 

use, alcohol consumption, and intake of oral contraceptives were obtained from the 2006 

US Health survey conducted by the NCHS, CDC.115  Statistics, reported as percent of 

total population, were taken for the latest recorded year.  Data were (generally) reported 

for the ranges 12 – 13, 14 – 15, 16 – 17, 18 – 25, 26 – 34, and 35 years old and over.  The 

last age bin was modified to include the expanded ranges 35 – 44, 45 – 64, and 65 – 90 

years of age.  Except where noted otherwise, the CDC data for greater than 35 years were 

represented identically in the three expanded age bins.  For heavy alcohol drinkers, which 

was recoded as the percent of those who consumed alcohol, the values for 45 – 64 and 65 

– 90 were adjusted downward (i.e., 8.8 % and 5.9 %, respectively) from the 10.4 % value 

reported for 35+ years based on the assumption that these individuals would pass away 

sooner than those who were not heavy drinkers.  Additionally, the 3.1 % value reported 

for marijuana use for 35+ years was adjusted to 1.5 % for those individuals 65 – 90 years 

of age.  For both marijuana and alcohol use, the percentage of female users was assumed 

to be 50 % of the observed rate for males; the values for heavy alcohol drinkers, however, 

were identical for males and females.  Regarding the intake of oral contraceptives, the 

CDC data reported usage for minors in the range of 15 – 19 years.  Thus, this value was 
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applied to the 16 – 17 age bin, while 0 % and 20 % were assumed for 12 – 13 and 14 – 15 

years old, respectively.  Additionally, a value of 0 % was assumed for the 45 – 64 and 65 

– 90 ranges; oral contraceptive use was not recorded after 44 years.  Regardless of age, a 

value of 0 % for oral contraceptive use was assumed for males.  Data for cigarette 

smoking aligned with the amended age bins; therefore, they were used as reported. 

The probability of suffering from congestive heart failure was modeled using data 

that described the prevalence of heart disease by age, which was obtained from the 

National Heart, Lung, and Blood Institute (NHLBI) Data Fact Sheet.116  These data were 

reproduced from the 1976 – 1980 and 1988 - 1991 NHANES surveys; however, only data 

for 1988 – 1991 were used (Figure 5 of the NHLBI report).  A data tracing program 

written in-house was used to estimate the prevalence (%) for the age-groups sampled.  

For individuals greater than 30 years of age, the probability of experiencing congestive 

heart failure (CHF) was approximated using the equation 

 ( ) ( ) 51.322.01092.3 23 +⋅−⋅≈ − ageagexp  (2.3) 

where p represents the probability of CHF and age is the age (in years) of the patient.  

Based on age- and gender-specific discharge frequencies for CHF cases recorded during 

2004,115 the resultant probability was multiplied by a factor of 0.75 if the patient was 

female.  Additionally, all individuals 30 years of age or younger were automatically 

precluded from having congestive heart failure. 

Sufficient gender- and age-specific data for the general use of barbiturates and 

benzodiazepines were unavailable.  Therefore, inferences for the percent of the total 

population using each class of drug were made based on age and gender.  These data are 

presented in Table 2.2.    
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Table 2.2. Gender- and age-specific data detailing the percent of the total simulated population using 
barbiturates and benzodiazepines. 

  

Age 
Range 
(years) 

12 - 
13 

14 -
15 

16 - 
17 

18 - 
24 

25 - 
34 

35 - 
44 

45 - 
64 

65 - 
90 

Male 0.0 1.0 3.0 4.0 4.0 3.0 2.0 2.0 Barbiturate Use   
(% of total 
population) Female 0.0 0.0 1.0 2.0 3.0 3.0 2.0 2.0 

Male 0.0 2.0 4.0 5.0 7.0 15.0 20.0 15.0 Benzodiazepine 
Use (% of total 

population) Female 0.0 2.0 4.0 5.0 7.0 15.0 20.0 15.0 
 

The likelihood of a patient presenting with any of the remaining factors shown to 

affect theophylline disposition (i.e., cigarette smoking, marijuana use, alcohol 

consumption, congestive heart failure, and intake of oral contraceptives, barbiturates, and 

benzodiazepines) was independently determined by randomly extracting a value from a 

binomial distribution, where p was set to the fraction of the total population that 

presented with a specific factor.  Each factor was categorized based on age and gender, 

and therefore, p was selected based on the patient’s age and sex.  For congestive heart 

failure, p was merely the resultant probability estimated using Equation 2.3.  An output of 

1 from the binomial distribution represented a subject who displayed the given factor, 

whereas 0 indicated a patient who was negative for that factor. 

Once all of the factors were accounted for, theophylline clearance was 

individualized for each patient according to the clearance cascade adapted from Jusko et 

al.46 (Figure 2.2).  It should be noted that the terminal nodes for marijuana use in 

individuals less than 40 years old who did not use oral contraceptives were excluded from 

the clearance cascade model.  Data pertaining to the use of marijuana are subject to 

misrepresentation.  Therefore, eliminating the second split based on marijuana use 

mitigated the uncertainty associated with accurately categorizing patients within the 
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cascade model.  The terminal node on the clearance cascade was determined for each 

patient based on the individualized factors that predispose theophylline disposition.  The 

percentage of the total 100,000-patient population that fell within each node is reported in 

Figure 2.2.  Once it was determined which node best described a given patient, the mean 

and standard deviation of that particular node (Figure 2.2) were used to generate a normal 

distribution (i.e., “normrnd.m” function within Matlab), from which a single value, 

representing the patient’s theophylline clearance, was extracted at random.  Clearance 

estimates were restricted to 5 – 180 mL/hr/kg.  If necessary, the distribution was 

resampled until the estimate was within the constrained range.  The distribution of 

clearance for the 100,000-patient population based on the factors studied is summarized 

in Figure 2.3.  Theophylline clearance was assumed to be constant throughout the course 

of treatment. 
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Figure 2.2. Clearance cascade detailing the average theophylline clearance for individuals classified 
according to numerous factors.  Figure was adapted from Jusko, WJ, Gardner, MJ, Mangione, A, Schentag, 
JJ, Koup, JR, Vance, JW.  1979.  Factors affecting theophylline clearances: Age, tobacco, marijuana, 
cirrhosis, congestive heart failure, obesity, oral contraceptives, benzodiazepines, barbiturates, and ethanol.  
Journal of Pharmaceutical Sciences 68 (11): 1358 – 1366.  Both the number of individuals in the original 
study by Jusko et al. and the percentage of the 100,000 simulated population that fell within each node are 
indicated.  All terminal nodes are shaded.  0, 1, and 2 signifies the extensiveness  of a given factor as 
delineated in the original study.  MJ = Marijuana; O.C. = Oral Contraceptive; EtOH = Alcohol; CHF = 
Congestive Heart Failure; CIG = Cigarette Smoker; BENZ = Benzodiazepines; BARBS = Barbiturates. 
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Figure 2.3. Frequency histograms of clearance (a) and volume of distribution (b) for the 100,000 simulated 
patients.  The mean, standard deviation (S.D.), and range [ , ] of each parameter are also provided. 

Finally, volume of distribution was assigned by randomly sampling a normal 

distribution defined by a mean volume of distribution of 0.47 L/kg and a standard 

deviation of 0.03 L/kg.  While previous studies have assumed one (constant) average 

volume of distribution for all patients (e.g., 0.45 L/kg),46,56 the author considered this to 

be more representative of the variability that would be encountered in actual patients.  

The volume of distribution values for the 100,000-patient population are summarized in 

Figure 2.3.  Analogous to clearance, the volume of distribution was assumed to be 

constant for each patient during the course of simulated therapy. 

2.2.3 Model Solid Oral Dosage Form 

A solid oral theophylline dosage system that was previously formulated and 

processed at Duquesne University (Pittsburgh, PA) and compacted at a local 

pharmaceutical company was utilized for its estimations of manufacturing variability and 

clinical performance.  The experimental details regarding these tablets have been 

described elsewhere.117  Briefly, three separate manufacturing routes (i.e., direction 



 122

compression, roller compaction, and wet granulation) were used to produce 300 mg 

standard round bi-convex 3/8” diameter tablets on an 18-station high-speed rotary tablet 

press (model HT-AP1855-U/I, Elizabeth Hata).  Eighteen distinct batches were 

manufactured using the direct compression and roller compaction routes, whereas 12 

batches were produced via wet granulation.  For the direct compression and roller 

compaction (Chilsonator, model IR 220, The Fitzpatrick Company) manufacturing 

methods, various combinations of anhydrous theophylline (BASF), lactose monohydrate 

(316 Fast Flo, Foremost Farms), microcrystalline cellulose (Avicel PH-102, FMC 

Biopolymer), and magnesium stearate (Spectrum Chemical) were processed and tableted.  

Tablets produced using the wet granules (planetary mixer, model 838F, Hobart) consisted 

of anhydrous theophylline, lactose monohydrate, magnesium stearate, and corn starch 

(Spectrum Chemical); a starch paste was used as the binding agent.  For all three 

manufacturing methods, the compaction pressure was adjusted to yield target radial 

tensile strengths of 8, 11, or 14 kiloponds (kp).  The nominal amount of theophylline was 

either 90 or 133 mg.   

USP apparatus 2 (i.e., paddle) dissolution testing was performed using a Distek 

dissolution system (model 2100B) at a paddle speed of 50 revolutions per minute (RPM).  

The dissolution system was equipped with Hewlett-Packard UV-Vis spectrometer (model 

8453) and a closed-loop automated sampler (Distek, Inc.).  All dissolution testing was 

performed using deionized, de-aerated water as the medium in 900 mL Peak™ glass 

vessels at 37±0.1°C.  The absorbance of theophylline was detected at 272 nm in 10 mm 

pathlength quartz flow cells following the construction of a standard curve.  In total, 12 

tablets per batch for each unique manufacturing route were assessed. 
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The Weibull function is often used to describe empirical dissolution data.118  

Dissolution profiles (i.e., percent theophylline released) of tablets produced via the direct 

compression, roller compaction, and wet granulation methods were modeled using the 

two-parameter Weibull function described by Equation 2.1 where V is the vector of 

dissolution time points.  For dissolution modeling, the time constant (α) is often 

represented as T63.2, the time at which 63.2 % of the drug is released.  Once these data are 

fit to a Weibull distribution, the PDF (Equation 2.2) can be used to approximate the 

dissolution rate.  Each dissolution curve was modeled by its reduction to a shape and a 

scale parameter.  The distribution of dissolution shape parameters and dissolution time 

constants for the model system are presented in Figure 2.4.  Two lines were fit to these 

data to represent the approximate maximum and median values for the dissolution shape 

parameter given the range of dissolution time constants (Figure 2.4). 

0 1 2 3 4 5 6 7 8 9
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

T63.2 (hr)

β

 

 
Direct Compression
Roller Compaction
Wet Granulation

β = -0.115*T63.2 + 2.03

β = -0.0572*T63.2 + 1.515

 

Figure 2.4. The distribution of dissolution shape parameters (ß) and dissolution time constants (T63.2) for 
the model theophylline solid oral dosage system.  Two lines were manually fit to these data to represent the 
approximate maximum and median values for the dissolution shape parameter given the range of 
dissolution time constants. 
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Content uniformity testing was also performed on dissolved tablets using a UV-

Vis spectrometer (Hewlett-Packard, model 8453).  Tablets were pulverized and dissolved 

in deionized water.  The absorbance of theophylline was detected at 272 nm in 10 mm 

pathlength cuvettes at 25 °C using a standard curve independent of the one implemented 

for dissolution testing.  Uniformity of tablets produced from all three manufacturing 

routes was assessed.  In total, 10 tablets per batch for each unique manufacturing routine 

were analyzed. 

Dissolution time constants and content uniformity estimates were segregated by 

batch to generate estimates of manufacturing variability.  Intra-batch refers to the 

standard deviation of mean-centered observations within a batch, whereas inter-batch 

denotes the standard deviation of the mean observations across all batches (e.g., content 

uniformity, dissolution time constant).    

2.2.4 IVIVC Model 

Hussein and Friedman modeled the release and absorption characteristics of 

several novel, self-prepared, sustained-release (SR) theophylline formulations in addition 

to two commercial SR products (i.e., Theotrim and Theo-Dur).92  Specific details 

regarding the materials and methods can be obtained from their original publication.  

Briefly, USP apparatus 1 (i.e., rotating basket) dissolution testing was performed at 100 

RPM in 600 mL vessels.  The first 2 hours of testing was conducted in 400 mL of 

simulated gastric fluid containing pepsin, after which, the medium was replaced with 400 

mL of simulated intestinal fluid containing pancreatin and was monitored for an 

additional 10 hours.  Theophylline concentration was subsequently determined by HPLC 

analysis.  Six healthy volunteers were administered each formulation in a crossover study 
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observing a washout period of 3 weeks.  Theophylline plasma concentrations were 

estimated using an HPLC method and the percentage of the theophylline dose absorbed 

was then determined using the Wagner-Nelson method. 

The mean (n = 4) in vitro dissolution percent released and the mean (n = 6) in vivo 

percent absorbed profiles obtained from the volunteers for the said dosage forms were 

used to construct a Level A IVIVC model via a deconvolution approach (refer to section 

1.3.4).  These data correspond to Figures 1 and 3 of their original publication.92  Only the 

values for formulations T-1, T-1-A, T-2-A, and Theotrim were modeled.  A graph tracing 

program was used to extract quantitative data from the figures describing the percent 

released and percent absorbed at the time points sampled.  Subsequently, these data were 

modeled using a two-parameter Weibull function (Equation 2.1); the fitted shape and 

scale parameters were used to estimate the instantaneous rates of release and absorption 

for the in vitro and in vivo data, respectively (Equation 2.2).  Finally, the instantaneous 

dissolution rates were fitted using the Power Law to determine the IVIVC function 

(Figure 2.5).  The resultant nonlinear function for transforming in vitro release to in vivo 

absorption was determined to be 
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Figure 2.5. Plot of the in vivo absorption rate versus the in vitro dissolution release rate.  The IVIVC model 
was fit using a Power Law function. 

 

 
672.0465.0 DB RR ⋅=  (2.4) 

where RB is the in vivo absorption rate, RD is the in vitro dissolution release rate, and 

0.465 and 0.672 are the scale factor (unitless) and Power Law parameter (unitless), 

respectively; the coefficient of determination for this function was 0.943.   

2.2.5 PK Model 

First-order pharmacokinetics by means of a one-compartment open model were 

assumed to adequately describe theophylline plasma concentrations following 

administration of the solid oral dosage form.  Since multiple dosages were administered 

throughout the course of therapy, the principle of superposition was applied.82  

Superposition provides the opportunity to forecast plasma concentration-time curves 

based on the viewpoint that drug levels from successive doses are linearly additive.  The 
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superposition principle assumes that the pharmacokinetics of the drug are not dose-

dependent and that the drug is eliminated by first-order kinetics, which are reasonable 

assumptions for the administration of theophylline (refer to section 1.3.5.2).  The change 

in theophylline plasma concentration as a function of time was modeled using the 

equation 
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where Cp is the theophylline plasma concentration (mg/L), t is the time (hr), S is the 

optional scaling factor (unitless), D is the dose (mg), Vd is the volume of distribution 

(L/kg), W is the patient’s total body weight (kg), β is the Weibull shape parameter 

(unitless), α is the Weibull time constant (hours), A is the IVIVC scale factor (unitless), P 

is the IVIVC Power Law parameter (unitless), and Cl is clearance (ml/kg/hr).  All 

simulations were performed with S at a constant value of 1.0.  This equation was derived 

to characterize the change in theophylline plasma concentration based on the relationship 

between the dissolution and absorptions rates and the individualized patient 

pharmacokinetic parameters.  The output is mg/L/hr of theophylline. 

Similar to the work of Buchwald,83 theophylline input was modeled using 

sigmoidal lag time and cut-off coefficients where absorption was assumed to be 100 % of 

the maximum rate after 0.5 hours (i.e., lag time) and the absorption potential was reduced 

to 50 % after 8 hours (i.e., cut-off) to simulated time-dependent phenomena.  These 
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coefficients were used to adjust the input (I) of theophylline through the following series 

of equations 
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Figure 2.6 shows the lag time and cut-off coefficients for one 12-hour dose.  Equation 

2.5d is analogous to the original PK model with the exception of the lag time and cut-off 

terms.  The numerical solution to Equation 2.5d was obtained via a Matlab-based 

differential equation solver (i.e., ode23). 
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Figure 2.6. Plot illustrating the lag time and cut-off absorption coefficients over a 12-hour window. 
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2.2.6 PD Model 

One or more probabilistic PD models are most desirable for a risk assessment tool 

such as the one described herein.  For example, access to several PD models that 

characterize the probability of efficacy, the probability of multiple adverse events (e.g., 

headache, vomiting, seizure) and the covariance between these observations is optimal.  

More often than not, said models will not be available during the initial stages of risk 

assessment.  Furthermore, efficacy may be characterized by various responses (e.g., 

forced expiratory volume, number of asthmatic attacks, quality of life), further obscuring 

the dose-response relationship and thus, the probability of a given outcome.  Therefore, it 

is necessary to assume an underlying model, which can be replaced, augmented, or 

combined with additional models as the level of understanding increases. 

A probabilistic-based PD model detailing the general efficacy and toxicity of 

theophylline was not readily available.  Therefore, the authors chose to implement a 

model for a hypothetical drug, which also had a therapeutic range of 10 – 20 mg/L 

(labeled Figure 1.7 in the reference).93  Data points were reproduced using the tracing 

program and were fitted using a sigmoid function.  The PD model originally described 

the probability (%) of efficacy and toxicity as a function of drug concentration.  The 

estimated sigmoid functions for efficacy and toxicity are provided in Equations 2.6a and 

2.6b, respectively 
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where EP̂ and TP̂ are the predicted probabilities (%) for efficacy and toxicity, respectively, 

and Z is the vector of log-transformed theophylline plasma concentrations (mg/L).  The 

PD model was adapted to describe the probability (%) of inefficacy and toxicity as a 

function of theophylline plasma concentration (Figure 2.7).  Inefficacy estimates were 

generated by subtracting the efficacy probabilities from 100 %.  No specific distinctions 

were made between various inefficacious or toxic events; the risk of observing, for 

example, a headache or a seizure was identically weighted. 
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Figure 2.7. Pharmacodynamic model for theophylline describing the probability of observing a toxic or an 
inefficacious event as a function of theophylline plasma concentration.  Figure adapted from DiPiro JT, 
Spruill WJ, Blouin RA, Pruemer JM.  2002.  Concepts in Clinical Pharmacokinetics 3rd ed., New York: 
American Society of Health-System Pharmacists, Inc. (ASHP). p 279. 

2.2.7 Dosing 

Each patient was subjected to an iterative dosing scheme where his/her initial 

dose (D) was estimated using the equation 
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where CT is the target plasma concentration (i.e., the median concentration of the 

therapeutic window, defined as 10 – 20 mg/L), Cl is the individual’s theophylline 

clearance as predicted by the Jusko et al. model (mL/hr/kg),46 W is the patient’s weight 

(kg), Q is the time interval between doses (i.e., 12 hr), and F is the fraction of dose 

absorbed systemically (unitless).  A constant value of 0.8 was assumed for F, which is 

comparable to values reported for other oral theophylline formulations.32  Based on the 

nominal amount of theophylline assumed to be in each tablet (i.e., 100 mg), the number 

of tablets necessary to yield the initial dose was estimated (the number of units was 

rounded to the nearest integer).  Following a period of time assumed to be sufficient to 

reach steady-state (i.e., 5 doses), the patient’s plasma concentration was estimated via the 

PK model (Equation 2.5).  If the dose was found to be inadequate, it was incrementally 

adjusted (either increased or decreased depending on whether it was too low or too high, 

respectively) until the iterative dosing scheme converged on a satisfactory dosage.  If, 

however, the dose was adequate to yield a plasma concentration between the minimum 

effective concentration (MEC) and the minimum toxic concentration (MTC), treatment 

was initiated and the patient was administered the said dose for the duration of the trial 

period.  On average, approximately 1.2 dose adjustments per patient were necessary for a 

given sub-population of 1500 individuals (data from dose adjustment iterations are not 

included in calculation of risk scores). 
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2.2.8 Risk Simulation 

All risk simulations employed a MCS routine independent of that used to generate 

the patients.  The simulation platform was constructed such that the user is able to specify 

the age range of the population to be tested (recall that age is a covariate for all other 

patient factors), as well as the manner in which the simulation terminates.  For this 

option, the user can specify the number of individuals to be included in the sample 

population.  Otherwise, the simulation can be set to iterate until specific convergence 

criteria are reached. All simulations presented in this work were terminated using 

convergence criteria.  The user is also able to specify patient compliance and 

manufacturing variability estimates, as well as details concerning the drug and its 

corresponding therapy.  These were determined or assumed for the model theophylline 

solid oral dosage system tested herein (Table 2.3).   

 
Table 2.3. Summary of the manufacturing variability metrics and the treatment parameters used during 
simulation. 

Manufacturing Metrics 
Intra-Batch RSD of Dissolution Time Constant  0.06 
Inter-Batch RSD of Dissolution Time Constant  0.03 
RSD of Intra-Batch Content Uniformity  0.03 
RSD of Inter-Batch Content Uniformity 0.01 

Simulation Parameters 
Length of Therapy (days) 30 
Time Interval between Doses (hours) 12 
Standard Deviation of Dosing Interval (hours) 1 
Therapeutic Window (mg/L) [10 - 20] 
Rate of Compliance (% of doses taken) 90 
Fraction of Dose Absorbed (unitless) 0.8 
Dissolution Time Constant (hours) 5.0 
Nominal Theophylline Amount (mg) 100.0 

 

Given that one of the principal objectives of this work was to estimate the 

conditional risk of product quality variation on clinical performance, the simulator was 
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assembled such that the user could allow or prohibit the estimates of certain factors to be 

sampled according to their underlying distributions.  These factors included the inter- and 

intra-batch relative standard deviation (RSD) of the dissolution time constants, the inter- 

and intra-batch RSD of content uniformity, the rate of patient compliance, and the 

standard deviation of the dosing interval.  Thus, the risk simulation platform user was 

required to set variability “flags” prior to the start of a simulation that turned the factors 

“on” or “off” to assess their effect on risk.  If a factor was turned off, its estimate was 

consecutively set to the same value, whereas if it was allowed to vary, the estimate was 

influenced by the level of variability (some would refer to this as “quality”) or rate of 

adherence.  For example, the scenario where each tablet contains the same amount of 

active (as per the label claim) represents the highest degree of quality (minimal 

variability) in terms of content uniformity.     

A total of 4 variability flags were to be set by the user: inter- and intra-batch 

dosage variability, patient compliance variability, and dosing variability.  All, none, or a 

combination of these variability flags could have been turned on during the course of a 

given simulation.  When the dosing time interval was subject to variation, each dosing 

time was altered by the addition of a pseudo-random number drawn from a normal 

distribution with zero mean and unit standard deviation (i.e., “randn.m” function within 

Matlab); the random number was multiplied by the standard deviation of the dosing 

interval (Table 2.3) before it was added to the particular dosing time.  Otherwise, doses 

were administered at their scheduled times.  For simulations where patient compliance 

was variable, compliance was modeled using a binomial distribution where the success 

probability was set to the assumed patient compliance (% of doses taken); a value of 0 
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denoted a missed dose.  Patients were prohibited from missing two consecutive doses.  

Noncompliance was prohibited during the patient-specific iterative dosing schedule.  

Otherwise, all doses were assumed to be taken.  

The remaining two variability flags pertain to the dosage form itself.  For 

instances where inter-batch variability was initiated, the initial dose administered to a 

patient (D') was randomly selected from a normal distribution, whose mean was set to D 

(Equation 2.7), and whose standard deviation was set to the inter-batch RSD of content 

uniformity (Table 2.3) multiplied by D.  This estimate then remained the mean nominal 

dosage for that patient throughout the course of treatment (e.g., 30 days).  Additionally, 

the inter-batch variability flag also altered the dissolution time constant; α' was randomly 

selected from a normal distribution whose mean was the nominal time constant (α) and 

whose standard deviation was set as the inter-batch RSD of the dissolution time constant 

multiplied the nominal α (Table 2.3).  Again, α' was held constant for the duration of 

therapy.  When intra-batch variability was prompted, each dose administered to a given 

patient was adjusted from the nominal amount (either D or D', depending on whether or 

not inter-batch variability was triggered) to reflect the level of variability around the 

mean for the current batch.  This was accomplished by randomly selecting the current 

dose from a normal distribution of mean D or D' and standard deviation of D or D' 

multiplied by the intra-batch RSD of content uniformity (Table 2.3).  Additionally, the 

intra-batch variability flag also altered the dissolution time constant for each dose; it was 

randomly selected from a normal distribution whose mean was the nominal time constant 

(α or α', depending on whether or not inter-batch variability was triggered) and whose 

standard deviation was set as the intra-batch RSD of the dissolution time constant 
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multiplied by α or α'.  Otherwise, the dose estimated using Equation 2.7 was successively 

administered assuming a constant dissolution time constant when dosage form variability 

was not assessed.  The simulation assumed that the one-month drug supply (for each 

patient) was drawn from a single batch. 

The final parameter that needed to be addressed was β.  The Weibull shape 

parameter was estimated for each dose using the linear relationships describing the 

approximate median and maximum values of β as a function of α (Figure 2.4).  

Specifically, β was randomly selected from a normal distribution.  The mean of the 

normal distribution was set as the median value of β and the standard deviation was set to 

the standard deviation of β, which was estimated using the 99.9 % confidence interval for 

a normal distribution and the difference between the maximum and median shape 

parameters for a given time constant.  The minimum allowable value for β was 1.01. 

With all of the parameters set, the program commenced by first excluding those 

patients not meeting the age criteria, that is if  the criteria differed from 10 – 90 years.  

Each patient was randomly selected from the sub-population and dosed accordingly.  

Once the appropriate dose was determined for each patient, he/she was administered 

treatment.  Throughout the course of the therapy, a patient’s theophylline plasma 

concentration was monitored by integrating Equation 2.5.  Plasma concentrations were 

estimated 6 times per hour.  These data were stored and superimposed over the course of 

treatment.  A frequency histogram summarizing theophylline plasma levels was 

generated for each patient; responses were segregated (i.e., binned) into 0.25 mg/L 

intervals.   
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Probabilistic estimates of observing inefficacious and toxic events were 

predetermined for theophylline concentrations ranging from 0 to 100 mg/L at 0.25 mg/L 

increments using the PD sigmoid functions (Equations 2.6a and 2.6b).  Using these 

concentration-based likelihoods, risk estimates (or scores) were generated after each 

patient was treated.  First, the plasma concentration histograms were aggregated (i.e., 

data within each concentration bin were amassed for all patients tested).  Next, the 

aggregated plasma concentration data was transformed into a CDF.  Provided that both 

the PD functions and the pooled CDF were generated using the same concentration axis, 

plots of the inefficacy risk scores versus the aggregated CDF data and the toxicity risk 

scores versus the aggregated CDF data were generated.  These plots were used to 

interpret the percentage of the population that had a risk score at or below a given value 

(i.e., the likelihood of observing an adverse event within a sample population given the 

observed plasma concentrations).  Example plots for inefficacy and toxicity are shown in 

Figure 2.8a and Figure 2.8b, respectively.  These plots illustrate that 95 % of the sample 

population had an inefficacy risk score less than or equal to 25.62 % and a toxicity risk 

score of less than or equal to 8.01 % for the given trial simulation.  In other words, 95 % 

of the population was treated such that there was a maximum likelihood of 25.62 % and 

8.01 % for observing an inefficacious or toxic event, respectively.   
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Figure 2.8. Plots of inefficacy (a) and toxicity (b) risk scores versus the fraction of observations for the 
sample population tested.  These data were interpolated (solid lines) to determine the percentage of the 
sample population (95 %) that had a risk score less than or equal to a given value.  The sample population 
was treated such that there was a maximum likelihood of 25.62 % and 8.01 % for observing an 
inefficacious or toxic event, respectively. 

Rather than reporting multiple risk scores for both inefficacy and toxicity, it was 

desirable to summarize the risk to a sample population with a single risk score for each 

adverse event.  Thus, the empirical CDF/PD function plots were interpolated to yield a 

single risk score corresponding to a CDF probability of 0.95 for both inefficacy and 

toxicity.  A risk score summarizing those tested was generated for each addition of a 

patient.  The number of iterations conducted was not fixed; rather, the risk simulator 

continued to test additional patients until the risk scores for inefficacy and toxicity both 

stabilized below a certain oscillation threshold.  Stability of risk assessments was 

assessed by calculating the absolute fractional change of the median risk score (Δ) 

observed by adding one additional patient to the sample population using the equation 
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where RS indicates the risk score for the ith observation and n represents the number of 

patients assessed.  Patients were consecutively tested until the variability of the risk 

estimates for both inefficacy and toxicity were below the difference threshold of 10-4.  

Furthermore, the absolute change was required to retain a value below the threshold for 

250 consecutive patients before the simulator converged on the risk estimates; these 

criteria were required for both inefficacy and toxicity.  Therefore, two risk scores, one for 

inefficacy and one for toxicity, were generated for each trial simulation.       

2.2.9 Experimental Design 

A 2x2x2x2x2x2 full factorial design was generated in Matlab using the 

“fullfact.m” function to assess the effects of manufacturing variability and patient 

compliance on clinical performance (Table 2.4).  Two levels for each factor were tested, 

which corresponded to the presence or absence of variability (i.e., factor on or off, 

respectively).  The six factors assessed were the inter- and intra-batch RSD of the 

dissolution time constants, the inter- and intra-batch RSD of content uniformity, the rate 

of patient compliance, and the standard deviation of the dosing interval.  A value of 1 

signified the presence of variability, whereas 0 represented its absence.  Each row in the 

design represents an independent risk simulation trail.  The full factorial experimental 

design was performed in triplicate, which required a total of 192 simulations.  The 

simulation run order for each replicate of the design matrix was randomized.  The age 

range for patient inclusion was not altered from that of the general population. 
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Table 2.4.  Summary of the 2x2x2x2x2x2 full factorial experimental design.  A value of 1 signifies the 
presence of variability, whereas 0 represents its absence.   

Trial 
Number 

Intra-
Batch β 

Inter-
Batch β 

Intra-
Batch 

Content 
Uniformity

Inter-
Batch 

Content 
Uniformity

Patient 
Compliance

Standard 
Deviation 
of Dosing 

Time 
Interval 

1 0 0 0 0 0 0 
2 1 0 0 0 0 0 
3 0 1 0 0 0 0 
4 1 1 0 0 0 0 
5 0 0 1 0 0 0 
6 1 0 1 0 0 0 
7 0 1 1 0 0 0 
8 1 1 1 0 0 0 
9 0 0 0 1 0 0 

10 1 0 0 1 0 0 
11 0 1 0 1 0 0 
12 1 1 0 1 0 0 
13 0 0 1 1 0 0 
14 1 0 1 1 0 0 
15 0 1 1 1 0 0 
16 1 1 1 1 0 0 
17 0 0 0 0 1 0 
18 1 0 0 0 1 0 
19 0 1 0 0 1 0 
20 1 1 0 0 1 0 
21 0 0 1 0 1 0 
22 1 0 1 0 1 0 
23 0 1 1 0 1 0 
24 1 1 1 0 1 0 
25 0 0 0 1 1 0 
26 1 0 0 1 1 0 
27 0 1 0 1 1 0 
28 1 1 0 1 1 0 
29 0 0 1 1 1 0 
30 1 0 1 1 1 0 
31 0 1 1 1 1 0 
32 1 1 1 1 1 0 
33 0 0 0 0 0 1 
34 1 0 0 0 0 1 
35 0 1 0 0 0 1 
36 1 1 0 0 0 1 
37 0 0 1 0 0 1 
38 1 0 1 0 0 1 
39 0 1 1 0 0 1 
40 1 1 1 0 0 1 
41 0 0 0 1 0 1 
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Trial 
Number 

Intra-
Batch β 

Inter-
Batch β 

Intra-
Batch 

Content 
Uniformity

Inter-
Batch 

Content 
Uniformity

Patient 
Compliance

Standard 
Deviation 
of Dosing 

Time 
Interval 

42 1 0 0 1 0 1 
43 0 1 0 1 0 1 
44 1 1 0 1 0 1 
45 0 0 1 1 0 1 
46 1 0 1 1 0 1 
47 0 1 1 1 0 1 
48 1 1 1 1 0 1 
49 0 0 0 0 1 1 
50 1 0 0 0 1 1 
51 0 1 0 0 1 1 
52 1 1 0 0 1 1 
53 0 0 1 0 1 1 
54 1 0 1 0 1 1 
55 0 1 1 0 1 1 
56 1 1 1 0 1 1 
57 0 0 0 1 1 1 
58 1 0 0 1 1 1 
59 0 1 0 1 1 1 
60 1 1 0 1 1 1 
61 0 0 1 1 1 1 
62 1 0 1 1 1 1 
63 0 1 1 1 1 1 
64 1 1 1 1 1 1 
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A 2x2x2x2 full factorial design was also generated to assess the effects of 

manufacturing variability excluding all influences from patient compliance and dosing 

time variability (Table 2.5).  Again, two levels for each factor were tested where a value 

of 1 signified the presence of variability and 0 represented its absence.  The four factors 

assessed were the inter- and intra-batch RSD of the dissolution time constants, and the 

inter- and intra-batch RSD of content uniformity.  All runs were performed in triplicate, 

which required a total of 48 simulations.  The simulation run order for each replicate of 

the design matrix was randomized.  The age range for patient inclusion was not altered 

from that of the general population. 

 
Table 2.5. Summary of the 2x2x2x2 full factorial experimental design. 

Trial 
Number 

Intra-
Batch β 

Inter-
Batch β 

Intra-
Batch 

Content 
Uniformity

Inter-
Batch 

Content 
Uniformity

1 0 0 0 0 
2 1 0 0 0 
3 0 1 0 0 
4 1 1 0 0 
5 0 0 1 0 
6 1 0 1 0 
7 0 1 1 0 
8 1 1 1 0 
9 0 0 0 1 

10 1 0 0 1 
11 0 1 0 1 
12 1 1 0 1 
13 0 0 1 1 
14 1 0 1 1 
15 0 1 1 1 
16 1 1 1 1 
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2.2.10 Statistical Analyses 

Sensitivity analyses were conducted on the results of the two DOEs using 

standard least-squares regression and an effects screening approach to determine the 

factors that had a significant influence on the risk to inefficacy and toxicity.  This 

approach calculated the type III sums of squares.  The inputs (Tables 2.4 and 2.5) were 

coded as nominal and the responses were coded as continuous.  A full factorial model 

was initially generated to consider all potential interactions.  Thereafter, fractional 

factorial models were assessed.  Standard least-squares regression was also used to 

determine the final models for inefficacy and toxicity; both the inputs and responses were 

coded continuous.  The significance level (α, not to be confused with the Weibull scale 

parameter) for all analyses was 0.05.  All statistical analyses were conducted in Matlab 

(version 7.1, The MathWorks, Natick, MA) or JMP (version 8.0.1, SAS Institute Inc., 

Cary, NC).  The risk scores for inefficacy and toxicity were analyzed independently.     

2.3 Results and Discussion 

2.3.1 Relationship between Toxicity and Inefficacy 

 It is important to understand the underlying relationship between inefficacy and 

toxicity in view of the fact that one of the fundamental objectives of the drug 

development process is to minimize the incidence of both adverse events.  This can be 

accomplished using the PD model(s).  Figure 2.9 illustrates the probabilistic relationship 

between inefficacy and toxicity, both of which are functions of theophylline 

concentration; Figure 2.9 is merely a 3-dimensional representation of the PD data that 

appear in Figure 2.7.  As might be expected, the likelihoods for inefficacy and toxicity 
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are invariant at concentrations well below the MEC; the probability of experiencing an 

inefficacious event is high at low concentrations, whereas the probability associated with 

toxic events is minimal.  As theophylline levels approach that which has been reported to 

have clinical effects (~ 5 mg/L), however, the probability of inefficacy sharply declines 

and does not begin to stabilize until roughly the mid-point of the therapeutic range.  

Conversely, the probability for toxic events is relatively constant until the middle of the 

therapeutic window, at which point the likelihood dramatically increases.  The 

probability of inefficacy is nearly at its lowest value beyond the middle of the therapeutic 

range, indicating that patients continue to experience clinical outcomes (e.g., 

bronchodilation) while enduring the adverse event(s).  The PD model also reveals that the 

probability of inefficacy will never be below approximately 22 %, which suggests that 

the drug will not offer clinical benefits for certain patients.                 
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Figure 2.9. Plot of toxicity probability versus inefficacy probability versus theophylline concentration. 
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 Figure 2.9 also illustrates that there are concentration ranges for which the two 

adverse events are inversely related to one anther.  In particular, the probabilities for 

inefficacy and toxicity are linearly related with a correlation coefficient of –0.976 over 20 

– 25 mg/L.  Comparable negative correlations can be found locally over other 

concentration ranges.  This is important since, depending on where patients are dosed, the 

interpretation of risk, for example, in a sensitivity analysis, has the potential to be 

analyzed in terms of either outcome without consideration of the other.  Indeed, this 

should be verified before one of the two metrics is disregarded.  While it is generally 

desirable to dose patients midway between the MEC and MTC, drug levels may 

consistently reside more close to one or the other.  In this instance, a comparable change 

in both metrics may have more clinical relevance for one adverse event than it does for 

the other; this is more likely when the drug levels are near concentrations for which the 

relationship between inefficacy and toxicity deviates from linearity.      

2.3.2 Dissolution Time Constant Optimization 

The theophylline tablets produced from the three manufacturing routes resulted in 

various dissolution profiles.  Thus, it was necessary to select an appropriate dissolution 

time constant that characterized the release of theophylline for the model dosage form 

prior to determining the conditional risk of product quality on clinical performance.  

Dissolution time constants ranging from 1 to 7 hours were assessed at 0.5 hour intervals 

since the majority of the tablets modeled yielded dissolution time constants in this range 

(Figure 2.4).  Variability in the six manufacturing and patient compliance factors was 

prohibited during these trials.  Each time constant was assessed in triplicate and the risk 

scores for inefficacy and toxicity are shown in Figure 2.10a and Figure 2.10b, 
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respectively.  Ultimately, a dissolution time constant that minimized the risk to inefficacy 

and toxicity was desirable.  Due to the local inverse relationship between inefficacy and 

toxicity, the minimum risk for inefficacy occurred at a time constant where risk of 

toxicity was the greatest.  Therefore, a time constant of 5.0 hours was selected to 

characterize the model theophylline dosage form as this value favorably reduced the 

likelihood of toxic events observed at shorter time constants and concurrently minimized 

the increase in inefficacious events observed at longer time constants.  These risk scores 

effectively represented the baseline risk from which variations in clinical performance 

were assessed.  The remaining simulations were run using the parameter values indicated 

in Table 2.3 according to the experimental designs illustrated in Tables 2.4 and 2.5. 

 

Figure 2.10. Plots of inefficacy (a) and toxicity (b) risk scores versus various dissolution time constants 
tested in different age-restricted sample populations. 

2.3.3 2x2x2x2x2x2 Full Factorial Experimental Design 

 The following screening and modeling efforts utilized standard-least squares 

regression.  The general approach to linear modeling assumes that the response is 

continuous over the range of negative infinity to positive infinity.  This assumption can 
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be particularly problematic for proportional responses (e.g., probabilities), since, due to 

model error, the predictions can be outside of the anticipated range (e.g., 0 to 1 or 0 to 

100).  Therefore, the estimates and standard errors were examined for consistency and 

accuracy to substantiate the use of linear regression.  The validity of the other 

assumptions of linear regression (e.g., homoscedasticity, linearity, normality) was also 

verified.  Additionally, predictor variables were analyzed for multicollinearity. 

The resultant inefficacy and toxicity risk scores for the 2x2x2x2x2x2 full factorial 

experimental design are summarized in Figure 2.11; quantile and other statistical metrics 

are also presented in Table 2.6.  Risk scores for both inefficacy and toxicity were 

approximately unimodally distributed; the assumption of normality, therefore, is not 

unreasonable.  Accordingly, transformations were deemed to be unnecessary.  Simple 

linear regression revealed that the scores for inefficacy and toxicity were negatively 

correlated (r = -0.997).  The inverse relationship was a direct result of the PD model and 

the dosing regimen; 95 % of the patients were dosed such that the CDF was consistently 

interpolated at theophylline concentrations of 20 – 25 mg/L (recall the inverse 

relationship of the PD model in this concentration range, which is illustrated in Figure 

2.9).  Given their inverse relationship, the discussion is predominately focused on 

toxicity.  The corresponding inverse statistical relationships for inefficacy were 

confirmed.  
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Figure 2.11. Frequency histograms of the resultant inefficacy (a) and toxicity (b) risk scores for the 
2x2x2x2x2x2 full factorial experimental design (n = 192).  The mean, standard deviation (S.D.), and range 
[ , ] of each adverse event are also provided. 

 
Table 2.6. Summary statistics for the 2x2x2x2x2x2 full factorial experimental design. 

Inefficacy 
Percentile Metric Probability (%)  Metric 

100.0% maximum 26.461  Mean (%) 25.962 
99.5%   26.461  Std Dev (%) 0.236 
97.5%   26.369  Std Err Mean (%) 0.017 
90.0%   26.281  Upper 95% Mean (%) 25.996 
75.0% quartile 26.135  Lower 95% Mean (%) 25.928 
50.0% median 25.979  Number of Observations 192 
25.0% quartile 25.785      
10.0%   25.629      
2.5%   25.538      
0.5%   25.468      
0.0% minimum 25.468      

Toxicity 
Percentile Metric Probability (%)  Metric 

100.0% maximum 8.336  Mean (%) 7.428 
99.5%   8.336  Std Dev (%) 0.387 
97.5%   8.184  Std Err Mean (%) 0.028 
90.0%   7.998  Upper 95% Mean (%) 7.484 
75.0% quartile 7.703  Lower 95% Mean (%) 7.373 
50.0% median 7.373  Number of Observations 192 
25.0% quartile 7.137      
10.0%   6.934      
2.5%   6.820      
0.5%   6.707      
0.0% minimum 6.707      
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Sensitivity analyses were conducted to determine which factors had a significant 

impact on the risk of an adverse event.  Figure 2.11 illustrates that the ranges of risk 

scores were narrow for both adverse events.  Nevertheless, the full factorial screening 

revealed that three main effects, intra-batch RSD of content uniformity, rate of patient 

compliance, and standard deviation of the dosing interval, significantly influenced 

probability of experiencing a toxic event.  In addition to these main effects, the first-order 

interaction between the rate of patient compliance and the standard deviation of the 

dosing interval was identified as significant.  Two other higher order interactions were 

significant; however, they were determined to be spurious based on the insignificance of 

the other main effects that comprised the interaction terms.  It is important to note that the 

same three main effects were determined to be significant for inefficacy.  The interaction 

between the rate of patient compliance and the standard deviation of the dosing interval, 

however, was not strong enough to significantly alter the likelihood of an inefficacious 

event.  This demonstrates the sensitivity of the risk simulation platform to asymmetric 

risk, a phenomenon that would go undetected with a standard “quality” metric such as 

Cpk, which does not account for clinical outcomes.  Two additional higher order 

interactions were also significant for inefficacy; they were determined to be spurious as 

well.   

Following the full factorial screening exercise, a 2nd degree fractional screening 

was carried out to re-assess the main effects and first-order interactions.  Analogous to 

the previous screening study, three main effects, intra-batch RSD of content uniformity, 

rate of patient compliance, and standard deviation of the dosing interval, as well as the 

first-order interaction between the rate of patient compliance and the standard deviation 
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of the dosing interval significantly influenced the probability of toxicity.  Likewise, intra-

batch RSD of content uniformity, rate of patient compliance, and standard deviation of 

the dosing interval significantly influenced the probability of inefficacy.   

Subsequently, standard least-squares regression was used to compare several 

potential linear models.  Ultimately, the final model for inefficacy included three main 

effects, intra-batch RSD of content uniformity, rate of patient compliance, and standard 

deviation of the dosing interval, while the model for toxicity included these three main 

effects and the first-order interaction between the rate of patient compliance and the 

standard deviation of the dosing interval.  Intra-batch RSD of content uniformity and 

standard deviation of the dosing interval functioned to an increase in the probability of 

toxicity, whereas patient compliance decreased the likelihood of experiencing a toxic 

event.   

Studentized residuals were, where appropriate, analyzed to verify that the 

assumptions of linear regression were valid for these data.  One such plot, studentized 

residuals versus sample number, is provided in Figure 2.12.  Additionally, plots of 

studentized residuals versus the predicted response values were examined, which did not 

suggest that these data were heteroscedastic (plots not shown).  Abnormal patterns were 

not observed in any of the residual plots, which further substantiates the use of linear 

regression.  The studentized residuals were also used to indentify outliers.  The largest 

(absolute value of the) studentized residual for the toxicity model was 2.97, and a total of 

11 residuals were above 2.0.  Likewise, the largest (absolute value of the) studentized 

residual for the inefficacy model was 2.81 and, in all, 11 residuals were above 2.0.  

Therefore, no observations were removed for either model.  The experimental design was 
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intentionally replicated to assess lack of fit.  Testing of both models revealed that the null 

hypothesis, which stated that the model fit these data, could not be rejected.  The final 

models for inefficacy and toxicity are summarized in Tables 2.7 and 2.8, respectively.  

The predicted versus measured plots for the two clinical outcomes, which also illustrate 

the appropriateness of the straight-line model, are shown in Figure 2.13.    

 

 

Figure 2.12. Plots of studentized residuals versus sample number for inefficacy (a) and toxicity (b) for the 
finalized linear models of the 2x2x2x2x2x2 experimental design. 

 

Figure 2.13. Predicted versus measured plots for the inefficacy (a) and toxicity (b) linear models.  The unit 
line is shown in black. 
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Table 2.7. Final model results for inefficacy for the 2x2x2x2x2x2 experimental design. 
Inefficacy 

Summary of Fit       
R2 0.86851       
R2 Adj 0.86641       
Root Mean Square Error 0.086       
Mean of Response 25.962       
Observations 192       

Analysis of Variance 

Source D.F. Sum of Squares 
Mean 

Square F Ratio 
Model 3 9.225 3.075 413.917 
Error 188 1.397 0.007 Prob > F 
Total 191 10.621   1.54E-82 

Lack of Fit 

Source D.F. Sum of Squares 
Mean 

Square F Ratio 
Lack of Fit 4 0.020 0.005 0.664 
Pure Error 184 1.377 0.007 Prob > F 
Total Error 188 1.397   6.17E-01 
        Max Rsq 
        0.87038 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob > |t| 
Intercept 26.059 0.012 2094.647 0.0 
Intra-Batch CU Variability -0.061 0.012 -4.931 1.79E-06 
Patient Compliance 0.234 0.012 18.792 4.97E-45 
S.D. Dosing Time -0.366 0.012 -29.399 3.13E-72 
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Table 2.8. Final model results for toxicity for the 2x2x2x2x2x2 experimental design. 
Toxicity 

Summary of Fit       
R2 0.86239       
R2 Adj 0.85944       
Root Mean Square Error 0.145       
Mean of Response 7.428       
Observations 192       

Analysis of Variance 

Source D.F. 
Sum of 

Squares 
Mean 

Square F Ratio 
Model 4 24.726 6.182 292.969 
Error 187 3.946 0.021 Prob > F 
Total 191 28.672   2.38E-79 

Lack of Fit 

Source D.F. 
Sum of 

Squares 
Mean 

Square F Ratio 
Lack of Fit 3 0.059 0.020 0.926 
Pure Error 184 3.887 0.021 Prob > F 
Total Error 187 3.946   4.29E-01 
        Max Rsq 
        0.86443 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob > |t| 

Intercept 7.270 0.021 346.746 
1.37E-

264 
Intra-Batch CU Variability 0.100 0.021 4.783 3.49E-06 
Patient Compliance -0.381 0.021 -18.160 3.85E-43 
S.D. Dosing Time 0.597 0.021 28.489 6.06E-70 
Patient Compliance x  
S.D. Dosing Time -0.116 0.042 -2.755 6.44E-03 

 

 To further scrutinize the final models, the 95 % confidence intervals for the 

expected mean value were grouped by all possible combinations of the independent 

variables (Table 2.9).  Examination of the mean 95 % confidence intervals revealed that 

no two intervals overlapped across all possible input combinations.  This was the case for 

both inefficacy and toxicity.  Lack of overlap further underscored the significant change 

in risk scores induced by intra-batch RSD of content uniformity, rate of patient 

compliance, and standard deviation of the dosing interval.  The data in Table 2.9 were 
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also used to generate plots of the predicted probabilities for inefficacy and toxicity 

adjusted for intra-batch content uniformity variability, patient compliance, and the 

standard deviation of the dosing interval (Figure 2.14).  The interaction between the rate 

of patient compliance and the standard deviation of the dosing interval for the toxicity 

model is clearly demonstrated by the non-parallel nature of the lines in subplots c and d; 

subplots a and b substantiate the lack of interaction for the inefficacy model.  

 

Figure 2.14. Plots of the predicted mean probabilities for inefficacy (a,b) and toxicity (c,d) adjusted for the 
effects of intra-batch content uniformity variability, patient compliance, and dosing time standard 
deviation.  Asterisks denote the upper and lower values of the mean confidence intervals whereas the open 
circles represent the mid-point of the intervals. 
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Table 2.9. 95 % confidence intervals for the expected mean value grouped by all possible combinations of 
the independent variables.  The acronym CI stands for confidence interval. 

Inefficacy 

Predicted 
Inefficacy 

Mean 95 % CI 

Intra-Batch 
Content 

Uniformity 
Variability 

Patient 
Compliance 

Dosing 
Time 

Standard 
Deviation   Lower Upper 

0 0 0   26.034 26.083 
0 1 0   26.268 26.317 
0 0 1   25.668 25.717 
0 1 1   25.902 25.951 
1 0 0   25.973 26.022 
1 1 0   26.207 26.256 
1 0 1   25.607 25.656 
1 1 1   25.841 25.890 

Toxicity 

Predicted 
Toxicity Mean 

95 % CI 

Intra-Batch 
Content 

Uniformity 
Variability 

Patient 
Compliance 

Dosing 
Time 

Standard 
Deviation 

Patient 
Compliance 

x Dosing 
Time 

Standard 
Deviation Lower Upper 

0 0 0 0 7.195 7.287 
0 1 0 0 6.872 6.964 
0 0 1 0 7.850 7.942 
0 1 1 1 7.411 7.504 
1 0 0 0 7.295 7.387 
1 1 0 0 6.972 7.064 
1 0 1 0 7.950 8.043 
1 1 1 1 7.512 7.604 

 

2.3.4 2x2x2x2 Full Factorial Experimental Design 

 Due to the overpowering variance explained by patient compliance and dosing 

time variability, a second experimental design was executed to evaluate the effects of 

manufacturing variability when patient compliance was 100 % and all doses were 

administered precisely at the scheduled dosing times.  This was done to ensure that the 

two patient factors (at the levels assessed) did not mask subtle, yet important, 
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manufacturing effects.  The resultant inefficacy and toxicity risk scores for the 2x2x2x2 

full factorial experimental design are summarized in Figure 2.15; quantile and other 

statistical metrics are also presented in Table 2.10.  Data were analyzed in a manner 

comparable to that in the 2x2x2x2x2x2 experimental design.  As was observed in the 

2x2x2x2x2x2 experimental design, the scores for inefficacy and toxicity were negatively 

correlated (r = -0.999).  Likewise, the inverse relationship was a direct result of the PD 

model and the dosing regimen; 95 % of the patients were dosed such that the CDF was 

consistently interpolated at theophylline concentrations between 20 and 25 mg/L (recall 

the negative correlation between inefficacy and toxicity within this range).  

Consequently, the discussion is predominately focused on toxicity.  The corresponding 

inverse statistical relationships for inefficacy were confirmed.  

 

Figure 2.15. Frequency histograms of the resultant inefficacy (a) and toxicity (b) risk scores for the 
2x2x2x2 full factorial experimental design (n = 48).  The mean, standard deviation (S.D.), and range [ , ] of 
each adverse event are also provided. 
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Table 2.10. Summary statistics for the 2x2x2x2 full factorial experimental design. 

Inefficacy 
Percentile Metric Probability (%)  Metric 

100.0% maximum 26.200  Mean (%) 26.024 
99.5%   26.200  Std Dev (%) 0.077 
97.5%   26.196  Std Err Mean (%) 0.011 
90.0%   26.125  Upper 95% Mean (%) 26.046 
75.0% quartile 26.086  Lower 95% Mean (%) 26.002 
50.0% median 26.025  Number of Observations 48 
25.0% quartile 25.962      
10.0%   25.911      
2.5%   25.897      
0.5%   25.897      
0.0% minimum 25.897      

Toxicity 
Percentile Metric Probability (%)  Metric 

100.0% maximum 7.507  Mean (%) 7.305 
99.5%   7.507  Std Dev (%) 0.119 
97.5%   7.507  Std Err Mean (%) 0.017 
90.0%   7.483  Upper 95% Mean (%) 7.340 
75.0% quartile 7.401  Lower 95% Mean (%) 7.270 
50.0% median 7.301  Number of Observations 48 
25.0% quartile 7.208      
10.0%   7.151      
2.5%   7.048      
0.5%   7.043      
0.0% minimum 7.043      

 

The results of the 4-factor experimental design were similar to those of the 6-

factor design; intra-batch content uniformity was the only manufacturing factor that 

significantly affected risk of toxicity, even when deviations from the dosing regimen 

were not permitted.  As was observed previously, intra-batch content uniformity was 

positively correlated with the change in toxicity risk scores and negatively correlated with 

inefficacy.  Linear regression, however, did not yield models of considerable predictive 

power (R2 ≈ 0.26), which was most likely a consequence of the large standard deviation 

relative to the narrow range of the resultant risk scores (Table 2.10).  Nonetheless, intra-
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batch content uniformity is important in explaining the variation in inefficacy and toxicity 

risk scores.   

It is important to note that the conditional risk, regardless of whether or not 

patients are compliant, is dependent upon the manufacturing estimates tested.  For 

example, assume that the RSD of content uniformity (both inter- and intra-batch) is 

comparable to the estimates assessed (Table 2.3), but, due to poor control during 

tableting, the estimates for dissolution time variability are worse.  Lack of control during 

tableting could result in highly variable compression pressures, which, in turn, would 

sequentially yield erratic (1) radial tensile strengths, (2) dissolution profiles, and (3) 

exposure-response profiles.  These changes would undoubtedly affect the portion of 

variability explained by the inter- and intra-batch dissolution time constant factors.     

 The conditional risk is also expected to vary from product to product.  While 

dissolution variability (at the level tested) did not significantly impact clinical 

performance for the model solid oral dosage system, it may very well significantly 

influence, for example, an immediate release tablet.  For instance, moderate dissolution 

variability could result in sub-therapeutic levels at the critical time period following 

administration (e.g., 30 minutes), which would most likely result in clinical inefficacy.  

These effects were not as pronounced in the model system, most likely because the 

factors were assessed once patients were at steady-state.  Dissolution variability, 

therefore, was not large enough to induce an adverse event.     

 In addition to product-dependence, risk to clinical performance is also dependent 

on the production method.  A substantial change in the manufacturing route, such as from 

direct compression to wet granulation, is likely to considerably alter drug dissolution 
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(Figure 2.4), and, therefore, clinical performance if the change is not optimized with 

respect to the desired QTPP.  The adjustment, however, does not need to be so dramatic 

to have an effect on the patient.  A switch in the blending protocol from a v-blender to a 

bin blender is likely to affect the inter- and intra-batch content uniformity if the PCCPs 

are not optimized with regard to the QTPP.  Likewise, a formulation modification from 

intra- to extra-granular addition of the granulating binder has the potential to alter drug 

dissolution, and ultimately, inefficacy or toxicity.  For these very reasons, changes in the 

manufacturing protocol should be investigated with regard to their impact on clinical 

performance.  This can be accomplished by directly linking the process to clinical 

performance via a design space.   

2.3.5 Risk Simulation: A Piece of the Modernization Puzzle 

The risk simulations were conducted at the point in time where actual metrics of 

the manufacturing characteristics were available (Table 2.3).  Nonetheless, this was not 

designed to imply that a risk assessment can only be initiated once the manufacturing 

variability metrics are accessible.  Given an approach such as the one described herein, a 

risk assessor has the opportunity to assume values for parameters and/or attributes he/she 

believes have the potential to influence risk.  Since these are approximations, uncertainty 

can then be propagated through the platform to gain a better understanding of which 

factors significantly affect risk.  As the actual values become available, they can be 

incorporated, and the risk assessment can then be repeated.   

 Similarly, finalized/optimized components of the risk simulation platform (Figure 

2.1) are not necessary to conduct the assessment.  This work was completed using a 

hypothetical PD model.  That does not mean, however, that the additional assessments 
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cannot be carried out once a legitimate probabilistic PD model of theophylline is 

generated.  Moreover, gender- and age-specific estimates for the usage of barbiturates 

and benzodiazepines were assumed.  As actual data become available, the patient 

population can be re-generated, at which point the risk simulations can be repeated.  

Components, whether they are as substantial as the PK or PD model, or as small as a 

single coefficient in a model, can be replaced as better estimates, or the finalized 

elements, are arrived at.  The risk simulation platform was constructed to be modular to 

provide this flexibility.  This iterative procedure can be implemented throughout the drug 

development process to enhance product and process understanding. 

One of the objectives of the Critical Path Initiative is to accelerate the time-to-

market of innovative, safe, and effective medical products by changing the approach to 

product development.  Sponsors are encouraged to utilize innovative techniques to 

investigate the manufacturability, safety, and efficacy of candidate molecules and/or drug 

products.9  This objective can certainly be expanded to include approaches that examine 

the impact that changes, such as those instituted through comparability protocols, have on 

the manufacturability, safety, and efficacy of currently marketed products.  The 

multivariate risk simulation platform used in this work provides the opportunity to 

simultaneously study the effects of manufacturing, compliance, and physiologic and 

pathophysiologic states on the safety and efficacy of drug delivery systems.  This is true 

for new chemical entities and previously marketed drugs alike. 

 The multivariate risk simulation platform also serves as a resource allocation tool, 

which can help fulfill the public health objective of offering affordable medications.  For 

example, analysis of the model drug system revealed that intra-batch content uniformity 
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was the only manufacturing factor assessed that significantly influenced the probability 

of an adverse event.  Risk simulation, therefore, identified intra-batch content uniformity 

as a CQA.  While the other factors are not to be disregarded (beyond the range 

evaluated), it would be unreasonable to a invest large sum of resources into further 

reducing the precision of manufacturing such that dissolution variability consistently 

passed strict specifications seeing as how the current level of variability did not 

significantly alter clinical performance.  Such an investment would needlessly inflate the 

overall product cost.  The manufacturer should still be cognizant of the insignificant 

factors, however, since additional levels of variability in one or more of the 

inconsequential variables could elicit a significant change in clinical performance.  This 

could be accomplished by monitoring and controlling their variability within the limits of 

acceptable risk to clinical performance (i.e., quality, as it is redefined).  Resources 

should, on the other hand, be devoted to understanding and controlling the PCCPs for 

intra-batch content uniformity such that risk of adverse events is minimized.       

 Up to this point, the utility of the risk simulation platform has largely been 

couched on harnessing explicit patient and product knowledge to evaluate clinical 

performance (i.e., quality) as it relates to pharmaceutical production.  As was discussed in 

the literature survey (refer to section 1.3.3.2), simulation has played an important role in 

clinical trials.  A risk simulation approach such as this one also has the potential to 

contribute greatly in this area.  Despite the fact that conditional risk was investigated 

using the general population, the risk simulation platform can also delineate sub-

populations that display disparate risk levels (Figure 2.10).  This supports the selection of 

participants for inclusion in clinical trials, with the ultimate objective of reducing the 
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likelihood of the drug being toxic or ineffective.  Although drugs that are capable of 

being safely and effectively administered to the general population are desirable, certain 

patient factors often preclude individuals from taking a given medication.  These sub-

populations must be quickly identified so as to allow safe treatment.  The gamut of 

patient factors that interact to affect drug action will not always be available initially; 

however, data from drugs of the same class or defensible estimates can be used as starting 

points.  Subsequent clinical trial data can then be integrated within the simulation 

platform to better understand the conditions that predispose patients to adverse clinical 

outcomes.  Once validated, these data can then be used to carefully market the product.   

 Whether launching a clinical trial or beginning treatment in a doctor’s office, the 

risk simulation platform can facilitate arriving at a safe and effective individualized dose 

based on the volunteer/patient’s ascertainable factors (e.g., age, gender, BMI, smoking 

and drinking status, known concomitant drugs).  Together with the acting physician’s 

expertise, the likelihood of adverse events can be minimized before the individual is ever 

administered the drug.  With the appropriate data, this methodology would eliminate the 

oftentimes cyclic dose (by weight or some other dosing nomogram), monitor 

(serum/plasma levels), and adjust (as needed) approach which unquestionably jeopardizes 

the health of the individual if the first attempt is inaccurate.  Admittedly, any uncertainty 

present in the risk simulation platform would also endanger the individuals.  The 

platform, however, could be validated through a randomized clinical trial (simulation 

supervised versus unsupervised dosing) thereby mitigating the effects of unmodeled 

variance. 
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 Thus far, the inter-relationship of the risk simulation components was utilized 

none other than to generate risk scores.  These links are illustrated by the solid arrows in 

Figure 2.1.  The risk scores, however, can be harnessed to oversee and/or optimize certain 

components (dotted arrows).  For example, the dosing guidelines (whether for the general 

population or select sub-populations) can be adjusted to minimize the risk of adverse 

events.  Furthermore, feedforward and feedback manufacturing controls can be instituted 

(via process and control models) to control PCCPs such that the desired level of clinical 

performance is attainted.  Similarly, raw material variability can be integrated such that 

the process can be adjusted to compensate for risk imparted by incoming components.  

Chapter 3 uses the risk simulation platform to generate a design space for the model solid 

oral dosage system that is bounded by risk scores.  Once the design space has been 

created, control models can be developed to ensure that production is maintained at a 

level of acceptable risk.  Since risk scores are continuous, one or more acceptance 

thresholds must be arrived at.  This should be a multidisciplinary decision that weighs 

factors such as feasibility, cost to the consumer, and risk-to-benefit ratios.        

2.4 Conclusions 

 A risk simulation platform that integrated population statistics, drug delivery 

system characteristics, dosing guidelines, patient compliance estimates, production 

metrics, and PK, PD, and IVIVC models to investigate the impact of manufacturing 

variability on clinical performance of a model theophylline solid oral dosage system was 

described.  This work was predicated on requests to re-define pharmaceutical quality in 

terms of risk by linking production characteristics to clinical attributes.  Manufacturing 

precision was characterized by inter- and intra-batch content uniformity and dissolution 
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variability metrics, while clinical performance was described by a probabilistic PD model 

that expressed the probability of inefficacy and toxicity as a function of theophylline 

plasma concentrations.  At the levels assessed, both patient compliance variables, percent 

of doses taken and dosing time variability, significantly impacted risk of inefficacy and 

toxicity.  In addition to these factors, intra-batch content uniformity variability elicited a 

significant change in risk scores for the two adverse events, and, therefore, was identified 

as a CQA.  This is the first in a series of chapters that demonstrate how pharmaceutical 

quality can be recast to explicitly communicate risk as it relates to clinical performance.  

Future research will focus on constructing a design space that directly links critical 

process parameters to quantitative estimates of inefficacy and toxicity risk.  Thereafter, 

control models can be developed to supervise production such that clinical performance 

of the final product is within the hyperspace.  
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Chapter 3: Performance-Based Quality Specifications: The 
Relationship between Process Critical Control Parameters, Critical 
Quality Attributes, and Clinical Performance 

 

3.1 Introduction 

The quality of pharmaceutical products is currently evaluated through a series of 

independent tests (e.g., USP <711> and <905>) that do not explicitly communicate the 

clinical consequences of product variability.  Univariate specifications disregard potential 

multivariate and nonlinear interactions that affect risk of clinical performance.20  For 

example, a clinical inter-dependence between API content and drug release is expected to 

exist for solid oral dosage systems.  Super-potent tablets with elevated release rates 

compromise patient safety due to increased drug levels in the blood.  Furthermore, such 

product poses a specific (toxic) risk to patients whose drug clearance rates are suppressed 

(e.g., alcoholics with severe liver damage).  Therefore, under the current testing 

paradigm, it is conceivable that in-specification (i.e., passing) product could, in certain 

patients, pose a greater clinical risk than product determined to be out-of-specification 

(Figure 3.1).  If quality were to be redefined by linking production characteristics to 

clinical attributes, however, specifications for product release could be then be 

established on the basis of clinical risk.   
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Figure 3.1. Schematic illustrating final product release testing with USP <905> and <711>.  Given the 
specifications, only tablet A would pass the release tests, despite the fact it may very well pose a greater 
risk than tablet B.  OOS stands for out-of-specification.  Figure reproduced from the work of Cogdill and 
Drennen. 

 Besides failing to directly communicate clinical consequences, these tests 

dichotomize quality as satisfactory or unacceptable, despite the fact that the unit-to-unit 

quality can be disparate in a passing lot.  While equally weighting the risk of all samples 

in and of itself diminishes their utility, the validity of these very tests, which are used to 

gauge the quality of pharmaceutical products, is now being questioned.  A recently 

published article evaluated the sensitivity of the USP <905> test for content 

uniformity.119  To conduct the investigation, lots containing varying degrees of non-

conforming material were simulated in silico.  Lots of different distributions (i.e., normal, 

log normal, bimodal, and uniform) were also tested.  The authors concluded that USP 

<905> “is relatively insensitive to detecting non-conforming material.”  Furthermore, 
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despite that fact that the simulated lots contained considerable portions of out-of-

specification material, the test did not consistently fail these lots until the percentage of 

defects was in excess of 20 %.  This underscores the potential ineffectiveness of the USP 

<905> and the corresponding final product specifications in gauging quality.  Similar 

arguments, such as the one framed by Tsong et al.,120 have also questioned the sensitivity 

of USP <711> for detecting lots where considerable portions of the tablets are out-of-

specification.   

Under the current (empirical) paradigm for product development, specifications 

are often established on the basis of achievable levels of process reproducibility long 

after the production method is selected from feasibility and profitability criteria.  For 

instance, a particular production facility might be equipped for, and decidedly 

experienced in (and, therefore, biased towards) wet granulation methods.  The drug-

specific process would have been inevitably transferred from R&D to production, at 

which point a considerable level of process understanding is available.  The final product 

specifications would more than likely be set in parallel with (or following) the scale-up 

efforts.  These specifications seek to maximize production yield while concurrently 

minimizing foreseeable undesirable outcomes (e.g., product recalls, adverse patient 

reactions).  Since the majority of these outcomes have profound direct (rework costs, 

legal fees) and indirect (brand image) monetary connotations, companies often prefer to 

impose excessively strict specifications to mitigate the effects of process and/or product 

uncertainty (i.e., their effect on clinical performance).  Thus, there exists a need to 

directly link process and product variability to clinical performance to maximize safety, 

effectiveness, and affordability.      
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In contrast to the empirical paradigm, a first-principles approach to product 

development would determine the acceptable limits of clinical performance before 

consideration of the production method.  Process development would commence only 

after the performance-based quality specifications were defined.  In other words, 

production would be tailored to achieve the clinical specifications without prior 

knowledge of process reproducibility.  The idea of a first-principles approach might be 

further extended to begin with a particular disease state and a preliminary understanding 

of the patients with said condition.  Next, a pharmacophore would be optimized for a 

specific receptor, which collectively elicit pharmacologic action.  Using available patient, 

PK, and PD knowledge, acceptable levels of clinical performance would then be 

proposed, but should be flexible to integrate incoming clinical data (i.e., uncertainty in 

initial knowledge).  The tolerable limits for clinical performance will then be used to 

condition the manufacturing process and evaluate product quality.  Ideally, a drug 

delivery system and its associated manufacturing process would be selected on its ability 

to achieve the highest levels of clinical performance; however, companies may very well 

be restricted by prior investments (e.g., purchase of specific production equipment).  The 

process, irrespective of the delivery system ultimately implemented, can be optimized 

with respect to clinical performance.  Once the delivery system has been identified, the 

CQAs, or the physical, chemical, biological, or microbiological properties or 

characteristics that affect clinical performance (i.e., quality), can then be identified.  

Thereafter, the process variables that ultimately impact clinical performance (i.e., PCCPs) 

can be isolated.  The first-principles approach to product development is summarized in 

Figure 3.2. 
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Figure 3.2. Schematic diagram illustrating the first-principles approach for product development. 

Design space has assumed a predominant role in the pharmaceutical industry.  It 

is, therefore, appropriate to discuss the impact that recasting quality in terms of clinical 

performance has on components associated with the idea of design space.  In its current 

form, design space is considered “the multidimensional combination and interaction of 

input variables (e.g., material attributes) and process parameters that have been 

demonstrated to provide assurance of quality.”12  As the appendices in ICH Q8R1 

illustrate, the hyperspace is defined by PCCPs, which thereby condition the CQAs.  

Consequently, the design space is specific to a unit operation or a single production 

process.  It defines the operational range of process parameters known to influence 
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(surrogates of) product quality (e.g., dissolution).  Design space can be thought of as the 

link between PCCPs and CQAs (Figure 3.2).  MacGregor and Bruwer recently suggested 

such an architecture where design space would characterized the combination of CQAs 

that offered product whose quality was compliant with specific safety and efficacy 

requirements; however, they did not propose a means to directly connect CQAs and 

clinical performance (i.e., quality).121   

If quality was to be considered in terms of risk by linking production 

characteristics to clinical attributes, design space would be, as MacGregor and Bruwer 

have alluded to, an n-dimensional interaction of inputs that have been demonstrated to 

ensure clinical performance.  CQAs would remain fundamental to the design space; 

however, they would become inputs to, rather than outputs of, the hyperspace.  The 

definition of a CQA would effectively remain unchanged, but the physical, chemical, 

biological, or microbiological properties or characteristics would be directly related to 

clinical performance (e.g., inefficacy or toxicity risk scores) rather than indirectly linked 

via surrogate indicators of quality (e.g., moisture content, dissolution, friability).  The 

identification and utilization of a CQA, therefore, would reflect the re-standardization of 

“quality.”  Likewise, the definition of a PCCP would not need to be amended.  

Conceptually, however, a PCCP would be intimately related to clinical performance 

rather than the surrogate marker.  Performance-based quality specifications (PBQS), 

therefore, are proposed to be the link between CQAs and clinical performance (Figure 

3.2).  As such, they can be used to define a design space centered on quantitative 

estimates of clinical performance.  
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Following the first-principles approach (Figure 3.2), construction of the design 

space would be hierarchical.  At the outset, the underlying relationship between product 

attributes (e.g., API content, drug release rate) and clinical performance would define the 

space.  If the drug delivery system has already been identified (e.g., uncoated tablet), a 

risk simulation platform (reference Chapter 2) could conceivably be used to generate the 

initial hyperspace before a single unit is ever produced.  Nevertheless, once the 

production method has been identified, process and product knowledge, in conjunction 

with experimental design, risk assessment, simulation, and, if desired, PAT, could be 

harnessed to identify the attributes that are critical to clinical performance (i.e., CQAs).  

In contrast to the current design space methodology, a hyperspace that defines the 

relationship between CQAs and clinical performance is extremely powerful since it is not 

specific to a given process.  Theoretically, one of several processes (e.g., direct 

compression, wet granulation, roller compaction) could be integrated within the design 

space since, within reason, the CQAs remain invariant from process to process.  While 

partial transferability between, for example, production lines for an extended release solid 

oral dosage form is feasible, universal transferability (e.g., direct integration of process 

knowledge for a transdermal drug delivery system) would most likely be unachievable 

since different CQAs would be expected to influence clinical performance.  Transfer of 

the process-independent design space to a specific production line would be 

accomplished by identifying the process parameters that affect clinical performance, and, 

subsequently generating process models that effectively serve as transfer functions 

between the PCCPs and CQAs.  The final design space, which would then be subject to 

regulatory discretion, would illustrate the underlying relationship between PCCPs and 
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clinical performance.  Control models could also be integrated to adjust the process (for 

incoming raw material variability, in-process product variability, environmental 

fluctuations, etc.) such that clinical performance of the final product lies within the 

design space.  

 It is apparent that re-defining pharmaceutical quality in terms of risk by relating 

process and patient characteristics to clinical performance is beneficial for the 

manufacturer, the regulator, and the patient alike.  While the revamp is long overdue, 

standardizing such a fundamental concept alters current pharmaceutical quality 

initiatives.  This work addressed the design space modifications that accompany the new 

definition of pharmaceutical quality.  The objectives were to (1) illustrate the potential 

drawbacks of the current paradigm for solid oral dosage form release testing, (2) generate 

artificial design spaces for a model theophylline solid oral dosage system that are 

conditioned on quantitative estimations of inefficacy and toxicity risk, and (3) address the 

potential of a release paradigm where the quality of pharmaceutical products can be 

evaluated with regards to clinical performance.   

3.2 Materials and Methods 

3.2.1 Risk Simulations 

The risk simulator, which has been described previously (refer to Chapter 2), was 

used to conduct in silico studies.  Several modifications were made to the simulator to 

alter its functionality.  However, unless noted otherwise, the theophylline regimen was 

not adjusted.  In the previous studies, the mean Weibull dissolution time constant was 

optimized to minimize global risk.  The underlying Weibull dissolution time constant 
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distribution was then generated using this mean and estimates of the inter- or intra-batch 

RSD.  The resultant distributions were randomly sampled to yield the test parameter for 

the current simulation iteration; a new time constant was sampled for each dose 

administered.  Since the purpose was not to evaluate constrained manufacturing 

scenarios, but rather to perturb the simulation inputs beyond the levels tested in the initial 

risk assessments, particularly for dissolution variability given that it did not have a 

significant impact on clinical performance (reference Chapter 2), the dissolution time 

constants were fixed for each risk simulation trial.   

Additionally, rather than randomly sampling the variability in theophylline 

uniformity from its underlying distributions, deviation from label claim was specified for 

each risk simulation trial.  For a given risk simulation trial, individual patient doses were 

estimated using an iterative dosing scheme (refer to section 2.2.7).  All doses 

administered for a given trial, however, were adjusted to deviate by the same percentage 

from the nominal amount.  Analogous to the previous studies, each simulation trial 

consecutively tested patients until the variability of the risk estimates for both inefficacy 

and toxicity were below the difference threshold of 10-4.  Furthermore, the absolute 

change was required to retain a value below the threshold for 250 successive patients 

before the simulator converged on the risk estimates.  All doses were assumed to be taken 

at their scheduled times; treatment was administered every 12 hours for 30 days.  The age 

range for the general population was not restricted.  A total of 288 independent 

simulation trials were run. 

Data pertaining to 12 distinct wet granulation batches of the model theophylline 

tablets were utilized to conduct these simulations (refer to section 2.2.3).  As was 
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described earlier, 12 and 10 units per batch were sampled for dissolution and content 

uniformity testing, respectively.  Prior to dissolution or content uniformity testing, a 

reflectance spectrum for both sides of each tablet was acquired over the wavelength range 

of 1100 – 2498 nm at a 2 nm increment, averaging 32 scans (FOSS NIRSystems 5000-II, 

Vision version 2.00, FOSS NIRSystems, Inc., Laurel, MD).  Each dissolution profile was 

modeled using a two-parameter Weibull function, which yielded a shape and scale 

parameter.  Data corresponding to tablets that underwent content uniformity testing were 

used to construct calibration models for the prediction of theophylline.  

Calibration models were constructed using NIR reflectance data, expressed in 

absorbance units, of the 120 tablets (240 spectra) and amount of theophylline (%) as 

determined via UV-Vis spectroscopy (refer to section 2.2.3).  Partial least-squares 

regression122 was used via the SIMPLS algorithm123 to relate spectroscopic response to 

theophylline amount.  Preprocessing routines, including standard normal variate (SNV) 

scaling, detrending, derivatives, and combinations of the preceding were tested.124  The 

most favorable data pretreatment method was selected based on a minimization of cross-

validation error.  Contiguous block cross-validation with a block size of 5 was used to 

generate the temporary cross-validation models.  For all preprocessing routine(s) 

employed, spectroscopic data were mean-centered while reference data were scaled to 

zero mean and unit variance.  Model rank was chosen as the point where a rapid decline 

in the incremental variance captured was observed, cognizant of the expected feasible 

limit of dimensionality based on the factors varying within the design.  Detrending (first-

order) was determined to be the optimal data pretreatment method.  Two latent variables 

were necessary to adequately model these NIR absorbance data for the prediction of 
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theophylline.  This calibration model was subsequently applied to the 288 spectra of the 

144 tablets subjected to dissolution testing in order to predict their theophylline levels 

(i.e., testing data set); predicted amounts were compared to the nominal levels for each 

tablet as per the original design.117  Predicted and reference values were used to 

determine the root-mean-standard error (RMSE).  The RMSE for cross-validation 

(RMSECV), calibration (RMSEC), and testing (RMSET) were calculated using the 

formula 
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where iy  is the measured amount, iŷ is the predicted amount, and n is the number of 

samples for the data set under consideration.  Summary statistics for the calibration 

model are provided in Table 3.1. 

 
Table 3.1. Calibration summary statistics for the prediction of theophylline.   

Data Type NIR (Reflectance) 
Method PLS 

Preprocessing First-Order Detrending 
Latent Variables 2 

Component Theophylline 
R2

CAL 0.980 
R2

CV 0.948 
R2

TEST 0.982 
RMSEC (%) 0.96 

RMSECV (%) 1.57 
RMSET (%) 1.04 
BiasCV (%) -0.248 

BiasTEST (%) -0.250 
 

Projection of the spectra of the tablets subjected to dissolution testing onto the 

calibration model provided theophylline amounts.  These data supplement the available 
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information content (i.e., Weibull shape and scale parameters) for these tablets.  Predicted 

theophylline percentages for the same tablet varied slightly due to minor inconsistencies 

(e.g., positioning, heterogeneity, constituent packing) detected between the two tablet 

surfaces.  While the theophylline percentages were unique for a given tablet, the Weibull 

scale and shape parameters were identical for duplicate scans.  Therefore, 288 distinct 

responses were available for the 144 tablets. 

With the percent theophylline and Weibull scale and shape parameter data now 

available, each distinct response was used as an input set for a given risk simulation trial.  

Specifically, predicted theophylline percentages were compared to the nominal values to 

calculate the percent deviation from label claim; this percentage was then used to adjust 

each patient’s dose once it was individualized using the iterative dosing scheme.  The 

Weibull parameters and deviation from label claim were constant throughout a given 

simulation; the inputs were updated with values corresponding to a new tablet (or the 

reverse side of the same tablet) only once the current trial met the convergence criteria.  

Thus, the only element varying within a given trial was the pool of patients tested; all 

patients received tablets that displayed identical content uniformity and dissolution 

characteristics.   

3.2.2 USP Testing 

 Several USP monographs for theophylline products have been published in the 

USP-NF.125  Tests for uniformity and dissolution draw on the general chapters <905> and 

<711>, respectively, where the individual monographs indicate the specifications for 

each test for a particular product.  A monograph for theophylline tablets is available; 

however, it is limited to immediate-release products.  Since the model drug delivery 
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system is an extended-release tablet, specifications were extracted from its closest analog, 

the monograph for extended-release capsules; where appropriate, the specifications for 

products labeled for dosing every 12 hours were used.  This assumption is justified given 

that the specifications outlined in the monograph ought to have been optimized in terms 

of biopharmaceutical performance.  Since theophylline is highly soluble and highly 

permeable, comparable dissolution curves should yield similar safety and efficacy 

profiles for the two delivery systems.  As stated in the monograph, extended-release 

capsules are to contain between 90 and 110 percent of the labeled amount of anhydrous 

theophylline.  All content uniformity analyses were conducted using this criterion.  

Theophylline content was determined using the aforementioned calibration model.  Given 

that dissolution of the model tablets was conducted in deionized water (refer to section 

2.2.3), dissolution profiles were evaluated using Test 10; none of the other 9 tests are 

applicable.126  Acceptance criteria for the percentage of label claim dissolved at the 

specified times are summarized in Table 3.2.  All dissolution testing was conducted using 

these criteria according to USP <711>.80      

 
Table 3.2. Acceptance criteria for the percent label claim of theophylline dissolved at the specified times 
according to USP Test 10 for 12-hour extended-release capsules. 

Time 
(hours) 

Amount Dissolved 
(% Label Claim) Designation 

1 6 - 27 Q1 
2 25 - 50 Q2 
4 65 - 85 Q4 

8 > 80 Q8 
 

 Dissolution profiles (% theophylline released versus time) of the 144 tablets 

manufactured via the wet granulation method were evaluated according to the criteria 

outlined in Table 3.2 using a program written in-house.  The program determined the 
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percent theophylline dissolved (i.e., Q1, Q2, Q4, and Q8) at the specified times (i.e., 1, 2, 

4, and 8 hours) for each tablet.  Once these data were available, each tablet was evaluated 

according to USP <711> under the assumption that the one tablet was representative of a 

uniform lot (i.e., all tablets within the given lot had identical Q1, Q2, Q4, and Q8 values).  

Level once acceptance criteria for extended-release dosage forms states that all Q values 

for each unit tested must fall within the stated ranges.  Furthermore, all units tested must 

have a Q value greater than the amount specified for the final test time.80  Since the lots 

are assumed to be uniform, proceeding to level two testing upon failure of level one or 

level three upon failure of level two will not alter the test outcome.  Thus, the tablets 

were only subjected to level one testing according to the criteria outlined in Table 3.2.   

Given that the risk simulator was constructed to process Weibull parameters 

estimates rather than Q values, least-squares regression was used to relate the dissolution 

time constants (T63.2) of the 144 tablets manufactured via the wet granulation method to 

Q1, Q2, Q4, and Q8; linear as well as polynomial fits were evaluated.  The predictive 

models for Q1, Q2, Q4, and Q8 are summarized in Table 3.3; RMSEC was determined 

using Equation 3.1.  Since T63.2 is a reasonable surrogate for Q1, Q2, Q4, and Q8, at least 

inasmuch as the scenarios tested, USP <711> results for the model system were displayed 

in terms of T63.2.  Reported specifications for T63.2 only encompass tablets (lots) that 

passed USP <711> according to the criteria outlined in Table 3.2. 
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Table 3.3. Summary of the predictive models for Q1, Q2, Q4, and Q8 with T63.2 as the predictor. 
Dissolution Time 

(hours) Designation Transformation Equation 
RMSEC 

(%) R2
CAL 

1 Q1 1/Q1 1/Q1 = 0.00017*T63.2
3 - 0.0031*T63.2

2 + 0.026*T63.2 – 0.0030 2.58 0.874 

2 Q2 None Q2 = -0.34*T63.2
3 + 6.65*T63.2

2 - 45.58*T63.2 + 129.75 1.91 0.987 

4 Q4 1/Q4 
1/Q4 = 1.68x10-5*T63.2

4 - 0.00037*T63.2
3 + 0.0028*T63.2

2 – 0.0054*T63.2 
+ 0.013 1.80 0.993 

8 Q8 None Q8 = 0.28*T63.2
3 - 4.60*T63.2

2 + 15.88*T63.2 + 84.53 1.29 0.987 
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3.3 Results and Discussion 

3.3.1 USP <905> and <711> ‘Testing’ 

The scores for inefficacy and toxicity for the 288 trials were negatively correlated 

(r = -0.8785), which is not as strong as that which was observed in the risk assessments 

(reference Chapter 2).  The reduction in covariance between inefficacy and toxicity is a 

consequence of assuming uniform production; lots which deviate to a greater extent from 

nominal result in theophylline plasma concentrations that are consistently off-target, and, 

therefore, outside the concentration range where inefficacy and toxicity are inversely 

related.  Due to the lack of (complete) correspondence, results were depicted for both 

adverse events.  

While it would have been straightforward to assign artificial values for 

theophylline content and the Weibull dissolution parameters, it was particularly desirable 

to ascertain the true relationship between these factors seeing as how they are 

confounding.  Thus, to avoid testing a combination of inputs that were potentially 

impractical, production tablets from 12 different batches were used to estimate 

theophylline content and the Weibull parameters.  The 144 tablets manufactured via a wet 

granulation method were delineated into 288 distinct responses where each response 

included percent theophylline (hence, deviation from nominal or label claim), the 

Weibull shape and scale parameters, and Q1, Q2, Q4, and Q8.  These data afford the 

opportunity to evaluate the tablets, which were assumed to each represent a uniform 

production lot, according to the USP tests for content uniformity and dissolution.  

Likewise, these data can be harnessed to investigate the impact that specific 
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manufacturing scenarios have on clinical performance.  In other words, the risk simulator 

can be used to project the clinical consequences of producing lots displaying various 

content uniformities and dissolution characteristics.   

 The results of the 288 simulation trials were arranged according to the input 

values for theophylline, expressed as percent deviation from nominal, and the Weibull 

dissolution time constant.  Figure 3.3 displays plots of the resultant inefficacy and 

toxicity risk scores versus API deviation from nominal (synonymous to deviation from 

label claim).  The lower and upper specifications limits for content uniformity, as 

outlined in the individual monograph for extended-release theophylline capsules, are also 

depicted.  All of the 288 lots tested were well within the acceptance limits for content 

uniformity.  Similarly, Figure 3.4 displays plots of the resultant inefficacy and toxicity 

risk scores versus the Weibull dissolution time constant.  The lower and upper 

specification limits for dissolution are also depicted.  For the conditions assessed, tablets 

with dissolution time constants between 3.10 and 3.77 hours resulted in Q1, Q2, Q4, and 

Q8 values that met the acceptance criteria outlined in Table 3.2.  In total, only 62 of the 

288 lots passed USP <711>. 
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Figure 3.3. Plot of risk scores for inefficacy (a) and toxicity (b) versus theophylline amount, expressed as 
percent deviation from nominal (i.e., label claim).  The bold vertical lines indicate the lower and upper 
specification limits for content uniformity analysis as per USP <905>. 

 

Figure 3.4. Plot of risk scores for inefficacy (a) and toxicity (b) versus the Weibull dissolution time 
constant.  The bold vertical lines indicate the lower and upper specification limits for dissolution analysis as 
per USP <711> and the individual monograph for theophylline extended-release capsules. 

 USP tests for content uniformity and dissolution were conducted in sequential 

fashion, which is in line with the current approach for solid oral dosage form release 

testing.  Combining the outputs of the USP tests and the risk simulations exposes one of 

the potential pitfalls of the current system.  As Figure 3.3 illustrates, samples that met the 

criteria for content uniformity, criteria which are intended to ensure the safety and 
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efficacy of the final product, display disparate levels of clinical performance.  The 

maximum risk scores observed in the risk assessments, for which content uniformity was 

identified as a CQA, were 26.46 % and 8.34 % for inefficacy and toxicity, respectively, 

well below many of the scores obtained during these studies.  Despite considerable 

differences in clinical performance, tablets sampled from any of the simulated lots would 

have been taken as acceptable.  It is quite presumptuous to uniformly categorize all 288 

scenarios.  Figure 3.4 offers a similar prospective on the current approach to final product 

testing.  Although the lots which passed USP <711> had relatively low risk scores for 

inefficacy, the toxicity risk scores were exceptionally high, the majority of which were 

above the maximum risk score observed in the risk assessments (reference Chapter 2).  

Albeit an artificial construct, these data emphasize the potential disconnect between final 

product specifications and clinical performance.  This underscores the importance of 

defining quality in terms of risk by linking production characteristics to clinical 

attributes.   

 Another potential shortcoming of the current approach to final product testing lies 

in its univariate approach.  As previously noted, a clinical inter-dependence between API 

content and drug dissolution is likely.  These data support such an interaction.  As Figure 

3.3 illustrates, lots that were low in theophylline content posed a higher risk for 

inefficacy, whereas lots that were in excess of label claim presented a greater likelihood 

of toxicity.  Similarly, Figure 3.4 depicts the clinical impact of various dissolution time 

constants; smaller dissolution time constants (corresponds to faster release rates) result in 

lower probability of being inefficacious, while larger dissolution time constants 

(corresponds to slower release rates) pose a reduced risk of toxicity.  The impact on the 
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risk scores is exacerbated when the effects of content uniformity and dissolution are 

considered simultaneously.  Take, for instance, the group of toxicity risk scores that 

correspond to dissolution time constants between 1 and 2 hours (Figure 3.4b).  Although 

a low dissolution time constant generally yields a high probability of toxicity, time 

constants between 1 and 2 hours resulted in a considerable range in risk scores.  This can 

be explained, at least in part, by the interaction between content uniformity and T63.2; 

super-potent tablets with short dissolution time constants posed a greater toxic risk than 

did sub-potent tablets.  Although this interaction is reflected in the multivariate risk score, 

it is not accounted for in the univariate specifications utilized in USP <905> and <711>.  

This begs the question, how good are the current specifications at ensuring quality? 

It is not entirely appropriate to question the validity of final product specifications 

on the basis of risk score magnitudes without ascribing some level of clinical significance 

to the scores themselves.  While conclusions regarding the clinical significance of a risk 

score should be drawn by a multidisciplinary team comprised of clinicians, scientists, 

process engineers, statisticians, etc., thresholds defining low, medium, and high risk were 

instituted to further underscore the potential drawbacks of assessing final product quality 

under the current paradigm.  Inefficacy risk scores less than or equal to 25.979 %, greater 

than 25.979 % and less than or equal to 26.461 %, and greater than 26.461 % were 

classified as low, medium, and high risk, respectively.  Likewise, toxicity risk scores less 

than or equal to 7.373 %, greater than 7.373 % and less than or equal to 8.336 %, and 

greater than 8.336 % were classified as low, medium, and high risk, respectively.  The 

median risk scores from the 2x2x2x2x2x2 full factorial experimental design (refer to 

Chapter 2) were used to delineate low and medium risk, while the maximum observed 



 184

risk scores for inefficacy and toxicity were used to distinguish medium and high risk for 

the two adverse events.  Figure 3.5 illustrates the combined effect of theophylline content 

and T63.2 after the scores were categorized according to low, medium, and high risk. The 

acceptance criteria for USP <905> and <711> are also defined.  Figure 3.5a illustrates 

that these criteria are likely much too strict (more so for <711>) when considering 

inefficacy, and are inaccurate for assurance of safety.  The criteria would ideally take into 

consideration both adverse events, and, therefore, would need to be optimized to 

simultaneously mitigate the likelihood of inefficacy and toxicity.  Depending on the risk-

to-benefit ratios determined by the multidisciplinary team, the two adverse events are 

likely to be disproportionally weighted when optimizing the criteria.  For instance, certain 

toxic events (e.g., headache) might be acceptable (to both the clinician and the patient), 

thereby reducing the sensitivity of the test criteria to specific fluctuations in toxicity risk 

scores as a result of the corresponding increase in efficacy.  

 

Figure 3.5. Plots of theophylline content versus Weibull dissolution time constant for inefficacy (a) and 
toxicity (b) with the clinical outcomes categorized according to low, medium, and high risk.  The 
acceptance limits for USP <905> and <711> are indicated by the bold rectangle. 
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3.3.2 Design Space 

 In light of the deficiencies which limit assessments of final product quality, risk 

simulation has been used to delineate the relationship between the CQAs of the model 

drug delivery system and its clinical performance (i.e., PBQS).  The relationship between 

theophylline content, T63.2, and inefficacy and toxicity risk is depicted in Figure 3.6.  As 

the following discussion addresses, the PBQS can then be used to generate a design space 

where the incoming CQAs have been conditioned on estimates of inefficacy and toxicity 

risk.  To be consistent with the examples previously shown, clinical thresholds were 

instituted to generate the design spaces.  Inefficacy risk scores less than or equal to 

25.979 %, greater than 25.979 % and less than or equal to 26.461 %, and greater than 

26.461 % were classified as low, medium, and high risk, respectively.  Likewise, toxicity 

risk scores less than or equal to 7.373 %, greater than 7.373 % and less than or equal to 

8.336 %, and greater than 8.336 % were classified as low, medium, and high risk, 

respectively.    

 

Figure 3.6. Contour plots depicting the relationship between theophylline content and the Weibull 
dissolution time constant for inefficacy (a) and toxicity (b).  The color bars represent the ranges of the risk 
scores (%). 
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Two artificial design spaces (independently) conditioned on quantitative estimates of 

inefficacy and toxicity risk are presented in Figure 3.7.  The example design spaces were 

confined to combinations which resulted in low risk scores.  Although the design spaces 

were restricted to three dimensions (projected onto a two-dimensional contour plot) to 

facilitate viewing, the reader should make note that the hyperspace can be n-dimensional.  

The design spaces can be adjusted to reflect a multidisciplinary team’s conclusion 

regarding acceptable risk using the data represented in Figure 3.6.  Validation should 

confirm that design space appropriately discriminates clinical risk.   

 

Figure 3.7. Simulation based design spaces for a model theophylline extended-release tablet conditioned on 
inefficacy (a) and toxicity (b) risk scores.  Dark blue, sea green, and burgundy signify low, medium, and 
high risk, respectively. 

Although dissolution variability was not identified as a CQA during the risk 

assessment, it was included as an input to the design space.  At first glance, it might 

appear as though the results of the risk assessment were discounted in view of the fact 

that T63.2 was an input to the design space.  The results of the risk assessment, however, 

must not be taken at face value.  While dissolution variability was not critical to quality 

(at α = 0.05) within the experimental design, it interacts with content uniformity, which 
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was critical to clinical performance.  If T63.2 were not monitored, it may unknowingly 

drift to a level that would, when combined with the effects of in-specification content 

uniformity, unfavorably impact clinical performance.  Thus, it is imperative that T63.2 be 

included in the design space.  This is true for all non-critical parameters that interact 

(within ranges reasonable for a given process) with CQAs.     

Furthermore, there is no direct penalty (e.g., cost, model complexity) for 

including T63.2 in the design space given that the architecture of the risk simulator (Figure 

2.1) predetermined the mathematical relationship between the T63.2 and inefficacy and 

toxicity risk.  Integration of an attribute not previously studied in the risk assessment 

would, however, invalidate the PBQS.  This underpins the need to combine the 

information gained from the risk assessment with knowledge of the process and product. 

3.3.3 A New Release Paradigm 

 A design space conditioned on probabilistic estimates of clinical performance has 

significant regulatory implications; the advantages currently promoted (e.g., reduced 

comparability protocol reporting) are still applicable.  Although hyperspaces that utilize 

CQAs as inputs are informative, those which directly link PCCPs to clinical performance 

(i.e., those which are specific to a process) are likely to offer the greatest regulatory 

flexibility; this is largely a function of their direct interpretability regarding the process 

itself.  Once the PBQS are established, efforts to generate process models can commence; 

data upon which process models are developed may, in fact, already be available.  These 

models could serve as transfer functions between the PCCPs and CQAs, effectively 

linking a given process to clinical performance.  Control models, therefore, can be 

instituted to oversee process parameters such that clinical performance is maintained 
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within the design space.  Although material attributes (e.g., API particle size distribution) 

were not included in the artificial construct, they are by no means precluded from such an 

approach.  Material attributes can be integrated into the risk assessment as well as the 

process and control models.   

 Thus, a design space constructed from PCCPs (as well as material attributes) and 

estimates of clinical performance can be, coincident with the current intentions of the 

initiative, subjected to regulatory review.  The appropriate validation data, which should 

include actual clinical trial and production data, can be used to demonstrate the predictive 

power of the risk simulator, the process and control models, and, ultimately, the process-

specific design space.  Regulatory approval would, therefore, create a potential platform 

for real-time product release.  In essence, final product conforming to the design space 

need not be re-evaluated for assurance of quality.  The design space, which has its own 

integrated specifications, thereby, serves as the ultimate final product release test.  In 

spite of the best design of experiments, there always exists the potential for introduction 

of unmodeled variance (e.g., change in raw material supplier, shift in production sites).  

Therefore, the design space (and all of its associated models) must be continually 

managed, and updated as necessary.      

3.4 Conclusions 

In silico simulations were conducted to generate inefficacy and toxicity risk 

scores for 288 uniform lots of extended-release theophylline tablets displaying explicit 

content uniformity and dissolution variability.  These data were used to demonstrate 

potential weaknesses of the univariate specifications utilized in USP <905> and <711> 

tests for content uniformity and dissolution, respectively.  The simulated results 
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underscore several potential deficiencies.  First, in-specification product demonstrated a 

large range of quality.  This was especially true for the content uniformity results, where 

all of the 288 uniform lots assessed conformed to the final product specifications.  

Secondly, dissolution testing, which was conducted using criteria outlined in USP <711> 

and the individual monograph for extended-release theophylline capsules, revealed that 

certain out-of-specification lots posed a lower risk of inefficacy and toxicity.  Lastly, the 

relationship between final product specifications and clinical performance was 

obfuscated even further when the specifications for USP <905> and <711> were 

considered simultaneously in the context of acceptable/unacceptable levels of inefficacy 

and toxicity risk.  The simulated results illustrated that the criteria for dissolution testing 

were too strict for inefficacy and were inaccurate for toxicity.  This was related to the 

tests’ inabilities to account for interaction between content uniformity and dissolution 

variability.  

This work also addressed, principally for design space, the consequences of re-

defining pharmaceutical quality in terms of risk by linking production characteristics to 

clinical attributes.  A risk simulator was used to define the underlying relationship 

between quality attributes and clinical performance for the model theophylline extended-

release tablets.  Both critical (i.e., content uniformity) and non-critical (i.e., Weibull 

dissolution time constant) attributes were used as inputs to the design space, which was 

conditioned on quantitative estimates of inefficacy and toxicity risk.  Such a design space 

can then be applied to specific processes using process models, which relate PCCPs to 

the quality attributes, as transfer functions to ultimately link process parameters to 

clinical performance.  The direct link enhances the information content of the design 
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space by omitting quality surrogates (e.g., dissolution, moisture content) that are utilized 

in current design space practices.  Design spaces conditioned on estimates of clinical 

performance may ultimately expedite real-time product release efforts by moderating 

final product testing. 
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Chapter 4: A Near-Infrared Spectrscopic Investigation of Relative 
Density and Crushing Strength in a Four-Component Solid Dosage 
System  

 

The material presented in Chapter 4 was previously published in Short SM, Cogdill RP, 
Wildfong PLD, Drennen III JK, Anderson CA 2009. A near-infrared spectroscopic 
investigation of relative density and crushing strength in four-component compacts. 
Journal of Pharmaceutical Sciences 98(3):1095 - 1109. 

 

4.1 Introduction 

 Near-infrared spectroscopy (NIRS) has demonstrated its utility for the analysis of 

intact pharmaceutical dosage systems.124  Given the quantitative capabilities when used in 

conjunction with multivariate calibration, NIRS is frequently employed for the non-

destructive prediction of constituent concentrations within pharmaceutical compact and 

tablet matrices.  It is well understood, however, that near-infrared (NIR) spectra convey 

information pertaining to both the chemical and physical nature of the samples.127  

Signals related to physical variation (e.g., hardness or crushing strength) are commonly 

treated as interferences in composition calibration models.  Generally, variations in 

physical factors such as relative density (solid fraction) result in a characteristic baseline 

shift,128-133 the effect of which can be suppressed by mathematical treatment.  Two 

common chemometric algorithms used for this purpose are standard normal variate 

(SNV)134 scaling and multiplicative scatter correction (MSC).135  Suppression of these 

physical features usually reduces the number of model factors required to achieve 

optimum performance. 
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Beyond chemical quantification, numerous studies have documented the 

modeling of NIR data for the characterization of physical attributes.  One aspect of solid 

oral dosage forms that has been examined using this technology is tablet hardness or 

crushing strength.  Drennen and Lodder pioneered the use of NIRS for the measurement 

of tablet hardness.129,136  Subsequently, numerous publications have demonstrated NIR 

calibrations for crushing strength.128-133,137-149  The majority of these articles suggest that 

an increase in tablet hardness results in a smoother tablet surface, increasing apparent 

NIR absorption (presumably because more light is lost to specular reflectance).  Otsuka 

and Yamane took a unique approach in which they generated calibration models to 

predict the eventual hardness of tablets produced at constant compaction pressure from 

powder mixtures having varying blend times (hence, changing the distribution of 

constituents).138  While the authors were able to generate calibration models having 

significant correlation to tablet hardness, they were unable to relate spectral changes to a 

particular constituent.  The authors suggested that the NIR calibration was detecting not 

only composition, but more subtle factors including porosity, pore structure, and the 

tablet surface and geometry.138  Three other groups have investigated the use of NIRS for 

the analysis of tablet porosity; all determined that NIRS was suitable for the measurement 

of tablet porosity, reporting varying levels of success with the use of different 

mathematical techniques.141,143,149   

The objectives of this work were to demonstrate (1) characteristic absorption 

effects of NIR radiation by compacts of varying relative density and crushing strength, 

(2) the source of spectral variability resulting from varying relative density and crushing 

strength, (3) how multivariate analysis can be used to elucidate the effects of chemical 
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composition upon the physical parameters of pharmaceutical solid oral dosage forms, and 

(4) how calibration experimental design influences spectroscopic variance. Finally, these 

data are used to present a revised rationalization for NIR sensitivity to compact hardness.   

4.2 Materials and Methods  

4.2.1 Compact Production  

 The details regarding the production of the compacts used for this work have been 

described elsewhere.150  Briefly, a fully-balanced, four-constituent mixture design 

consisting of anhydrous theophylline (Lot No. 92577, Knoll AG, Ludwigshafen, 

Germany), Lactose 316 Fast Flo NF Monohydrate (Lot No. 8502113061, Hansen Labs, 

New Berlin, WI), microcrystalline cellulose (MCC, Avicel PH-200, Lot No. M427C, 

FMC BioPolymer, Mechanicsburgh, PA), and soluble starch GR (Lot No. 39362, EMD 

Chemicals Inc., Gibbstown, NJ) was generated.  The approximate median particle size of 

the theophylline, lactose, MCC, and starch (reported by documentation from their 

respective suppliers), was 90, 100, 180, and 17 microns, respectively.  No further 

analyses or operations were performed on the raw materials to determine or alter their 

particle size or distribution.  Twenty-nine design points were chosen to cover a wide 

composition range and to remove any possibility of factor aliasing (Table 4.1).  The 

mixture covariance matrix demonstrates that the design is balanced in all factors, giving 

equal emphasis to all constituents. 
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Table 4.1. Concentration design for the 4-component compacts. 

Design 
Point 

Anhydrous 
Theophylline 

(w/w) 

Lactose 
Monohydrate 

(w/w) 

MCC 
(PH200) 

(w/w) 

Soluble 
Starch 
(w/w) 

1 0.600 0.200 0.200 0.000 
2 0.400 0.400 0.200 0.000 
3 0.200 0.600 0.200 0.000 
4 0.400 0.200 0.400 0.000 
5 0.200 0.400 0.400 0.000 
6 0.200 0.200 0.600 0.000 
7 0.600 0.200 0.000 0.200 
8 0.400 0.400 0.000 0.200 
9 0.200 0.600 0.000 0.200 

10 0.600 0.000 0.200 0.200 
11 0.400 0.200 0.200 0.200 
12 0.200 0.400 0.200 0.200 
13 0.000 0.600 0.200 0.200 
14 0.400 0.000 0.401 0.200 
15 0.200 0.200 0.400 0.200 
16 0.000 0.400 0.400 0.200 
17 0.200 0.000 0.600 0.200 
18 0.000 0.200 0.600 0.200 
19 0.400 0.200 0.000 0.400 
20 0.200 0.400 0.000 0.400 
21 0.400 0.000 0.200 0.400 
22 0.200 0.200 0.200 0.399 
23 0.000 0.400 0.200 0.400 
24 0.200 0.000 0.400 0.400 
25 0.000 0.200 0.400 0.400 
26 0.200 0.200 0.000 0.600 
27 0.200 0.000 0.200 0.600 
28 0.000 0.200 0.200 0.600 
29 0.250 0.250 0.250 0.250 

 

Materials for each design point mixture were dispensed by weight (Data Range, 

Model No. AX504DR, Mettler Toledo, Columbus, OH), and subsequently transferred to 

25 mL glass scintillation vials.  In total, 6000 mg of material was weighed out for each 

point, and the nominal weights for all constituents were adjusted to the observed mass 

data to calculate actual concentration.  The vials were mixed for 5 minute cycles by 

placing them on the rotating drive assembly of a Jar Mill (US Stoneware, East Palestine, 

OH, USA).  After each blending period, a NIR reflectance spectrum was acquired 



 195

through the bottom of each vial (FOSS NIRSystems 5000, FOSS NIRSystems, Inc., 

Laurel, MD), and an ad hoc partial least-squares II (PLS-2) calibration was constructed to 

assess homogeneity.  Mixtures were assumed to be homogeneous when further mixing 

failed to yield an increase in the calibration coefficient of determination.   

The mixtures from each design point were then subdivided and compacted at one 

of 5 pressures (67.0, 117.3, 167.6, 217.8, 268.1 MPa) using a Carver Automatic Tablet 

Press (Model No. 3887.1SD0A00, Wabash, IN) equipped with 13 mm flat-faced punches 

and die.  A dwell time of 10 seconds was employed.  Six compacts weighing 

approximately 800 mg were produced per design point, with the sixth tablet’s compaction 

pressure pseudo-randomly selected from one of the five possible levels, for a total of 174 

compacts.  The compaction order was randomized to minimize heteroscedastic errors.  

Following compaction, the samples were retained in the sealed vials for 15 days prior to 

spectroscopic analysis.  

Compacts consisting of each pure component were produced in a similar manner.  

Approximately 800 mg of each component was compacted at 9 different compaction 

pressures (67.0, 90.5, 117.3, 140.8, 167.6, 191.0, 217.8, 241.3, and 268.1 MPa) using the 

same press and tooling.  Four additional pressures were employed to increase the number 

of data points in each compaction profile.  Three replicate compacts were produced at 

every compaction pressure for each constituent, yielding 27 pure compacts per material.  

The manufacturer’s lot of lactose monohydrate used for the compaction profiles differed 

from that used to make the 4-component compacts (Lot No. 8505010961, Hansen Labs, 

New Berlin, WI); all other materials were from the aforementioned lots.   
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4.2.2 Data Acquisition, Instrumentation, and Software 

       Near-infrared reflectance measurements were acquired for both sides of each 

compact (excludes pure component compacts) using a scanning monochromator 

instrument, equipped with a Rapid Content Sampler, over the wavelength range of 1100 – 

2498 nm at a 2 nm increment, averaging 32 scans (FOSS NIRSystems 5000-II, Vision 

version 2.00, FOSS NIRSystems, Inc., Laurel, MD).  Two ad hoc partial least-squares II 

(PLS-2) calibrations, using the constituent concentrations as reference data, were 

constructed from reflectance spectra corresponding to a specific surface of the tablets.  

Since the coefficients of determination did not differ until the third decimal place, it was 

decided to only consider measurements for one compact face.  

 Transmittance measurements were acquired on a scanning monochromator 

instrument equipped with an InSightTM Tablet Analyzer over the wavelength range of 600 

– 1898 nm at a 2 nm increment, averaging 32 scans (FOSS NIRSystems 6500, Vision 

version 2.00, FOSS NIRSystems, Inc., Laurel, MD).  The wavelength range of the 

transmittance spectra was truncated to 800 – 1400 nm due to limitations imposed by the 

sample pathlength. 

All spectral data were analyzed in the Matlab environment (version 7.1, The 

MathWorks, Natick, MA) using the PLS_Toolbox (version 3.0, Eigenvector Research, 

Inc., Manson, WA) and software developed at Duquesne University.  

4.2.3 Physical Testing 

 Following compaction, the samples were stored in sealed glass scintillation vials 

and were removed only for analysis.  After an approximate 40 day span to allow for 

radial expansion, the compacts were weighed (Data Range, Model No. AX504DR, 
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Mettler Toledo, Columbus, OH) and their thicknesses and diameters were measured 

using a digital micrometer (TESA Micromaster, Model No. IP54, Brown & Sharpe, 

North Kingstown, RI).  Assuming a cylindrical geometry, these data were used to 

estimate each compact’s density (ρcomp) according to the formula 
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where m, d, and t are compact mass, diameter, and thickness, respectively.  The pure 

component tablets were allowed to relax for approximately 55 days before their masses 

and dimensions were acquired.  The true density of each constituent was estimated via 

helium pycnometry (Micromeritics Accupyc, Model No. 1330, Particle & Surface 

Sciences Pty. Limited, Gosford, New South Wales, Australia).  The mean of five powder 

sub-samples was used for each constituent (Table 4.2).  The true densities (ρtrue) of each 

compact were estimated using the equation  

Table 4.2. Component true densities as determined by helium pycnometry. 
Component Theophylline Lactose MCC Starch 
True Density (g/cm3) 1.41 1.5063 1.5084 1.477 
True Density (g/cm3) 1.4071 1.5072 1.5084 1.4768 
True Density (g/cm3) 1.4034 1.5072 1.508 1.4766 
True Density (g/cm3) 1.4024 1.5076 1.5053 1.4766 
True Density (g/cm3) 1.4012 1.5074 1.5058 1.4767 
Average True Density (g/cm3) 1.405 1.507 1.507 1.477 
Standard Deviation (g/cm3) 0.0036 0.0005 0.0015 0.0002 
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where Xi and ρtrue,i are the w/w contribution and the true density for the ith component 

within a n-component sample.  For the work herein, n was either 4 or 1 corresponding to 
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the mixture and pure component compacts, respectively. The relative density (D) of each 

mixture and pure component compact was estimated as  
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 The crushing strength of the compacts, reported in kiloponds (kp), was estimated 

for the mixture compacts by a diametric crushing test (Vision Tablet Testing System, 

Model No. ElizaTest 3+, Elizabeth-Hata International, North Huntingdon, PA).  The 

maximum recordable value for this particular instrument was 55.9 kp.  Twelve calibration 

compacts and one test compact were evaluated to have values of (at least) 55.9 kp; one 

other test sample yielded a value of 0.0 kp.  The information pertaining to these 14 

compacts was withheld from the subsequent crushing strength modeling but was included 

in the relative density analyses.      

4.2.4 Regression Analyses  

 Near-infrared reflectance and transmittance spectra were independently modeled 

in an identical manner.  Partial least-squares (PLS) regression122 was used via the 

SIMPLS algorithm123 to relate spectroscopic response to relative density and crushing 

strength.  No spectral preprocessing was employed; data were only transformed to 

absorbance (log (1/R) or log (1/T)) and subsequently mean-centered.  All reference data 

(relative density and crushing strength) were scaled to zero mean and unit variance prior 

to modeling.  Given that the calibrations were intended to model the physical variance 

within the spectra, preprocessing routine(s) were not applied.  Certain applications may 

necessitate spectral preprocessing to suppress interfering signals (e.g., spectrometer drift); 

however, implementation of such methods may reduce the net analyte signal150 of a 
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feature.  For this work, preprocessing routines, including SNV scaling, detrending, 

derivatives, and combinations of the preceding, were tested at the outset;124 all of these 

pretreatments reduced the ability to predict relative density and crushing strength from 

NIR reflectance and transmittance spectra.  

The optimum model was selected based on minimization of “batch-wise” cross-

validation error,151 where the batches in this instance corresponded to the 29 different 

concentration levels.  The root-mean-standard error (RMSE) for cross-validation 

(RMSECV), calibration (RMSEC), and testing (RMSET) were calculated using the 

formula 
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where iy  is the measured parameter, iŷ is the predicted parameter, and n is the number of 

samples for the data set under consideration.  The testing data set consisted of the sixth 

compact from each design point, whose compaction pressure was pseudo-randomly 

assigned one of the five possible levels.  While this does not constitute a truly 

independent dataset for model validation (i.e., for use in process control), the course of 

action is suitable for exploratory analyses such as this. 

4.3 Results and Discussion 

4.3.1 Optical Effects of Varying Compaction Pressure 

  The optical effects of varying compaction pressure, which elicits change in the 

physical parameters of the samples, are difficult to visualize amongst the broad chemical 

variation built into the design.  Thus, Figure 4.1a and Figure 4.1b display the 
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characteristic baseline shifts for reflectance and transmittance spectra associated with 

changes in tablet density when the percent contributions of the constituents are 

unchanging.  The baseline slope increases with increasing compaction pressure for 

reflectance spectra while the opposite trend is observed for transmittance measurements. 

 

Figure 4.1. Raw NIR absorbance spectra illustrating the spectral effect of compaction pressure when 
concentration is unchanging for reflectance (a) and transmittance (b) measurements.  The design point 
illustrated is 40% theophylline, 40% lactose, 20% MCC, and 0% starch.  The intensity recorded at the first 
wavelength of each scan was subtracted from all remaining wavelengths to facilitate viewing. 

The characteristic increase in measured absorbance as a result of an increase in 

compaction pressure for NIR reflectance spectra (Figure 4.1a) is consistent with the 

results published over the last fifteen years.128-133,137-149  An increase in compaction 

pressure results in a decrease in reflected intensity.  Without the benefit of corresponding 

transmittance measurements, it is difficult to determine whether the effect is due to 

specular reflectance, absorption, or transmission of the source radiation.  As suggested by 

Cogdill and Drennen,124 Figure 4.1b reveals that the latter may well be true; as 

compaction pressure increases, transmission also increases. 
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Otsuka et al. recently published the results of a detailed scientific study of this 

effect.152  The authors cite a light penetration model based on time-of-flight analysis of 

wood chips, where the transmittance of NIR radiation can be ascribed to the pore 

structure of the sample.  It was shown that as the tablet porosity decreases, the solid/solid 

boundary surface area increases, resulting in less scattered light and more transmitted 

light.  On the other hand, as the porosity increases, the air/solid boundary surface area 

increases, and scattering predominates.  As for reflectance of NIR radiation, the authors 

hypothesize that for a tablet having low porosity, the light penetrates deep into the sample 

and is consequently absorbed between the matrices.  Conversely, reflectance intensity is 

higher in a highly porous tablet due to scattering at the air/solid boundaries, which 

precludes the radiation from penetrating deep into the sample.152  

These results dispel a commonly held explanation for NIR reflectance sensitivity 

in the presence of varying compact density (often referred to as tablet hardness).  

Therefore, the notion that a more dense compact scatters less and absorbs more may not 

be entirely accurate.  While it is not feasible to generalize these conclusions to all 

compact systems, it is expected that these results are generally applicable to most 

compacted pharmaceutical powders.  Based on the results of this work, the authors 

speculate that a reduction in compact porosity or void fraction increases the forward 

promotion of scattered photons, which is consistent with the phenomena observed in 

Figure 4.1.  

4.3.2 Relative Density Modeling 

It was determined that three latent variables (PLS factors) were required to 

adequately model the effect of relative density variation on reflectance and transmittance 
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spectra based on the minimization of RMSECV.  The use of three latent variables is 

reasonable considering the number of degrees of freedom in the experimental design.  A 

summary of the calibration statistics is provided in Table 4.3.  Calibration and test set 

prediction plots for both reflectance and transmittance are shown in Figure 4.2.  The 

comparison of predicted and reference relative density values suggest a non-linear 

relationship; a potential explanation for this is the non-linear relationship between 

relative density and compaction pressure (Figure 4.3a). 

 
Table 4.3. Calibration statistics for the prediction of relative density and crushing strength for NIR 
reflectance and transmittance geometries.   

Reflectance Geometry 
Data Type Relative Density Crushing Strength 

Method SIMPLS 
Preprocessing Raw Spectra Raw Spectra 

Latent Variables 3 3 
RMSECV [unitless, kp] 0.013 4.640 
RMSEC [unitless, kp] 0.013 4.182 
RMSET [unitless, kp] 0.017 4.739 

R2
CV 0.922 0.832 

R2
CAL 0.928 0.864 

R2
TEST 0.906 0.856 

BiasCV [unitless, kp] 1.141E-04 5.301E-02 

BiasTEST [unitless, kp] 2.921E-03 -1.437E-01 
Transmittance Geometry 

Data Type Relative Density Crushing Strength 
Method SIMPLS 

Preprocessing Raw Spectra Raw Spectra 
Latent Variables 3 5 

RMSECV [unitless, kp] 0.018 3.678 
RMSEC [unitless, kp] 0.017 3.257 
RMSET [unitless, kp] 0.013 3.187 

R2
CV 0.850 0.895 

R2
CAL 0.868 0.917 

R2
TEST 0.936 0.938 

BiasCV [unitless, kp] 1.402E-04 9.543E-02 

BiasTEST [unitless, kp] -5.263E-04 -5.638E-01 
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Figure 4.2. Predicted versus measured relative density plots for the calibration (a,c) and test (b,d) data sets 
for reflectance (a,b) and transmittance (c,d) geometries. 

 

 

Figure 4.3. Plots of relative density (a) and crushing strength (b) versus compaction pressure.  Only 
calibration samples are plotted. 
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The PLS loadings, scores, and regression vectors from the optimized calibration models 

were studied to evaluate the potential link between the physical data modeled and the 

chemical composition of the compacts.  The calibration samples were grouped into 

different datasets based on constituent concentration and compaction level prior to 

modeling.  Figure 4.4a and Figure 4.4b display the score values on the second versus the 

first latent variables for transmittance and reflectance geometries, respectively.  The 

majority of the variance (89.07 and 85.69%) associated with the first latent variable is 

attributable to compaction pressure.  This is expected as compaction pressure was one of 

the independent factors varied in the design; changing compaction pressure results in 

different relative densities.   

 

Figure 4.4. Plot of PLS scores for relative density on latent variable two versus latent variable one for 
reflectance (a) and transmittance (b) where the anhydrous theophylline concentration calibration samples 
were grouped into the following classes: red-triangle = 0.0 w/w, green-asterisk = 0.2 w/w, blue-square = 
0.25 w/w, cyan-plus = 0.4 w/w, and black-diamond = 0.6 w/w. 

Similar to differing compaction pressures, changes to constituent concentrations 

result in varying compressibilities.  When the calibration samples were grouped based on 

theophylline concentration (Figure 4.4), a pronounced separation in score space was 
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evident along the second latent variable (8.89 and 8.27% variance).  This pattern suggests 

the influence of theophylline on the modeling of relative density as a function of 

compaction pressure.  Its influence was also demonstrated by the second loading that 

weighted wavelength regions associated with features in the pure component spectrum of 

anhydrous theophylline (second loading vector not shown).  No separation was observed 

in reflectance or transmittance for the other components among all possible combinations 

of the first three latent variables. 

 The PLS regression vectors used for the prediction of relative density appear in 

Figure 4.5a and Figure 4.5b for reflectance and transmittance geometries, respectively.  

The regression vectors also have several features correlated to the pure component 

spectra of anhydrous theophylline, which is not unexpected.  A slightly greater 

correlation was observed between the regression vectors and the pure component 

spectrum for the reflectance data.  The regression vectors further convey the importance 

of anhydrous theophylline for the prediction of relative density via NIR reflectance and 

transmittance spectra.   
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Figure 4.5. PLS regression vectors for relative density (solid) and crushing strength (dotted) and the pure 
component spectrum of anhydrous theophylline (dashdot) for reflectance (a) and transmittance (b) 
geometries.  All vectors were scaled to the range of 0 to 1 to facilitate viewing. 

Pure component compacts were produced to assess which component (1) 

produced compacts having the highest relative densities at a given compaction pressure 

and (2) was most susceptible to changes in relative density upon compaction.  The pure 

component compaction profiles evaluating relative density versus compaction pressure 

for all four constituents after production are shown in Figure 4.6.  The trend did not 

change following the approximately 55 day relaxation period (plot not shown).  Of the 

four components, anhydrous theophylline consistently produced pure component 

compacts with the highest values.  Relative density can also be used to estimate the 

porosity (ε) of a cylindrical compact from the equation  
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Figure 4.6. Relative density versus compaction pressure profiles for anhydrous theophylline (squares), 
lactose monohydrate (triangles), MCC (diamonds), and soluble starch (circles) immediately after 
production. 
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where ρcomp and ρtrue are the same as previously defined.  Applying Equation 4.5 to 

consider the results shown in Figure 4.6 in terms of porosity (void fraction), anhydrous 

theophylline consistently produced the least porous pure component compacts.  As far as 

the gross change in porosity is concerned, MCC displayed the largest change in porosity 

over the compaction range tested.  This is not unexpected considering the microstructure 

and propensity of MCC to deform under mechanical stress.153,154  It was expected that 

MCC would have a large influence (leverage) on the spectroscopic analyses; however, 

this affect was not observed.  This may be explained by the spectroscopic signals of each 

constituent.   
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The pure component spectrum of anhydrous theophylline is more orthogonal to 

the interfering factors; there was much greater collinearity between lactose monohydrate, 

MCC, and soluble starch (Figure 4.7).  This orthogonality enhances the net analyte signal 

for anhydrous theophylline, which inherently augments the sensitivity of the method to 

this material.  Therefore, the wide anhydrous theophylline concentration range tested 

(Table 4.1) most likely overwhelmed the signal attributable to the other three 

constituents. 

 

Figure 4.7. Pure component spectra for transmittance (a) and reflectance (b) geometries.  Individual vectors 
appear as the mean spectrum of twenty-seven pure-component compacts varying over the compaction 
pressure range of 67.0 - 268.1 MPa. 

4.3.3 Crushing Strength Modeling 

 Based on the minimization of RMSECV, it was determined that three latent 

variables were required to adequately model the crushing strength variation for 

reflectance data while five were required for transmittance measurements; this result was 

independent from relative density modeling.  A summary of the calibration statistics is 

provided in Table 4.3.  These data demonstrate that there was sufficient sensitivity in 

both the NIR reflectance and transmittance data to model crushing strength as observed 
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in the relative density analyses.  This can be observed in the predicted versus measured 

crushing strength plots for the calibration and testing data sets (Figure 4.8).  It should be 

noted that the inclusion of the samples reading 55.9 kp would not have considerably 

altered the results shown in Figure 4.8 and Table 4.3.  These data were excluded as they 

were at the limit of the testing instrumentation.   

 

Figure 4.8. Predicted versus measured crushing strength plots for the calibration (a,c) and test (b,d) data 
sets for reflectance (a,b) and transmittance (c,d) geometries. 

 Comparing the plots in Figure 4.8 with those in Figure 4.2, it is apparent that the 

predicted versus measured plots for crushing strength demonstrate a more linear 

relationship than was observed for relative density.  However, there is an apparent 

reduction in model accuracy, which may be attributed to the reduced precision of the 
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reference measurements.  The crushing strength calibration may be more linear than the 

relative density model because the measurement is more closely analogous to the 

structural factors affecting photon propagation, namely particle-particle interaction.  If 

the tensile strength of an object at zero porosity is defined as the intrinsic strength of the 

material(s) multiplied by the area normal to the applied force, then greater compaction 

pressures must increase the effective area of particle-to-particle contact, even as compact 

volume is reduced.  As more and more particles fuse together, the effective path-length of 

photons through the material is enhanced, decreasing the reflectance and increasing the 

transmittance intensities of the samples.  It is important to note that an increase in particle 

fusion will also enhance (to a certain extent, although the enhancement is ultimately 

limited by the material’s crystallographic density) the relative density of a sample, having 

an analogous effect on the reflectance and transmittance intensities.   

Subsequent to model optimization, the PLS scores, loadings, and regression 

vectors were analyzed for a relationship between physical and chemical information 

within the spectra.  In a similar manner, the calibration samples were grouped according 

to compaction and concentration levels.  Separation of the samples by compaction 

pressure demonstrated that the variance associated with the first latent variable is most 

likely due to consolidation.  The separation among different compaction levels was not as 

clear for the crushing strength analysis.  This may be explained by the relatively lower 

precision of diametric compression testing; note the tighter distribution of data points 

around the unity line for relative density (Figure 4.2 and Figure 4.8).  This uncertainty 

effectively reduces the covariance between the NIR spectra and the reference data, which 

decreases the likelihood of separation in scores space.  Ultimately, this reduction in 
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covariance deflates the signal-to-noise ratio, causing the data for adjacent compaction 

levels to blur together, perhaps because of increased rotational ambiguity during solution 

of the factor structure. 

As was previously observed in the relative density analyses, a division in score 

space is evident when the calibration samples are grouped according to anhydrous 

theophylline concentration for both reflectance and transmittance data (Figure 4.9a and 

Figure 4.9b, respectively).  This separation indicates the influence of anhydrous 

theophylline (on the calibration model) for the prediction of crushing strength.  The 

influence of anhydrous theophylline is further demonstrated by the second loading vector 

that tracked the loss of theophylline (observed for both sensing geometries).  Several 

segments of the vectors corresponded to features in the pure component spectrum of 

anhydrous theophylline (loading vector not shown).  No discernible patterns were 

observed for the remaining components among all possible combinations of the first three 

and five latent variables for reflectance and transmittance geometries, respectively.  

 

Figure 4.9. Plot of PLS scores for crushing strength on latent variable two versus latent variable one for 
reflectance (a) and latent variable three versus latent variable two for transmittance (b) where the 
calibration samples were grouped into classes (see Figure 4.4 caption) based on anhydrous theophylline 
concentration. 
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 The crushing strength regression vectors have several features related to the pure 

component spectrum of anhydrous theophylline (as observed in the relative density 

analyses).  The PLS regression vectors used for the prediction of crushing strength appear 

in Figure 4.5.  Once again, the correlations between the regression vectors and anhydrous 

theophylline were slightly less intense for the transmittance data.   

While models employing baseline fitting algorithms have proven effective in the 

presence of both chemical and physical variation,130 PLS regression was used due to the 

extended concentration range (0 – 60% w/w for all constituents).  When composition was 

held constant (by selecting sub-sets of the calibration data), baseline fitting methods 

performed comparably with PLS regression (results not shown).  Additionally, this 

regression method was implemented based on its tangible outputs (e.g., scores, loadings, 

and full-spectrum regression vectors), which can be used to better understand the effects 

of chemical variation on physical parameters of pharmaceutical compacts.   

To assess the effect of concentration variation, 29 sub-calibrations where 

constructed using linear regression to relate the standard deviation of each spectrum to 

relative density or crushing strength.   In order to mitigate concentration’s leverage, a 

sub-calibration was built at each experimental design point (Table 4.1); only calibration 

samples corresponding to the above models were used.  For the prediction of relative 

density, the mean, median, and standard deviation of the sub-calibrations’ coefficient of 

determinations were (0.954, 0.957, 0.027, n = 29) and (0.529, 0.578, 0.333, n = 29) for 

reflectance and transmittance geometries, respectively.  The ability to model relative 

density as a function of the standard deviation of the spectrum is compromised in the 

presence of the extended concentration range as evidenced by the reduction in R2 when 
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all 145 calibration samples are assessed simultaneously (0.840 and 0.189 for reflectance 

and transmittance geometries, respectively). 

The ability to predict crushing strength as a function of the standard deviation of 

each spectrum is compromised in the presence of concentration variation when all 133 

calibration samples are modeled (R2 = 0.511 and 0.005 for reflectance and transmittance 

geometries, respectively).  For the prediction of crushing strength, the mean, median, and 

standard deviation of the sub-calibrations’ coefficient of determinations were (0.945, 

0.970, 0.079, n = 29) and (0.436, 0.337, 0.358, n = 29) for reflectance and transmittance 

geometries, respectively.   

When concentration is held constant, both relative density and crushing strength 

are modeled well by the standard deviation of the log (1/R) spectra.  The authors suggest 

that the thickness of the compacts (mean = 4.387 mm, median = 4.307 mm, standard 

deviation = 0.237 mm, n = 174) in conjunction with tablet positioning error155 may have 

compromised the integrity of the transmittance results due to nonlinearity.  

4.3.4 Rationalization of NIR Sensitivity to Compact Density 

It is proposed that NIR sensitivity to variation in compact density is attributed to 

changes in the distribution of forward and back photon propagation.  It is well understood 

that scattering events occur only where there is a transition in refractive index.156  In the 

absence of a transition, an impinging photon will tend to be transmitted without a change 

of direction.  Similarly, when the transition is small (e.g., between particles of different 

materials having similar refractive indices), the change in photon direction will be small.  

Particle-particle interfaces present a smaller refractive index change relative to air-

particle interfaces.   
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When contrasting the photon path in highly porous and highly dense compacts, 

the latter present fewer air-particle interfaces, and more particle-particle interfaces.  

Consequently, photons incident on less porous compacts encounter fewer scattering 

opportunities per unit of pathlength, and tend to exhibit enhanced forward propagation 

due to increased particle-particle transmission.  It is understood that individual 

constituents have different optical properties, and therefore, each would be expected to 

exhibit a unique optical response to varying porosity.  This argument is similar to that 

posed by Isaksson, Miller, and Naes, where they investigated the spectral effects of 

laminate films covering homogenized meat.157  The authors found that the addition of the 

laminate, whose refractive index is more similar to that of the meat than the air, reduced 

the specular scattering observed at the laminate-meat interface (as opposed to the air-

meat interface).  Ultimately, the addition of the laminate film decreased the diffuse 

reflectance intensity and increased the transmitted light intensity.   

As noted above, an increase in compaction pressure (alternatively, relative density 

and crushing strength) resulted in higher amounts of transmitted radiation.  For the 

compacts studied, increasing density did not lead to higher absorbance intensities as has 

been previously asserted.128,130-132,141  While the data necessary to definitively state the 

reason(s) why this occurs have yet to be published, the theory of large-particle (e.g., Mie) 

scattering may offer a plausible first approximation.156,158   

For large-particle scattering, intensity can be viewed in terms of its forward and 

back distribution (or transmission and remission), where for particles larger than 

wavelength of the impinging radiation, interference is such that the forward direction is 

favored.156,158  If we can assume that, as porosity decreases, the average size of scattering 
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centers (e.g., particle size) within the compact increases, Mie theory would predict a 

greater propensity for scatter in the forward direction.  Moreover, as the void fraction 

decreases, the relative area of low refractive index (particle-particle) transitions in 

comparison to high refractive index (air-particle) transitions increases, resulting in 

scattering (refraction) angles favoring forward propagation.156,158  Forward scatter does 

not necessarily favor additional scatter more so than absorption; however, the reduction 

of scattering in the reverse direction would ostensibly reduce the reflectance intensity 

while increasing the transmittance intensity.  Moreover, this would lead to increased 

pathlength for diffuse reflectance measurements, and reduced pathlength for (diffuse) 

transmittance measurements.  The specific application of Mie theory to consolidated 

pharmaceutical powders, however, violates many of the underlying assumptions (e.g., 

isolated particles, spherical particles, single scattering events). 156,158 

Taking into consideration the anisotropy of both pharmaceutical solid materials 

and the composites formed by their compaction, it is reasonable to consider alternative 

methods which are valid for particles having non-spherical shape and contact with other 

particles.  Grundy, Douté, and Schmitt proposed a model based on ray tracing and Monte 

Carlo simulation of the linear polarization and scattering by anisotropic particles of sizes 

much larger than the wavelength of incident light.159  While this reference dealt 

exclusively with individual particles, their S-Scat model yielded results similar to those 

predicted by Mie theory.  Additionally, the authors observed that for irregular particles, 

scattering in the forward direction (larger phase angles) was favored.159  Utilizing models 

with the ability to compensate for the anisotropy of pharmaceutical solids (e.g., S-Scat) 
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may help to clarify the spectroscopic intricacies observed during the modeling of relative 

density and crushing strength.   

Additional research is required to address concomitant issues such as variation in 

raw material particle shape, size, etc. to understand how photons interact with compacts 

of varying density and composition.  Future research will be focused on developing 

comprehensive NIR photon migration simulation algorithms to address these issues.   

4.4 Conclusions 

Calibration models were constructed using PLS regression to relate NIR 

reflectance and transmittance spectra to compact relative density and crushing strength 

values.  Both reflectance and transmittance data had adequate sensitivity to model both 

physical characteristics.  Second to compaction pressure, anhydrous theophylline was 

most influential on the spectral analyses of relative density and crushing strength, which 

was mainly a function of the experimental design and the enhanced chemical sensitivity 

to this particular component.  Additionally, the calibration models for relative density and 

crushing strength demonstrated that the latter was more linear but less accurate in 

prediction.  This study also demonstrated that, in contrast to the existing interpretations, 

increasing tablet density does not necessarily reduce scattering or increase absorbance of 

NIR radiation.  The optical interactions are a function of changing compact porosity, 

which promotes greater scattering in the forward direction.  Propagation of light in the 

forward direction is detected as an increase in transmitted intensity.  Future studies will 

focus on using empirical data combined with in silico simulations to discern what 

happens to source photons as they interact with compacted pharmaceutical powders of 

varying relative densities.   
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Chapter 5: Determination of Figures of Merit for Near-Infrared and 
Raman Spectrometry by Net Analyte Signal Analysis for a Four 
Component Solid Dosage System 

 

The material presented in Chapter 5 was previously published in Short SM, Cogdill RP, 
Anderson CA 2007. Determination of figures of merit for near-infrared and raman 
spectrometry by net analyte signal analysis for a 4-component solid dosage system. 
AAPS PharmSciTech 8(4):Article 96. DOI: 10.1208/pt0804096.   

 

5.1 Introduction 

A number of technologies may be suitable for a given analytical measurement 

application.  Ultimately, a decision must be made as to which device will be deployed.  

Common methods for comparison of instruments based upon different fundamental 

principles are not well established.  While there are multiple considerations upon which 

instrument selection is based (cost, performance, infrastructure, etc.), this work will focus 

only on method performance characterization for two sample technologies. 

The advent of the Process Analytical Technology (PAT) initiative6 has increased 

the performance demands upon, and the need for understanding of, analytical methods.  

In a PAT environment, sensors are controlling processes (as opposed to advising).  

Pharmaceutical literature often gives the impression that a multivariate sensor is 

generally applicable for in-, on-, and at-line process monitoring applications.  These 

applications typically require chemometric modeling/calibration160 to transform 

instrument signal into useable information.  Multivariate calibration provides a platform 

for data driven analyzer selection.       
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Process analytic measurement applications in pharmaceutical science include 

qualitative and quantitative identification of compounds, examination of phase 

transformations and polymorphs, and investigations of manufacturing and process 

development. Near-infrared (NIR) and Raman spectroscopy are both sensitive to, and 

capable of accurately predicting, these phenomena.124,161  As NIR is based on optical 

absorption and Raman on the measurement of inelastic scattering, comparison of the 

parallel performance of these two classes of instrumentation is indirect.  More often than 

not, the instrument eventually deployed is selected based on limited criteria which do not 

consider all aspects of performance.   

Calibrations are frequently evaluated using the coefficient of determination (R2) 

and/or estimation of prediction error. 162-166  Neither of these measures directly consider 

issues such as precision164,165 and signal-to-noise (S/N) ratio.167,168  While these are 

important statistics, they should not be considered independently; rather, the effectiveness 

of a method should be judged based on a complete assemblage of indicators which 

describe all aspects of performance and are generalized across technological platforms.  

Net analyte signal (NAS) theory provides a mechanism for determining figures of merit 

indicative of an instrument’s utility. 

Net analyte signal theory is the concept of separating relevant signals for a 

particular component of interest from the remaining interfering elements present within 

the spectra.169  Lorber170 is widely acknowledged as the originator of multivariate NAS 

theory;  Brown,171 however, makes the clarification that Morgan172 published on a similar 

topic prior to Lorber, although the work “contains some errors.”171  Net analyte signal 

provides a tool for calculating multivariate figures of merit; prior to Morgan/Lorber, 
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techniques similar to NAS were applied only to data from univariate methods.173 A 

detailed description of univariate calibration and the corresponding determination of 

figures of merit are outside the scope of this work.  For a more detailed discussion, please 

refer to Olivieri et al. and their references.173    

Multivariate NAS was first implemented using pure component projection170 and 

classical regression;174 i.e., constituent concentration was directly related to instrumental 

response vectors.  However, implementation of NAS via pure component or classical 

regression methods is cumbersome in that the spectra or concentrations for all 

contributing species are required.169  The implementation of multivariate NAS was solved 

in terms of inverse regression by Lorber, Faber, and Kowalski, requiring only the 

concentrations for the component(s) of interest to be known.169  For inverse regression, 

concentration is expressed as a function of instrumental response.174  Nonetheless, both 

classical and inverse regression mathematics are suitable for the determination of NAS; 

however, the remaining descriptions and the work herein strictly assume the application 

of inverse regression.   

Mathematically, NAS is defined as the portion of signal unique to the constituent 

being considered and is orthogonal to all other factors present in the data.169,170  NAS, 

therefore, comprises the signal directly useful for quantification.169  A mixture spectrum 

(r) extracted from a spectral matrix containing multiple constituents can be resolved into  

 ⊥+= rrr *  (5.1) 

where r* and r┴ are mutually orthogonal components representing the NAS vector for the 

particular component of interest and the vector of interferences, respectively.169  

However, it is well understood that controllable and uncontrollable errors influence the 
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performance of any analytical technique.  This error (ε), which will be slightly different 

for each sample acquired, can also be partitioned into its respective mutually orthogonal 

components: the part that is orthogonal to the interferences (ε*), and the portion that lies 

within the interference space (ε┴).175  It is important to understand that the estimated r* 

will not lie exactly in the true direction of the NAS vector as a result of ε*.175  The former 

(ε*) is the portion of total stochastic error (ε) which contributes to imprecision. 

Multiple algorithms for calculating NAS have been reported in the literature,176,177 

with the method of computation and resulting output differing.  In this work, the method 

proposed by Bro and Andersen is utilized.178  All equations use X to represent spectral 

matrices; bold characters other than X, e.g., x, y, and NAS, represent vectors; small, 

italicized characters, e.g., x and y, represent scalars.  Additionally, the notation ||x|| 

signifies the Euclidean norm of a vector, the square root of the sum of the squared 

elements.  The superscript T indicates the transpose of a vector. 

Bro and Andersen calculate the net analyte signal vector for a particular 

component of interest by  

 ( ) ( ) TT
ii bbbbxNAS ⋅⋅⋅⋅=

−∧ 1  (5.2) 

where xi is a sample spectrum from matrix X and b is a column vector of the regression 

coefficients for X;178 principal components regression (PCR) or partial least-squares 

(PLS) are common regression techniques used to estimate b.160  It should be noted that X 

is corrected for the mean; thus, outputs from computations employing 
∧

NAS  are mean-

centered.  Results can be rescaled using the vector of means from the centering operation 

of X to the original range.  Net analyte signal can also be expressed in scalar form, with 

no loss in information (but reduced interpretability), by the equation169 
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∧∧

= iiNAS NAS   (5.3) 

As Lorber et al. have noted, the term “NAS” is often interchangeably used to represent 

the NAS vector and the scalar NAS quantity.169  Additional discussion concerning the 

mathematics behind the determination of net analyte signal can be found elsewhere.169-

172,175-181 

5.2 Materials and Methods 

5.2.1 Tablet Production 

 A fully-balanced, four-constituent mixture design comprised of anhydrous 

theophylline (Lot No. 92577, Knoll AG, Ludwigshafen, Germany), Lactose 316 Fast Flo 

NF Monohydrate (Lot No. 8502113061, Hansen Labs, New Berlin, WI), microcrystalline 

cellulose (MCC, Avicel PH 200, Lot No. M427C, FMC BioPolymer, Mechanicsburgh, 

PA), and soluble starch GR (Lot No. 39362, EMD Chemicals Inc., Gibbstown, NJ) was 

generated.  The approximate median particle size of the theophylline, lactose, MCC, and 

starch (reported by documentation from their respective suppliers), was ~90, ~100, ~180, 

and ~17 microns, respectively.  No further analysis or alterations were performed on the 

materials to determine or alter the particle size distribution.  Twenty-nine design points 

were chosen to cover a wide range in all constituents and to remove any possibility of 

factor aliasing (Figure 5.1).  Analysis of the mixture covariance matrix (not shown) 

demonstrated the design is balanced in all directions, giving equal emphasis to all 

constituents.     
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Figure 5.1. Diagram illustrating the concentration design matrix.  The four-component design matrix can be 
viewed in three dimensions, and is in the shape of a tetrahedron because of the constraint imposed by 
concentration closure.  The center of the pyramid represents the point of equal concentration in all 
components and the vertices represent the points of pure constituents.  The solid lines are not labeled for 
their corresponding constituents as they are all equivalent due to the balanced design. 

Materials for each design point mixture were dispensed by weight (Data Range, 

Model No. AX504DR, Mettler Toledo, Columbus, OH) in accordance with the design, 

and were immediately transferred to 25 mL glass scintillation vials.  In total, 6000 mg of 

material was weighed out for each point, and the nominal weights for all constituents 

were adjusted to the observed mass data to calculate actual concentration.  After all 

components were added to each vial, they were tumbled for 5 minute cycles on a rotating 

Jar Mill (US Stoneware, East Palestine, OH, USA).  After every blending period, each 

vial was manually inverted to collect a NIR reflectance spectrum directly through the 

bottom of the glass (FOSS NIRSystems 5000, FOSS NIRSystems, Inc., Laurel, MD).  An 

ad hoc partial least-squares II (PLS-2) calibration, using the constituent concentrations as 

reference data, was constructed after each blending cycle to assess homogeneity.  
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Mixtures were assumed to be homogeneous when further mixing failed to yield an 

increase in the calibration’s coefficient of determination.   

The mixtures from each design point were then subdivided and tableted at 5 levels 

of compaction force (67.0, 117.3, 167.6, 217.8, 268.1 MPa) on a Carver Automatic 

Tablet Press (Model 3887.1SD0A00, Wabash, IN) using flat-faced punches and a 13 mm 

die.  A dwell time of 10 seconds was employed.  Six compacts were produced per design 

point, with the sixth tablet’s compaction force randomly selected from one of the five 

possible levels.  The compaction order was randomized to ensure homoscedasticity of 

experimental error.  In total, 174 compacts were produced with a nominal target weight 

of 800 mg per tablet.  A small arrow was drawn on the perimeter of each tablet (to avoid 

spectroscopic interference) to distinguish between the two flat surfaces.  Tablet 

preparation and compaction occurred over a three day period, after which the compacts 

were left to relax for 15 days prior to spectroscopic analysis to compensate for any radial 

and/or axial tablet expansion.    

5.2.2 Data Acquisition, Instrumentation, and Software  

   Near-infrared reflectance measurements (expressed as log(1/R), or absorbance 

intensity) for both sides of each tablet were acquired over the wavelength range of 1100 – 

2498 nm at a 2 nm increment (FOSS NIR Systems 5000, FOSS NIRSystems, Inc., 

Laurel, MD).  Thirty-two sub-scans were accumulated for each resultant sample 

spectrum.  Prior to scanning, the tablets were precisely centered using the positioning iris 

standard on this particular instrument.  Absorbance data were collected by way of Vision 

data acquisition software (version 2.00, FOSS NIRSystems Inc.) and exported in .NSAS 

file format.  Two ad hoc partial least-squares II (PLS-2) calibrations, using the 
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constituent concentrations as reference data, were constructed from spectra corresponding 

to a specific surface of the tablets.  Since the coefficients of determination did not differ 

until the third decimal place, it was decided to only consider measurements of one tablet 

face (arrow pointing upwards) for both technologies.  

 Raman data were measured using a prototype PhAT System spectrometer with a 

laser excitation wavelength of 785nm and equipped with a fiber-coupled probe head 

(Kaiser Optical Systems, Inc., Ann Arbor, MI).  The PhAT System samples a spot size of 

approximately 6 mm.  Two accumulations were acquired per scan employing an 

integration time of 10 seconds over the range of -64.2 to 1895.7 cm-1 at a 0.3 cm-1 

increment.  A dark scan was subtracted and the cosmic ray filter and intensity calibration 

options were selected.  The tablets used in this study were larger than could be 

accommodated in the tablet holder located in the sample chamber of the PhAT System 

requiring the tablets to be manually positioned such that the laser spot was visually 

centered on the flat face.  Raman intensity data were collected via the HoloGRAMS 

software package (version 4.0, Kaiser Optical Systems, Inc.) and exported in .GRAMS 

file format. 

 The Unscrambler (version 9.0, Camo Software Inc., Woodbridge, NJ) was used to 

convert both .NSAS and .GRAMS files to .mat format to allow further data manipulation.  

All spectral data were analyzed in the Matlab environment (version 7.1, The MathWorks, 

Natick, MA) using the PLS_Toolbox (version 3.0, Eigenvector Research, Inc., Manson, 

WA) and software developed by the Duquesne University Center for Pharmaceutical 

Technology (DCPT).   
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5.2.3 Partial Least-Squares Analysis 

 NIR and Raman data were analyzed separately but in an identical fashion.  The 

NIR spectral range and resolution were not altered; however, the Raman spectral range 

was truncated to 205.5 - 1895.7 cm-1 to remove residual Rayleigh line radiation and to 

reflect the operating range of the analyzer.  Prior to calibration, the Raman data were 

evaluated using a moving-window calibration technique179 with various window widths 

to determine if further wavenumber truncation would be beneficial.  Wavelength 

selection was not shown to enhance calibration performance.  Partial least-squares 

regression122 was used via the SIMPLS algorithm123 to relate spectroscopic response to 

concentration for each constituent on an individual basis.  Since analyte concentration is 

incorporated in the denominator of some figure of merit calculations, samples having a 

corresponding zero concentration for the component being considered were excluded.  

Therefore, samples included in the actual calibration data sets were unique for each 

component.  

Preprocessing routines, including standard normal variate (SNV) scaling, 

detrending, derivatives, and combinations of the preceding were tested.124  The most 

favorable data pretreatment method was selected based on a minimization of “batch-

wise” cross-validation error, where the batches in this instance were the five different 

compaction levels.  During each cross-validation iteration tablets produced at a particular 

compaction force were removed, a calibration was constructed, and the concentrations of 

the excluded samples were predicted via the temporary model.  This procedure was 

continued until all of the samples had been predicted, thereby allowing for the 
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determination of the root-mean-standard error (RMSE).  The RMSE for cross-validation 

(RMSECV) and calibration (RMSEC) were calculated using the formula 
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where iy  is the measured concentration, iŷ is the predicted concentration, and n is the 

number of samples for the data set under consideration.  According to ICH guidelines, 

accuracy expresses the agreeability between reference and predicted values.182  

Therefore, RMSEC and RMSECV are used to report the accuracy of the selected 

calibration.   

5.2.4 Multivariate Figures of Merit  

 The optimal number of latent variables selected during the estimation of each PLS 

regression vector was determined by minimizing RMSECV and RMSEC.  Once 

established, the regression vector was used to determine the NAS according to equations 

(5.2) and (5.3).  Given the number of chemical constituents and physical factors varying 

in this design, it was anticipated that no more than 4 latent variables would be required; 

however, models with greater rank are feasible but would be increasingly difficult to 

justify.  The NAS vector affords the opportunity to calculate numerous figures of merit, 

such as sensitivity, analytical sensitivity, selectivity, and S/N ratio.  Figures of merit can 

be determined for every sample using the following formulae.    

Sensitivity characterizes the extent of signal variation as a function of analyte 

concentration; the higher the sensitivity, the greater the instrumental response to an 

increase in concentration.169,170  Sensitivity is calculated as169,173,177 
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where i

∧

SEN , i

∧

NAS , and iy  are the vector of sensitivities for each instrument variable, 

the net analyte signal vector, and the measured concentration for the ith sample, 

respectively.  Sensitivity is reported in units of instrument intensity per concentration.  

Measured concentrations are autoscaled before being utilized in equation (5.5).  It is also 

possible to express sensitivity as a univariate figure of merit by taking the Euclidean 

norm of the sensitivity vector  

 ||||
∧∧

= iiSEN SEN      (5.6) 

where 
∧

iSEN is the univariate measure of sensitivity for the ith sample.177,180  Sensitivity is 

reported in this document as the mean of the univariate sensitivity values for all samples 

under consideration.   

Sensitivity is only applicable to calibrations constructed on devices operating 

under the same fundamental principles because it incorporates units of instrument signal 

(NIR absorbance intensity and Raman scattering intensity).  The parameter analytical 

sensitivity (γ) was developed to provide an impartial assessment between dissimilar 

analytical techniques.180  Analytical sensitivity is calculated as 

 
r
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where 
∧

SEN is the mean of the sensitivity values under consideration found using 

equation (5.6) and δr is a measure of instrumental noise.  This normalization procedure 

allows direct comparison of the measure of sensitivity associated with NIR and Raman 
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data.  Analytical sensitivity has the dimensions concentration-1.  δr was determined as the 

mean standard deviation of iNAS
∧

 (for the component under consideration) of four tablets 

broadly varying in constituent concentrations.  Additionally, this figure of merit allows an 

estimation of the minimum discernible concentration difference given the dynamic range 

modeled180 (γ-1); this is referred to as effective resolution.  

 Predicted values were determined by183 

   bXy ⋅=
∧

 (5.8) 

where X is the spectral matrix and b is the PLS regression vector, which varies depending 

on the number of latent variables applied.  It should be noted that the concentration data 

have been previously autoscaled; thus, predicted values need to be rescaled using the 

mean and standard deviation of the measured concentrations before the accuracy is 

determined via equation (5.4).   

It is important to observe that all predicted values herein are independent of any 

NAS calculations performed.  Certain NAS techniques allow the determination of 

predicted concentrations using the equation169,177  

 ∧
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where i

∧

NAS , i

∧

SEN , and iŷ are as defined previously.  Considering equation (5.5) for the 

calculation of the sensitivity vector, the NAS method employed within this paper forbids 

the use of equation (5.9) because it forces ii yy =ˆ .   

 Selectivity is a dimensionless univariate measure of the portion of instrumental 

signal that is not lost due to spectral overlap, in other words the quantity of signal 
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unaffected by interfering factors, restricted to a value between 0 and 1.169  This statistic is 

calculated for each sample by169,181  
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where i

∧

NAS and ix are the NAS vector and the original spectrum for the ith sample.  The 

magnitude of the selectivity parameter is directly dependent on the degree of spectral 

interference associated with the particular analyte under consideration.  Selectivity is 

reported in this document as the mean of the selectivity values for all samples under 

consideration.   

 Signal-to-noise ratio is one of the most important metrics for general comparison 

of methods.  It is calculated as169  
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where iNAS
∧

 is the scalar representation of the NAS vector, and δr was estimated as the 

mean standard deviation of the predicted concentrations (for the component under 

consideration) of four tablets broadly varying in constituent concentrations (i.e., the same 

four tablets previously used).  Linear regression was performed between measured 

concentration and the univariate NAS values in order to estimate scale (a1) and offset (ao) 

coefficients to transform the NAS value to units of concentration.  This enables S/N to be 

a dimensionless statistic for this four constituent mixture design.   
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Signal-to-noise ratio is reported in this document as the mean of the S/N values for all 

samples under consideration.     

 Given the wide range of concentrations present within the design, limit of 

detection (LOD) is a practical figure of merit.  Limit of detection can be computed as184  

 
m

kLOD Dσ=  (5.12) 

where kD is the statistical confidence factor (here, kD = 3), m is the slope of a univariate 

classical least-squares fit of the predicted and reference data, and σ is defined as δr in 

equation (5.11).  Since the predicted versus measured plot was not significantly different 

from unity, a value of 1.0 was assumed for m in all cases.   

5.2.5 Precision Statistics  

Precision figures of repeatability and intermediate precision were determined in 

accordance with ICH guidelines182, and were reported as the standard deviation of the 

predicted concentration values (equation 5.8) for repeat measurements.  Repeatability and 

intermediate precision values were established using the randomly-chosen design point 

comprised of 20% theophylline, 20% lactose, 0% MCC, and 60% starch, compacted at a 

force of 167.6 MPa.  Repeatability, a measure of short-term sampling error, was 

determined without repositioning of the tablet between successive scans, as well as by 

removing and subsequently re-centering the compact before acquiring the next 

measurement.  Six scans for each type of repeatability test were collected one after the 

other on the same day.  Intermediate precision, which should incorporate typical 

variations such as between analysts and days, was determined by scanning the tablet once 
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a day for six consecutive days.  The same analyst collected these scans and the 

repeatability scans to determine day to day variability of the instruments.  

5.3 Results and Discussion  

5.3.1 Near-Infrared Analysis 

 The RMSEC and RMSECV values were plotted against the number of latent 

variables selected for PLS modeling (Figure 5.2).  Savitsky-Golay first derivative 

preprocessing185 (11 point smoothing and 2nd order polynomial fit) was chosen based on 

the minimization of RMSECV.  It was independently determined that to adequately 

model the NIR absorbance data, theophylline required three latent variables, while four 

were required for lactose, MCC, and starch.  Model rank was chosen as the point where a 

rapid decline in the incremental variance captured was observed, cognizant of the 

expected feasible limit of dimensionality based on the factors varying within the design.  

Without derivative preprocessing, an additional latent variable would have been required 

to compensate for the variation in compact density.  It is speculated that the derivative 

preprocessing most effectively suppressed the physical effect of compaction, which has 

been shown to have a significant effect on the spectral baseline.124,161   
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Figure 5.2. Plot of RMSEC (squares) and RMSECV (triangles) versus the number of PLS factors used to 
model NIR data for theophylline (a), lactose (b), MCC (c), and starch (d), respectively. 

Figure 5.3 displays the regression vectors in addition to the pure component 

spectra for theophylline, lactose, MCC, and starch; note that the pure component spectra 

and the PLS regression vectors were scaled to facilitate viewing.  To gather the pure 

component scans, powder for each constituent was placed in a glass scintillation vial and 

spectra were acquired directly through the bottom of the glass; each pure component 

spectrum represents a mean of three scans.  As expected, each regression vector is highly 

correlated with its associated pure component scan.  The goodness-of-fit seen in the 

predicted versus measured concentration values for the four constituents demonstrates the 

linearity of the PLS models implemented (Figure 5.4a).  
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Figure 5.3. NIR pure component spectra (upper solid lines), PLS regression vectors (lower solid lines), net 
analyte signal (black), and interference (grey) vectors for each calibration sample, for theophylline (a), 
lactose (b), MCC (c), and starch (d), respectively.  Note that the pure component spectra and the PLS 
regression vectors were scaled to facilitate viewing. 

 

Figure 5.4. Predicted versus measured concentration plot for NIR (a) and Raman (b) data.  Circles represent 
the 50th percentile while the upper and lower stars represent the 25th and 75th percentiles, respectively.  
The unity line is shown in black. 
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 Following estimation of the PLS regression vectors for each constituent, the 

portion of the NIR signal related only to the component being analyzed was determined 

for all calibration samples (equation 5.2).  Figure 5.3 exhibits the NAS vector along with 

the corresponding interference spectrum for each calibration sample for theophylline, 

lactose, MCC, and starch.  This unique plotting scheme directly illustrates the contrast 

between analyte and interference signals.  Furthermore, this graphically illustrates the 

ability of multivariate calibration to achieve selectivity.  For example, in Figure 5.3a, a 

great deal of spectral variance can be observed around 1500 nm; however, this variation 

is not attributed to the presence of theophylline, rather, it is the result of the interfering 

components.  This effect is evident by the relatively small range in intensity for the NAS 

spectra in comparison to the larger intensity range for the interference spectra.  

Conversely, much of the spectral variation around 1650 nm is due to the variance in 

theophylline concentration.  Similar phenomena can be seen for the other three 

components (Figure 5.3).   

 5.3.2 Raman Analysis 

 The RMSEC and RMSECV were plotted against the number of PLS latent 

variables modeled in (Figure 5.5).  Savitsky-Golay first derivative preprocessing185 (33 

point smoothing and 2nd order polynomial fit), was also selected based on minimization 

of RMSECV.  Presently, there are no known published reports identifying any consistent 

correlation between variation in Raman spectra and tablet hardness; implying that Raman 

spectra are insensitive to compact hardness variation.  The data collected in this study are 

in agreement with this conclusion; no discernible pattern was observed relating Raman 

intensity and tablet compaction force (Figure 5.6).  Hence, the role of derivative 
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preprocessing was apparently not to mitigate any spectral effect of hardness variation; 

rather, it suppressed the baseline effect present in the spectra.  Theophylline and lactose 

each required four latent variables, while three were required for MCC and starch.   

 

Figure 5.5. Plot of RMSEC (squares) and RMSECV (triangles) versus the number of PLS factors used to 
model Raman data for theophylline (a), lactose (b), MCC (c), and starch (d), respectively. 
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Figure 5.6. NIR (a) and Raman (b) spectra of the same design point (40% theophylline, 40% lactose, 20% 
MCC, and 0% starch) compacted at 67.0, 117.3, 167.6, 217.8, and 268.1 MPa.  For each spectrum, the 
value for the first variable was subtracted to facilitate viewing. 

 Figure 5.7 displays the scaled regression vectors in addition to the scaled pure 

component spectra for theophylline, lactose, MCC, and starch.  Raman pure component 

scans were gathered in the same manner as the NIR.  Again, it was anticipated that the 

PLS regression vectors would include information pertaining to the component, which 

was confirmed by the similarities between the pure component scans and the regression 

vectors for all four constituents.  Less dispersion in predicted values was observed around 

each concentration level, which is in agreement with the higher calibration R2 statistics 

for the Raman calibration (Figure 5.4). 
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Figure 5.7. Raman pure component spectra (upper solid lines), PLS regression vectors (lower solid lines), 
net analyte signal (black), and interference (grey) vectors for each calibration sample, for theophylline (a), 
lactose (b), MCC (c), and starch (d), respectively.  Note that the pure component spectra and the PLS 
regression vectors were scaled to facilitate viewing. 

Following the construction of the PLS regression vectors for each constituent, the 

i

∧

NAS  was determined for each calibration sample (equation 5.2).  Figure 5.7 depicts the 

NAS vector and the interference spectrum for each calibration sample for theophylline, 

lactose, MCC, and starch.  Although 205.5 - 1895.7 cm-1 was used during calibration, a 

reduced range was plotted to highlight the contrast between NAS and interference 

spectra.  As was observed for NIR, the patterns demonstrate the selectivity of 

multivariate calibration for each component.     
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5.3.3 Figure of Merit Comparison 

Table 5.1 displays the calibration statistics describing the performance of the NIR 

and Raman spectrometers under investigation for this particular four-component solid 

dosage system.  With regard to accuracy, the Raman calibration appears to have an 

advantage relative to NIR; as reflected by the lower RMSE as well as the superior 

coefficient of determination.  Among the four components, theophylline was modeled the 

most accurately by both NIR and Raman.  This is most likely attributable to two factors: 

higher sensitivity and selectivity relative to the other components, which will be 

addressed in greater detail in the following paragraphs. 
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Table 5.1.  Calibration statistics and figures of merit for Reflectance NIR and Raman as determined for each constituent. 
Data Type NIR (Reflectance) Raman 

Method PLS 

Preprocessing 1st Derivative (11,2,1) 1st Derivative (33,2,1) 

Latent Variables 3 4 4 4 4 4 3 3 

Component Theophylline Lactose MCC Starch Theophylline Lactose MCC Starch 

R2 - Cal 0.962 0.951 0.919 0.952 0.981 0.969 0.958 0.972 

R2 - CV 0.962 0.942 0.902 0.941 0.979 0.962 0.955 0.966 

RMSEC (%) 2.7 3.1 4.0 3.1 1.9 2.5 2.9 2.4 

Accuracy RMSECV (%) 2.8 3.4 4.4 3.4 2.0 2.8 3.0 2.6 

Repeatability - w/o repositioning (%) 0.01 0.16 0.16 0.02 0.28 0.27 0.09 0.04 

Repeatability - w/ repositioning (%) 0.07 0.10 0.36 0.46 0.45 0.46 0.45 0.27 

Precision  Intermediate (%) 0.11 0.16 0.52 0.66 0.35 0.66 0.36 0.26 

Sensitivity (Instrument Intensity / %) 0.02 0.01 0.01 0.01 12768.61 5124.58 3732.26 3265.58 

Analytical Sensitivity (1 / %) 126.36 82.47 37.09 31.18 15.13 17.31 11.85 10.53 

Effective Resolution (%) 0.01 0.01 0.03 0.03 0.07 0.06 0.08 0.09 

Selectivity (unitless) 0.59 0.33 0.24 0.27 0.37 0.24 0.18 0.16 

Signal-to-Noise (unitless) 282.40 189.88 87.23 72.14 34.99 40.69 26.80 23.98 

Limit of Detection (%) 0.33 0.50 1.08 1.31 2.70 2.32 3.53 3.94 
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The ICH guidance on method validation for repeatability182 provides a protocol 

for partitioning sources of variance (i.e., instrumental noise, sample positioning error, 

instrument drift).  In particular, it was noted that repositioning inconsistency was a large 

contributor to total error for both the NIR and Raman calibrations. For the Raman 

analyzer approximate 6 mm of the surface (roughly 46 percent of the tablet surface) is 

sampled; as opposed to the off-line NIR instrument that sampled nearly the entire 

compact face.  Further, NIR has a greater depth of sampling relative to Raman 

spectroscopy.  Therefore, sample heterogeneity and/or sample presentation effects have a 

greater effect on Raman precision.  The impact of sampling heterogeneity is reduced as 

the number of samples analyzed per time period is increased as a result of averaging.  For 

example, if these methods were implemented in an at-line environment, the difference in 

precision between Raman and NIR is expected to decrease.  Additionally, more equitable 

comparisons between these two analyzers could be made by implementing a modified 

sample holder capable of precisely positioning 13 mm tablets, by analyzing tablets of a 

diameter similar to the Raman sampling size, or by averaging multiple locations on either 

side of the tablet.  

In some cases, error statistics were inconsistent with expected trends, as shown in 

Table 5.1.  For example, intermediate precision values calculated using the Raman data 

were actually lower than repeatability figures for both MCC and starch.  This is 

unexpected as intermediate precision includes the additional factor of day-to-day 

instrument drift.  This may be indicative of an incomplete estimate of the variance 

associated with sample repositioning.   
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    While the accuracy and precision data provide a feasible means of comparing 

these two spectrometers, the power of the evaluation can be enhanced by determining 

additional calibration figures of merit.  Sensitivity for both analytical devices was the 

largest for theophylline; an increase in its concentration resulted in the greatest response 

in instrumental intensity.  The relative magnitude of peaks in un-scaled pure component 

spectra (not shown) illustrates this effect.  It is important to note that the sensitivity 

values of individual constituents are not comparable between the two instruments.   

Analytical sensitivity is used to compare sensitivity across different measurement 

technologies.  This normalized statistic quantifies sensitivity with respect to analytical 

precision.  Although both devices exhibited the greatest sensitivity for theophylline, the 

NIR device was more sensitive to all four constituents (in terms of analytical sensitivity).  

Error of repositioning has a direct effect on σ in equation (5.7), which in turn inflated the 

denominator, thereby reducing the analytical sensitivity of Raman.  The constituent 

ordering for highest to lowest sensitivity is not identical between the two instruments.  

This emphasizes the importance of pairing the instrument to the analytical task.  The 

effective resolution results reinforce the results reported for sensitivity.  Despite the 

apparent similarity, this statistic should be considered with respect to quality action 

limits.   

Selectivity is important only when adequate sensitivity is available.  A lack of 

selectivity has the effect of suppressing sensitivity.  If adequate sensitivity is not 

available, improvements of selectivity are futile.  Theophylline, which exhibited high 

relative sensitivity, also exhibited superior selectivity, which is directly attributable to its 

inherent pure component orthogonality.  In contrast, the collinearity among lactose, 
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MCC, and starch (all being carbohydrates) reduced selectivity.  For Raman in particular, 

the sensitivity (equation 5.6) and selectivity are lower for these components.  This is 

manifested in the performance-related figures of merit (LOD, analytical sensitivity, 

effective resolution, and S/N).  An example of the enhanced interference between these 

three components can be seen in the NIR at approximately 1500 nm, where the NAS 

signal is quite large for all three (Figure 5.3).   

From the results discussed thus far, the resulting S/N ratio analysis should be 

straightforward.  The NIR calibration included more useable signal in relation to 

obstructive noise.  In some cases, researchers assume that the coefficient of determination 

is directly predictive of S/N ratio.186  It is for this reason that technology selection criteria 

are often based upon R2 and RMSE, since these statistics are frequently generated during 

calibration, requiring no additional calculations.  The results of this work contradict these 

assumptions.  While Raman outperformed NIR in terms of linearity and accuracy, the 

S/N ratio for NIR measurements was greater.  This occurs because error statistics (R2 or 

RMSE) are heavily influenced by the experimental design, while S/N ratio is inherent to 

the method.  Further studies are planned in which calibrations will be optimized 

according to S/N ratio (as opposed to the traditional method of RMSE); the impetus is to 

address the aforementioned precision issues, while simultaneously enhancing sensitivity, 

selectivity, and LOD.     

It is interesting to note that despite the lower relative precision of the Raman 

measurements, which deflates several of the figures of merit, no negative effect on the 

ability of the SIMPLS algorithm to resolve the covariance structure was observed.  This 

is because inverse least-squares regression is less affected by precision than sample 
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leverage in the estimation of the true solution.  This supports the notion that calibration 

quality is not sufficient to fully describe method performance.  

5.4 Conclusions 

This study demonstrates that multivariate figures of merit (determined from net 

analyte signal theory) can be used to compare calibrations constructed from spectroscopic 

data collected using two analytical instruments detecting different physical phenomena.  

The observed calibration performance statistics demonstrate that NIR and Raman are 

both suitable techniques for the quantitative determination of chemical components 

within this tablet matrix.  Beyond error statistics, multivariate figures of merit provide a 

clearer assessment of the specific factors limiting performance of the methods while 

providing a means for general characterization. Furthermore, figures of merit, such as 

effective resolution and limit of detection, provide an additional mechanism for 

determining the validity and significance of predicted values upon deployment. For all of 

these reasons, figures of merit should take a more prominent place among chemometric 

techniques used in pharmaceutical analytical method development.  
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Chapter 6: Figures of Merit Comparison of Reflectance and 
Transmittance Near-Infrared Methods for the Prediction of 
Constituent Concentrations in Pharmaceutical Compacts 

 

The material presented in Chapter 6 was previously published in Short SM, Cogdill RP, 
Anderson CA 2008. Figures of Merit Comparison of Reflectance and Transmittance 
Near-Infrared Methods for the Prediction of Constituent Concentrations in 
Pharmaceutical Compacts. Journal of Pharmaceutical Innovation 3(1):41 - 50. DOI 
10.1007/s12247-008-9020-8.   
 

 

6.1 Introduction 

The Process Analytical Technology (PAT) initiative6 has increased the 

performance demands upon analytical methods.  In a PAT environment, sensors are 

implemented for control as opposed to inspection.  Process analytical sensors require 

chemometric modeling/calibration160 to transform instrument signal into useable 

information.  Multivariate calibration provides a platform for data driven analyzer 

selection. 

Near-infrared spectroscopy (NIRS) has emerged as a useful analytical technique 

for the nondestructive characterization of solid oral dosage forms.  Technology selection 

is an important early process in method development; following technology selection, the 

choice of the sampling system is critical for method suitability.  Near-infrared (NIR) 

tablet analyzers are constructed to operate in reflectance and/or transmittance modes.   

Measurements of accuracy are often used as the sole discriminating factor in 

selecting spectrometer configuration.157,187-207  All but two pharmaceutically-oriented 
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studies205,207 determined transmittance NIRS to be superior for the analysis of intact 

tablets.  Most suggest that the enhanced accuracy was due to the larger volume of sample 

interrogated with the transmittance mode.201-204  Cogdill et al.207 concluded that, despite 

the enhanced accuracy, the impact of sampling position error was less for the reflectance 

mode.  Mean-squared error and the coefficient of determination assess agreement with a 

reference method; multivariate figures of merit characterize the capability of the 

measurement system.   

Multivariate figure of merit, based on net analyte signal (NAS) theory,170,172 were 

derived from univariate methods (refer to Olivieri et al.173 for additional information).  

Net analyte signal theory involves the extraction of a particular portion of signal from the 

remaining data; it separates information relevant to a particular factor (e.g., chemical 

constituent) from the residual interfering elements.  The NAS is useful for quantification 

because, by definition, it is orthogonal to the remaining factors within the calibration 

data.  Multiple algorithms are available to estimate the NAS.  Comprehensive reviews 

detailing net analyte signal theory and its mathematics can be found elsewhere.150,169-

173,175-181   

For this work, the net analyte signal was calculated using the formula developed 

by Bro and Anderson178  

 ( ) ( ) TT
ii bbbbxNAS ⋅⋅⋅⋅=

−∧ 1  (6.1) 

where, xi is a sample spectrum from matrix X and b is a column vector of the regression 

coefficients for X.  All equations herein use X to represent spectral matrices; bolded 

characters other than X, e.g., y, and NAS, represent vectors, and italicized characters, 

e.g., x and y, represent scalars.  Additionally, the notation ||x|| signifies the Euclidean 
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norm of a vector and the superscript T indicates the transpose of a vector.  Principal 

components regression (PCR) or partial least-squares (PLS) regression are common 

techniques used to estimate b.160  The matrix X is generally corrected for the mean; 

therefore, NAS outputs are mean-centered.  Solutions can be rescaled to their original 

range using the vector of means from the centering operation of X.  Net analyte signal 

can also be represented as a scalar using the equation169 

 
∧∧

= iiNAS NAS   (6.2) 

This operation does not reduce the information contained by the net analyte signal.169  

Once the NAS has been determined, multivariate figures of merit can be estimated.   

The objectives of this work were twofold: (1) to assess the utility of net analyte 

signal theory for the determination of figures of merit and (2) to apply NAS theory for 

comparing performance of NIR reflectance and transmittance spectroscopy.   

6.2 Materials and Methods 

6.2.1 Experimental Design 

 A fully-balanced, quaternary mixture design comprised of anhydrous theophylline 

(Lot No. 92577, Knoll AG, Ludwigshafen, Germany), Lactose 316 Fast Flo NF 

Monohydrate (Lot No. 8502113061, Hansen Labs, New Berlin, WI), microcrystalline 

cellulose (MCC, Avicel PH-200, Lot No. M427C, FMC BioPolymer, Mechanicsburgh, 

PA), and soluble starch GR (Lot No. 39362, EMD Chemicals Inc., Gibbstown, NJ) was 

generated.  The approximate median particle size of the theophylline, lactose, MCC, and 

starch (reported by documentation from their respective suppliers), was 90, 100, 180, and 

17 microns, respectively.  No further analyses or operations were performed on the 
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materials to establish or modify the particle size distribution.  Twenty-nine design points 

were chosen to cover a wide range in all constituents and to remove any possibility of 

factor aliasing (Table 6.1).  Analysis of the mixture covariance matrix (not shown) 

demonstrated the design is balanced in all directions, giving equal emphasis to all 

constituents. 

Table 6.1. Composition design.   

Design 
Point 

Anhydrous 
Theophylline 

(w/w) 

Lactose 
Monohydrate 

(w/w) 

MCC 
(PH200) 

(w/w) 

Soluble 
Starch 
(w/w) 

1 0.600 0.200 0.200 0.000 
2 0.400 0.400 0.200 0.000 
3 0.200 0.600 0.200 0.000 
4 0.400 0.200 0.400 0.000 
5 0.200 0.400 0.400 0.000 
6 0.200 0.200 0.600 0.000 
7 0.600 0.200 0.000 0.200 
8 0.400 0.400 0.000 0.200 
9 0.200 0.600 0.000 0.200 

10 0.600 0.000 0.200 0.200 
11 0.400 0.200 0.200 0.200 
12 0.200 0.400 0.200 0.200 
13 0.000 0.600 0.200 0.200 
14 0.400 0.000 0.401 0.200 
15 0.200 0.200 0.400 0.200 
16 0.000 0.400 0.400 0.200 
17 0.200 0.000 0.600 0.200 
18 0.000 0.200 0.600 0.200 
19 0.400 0.200 0.000 0.400 
20 0.200 0.400 0.000 0.400 
21 0.400 0.000 0.200 0.400 
22 0.200 0.200 0.200 0.399 
23 0.000 0.400 0.200 0.400 
24 0.200 0.000 0.400 0.400 
25 0.000 0.200 0.400 0.400 
26 0.200 0.200 0.000 0.600 
27 0.200 0.000 0.200 0.600 
28 0.000 0.200 0.200 0.600 
29 0.250 0.250 0.250 0.250 
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6.2.2 Compact Production 

Materials for each design point mixture were dispensed by weight into 25 mL 

glass scintillation vials (Data Range, Model No. AX504DR, Mettler Toledo, Columbus, 

OH) in accordance with the experimental design.  The materials were mixed for 5 minute 

cycles by placing them on the rotating drive assembly of a Jar Mill (US Stoneware, East 

Palestine, OH, USA).  Following each blending iteration, a NIR reflectance spectrum was 

acquired directly through the bottom of the glass (FOSS NIRSystems 5000, FOSS 

NIRSystems, Inc., Laurel, MD).  Using the constituent concentrations as reference data, 

an ad hoc partial least-squares II (PLS-2) calibration was constructed after each blending 

cycle to evaluate homogeneity.  Mixtures were assumed to be homogeneous when further 

mixing failed to yield an increase in the calibration’s coefficient of determination.   

The mixtures from each design point were then subdivided and compacted at 5 

pressures (67.0, 117.3, 167.6, 217.8, 268.1 MPa) on a Carver Automatic Tablet Press 

(Model 3887.1SD0A00, Wabash, IN) using a 13 mm die and flat-faced punches.  The 

dwell time was set to 10 seconds.  Six compacts were produced per design point, with the 

sixth compact’s compaction pressure randomly chosen from one of the five possible 

levels.  The compaction order was randomized to minimize heteroscedasticity of 

experimental error.  In total, 174 compacts were produced with a nominal target weight 

of 800 mg per compact.  Preparation and compaction occurred over a three day period, 

after which the compacts were kept in sealed scintillation vials for 15 days prior to 

spectroscopic analyses to compensate for any radial and/or axial expansion.    
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6.2.3 Data Acquisition, Instrumentation, and Software 

   Near-infrared reflectance measurements for both sides of each compact were 

acquired using a scanning monochromator instrument, equipped with a Rapid Content 

Sampler, over the wavelength range of 1100 – 2498 nm at a 2 nm increment, averaging 

32 scans (FOSS NIRSystems 5000-II, Vision version 2.00, FOSS NIRSystems, Inc., 

Laurel, MD).  Prior to spectral acquisition, the compacts were positioned via the 

centering iris standard on this instrument.  Two ad hoc partial least-squares II (PLS-2) 

calibrations, using the constituent concentrations as reference data, were constructed from 

reflectance spectra corresponding to a particular surface of the compacts.  Due to the 

subtle differences in calibration accuracy, measurements pertaining to only one side of 

the compacts were used.   

Transmittance measurements were acquired on a scanning monochromator 

instrument equipped with an InSightTM Tablet Analyzer over the wavelength range of 600 

– 1898 nm at a 2 nm increment, averaging 32 scans (FOSS NIRSystems 6500, Vision 

version 2.00, FOSS NIRSystems, Inc., Laurel, MD).  Samples were positioned via a 

tablet holder suited for compacts ~14.5 mm in diameter.  Subsequent to acquisition, the 

wavelength range of the transmittance spectra was truncated to 800 – 1400 nm. 

Reflectance and transmittance data were expressed as log (1/R) and log (1/T), 

respectively.  All spectral data were analyzed in the Matlab environment (version 7.1, 

The MathWorks, Natick, MA) using the PLS_Toolbox (version 3.0, Eigenvector 

Research, Inc., Manson, WA) and software routines developed at Duquesne University 

Center for Pharmaceutical Technology (DCPT).   
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6.2.4 Partial Least-Squares Analysis 

 NIR reflectance and transmittance data were analyzed separately but in an 

identical fashion.  Partial least-squares regression122 was used via the SIMPLS 

algorithm123 to relate spectroscopic response to concentration for each constituent on an 

individual basis.  Compacts lacking the particular constituent being analyzed were 

omitted for the analysis as analyte concentration is incorporated in the denominator of 

some figures of merit calculations.  Thus, the calibration data sets were unique for each 

analysis.   

Preprocessing routines, including standard normal variate (SNV) scaling, 

detrending, derivatives, and combinations of the preceding were tested.124  Assessment of 

the most effective data pretreatment method was made based on a minimization of 

“batch-wise” cross-validation error, where a batch is defined by a compaction level.  

Within each cross-validation iteration, compacts produced at a specific pressure were 

removed, a calibration was constructed, and the concentrations of the omitted samples 

were predicted by the temporary model.  This process was iterated until all of the samples 

had been predicted, thereby allowing for the determination of the root-mean-standard 

error (RMSE).  The RMSE for cross-validation (RMSECV) and calibration (RMSEC) 

were calculated using the formula 
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n
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 (6.3) 

where iy , iŷ , and n are the measured concentration, the predicted concentration, and the 

number of samples for the current data set, respectively.  According to ICH guidelines, 
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accuracy expresses the agreeability between reference and predicted values,208 and thus, 

RMSEC and RMSECV indicate the accuracy of the particular calibration.   

6.2.5 Multivariate Figures of Merit 

 Upon determining the optimum calibration model, the PLS regression vector can 

be used to determine the net analyte signal according to equations (6.1) and (6.2).  Net 

analyte signal is the basis for calculation of numerous figures of merit, including 

sensitivity, analytical sensitivity, selectivity, signal-to-noise ratio, and limit of detection 

and are estimated for each sample (compact) according to the following formulae. 

Sensitivity characterizes signal intensity as a function of analyte concentration.  

Larger sensitivities signify an enhanced instrumental response to a given change in 

concentration.169,170  Sensitivity is calculated as169,173,177  
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where i

∧

SEN  is the vector of sensitivities for each instrument variable, i

∧

NAS  is the net 

analyte signal vector, and iy  is the measured concentration for the ith sample.  Sensitivity 

is reported in units of instrument intensity per concentration.  For the work herein, 

measured concentrations were autoscaled before applying equation (6.4).  It is also 

possible to express sensitivity as a univariate statistic by taking the Euclidean norm of the 

sensitivity vector  

 ||||
∧∧

= iiSEN SEN      (6.5) 
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where 
∧

iSEN is the univariate measure of sensitivity for the ith sample.177,180  For this 

work, sensitivity is reported as the mean of the univariate sensitivity values for the 

particular data set. 

Given that equation (6.4) utilizes instrument intensity, sensitivity of multiple 

devices is directly comparable only when they operate under the same fundamental 

principles (and units of measure).  Considering this limitation, the statistic analytical 

sensitivity (γ) was developed to provide an impartial assessment between dissimilar 

analytical techniques.180  Analytical sensitivity is calculated as 

 
r

SEN
δ

γ
∧

=  (6.6) 

where 
∧

SEN and δr are the mean of the sensitivity values under consideration found using 

equation (6.5) and a measure of instrumental noise, respectively.  Analytical sensitivity is 

reported in units of inverse concentration.  δr was estimated as the mean standard 

deviation of iNAS
∧

 (for the component under consideration) of four compacts widely 

varying in constituent concentrations.  The compacts were scanned once a day for six 

consecutive days.  Additionally, this figure of merit provides a means to estimate the 

minimum discernible concentration difference for the dynamic range modeled (γ-1);180 

this is referred to as effective resolution.  

 Predicted values were determined according to the equation183  

   bXy ⋅=
∧

 (6.7) 

where X represents the spectral matrix and b is the PLS regression vector, which is 

dependent on the number of latent variables applied and the component being considered.  
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The predicted values were scaled to zero mean and unit variance; consequently, they 

must be rescaled prior to determining accuracy via equation (6.3).  It is important to note 

that all predicted values are independent of any NAS computations.   

 Selectivity is a dimensionless univariate measure of the fraction of instrumental 

signal remaining after accounting for spectral overlap; it is the proportion of signal 

unaffected by the interfering factors.169  This metric is calculated for each sample by169,181    
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where i

∧

NAS and ix are the NAS vector and the original spectrum for the ith sample, 

respectively.  The magnitude of the selectivity parameter is determined by the degree of 

spectral interference associated with the particular analyte under consideration.  For the 

work herein, selectivity is reported as the mean of the selectivity values for the current 

data set.   

 Signal-to-noise ratio is one of the most important metrics for the general 

comparison of methods and, using net analyte signal theory, is calculated as169 
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where iNAS
∧

 is the scalar representation of the NAS vector, and δr was estimated as the 

mean standard deviation of the predicted concentrations (for the component under 

consideration) of four tablets broadly varying in constituent concentrations (i.e., the same 

four tablets previously used).  Linear regression was performed between measured 

concentration and the univariate NAS values to estimate scale (a1) and offset (ao) 
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coefficients to convert NAS scalars to units of concentration.  Thus, S/N is a 

dimensionless metric specific to the current application. 
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Signal-to-noise ratio is reported in this document as the mean of the S/N values for all 

samples under consideration.     

 Considering the concentration range encompassed by the experimental design, 

limit of detection (LOD) is a valid figure of merit.  Limit of detection can be estimated 

by184    

 
m

kLOD Dσ=  (6.10) 

where kD is the statistical confidence factor (here, kD = 3), m is the slope of a univariate 

classical least-squares fit of the predicted and reference data, and for this work, σ and δr 

were calculated using the same procedure.  A value of 1.0 was assumed for m in all 

computations given that the slopes of the predicted versus measured plots were not 

significantly different from unity.   

6.2.6 Precision Statistics  

Repeatability and intermediate precision were determined according to ICH 

guidelines.208  These statistics function as estimates of precision and were reported as the 

standard deviation of predicted concentrations for the corresponding repeat 

measurements.  Precision statistics were calculated using the randomly-chosen design 

point comprised of 20% theophylline, 20% lactose, 0% MCC, and 60% starch, 

compacted at a pressure of 167.6 MPa.  Repeatability, a measure of short-term sampling 
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error, was determined without repositioning of the compact between successive scans, as 

well as by removing and subsequently re-centering the compact prior to spectral 

acquisition.  Six scans for each repeatability test were collected consecutively on the 

same day.  Intermediate precision, which should incorporate typical variations such as 

between analysts and days, was assessed by scanning the compact once a day for six 

consecutive days.  All precision data were collected by the same analyst. 

6.3 Results and Discussion 

6.3.1 Wavelength Selection Criteria 

 The raw NIR response for all 174 compacts is shown in Figure 6.1 for both the 

reflectance and transmittance geometries.  Mathematical assessment is necessary to 

establish whether or not the entire wavelength range is useful for the prediction of 

constituent concentrations.  While multiple methods for the selection of optimum 

wavelength ranges are available (e.g., moving-window algorithms, manual trial and error 

truncation), this work employed correlation vectors to establish if truncation was 

warranted.  Specifically, the correlation between spectral response and component 

concentration was assessed for each constituent across all wavelengths; only samples 

corresponding to the calibration data sets were considered.  This procedure yields a full-

spectrum correlation vector for each constituent (Figure 6.2).    
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Figure 6.1. Plots of raw reflectance (a) and transmittance (b) spectra for all 174 compacts. 

 

Figure 6.2. Correlation vectors for the reflectance (a) and transmittance (b) instruments illustrating the 
correlation between instrument intensity and concentration at each wavelength. 

 Wavelength regions for calibrations should be carefully selected.  Figure 6.2 

illustrates that the low and high wavelength regions contain meaningful correlations for 

anhydrous theophylline.  Therefore, the entire wavelength range was utilized for the 

reflectance data.  As for the transmittance measurements, Figure 6.2 illustrates that the 

low and high wavelength extremes are not informative.  Furthermore, the transmittance 

spectra in Figure 6.1 appear to be saturated at higher wavelengths, consistent with the 

unstable regions of the correlation vector (~ 1400nm).  Saturation can be attributed to 
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sample thickness (mean = 4.387 mm) in combination with the general increase in 

absorption coefficient that accompanies an increase in wavelength;209 this results in low 

transmittance values.  For these reasons, the transmittance wavelength range was 

truncated to 800 – 1400 nm.   

6.3.2 Model Development 

 All predicted values are independent of any net analyte signal mathematics 

employed.  Savitsky-Golay first-derivative preprocessing185 (eleven point smoothing and 

second-order polynomial) was used for the reflectance spectra, while a combination of 

first-derivative preprocessing (three point smoothing and second-order polynomial) and 

linear detrending was chosen for the transmittance spectra based on the minimization of 

cross validation error.  Model rank was determined (Figure 6.3) using plots of RMSECV 

and RMSEC versus the number of PLS latent factors.  The optimum number of factors 

was selected based on the inflection point of incremental RMSE (or variance) captured, 

also considering the agreement between RMSECV and RMSEC values.  Model 

dimensionality was further justified according to the degrees of freedom varying within 

the experimental design.   
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Figure 6.3. Plot of RMSEC and RMSECV versus the number of PLS factors selected to model anhydrous 
theophylline concentration using reflectance (a) and transmittance (b) spectra. 

For both reflectance and transmittance data, three latent variables were required to 

effectively model anhydrous theophylline concentration, while four latent variables were 

necessary for lactose monohydrate, MCC, and soluble starch.  Calibration is 

demonstrated by the composite constituent concentration plot (Figure 6.4), which 

assesses all components simultaneously.  The specificity of the calibration models is 

assessed by comparing the agreement between the regression vectors and the pure 

component spectra (Figure 6.5).  Comparable correlations were observed for the other 

three constituents (plots not shown). 
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Figure 6.4. Plot of predicted versus measured concentration for reflectance and transmittance data.  Circles 
symbolize the 50th percentile, while the upper and lower asterisks represent the 25th and 75th percentiles, 
respectively.  Transmittance data were offset 10 percent along the ordinate axis to facilitate viewing.  The 
accuracy of all constituents is represented simultaneously. 

 

Figure 6.5. Plots containing the pure component spectrum (upper dashed vector), the PLS regression vector 
(lower bold vector), and the net analyte signal (black) and interference (grey) vectors for each calibration 
sample, for anhydrous theophylline.  Reflectance (a) and transmittance (b) data were scaled to zero mean 
and unit variance, and were offset, to facilitate viewing. 

Subsequent to model selection, the PLS regression vectors were used to determine 

the net analyte signal for each constituent.  The net analyte signal and interference 
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vectors for each calibration sample are plotted in Figure 6.5 for both the reflectance and 

transmittance geometries.  Contributions of spectral variance, whether from the 

constituent itself or the other interfering elements, can be observed with this plotting 

scheme.  Additionally, regions enhancing or suppressing the sensitivities, selectivities, 

and S/N ratios can be examined. 

6.3.3 Comparison of Reflectance and Transmittance Methods 

The calibration statistics detailing the performance of the reflectance and 

transmittance geometries for the quantification of constituent concentrations are provided 

in Table 6.2.  Both geometries offer similar results in terms of accuracy.  Among the four 

constituents, the anhydrous theophylline models were most accurate.  The most probable 

explanation for the enhanced accuracy of anhydrous theophylline is its pure component 

orthogonality, which will be discussed in the following paragraphs.  Additionally, the 

ordering of calibration model accuracy for the different components was identical 

between the two instruments; however, anhydrous theophylline and lactose monohydrate 

were more accurately predicted by the transmittance measurements whereas MCC and 

soluble starch were more accurately assessed by the reflectance measurements.  The 

transmittance method may appear superior, as often times, more importance is placed on 

the prediction on API concentration, which in this system, is anhydrous theophylline.  

The negative consequences of this conclusion will be addressed shortly.  
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Table 6.2. Calibration statistics and figures of merit summarizing method performance for the reflectance and transmittance NIR instruments.   
Data Type Reflectance Transmittance 

Method SIMPLS 

Preprocessing 1st Derivative (11,2,1)a 1st Derivative (3,2,1)a and Detrend 
Latent Variables 3 4 4 4 3 4 4 4 

Component Theophylline Lactose MCC Starch Theophylline Lactose MCC Starch 

R2 - Cal 0.962 0.951 0.919 0.952 0.992 0.952 0.890 0.928 

R2 - CV 0.955 0.942 0.902 0.941 0.992 0.933 0.855 0.909 
RMSEC (%) 2.7 3.1 4.0 3.1 1.2 3.1 4.7 3.8 

Accuracy RMSECV (%) 3.0 3.4 4.4 3.4 1.3 3.7 5.4 4.3 
Repeatability - w/o repositioning (%) 0.01 0.16 0.16 0.02 0.03 0.37 0.34 0.36 
Repeatability - w/ repositioning (%) 0.07 0.10 0.36 0.46 0.11 0.22 0.56 0.80 

Precision  Intermediate (%) 0.11 0.16 0.52 0.66 0.12 0.16 0.58 0.46 
Sensitivity (Instrument Intensity / %) 0.02 0.01 0.01 0.01 0.10 0.03 0.02 0.03 

Analytical Sensitivity (1 / %) 126.36 82.47 37.09 31.18 32.28 39.54 13.34 16.12 
Effective Resolution (%) 0.01 0.01 0.03 0.03 0.03 0.03 0.07 0.06 

Selectivity (unitless) 0.59 0.33 0.24 0.27 0.61 0.23 0.15 0.20 
Signal-to-Noise (unitless) 282.40 189.88 87.23 72.14 74.20 91.32 32.73 36.59 

Limit of Detection (%) 0.33 0.50 1.08 1.31 1.27 1.04 2.89 2.58 
aParanthetical data corresponds to window width, polynomial order, and derivative order, respectively.   
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 Attempts to partition sources of variance, including instrumental noise, sample 

repositioning error, and instrumental drift, were made according to the ICH guidance on 

the validation of analytical procedures.208  The variation in sample repositioning limits 

the performance of both modes.  Issues of sample inhomogeneity amplify the effects of 

sample repositioning error; however, its influence can be suppressed through sample 

averaging.  The data in Table 6.2 suggest that the error associated with sample 

repositioning was not fully captured due to the unanticipated trend in the precision 

statistics.  It is expected that the error of repeatability without repositioning would be 

lower than repeatability with repositioning, which should be lower than intermediate 

precision, as each statistic consecutively includes additional factors that are projected to 

increase precision error.  The inclusion of additional data (e.g., scans, repositions, 

scientists) may help to clarify this issue.  Issues such as this must be adequately addressed 

before comparing methods for possible deployment. 

The conventional accuracy and precision data provide a reasonable means of 

characterizing these two methods; however, this effort can be enhanced with the 

consideration of multivariate figures of merit.  Unlike previous FOM applications where 

sensitivities were not directly comparable due to dissimilar measurement technologies,150 

the sensitivity values reported in Table 6.2 can be compared, because both the reflectance 

and transmittance spectrometers measure sample response in absorbance intensity.  While 

the transmittance measurements were more sensitive for all constituents, the order of 

decreasing sensitivity for both geometries was anhydrous theophylline, lactose 

monohydrate, soluble starch, and MCC.  
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Instrumental noise altered the constituent rank ordering for analytical sensitivity.  

The highest analytical sensitivity for the transmittance method (lactose monohydrate) was 

roughly comparable to the lowest analytical sensitivity for the reflectance data (soluble 

starch).  This illustrates the power of the analytical sensitivity metric, even when the 

instruments operate using the same fundamental principles, as the significance of 

instrumental noise (i.e., sample repositioning) on the transmittance data may have been 

otherwise overlooked.   

The trend for component selectivity mirrors that of sensitivity.  It is expected that 

adequate sensitivity yields acceptable selectivity and equally, inadequate sensitivity 

generates poor selectivity.  In situations where sensitivity is insufficient, attempts to 

enhance selectivity will be ineffective.  The anhydrous theophylline pure component 

spectrum is the most orthogonal to the interfering (spectral) elements (Figure 6.6).  This 

orthogonality is evident in not only the improved sensitivity, but also the selectivity 

statistics.  The inherent collinearity between lactose monohydrate, microcrystalline 

cellulose, and soluble starch most likely resulted in the reduced selectivity. 
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Figure 6.6. Plots of raw reflectance (a) and transmittance (b) pure component spectra.  Each spectrum 
represents the mean response of twenty-seven pure component samples compacted over the range of 67.0 - 
268.1 MPa. 

  The rank order for S/N ratio follows that of analytical sensitivity.  Although the 

transmittance measurements were consistently more selective, the reduction in sample 

repositioning error (analogous to noise) associated with the reflectance method results in 

greater S/N ratios for all constituents.   

While the statistics summarizing the accuracy of the two methods were generally 

similar, the disparate performance between the reflectance and transmittance geometries 

is apparent when considering analytical sensitivity, S/N ratio, and LOD.  Upon 

examination of these statistics, the superiority of the reflectance method for the given 

application is evident.  Although the transmittance method was more accurate and 

selective for anhydrous theophylline, it was outperformed by the reflectance method in 

all other figures of merit.  Considering only the comparable predictive performance of 

lactose monohydrate, microcrystalline cellulose, and soluble starch, one may have 

incorrectly selected the latter method due to its increased accuracy for anhydrous 

theophylline.  The reduction in performance is most likely a consequence of the larger 

sampling position error observed for the transmittance geometry.  It is anticipated that 
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positioning error could be mitigated by obtaining a tablet holder intended for 13 mm 

samples.  At the time of spectral acquisition, an optimized holder was unavailable.  

However, it remains a possibility that the transmittance instrument may be inherently 

noisier (larger δr).   

Multivariate figures of merit provide an additional degree of method 

characterization that cannot be gained from calibration accuracy statistics; however, other 

factors should be taken into account prior to method deployment.  Logistical issues such 

as cost of implementation, compatibility with existing process/production equipment, and 

ease of transferability, may dictate the selection.  Although a particular method may 

outperform another in terms of calibration accuracy, ancillary performance and 

operational issues should be considered when making evaluations.   

6.4 Conclusions 

 The results of this work show that the evaluation of multivariate figures of merit 

provides a rigorous means of comparing the performance of reflectance and transmittance 

NIR spectroscopy for the nondestructive prediction of constituent concentrations within 

compact matrices.  The figures of merit analyses revealed performance factors that 

otherwise may have gone unobserved.  Both reflectance and transmittance geometries 

performed adequately when comparing the calibration accuracy statistics.  The precision 

studies, and more notably the figures of merit, highlight the limitations of the 

transmittance instrument for this specific system.  Performance limitations were most 

likely attributable to sample positioning error, which was present for both spectrometers, 

but was more detrimental to the transmittance method.  This work also emphasizes the 

platform that net analyte signal theory provides for the determination of figures of merit, 
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which are useful for the characterization of calibration performance.  While figures of 

merit are valuable for method characterization, additional logistical factors should be 

taken into consideration.      
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Chapter 7: Integration of Process Analytical Technology with 
Quality by Design to Control the Clinical Performance of a Model 
Drug Delivery System 

 

7.1 Introduction 

 The union between PAT and QbD was conceived some years back when the 

respective initiatives were under development.  Although each has an independent role in 

transitioning from the current to the desired state, the greatest benefits will come from 

synergistic efforts that integrate PAT and QbD.  Together, they are responsible for key 

tasks in establishing, overseeing, and ensuring pharmaceutical quality.   

Recent efforts to remold pharmaceutical quality in terms of risk by relating 

clinical attributes to production characteristics have transformed approaches to QbD 

(refer to Chapter 3).  While this work presented a comprehensive review of the changes 

that are to be expected for design space, little discussion was devoted to PAT or its 

integration within the revised QbD framework.  On-, in-, or at-line multivariate sensors 

are used extensively in a PAT environment, particularly to obtain a greater understanding 

of the process (and its associated components, including raw and in-process materials), 

and to ultimately control characteristics of the final product.  Applications such as these 

typically require chemometric modeling (calibration) to transform instrument signal into 

relevant data (e.g., API/excipient concentration, moisture content, incoming process 

parameter).  Specific information regarding the process (determined via process models) 

can be used adjust the process (via feedforward or feedback control) to obtain a desired 

response.   
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Within the new QbD paradigm, the desired response is final product which 

demonstrates clinical performance as dictated by the design space.  As such, PAT will 

play an integral role in understanding how (explicitly) the process impacts clinical 

performance, and, subsequently, how to control the process such that final product meets 

the safety and efficacy constraints of the design space.  The objective of this study was to 

propose a hypothetical scenario that coupled PAT with QbD such that production could 

be maintained in a low-risk state. 

7.2 Materials and Methods 

 Data pertaining to 12 distinct wet granulation batches of the model theophylline 

tablets were utilized to construct the hypothetical scenario.  In addition to the 12 and 10 

units per batch that were sampled for dissolution and content uniformity testing, 

respectively, the crushing strength of 10 tablets was estimated for each batch by a 

diametric crushing test (ElizaTest 3+ Vision Tablet Testing System, Elizabeth-Hata 

International, North Huntingdon, PA).  A reflectance spectrum for both sides of each 

tablet was acquired before the tablets underwent the relevant destructive analyses.  

Reflectance was measured over the wavelength range of 1100 – 2498 nm at a 2 nm 

increment, averaging 32 scans (FOSS NIRSystems 5000-II, Vision version 2.00, FOSS 

NIRSystems, Inc., Laurel, MD).   

 Calibration models were constructed using NIR reflectance data, expressed in 

absorbance units, of the 120 tablets (240 spectra) and the crushing strength measurements 

(MPa).  Partial least-squares regression122 was used via the SIMPLS algorithm123 to relate 

spectroscopic response to crushing strength.  Preprocessing routines, including standard 

normal variate (SNV) scaling, detrending, derivatives, and combinations of the preceding 
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were tested.124  The optimal calibration model was selected based on a minimization of 

cross-validation error.  Contiguous block cross-validation with a block size of 5 was used 

to generate the temporary cross-validation models.  Irrespective of the preprocessing 

routine(s) employed, spectroscopic data were mean-centered while reference data were 

scaled to zero mean and unit variance.  Model rank was chosen as the point where a rapid 

decline in the incremental variance captured was observed, cognizant of the expected 

feasible limit of dimensionality based on the factors varying within the design.  

Calibration efforts revealed that no data pretreatment was necessary.  Two latent 

variables were necessary to adequately model these NIR absorbance data for the 

prediction of tablet crushing strength.  The 288 spectra of the 144 tablets subjected to 

dissolution testing were projected onto the calibration model to predict their crushing 

strengths (i.e., testing data set); predictions were compared to the nominal values for each 

tablet as specified in the original design.117  Predicted and reference values were used to 

determine the root-mean-standard error (RMSE).  The RMSE for cross-validation 

(RMSECV), calibration (RMSEC), and testing (RMSET) were calculated using the 

formula 
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where iy  is the measured crushing strength, iŷ is the predicted crushing strength, and n is 

the number of samples for the data set under consideration.  The calibration model is 

summarized in Table 7.1.   

 
 
 
 



 270

Table 7.1. Calibration summary statistics for the prediction of crushing strength.   
Data Type NIR (Reflectance) 

Method PLS 
Preprocessing Raw Spectra 

Latent Variables 2 
Component Crushing Strength 

R2
CAL 0.836 

R2
CV 0.770 

R2
TEST 0.926 

RMSEC (MPa) 0.30 
RMSECV (MPa) 0.37 
RMSET (MPa) 0.20 
BiasCV (MPa) 0.043 

BiasTEST (MPa) -0.038 
 

 These data augment the available information content (i.e., Weibull shape and 

scale parameters, theophylline content) for the same tablets used in previous studies.  As 

a result of minor spectroscopic differences detected between the two tablet surfaces, the 

predicted crushing strengths varied slightly for the same tablet.  Thus, 288 distinct 

responses were available for the 144 tablets.  These data were then used to determine if 

an underlying relationship existed between crushing strength and T63.2.  Modeling efforts 

utilized standard least-squares regression.  Transformations to both the predictor 

(crushing strength) and the predicted (T63.2) variables were explored.     

7.3 Results and Discussion 

7.3.1 Relationship between Crushing Strength and the Weibull Scale Parameter 

 Standard least-squares regression revealed a weak correlation between crushing 

strength and T63.2 when all 288 responses were considered simultaneously (r = -0.3217).  

As previous work has demonstrated,210 however, varying constituent concentrations, as 

dictated by the experimental design, can mask (spectroscopically and non-
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spectroscopically) underlying relationships involving crushing strength (see Chapter 4).  

When the relationship was re-evaluated with the relative contributions of each component 

held constant, a much stronger correlation was observed (r = 0.9188); this was 

determined using 72 of the 288 responses.  This was equivalent to assessing one 

formulation, which was tableted with the distinct purpose of obtaining several target 

crushing strength values.  The function describing the relationship between these two 

variables was determined to be 

 ( ) 043.052.02.63 −⋅= StrengthCrushingT  (7.2)  

7.3.2 Integration of PAT with QbD 

 Simulation revealed that both inefficacy and toxicity risk concerning the model 

solid oral dosage system were a function of, among other factors, content uniformity and 

dissolution variability (refer to Chapters 2 and 3).  This knowledge was used to generate 

process-independent design spaces for the model system, which explicitly defined the 

clinically acceptable combinations of theophylline (% nominal) and T63.2 (hours).  Based 

on the findings of the previous studies, the following discussion focuses on integrating 

PAT at several strategic stages prior to final product release.    

 Given the relationship between content uniformity and risk, blending of the 

formulation presents the first viable opportunity to monitor heterogeneity.  Numerous 

non-invasive analytical techniques have proven useful for evaluating blend uniformity 

(e.g., NIR, Raman).  Although uniformity, at least so much as in USP <905>, is solely 

expressed in terms of the API, process modeling can easily be extended to include 

various excipients.   
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 Taking advantage of the correlation between crushing strength and T63.2, 

feedforward control can be used to adjust the crushing strength of the final tablets to 

compensate for the clinical risk associated with various levels of content uniformity.  

Therefore, the PAT sensor(s) informs the control model (via the process model) of the 

content uniformity, which then sends a set-point(s) to adjust the compaction pressure 

(and other pertinent process variables) to modify the release profile and ultimately 

regulate clinical performance.  Since other downstream unit operations have the potential 

to affect the content uniformity estimated during blending (e.g., wet granulation, milling, 

tableting) additional calibrations can be deployed to monitor uniformity and/or crushing 

strength of the product post-tableting.  These data can be used to update or even adjust (in 

real-time) the process and/or control models, as necessary.  Various factors, including 

spectrometer drift, machinery and/or tooling deterioration, or a change in raw materials, 

could render the use of feedback control invaluable.  Ideally, however, the majority of 

these factors would be accounted for prior to model deployment.  The PAT system, 

therefore, monitors and controls the attributes which are critical-to-quality to ensure that 

the final product lies within the design space.  The integration of PAT and QbD is 

depicted in Figure 7.1.   
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Figure 7.1. Schematic illustrating the integration of PAT with QbD to control clinical performance. 

7.4 Conclusions 

PAT is an important component of QbD applications.  The methodologies 

developed in the previous phases of this dissertation were used as the basis to propose a 

hypothetical scenario that coupled PAT with QbD such that production could be 

maintained in a low-risk state.  PAT can be integrated to monitor and control production 

to ultimately ensure that the critical-to-quality attributes of the final product lay within 

the design space bounded by clinical risk.  Feedfoward control is proposed to adjust 

tableting such that dissolution would compensate for risk imparted by various levels of 

content uniformity imposed by upstream processing.  Additionally, feedback control 

could be utilized to retrospectively update or modify the process and/or control models, 

as needed.  Multivariate modeling is an indispensible component of PAT.  Future studies 
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should focus on the effects of model uncertainty and how it propagates through QbD 

methodologies to ultimately impact estimates of clinical performance.   
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Chapter 8: Summary 

 Despite recent advances, the pharmaceutical industry has failed to adequately 

integrate innovative approaches into its drug discovery and development programs.  A 

2003 Wall Street Journal article declared that the “pharmaceutical industry has a little 

secret: Even as it invents futuristic new drugs, its manufacturing techniques lag far 

behind those of potato-chip and laundry-soap makers.”  “To the FDA, with its mission of 

protecting patient safety, it seemed more important to manufacture drugs precisely to 

specification, using tried-and-true systems, than to latch on to the latest in manufacturing 

trends.”  Furthermore, “in other industries, manufacturers constantly fiddle with their 

production lines to find improvements.  But FDA regulations leave drug-manufacturing 

processes virtually frozen in time.”211  The FDA has since stepped forward to accept 

partial responsibility for the current state of affairs and introduced or endorsed numerous 

regulatory initiatives, reports and guidances intended to modernize the Agency’s as well 

as manufacturers’ approach to drug discovery and development.  This new approach is 

centered on risk-based decisions. 

 While the new documents were a colossal step in the right direction, multiple 

definitions and ambiguous interpretations of “pharmaceutical quality,” an element 

fundamental to every facet of the regulatory, pharmaceutical, and consumer industries, 

were at odds with the modernization efforts.  Mindful of the misnomer, requests were 

made by a few pioneering individuals to re-define pharmaceutical quality in terms of risk 

by relating clinical attributes to production characteristics.  This work was predicated on 

this very concept.     
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 The predominant focus of this dissertation was to assemble a platform capable of 

evaluating the effects of product and patient variability on clinical performance in silico.  

To the best of the author’s knowledge, this is the first tool of its kind.  Theophylline was 

selected as the model drug for these studies on the basis of its narrow-therapeutic index 

and the preponderance of available literature data detailing this compound.  Population 

data specifying asthma rates, anthropometric measurements, and other physiological, 

pathophysiological and behavioral factors known to influence treatment with 

theophylline were accrued and used to generate a hypothetical asthmatic patient 

population.  Concurrently, in vitro-in vivo correlation, pharmacokinetic, and 

pharmacodynamic data/models for theophylline were amassed and used to define the 

architecture of the risk simulation platform. 

 Specifics regarding the structure of the risk simulation platform were described in 

great detail.  Its framework utilized Monte Carlo simulation and probabilistic risk 

assessment to evaluate the impact that manufacturing variability had on the clinical 

performance of model extended-release theophylline tablets.  Clinical performance was 

evaluated through quantitative risk scores for inefficacy and toxicity, which was made 

possible by utilizing a probabilistic pharmacodynamic model that expressed the 

probabilities of each adverse event as a function of theophylline plasma concentration. 

 Production data for a solid oral theophylline dosage system that was formulated, 

processed, and compacted prior to the conception of this work was used to generate 

estimates of inter- and intra-batch content uniformity and dissolution variability.  These, 

along with estimates of patient compliance (both percentage of doses consumed and 

adherence to the dosing regimen), were used to evaluate their impact on clinical 
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performance in the simulated asthmatic population.  A total of 6 factors were studied via 

two full factorial experimental designs to determine which factor(s) posed a significant 

risk of inefficacy or toxicity.  Sensitivity analyses revealed that patient compliance and 

intra-batch content uniformity had a significant impact on inefficacy and toxicity risk 

scores.  Intra-batch content uniformity, therefore, was identified as a critical quality 

attribute.  The results of these initial risk simulations demonstrated the conditional risk of 

manufacturing variability on the clinical performance of the model drug delivery system.    

 With the framework of the risk simulator solidified and the relationship between 

product attributes and risk established, the next phase of this research explored the 

regulatory undertones of re-defining quality.  This research initially addressed the 

potential limitations of the final product specifications utilized in the USP <711> and 

<905> methods for dissolution and content uniformity, respectively.  A series of risk 

simulations were conducted to highlight the fact that the univariate specifications, upon 

which the USP methods are centered, disregard potential multivariate and nonlinear 

interactions that affect clinical performance.  The simulations revealed that in-

specification product demonstrated an extensive range of inefficacy and toxicity risk 

scores, magnitudes of which were in excess of those determined to be significant in the 

sensitivity analyses.  Furthermore, the specifications were not consistently sensitive to the 

lots which offered the utmost safety and efficacy.  These results suggested that the final 

product release tests were unable to adequately appraise final product quality as it related 

to clinical performance of the model drug delivery system.   

 The same series of risk simulations were also used to examine the implications 

that re-casting quality might have on design space initiatives.  Contrary to the current 
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approach to constructing a design space, re-defining quality in terms of risk by relating 

clinical attributes to production characteristics offers the ability to generate a hyperspace 

that is explicitly bounded by estimates of clinical performance.  Given the new approach 

to design space, performance-based quality specifications were proposed to be the link 

between critical quality attributes and clinical performance.  The performance-based 

quality specifications, which are delineated via the risk simulation platform, define a 

process-independent design space.  Design spaces that were conditioned on quantitative 

estimations of inefficacy and toxicity risk were generated for the model system.  

Although critical-to-quality attributes are compulsory inputs to a design space, attributes 

which interact with those determined to be critical should also be included.  A design 

space that defines the relationship between quality attributes and clinical performance can 

then be applied to specific processes using process models as transfer functions to 

ultimately link process parameters to clinical performance. 

 The last segment of this research briefly addressed the role that Process Analytical 

Technology will play in implementing performance-based quality specifications.  

Multivariate data analysis has been and will continue to be a key factor in coupling 

Process Analytical Technology and Quality by Design.  Portions of this dissertation 

explored routines for evaluating the performance of predictive models, particularly 

calibrations developed using on-, in-, or at-line multivariate sensors.  As these types of 

models undoubtedly will be used to identify, predict, and control elements fundamental to 

linking manufacturing to clinical performance, their adequacy in terms of predictive 

performance must be accounted for.  Future research should be conducted to investigate 
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the impact that model uncertainty has on the generation of performance-based quality 

specifications. 

 This work described within this dissertation is significant in that it facilitates the 

transition of the pharmaceutical industry to the desired state.  The proposed concepts not 

only embrace the Process Analytical Technology and Quality by Design initiatives, they 

support the objectives of the Critical Path Initiative by adopting an innovative approach 

to pharmaceutical product development.  With a direct emphasis on clinical performance, 

manufacturers and regulators can more easily focus on controlling manufacturing in a 

manner commensurate with patient risk. 
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