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ABSTRACT 

 

SYNTHESIS AND MOLECULAR MODELING STUDIES OF BICYCLIC 

INHIBITORS OF DIHYDROFOLATE REDUCTASE,  

RECEPTOR TYROSINE KINASES AND TUBULIN 

 

By 

Sudhir Raghavan 

December 2013 

 

Dissertation supervised by Dr. Aleem Gangjee 

The results from this work are reported into two sections listed below:  

Synthesis:  

Following structural classes of compounds have been designed, synthesized and 

studied as inhibitors of pjDHFR, RTKs and tubulin:  

1. 2,4-Diamino-6-(substituted-arylmethyl)pyrido[2,3-d]pyrimidines  

2. 4-((3-Bromophenyl)linked)-6-(substituted-benzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amines 

3. 6-Methyl-5-((substitutedphenyl)thio)-7H-pyrrolo[2,3-d]pyrimidin-2-amines  

A total of 35 new compounds (excluding intermediates) were synthesized, 

characterized and submitted for biological evaluation. Results from these studies will be 

presented in due course. Bulk synthesis of the potent lead compound 170 was carried out 

to facilitate in vivo evaluation. 
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Docking Studies 

Docking studies were performed using LeadIT, MOE, Sybyl or Flexx for target 

compounds listed above and for other compounds reported by Gangjee et al. against the 

following targets: 

1. Dihydrofolate reductase: human, P. carinii, P. jirovecii (pjDHFR) and T. gondii 

(tgDHFR) 

2. Thymidylate synthase: human (hTS) and T. gondii (tgTS) 

3. Receptor tyrosine kinases: VEGFR2, EGFR and PDGFR- 

4. Colchicine binding site of tublulin. 

Novel homology models were generated and validated for pjDHFR, tgDHFR, tgTS, 

PDGFR-and the F36C L65P pjDHFR double mutant. The tgTS homology model 

generated in this study and employed to design novel inhibitors shows remarkable 

similarity with the recently published X-ray crystal structures. Docking studies were 

performed to provide a molecular basis for the observed activity of target compounds 

against DHFR, RTKs or tubulin. Results from these studies support structure-based and 

ligand-based medicinal chemistry efforts in order to improve potency and/or selectivity of 

analogs of the docked compounds against these targets. 

Novel topomer CoMFA models were developed for tgTS and hTS using a set of 85 

bicyclic inhibitors and for RTKs using a set of 60 inhibitors reported by Gangjee et al. The 

resultant models could be used to explain the potency and/or selectivity differences for 

selected molecules for tgTS over hTS. Topomer CoMFA maps show differences in steric 

and/or electronic requirements among the three RTKs, and could be used, in conjuction 

with other medicinal chemistry approaches, to modulate the selectivity and/or potency of 
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inhibitors with multiple RTK inhibitory potential. Drug design efforts that involve virtual 

library screening using these topomer CoMFA models in conjunction with traditional 

medicinal chemistry techniques and docking are currently underway. 
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BIOCHEMICAL REVIEW 

A. 1. ANTIFOLATES 

A.1.1. The folate metabolism pathway: 

 

Folic acid 

Figure 1. Structure of folic acid  

 The term folate represents a group of water-soluble compounds composed of a 

pteroic acid (pteridine ring linked to p-aminobenzoic acid) and one or more L-glutamate 

residues. In nature, folate exists as a mixture of different forms that have variable 

bioavailability and stability.2-5 The most common source of folates is folic acid (Figure 1), 

an oxidized and chemically stable derivative. Folates play a vital role in cell proliferation 

and amino acid metabolism. Folate deficiency leads to anemia, impaired growth and 

dermatitis. Under normal conditions a high concentration of the folate pool is present in 

the cell.6 Unlike mammalian cells, which get their folic acid from the diet, higher plants, 

fungi and bacteria synthesize folates de novo.7  

Derivatives of folic acid substituted at the N5- and N10-positions serve as 

substrates for single-carbon transfer reactions in the production of nucleotides and 

methionine (Figure 2). The reduced folate carrier (RFC) is the primary means for the 

transport of folates into cells.8, 9 Another transporter of folates are the folate receptors (FR), 
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a cell membrane associated folate binding protein (FBP).8, 10, 11Additionally, proton-

coupled folate receptor (PCFT) was recently reported to contribute to folate absorption in 

the duodenum.12 The tissue specificity and overall role of PCFT in folate transport and 

homeostasis are currently being investigated. 

 

 

Figure 2. Folate metabolism pathway. (modified from ref.13)Aminoimidazole carboxamide 

formyltransferase, AICART; betaine-homocysteine methyltransferase, BHMT; dihydrofolate 

reductase, DHFR; deoxythymidine monophosphate, dTMP; deoxyuridine monophosphate, 

dUMP; dimethylglycine, DMG; folate receptor, FR; glycinamide ribonucleotide 

formyltransferase, GART; methylenetetrahydrofolate reductase, MTHFR; methionine synthase, 
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MTR; reduced folate carrier, RFC; S-adenosylhomocysteine, SAH; S-adenosylmethionine, SAM; 

thymidylate synthase, TS.  

 

The enzyme folylpoly-γ-glutamate synthetase (FPGS) sequentially adds up to 

eight L-glutamic acid residues to the folate monoglutamate within the cell.14 This has the 

following important consequences: (a) it greatly increases the affinity of the folates to 

some folate-metabolizing enzymes, and (b) prevents efflux of the folates and increases 

their intracellular retention.  

 

Figure 3. Folic acid pathway  

The various enzymes of the folate metabolism pathway (Figure 3) perform the 

crucial role of utilizing the folate cofactors for the biosynthesis of DNA. Folate cofactors 

and the folate metabolizing enzymes are also critical for amino acid metabolism.15-17 To 

act as cofactors, folates have to be reduced to tetrahydrofolate (THF). This reduction 

reaction is catalyzed by the enzyme dihydrofolate reductase (DHFR) and occurs from 

dietary folates in two steps (Figure 3). The first step is the intracellular reduction of the 

pyrazine portion of the pteridine ring of folic acid, in presence of reductant nicotinamide 

adenine dinucleotide phosphate (NADPH) which leads to the formation of 7,8-

dihydrofolate (DHF) followed by the reduction of DHF to THF.18 

The de novo synthesis of purines is described in Figure 4. In presence of the enzyme 
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glycinamide-ribonucleotide formyl transferase (GARFTase), another cofactor, 10-

formylTHF and glycinamide ribosyl-5-phosphate (GAR) are converted to THF and 

formyl-glycinamide ribosyl-5-phosphate (fGAR) respectively. The fGAR formed is further 

transformed to amino-imidazolecarboxamide ribosyl-5-phosphate (AICAR) in five steps. 

 

Figure 4. De novo synthesis of purines. 

The enzyme AICARFTase uses 10-formylTHF to convert AICAR to formyl-

amino-imidazolecarboxamide ribosyl-5-phosphate (fAICAR) releasing THF in this 

process. The fAICAR formed continues along the purine biosynthetic pathway leading to 

the formation of inosine-5’-monophosphate (IMP), the precursor of adenosine-5’-

triphosphate (ATP) and guanosine-5’-triphosphate (GTP) necessary for ribonucleic acid 

(RNA) synthesis and of 2’-deoxyadenosine-5’-triphosphate (dATP) and 2’-

deoxyguanosine-5’-triphosphate (dGTP) essential for DNA synthesis.19, 20  
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Folates are key components for the formation of 2’-deoxythymidylate-5’-

monophosphate (dTMP) from 2’-deoxyuridylate-5’-monophosphate (dUMP) (Figure 5). 

This process is catalyzed by thymidylate synthase (TS), and uses 5,10-methylene THF to 

transfer a methylene to the 5-position of dUMP to form the 5-methyl group of dTMP. This 

reaction is the sole de novo source of dTMP and is the rate-limiting step in mammalian 

DNA synthesis.21 Hence inhibition of the folate pathway by targeting enzymes such as 

DHFR or TS is a viable target for therapeutic intervention and has been successfully 

employed in the clinic for the treatment of different cancers and pathogenic infections. 

 

Figure 5. De novo synthesis of dTMP  

A.1.2.Opportunistic infections 

 

Figure 6: Structures of Trimethoprim (TMP), Trimetrexate (TMQ), Piritrexim (PTX) and 
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Sulfamethoxazole (SMX) 

 

Opportunistic infections caused by organisms such as Pneumocystis carinii (pc), 

Pneumocystis jirovecii (pj), Toxoplasma gondii (tg), and Mycobacterium avium complex 

(ma) often cause life threatening infections in immunocompromised patients such as HIV 

patients and post-transplant patients on immunosuppressant drugs.22-26 These infections 

are a major cause of morbidity and severly decrease the quality of life of such patients. 

While bacteria, fungi, yeasts and protozoa obtain dihydrofolate by de-novo synthesis 

from simple precursors, humans obtain the required folates from diet, mostly as folic 

acid, which is reduced sequentially to FH2 and FH4. Additionally, mammalian cells 

contain active folate transport systems such as reduced folate carrier (RFC) while 

pathogens lack such specialized transport systems.27 This provides an excellent 

opportunity to selectively target pathogen DHFR by means of lipophilic, non-classical 

DHFR inhibitors such as trimethoprim (TMP), trimetrexate (TMQ), and piritrexim (PTX) 

(Figure 6). These agents, which lack the glutamate chain of classical DHFR inhibitors, do 

not require specialized transport systems for uptake into cells, passively diffuse across 

cell membranes. Mammalian cells can be selectively protected from the resultant toxic 

effects of such lipophilic agents by the co-administration of a folic acid precursor, 

leucovorin, which is taken up by mammalian cells by active transport and provides the 

necessary folate precursor for normal cellular function.28 Several excellent reviews that 

detail the development of agents that target DHFR from opportunistic infections are 

present in the literature.27, 29-32 X-ray crystal structures of human DHFR (hDHFR) and 

pathogen DHFR have aided in drug development efforts and are discussed below. 
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A.1.3.Structure of DHFR 

A.1.3.1.Human DHFR 

DHFR (EC 1.5.1.3) is one of the best studied enzymes in the folate metabolism 

pathway.33-35 DHFR is found in all organisms except archaebacteria and few parasitic 

protozoa. Currently the protein data bank (PDB)36 comprises of  323 DHFR structures 

bound to cofactors as well as inhibitors. Bacterial DHFR shows lower homology (25-

40%) relative to vertebrate DHFR (75-90%). Homology at the N-terminal is much higher 

than that at the C-terminal.37, 38 DHFR is a monomeric enzyme with a sequence of 159-

204 amino acid residues and a molecular weight in the range of 18000-22000 daltons. 

The tertiary structure of DHFR, an α/β structure, contains a eight stranded β-sheet and 

atleast four α-helices. The β-sheet consists of seven parallel strands, and one antiparallel 

strand. 

 

Figure 7: Stereoview. Folic acid (white) bound to the active site of hDHFR. (PDB: 1DRF39) 

The active site of the enzyme is located in a Hydrophobic pocket and shows the 

presence of a conserved acid residue (Glu30 in vertebrate DHFR40 and Asp27 in 

Escerichia coli (ec) DHFR).41 The Hydrophobic pocket acts as the binding site for the 
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substrate or the antifolates and nicotinamide portion of NADPH.40 The pteridine portion 

and the glutamate side chain portions of folates interact with the polar side chains and 

backbone carbonyls in the active site (Figure 7). Additionally, the binding site contains 

hydrophobic flanking amino acids such as Phe31 and Phe34 which bind to the pteridine 

scaffold of folic acid and other scaffolds of antifolates.40 

  

A.1.3.2.Pneumocystis carinii DHFR (pcDHFR) 

 pcDHFR consists of 206 amino acid residues and is similar to rat liver (rl) DHFR 

in size with a molecular weight of 26000 Dalton. The optimum pH for pcDHFR is 7.0 

and its Km for FH2 is four-fold higher (17.6 ± 3.9 μM) than rat liver DHFR (4.0 ± 

2.2μM).42 

The size of the cavity of pcDHFR active site is smaller than that of hDHFR but 

larger than that of bacteria such as E. coli DHFR.42 X-ray crystal structures42-44 have 

shown that most residues of DHFR involved in catalysis and binding are conserved in 

both hDHFR and pcDHFR with the exception of the polar Asn64 residue in hDHFR, 

located just outside the binding site, being replaced by a nonpolar Phe69 in pcDHFR. The 

more potent pcDHFR inhibitors like PTX (IC50 = 19.3 nM) and TMQ (IC50 = 42 nM) 

lack selectivity.  

 

A.1.3.3.Pneumocystis jiroveci (pjDHFR) 

It was recently shown that P. jirovecii is the actual opportunistic pathogen that 

infects humans, while P. carinii is the pathogen that is derived from and infects rats.45, 46 

It has recently been reported that patients with rheumatoid arthritis undergoing first line 
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therapy with methotrexate (MTX) are at increased risk of contracting P. jirovecii 

pneumonia (PCP).47 Cody et al48 reported that the recombinant human-derived pjDHFR 

differs from rat-derived pcDHFR by 38% in amino acid sequences. There are no reported 

crystal structures for DHFR from pjDHFR.   

 

A.1.3.4.Toxoplasma gondii (tgDHFR) 

 T. gondii is a DHFR-TS bifunctional enzyme with the DHFR domain located at 

the N-terminus and the TS domain is at the C-terminus.49 A junction polypeptide 

separates the two domains. The protozoan parasite is a ubiquitous organism capable of 

infecting a wide range of vertebrate hosts, including man. Toxoplasmosis is a leading 

opportunistic pathogen associated with AIDS.50, 51 Although the crystal structures of 

tgDHFR are not yet available, the primary structure of the DHFR-TS gene from tg has 

been reported by Roos.49 

The Km for tgDHFR (IC50 = 4.6 ± 4.3 μM) is similar as that for rat liver (rl) 

DHFR (IC50 = 20 μM). Several DHFR inhibitors such as TMQ (IC50 = 10 nM), PTX 

(IC50 = 4.3 nM) and TMP (IC50 = 2.8 M) are active against isolated T. gondii enzyme 

and against the growth of T. gondii cells in culture.27, 52 
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A.1.4.DHFR inhibitors 

DHFR inhibitors have been successfully used in the clinic in anticancer, 

antibacterial and antiprotozoal treatment regimens. DHFR inhibitors commonly replace 

the 2-amino-4-oxo system in folate with a 2,4-diamino system, which increases the 

basicity of the nitrogen of the 1,3-diazine.53 This modification results in protonation at 

N1 rather than N8 of the pteridine core.39, 54-56 Resultantly, this intermediate cannot 

accept a hydride ion and be converted to the product. Additionally, the intermediate is 

commonly bound through a salt bridge to a conserved acidic residue (Glu or Asp) in the 

DHFR active site.56  

 

 

 

 

Figure 8. Interaction of Glu30 in the active site of human DHFR with (A) DHF (PDB: 1DRF39), 

and  (B) MTX (PDB: 1DLR57).  

Analysis of various crystal structures indicates that MTX binds to DHFR such that 

the para-aminobenzoyl group and the pteridine moiety are oriented perpendicular to each 

other (Figure 8).39, 40 The N1 atom of MTX is protonated in its bound state (studied by 

spectroscopic,54, 55 calorimetric,55 theoretical and NMR56 methods) and forms an ionic bond 

with an ionized carboxylic acid of a conserved acidic residue (Glu or Asp; e.g. Asp26 in L. 

casei,  Glu30 in mammalian DHFR). In L. casei the Oδ2 of Asp26 is interacts with N1 and 
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the Oδ1 is hydrogen bonded to the 2-amino group. This binding mode is found in a majority 

of reported DHFR inhibitors and forms the basis for its activity against the enzyme.  

 Antifolates with a pteridine, pyridopyrimidine, or quinazoline core and a 2,4-

diamino moiety have been shown to bind to the active site of human DHFR (hDHFR) 

similar to MTX. Additional interactions include a water mediated hydrogen bonding 

network between the conserved residues of human DHFR – Thr136, Trp24 and the 2-NH2 

and N8-nitrogen respectively.42, 58-60 The 4-NH2 group of MTX is the part of a hydrogen 

bonding network between the conserved residues Ile7, Val115 and Tyr121. This 

framework of hydrogen bonds is characteristic of all crystal structures reported for DHFR 

complexes.61, 62 A comparison of the crystal structure of DHFR with folic acid and that 

with the antifolate MTX indicates that they bind with their pteridine ring rotated 180° 

from each other which is responsible for their different active site interactions.  

 The differences of the amino acid sequences in the active site of DHFR from 

different species accounts for the differences in the binding affinity of inhibitors and  has 

been exploited to design inhibitors that are selective for pathogen DHFR over human 

DHFR. Thus the binding affinity of TMP (Figure 6) is five orders of magnitude greater 

than mammalian DHFR and hence TMP can function as a potent and selective 

antibacterial agent. 

 

A.1.4.1.Nonclassical DHFR inhibitors 

Currently, different DHFR inhibitors including trimethoprim (TMP), trimetrexate 

(TMQ) and piritrexim (PTX) (Figure 8) are used for treatment of opportunistic infections 

caused by pc and tg.  

A.1.4.1.Monocyclic DHFR inhibitors 
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The following section briefly summarizes selected important monocyclic DHFR 

inhibitors and their analogs. 

Trimethoprim  

TMP (Figure 6) is a highly selective DHFR inhibitor ((IC50 = 7 nM for ecDHFR 

compared to IC50 = 490000 nM for rat liver DHFR (rlDHFR)) and is approved for use as 

an antibacterial and antipneumocysitis agent in combination with sulfamethoxazole 

(SMX). SMX blocks the conversion of PABA to FH2 through the inhibition of 

dihydropteroate synthase.22 Dapsone is often used in the prophylaxis of pneumocystis 

pneumonia (PCP) in patients with AIDS who are unable to tolerate TMP/SMX. Severe 

hematologic effects such as agranulocytosis, aplastic anemia, and hemolytic anemia have 

been reported with the use of dapsone.63, 64 TMP lacks the glutamic acid side-chain, 

which is the characteristic feature of the nonclassical antifolate.  

Comparison of crystal structures of TMP in chicken liver (ch) DHFR and 

ecDHFR was performed to explain the observed selectivity of TMP.41 TMP was observed 

to bind deeper in chDHFR compared to ecDHFR. This binding led to the loss of two 

hydrogen bonds. Additionally, the benzyl side chain of TMP is oriented towards the 

NADPH binding site in ecDHFR, whereas in chDHFR the side chain of TMP points 

away from the cofactor binding site. This difference in binding of TMP in ecDHFR and 

chDHFR leads to a significant difference in the torsion angle about the C5-C7 and C7-

C1’ bonds for TMP.41 However, comparison of TMP bound to hDHFR, both in the crystal 

and solution, showed no loss of hydrogen bonding. Crystal structures of aTMP analog 

that contained a 3’-methoxy in the side chain phenyl ring indicated that the 3’-methoxy 

substituent could form additional interactions with the -glutamate binding pocket of 
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DHFR, thereby enhanced its inhibitory property.65 

In contrast, the hydrophobic pocket of pcDHFR is larger than that of ecDHFR.42 

In the crystal structure of TMP bound to pcDHFR, the 4-amino group of TMP forms two 

hydrogen bonds with the backbone carbonyls of Ile10 and Ile123. The benzyl group of 

TMP occupies a hydrophobic pocket formed by Ile23, Leu25, Ile33, Phe36, Pro65, Ile66 

and interacts with the nicotinamide ribose of the cofactor through hydrophobic 

interactions. 

TMQ and PTX (Figure 6) are potent and non-selective DHFR inhibitors and are 

co-administered with leucovorin for host rescue66, 67 due to the high rate of 

myelosupression associated with high doses of these agents.67, 68 However, the DHFR 

inhibitor/leucovorin combination therapy also has several drawbacks including, the high 

cost of leucovorin and the inconsistent effect of leucovorin under all clinical conditions.69 

Thus, there is a considerable interest to incorporate selectivity of TMP and potency of 

TMX/PTX into a single agent that can be used alone to treat these infections and is the 

target of several ongoing research endevours. An analysis of the literature indicates that 

the issue of potency has been addressed in several studies, however selectivity over 

hDHFR remains a significant challenge. The structural requirements for potential DHFR 

inhibitors have been summarized in recent publications.31, 32, 53 The availability of high 

resolution crystal structures of pcDHFR and human DHFR has aided rational drug design 

in the development of highly potent and specific DHFR inhibitors. However, crystal 

structures of pjDHFR, tgDHFR and maDHFR have not been solved yet. In these cases, 

comparative modeling techniques have been used to generate models which have been 

used in rational drug design efforts. Additionally, ligand based drug design efforts using 
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3D-QSAR techniques, such as CoMFA, have been successfully applied in the design of 

newer agents.53, 70, 71  

The discovery of TMQ and pyrimethamine as potential antibacterial and 

antimalarial agents stimulated the research for new nonclassical antifolates, which lack 

the benzoylglutamate side chain of classical compounds such as MTX. These agents have 

found utility in anti-infective therapy since bacteria and protozoa synthesize folic acid de 

novo without using preformed folate. In addition, these compounds do not utilize the 

folate active transport systems such as FR or RFC. They are taken up by passive and/or 

facilitated diffusion and are not substrates for FPGS. Thus they overcome resistance 

encountered with classical inhibitors like PTX, which are associated with a defect in 

transport or FPGS activity. The main drawback of these new potent antifolates is their 

lack of selectivity against DHFR derived from pathogens and hDHFR. 

 

Figure 9. The structures of Pyrimethamine, DDMP and DAMP 

Pyrimethamine (Figure 9) is a potent selective inhibitor of plasmodia DHFR used 

in the treatment and prophylaxis of malarial. Two small structural changes to the 

pyrimethamine: changing the 6-ethyl group to a methyl group and introducing an 

additional chlorine on the phenyl ring, led to2,4-diamino-5-(3,4-dichlorophenyl)-6-

methylpyrimidine (DDMP, Figure 9), which is a potent vertebrate DHFR inhibitor and 

was clinically used to treat MTX resistant tumors along with the structurally related 

DAMP (Figure 9)169, 170 
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Figure 10. The structures of MZPES and Methylbenzoprim 

   Analogs of pyrimethamine that vary in the 5-phenyl ring substitutions include 

meta-azidopyrimethamine ethanesulphonate (MZPES, Figure 10), which completed 

Phase I clinical trials as an antitumor agent. Methylbenzoprim is one of the most potent 

nonclassical DHFR inhibitor (Ki = 9 pM against rat liver DHFR) reported in the 

literature.172 

 

A.1.4.2. 6,6-Fused Bicyclic DHFR Inhibitors 

The following section deals with selected 6,6-fused bicyclic inhibitors of hDHFR and 

pathogen DHFR.  

 

Figure 11. Structures of TMQ and 1-3 

Trimetrexate (TMQ) (Figure 11) is a potent inhibitor of hDHFR and pcDHFR and 

displays better antitumor activity than MTX but its lack of selectivity for pcDHFR over 

hDHFR limits its clinical applications. TMQ has been approved for the treatment of PCP. 

Replacement of the nitrogen in the linker region of TMQ with a carbon affords 1 (Figure 
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11), which is a potent ecDHFR inhibitor. Tthe Z-isomer (2, cis) is more potent than the E-

isomer (3).  

 

Figure 12. Tetrahydroquinazoline analogues 4-6 

Gangjee et al.72 reported a series of 6-substituted tetrahydroquinazoline analogues 

of TMQ. Compounds 4-6 (Figure 12) showed nanomolar inhibition of tgDHFR with 5-11 

fold selectivity ratios (IC50 rlDHFR/IC50 tgDHFR) as compared to rlDHFR. 

 

Figure 13. The structure of PTX and 7 and 8 

PTX is a potent 2,4-diaminopyrido[2,3-d]pyrimidine inhibitor of pcDHFR (IC50 = 31 

nM, 40 – 1000 fold more potent than TMP73) but lacks selectivity. It is utilized as a 

second-line therapy in the clinic for moderate to severe PCP. The 5-methyl group of PTX 

was important for high potency. The removal of the 5-methyl group and/or the 2’,5’-

dimethoxy substituent both resulted in the decrease of activity. 

Gangjee et al.74 reported 7 and 8 which replaced the methylene bridge of PTX with 

CH2NCH3 (Figure 13). Compound 7 shows extremely potent inhibitory activity against 

tgDHFR (IC50 = 0.58 nM) whereas 8 had excellent antitumor activity. 
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Figure 14. Structures of 9 and 10 

Suling et al.75 reported a series of 5-methyl-6-substituted pyrido[2,3-

d]pyrimidines as potential maDHFR inhibitors. The most potent compound in this series 

was 9 (Figure 14, maDHFR IC50 = 0.84 nM) with excellent selectivity (2378-fold) over 

hDHFR. Compound 10 exhbited the highest selectivity in this series (maDHFR IC50 = 1 

nM, 7300-fold selective). Additional compouds that varied in the nature of the linker at 

the 6-position of the pyrido[2,3-d]pyrimidine scaffold (-CH2-S- or –CH2-CH2- instead of 

–CH2-NH-) were reported.75 These compounds displayed excellent selectivity (> 2500-

fold) for maDHFR over hDHFR. 

 

Figure 15: Structures of 11 – 13.  

PTX analogs 11 – 13 (Figure 15) were designed by Rosowski et al.76 as a part of a 

series of compounds. While these compounds displayed fair selectivity, none were more 

potent than PTX in targeting pathogen DHFR. Compound 11 was the most potent 

inhibitor of tgDHFR (IC50 = 14 nM) and was modestly selective for tgDHFR (4-fold) 

over rlDHFR. Compound 12 was the most selective inhibitor of tgDHFR (IC50 = 36 nM; 

10.3-fold selective) as well as maDHFR (IC50 = 41 nM; 9-fold selective) over rlDHFR. 

Compound 13 exhibited good potency and moderate selectivity against tgDHFR and 
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maDHFR over rlDHFR. All the compounds of the series displayed submicromolar 

inhibition of pcDHFR, displaying the importance of the 5-methyl group for activity. 

 

Figure 16: Structures of 14 – 16 

 Gangjee et al.77 published 14 – 16 (Figure 16) as part of a series of compounds 

that lack the 5-methyl group (from PTX and TMQ) and contains a reversed C9-N10 

bridge leading to the transposition of the N9-nitrogen. Compound 14 was 304-fold 

selective for tgDHFR versus hDHFR. Compound 14 was also a potent inhibitor of 

pcDHFR (IC50 = 84 nM) and was 101-fold selective for pcDHFR over 

hDHFR.Compound 15 was 192-fold selective for tgDHFR over hDHFR, but was much 

less potent compared to PTX against all the DHFRs tested and exhibited an IC50 in 

micromolar range. The corresponding N9-methyl analog 16 was a potent but nonselective 

inhibitor of pcDHFR and tgDHFR.  

 

Figure 17: Structures of 17 – 20 

 Gangjee et al.78 also designed 17 and 18 (Figure 17) in an attempt to explore the 

effect of substitution at the N10-position on DHFR activity. Compounds 19 and 20 were 

designed as analogs in which the N10-nitrogen was replaced with a carbon. Further, the 

effect of conformational restriction was analyzed by 20. Compound 17 was an excellent 
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inhibitor of tgDHFR (IC50 = 9 nM, 31-fold selective over rlDHFR). Compared to TMP, 

compound 17 was only slightly less selective but displayed a vastly improved 300-fold 

increased potentcy against tgDHFR. Compound 18 was a potent inhibitor of pcDHFR 

and tgDHFR but lacked selectivity. Compounds 19 and 20 did not display potent DHFR 

inhibition (M IC50s).  

 

Figure 18: Structures of 21 – 23 

Gangjee et al.79 further reported 21 – 23 (Figure 18) as a part of a series of 

pyrido[2,3-d]pyrimidines designed to investigate the effect of variation in the substitution 

and the size of the side chain on activity and/or selectivity for DHFR. Analog 21 was the 

most selective inhibitor of both pcDHFR (IC50 = 440 nM; 15.7-fold selective) and 

tgDHFR (IC50 = 300 nM; 23-fold selective) in this series. Compound 22 was the most 

potent compound in this series against both pcDHFR (IC50 = 70 nM; 8.6-fold selective) 

and tgDHFR (IC50 = 96 nM; 6.3-fold selective). The N10-methylated analog 23 displayed 

a loss of potency against all three tested DHFRs. 

 

Figure 19: Structures of 24 and 25 

Gangjee et al.80 reported the synthesis of 24 and 25 (Figure 19) as a part of a 

series of six 2,4-diaminopyrido[2,3-d]pyrimidines with a 6-methylthio bridge to an aryl 
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group as inhibitors of pcDHFR and tgDHFR. Compound 24 showed the highest 

selectivity ratios of 3.6 and 8.7 against pcDHFR and tgDHFR, respectively, against rat 

liver (rl) DHFR. The -naphthyl analogue 25 exhibited the highest potency within the 

series with an IC50 value of 0.17 and 0.09 M against pcDHFR and tgDHFR, 

respectively. Compound 24 was evaluated for in vitro antimycobacterium activity and 

was shown to inhibit the growth of M. tuberculosis H37Rv cells by 58% at a 

concentration of 6.25 mg/mL. 

 

A.1.5. Molecular modeling approaches employed for designing selective DHFR 

inhibitors 

This review summarizes modeling efforts for the design of selective DHFR 

inhibitors against opportunistic agents and generation of homology models for pathogen 

DHFR. These areas have been reviewed extensively in the literature by Tawari et al.53   

Multiple high resolution (< 2.5 Å) X-ray crystal structures of DHFR from 

pathogens such as P. carinii (17 structures), Cryptosporidium hominis (chDHFR, 5 

structures), Leishmania major (3 structures) and T. cruzi (9 structures) among others can 

be accessed in the protein data bank. Additionally, the presence of multiple hDHFR 

crystal structures has aided in comparison of active sites, and aided in the design of 

inhibitors selective for pathogen DHFR.81, 82 This review will cover modeling studies 

with pcDHFR and tgDHFR. 

A.1.5.1. Molecular Modeling studies with pcDHFR 

pcDHFR is a 206 amino acid chain and shares 34% identity with human DHFR.83 

Table 1 provides a list of the 17 X-ray crystal structures of pcDHFR that can currently be 
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accessed in the PDB.  

Champness et al.42 described, 1.86 Å resolution crystal structure of ternary 

complex of pc DHFR with TMP and NADP, similarly with PTX and NADP along with a 

binary complex holoenzyme at 2.5 Å resolution. Cody et al.84 reported the crystal 

structure (PDB: 1HFQ) of a classical furopyrimidine inhibitor, MOT (Figure 20, 

pcDHFR IC50: 6.5 nM; hDHFR IC50: 2.7 nM), with pcDHFR and recombinant wild-type 

human DHFR. These studies provided the first direct comparison of the binding 

interactions of the same antifolate inhibitor in the active site for pcDHFR and human 

DHFR. 

Table 1: X-ray crystal structures of pcDHFR available in the PDB 

 PDB Resolution (Å) Ligand Reference 

1 1DYR 1.86 TMP, NDP 42
 

2 3OAF 1.70 OAG 85
 

3 3L3R 2.00 OAG, NDP 85
 

4 1E26 2.00 GPB, NAP 43
 

5 1DAJ 2.30 MOT, NDP 86
 

6 1CD2 2.20 FOL, NAP 43
 

7 2CD2 1.90 FOL, NAP 43
 

8 3CD2 2.50 MTX, NAP 43
 

9 4CD2 2.00 FOL 43
 

10 1VJ3 2.10 TAB, NDP 87
 

11 1KLK 2.30 PMD, NDP 82
 

12 1S3Y 2.25 TQT, NAP 81
 

13 1LY3 1.90 COG, NAP 82
 

14 1LY4 2.10 COQ, NAP 82
 

15 2FZH 2.10 DH1, NAP 44
 

16 2FZI 1.60 DH3, NAP 44
 

17 2FZJ 2.00 DH3, NAP 44
 

 

Comparison of the pcDHFR crystal structure with folic acid and those of the apo 

enzyme by Cody et al.86 revealed a >7 Å movement of the loop region near Asn23 that 
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results in a “flap-open” position for the binary complex, and a “closed” position in the 

ternary complexes, similar to that reported for ecDHFR complexes. 

Cody et al.88 reported structural data for PT653 (Figure 20, PDB: 1KLK) with 

pcDHFR. The crystal structure explained that the observed 21-fold selectivity of PT653 

for pcDHFR over rlDHFR could be the result of a ligand-induced fit of the hydrophobic 

dibenzazepine ring of PT653, which occupied regions of the enzyme active site not 

occupied by other antifolates and due to conformational differences between the 

structures of human and pcDHFR. 

 

 

Figure 20: Structures of ligands cocrysallized with pcDHFR available in the PDB 
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High resolution crystal structures of two ternary complexes of pcDHFR with the 

cofactor NADPH and potent antifolates: the N9-10 reversed-bridge quinazoline inhibitor 

COG (Figure 20) and its 3,5-dimethoxypyrido[2,3- d]pyrimidine analog, COQ (Figure 

20) were reported by Cody et al.89  These studies revealed the first observation of an 

unusual conformation for the reversed-bridge geometry (C5-C6-N9-C10 torsion angle) in 

this antifolate. Structures of tetrahydroquinazoline antifolate 9 and its trimethoxy 

analogue 10 (Figure 20) as inhibitor complexes with hDHFR and pcDHFR and 

correlations between enzyme selectivity and stereochemistry have been described by 

Cody et al.90 Structural analysis of these potent and selective DHFR inhibitor complexes 

revealed preferential binding of the 6S-equatorial isomer in each structure.  Cody et al.44 

reported structural data for two highly potent antifolates, PY1011 (DH3, Figure 20), with 

a 5000-fold selectivity for pcDHFR, relative to rlDHFR refined to 2.0 Å resolution and 

PY957, (DH1, Figure 20) that has 80-fold selectivity for pcDHFR was refined to 2.2 Å 

resolution. From these structures it was observed that carboxylate of the -

carboxyalkyloxy side chain of these inhibitors form ionic interactions with the conserved 

Arg in the substrate binding pocket of DHFR. The structural data further revealed reasons 

for differences in potency of two inhibitors. 

Thus, the available crystal structures allow direct comparison of potent and 

selective inhibitors of pathogen DHFR with human DHFR. Furthermore, some of the 

structures indicate ligand induced specific conformational changes, which could be 

exploited for the design of better inhibitors.  
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A.1.5.2. Homology Modeling 

There are no reported crystal structures of pjDHFR and tgDHFR. Thus, homology 

models were required for these enzymes to aid structure based drug design of molecules 

against these enzymes. Very recently Cody et al.91 described the generation of a 

homology model of pjDHFR based on the crystal structure of pcDHFR complexed with 

MTX.  

 

Figure 21: Structure of ligand WR99210 in P. falciparum DHFR (PDB: 1J3I) 92 

Cody et al.44 reported a model of the tgDHFR active site based on the crystal 

structures of ecDHFR-MTX complexes and MtbDHFR-TMP ternary complex. The 

homology model was generated using sequence alignments between the two crystal 

structures. Popov et al.93 reported a homology model of the first 300 residues of tgDHFR-

TS sequence using the automated JIGSAW server and refined using Sybyl 7.0. Based on 

the superimposition with crystal structure of P. falciparum DHFR (PDB ID: 1J3I92), 

cofactor, NADPH and ligand, WR99210 (Figure 21), were added to the model. This 

model was further used for correlating the docking scores from ensemble of poses for 11 

docked inhibitors with their binding affinity. A correlation of 50.2% between docking 

score and activity was obtained in these studies. Thus, in absence of experimentally 

determined crystal structure, comparative modeling techniques provide an understanding 

of DHFR inhibition. 

A.1.5.3. Structure-based Approaches: Molecular Docking and Binding Affinity 

Prediction 

Availability of a large number of high resolution crystal structures of both 
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pcDHFR and hDHFR has enabled structure-based design studies for potent and selective 

DHFR inhibitors. Due to similarities in the binding pocket, inhibitors designed against 

pcDHFR are usually screened against DHFR from other opportunistic agents such 

maDHFR and tgDHFR. Molecular docking involves two steps: (a) initial placement of 

the inhibitor in the active site, also known as pose prediction and (b) prediction of 

binding affinity of the inhibitor based on the placement in the pocket. In general, majority 

of docking algorithms show high accuracy (~ 2 Å root-mean-square deviation (RMSD) to 

that of observed crystal structure) in pose prediction but lack similar accuracy in scoring 

of poses in order to prioritize the docked poses. Ideally, a scoring function should be able 

to reproduce binding energy and be able to rank the ligands according to their binding 

affinity. However, the majority of scoring functions have been reported to often perform 

poorly in reproduction of binding affinity; hence, use of these scoring functions is limited 

to screening of databases of large number of ligand.94, 95 Different postdocking methods 

have been used in the literature to predict binding affinity of small molecule inhibitors.70, 

94, 95 These methods range from simple consensus scoring to free energy perturbation.96, 97 

This section of the review is limited to molecular modeling efforts reported for predicting 

the binding affinity of opportunistic and hDHFR inhibitors. Graffner-Nordberg et al.88 

calculated relative binding affinities from free energy perturbation simulations and 

employed it for the selection of four esters with quinazoline and pteridine core as 

inhibitors of human DHFR. Simulations were carried out using the protonation state of 

the bound ligands with the free energy for protonation in water added as a correction to 

account for the differences in protonation states of quinazoline and pteridine nuclei. The 

results of the study demonstrated that the estimation of relative binding free energies by 
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FEP simulations could be useful for the selection of target compounds to be synthesized 

for biological evaluation against DHFR; it further revealed the importance and viability 

of ester linkage in the MTX scaffold as potential DHFR inhibitors. Furthermore, 

molecular dynamics (MD) simulations of three ligands in complex with pcDHFR and the 

human DHFR enzyme were conducted to understand the molecular basis for the observed 

selectivity. The LIE method98 was employed to predict the absolute binding free energies 

of molecules against pcDHFR and human DHFR. The predicted binding affinity and the 

selectivity ratio were well correlated with the experimental observations.  

A series of compounds in which the methylenamino-bridge of non-classical 

inhibitors was replaced with an ester function to provide potential inhibitors for 

inhalation use against PCP was reported by Graffner-Nordberg et al.99  In this study, the 

selection of the target compounds for synthesis was partly guided by an automated 

docking and scoring procedure using AutoDock 3.0100 as well as MD simulations. Even 

though, the AutoDock scores overestimated the magnitude of the binding free energies (-

16 to -11 kcal/mol), the relative comparison was possible. As predicted by their  

AutoDock scores, the compounds were not selective versus human DHFR. Five of the 

docked compounds were selected for studies using the more time consuming LIE 

method. Compounds were again predicted to be non-selective by the LIE method. Thus, 

this study provided compounds with only slight preference for the fungal enzyme; 

furthermore, modest selectivity of the synthesized inhibitors was reasonably well 

predicted using the employed computational methods, although a correct ranking of the 

relative affinities was not successful in all cases.45 

Gorse et al.101 reported MD simulations on hDHFR in order to determine the 
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putative stable binding conformers of selected deazapterin analogs. Method based on 

standard thermodynamics cycles and linear approximation of polar and non-polar free 

energy contributions from MD averages was used to correlate the binding affinities of the 

different ligands in each binding site with experimental dissociation constants. The study 

provided insights into structure-activity-relationships (SAR) for use in the design of 

modified inhibitors of DHFR. Pitts et al.66 reported interaction energy calculations for 

various pcDHFR inhibitors including PTX, TMX, TMP and epiroprim using explicit 

solvent model. Each inhibitor was divided into different substructural regions and the 

minimized complexes were then used to calculate interaction energies for each intact 

antifolate and its corresponding substructural regions with the pcDHFR binding site 

residues. Substructural regions containing pteridyl, pyridopyrimidinyl and 

diaminopyrimidinyl subregions contributed most to the stability of antifolate interactions, 

while interaction energies for the hydrocarbon aromatic rings, methoxy and ethoxy 

groups were much less stable. 

Recently, Bag et al.22 described the design, synthesis and biological evaluation of 

fourteen structurally diverse compounds. The top five docked poses using Glide-XP28 

score were minimized using the local optimization feature in Prime28 and the energies 

were calculated using the OPLSAA force field102 and the GBSA continuum model.63 The 

docking scores from Glide-XP method and MM-GBSA predicted Gbind were able to 

distinguish between the active and poorly active compounds. Furthermore, a good 

correlation coefficient of 0.797 was obtained between the IC50 values and MM-GBSA 

predicted Gbind. 

Thus, a variety of methods ranging from simple docking scores, to 
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computationally expensive and accurate methods like FEP, have been employed to rank 

order DHFR inhibitors according to their binding energy, with varying success. However, 

accurate prediction of binding affinity for a larger dataset of DHFR inhibitors still 

remains a challenge. 

 

A.1.5.4. Ligand Based Approaches - QSAR and Pharmacophore Modeling 

Availability of large number of active and inactive ligands has aided rational 

ligand based drug design. These methods vary from simple 2D descriptor based methods 

to more complex and advanced receptor based 3D-QSAR methods. Furthermore, the 

DHFR inhibitor dataset is often used to validate newly proposed ligand based 

approaches. A survey of various ligand based models developed for inhibitors of 

pcDHFR, tgDHFR and maDHFR is presented in this section. 

Agrawal et al.64 reported development of QSAR models using a series of nineteen 2,6-

substituted 2,4-diaminopyrido[3,2-d]pyrimidine derivatives against pcDHFR using 

topological indexes. Mattioni et al.67 used a data set of 345 diverse DHFR inhibitors to 

build QSAR models using artificial neural networks to correlate chemical structure and 

inhibition potency for pcDHFR, tgDHFR and rlDHFR. Classification models were also 

built using linear discriminant analysis (LDA) to predict the selectivity for pcDHFR and 

tgDHFR. A set of new nitrogen and oxygen-specific descriptors were developed to better 

encode structural features. The developed neural network models were able to accurately 

predict log IC50 values for the three types of DHFR to within ± 0.65 log units. The best 

LDA models were able to correctly predict DHFR selectivity for approximately 70% of 

the external prediction set compounds. 

Gangjee et al.50, 103 reported 3D-QSAR model development using three methods, 
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conventional CoMFA, all orientation search (AOS) CoMFA, and CoMSIA, using a 

dataset of 179 structurally diverse compounds from their previous publications. Low 

energy conformation of 5-((naphthalen-2-ylthio)methyl)furo[2,3-d]pyrimidine-2,4-

diamine (Figure 10), one of the most potent and selective inhibitor was used as template 

for the flexible alignment using Molecular Operating Environment (MOE) suite. The 

models were derived against pcDHFR, tgDHFR and rlDHFR. AOS CoMFA models gave 

the best internal predictions (q2 = 0.604, 0.600, and 0.634 for pcDHFR, tgDHFR, and rl 

DHFR respectively). CoMSIA models gave the best external predictions (predictive r2 = 

0.544, 0.648, and 0.488 for pcDHFR, tgDHFR, and rlDHFR respectively). Both AOS 

CoMFA and CoMSIA analyses were used to construct stdev*coeff. contour maps which 

provide an insight into SAR.  

Jain et al.85 described QSAR analysis using 2D and 3D descriptors on a series of 

DHFR analogs of 2,4-diaminopyrido[2,3-d]pyrimidines and 2,4-diaminopyrrolo[2,3-

d]pyrimidines.  The QSAR model indicated importance of the hydrogen bond between 

the hydroxyl group of Tyr129 and the cofactor NADPH. The major difference between 

the earlier pharmacophore hypothesis developed using Catalyst and the one proposed in 

this study was that the hydrogen bond acceptor feature corresponding to 3-nitrogen of 

2,4-diaminodeazapteridin ring was missing in this pharmacophore. Also, one hydrogen 

bond acceptor feature corresponding to 8-nitrogen was present in Catalyst 

pharmacophore while in the one proposed in this study, hydrogen bond acceptor feature 

corresponding to nitrogen at 1-position in 2,4-diaminodeazapteridin ring was present. 

Moreover, the proposed new pharmacophore had two new donor features mapped to N-H 

bonds of two amino groups of 2,4-diaminodeazapteridin ring system. The proposed 
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pharmacophore was used to refine the earlier pharmacophore and was in agreement with 

mechanism of the reaction catalyzed by the enzyme. The alignment from pharmacophore 

model was used to develop CoMFA and CoMSIA models from 68 compounds taken from 

a dataset of 90 compounds. Each model was further validated using a test set of 22 

compounds not included in the training set. Of the various models evaluated CoMSIA 

model with a combination of steric, electrostatic, hydrophobic, and H-bond fields 

produced a statistically significant model with good correlation and predictive power. 

Furthermore, analysis of various contours provided details about the SAR.  

 Gangjee et al.50 recently described CoMFA analysis of tgDHFR and rlDHFR 

based on 80 antifolates with 6-5 fused ring system using the all-orientation search (AOS) 

routine and a modified cross-validated r2-guided region selection (q2-GRS) routine. In 

this study, two modifications of q2-GRS routine were suggested to improve the 

predictability of models. In the first modification, the lowest corner of each modified 

subregion was the lowest grid point of the conventional CoMFA grid enclosed by the 

original q2-GRS subregion, and the highest corner of each modified subregion was the 

highest grid point of the conventional CoMFA grid enclosed within the subregion of the 

original q2-GRS routine. In the second modification, the region box was divided into 125 

equal-sized subregions and the distance between the adjacent subregions was 1Å, 

whereas in the original routine, the adjacent subregions touch each other. Among the 

various generated models, the q2-GRS model using the second modification showed the 

best external predictive r2 (0.499) along with a satisfactory internal cross-validated q2 at 

0.647 (optimim number of components (ONC) = 3). On the basis of the steric contour 

maps of the models, four new compounds were designed belonging to the 2,4-diamino-5-
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methyl-6-phenylsulfanyl-substituted pyrrolo[2,3-d]pyrimidine series. It was observed 

that, as predicted, the new compounds were potent and selective inhibitors of tgDHFR. 

One of them, 2,4-diamino-5-methyl-6-(2’,6’-dimethylphenylthio)pyrrolo[2,3-

d]pyrimidine, showed nanomolar tgDHFR inhibitory activity. 

Thus, the QSAR models derived from the homologous series (e.g. 2,4-

diaminopyrido[3,2-d]pyrimidine, 2,4-diamino-5-methyl-6-[(substituted 

anilino)methyl]pyrrido [2,3-d]pyrimidines, 2,4-diaminopyrido[2,3-d]pyrimidines and 2,4-

diaminopyrrolo[2,3-d]pyrimidines), for DHFR inhibition, have applicability domains 

restricted to specific chemotypes. Furthermore, these models and even some of the 

models derived from larger datasets, provide no information about the binding site. On 

the other hand, the 3DQSAR models derived using methods such as, CoMFA and 

CoMSIA, have distinct advantage of stdev*coeff. contour maps, which provides an 

insight into SAR and generation of SAR in context of active site. However, these models 

lack inherent ability to mine 3D databases in search of potent/selective DHFR inhibitors. 

The models developed using receptor residue interaction energy, quantify the binding 

contribution of active site residues. Pharmacophore models are reported for maDHFR, 

however, there are no reports for development of pharmacophore models for pcDHFR 

and tgDHFR. 

 

A.1.6. Thymidylate synthase: 

The enzyme TS (EC 2.1.1.45) is present in almost every living organism 

including humans, bacteria and protozoa.104 Currently the protein data bank (PDB)105 lists 

165 TS structures. The crystal structures depict the enzyme in different molecular states 
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and reaction intermediates: apoprotein, binary and ternary complexes with one or both 

substrates, dUMP and mTHF, products, dTMP and DHF, inhibitors or substrate analogs, 

such as FdUMP, 2’-deoxyguanosine-5’-monophosphate (dGMP), 2’-deoxycytidine-5’-

monophosphate (dCMP) or classical or nonclassical antifolates.106  

The TS enzyme is active as a homodimer consisiting of two identical subunits 

each having a molecular weight of 30-35 kDa.21, 107 It has two active sites, each formed 

by residues from the monomers. In each monomer, there are two main domains: one 

larger, conserved domain (residues 1-98 and 130-313 in human TS (hTS)) and one 

smaller, variable domain (the small domain (SD), residues 99-129 hTS). Each monomer 

shows an alpha and beta fold (α+β) with 8 β-strands and 5 α-helices in the large domain. 

A five stranded β-sheet in each large domain forms the dimer interface. C195 in the 

catalytic loop (CL, residues 184-199 hTS) is the catalytic amino acid that reacts with 

carbon C6 of dUMP, forming the covalent complex. Other important regions that can be 

recognized in the enzyme structure are the loop at the interface (HIL, residues 144-158 

hTS), the loop around R50 and the C-terminal region (CT, residues 308-313 hTS).  

The longest sequence of TS is found in Lactobacillus casei with 316 amino acids, 

whereas the shortest sequence of TS is in E.coli with 264 amino acids. There are 6 major 

insertions: Homo sapiens and Rattus norvegicus have an extended N-terminal with 24 

and 18 residues, respectively. Bacillus subtilis has 10 amino acids inserted into the loop 

around Arg50. P. carinii and Cryptosporidium hominis have a 6 and 1 residue insertion 

respectively at residue 206. However, the most variable regions are the small domain and 

the loop at the interface. The small domain varies in number from 20 to 70 residues from 

E.coli to the L. casei sequence.  
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The mechanism of catalysis by TS is well studied108 and is depicted in Figure 22. 

Cys 195 (hTS) attacks C6 of dUMP to form an enolate which then abstracts a proton 

from an unidentified basic residue of the protein to form an enol in step (A). 

 

Figure 22. The mechanism of catalysis by TS (Modified from ref.109 )  

The co-factor, 5,10-methyleneTHF is activated by iminium ion formation at N5. 

The C5 position of dUMP, activated by enol formation, reacts with the methylene of the 

activated co-factor in step (B). H5 of dUMP is abstracted and the enol is regenerated in 

(C). Abstraction of a proton from O4 of the enol in (D) results in formation of an 

exocyclic methylene and release of the catalytic Cys (Cys 195). The methylene is then 

reduced by the modified cofactor to produce dTMP. The modified cofactor, which has 
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served as methylene donor and reductant, is released from the active site of TS followed 

by release of product, dTMP.  

 

 

Figure 23. Structure of PDDF. 

 A 2.3 Å X-ray crystal structure of the ternary complex of E. coli 

TS:FdUMP:PDDF was reported by Oatley et al.110 In this structure a covalent bond is 

formed between Cys146 at C6 of the nucleotide analog FdUMP by a thioether bond. 

Another key interaction of FdUMP is the charge-mediated interaction of the 5’-phosphate 

group in the dianionic state with four conserved arginine residues (Arg21, Arg166, 

Arg126, and Arg127), two from each subunit. In addition, the polar atoms in both the 

pyrimidine and ribosyl moieties of FdUMP form hydrogen bonds with side chains of 

binding pocket amino acid and ordered solvent molecules. 

 The cofactor analog PDDF binds in a partially folded conformation with its para-

aminobenzoyl group inclined at a 65 ° angle to the heterocycle and the L-glutamate tail 

exposed at the entrance to the active site cleft. Formation of the ternary complex induces 

a large conformational change in which the active site is capped by four carboxylic acid-

terminal amino acids and the bound ligands are sequestered from the bulk solvent. PDDF 

sits directly above the substrate analog FdUMP and the B-ring of PDDF forms a charge 

transfer complex with the pyrimidine portion of FdUMP. The N1, N3 and the 2-NH2 

groups of PDDF are involved in hydrogen bonds with side-chain residues of TS either via 

direct hydrogen bonds or by water mediated hydrogen bonds. The C5 and C8 atoms of 
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the quinazoline B-ring do not have hydrogen bond donor or acceptor side chain residues 

within a distance of 5 Å. This could explain the improvement in inhibition produced by 

quinazoline antifolates compared to pteridine antifolates, which require desolvation of the 

polar N5 and N8 groups. The quinazoline ring also interacts via hydrophobic bonds with 

Trp83 and Leu43. The hydrophobic interaction between the C6- methylene moiety of the 

quinazoline and the conserved Trp80 is an important interaction. The 4-oxo group of 

PDDF is not involved in hydrogen bonding interactions with side chain residues or 

ordered water molecules of TS. In addition to the quinazoline backbone, the L-glutamate 

moiety also contributes to binding by having interactions with Lys 50 and several 

backbone residues including His53, Leu224 and Ile310 via the bridging of two conserved 

water molecules. 

 

A.1.6.1 TS Inhibitors 

This review will cover bicyclic non-classical inhibitors of TS. 

Table 2.  Pyrrolo[2,3-d]pyrimidines as  nonclassical inhibitors of TS 

 

Non-classical compounds 

 

IC50 in nM against  
hTS 

 

28 340 

MTX 36 
 

111 

 

IC50 in µM against  

hTS 
 

29 0.13 

30 0.15 

PDDF 0.18 

112 
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Compound 31 exhibited 25% 

inhibition of hTS at 23 µM 

113 

 

No inhibition of hTS at >10 µM 114 

 

IC50 in µM against  

hTS 
 

33 >25 (20% inhibition) 

PDDF 0.036 

115 

 

Inactive against TS 116 

 

A.2. RECEPTOR TYROSINE KINASE INHIBITORS  

A.2.1. Angiogenesis:  

The term angiogenesis is used to describe the physiological process of formation 

of new blood vessels from pre-existing vasculature.117 Angiogenesis is critically 

important for growth and development of the body and normally occurs only during 

embryonic and post-embryonic development, reproductive cycle, and wound healing. 

However, an upregulated angiogenesis has been observed as one of the hallmarks of 

cancer, playing an essential role in tumor growth, invasion, and metastasis.118 

Furthermore, many other diseases – diabetic retinopathy, hemoangioma, arthritis, 
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psoriasis and atherosclerosis among others – are also dependent on upregulated 

angiogenesis.119, 120  

 

 

Figure 24. Process of angiogenesis. (Modified from ref.119 ) 

 (1) An activating, proangiogenic signal induces the switching on of the angiogenic phenotype of 

resting endothelial cells, which become activated. (2) These activated cells acquire an invasive 

potential, involving basal membrane degradation, (3) extracellular matrix remodeling, 

proliferation, and migration. (4) Finally, morphogenesis contributes to the alignment of 

endothelial cells forming a new microvessel, and (5) this microvessel is stabilized by eventual 

recruitment of pericytes and acquisition of a new basal membrane.  

 

The process of angiogenesis starts an angiogenic signal activates resting 

endothelial cells. This initiates the release of degrading enzymes from endothelial cells   

and initiates a sequence of migration, proliferation and cell differentiation to form new 

vessels as depicted in Figure 1.119  

Angiogenesis is critical for tumor growth beyond 1-2 mm and for tumor invasion 

and metastasis.119 As a tumor grows in size, it becomes increasingly hypoxic, and triggers 

the release of growth factors, particularly, vascular endothelial growth factor (VEGF), 
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epidermal growth factor (EGF), and platelet derived growth factor (PDGF) among others, 

which act as proangiogenic signals (Figure 24) and initiate angiogenesis. Leading from 

this observation, Folkman, in 1971, proposed that inhibition of angiogenesis could serve 

as a potential approach in cancer treatment.117  

 Anti-angiogenic therapy, directed to activated endothelial cells presents a series of 

advantages over therapies targeted to tumor cells.119 First, due to the fact that endothelial 

cells are homogeneous, diploid, genetically stable targets; spontaneous mutations rarely 

occur in them relative to tumor cells. Second, the turnover of endothelial cells in tumoral 

tissues is usually fifty-fold higher than that of quiescent endothelia in normal tissues. The 

activated endothelium overexpresses specific markers – integrin αvβ3, E-selectin, Tie, and 

vascular endothelial growth factor receptor (VEGFR) – that could be used as targets for 

the development of specific therapies directed to these cells. In addition, the contact 

between endothelial cells and blood makes this target easily accessible to systemically 

administered drugs, therefore avoiding the problem of low penetration of antitumor 

agents into the solid tumors.121 Finally, because a single vascular net may support the 

growth of different populations of tumor cells, the inhibition of the vascular growth may 

affect the survival of many tumor cells.122 

Any of the steps involved in angiogenesis may be a potential target for developing 

novel anticancer agents.119 The present review will focus only on Receptor Tyrosine 

Kinases (RTKs) as potential targets for the abrogation of cancer induced angiogenesis. 

 

A.2.2. Receptor tyrosine kinases (RTKs): 

 

Protein kinases are enzymes that transfer a phosphate group from ATP to the 

hydroxyl group of serine, threonine, or tyrosine of specific proteins inside cells.123 The 
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phosphorylation by these enzymes achieves an important function of signal transduction 

in eukaryotic cells, and controls the processes of cell proliferation metabolism, survival 

and apoptosis. A misregulation of these tightly controlled processes results in the 

overexpression of kinases and/or mutations and is associated with a variety of disease 

states including cancer.124    

 For angiogenesis to occur, the pro-angiogenic growth factors have to bind to 

transmembrane receptors of the protein kinase family identified as RTKs. At present, 58 

RTKs are known, grouped into 20 subfamilies.125 The structural composition of RTKs 

consists of an extracellular ligand binding domain, a transmembrane hydrophobic 

domain, and an intracellular catalytic domain. Following binding of the growth factor to 

the extracellular domain, these receptors commonly undergo dimerization, resulting in 

autophosphorylation of tyrosine residues within the catalytic domain. This triggers a 

cascade of events through phosphorylation of intracellular proteins that ultimately 

transmit the extracellular signal to the nucleus, causing changes in gene expression 

eventually leading to angiogenesis.126 

 A number of RTKs have been recognized to be involved in tumor induced 

angiogenesis. The key RTK families in cancer include the platelet derived growth factor 

receptor (PDGFR), epidermal growth factor receptor (EGFR), and the VEGFR families 

of RTKs.127  

 PDGFR. Members of the PDGFR family – PDGFRα and PDGFRβ have been 

implicated, indirectly, in inducing VEGF secretion and hence in angiogenesis.128 

Although PDGFR plays a role in the development and maintenance of tumors due to its 

role in blood vessel growth, the validity of PDGFR as a drug target itself is still unclear, 
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as it is not usually the main factor in tumor development. However, there are several 

cancers that exhibit an upregulation of PDGFR, namely, chronic myelomonocytic 

leukemia (CMML), gastrointestinal stromal tumor (GIST), acute myeloid leukemia 

(AML), chronic myeloproliferative disorders (CMPD), and dermatofibrosarcoma 

protruberans (DFSP), a soft tissue sarcoma.129, 130 

 EGFR. The ligand for EGFR, EGF, controls a pathway that is linked to cell 

proliferation, migration, and differentiation. There are four subtypes of EGFR receptors: 

EGFR-1 (later referred to as EGFR; also identified as erythroblastic leukemia viral 

oncogene homologue 1, Erb-B1, or human EGF receptor HER-1), HER-2 (Erb-B2, or 

neuroglioblastoma neu), HER-3 (Erb-B3), and HER-4 (Erb-B4). Among these, HER-2 

lacks a known endogeneous ligand and HER-3 lacks kinase activity. Abnormal activity, 

either by overexpression or constitutive action, has been linked to a number of cancers, 

including lung, breast (especially HER-2/neu), and prostrate cancers.131 EGFR inhibitors 

have been recommended as first line therapy for patients with advanced or metastatic 

NSCLC.132 

 VEGFR. In the VEGFR family, VEGFR-2 (FlK-1/KDR) has been recognized as 

the principal receptor that mediates VEGF stimulation in angiogenesis. VEGFRs are 

almost exclusively expressed on endothelial cells. Targeted inhibition or disruption of 

VEGFR-2 produces an abrogation of angiogenesis and tumor growth.133, 134 In addition, 

VEGFRs are overexpressed on many tumor types.135-137 Reports suggest that VEGFR-1 

(Flt-1) shows promise as a therapeutic target not only for tumor angiogenesis but also for 

the inflammation associated with tumors.138 
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A.2.3. RTK inhibitors approved for use in the U.S. and the importance of multi 

kinase inhibition: 

A list of kinase inhibitors approved (till 2012) for various cancer indications 

within the U.S. is provided in Table 3. Imatinib mesylate (Figure 25) was the first RTK 

inhibitor approved in the U.S. for Philadelphia chromosome (Ph)-positive chronic 

myeloid leukemia (CML) patients130, 139. In addition, imatinib mesylate has been 

approved for multiple cancers such as Gastrointestinal stromal tumors (GIST), Acute 

lymphoblastic leukemia (ALL), myelodysplastic diseases associated with PDGFR gene 

rearrangements, aggressive systemic mastocytosis (ASM), Dermatofibrosarcoma 

protuberans (DFSP). 

Early research suggests that imatinib has shown potential in the treatment of 

plexiform neurofibromas.140 The use of imatinib has been associated with the 

development of resistance mediated either by mutations within the kinase domain of 

BCR-ABL or, to a lesser degree, amplification of the BCR-ABL genomic locus.141 

Ruxolitinib was approved in 2011 for the treatment of intermediate or high-risk 

myelofibrosis and is currently in clinical trials for the treatment of pancreatic cancer, 

polycythemia vera and plaque soriasis.98 More recently, vemurafenib, which targets B-raf 

kinase, was approved for the treatment of late stage melanoma in 2012.100 
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Table 3. RTK Inhibitors Approved for Use in the U.S. 

 

Brand 

Name 

Year 

Approved 

Generic 

Name 

US FDA Approved 

Indications 
Target kinase(s) 

Gleevec 2001 
imatinib 

mesylate 

chronic myeloid 

leukemia (CML) 

Abl, c-Kit, PDGFRα, 

PDGFRβ 

Iressa 2003 gefitinib 
non-small-cell lung 
cancer (NSCLC) 

EGFR 

Tarceva 2004 erlotinib 
NSCLC, pancreatic 

cancers 
EGFR 

Nexavar 2005 
sorafenib 

tosylate 

hepatocellular 

carcinoma, renal cell 
carcinoma (RCC) 

Raf, VEGFR2, VEGFR3, c-

Kit, PDGFRβ 

Sutent 2006 
sunitinib 
malate 

GIST, renal cell 
carcinoma 

c-Kit, VEGFR, PDGFR, 
FLT3 

Sprycel 2006 dasatinib 
CML (especially 

imatinib-resistant) 
Abl, c-Kit, PDGFR, Src 

Tasigna 2007 nilotinib 
CML (imatinib resistant 

and intolerant) 

Abl, c-Kit, PDGFRβ, Src, 

Ephthrin 

Tykerb 2007 lapatinib breast cancer EGFR, Her-2 

Votrient 2009 pazopanib RCC, soft tissue sarcoma 
VEGFR1, VEGFR2, 
VEGFR3, PDGFRα, 

PDGFRβ, c-Kit 

Jakafi 2011 ruxolitinib myelofibrosis JAK1, JAK2 

Xalkori 
2011 

crizotinib 
NSCLC with Alk 
mutation 

Alk/Met 

Zelboraf 2012 vemurafenib  late stage melanoma B-raf 

 

Gefitinib and erlotinib (Figure 25), two inihibitors of EGFR kinase, were the 

second and the third kinase inhibitors to be approved for clinical use. These drugs 

showed remarkable effects in a subpopulation of patients with non-small-cell lung cancer 

(NSCLC) harboring activating mutations. 142-149 Unfortunately, drug resistant tumors 

were observed within a year or so of initating treatment.  Lapatinib (Figure 2) was 

approved in 2007 for use in breast cancer in combination with a cytotoxic agent. 

Lapatinib is a dual inhibitor of both EGFR and human EGF receptor-2 (HER-2)  

Although most of the early work in the area of RTK inhibitor discovery was 

focused on producing inhibitors of single RTKs, recent data shows that tumors treated 

with specific RTK inihibitors can develop resistance through an upregulation of alternate 
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kinase mediated pathways.150  

  

 

 

Figure 25. Structures of RTK inhibitors currently marketed in the U.S.  

There are a number of RTK mediated processes that can promote angiogenesis, 
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thus inhibitors targeting a broader range of RTKs may lead to a more robust antitumor 

response and prevent resistance by targeting two or more angiogenic pathways.151, 152 

This is underlined by the fact that the newly approved inhibitors of RTKs – sorafenib and 

sunitinib (Figure 25) – target multiple RTKs. Sorafenib inhibits multiple vascular 

endothelial growth factor receptor kinases, the mast-stem cell growth factor receptor (c-

Kit) kinase, and the proto-oncogene c-Raf kinase. Sunitinib inhibits VEGF and PDGF 

receptor kinases, in addition to c-Kit and FMS-like tyrosine kinase 3 (Flt3). These drugs 

are expected to act by arresting the development of blood supplies to the growing tumors, 

in addition to specifically blocking an oncogenic kinase within a tumor type (e.g., c-

Kit).153-155 

A.2.4. RTK activation relevant to the design of clinical inhibitors: DFG dynamics 

and C-Helix dynamics: 

 

Figure 26. Crystal structure an inhibitor dasatinib bound to Abelson tyrosine kinase (Abl) (PDB: 

2GQG).156 

All RTKs share a characteristic ATP binding structure as shown in Figure 26.157 The 



45 

 

kinase or catalytic domain consists of an N-terminal lobe, which consists mainly of β 

strands but contains one α helix, helix C. The C-terminal lobe is mainly α-helical in nature. 

A short strand termed the hinge region connects the two lobes. The ATP binding site is 

sandwiched between the two lobes. ATP forms critical hydrogen bonds with the hinge 

region.  

Early on, in the development of kinase inhibitors selectivity was identified as a 

challenge when designing inhibitors that bound to the ATP pocket. This was a formidable 

challenge because evolutionary pressure exerted to maintain a general common shape and 

chemical similarity of the ATP binding site in different kinases. Hence, drug design efforts 

have sought to exploit regions of the active site that are not directly involved in ATP 

binding, or conformations of the kinase that show greater structural and chemical 

heterogeneity. 

The RTK active site is known to exist in multiple conformational states as a 

consequence of the activation and inactivation mechanism of kinases.157 The P-loop (or 

phosphate-binding loop or glycine-rich loop) plays a key role in the dynamics of the kinase 

domain where its conformation is a determining factor in the shape of the ATP-binding site 

(Figure 26). In the active form of a kinase, a characteristic Asp-Phe-Gly motif (DFG motif), 

located immediately above the activation loop, adopts a conformation with Asp and Phe 

both oriented toward the binding site (DFG-in) (Figures 24 and 25a). 

While the active form of the kinase catalytic domain is fairly homogeneous 

structurally, the inactive forms are less so. The greater structural variations of the inactive 

form exist because the inactive form of the kinase does not have to obey the requirement 

of binding to the common substrate ATP. Hence numerous inactive states have been 
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identified, which can be related to the mechanism of activation of the kinase.158 One of 

these states is called the “DFG-out” state and is associated with kinases that activate by 

phosphorylation of residues on the activation loop. In the DFG-out state, the phenylalanine 

of the DFG motif is positioned in the ATP-binding site so that it effectively blocks ATP 

access to the binding site (Figure 27b). Phosphorylation of tyrosine, threonine, or serine 

residues of the activation loop by another kinase is incompatible with this conformation 

and consequently leads to activation of the kinase. Phosphorylation can occur as the 

activation loop can act as a substrate for other kinases or can even be phosphorylated 

autocatalytically. 158 

Kinase inhibitors that bind to the active form of the kinase are called type I 

inhibitors, and those that bind to the inactive form of the kinase are called type II 

inhibitors.159 Imatinib, the first kinase inhibitor to make it to market, binds to the inactive 

form of Abl, c-Kit, and PDGF kinases.160  

A second inactive form of the kinase retains the general DFG-in form but rotation 

and shifting of the C-helix out leads to inactivation of the kinase (Figure 27d-e).161, 162 

This rotation of the C-helix can alter the nature of the ATP binding site. A number of 

activation mechanisms have been associated with the helix-C-out inactive conformation. 

In c-Src, activation of the kinase is effected by phosphorylation of a tyrosine in the 

activation loop similar to the phosphorylation in Abl that destabilizes the DFG-out 

inactive form. In CDK2, activation results from binding of the protein cyclin to the 

kinase.
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Figure 27.
157

 Binding site comparisons of active and inactive forms of different kinases. (a) The 

Abl active form in complex with dasatinib (PDB: 2GQG).The phenylalanine of the DFG motif 

(green carbons) is shown to point away from the binding site and is buried in the interior of the 

protein. (b)The Abl DFG-out inactive form in complex with imatinib (PDB: 1IEP). The 

phenylalanine of the DFG motif points into the binding pocket. (c) Rotation of ∼90 degrees of (b) 

to highlight the depth of the DFG-out pocket (surface representation). (d) Helix-C-out inactive form 

of EGFR (PDB: 1XKK). The catalytic lysine (cyan carbons) is far removed from Helix C’s glutamic 

acid (white carbons). (e) Helix-C movement from active (cyan helix) to inactive form (green helix) 

from an overlay of the Abl (PDB: 2GQG, helix in) and EGFR (pdb code 1XKK, helix out). (a)-(c) 

show the catalytic lysine (cyan carbons) and the salt bridge formed with the glutamic acid from 

Helix C (white carbons). 

 

 In EGFR, formation of an asymmetric kinase domain homo- or heterodimer 

following the extracellular binding of EGF results in kinase activation.163, 164 Although the 

EGFR kinases have a tyrosine in the activation loop that gets phosphorylated, this does not 

appear to be necessary for activation.163 The C-helix-out form of the kinase has been shown 
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to bind to lapatinib.162 

The nature of the ATP binding site can be altered by the C-helix-out inactive form. 

On rotation of helix C in EGFR, a conserved glutamic acid points towards solvent rather 

than towards the ATP binding site (Figure 27d). Such a conformation disrupts the salt 

bridge between glutamic acid and the conserved catalytic lysine residue. This salt bridge is 

required to position the α and β phosphate groups of ATP and is therefore critical for 

catalytic activity. The key structural changes associated with the movement from C-helix-

out inactive form to the active form are shown in Figure 27d and Figure 27e. Crystal 

structures of EGFR bound to ATP analogs in the DFG-in/C-helix-out conformation have 

been solved for EGFR.163 A crystal structure of the C-helix-out conformation of an inhibitor 

bound to Abl has also been solved.165 

Table 4. provides a list of approved inhibitors and the conformation of the RTKs 

which these inhibitors target.166 

Table 4. Small-molecule protein kinase inhibitors and their targets along with the target 

conformation. [Modified from ref 166] 

Inhibitor Primary Targets Targeted Conformation 

Imatinib Abl, Kit, PDGFR Inactive (DFG-out and C-helix in) 

Gefitinib EGFR Active (DFG-in and C-helix in) 

Erlotinib EGFR Active (DFG-in and C-helix in) 

Sorafenib Raf Inactive (DFG-out and C-helix in) 

Sunitinib Kit, VEGFR-2, PDGFR, Flt3 Active (DFG-in and C-helix in) 

Dasatinib Abl, PDGFRβ, Src Active (DFG-in and C-helix in) 

Lapatinib EGFR Inactive (DFG-in and C-helix out) 
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Hence substantial information is available on the dynamics of kinases and can be 

exploited for drug design. 

 

A.2.5. Emergence of drug resistance:  

The appearance of drug resistant tumors was an unwelcome addition to the already 

substantial challenges to kinase drug discovery. Kinases were anticipated to be difficult  

targets partly because the conservation of shape and character of the ATP binding site posed 

a selectivity issue and partly because the high endogeneous concentration of ATP indicates 

that inhibitors would have to be very potent to be successful as drugs. Notably, after the 

first RTK inhibitors were used clinically, it became clear that various amino acid mutations, 

some in the kinase domain, could lead to drug resistance.144, 145, 167, 168 Following this 

observation, addressing drug resistance has become a defining challenge of kinase drug 

discovery.  

Repeating patterns of mutations seem to appear at the activation loop, the P-loop, 

and at the “gatekeeper” residue within the ATP binding sites.157 A “gatekeeper,” is a residue 

that flanks a highly variable Hydrophobic pocket at the rear of the ATP binding site and 

can act as a selectivity filter.169 Individual kinases have additional mutations that result in 

alterations of ligand binding or kinase activation. Crystallographic data for complexes of 

key protein-ligand pairs with mutations in Abl170-172 and EGFR162, 173 has helped in 

interpretation of the effect of these mutations. 

Some general trends are clear. Mutations in the P-loop and activation loop can 

produce active states of kinases by destabilizing the inactive forms. Hence, this can reduce 

or eliminate the binding of inhibitors targeted at the inactive forms of kinases (cf. c-Kit174 

and PDGFR175, 176). The effects of numerous mutations can also be rationalized by their 
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direct action on ligand binding within the ATP-binding cleft or occupation of additional 

accessible space in the inactive form of the kinase. Most prominent of this type of mutation 

is that of the gatekeeper threonine in Bcr-Abl and c-Kit, which confer resistance to imatinib. 

This has been explained as a direct loss of a critical hydrogen bond to the ligand (Figure 

27b).  

 

A.2.6. Binding of inhibitors in the RTK active site: 

In this section the binding interactions of inhibitors to the ATP binding site of EGFR 

and VEGFR2 are discussed to present an idea of the interaction patterns seen between the 

ligand and the active site residues. 

 

Figure 28 X-ray crystal structure of 34 bound to EGFR (PDB: 2ITT)173  

Yun et al.173 reported a X-ray crystal structure of a pyrrolo[2,3-d]pyrimidine 

compound 34 (AEE788)177 (Figure 28). Compound 34 displayed potent inhibition of 

VEGFR and ErbB family of kinases. It has low nanomolar potency against EGFR and was 

advanced to phase I clinical trials for treating relapsed glioblastoma multiforme.59 The 

crystal structure indicates that the pyrrolo[2,3-d]pyrimidine core of 34 hydrogen bonds 

with the hinge region, and the N3 atom interacts with the hydroxyl of Thr854. The 4-
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phenylethylamine moiety extends into the Hydrophobic pocket defined by Thr790, 

Leu788, Lys745, and Met766. The 6-phenyl substituent is sandwiched between Leu718 

above and Gly796 below. Finally the ethylpiperazine group extends towards solvent near 

Asp800 and Glu804 at the edge of the active site.  

Harris et al.178 reported indazolylpyrimidine 35 (Figure 29) with good potency 

against VEGFR-2 (IC50 = 6.3 nM). In addition, 35 had an oral bioavailability of 85% in the 

rat at a dose of 10 mg/kg. A crystal structure of 35 with VEGFR-2 indicated that the 

pyrimidine N-1 and the C-2 anilino N-H making hydrogen acceptor and donor bonds with 

the peptide backbone of Cys919. 

 

 

 

Figure 29. X-ray crystal structure of 35 bound to VEGFR-2 (PDB: 3CJF)178 

 

 

 

Figure 30. X-ray crystal structure of 36 bound to VEGFR-2 (PDB: 3CJG)178 
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The N-methylated analog of 35, compound 36 (Figure 30) had an oral 

bioavailability of 65%. The crystal structure of 36 with VEGFR-2 revealed the inhibitor in 

a “S-shaped” conformation in contrast to 35 which exists in a “U-shaped” conformation. 

The S-shaped conformation was preferred most likely to avoid an unfavorable steric 

interaction between the methyl group and the pyrimidine C-5 hydrogen. 

 

A.2.7. RTK inhibitors: 

The design and synthesis of RTK inhibitors have been extensively reviewed in the 

literature. The following review will cover the pyrrolo[2,3-d]pyrimidine class of RTK 

inhibitors 

Table 5. Pyrrolo[2,3-d]pyrimidine inhibitors of RTKs 

Structure Compound RTK inhibitory activity Ref 

 

37 R=2’-Me 

38 R=2’,5’-diOMe 

39 R=2’,4’-diCl 

Whole cell assays 

41 IC50=0.25µM (VEGFR-2) 

41 IC50=1.21µM (A431) 

42 IC50=0.62µM (VEGFR-2) 

42 IC50=8.92µM (PDGFR-β) 

43 IC50=0.23µM (EGFR) 

43 IC50=2.8µM (A431) 

179 

 

40 R=3’-Br 

41 R=2’F,4’-Cl 

42 R=4’-Cl 

43 R=3’-CF3 

Whole cell assays 

37 IC50=0.3µM (EGFR) 

38 IC50=1.4µM (A431) 

39 IC50=1.6µM (A431) 

40 IC50=0.03µM (CAM) 

180 
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44 R1=H, R = 3’-Br 

45 R1=H, R = 3’-CF3 

46 R1=H, R = 3’-Br, 4’-

F 

47 R1=H, R = 3’4’-

(C2H3N) 

 

Whole cell assays 

44 IC50 = 8.5 µM (PDGFR-β) 

45 IC50 = 22.1 µM (VEGFR-2) 

46 IC50 = 25.2 µM (VEGFR-2) 

47 IC50 = 31.6 µM (VEGFR-2) 

 

181 

 

48 R = 4’-Br, 2’-Cl 

49 R = 3’-F 

50 R = 4’-iPr 

 

Whole cell assays  

48 IC50 = 0.1 µM (VEGFR-2) 

48 IC50 = 16.2 µM (A431) 

49 IC50 = 0.3 µM (VEGFR-2) 

50 IC50 = 1.4 µM (VEGFR-2) 

 

182 

 

51 R1= CH3, R2=CH3, 

R3=2’-CH3  

52 R1= CH3, R2=CH3, 

R3=2’,5’-diOCH3 

53 R1= CH3, R2=H, 

R3=2’-CH3 

Whole cell assays  

51 IC50 = 1.2 µM (EGFR) 

52 IC50 = 0.5 µM (EGFR) 

53 IC50 = 1.3 µM (PDGFR-β) 

 

183 

 

 

54 

Isolated enzyme assay 

IC50 = 27 nM (EGFR)  

184-186 

 

55 R= OCH3 

56 R= NHCH3 

 

Potent EGFR inhibition 187, 188 
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57 R=NHCOCH3 

58 R=NHSO2CH(CH3)2 

59 R=OCH3 

Isolated enzyme assay 

IC50 = 1-3 nM (EGFR) 

187, 188 

 

60 R= p-NH2 

61 R = p-OH 

62 R = p-COOH 

Isolated enzyme assay 

IC50 = 1-5 nM (EGFR) 

187, 188 

 

 

Figure 31. Compounds used as standards in RTK inhibition assays 

Gangjee et al.179 reported the design, synthesis and biological evaluation of N4-

(3-bromophenyl)-6-(substituted benzyl) pyrrolo[2,3-d]pyrimidines, 37–39 (Table 5) as 

RTK inhibitors. These compounds were tested in human tumor cells known to over 

express high levels of RTKs such as EGFR, VEGFR-1, VEGFR-2 and PDGFR-. 

Compound 37 exhibited toxicity against A431 cells, which dependend on EGFR for 

survival189 at values ten-fold better than standard cisplatin (Figure 31) used in this assay. 

Additionally, 37 also exhibited a ten-fold better VEGFR-2 inhibition than the standard 

agent semaxanib, thereby demonstrating dual kinase inhibition.  The EC50 values of 38 

against VEGFR-2 and PDGFR-β were four-fold better than and comparable to standard 

agents semaxanib and 27 (AG1295) respectively. Inhibition of EGFR and A431 cell lines 

by 39 was comparable to or five-fold better than the standard 58 (PD153035). Thus, 

Gangjee et al. demonstrated that the substitution pattern in the N4-(3-bromophenyl)-6-
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(substituted benzyl) pyrrolo[2,3-d]pyrimidine scaffold strongly influences the observed 

multikinase inhibition and affords potencies equivalent to or better than standard agents.  

Gangjee et al.180 reported a series of N4-phenylsubstituted-6-(2-

phenylethylsubstituted)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines as a homologated 

series of their previously published RTK inhibitors.179 These compounds retained activity 

against EGFR and VEGFR-2 and showed improved PDGFR-β inhibition compared to the 

previous series of compounds. Compounds 40-43 are the best compounds from this 

series. Compound 40 showed EGFR inhibition similar to the standard 63 used in this 

assay. While the 2’F, 4’-Cl- and 4’Cl- analogs (41 and 42) did not display significant 

EGFR inhibition, they were about 5- fold more active than the standard cisplatin in the 

A431 cytotoxicity assay. Compound 43, the 3’-CF3 analog of 40, was 3-fold better than 

semaxanib in the chicken choriallantoic membrane (CAM) assay which is a standard test 

for angiogenesis.190  

Gangjee et al.181 reported a series of compounds that showed variation in the 

substitutions at the 2-position in order to determine the validity of their hypothesis that 

the 2-NH2 group affords improved potency against RTKs by potentially providing 

additional means of hydrogen bonding to the hinge region in the ATP binding site. With 

the exception of 44, the 2-NH2 analogs showed better inhibition of EGFR, PDGFR- and 

in whole cell inhibition assays against A431 cells. Interestingly, the 2-desamino analogs 

such as 45 – 47 were more potent against VEGFR-2 than the 2-NH2 analogs. However, 

the 2- desamino analogs were only micromolar inhibitors in the CAM assay and were less 

potent than the standard semaxinib in these assays, proving the importance of the 2- NH2 

–moiety in this scaffold. 



56 

 

Gangjee et al.182 reported eight N4-phenylsubstituted-6-(2,4-dichlorophenyl- 

methyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines as VEGFR-2 inhibitors with 

variations in the phenyl ring of the 4-anilino moiety. Compounds 48 - 50 were potent 

VEGFR-2 inhibitors and were 100-fold, 40-fold and 8-fold more potent than the standard 

semaxanib, respectively. Compound 48 was a potent inhibitor of A431 cells with 

inhibition comparable to standard cisplatin in the assay. 

In an effort to substantiate the three proposed binding modes against RTKs, 

Gangjee et al.183 proposed a series of pyrrolo[2,3-d]pyrimidine analogs of three potent 

lead compounds with strategically placed methyl substitutions at the N7- and/or N4-

positions and evaluation of the resulting analogues for RTK activity. It was hypothesized 

that, depending on the preferred binding mode of the compounds in RTK, selective 

methylation should lead to a loss of hydrogen bonding with the hinge region, and 

consequently, should result in a decrease in activity of the compound against the 

particular kinase. Additionally, if all the three proposed binding modes were viable, the 

compounds with methyl groups at the N7- and N4-positions, which would lack hydrogen 

bonding capabilities, should be poorly active. The biological evaluation results indicated 

that dimethylation of both the N4- and N7-positions (51 and 52) afforded whole cell 

EGFR inhibitors that are more cytotoxic than the standard erlotinib. In addition, mono-

methylation at the N4- or N7-positions (53) afforded increased PDGFR-β inhibition than 

the standard sunitinib. Methylation at either the 4-N or N7 position was detrimental to 

VEGFR-2 inhibition. The biological evaluation results in this study demonstrated that 

methylation of the 4-NH and/or the 7-NH influences both the specificity and potency of 

RTK inhibition. 
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Compound 54 (CGP59326) was designed as a part of an effort to improve the 

EGFR activity of 7H-pyrrolo[2,3-d]pyrimidines by using a pharmacophore model for the 

ATP binding site of EGFR.184-188 It was proposed that the NH of the pyrrole ring and the 

N1 of the pyrimidine ring form a bidentate hydrogen bond donor acceptor system with 

Gln767 and Met769 in the hinge region of EGFR, and the substituted aniline moiety at 

the C-4 position binds in the Sugar pocket and interacts with Cys773. In addition, the 

substituents at the 5 and 6 positions form van der Waals interactions with the 

Hydrophobic pocket not accessed by ATP. Compound 54 showed good potency and 

selectivity for isolated EGFR (IC50 = 27 nM). Modifying the 4- and 6-positions of the 

pyrrolo[2,3-d]pyrimidine scaffold afforded compounds with improved biological and 

physicochemical properties. Variation of substituents at the 6-position including esters 

(55), amides (56), were introduced in order to increase hydrophobic interactions with 

residues such as Thr76 and Thr860 in the active site. These modifications resulted in 

improvement of activity against EGFR (IC50 = 1-5 nM). Replacement of the m-

chloroanilino moiety at the 4-position by a (R)-phenylethylamino led to potent 

compounds (57-59, IC50 range of 1-3 nM) with improved pharmacokinetic properties. 

Similar variations at the 6-position of the pyrrolo[2,3-d]pyrimidine scaffold with  p- or m- 

substituted aromatic rings (60 – 62) led to compounds with potent EGFR inhibition. 
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A.2.8. Molecular Modeling Studies with Receptor Tyrosine Kinases 

The presence of multiple high-resolution X-ray crystal structures of RTKs such as 

EGFR, VEGFR-1 and VEGFR-2 complexed with various small molecule inhibitors or 

peptides has enabled structure based drug-design strategies. The following section lists 

selected high-resolution (< 2 Å) crystal structures in the PDB complexed with small 

molecule inhibitors of EGFR (Table 6 and Figure 32) and VEGFR-2 (Table 7 and Figure 

33). 

A.2.8.1 EGFR Crystal Structures 

There are 89 X-ray crystal structures of human EGFR currently in the PDB. The 

11 high resolution (< 2 Å) crystal structures co-crystallized with small molecule 

inhibitors are listed in Table 6. 

 

Table 6: Selected X-ray crystal structures of EGFR complexed with small molecule inhibitors: 

Sr.No. PDB Resolution Ligand Reference 

1 3POZ 1.50 TAK-285 97
 

2 3VRP 1.52 PTR 96
 

3 3W33 1.70 19B 26
 

4 4I22 1.71 Gefitinib 25
 

6 4I24 1.80 Dasitinib 25
 

7 2RGP 2.00 HYZ 24
 

8 3W2Q 2.20 HKI-272 91
 

9 1XKK 2.40 GW572016  191
 

10 1M17 2.60 Erlotinib 192
 

11 2ITO 3.25 Iressa 173
 

 

A.2.8.2. VEGFR-2 Crystal Structures 

There are 40 X-ray crystal structures of human EGFR currently in the PDB. The 

10 high resolution (< 2 Å) crystal structures co-crystallized with small molecule 

inhibitors are listed in Table 7. 
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Table 7: Selected X-ray crystal structures of VEGFR-2 complexed with small molecule 

inhibitors: 

Sr.No. PDB Resolution (Å) Ligand Reference 

1 3VO3 1.52 OKF 193
 

2 4AG8 1.95 Axitinib 194 

3 4ASE 1.83 Tivozanib 194 

4 3VNT 1.64 OJA 195 

6 3VHE 1.55 42Q 196 

7 2XIR 1.50 PF-00337210 197 

8 3EWH 1.60 K11 198 

9 3BE2 1.75 RAJ 199 

10 1YWN 1.71 LIF 200 

 

 

 

Figure 32. Structures of ligands co-crystallized with EGFR listed in Table 6.  
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Figure 33. Structures of ligands co-crystallized with VEGFR-2 listed in Table 7. 

 

A.2.9. D-QSAR Studies with Receptor Tyrosine Kinases 

There is a dearth in the literature for 3D-QSAR studies on small molecule 

inhibitors of RTKs.201-212A summary of selected articles from the literature is presented 

here. 

  Wu et al.209  reported the development of CoMFA and CoMSIA models using 

seventy eight 4-(1H-indazol-4-yl)phenylamino and aminopyrazolopyridine urea 

derivatives to investigate how their chemical structures relate to their inhibitory activities 

against KDR and to identify the key structural elements required for the rational design of 

potential drug candidates of this class. Docking simulations using Surflex-dock was used 

to determine probable binding conformations of all the compounds at the active site of 
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KDR.  CoMFA and CoMSIA models were developed based on the docking 

conformations.   

The CoMFA model produced statistically significant results with the cross-

validated correlation coefficient (q2) of 0.504 and the non-cross-validated correlation 

coefficient (r2) of 0.913.  The predictive abilities of the two models were further validated 

by 14 test compounds (r2 =0.727 for CoMFA and r2 = 0.624 for CoMSIA).  In addition, 

the CoMFA and CoMSIA models were used to guide the design of a series of new 

inhibitors of this class with predicted excellent activities.   

Lu et al.206 reported the development of CoMFA and CoMSIA models from a set 

of 47 compounds composed of 3-aminoindazole ureas, 7-aminopyrazolo[1,5-

a]pyrimidine ureas and 5-aminoquinoxaline ureas against VEGFR2. To account for the 

flexibility of the molecules a pharmacophore based alignment was used to construct the 

3D-QSAR models. The constructed CoMFA models (r2 = 0.982, q2 = 0.507) were 

validated by a test set of 16 compounds (r2 = 0.540).  

Recently, Zhang et al. 210 reported 3D-QSAR modeling and docking studies of 

arylphthalazines and 2-((1H-azol-1-yl)methyl)-N-arylbenzamides-based VEGFR2 

inhibitors. Two statistically relevant 3D-QSAR models (CoMFA r 2 = 0.969; q2 = 0.671; 

CoMSIA r2 = 0.936, q2 = 0.608) were developed to predict the biological activity of new 

compounds. Analogs were designed using molecular fragment replacement was virtually 

screened using Glide (docking) and further evaluated with CoMFA prediction, and 

ADMET analysis. Fourty four novel N-(pyridin-4-ylmethyl)aniline derivatives were 

developed using this approach. 
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In 2009 Du et al.212 reported the CoMFA and CoMSIA analysis studies of a series 

of 82 selective inhibitors of KDR with either a quinazoline, naphthalene or phenyl core 

scaffold. Docking studies were performed to explore the binding mode and predict the 

bioactive conformations of the 82 inhibitors in KDR. Two conformer-based alignment 

strategies were employed to construct reliable 3D-QSAR models. The docked conformer-

based alignment strategy gave the best 3D-QSAR models (r2 = 0.936 and 0.961; q2 = 

0.546 and 0.715). The information obtained from these models were coupled with 

molecular modeling studies to design 8 novel highly potent (low nanomolar), selective 

inhibitors of KDR. 

A.3. COLCHICINE SITE BINDING ANTI-MITOTIC AGENTS 

A.3.1. Tubulin and microtubules 

 

Figure 34. Structure of a microtubule.213  

Every nucleated cell in the human body contains two similar spherical proteins –  

α and β-tubulin (Figure 34), each with a molecular weight of 50 kDa. Through a series of 

events these proteins come together to form an α-β heterodimer about 8 nm in length. 
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Two molecules of energy rich guanosine triphosphate (GTP) are bound to these 

heterodimers. While one of these GTP molecules is tightly bound and cannot be removed 

without denaturing the heterodimer, the other GTP molecule is freely exchangeable with 

unbound GTP.The α-β tubulin heterodimers, at 37 °C can combine in a head-to-tail 

arrangement  to give a long protein fiber composed of alternating α and β-tubulin, known 

as protofilaments. The protofilaments can group together to form a C-shaped protein 

sheet, which then curls around to give a pipe-like structure known as a microtubule. 

Microtubules typically consist of 12 or 13 protofilaments with an external diameter of 

around 24 nm and internal diameter of around 15 nm. A number of proteins, known as 

Microtubule Associated Proteins (MAPs), each with a mass of about 200 kDa, are 

associated with microtubules. Although the exact purpose of MAPs is unclear, 

microtubules form faster in their presence and the MAPs appear to protect the 

microtubule from agents which induce depolymerization, namely low temperature and 

Ca2+ ions. 

 Another key component associated with microtubules are Microtubule Organizing 

Centers (MTOCs). MTOCs form a focus for microtubule growth, and all microtubules 

initially begin to grow from one of these centers. A major type of MTOC in most cells is 

known as the cell center or centrozome which contains two major microtubule structures 

known as centrioles. It seems that the organization of microtubule growth at the MTOC 

involves a third type of tubulin protein known as γ-tubulin. The presence of γ-tubulin is 

vital for microtubule growth in vivo.214 It appears that an aggregation of γ-tubulin occurs 

on the surface of the MTOC, perhaps forming a ring or short cylinder and that this 

aggregate acts as the site of nucleation for incoming α-β tubulin heterodimers. 
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 After formation, microtubules are not static. They exist in an equilibrium with 

heterodimers continuously adding to one end of the microtubule [known as the “plus” (+) 

end], and leaving at the other [the “minus” (–) end]. A fine balance of this equilibrium 

and the resting control of the length of the microtubules is vital for numerous cellular 

functions. 

 Microtubules are required for a number of crucial cellular functions. Amongst the 

known functions are the maintenance of cell shape, cellular transport and transporting 

organelles around the interior of the cell. The most crucial function of microtubules 

however is the formation of the mitotic spindle which eventually makes replication 

possible. 

A. 3. 2. Role of microtubules in mitosis:215 

One of the most complex and demanding processes undertaken by the human body 

is the process of cell division. During this process, the cell must completely duplicate its 

internal components including its DNA, such that it can form two identical daughter cells. 

 

Figure 35. Different stages of mitosis216 

Once the duplication of the internal components is complete, the cell assembles 

its DNA into two identical sets of chromosomes and separates them into two individual 

parcels at opposite ends of the cell, ready to form the two nuclei in the daughter cells. 
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Following the separation of the new nuclei, the cell is ready to split into two new 

daughter cells. This ordering and relocation of the genetic material is known as mitosis. 

Mitosis can be divided into five separate processes (Figure 35) 

The first phase of mitosis is termed prophase. In prophase, the DNA in the 

nucleus is replicated and two sets of genetic material are organized into two identical 

daughter sets of chromosomes. Towards the end of prophase, the microtubules needed for 

cell division begin to form and grow toward the newly formed chromosomes. The bundle 

of microtubules this generates in the cellular space is known as the mitotic spindle. This 

spindle grows concomitantly from two MTOCs, which begin to separate and migrate 

toward opposite ends of the cell.  

In the next stage, the prometaphase, the nuclear envelope rapidly disintegrates and 

the microtubules attach themselves to the chromosomes at a point known as the 

kinetochore, which is the center of the chromosomes. 

The cell then enters metaphase. In this phase, the chromosomes gradually become 

arranged in the plane between two centrozomes. After an accurate arrangement of these 

chromosomes, the cell abruptly enters anaphase. The daughter chromosomes then start to 

separate slowly as the microtubules depolymerize, slowly drawing and guiding the 

daughter chromosomes to opposite ends of the cell. 

The final phase of cell division is the telophase. During this phase, the 

chromosomes reach the opposite ends of the cell and new nuclear envelopes form around 

them. This completes the process of mitosis, and it only remains for the cytoplasm 

surrounding the nuclei to begin to divide, in a process known as cytokinesis. The nuclei 

thus become partitioned, finally dividing to give two new daughter cells. The importance 
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of microtubules in mitosis makes them an attractive target for the drug development 

process. 

 

A. 3.3. Microtubule dynamics:  

The functional diversity of microtubules is dependent on their intrinsic non 

equilibrium dynamic behaviors.217-226 Microtubules exhibit two types of dynamic 

behaviors; one such behavior is called “dynamic instability” (Figure 36). In dynamic 

instability, microtubule ends alternate between phases of growth and shortening.218-221, 223-

226 

 

Figure 36. The process of dynamic instability.213  

Usually microtubules display slow growth phases and rapid shortening phases. 

They also undergo a pause phase when there is no detectable growth or shortening at the 

microtubule ends. The transition from a growth or a pause state to a shortening phase is 

called a “catastrophe” and the transition from a shortening phase to a growth or a pause 

state is called “rescue”. The transition frequencies are important for regulating 

microtubule dynamics for diverse cellular tasks.219-226  
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Figure 37. The process of treadmilling.221 

 Another type of dynamic behavior exhibited by microtubules is called “treadmilling” 

(Figure 37). Treadmilling involves a net growth at the plus end and a net shortening at the 

minus end of the microtubule.217, 223  

 A microtubule population may exhibit one or both of these dynamic behaviors. 

The polymerization dynamics of microtubules depends on the loss or gain of a stabilizing 

cap composed of either tubulin-GTP or tubulin-GDP-Pi at their ends.219, 226 The assembly 

dynamics in finely regulated by several proteins including stabilizing microtubule-

associated proteins (MAPs) such as a tau, MAP1, MAP2, MAP4, and destabilizing MAPs 

such as stathmin.219, 223, 226-228 Microtubule dynamics is specifically important for the 

proper attachment and movement of chromosomes during various stages of the mitotic 

phase.219-221 Suppression of microtubule dynamics in cells by small molecule inhibitors 

block the cell division machinery at mitosis leading to cell death. Hence, the assembly 

dynamics of microtubule represents a potential target for finding anticancer drugs. The 

small molecule inhibitors usually imitate the action of the natural regulators of 

microtubule assembly and disassembly kinetics making these agents a valuable tool for 

probing the roles of microtubule dynamics in different cellular processes. 
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A.3.4. Antimitotic agents: 

Agents which induce cell death by inhibiting the function of microtubules are 

known as antimitotics. Cancer cells are relatively sensitive to these drugs relative to 

normal cells because many cancer cells divide more frequently than normal cells and thus 

frequently pass through a stage of vulnerability to mitotic poisons. However it is likely 

that other mechanisms, such as expression of a variety of checkpoint and apoptotic 

proteins and differential uptake and retention drugs, can also distinguish the differential 

responses of tumor and normal cells to antimitotics drugs. 

 

Figure 38. Antimitotic agents.229 

 

Antimitotics can be broadly divided into three distinct classes. The vinca alkaloids 

are represented by vincristine, vinblastine, vindesine, and vinorelbine (Figure 38). These 

agents bind to β-tubulin and interfere with proper mitotic spindle formation by preventing 

the normal dynamics of polymerization of microtubules. Vinca alkaloids are important 
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agents for the treatment of leukemias, lymphomas, small cell lung cancer, and other 

cancers.221, 230 These agents are also designated as microtubule-destabilizing agents or 

microtubule polymerization inhibitors or depolymerizaers.  

The second class of antimitotics, taxanes, is represented by paclitaxel and 

docetaxel (Figure 38). Paclitaxel binds to β-tubulin as well; however its location is 

different from that of the vinca alkaloids. As determined in tubulin protofilaments in Zn 

sheets, paclitaxel binds on the inside surface of the β-subunit of microtubules.231, 232 

Paclitaxel induces an increase in microtubule polymerization, thereby interfering with 

spindle microtubule dynamics and preventing the progression of cell division. Hence the 

agents of this class are termed microtubule-stabilizing agents or polymerizing agents. The 

taxanes are important for the treatment of breast, lung, ovarian, head and neck, and 

bladder carcinomas among others.  

The third class is typified by colchicines (Figure 38) and comprises of a diverse 

collection of small molecules that bind to the colchicines binding site. Although the 

nature of this binding site has not been determined with certainty, insights into 

colchicines binding sites are available from homology models.233 The agents from this 

class also act by an inhibition of microtubule polymerization like the vinca alkaloids, but 

along with a difference in the binding site, their depolymerization mechanism is also 

different from the vinca alkaloids. The combretastatins are a class of drugs that bind to 

the colchicine binding site and are in clinical trials as antitumor agents.221  

The epothilones, produced by the myxobacterium Sorangium cellulosum, and 

discovered in the early 1990s,234-236 are a novel class of microtubule-stabilizing agents. 

These agents bind at the taxane binding site and have a mechanism of action similar to 
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the taxanes. Epothilones A and B were found to have potent in vitro anticancer activity, 

including activity against taxane-resistant cell lines, but their in vivo activity is modest, 

owing to issues such as poor metabolic stability and unfavourable pharmacokinetics.234-

236 Synthesis and testing of more than 300 semisynthetic epothilone analogs with the aim 

of addressing these issues led to the identification of ixabepilone.234-236 Ixabepilone has 

been approved for the treatment metastatic breast cancer in 2007.237, 238 The epothilones 

are considered more superior to taxanes because their less susceptibility to multiple 

mechanisms of resistance.236, 239 

It has been observed that most microtubule-targeted drugs, including Vinca 

alkaloids, taxanes and epothilones, also act by suppression of microtubule dynamics in 

cells at concentrations that inhibit proliferation and block mitosis.240  

Microtubule targeted drugs can act by two more mechanisms. One is to inhibit the 

process of angiogenesis, and the second is to shut down existing tumor vasculature by 

vascular disruption.240  

 

A. 3.5. Structure of tubulin:  

A detailed description of the tubulin protein helps in the analysis of the mechanistic 

aspect of drug-tubulin interaction. Electron crystallography of zinc-induced 2D crystals of 

tubulin were obtained with a 6.5 Å resolution.241 The atomic model of αβ tubulin dimer 

was further obtained at 3.7 Å resolution by using electron crystallography of zinc-induced 

tubulin sheet. In this structure, α and β share an identical principal structure: each monomer 

is composed of a core of two β sheets surrounded by α helices. 
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Figure 39. X-ray crystal structure of tubulin. (PDB ID: 1JFF92) 

The monomer has a compact structure and can be divided into three functional 

domains: the amino-terminal domain possessing a nucleotide-binding region, an 

intermediate domain where lies the taxol-binding site, and the carboxy-terminal domain 

comprising the binding site for motor proteins. The model was further refined using 

standard X-ray crystallography methods (Figure 39).231 This model indicates that each 

monomer was composed of an N-terminal, nucleotide-binding domain, having six 

parallel β-strands (S1-S6) alternating with helices (H1-H6). Loops T1-T6 connect each 

strand with the strand of the next helix in binding the nucleotide. This structure provides 

a detailed description of lateral contacts in zinc-sheets and the nucleotide and taxol 

binding sites. 
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A.3.6. Colchicine binding site on tubulin: 

 

 

Figure 40: Stereoview. X-ray crystal structure of colchicine (green) bound to tubulin. (PDB: 

3UT5).242 Secondary structures colored according to chain. (pink: chain A; blue: chain B). Binding 

site amino acids highlighted and colored according to chain. 

 

The colchicine site is located mostly in the β-subunit of tubulin and is bordered by 

helix 7, which contains Cys β241, and helix 8. The colchicine binding site has a volume 

of ~10 Å × ~10 Å × 4−5 Å and borders the α-tubulin monomer, which forms crucial 

interactions at the colchicine site, notably the loop connecting sheet 5 and helix 5.242 Thr 

α179 and Val α181 interact with colchicine and have also been implicated in formation of 

hydrogen bonds with other colchicine site binding agents (CSAs). The molecular volume 

and electrostatic properties of the colchicine site play an important role on the 

conformations of colchicine site binding agents and have proved useful in elucidating the 

bioactive conformations of colchicine site binding agents.243  
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A.3.7. Binding mode prediction of colchicine site agents 

 

Figure 41:243 Stereoview. Predicted binding modes of CSAs (blue) in the colchicine binding pocket 

of tubulin. 

 

 Nguyen et al.243 used docking studies to determine the binding modes of a set of 15 

structurally diverse colchicine site inhibitors. These binding models were subsequently 

used to construct a comprehensive, structure-based pharmacophore that was used in 

combination with molecular dynamics simulations to understand binding interactions at 

the colchicine site of tubulin. Figure 41243 shows the superimposition of the docked 

structures of the 15 CSAs. It was observed that, despite the variations in the chemical nature 

of the 15 CSAs, the CSAs occupied similar Cartesian space in the binding site. The overlaid 

poses of the compounds can be bisected by two planes (Figure 42) which are roughly at 45 

degrees to each other. Since the typical CSA contains a biaryl system, the relative 

orientations of the two aryl chains in each molecule lie roughly along the two bisecting 

planes. However, even among CSAs that lack the biaryl system, the binding architecture 

was conserved.  
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Figure 42:243 Stereoview. Overlay of docked poses of CSAs (blue) form roughly a 45o angle 

between the bisecting planes in the colchicine binding pocket.  

 

All 15 CSIs were found to form a hydrogen bond with the thiol group of 

Cys241. In addition, a hydrogen bond was observed between 11 CSIs and the backbone 

NH of Val181. Molecular modeling further indicated that hydrogen bonds could be 

formed between the CSIs and backbone NH atoms of Ala250, Asp251, and Leu252 

due to conformational changes in the loop or due to the presence of structured water 

molecules. Thr179 was found to be involved in the formation of hydrogen bonds with 4 

CSIs in their binding models.243 This publication highlighted the important residues in the 

colchicine binding pocket and the key interactions with these residues. Further, the 

authors utilized this data to build a 7-point pharmacophore model (three hydrogen bond 

acceptors, one hydrogen bond donor, two hydrophobic centers, and one planar group) of 

the binding of these CSIs in the colchicine binding site. It was observed that none of the 

15 CSIs individually utilized all the 7 points, suggesting that binding affinities for each 
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chemotype could be improved by appropriate chemical modifications that target the 

pharmacophore point not utilized by that chemotype.  

 

A.3.8. Targeting multidrug resistance in cancer: 

The emergence of multidrug resistance (MDR) is a major concern for 

contemporary cancer chemotherapy. There are three major mechanisms by which MDR 

usually occurs.244 First, decreased uptake of water-soluble drugs such as folate 

antagonists and nucleoside analogs which require transporters to enter cells; second, 

various changes in cells that affect the capacity of cytotoxic drugs to kill cells, including 

alterations in cell cycle, increased repair of DNA damage, reduced apoptosis and altered 

metabolism of drugs. The third, and the major mechanism responsible for MDR, is the 

increased efflux of hydrophobic cytotoxic drugs mediated by a family of energy-

dependent transporters, known as ATP-binding cassette (ABC) transporters. ABC 

transporters were discovered in 1973 by Dano et al.245 They noticed the active outward 

transport of the drug daunomycin in multidrug-resistant Ehrlich ascites tumor cells. 

Subsequent work indicated that the ‘reduced drug permeation’ in multidrug-resistant cells 

is associated with the presence of a cell surface glycoprotein known as P-glycoprotein 

(Pgp).246 Based on the presence of specific conserved sequences, Pgp was recognized to 

be an ABC transporter protein.247-251 

A human small-cell lung cancer cell line (H69), that shows resistance to 

doxorubicin without increasing expression of Pgp was later discovered.252 Similar to the 

cells overexpressing Pgp, H69 displayed deficient combined drug accumulation and 

resistance to a broad range of anticancer agents, including vinca alkaloids and 
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epipodophyllotoxins.253, 254 Analysis indicated the increased expression of a novel ABC 

transporter, termed multidrug resistance associated protein 1 (MRP1).255  

 

Figure 43. Agents reversing Pgp mediated MDR in cancer.229, 256 

 

Several agents have been investigated for their ability to reverse Pgp mediated 

MDR. Examples include verapamil,257 cyclosporine A ,257 tariquidar258, 259 and 

zosuquidar260 (Figure 43). Excellent reviews of efforts to reverse MDR inhibitory effects 

have been recently published.261, 262 Although a large number of compounds possessing 

diverse chemical structures and biological activities, are able to reverse MDR, there are 

currently no approved reversal agents available in the clinic.263, 264 A 3.80 Å  X-ray 

crystal structure of Pgp has recently been reported.265 In order to address MDR, new 
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agents that possess antimitotic and antitumor activities without substrate activity for Pgp 

are higly coveted and would be useful antitumor agents as single agents or in 

combination with other antitumor agents. 

 

A.3.9. Antimitotic agents that also reverse tumor resistance: 

The following section will provide a brief summary of 6,5-fused bicyclic agents 

that act as antimitotic agents by targeting the colchicine binding pocket of tubulin.  

Gangjee et al.266 reported a series of pyrrolo[2,3-d]pyrimidine antimitotics 63 – 

68 (Figure 44) that are not substrates for Pgp and MRP1, and in addition, are capable of 

reversing the resistance exhibited by tumors to vinblastine and vincristine. 

 

Figure 44.266 Pyrrolo[2,3-d]pyrimidines that act as antimitotics and reverse resistance exhibited 

by tumors to vinblastine and vincristine. 

 

Compounds 63-68 were originially designed as potential RTK inhibitors. These 

compounds displayed antitumor activity against a variety of tumor cells but were not 

inhibitors of RTKs. In the NCI 60 cell line panel compound 63, displayed potent 

inhibition (GI50 of single to two digit nanomolar) of 16 tumor cell lines. Compound 68, 

the corresponding debenzylated analog of 63, showed a loss of potency of 100- to 

10,000- fold against 56 tumor cell lines, suggesting that the N7-benzyl group is critical 

for activity. The 2-OMe and 3-OMe analogs, 64 and 65 respectively GI50 values in the 

micromolar - millimolar range against the tumor cells in culture. The 4-OMe compound 

66 had GI50s similar to 65, indicating the importance of the 3- and/or 5-OMe groups. The 
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unsubstituted phenyl analog 67 displayed GI50 in the millimolar or lower range for 52 

tumor cells. The corresponding debenzylated analogs of 64-67 showed substantially 

decreased activity against the 60 cell line panel. The buiological evaluation results from 

this series indicated that a 3,4,5-triOMe substitution along with the presence of the N7-

benzyl moiety was important for potent inhibitory activity against tumor cells in culture.  

An NCI COMPARE analysis267 was performed to elucidate the possible 

mechanism of action of 63. The first five compounds whose cell type selectivity profile 

showed the highest Pearson correlation coefficients (PCC)268, 269 with 63 were all well-

known antimitotic agents. Hence compound 63 was suspected to exhibit its actions 

microtubule targeting agent. It was later determined from binding studies that 63 bound 

to tubulin at a site different from the colchicines, Vinca, and taxane binding sites. 

Compound 63 exhibited subnanomolar IC50s against both, drug sensitive (cell 

lines that do not express Pgp or MRP1) as well as drug resistant tumor cell lines (cell 

lines that express Pgp or MRP1)229 indicating that it is not a substrate for Pgp and MRP1. 

The 2-OMe substituted compound 66 displayed best results when tested for its ability to 

reverse Pgp mediated MDR to vinblastine. Compounds 64, 65 and 67 also induced a dose 

dependent sensitization of the tumor cells to vinblastine. The ability of compound 63 to 

display similar effect could not be determined due to its high cytotoxicity. 

Gangjee et al.270 reported compounds 69 – 72 (Figure 44) as a part of a series of 

compounds based on 63 that varied in the nature of substitutions on the phenyl ring of the 

5-phenylethyl side chain in an attempt to optimize the antitubulin, antitumor, and 

resistance reversal activities of the parent compounds. All the compounds in this series 

showed two-digit micromolar IC50 values against MCF-7 cells. Compound 69 was the 
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most potent compound against MCF-7 cells with an IC50 value of 15 M.  Compounds 70 

– 72 inhibited Pgp activity, making NCI/ADR cells more sensitive to vinblastine. 

Compound 72 remarkably caused sensitization of tumor cells resistant due to both Pgp 

and MRP1 and is the only known pyrrolo[2,3-d]pyrimidine analog that has native 

antitumor activity and restores sensitivity of antitumor agents to tumor cells resistant to 

these agents due to both Pgp and MRP1. 

 

Figure 45.271 5,7-disubstituted-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amines as microtubule 

inhibitors 

 Since the N7-benzyl moiety of 63 (Figure 44) was shown to be critical for its 

antitumor activity,266 Gangjee et al.271 designed 73 – 78 (Figure 45) as a part of an effort 

to optimize antitumor potential and Pgp modulatory effects. In these compounds 73 – 75 

methoxy substitutions were varied on the 7-benzyl moiety while maintaining the 3,4,5-

triOMephenethyl substitution at C5. Compounds 76 – 78 were designed as 5-thio 

analogs, with the large sulfur atom anticipated to mimic the two-carbon bridge of 73 and 

its analogs. In addition, the 5-thio linker permits the side chain phenyl distance 

somewhere between a one- and two-carbon-atom bridge and also cause a decrease in the 

C–S–C angle (98 °) compared to a C–C–C angle (109 °), consequently altering the 

orientation of the C5 phenyl ring relative to the parent scaffold.  
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 Compounds 73–75 with variations in the N7-benzyl moiety showed potent 

inhibition (IC50 = 0.6 to 3 μM) in the cytotoxicity assay. Compound 74 was the most 

potent compound in this series and was four-fold less potent than the standard compound 

Taxol. In addition, 74 demonstrated a significant increase in the intracellular 

accumulation of [3H] Taxol in the drug accumulation assay for determination of Pgp 

activity. 

 The 5-thiosubstituted compounds 76–78 demonstrated micromolar cytotoxicity in 

JC cells. . Compound 76 was the most potent compound in this series (IC50 = 4 μM) 

Compound 77 displayed an increase in the intracellular accumulation of [3H] Taxol below 

its IC50. Compound 78, which had a 3,4,5-triOMe substitution on the phenyl ring at the 

C5 phenyl and the benzyl at the N7 position was inactive in the biological evaluation 

studies. 

 

Figure 46.50  Pyrrolo[2,3-d]pyrimidines and cyclopenta[d]pyrimidines that act as antimitotic 

agents  

 As a part of a continued effort to develop 6,5-fused bicyclic agents that act as 

antimitotic agents, Gangjee et al.50, 272 reported the synthesis and biological evaluation of 

pyrrolo[2,3-d]pyrimidines (79 and 80) (Figure 46) and cyclopenta[d]pyrimidines ((±)-81 

- (±)-85) (Figure 46).  Compounds 79 and (±)-81.HCl displayed potent antiproliferative 

activities in the nanomolar range with (±)-81.HCl displaying significantly higher potency 

than 79. Mechanistic studies showed that both 79 and (±)-81.HCl cause loss of cellular 

microtubules and inhibit the polymerization of purified tubulin. Additionally, both 

compounds inhibit colchicine binding and were thus shown to exhibit their antimitotic 
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activity by binding to the colchicine site on tubulin. Gangjee et al.273 later reported the 

synthesis and evaluation of the individual R- and the S-enantiomers of 81. It was seen that 

both enantiomers were potent inhibitors of cell proliferation and caused microtubule loss 

in cells and mitotic arrest. Additionally, both compounds inhibited purified tubulin 

assembly and the binding of [3H]colchicine to tubulin, with (S)-81 being about twice as 

potent as (R)-81. However, in cytotoxicity studies against 60 tumor cell lines, (S)-81 was 

10- to 88-fold more potent than (R)-81.  

Gangjee et al.274  designed 82 – 85 (Figure 47) as regioisomers of the pyrrolo[2,3-

d]pyrimidine 79 and as as isostere of the cyclopenta[d]pyrimidine (±)-81.HCl. The 

compounds in this series were designed to explore the nature and importance of 

substitutions at the 2-, N4- and 6- positions and/or the aniline ring of the pyrrolo[3,2-

d]pyrimidine scaffold. 

 

Figure 47.
274

  Pyrrolo[3,2-d]pyrimidines as antimitotic agents  

 

 Compound 85 was designed as a conformationally restricted analog of 82. The 

biological evaluation studies indicated that 82 (MDA-MB-435 IC50 = 96.6 nM), was 

about 2-times more potent than its lead 79 (MDA-MB-435 IC50 = 183 nM).Compound 82 

(EC50 = 1.2 M), was about 5-times more potent than 79 (EC50 = 5.8 M) in the 

microtubule depolymerization assay. In addition, the 4'-OMe moiety and the methyl 

group attached to the nitrogen bridge both were crucial for activity. Removal of the 2-Me 
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group of 82 caused a 2-fold reduction in cytotoxicity in the MDA-MB-435 cell line but 

only a small loss in ability to cause microtubule disassembly in the A-10 cells. Addition 

of a 6-Me group of 82 gave 84 which displayed a 3-fold improvement in activity against 

MDA-MB-435 cells (IC50 = 1.2 M) and improved ability to disassemble microtubules in 

the A-10 cells 5-6-fold (EC50 = 0.22 M). The conformationally restricted analog 85 

showed 3-fold improved potency in the cellular assays compared to 82 and equivalent to 

84. Compounds 84 and 85 showed equivalent activity against microtubule 

depolymerization (EC50 = 0.22 M), but were significantly less active than the standard 

combretastatin A4 (EC50 = 0.0131 M),. Compounds 84 and 85 were shown to inhibit 

binding of colchicine to tubulin, thus suggesting that they likely act as an antimitotic by 

binding to the colchicine site on tubulin. 

 

A.4. COMPARITIVE MOLECULAR FIELD ANALYSIS (CoMFA) 

A.4.1 Topomer CoMFA 

A topomer is defined as as a molecular fragment having a single internal geometry 

or ‘‘pose’’ (conformation plus position).275 Topomer CoMFA applies conventional CoMFA 

methodologies to fragments attached to a central core. By definition, fragments have at 

least one open valence (point of attachment to the core), which can be fixed in Cartesian 

space and can be used to align other fragments.275, 276 Topomers provide a reproducible 

way of generating consistent, automatic alignments. Additionally, ligands assembled from 

shape similar fragment sets tend to share biological activities.277 Topomer CoMFA is thus 

insensitive to the initial conformation of the molecules, which is a major limitation of 

traditional CoMFA methodology.277 Several recent reports have shown the utility of 
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topomer CoMFA in lead optimization studies278, design of novel highly active analogs of 

targets such as HIV-1 integrase279,  HCV NS5b polymerase,280  renin inhibitors281 and other 

targets.282, 283 
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B. CHEMICAL REVIEW 

This section will review synthetic approaches to the following ring systems – 

B. 1. Pyrido[2,3-d]pyridines 

 B. 2. Pyrrolo[2,3-d]pyrimidines 

B. 1. Pyrido[2,3-d]pyridines 

B. 1. 1. Condensation of substituted 2-amino-3-cyano pyridines with guanidine 

B. 1. 2. From substituted pyridines 

B. 1. 3. Miscellaneous methods 

B. 2. Pyrrolo[2,3-d]pyrimidines 

B. 2. 1. From substituted pyrimidines  

B. 2. 2. From substituted pyrroles 

B. 2. 3. Miscellaneous methods 

B. 1. Pyrido[2,3-d]pyridines 

B. 1. 1. Condensation of substituted 2-amino-3-cyano pyridines with guanidine 

Piper et al. 284 reported the synthesis of a series of pyrido[2,3-d]pyridines as 5-

deaza analogues of aminopterin, MTX, folic acid and N10-methylfolic acid. The key 

intermediate for the synthesis of these analogs were 2,4-diamino-5-substituted-

pyrido[2,3-d]pyrimidine-6-carboxaldehydes 92a-b (Scheme 1). Intermediate 90 was 

synthesized starting from condensation of malononitrile 87 with 86 to readily give the 

salt 88 which, on reflux in presence of conc. HCl gave the substituted chloropyridine 

intermediate 89. Reductive dechlorination of 89 afforded 90. Alternate methods285 for the 
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dechlorination of 89 reported in the literature involve treatment of 89 with PdCl2 and 

DMF with NEt3 as the HCl scavenger. 

Scheme 1: Synthesis of pyrido[2,3-d]pyridines from substituted pyridines284  

 

 The pyrido[2,3-d]pyridine scaffolds were synthesized by condensation of 

substituted pyridines 90 with guanidine.HCl under basic conditions at reflux in EtOH in 

95% yield.  The key intermediate 92a-b were obtained from the nitriles 90a-b by 

treatment with Raney Ni in aqueous formic acid. Compounds 92a-b were reduced by 

NaBH4 to the corresponding alcohols 93a-b. The 6-bromomethyl compounds 94a-b were 

synthesized by bromination of 94a-b dibromotriphenylphosphorane.  

 

Scheme 2:Synthesis of pyrido[2,3-d]pyrimidines from 2,4-dioxopyrimidine 

derivitives.286 
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Su et al. 286 reported the synthesis of intermediate 93a (Scheme 2) by amination 

of the acetylated intermediate 99b using a method developed by Vonbruggen and 

Krolikiewicz.287 The pyrido[2,3-d]pyrimidine scaffold  was synthesized from the 

methoxymethyl (MOM) -protected uracil 95b by condensation with guanidine.HCl. 

Diazotization of the 7-NH2 group of 96 followed by reflux with conc. HCl provided the 

7-chloro compound 97a which was subjected to reductive dehalogenation using Pd/C and 

H2 to give 97b. Reduction of the cyano group of 97b over Raney Ni in Ac2O/AcOH 

afforded the acetamide 98a in high yield. 

  

Scheme 3: Synthesis of 6-methyl pyrido[2,3-d]pyrimidine-2,4-diamine 

 

 DeGraw et al.288 reported the synthesis of 6-methylpyrido[2,3-d]pyrimidine-2,4-

diamine 102 (Scheme 3) by condensation of 2-amino-5-methylnicotinonitrile 100 with 

guanidine.HCl 102 under basic conditions at reflux in 56% yield. 
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Scheme 4: Synthesis of 7-substituted-pyrido[2,3-d]pyrimidine-6-carbonitrile-2,4-

diamines 

 

 Recently, Soliman et al.289 reported the synthesis of 2,4,7-triaminopyrido[2,3-

d]pyrimidine-6-carbonitriles 104a-b (Scheme 4) by condensation of 2-amino-6-

chloropyridine-3,5-dicarbonitrile 89a284, 290 or 2-pyrrolo-6-chloropyridine-3,5-

dicarbonitrile 103289 with guanidine at reflux using DMF as the solvent in 76% and 66% 

yields respectively. 

 

Scheme 5: Synthesis of N6-substituted-benzylpyrido[2,3-d]pyrimidine-2,4,6-triamine 

Davoll et al.291 reported N6-substituted-benzylpyrido[2,3-d]pyrimidine-2,4,6-

triamines 109a-b (Scheme 5) as folate antagonists and as antimalarial agents. The key 

intermediate 106 was synthesized by condensation of nitropyridine compound 105 with 

guanidine at reflux in EtOH in 85% yield. In situ reduction of 106 with Raney Ni afforded 

the amino intermediate 107 which was condensed without isolation with benzaldehydes 

108 to afford the target compounds 109a-b in 50 – 58% yield.  
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Scheme 6: Synthesis of 6-(ethylthio)-5-substituted-pyrido[2,3-d]pyrimidine-2,4,7-

triamine 

 

Pochat et al.292 described the synthesis of 6-(substituted thio)-5-substituted-

pyrido[2,3-d]pyrimidine-2,4,7-triamines 112a-b (Scheme 6) from substituted pyridines 

111a-b by condensation with guanidine under reflux in 58 – 63% yields. Intermediates 

111a-b were synthesized by condensation of E-3-bromo-2-(4-substituted thio)-2-

butenenitriles 110293 with 2-cyanoacetamide to form an intermediate 2-pyridone 

derivative and further conversion by reaction with POCl3.  

 

Scheme 7: Synthesis of pyrido[2,3-d]pyrimidine-6-carboxaldehyde-2,4-diamine from 2-

cyanothioaceamide 

 

 Harrington et al.294 reported the synthesis of 92a in quantitative yields by the 

hydrolysis of intermediate 115 (Scheme 7) by formic acid at room temperature. 

Compound 115 was synthesized by a six-step sequence starting from 2-

cyanothioacetamide 113 to form the substituted pyridine intermediate 114. Compound 

114 condensed with guanidine in MeOH at reflux to give 115 in 79% yield. 
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B. 1. 2. From substituted pyrimidines: 

Scheme 8: Synthesis of pyrido[2,3-d]pyrimidine-6-carboxaldehyde-2,4-diamine from 

2,4,6-triaminopyrimidine 

 

 Temple et al.295 described the synthesis of pyrido[2,3-d]pyrimidine-6-

carboxaldehydes 119 (Scheme 8) and 92a from 2,4,6-triaminopyrimidine. The reaction 

involved a one-pot generation of triformylmethane 117 using the method described by 

Arnold, A.296 Bromoacetic acid 115 is treated by a Vilsmeier reagent, initially at 0 oC and 

then at 90 oC for 10 h to give the complex 116 which is decomposed under basic 

conditions to give triformylmethane 117. Analogous to condensation of 4-

aminopyrimidines with malonaldehyde derivitives to give pyrido[2,3-d]pyrimidines, the 

reaction of 117 with 2,6-diamino-4-oxopyrimidine 118a or 2,4,6-aminopyrimidine 118b 

in water at reflux afforded 119 or 92a in 82% and 33% yields respectively. The presence 

of the formyl group on 92a was confirmed by condensation with 2,4-

dinitrophenylhydrazine to give the corresponding hydrazone. In addition, the aldehyde 

moiety of 119 was oxidized to the corresponding acid 120 by potassium permanganate. 

The 1HNMR of 120 prepared by this method matched the previously reported297 1HNMR 

spectra of 120 prepared by an independent route. Although the mechanism for the 

condensation is unknown, it was speculated that the initial reaction occurs through the 
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electrophilic attack of one formyl group of 117 with the 5-position of the pyrimidine ring 

or with the 6-NH2 group on the pyrimidine to give the Schiff base followed by 

cyclization of the resulting intermediate to give the pyrido[2,3-d]pyrimidine scaffold.  

 

Scheme 9: Synthesis of 6-methyl pyrido[2,3-d]pyrimidine-2,4-diamine 

 

 Gangjee et al.298 reported the synthesis of 6-methylpyrido[2,3-d]pyrimidine-2,4-

diamine 102 (Scheme 9) by condensation of 2,4,6-triaminopyrimidine 118b with 

methacroline 121 using piperidine acetate as a catalyst in AcOH at reflux in 57% yield.  

 

Scheme 10: Conversion of pyrimidine-2,4,6-triamine to di-tert-butyl (6-

bromopyrido[2,3-d]pyrimidine-2,4-diyl)dicarbamate 

 

 

 Gangjee et al.299 300 described the synthesis of di-tert-butyl (6-bromopyrido[2,3-

d]pyrimidine-2,4-diyl)dicarbamate 124 (Scheme 10) by the condensation of freshly 

prepared bromomalonaldehyde 122 with pyrimidine-2,4,6-triamine. Upon further 

reaction with pivalic anhydride leads to the formation of the dipivaloylated compound 

123 in 29% overall yield after silica gel chromatography. Rosowski et al.301 described the 

coupling of commercially available benzyl zinc chlorides with 123 using a catalytic 

amount (2.5 mol%) of 1,1-bis(diphenylphosphino)ferrocene] 
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dichloropalladium(II)·CH2Cl2 in THF. The desired compounds 124 were obtained in 

<40% overall yield from 123 after deprotection of the pivaloyl groups using NaOH in 

MeOH and recrystallization from mixtures of aqueous DMF, mixtures of MeOH, EtOH, 

and H2O, or mixtures of DMF, EtOH, and H2O. 

B. 1. 3. Miscellaneous methods 

Scheme 11: Synthesis of N-(4-amino-6-bromopyrido[2,3-d]pyrimidin-2-yl)pivalamide 

 

 Taylor et al.302 reported the conversion of the N-(6-bromo-4-oxo-3,4-

dihydropyrido[2,3-d]pyrimidin-2-yl)pivalamide 125 (Scheme 11) into N-(4-amino-6-

bromopyrido[2,3-d]pyrimidin-2-yl)pivalamide 127. The two-step process conversion of 

the 4-oxo moiety of 125 into its triazole derivate 126 by reaction with 4H-1,2,4-triazole 

using phosphorodichloridic acid as a catalyst. The triazole moiety then acts as a good 

leaving group for the subsequent attack by NH3 to afford the target compound 127 in 

excellent yields. 

 

Scheme 12: Synthesis of various 4-N-substituted 7-(2-trifluoromethyl-phenyl)pyrido[2,3-

d]pyrimidine-2,4-diamines 
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 Cheung et al.303 recently published the conversion of N-(4-oxo-7-(2-

trifluoromethyl)phenyl) -3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)pivalamide 128 

(Scheme 12) into an intermediate 4-chloro derivative by reaction with POCl3 which was 

subjected to reaction with various primary and secondary alkylamines under microwave 

irradiation to afford various 4-N-substituted 7-(2-trifluoromethyl-phenyl)pyrido[2,3-

d]pyrimidine-2,4-diamines 129a-d in around 60% yield over two steps. 

 

Scheme 13: Synthesis of (S)-2-(4-(((2,4-diaminopyrido[2,3-d]pyrimidin-6-

yl)methyl)amino) benzamido)pentanedioic acid 

 

  

 Harrington, P. J.294 described the synthesis of the classical compound 131 

(Scheme 13) by the reductive alkylation of 92a using benzoyl glutamic acid and 

NaBH3CN as the reducing agent. The one-step reaction involves the formation of an 

intermediate Schiff base by the condensation of the aldehyde moiety of 92a and the 

aniline of 130 which is reduced by NaBH3CN. The reaction however, was slow (10 days) 

with poor yields (33%). Subsequent ester hydrolysis afforded the target compound 131 in 

86% yield. 

Scheme 14: Synthesis of 6-(thioarylmethyl)pyrido[2,3-d]pyrimidine-2,4-diamines 
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 Gangjee et al.80 reported the synthesis of 6-(thioarylmethyl)pyrido[2,3-

d]pyrimidine-2,4-diamines 133a-c  by the nucleophilic displacement of the bromide of 94a 

with various arylthiols using K2CO3, NEt3 or NaH as the base in 6-20% yields. All three 

bases were effective at promoting the nucleophilic displacement by the thiols.  

B. 2. Pyrrolo[2,3-d]pyridines 

B. 2.1 From substituted pyrimidines: 

Scheme 15. Synthesis of pyrrolo[2,3-d]pyrimidines from 4-

(alkoxycarbonylmethylamino)-6-chloro-2-methylthiopyrimidine-5-carbonitriles 

 

Using the common intermediate 4-(alkoxycarbonylmethylamino)-6-chloro-2-

methylthiopyrimidine-5-carbonitriles 135a, b (Scheme 15) Tumkevicius et al.304 reported 

the synthetic route for pyrrolo[2,3-d]pyrimidine-6-carboxylates 136 and 137. Reaction of 
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4,6-dichloro-2-methylthiopyrimidine-5-carbonitrile 134 with methyl or ethyl esters of 

glycine and sarcosine at room temperature in the presence of NEt3 provided the 

corresponding 4-(alkoxycarbonylmethylamino)-6-chloro-2-methylthiopyrimidine-5-

carbonitriles 135a-b. The reaction of mercaptoacetic acid esters with 6-chloropyrimdine-

5-carbonitriles under basic conditions and subsequent cyclization has been previously 

reported to afford thienopyrimidine derivatives.305-311 It was found that compounds 135a 

when heated at reflux under basic conditions afforded the pyrrolo[2,3-d]pyrimidine 

derivative 136, instead of the corresponding thieno[2,3-d]pyrimidine. Displacement of 

the chloride of 136 by mercaptoesters under basic conditions provided the target 137 in 

80% yield. 

Scheme 16. Synthesis of pyrrolo[2,3-d]pyrimidines from 6-amino-2-

(dimethylamino)pyrimidin-4-(3H)-one 

 

Gangjee et al.312 reported the synthesis of 140a (Scheme 16) by the condensation 

of an aqueous solution of α-chloroacetone 139a in presence of NaOAc in 70% yield. Linz 

et al.313 also reported the synthesis of a series of pyrrolo[2,3-d]pyrimidines from 6-

amino-2-(dimethylamino)pyrimidin-4(3H)-ones 138b (Scheme 16). Compound 138b on 

treatment with α-chloroacetone 139a or α-chloroacetaldehyde 139b provided the 

corresponding pyrrolo[2,3-d]pyrimidines 140a or 140b in 68% and 75% yields 
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respectively. This methodology has been previously used in the synthesis of several 

substituted pyrrolo[2,3-d]pyrimidines 114, 179, 180, 314, 315 and has been utilized in the 

synthesis of pemetrexed, which is a multitargeted antifolate.316 Secrist et al.315 reported 

the generation of a furo[2,3-d]pyrimidine-2,4-diamine derivative in addition to the 

pyrrolo[2,3-d]pyrimidin-4-one when this methodology was used. 

Yoneda et al.317 reported the reaction of α-bromoketones with 6-amino-1,3-

dimethyluracil to form pyrrolo[2,3-d]pyrimidines. When DMF was used as the reaction 

solvent the desired pyrrolo[2,3-d]pyrimidine product was obtained. However, when the 

same reaction was repeated in acetic acid instead of DMF, a mixture of pyrrolo[2,3-

d]pyrimidine (major product) and furo[2,3-d]pyrimidine (minor product) was obtained. 

Scheme 17. Synthesis of pyrrolo[2,3-d]pyrimidines by Paal Knorr reaction 

 

Kidwai et al.318 reported the solid supported synthesis of a series of twelve 1,3,7-

triaryl-6-phenyl-2-thioxo-1,2,3,7-tetrahydropyrrolo[2,3-d]pyrimidin-4-ones 145 from 

readily accessible N,N-disubstituted thiobarbaturic acids 141 using microwave conditions 

by the Paal Knorr reaction (Scheme 17).  Compound 141 on treatment with phenacyl 

bromide 142 over basic alumina or anhydrous potassium carbonate as solid support under 

microwave irradiation affords the corresponding 1,4-diketone intermediates 143 which 

were cyclized with various aromatic/heteroaromatic amines 144 over acidic 
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alumina/montmorillonite K-10 clay to provide the target compounds 145 in 65-88% 

yields. 

Scheme 18. Synthesis of 6-butyl-2,4-dimethyl-7H-pyrrolo[2,3-d]pyrimidine  

 

Rodriguez et al.319 reported the synthesis of 6-butyl-2,4-dimethyl-7H-pyrrolo[2,3-

d]pyrimidine 147 (Scheme 18) by Sonogashira coupling and 5-endo-dig cyclization. The 

precursor 146 was prepared by a Sonogashira coupling reaction. Compound 146 on 

treatment with excess potassium tert-butoxide in polar solvent NMP undergoes 5-endo-

dig cyclization to afford the target 147 in 61% yield.  

Scheme 19: Synthesis of pyrrolo[2,3-d]pyrimidines using Fisher-Indole reaction

 

 Taylor et al.320 synthesized methyl 4-(2-(2-amino-6-methyl-4-oxo-4,7-dihydro-

3H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl)benzoate 151 (Scheme 19) by a Fisher-Indole 

approach. Reaction of 2-amino-6-hydrazinylpyrimidin-4(3H)-one 148 with one 

equivalent of methyl 4-(4-oxopentyl)benzoate 149 in 2-methoxyethanol under reflux 

afforded the requisite intermediate 150 in 84% yield. The key cyclization step was 

accomplished by thermolysis of 150 in refluxing diphenyl ether under argon. This 
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regioselective process provided the pyrrolo[2,3-d]pyrimidine 151 in 61% yield. 

Gangjee et al.229 reported the synthesis of  7-benzyl-4-methyl-7H-pyrrolo[2,3-

d]pyrimidin-2-amine 156 (Scheme 20) from 2-acetylbutyrolactone 152 by a modification 

of an earlier synthetic route described by Badaway et al.321 Heating 152 and guanidine 

carbonate at reflux in absolute EtOH in the presence of either NEt3 or NaOMe afforded 

intermediate 153 in 57 - 69% yields. 

Scheme 20. Synthesis of 7-benzyl-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

 

 Reaction of 153 by heating with phosphorus oxychloride at reflux gave the 

corresponding chloro derivative 154 which was condensed with benzylamine under basic 

conditions at reflux in n-BuOH to give the tetrahydro pyrrolo[2,3-d]pyrimidine 155 in 

50% yield. Oxidation of 155 with MnO2 afforded 7-benzyl-4-methyl-7H-pyrrolo[2,3-

d]pyrimidin-2-amine 156 in 50% yield. 
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B. 2. 2. From substituted pyrroles 

Scheme 21. Synthesis of pyrrolo[2,3-d]pyrimidines from 1-benzyl-2-amino-3-

cyanopyrroles 

 

 

Traxler et al.186 reported the synthesis of a series of pyrrolo[2,3-d]pyrimidines 

(Scheme 21) starting from substituted α-hydroxy ketones 158. Ketones 158 were 

converted to substituted 1-benzyl-2-amino-3-cyanopyrroles 159 by treatment with 

benzylamine at reflux in toluene and further condensation with malononitrile in toluene at 

reflux. Cyanopyrroles 159 underwent condensation with 85% formic acid at reflux to 

provide the target 160a-e. 

Scheme 22. Conversion of a 2-amino pyrroles to pyrrolo[2,3-d]pyrimidines 

 De Rosa et al.322 reported the conversion of a 2-amino pyrroles to the 

corresponding pyrrolo[2,3-d]pyrimidines 167 (Scheme 22). The 2-amino pyrroles 161 on 

reaction with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine 162 gives the pyrrolo[2,3-
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d]pyrimidine 167. According to the proposed mechanism, (Scheme 22) the initially 

formed unstable intermediate 163 converts to a zwitterion intermediate 164 in presence of 

base triethylamine. Compound 164 undergoes a cascade reaction to provide 165. The 

cycloadduct 165 eliminates ammonia to form pyrrole 166, which undergoes a retro Diels-

Alder reaction to give the target pyrrolo[2,3-d]pyrimidines 167. 
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 C. STATEMENT OF THE PROBLEM 

The present section deals with design and synthesis of inhibitors and molecular modeling 

studies in the following four areas: 

C.1. ANTIFOLATES 

A. Selective pjDHFR inhibitors as anti-opportunistic agents and molecular modeling 

studies in pjDHFR and tgDHFR homology models. 

B. Development of a tgTS homology model, docking studies and topomer CoMFA 

studies with bicyclic tgTS inhibitors. 

C.2. RECEPTOR TYROSINE KINASE INHIBITORS 

C. Inhibition of multiple receptor tyrosine kinases as potential antiangiogenic agents, 

molecular modeling studies of multiple kinase inhibitors with EGFR, VEGFR2 

and a PDGFR- homology model and topomer CoMFA studies with bicyclic 

RTK inhibitors. 

C.3. COLCHICINE SITE BINDING ANTI-MITOTIC AGENTS 

D. Novel colchicine site tubulin binding agents as antimitotic agents and molecular 

modeling studies of colchicine site binding agents reported in our laboratory. 
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C.1. ANTIFOLATES 

Selective pjDHFR inhibitors as anti-opportunistic agents and molecular modeling 

studies in pjDHFR and tgDHFR homology models. 

C.1.1. Selective pjDHFR inhibitors as anti-opportunistic agents  

Opportunistic infections caused by Pneumocystis jirovecii can cause pneumocystic 

pneumonia (PcP) in immunocompromised patients.323, 324 P. jirovecii is the most prevalent 

infection in HIV-AIDS patients324 and is a growing concern in non-HIV patients.325  

Current therapeutic agents for treatment of PcP include SMX (targeting DHPS) and TMP 

(targeting DHFR). Although TMP-SMX is an effective first line therapy, the combination 

is limited by severe toxicity.325 Additional limiting factors include lack of selectivity (TMP 

or PTX), development of resistance (sulfa drug component), require co-administration of 

leucovorin (with TMQ or PTX) and have shown limited utility in severe cases 

(TMQ/leucovorin). Attempts to treat PcP with TMP alone either therapeutically or 

prophylactically often fail. Results from studies attempting to link this failure to mutations 

in pjDHFR have been inconclusive.51, 326, 327 Thus, agents that combine the potency of TMQ 

or PTX and the selectivity of TMP in a single agent are highly desirable in a clinical setting. 

Agents reported in the literature thus far lack these characteristics and remain a significant 

challenge in the treatment of opportunistic infections. Additionally, single agents that can 

target multiple opportunistic infectious agents would be highly desirable and would 

significantly reduce the patient burden, increase compliance and reduce the treatment costs 

by reducing the need for multiple treatment regimens.  
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Figure 48.  Sequence alignment of hDHFR (DYR_HUMAN)1, pjDHFR (Q9UUP5_PNEJI)328 

and pcDHFR (DYR_PNECA).329 

Pneumocystis carinii (pc) had been previously misidentified as the causative agent 

on pneumoscystis pneumonia in humans. Cody et al.48 reported that pcDHFR and pjDHFR 

differ by around 38% in their sequence (Figure 48) with 79 residues differing overall. Of 

these, 9 residues differ in the active site of pjDHFR compared to hDHFR and pcDHFR.91 

Current DHFR inhibitors such as TMP and MTX were shown to inhibit pcDHFR and 

pjDHFR with different IC50s.48  

 

C.1.1.1 Design of novel inhibitors: 2,4-Diamino-6-(arylaminomethyl)pyrido[2,3-

d]pyrimidines as pjDHFR inhibitors 

 

 

 

Figure 49.  Structures of 168 and 169. 

Gangjee et al.74, 80, 330-334 and others44, 284, 301, 335-338 have previously reported DHFR 

inhibitors of diverse chemical classes that target DHFR from opportunistic infections such 

as P. carinii, P. jirovecii, and T. gondii in an attempt to design agents that can target the 
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DHFR from these species potently and selectivlely over hDHFR.  Gangjee et al.333 reported 

a series of pyrido[2,3-d]pyrimidine compounds in which the 2,5-dichlorophenyl 

substituted compound 168 (Figure 49) was the most selective inhibitor of both pcDHFR 

and tgDHFR. In this series compounds with an electron withdrawing group in the side 

chain phenyl ring afforded better inhibition of pcDHFR than compounds with electron 

donating groups. Additionally, Cody et al.48, 91 reported that 168 displayed potent and 

selective inhibition of pjDHFR (Ki pjDHFR = 2.7 nM, Ki hDHFR = 24.4 nM; 9.0 fold 

selective) while showing approximately 2.3 fold selectivity for pcDHFR (Ki pcDHFR = 

6.3 nM). In the same series, the 3,4,5-trichlorophenyl substituted pyrido[2,3-d]pyrimidine 

169  (Figure 49) also showed good selectivity and potency against pjDHFR. Very recently 

Cody et al.91 have reported the X-ray crystal structures of 168 with hDHFR and its Q35K 

and Q35S/N64F variants.  

While several high resolution X-ray crystal structures of pcDHFR have been 

reported in the literature, there are no reported crystal structures of pjDHFR. Hence, 

molecular modeling studies of 168 in pjDHFR required the generation of a homology 

model.  

 

Figure 50. Stereoview. Docked pose of 168 in the active site of the homology model for pjDHFR. 
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Figure 50 shows the docked pose of 168 in the active site of a pjDHFR homology 

model generated using pcDHFR as the template. In this pose the protonated N1 and 2-NH2 

of 168 interact in an ionic bond with Asp32. This bidentate ionic bond with a conserved 

acid residue has been observed in most DHFR crystal structures.31, 32, 40, 53 The 4-NH2 

moiety forms hydrogen bonds with the backbone of Ile10 and Ile123. The pyrido[2,3-

d]pyrimidine scaffold is stabilized by a pi-stacking interaction with Phe36 and with side 

chain carbon atoms of Met33 and Leu25. The 2’,5’-dichlorophenyl side chain of 168 

resides in a hydrophobic pocket formed by the side chains of Leu25, Thr61, Ser64, Leu65, 

Pro66 and Ser69. In this model the 2’-Cl of 168 is oriented towards the side chain OH of 

Thr61 (3.4 Å) and could form stabilizing Cl…O halogen bonding339 interactions. Alternate 

low energy docked poses (not shown) of 168 (within 2 kcal/mol of the pose described in 

Figure 50) show the formation of a hydrogen bond between the side chain NH of 168 and 

Ile123 in the pocket.  

 

Figure 51. Stereoview. Docked pose of 168 in the pjDHFR homology model (Cody et al.91) 

Cody et al.91 recently reported the docked conformation (Figure 51) of 168 in a 

pjDHFR homology model. With the exception of the orientation of the 2’,5’-diCl phenyl 

side, the model described in Figure 50 matches the model reported by Cody et al. In their 

model Cody et al.91 reported that the 5’-Cl atom is oriented toward Pro66 and Ser69. Poses 
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similar to the one described by Cody et al. were also obtained within 1 kcal/mol of the 

docked pose of 168 described in Figure 50 above.  

 

Figure 52. Structures of target compounds 170 – 180 

Hence compounds 170 – 180 (Figure 52) were designed to determine the effect of 

the nature and position of the electron withdrawing substituents on the terminal phenyl ring 

on potency and selectivity against pjDHFR.   

The 2’,5’-diF substituted compound 170 was previously synthesized in the Gangjee 

laboratory.340 Biological evaluation studies for 170 indicate that it displays excellent 

potency (pjDHFR IC50 0.057 M) and selectivity (around 280-fold) for pjDHFR over 

hDHFR. Hence, bulk synthesis of 170 was performed to enable testing in an animal model. 

Docking studies performed with 170 – 180 in the pjDHFR homology model 

indicate that the proposed compounds retain the key binding interactions seen in the docked 

conformation of the lead 168. An example of the docking is shown in Figure 51, which 

shows the docked conformation of 173 in the pjDHFR homology model.  

Figure 53 shows the docked pose of the target 173 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. In this pose the protonated N1 

and 2-NH2 of 173 interact in an ionic bond with Asp32. 



106 

 

 

Figure 53. Stereoview. Docked pose of 173 in the active site of the homology model for pjDHFR. 

This bidentate ionic bond with a conserved acid residue has been observed in most 

DHFR crystal structures. The 4-NH2 moiety forms hydrogen bonds with the backbone of 

Ile10 and Ile123. The pyrido[2,3-d]pyrimidine scaffold is stabilized by a pi-stacking 

interaction with Phe36 and with side chain carbon atoms of Met33 and Leu25. The 2’,6’-

dichlorophenyl moiety of 173 resides in the hydrophobic pocket formed by the side chains 

of Leu25, Thr61, Ser64, Leu65, Pro66 and Ser69. In contrast to 168, the 2’,6’-

dichlorophenyl ring of 173 shows a different orientation relative to the pyrido[2,3-

d]pyrimidine scaffold. This is probably a reflection of the influence of the substitution 

pattern on the ring and/or interaction of the halogen atoms with the amino acids in the 

binding pocket and could perhaps influence the binding potency and/or selectivity of these 

compounds against pjDHFR. The docked conformations of other compounds in this series 

are presented in the Appendix. 
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C.1.1.2.  Design of novel inhibitors: 2,4-Diamino-6-(thioarylmethyl)pyrido[2,3-

d]pyrimidines and 2,4-Diamino-6-(oxoarylmethyl)pyrido[2,3-d]pyrimidines as 

pjDHFR inhibitors 

 

 

Figure 54. Structures of compounds 181 – 185 

Piper et al.341 and Queener et al.342 reported 181 (Figure 54) as a highly selective 

compound against both pcDHFR and tgDHFR with selectivity ratios (vs rlDHFR) of 25.9 

and 319, respectively. However 181 lacked potency against pcDHFR (9.5 mM) and 

tgDHFR (0.77 mM). In addition, 181 lacked potency in cell culture, possibly due to a 

combination of weak DHFR inhibition and lack of cell penetration. Gangjee et al.343 later 

designed 182 – 184 (Figure 54) as 2,4-diamino-8-deaza analogues of 181. cLogP 

calculations of 182 – 184 indicated that these compounds should display improved cell 

penetration due to improved clogP values compared to 181. Compound 182 displayed 

marginally improved potency compared to 181 against pcDHFR and tgDHFR but lacked 

the selectivity of 181, thereby demonstrating the importance of N8 for selectivity. Gangjee 

et al.344 later reported 185 (Figure 54) as a part of a series of analogs designed to explore 

the importance of the N5 for potency and/or selectivity towards pcDHFR or tgDHFR. 

Compound 185 displayed potent inhibition of pcDHFR (IC50 5.9 M, about 2-fold better 

than TMP), it lacked selectivity against hDHFR (IC50 5.9 M). The inhibitory activity of 

185 against pjDHFR is not known. Compound 185 is an analogue of 168, which displayed 
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potent and selective inhibition of pjDHFR.  

 

Figure 55. Structures of target compounds 186 – 191 

Target compounds 186 – 191 (Figure 55) were designed as analogs of 185 to study 

the influence of the nature of the linker on pjDHFR activity. Sulfur is a larger atom than 

oxygen and the C-S-C bond angle is shorter (98 o) as compared to a C-O-C bond angle 

(112 o). Thus replacing the sulfur atom of 185 with oxygen in 189 changes the bond angle 

between the 6-position CH2 and the terminal substituted phenyl ring and could change the 

orientation of the terminal phenyl ring relative to the heterocycle that could affect the 

bound conformation of these molecules in the pjDHFR active site. Compound 187 and 

190 were designed based on 169 which showed excellent potency and selectivity against 

pjDHFR in the study reported by Cody et al.48 Compounds 188 and 191 were designed 

based on the 2,5-diF containing compound 170 which has displayed  excellent potency 

and selectivity against pjDHFR and would serve to examine the influence of the nature of 

the linker on potency and/or selectivity for pjDHFR. Docking studies were carried out for 

186 – 191 with the homology model of pjDHFR in order to predict their binding modes 

in the enzyme.  
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Figure 56. Stereoview. Docked pose of 186 in the active site of the homology model for pjDHFR. 

Figure 56 shows the docked conformation of 186 in the pjDHFR homology 

model. In this pose 186 retains the key interactions of the pyrido[2,3-d]pyrimidine 

scaffold with the enzyme as seen with the lead compound 168 (Figure 50). The key 

difference between the docked pose of 186 compare to 168 lies in the orientation of the 

2,5-dichlorophenyl moiety in the hydrophobic pocket. For 186, the chlorine atoms can 

form hydrophobic interactions with the side chain atoms of Leu25, Leu65, Thr61 and 

Ile123 in the binding pocket, but are not seen to interact with the hydroxyl group of 

Thr61where it could form halogen bonds.345, 346 These differences in orientation of the 

terminal substituted phenyl ring of these compounds could, perhaps, influence the 

interactions of these compounds in pjDHFR and could, in turn, affect their potency 

and/or selectivity against pjDHFR. The docked conformations of other compounds in this 

series are presented in the Appendix. 

C.1.1.3. Molecular Modeling Studies with pjDHFR 

C.1.1.3.1 Development of a homology model 

There are no known crystal structures of pjDHFR. Hence a homology model was 
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generated in order to perform modeling studies. A Basic Local Alignment Search Tool 

(BLAST)347 search of the primary amino acid sequence of pjDHFR indicated high 

homology (61%) between pjDHFR and pcDHFR (Figure 48). In addition, multiple high 

resolution (< 2 Å) crystal structures of pcDHFR bound to various non classical antifolates 

have been reported in the PDB (details of selected crystal structures in Table 1). Hence, 

homology models for pjDHFR were built based on the X-ray crystal structure of 

pcDHFR. Recently Cody et al.91 reported the generation of a homology model of 

pjDHFR using the crystal structure of pcDHFR as a template. After validation, the 

pjDHFR homology model was used for docking studies of compounds 170 – 180 (Figure 

52), compounds 186 – 191 (Figure 55) and other compounds synthesized by Gangjee et 

al. 

C.1.1.3.2 Docking studies with 6-substituted amino-pyrido[2,3-d]pyrimidine-2,4-

diamines 192b-e with a pjDHFR homology model 

Table 8: Structures and inhibitory concentrations (IC50, nM) of 192a72 and 192b-e348 against 

pjDHFR, pcDHFR and hDHFR 

 

 

 

 

 

 

Comp. R1 R2 pjDHFR pcDHFR hDHFR Hu/Pj 

192a    84 8500  

192b H Me 2.2 75.5 57 25.6 

192c H H 300 2300 193 0.6 

192d 3,4,5-triF Me 4.1 228 148 35.4 

192e 3,4,5-triF H 866 8980 3070 3.5 
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Gangjee et al.348 described the synthesis and biological evaluation of 192b-e 

(Table 8). Transposition of the 5-methyl group of PTX and TMQ to the N9-position in 

pyrido[2,3-d]pyrimidine analogs improves potency as well as selectivity against pathogen 

DHFR.330 Compound 192a72 exhibits 100-fold selectivity for pcDHFR over hDHFR. A 

crystal structure of 192a with hDHFR showed that the N9-methyl moiety is not in 

hydrophobic contact with any hydrophobic side chain of hDHFR.349 In addition, 

molecular modeling studies of 192a in pcDHFR suggested that the N9-methyl moiety of 

192a interacts with both Ile123 and Ile65 of pcDHFR. These additional interactions of 

the N9-methyl moiety of 192a with pcDHFR compared to the lack of similar interactions 

with hDHFR could be responsible, in part, for the increased potency and selectivity of 

192a for pcDHFR compared with hDHFR. Hence compounds 192b-e (Table 8) were 

designed by incorporating an N9-methyl group. This methyl group was anticipated to 

interact with Ile123 of pcDHFR (and also with the corresponding Ile123 of pjDHFR) and 

not with the shorter Val115 in hDHFR in a similar way as that of 192b.Hence docking 

studies were carried out with 192b in the pcDHFR active site (PDB: 1LY389) using 

LeadIT 1.3.0.131 

The N-Me compounds 192b and 192d displayed potent and selective pjDHFR 

inhibitory activity.348 The corresponding N-desmethyl compounds 192c and 192e 

displayed significantly less potency against pjDHFR.348 Docking studies were performed 

in the pjDHFR homology model in an attempt to provide a molecular basis for the 

observed activities of 192b-e in pjDHFR and the importance of the N-Me group in 192b 

and 192e. 
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C.1.1.3.3. Docking studies with TMP and 168 in wild type and F36C L65P double 

mutant pjDHFR models: 

Table 9
350

: Ki values (M) against wild type pjDHFR and F36C L65P double mutant resistant 

pjDHFR 

 

 

Recent studies have demonstrated the emergence of drug-resistant forms of TMP 

related to mutations in pcDHFR and pjDHFR .91, 338 One such mutation that confers 

resistance in pjDHFR towards TMP is the F36C L65P double mutation.91 DHFR 

inhibitors that retain their activity or atleast show reduced sensitivity to these mutations 

are, therefore, of immense interest. The results in Table 9 show that 168 only loses around 

10-fold inhibitory activity in the F36C L65P double mutant as compared to the 1000-fold 

loss in inhibitory activity exhibited by TMP for the same mutation. There are no crystal 

structures of pjDHFR. Thus it was of interest to develop a homology model of the double 

mutant form of pjDHFR in order to perform docking studies with 168 in an attempt to 

provide a molecular basis for the observed activity of 168 against the double mutant 

pjDHFR. 

 

C.1.1.3.3. Docking Studies of 5-Methyl-6-(substituted thio)-thieno[2,3-d]pyrimidine-

2,4-diamines 193a-j with a pjDHFR homology model 

 

Compound 193d (Table 10) was synthesized as part of a series of 5-methyl-6-

(substituted thio)-thieno[2,3-d]pyrimidine-2,4-diamines 193a-j (Table 10) by Gangjee et 

 Wild type pjDHFR (M) F36C L65P Mutated pjDHFR (M) 

Trimethoprim 3.5 x 10-8 1.7 x 10-5 

168 2.7 x 10-9 2 x 10-8 
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al.351 and displayed 0.27 M inhibition (IC50) of pjDHFR. While 193a-j were not selective 

for pcDHFR over rlDHFR, compound 193f displayed 6-fold selectivity for pjDHFR over 

hDHFR and about 20-fold selectivity for pjDHFR over rlDHFR. Docking studies were 

hence performed for 193f to provide a possible molecular basis for the observed 

activity/selectivity of 193f against pjDHFR to be utilized for the design of potent and 

selective inhibitors of pjDHFR. 

Table 10: Biological activities of 193a-j against pcDHFR, tgDHFR, rlDHFR, pjDHFR and 

hDHFR 

 

 

 

  Inhibition concentration (IC50, µM) Selectivity ratio (IC50/IC50) 

Compound pcDHFR tgDHFR pjDHFR rat 

liver 

rl/pc rl/tg rl/pj 

193a 6.7 2.7  1.4 0.21 0.52  

193b 7.3 3.2  8.6 1.18 2.69  

193c 1.9 0.63  0.88 0.46 1.4  

193d 5.2 2.4  4.9 0.94 2.04  

193e 1.7 0.25  0.33 0.19 1.32  

193f 1.63 0.282 0.27 1.64 1 5.82 20.42 

193g 5.9 0.99  1.8 0.31 1.85  

193h 4.9 3.4  7.1 1.45 2.09  

193i 4.4 5.1  5 1.14 0.98  

193j 10.2 2.99  3 0.29 1  

TMQ 0.042 0.01  0.00

3 

0.07 0.3  

TMP 12 2.8   180 14 65   

 

Inhibitory concentrations (IC50, µM) against isolated DHFRa and selectivity ratiosb of 194a-j 

a These assays were carried out at 37 °C under conditions of substrate (90 µM dihydrofolic acid) 

and cofactor (119 µM NADPH) in the presence of 150 mM KCl.  bSelectivity Ratios [(IC50 

rlDHFR)/(IC50 pcDHFR) and (IC50 rlDHFR)/(IC50 tgDHFR)] 
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C.1.2. Molecular Modeling Studies with tgDHFR  

C.1.2.1. Development of a homology model 

 

Figure 57. Sequence alignment of DHFR from T. gondii (DRTS_TOXGO), T. cruzi 

(DRTS_TYRCR), Cryptosporidium hominis (Q5CGA3_CRYHO), Plasmodium falciparum 

(A7UD81_PLAFA), Leishmania major (DRTS_LEIMA) and hDHFR (DYR_HUMAN) using 

Protein BLAST (BLASTP).352   
 

DHFR is a part of a bifunctional DHFR-TS complex in T. gondii and in other 

apicomplexan parasites such as Plasmodium falciparum, P. vivae and Cryptosporidium 

hominis (Ch). While X-ray crystal structures have been resolved for DHFR segment of P. 

falciparum and C. hominis, when this work was initiated there were no known crystal 

structures of tgDHFR. Hence a homology model was generated in order to perform 
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modeling studies, to better understand the molecular reasons for potency and selectivity of 

analogs and to provide a template for drug design for T. gondii inhibitors. Multiple high 

resolution (< 2 Å) crystal structures of the DHFR segment of C. hominis have been reported 

in the PDB. Hence, a homology model for tgDHFR was built based on the X-ray crystal 

structure of ChDHFR. Very recently Pacheo Homen et al.353 reported the generation of a 

homology model of tgDHFR using the crystal structure of P. vivae DHFR as a template. 

After validation, the tgDHFR homology model was used for docking studies of compounds 

194a-c351 (Table 11) synthesized in our laboratory. 

C.1.2.2. Molecular Modeling Studies of 2-Amino-4-oxo-5-arylthio-substituted-6-

propyl thieno[2,3-d]pyrimidines 194a-c with a tgDHFR homology model 

Table 11: Structure of 194a-c and inhibition concentration (IC50, µM) against isolated TS.351 

 

Compound   DHFR (µM) DHFR selectivity (rl/tg) 

        Humanb E. coli
c
 T. gondiid  

194a 17.0 > 17 (0) 0.017 1000 

194b > 2.6 (0) > 2.6 (0) 0.023 >113  

194c 2.2 > 25 (17) 0.02 110 

PMXe 6.6 230 0.43 15  

PDDFf 1.9 23 0.22 8.6  

MTX 0.02 0.0088 0.033 0.6  

Trimethoprim >340 (22) 0.01 6.8 >50 
 

 aThe percent inhibition was determined at a minimum of four inhibitor concentrations within 20% 

of the 50% point. The standard deviations for determination of 50% points were within ± 10% of 

the value given. b Kindly provided by Dr. J. H. Freisheim, Medical College of Ohio, Toledo, OH. c 

Kindly provided by Dr. R. L. Blakley, St. Jude Children’s hospital, Memphis TN. d Kindly provided 

by Dr. Karen Anderson, Yale Univerisy, New Haven CT. e Kindly provided by Dr. Chuan Shih, Eli 

Lilly and Co. f Kindly provided by Dr. M. G. Nair, University of South Alabama.  
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Compounds 194a-c (Table 11) were reported by Gangjee et al.351 as DHFR 

inhibitors in an attempt to explore the effects of substitution at the 6-position of the 

thieno[2,3-d]pyrimidine scaffold. DHFR inhibitory activities of 194a-c showed that these 

compounds exhibit remarkable selectivities among DHFRs from different species. 

Compound 194a in this series showed a 1000-fold selectivity against tgDHFR over hDHFR, 

which is better than any compound known in the literature.  It was therefore of interest to 

perfom docking studies to elucidate the probable binding mode and the molecular reasons 

for the observed selectivity for compounds in this series in order to design potent and 

selective agents against tgDHFR. 

 

Development of a tgTS homology model, docking studies and topomer CoMFA studies 

with bicyclic tgTS inhibitors. 

C.1.3.1. Molecular modeling studies of 2-Amino-4-oxo-5-arylthio-substituted 

pyrimido[4,5-b]indoles 194d-j with T. gondii thymidylate synthase 

 

 

 

 

 

Table 12. Inhibitory concentrations of 194a-d (IC50, µM) against TS and DHFR 
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Compd TS DHFR 

Human E. 

coli 

T. 

gondii 

Selectivity 

(h/tg) 

Human E. coli T. 

gondii 
194d 0.21 >23 0.012 17.5 >27 

(11%) 

>27 

(20%) 

14 

194e 2.7 >27 0.13 20.8 >32 

(30%) 

>32 

(30%) 

13 

194f 0.27 >2.7 0.027 10 >27 

(13%) 

27 2.7 

194g 1.3 >25 0.13 10 >30 

(19%) 

>30 

(12%) 

11 

194h 0.26 >14 0.1 2.6 28 28 2.8 

194i 0.12 1.4 0.1 1.2 >27 27 2.2 

194j 1.8 >2.6  0.65 2.8 >31 >31 4.6 

194k 0.75 25 0.23 3.3 >30 >30 15 

RTX 0.38 5.7 1.8 0.2 0.21 0.016 0.17 

PMX 9.5 76 2.8 3.4 6.6 230 0.46 

MTX 29 90 18 1.6 0.022 0.0066 0.011 

 

Compounds 194d-k (Table 12) were reported by Gangjee et al.354 as tricyclic TS 

inhibitors to explore the effects of substitution at the 5-position of the pyrimido[4,5-

b]indole scaffold. TS inhibitory activities of 194d-k showed that these compounds were 

highly potent for tgTS. Compound 194e in this series showed a 21-fold selectivity against 

tgTS over hTS, which is better than standards PMX and RTX used in this study.  TS is a 

highly conserved enzyme across species, thus the selectivity of 194d-g was a novel an 

unexpected discovery. To our knowledge these were the first and only tgTS selective and 

potent inhibitors known. It was therefore of interest to perfom docking studies to elucidate 

the probable binding mode and reasons for the selectivity for compounds in this series 

particularly to design potent and selective tgTS inhibitors. 
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C.1.4. Topomer CoMFA Analysis of Bicyclic Inhibitors of T. gondii Thymidylate 

Synthase 

 Topomer CoMFA applies conventional CoMFA methodologies to fragments 

attached to a central core. By definition, fragments have at least one open valence (point 

of attachment to the core), which can be fixed in Cartesian space and can be used to align 

other fragments.275, 276 Topomers provide a reproducible way of generating consistent, 

automatic alignments. Additionally, ligands assembled from shape similar fragment sets 

tend to share biological activities.277 Topomer CoMFA is thus insensitive to the initial 

conformation of the molecules, which is a major limitation of traditional CoMFA 

methodology.277 

 

Figure 58: General structures of bicyclic non-classical pyrrolo[2,3-d]pyrimidines and thieno[2,3-

d]pyrimidines for topomer CoMFA analysis 

 

Gangjee et al. have reported the synthesis and biological activities against hTS 

and tgTS of > 100 bicyclic non-classical pyrrolo[2,3-d]pyrimidines312, 355-365 and 

thieno[2,3-d]pyrimidines351, 359, 362, 363, 366 containing a 2-amino-4-oxo moiety (Figure 58). 

Of these, 85 compounds were identified for which discrete biological activities against 
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hTS and/or tgTS were reported in the literature. There are no previous literature reports of 

CoMFA studies of these compounds.  

While X-ray crystal structures have been resolved for non-classical inhibitors 

bound to hTS, there were no crystal structures of tgTS when this work was initiated, 

either in its apo form or bound to inhibitors. In the absence of structural data for tgTS, it 

was of interest to develop a homology model of tgTS in order to perform docking studies 

to gain an understanding of the binding modes of tgTS inhibitors. Additionally, a topomer 

CoMFA analysis of the bicyclic inhbitors could be used in order derive a 3D-QSAR 

model which could be used in conjunction with docking studies to gain an understanding 

of the binding modes of these bicyclic compounds in tgTS and/or provide insight into the 

molecular basis of selectivity of some inhibitos for tgTS over hTS in order to rationally 

design potent and selective tgTS inhibitors.   
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C.2. RECEPTOR TYROSINE KINASE INHIBITORS 

Inhibition of multiple receptor tyrosine kinases as potential antiangiogenic agents, 

molecular modeling studies of multiple kinase inhibitors with EGFR, VEGFR2 and 

a PDGFR- homology model and topomer CoMFA studies with bicyclic RTK 

inhibitors 

C.2.1. Inhibition of multiple RTKs  

Receptor tyrosine kinases play a critical role in tumor development. Antitumor 

agents that inhibit tumor induced angiogenesis by the inhibition of RTKs have been 

discussed in details in section A. 1. There are multiple reports in the literature regarding 

the use of RTK inhibitors as monotherapy367, 368 for cancer or the use of multiple RTK 

inhibitors either as single agents or in combination with other chemotherapeutic 

agents.369-371  

 Single RTK targeting provides specificity and and reduces off-target inhibition of 

other RTKs and could thus lower toxicity. However, the use of RTK inhibitors as 

monotherapy has been associated with development of alternate signaling pathway(s) to 

continue angiogenesis, thereby and developing resistance to specific RTK inhibitors.150 

Additionally, crosstalk has been implicated between EGFR and other growth factor 

receptors involved in tumor development, aiding tumor survival.372 It has been shown 

that inhibition of VEGF signaling had no effect on the growth of large tumors because 

other angiogenic factors like bFGF can substitute for VEGF.373  Treatments targeting a 

single RTK would be a less attractive option for tumor control in most patients. Thus 
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there is now a paradigm shift towards targeting multiple RTKs involved in angiogenesis 

rather than targeting single RTKs.Targeting multiple RTKs overcome possible resistance 

and reduce alternative pathways for tumor growth.369, 370 

Since RTKs are present in endothelial cells (VEGFR, PDGFR), tumor cells 

(FGFR, PDGFR), and pericyctes/ smooth muscle cells (FGFR, PDGFR), inhibition of 

more than one RTK can provide synergistic effects against solid tumors.150 Combination 

therapy targeting VEGFR-2 (endothelial cell inhibition) along with PDGFR-β inhibition 

(pericytes inhibition) has been shown to increase the antiangiogenic effect even in the 

often intractable, late state of solid tumors.374, 375 Thus targeting both VEGFR-2 and 

PDGFR-β simultaneously is a desirable goal for antiangiogenic agents that have 

cytostatic and perhaps cytotoxic activity. 

C.2.2. Design and Synthesis of 2-Amino-4-substituted-6-arylmethyl-7H-pyrrolo[2,3-

d]pyrimidines as RTK inhibitors 

Table 13: Structure and IC50 (μM) values of kinase inhibition, A 431 cytotoxicity and 

inhibition of CAM assay  

 

 

Comp  Ar EGFR VEGFR 2 PDGFR- A431 CAM 

195 2-MePh 9.19±1.8 0.25 ±0.04 >50 1.21 ±0.42 1.21 ±0.23 

196 2,4- diCl 0.23 ±0.06 28.11 ±9.9 17 ±5.6 2.8 ±1.1 10.8 ±3.2 

 PD153035 0.24 ±0.042     12.6 ±2.9   

 AG 1295     6.2 ±1.6     

 SU5416   2.43 ±0.32   19.2 ±4.2 0.032 ±0.005 

 Cisplatin       8.2   
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Gangjee et al.179  reported N4-(3-bromophenyl)-6-(substituted benzyl) 

pyrrolo[2,3-d]pyrimidines, 195-196 (Table 13) as a part of a series of compounds that 

target multiple RTKs. These compounds were tested in tumor cells known to over express 

high levels of EGFR, VEGFR2 and PDGFR-. Compound 195 exhibited toxicity against 

A431 cells (cell lines that depend on EGFR for survival)376 at values 10-fold better than 

the standard compound SU5416 used in this assay. In addition, 195 also demonstrated a 

VEGFR-2 inhibition 10-fold better than the standard agent semaxinib.  Compound 196 

inhibited EGFR and A431 cell lines at concentrations which were comparable to or 5-fold 

better than the standard SU5416. Thus, these compounds demonstrated multiple RTK 

inhibitory potency in a single molecule. It was also determined that the potencies and/or 

selectivities of compounds in this series were sensitive to the substitution patterns at 

either the 4- and/or 6-positions of the pyrrolo[2,3-d]pyrimidine scaffold.

 

Figure 59:183 Proposed binding modes for pyrrolo[2,3-d]pyrimidine RTK inhibitors 
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Figure 59183 depicts the general pharmacophore model for the binding of 196a-b 

in the ATP binding pocket of RTKs. In this general pharmacophore model it was 

envisioned that compounds like 195-196 could bind in Mode I where the 2-NH2, N3 and 

the 4-NH groups could form hydrogen bonds to the hinge region of RTKs or in Mode II 

(flipped mode, formed by rotating the compound 180o around the 2-NH2-C2 axis) where 

the hinge region hydrogen bonds are formed by the 2-NH2 and pyrrole NH groups or in 

Mode III (flipped mode, formed by rotating the compound 180o around the 2-NH2-C2 

axis) where the hinge region hydrogen bonds are formed by the 2-NH2, N1 and pyrrole 

NH groups. These binding modes permit the 4-bromophenyl and the 6-benzyl groups to 

occupy either Hydrophobic Site I or the Sugar binding pocket depending on the binding 

mode. Additional binding modes where the 4- or the 6-position substituent on the 

heterocycle occupy Hydrophobic Site II can be envisioned. The presence of such multiple 

binding modes could explain, in part, the multiple RTK inhibition observed with 195-196 

and other analogs. 

C.2.2.1. Design of 2-Amino-4-substituted-6-aryl pyrrolo[2,3-d]pyrimidines  

  Compounds 197-210 (Figure 58) were designed based on 195-196 as the lead 

compounds. These compounds contain, in place of the 4-NH linker group of 195-196, an 

isosteric replacement such as S (197, 198), CH2 (201, 202) or O (205, 206). This 

replacement of the linker atom with a CH2,  O- or an S- linker alters the hydrogen 

bonding nature of the atom (neutral or donor vs. acceptor) at the 4-position. 
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Figure 60: Proposed pyrrolo[2,3-d]pyrimidine RTK inhibitors 

In Mode I of the proposed binding model of 195-196 in the ATP binding site 

(Figure 59), the 4-NH moiety forms hydrogen bonding with the hinge region of ATP.  

Thus, replacement of the 4-NH moiety with either a CH2- or S- or O- would be expected 

to affect potential hydrogen bonding in the binding pocket, influence the binding modes 

of these compounds in the different RTKs and, therefore, affect the potency and/or 

selectivity of these compounds against the tested RTKs.  

Isosteric replacements at the 4-position also alter the bond angle between the 

bromophenyl ring and the pyrrolo[2,3-d]pyrimidine scaffold (Figure 61) and can 

influence the relative orientations of the bromophenyl ring and the heterocycle in the 

bound conformation. Additionally, changing the bond angle would permit scanning the 

binding pockets (Hydrophobic site I or the Sugar binding pocket in Figure 59) for the 4-

position substitution and, thereby, influence either the potency and/or selectivity of these 

compounds against the tested RTKs. 
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Figure 61: Comparison of C-N-C, C-S-C and C-O-C bond angles in energy minimized 

conformations of 195, 197 and 205 respectively. 

Compounds 199, 200, 203, 204, 207-210 (Figure 60) were designed to study the 

influence of the chain length at the 4-position on potency and/or selectivity of these 

compounds. Increasing the chain length of the 4-position substitution to two atoms 

compared to 197, 198, 201, 202, 205, 206 and 195-196 respectively permits greater 

flexibility for the bromophenyl group relative to the pyrrolo[2,3-d]pyrimidine scaffold. 

This could, in turn, permit the bromophenyl group to bind deeper in the ATP binding site 

(Hydrophobic site I or the Sugar binding pocket in Figure 59) and could influence the 

potency and/or selectivity against the tested RTKs. Additionally, the increased chain 

length of these compounds could influence the binding modes of these compounds by 

influencing the binding interaction with the gatekeeper residue377, 378 in the hinge region, 

and thereby influence potency and/or selectivity against RTKs. 

Compounds 197-210 retain the 3’-bromophenyl substitution at the 4-position and 

either the 2’-methylbenzyl or 2’,4’-dichlorobenzyl substitution at the 6-position of the 

pyrrolo[2,3-d]pyrimidine scaffold from the lead compounds 195-196 in order to facilitate 

comparison. 
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C.2.3. Molecular Modeling Studies with RTKs 

 

Multiple high resolution X-ray crystal structures have been reported for EGFR 

(Table 6) and VEGFR2 (Table 7) bound to various inhibitors. Docking studies were 

performed using X-ray crystal structures for EGFR and VEGFR2 for selected RTK 

inhibitors discovered and synthesized in our laboratory for prediction of their binding 

mode(s) in the kinase(s) of interest and/or explanation of observed biological activity. No 

crystal structures have been reported for PDGFR-.  Hence, homology models were 

generated for PDGFR-for use in docking studies for prediction of binding modes of 

active compounds generated in our laboratory with the aim of understanding, at a 

molecular level, the interactions with the RTK to provide a template for the design of 

more potent analogs. Docking studies were performed using either MOE or LeadIT. 

Verficiation of the docking software was performed by redocking the crystal structure 

ligand into the active site using the same methodology used for docking of the 

compounds of interest and calculating the RMSD value of the best docked pose(s) 

compared to the crystal structure pose. In all cases, the optimized settings provided 

RMSD values of < 2 Å94 for the best docked pose of the redocked ligand compared to its 

crystal structure pose.  

C.2.3.1. Molecular modeling studies with proposed compounds 197-210 in EGFR 

Docking studies were carried out using Flexx 3.1.2 and the proposed molecules in 

the ATP binding pocket of VEGFR2 and EGFR in order to validate the hypothesis that 

altering the linker moiety between the bromophenyl ring and the heterocyclic scaffold 

could alter hydrogen bonding to the hinge region and/or bound conformation of the 
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bromophenyl ring in the active site. As a representative example, the docked 

conformations of 195, 197, 205 and 207 in EGFR (PDB: 1M17192) are discussed below 

(Figures 60a-d). Docked conformations of the other proposed analogs in EGFR and 

VEGFR2 are discussed in the Appendix. 

 

 

 

 

 

Figure 62: Stereoview. Docked conformation of 195 in the ATP binding pocket of EGFR. 

 In its docked conformation, 195 (Figure 62) binds in the ATP binding pocket of 

EGFR with the pyrrolo[2,3-d]pyrimidine occupying the adenine binding site in the 

pocket. Three hydrogen bonds are formed between the 2-NH2, N3 and 4-NH moieties of 

195 with hinge region amino acids Gln767 and Met769. This binding mode is analogous 

to a flipped version of proposed binding mode I (Figure 59). In the docked pose, the 

positions of the 4- and the 6- substitutions have been interchanged compared to proposed 

binding mode I. In this orientation, the bromophenyl moiety of 195 binds in Hydrophobic 

region II and interacts with the side chains of Pro770 and Phe771. The 6-(2’-

methylbenzyl) moiety is oriented towards the back of the pocket and interacts with the 

side chain atoms of Leu694, Thr830 and Asp831 in the pocket. The docked score of 195 
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was -24.78 kJ/mol. 

 The docked conformation of 197 (Figure 63) shows the compound in a flipped 

mode (analogous to binding mode II, Figure 59) compared to the docked conformation of 

195, in order to maintain the three hydrogen bonds between the compound (2-NH2, N1 

and the pyrrole NH moieties) and the hinge region amino acids. This change in the 

docked conformation also causes an exchange in the placement of the 4- and 6-position 

substitutions of 197 compared to 195. The docked score of 197 was - 24.78 kJ/mol, 

comparable to 195. 

  

 

 

 

 

 

Figure 63: Stereoview. Docked conformation of 197 in the ATP binding pocket of EGFR  

In contrast, 205 docks similar to the lead compound 195 in the ATP binding site of 

EGFR. However, the replacement of the 4-NH of 195 with an O-linker causes the loss of 

a hydrogen bond with the hinge region. This loss of a hydrogen bond is reflected in the 

lower docked score of 205 in EGFR (- 21.526 kJ/mol) compared to 195. 
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Figure 64: Stereoview. Docked conformation of 205 in the ATP binding pocket of EGFR. 

 

Figure 65: Stereoview. Docked conformation of 207 in the ATP binding pocket of EGFR. 

 The docked conformation of 207 in the EGFR pocket is similar to the docked 

pose of 197 (Figure 63) with the 2-NH2, N1 and pyrrole NH moieties forming hydrogen 

bonds with the hinge region amino acids (Gln767, Met769 and side chain OH of Thr766). 

In addition, due to the longer 4-OCH2- linker, the bromophenyl moiety binds deeper in 
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the hydrophobic pocket where it can form additional interactions with Phe699. The 

docking score of 207 was - 30.154 kJ/mol, significantly better than the docked score of 

205 and better than the docked score of the lead 195. 

 Similar results were seen with the docked conformations of the other proposed 

analogs (Appendix 1). The docking studies indicate that the docked conformations and 

the docking scores of the proposed compounds are sensitive to the nature of the linker. 

These differences could perhaps influence the kinase potency and/or selectivity of 

compounds in this series and provides justification for the synthesis and evaluation.  

C.2.3.2. Development of a PDGFR- homology model. 

 Compound 196 and other analogs reported by Gangjee et al. 183, 379-382 show 

potent inhibition of PDGFR-. It was therefore of interest to perform docking studies in 

an attempt to elucidate the probable binding mode of these compounds in PDGFR-. At 

the time of initiation of molecular modeling studies against PDGFR- there were no 

reported crystal structures of PDGFR-. In 2010 Shim et al.342 reported the 2.3 Å X-ray 

crystal structure of a complex of PDGF- with the first three Ig domains of PDGFR-

There are no reported crystal structures of PDGFR- with inhibitors bound to the ATP 

binding site.   
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Figure 66: Sequence alignment of PDGFR- (P09619), FLT3 (PDB: 1PKG), FLT-3 kinase (PDB: 

1RJB), LCK (PDB: 1QPD) and FGFR (PDB: 1FGI) 

The 1106 amino acid sequence PDGFR- has been reported. (Uniprot ID: 

P09619). A BLASTP search using MOE 2007.09 383 indicated that the kinase domain 

amino acid sequence (amino acids 600-962) shows high sequence similarity with chain A 

of the c-KIT kinase complex (FLT3) (PDB: 1PKG384), chain A of FLT-3 kinase (PDB: 

1RJB347, E-value: 1e-88), chain A of the lymphocyte-specific kinase LCK (PDB: 

1QPD385) and chain A of Fibroblast Growth Factor Receptor (PDB: 1FGI386) as shown in 

the sequence alignment file above (Figure 66). Thus, a homology model was generated 

using MOE 2007.09 and validated for performing docking studies with PDGFR-
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C.2.3.3. Docking Studies with N4-(3-bromophenyl)-7-(substituted benzyl)-7H-

pyrrolo[2,3-d]pyrimidine-2,4-diamines as potential multiple RTK inhibitors. 

 

 

 

Figure 67. N4-(3-bromophenyl)-7-(substituted benzyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-

diamines 211a-k as potential multiple RTK inhibitors. 

Compounds 211a-k (Figure 67) were reported by Gangjee et al.380 as analogs 

obtained by transposition of the 6-position substitutions of lead compounds 195, 196 and 

196c-k to the 7-position of the pyrrolo[2,3-d]pyrimidine scaffold. A general 

pharmacophore model with five predicted binding modes for compounds 211a-k was 

proposed (Figure 68) that would enable inhibition of an increased spectrum of RTKs 

compared to the previously reported387 parent 6-benzyl substituted series.  

In binding mode I, the N4-(3-bromophenyl) is accommodated in Hydrophobic 

region I. The 7-benzyl group interacts with the Sugar binding pocket. Three hydrogen 

bonds can be made with the hinge region via the 2-NH2, N3 and 4-NH groups. In binding 

mode 2, the interactions in the hinge region and Hydrophobic region I are conserved. The 

7-benzyl group in this mode lies in Hydrophobic region II. A 180 ° rotation of the C2–

NH2 bond in binding mode 1 produces an orientation of the molecule as depicted in 

binding mode 3. In this mode, the 7-benzyl group is accommodated in Hydrophobic 

region I, and the 3-bromoaniline lies in the Sugar binding pocket. 
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Figure 68. 380 General pharmacophore model of pyrrolo[2,3-d]pyrimidines with five potential 

binding modes. 

Three hydrogen bonds in the hinge region are formed. The N7-nitrogen is 

proposed to interact with the hinge region carbonyl via a water molecule bridge. Rotating 

the molecule in binding mode 1 by 180 ° along the hydrogen bond formed between the 

N3 of the molecule (hydrogen bond acceptor) and the NH at the hinge region (hydrogen 

bond donor), results in binding mode 4.  In this mode, the 3-bromoaniline is placed in 

Hydrophobic region II and the 7-benzyl group lies in Hydrophobic region I. Three 

hydrogen bonds with the hinge region are conserved. Rotating the molecule in binding 

mode 3 by 180 ° along the hydrogen bond formed between the N3 of the molecule 

(hydrogen bond acceptor) and the NH at the hinge region (hydrogen bond donor), results 

in binding mode 5. In this mode, the 3-bromoaniline is accommodated in Hydrophobic 

region I while the N7 benzyl interacts with Hydrophobic region II. While three hydrogen 

bonds are proposed in the hinge region, the N7 nitrogen presumably interacts with the 
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hinge carbonyl via a water molecule bridge.  

Molecular modeling studies were carried out for 211c (Figure 67) and its 

corresponding 6-position substituted lead compound 196c (Figure 67) in VEGFR2, 

EGFR and a homology model of PDGFR- as an example to determine if the binding 

modes proposed in Figure 68 could be observed in silico and to determine the binding 

mode preference, if any, of compounds with substitutions at the 6- and the 7-position of 

the pyrrolo[2,3-d]pyrimidine scaffold. 

C.2.3.4. Molecular modeling studies of 2-amino-4-m-bromoanilino-6-arylmethyl-7H-

pyrrolo[2,3-d]pyrimidines as tyrosine kinase inhibitors 

 

 

Figure 69.183 Structures of lead compounds (195, 212a-b) and analogues (212c-k) 
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Figure 70:183 Proposed binding modes for pyrrolo[2,3-d]pyrimidine RTK inhibitors 

Gangjee et al.183 reported the synthesis and biological evaluation against selected 

RTKs of a series of 2-amino-4-m-bromoanilino-6-benzyl pyrrolo[2,3-d]pyrimidines 212c-

k (Figure 69) as analogs of lead compounds 195 and 212a-b.387 As proposed in the 

general pharmacophore model in Figure 70, compounds such as 195 and 212a-b could 

adopt multiple binding modes in the ATP binding site of RTKs. It was envisioned that 

these hypothetical binding modes could be substantiated by the deliberate introduction of 

methyl groups at strategic positions on the scaffold. Thus, analogs of the three most 

potent previously reported lead compounds 195, 212a-b were designed by introduction of 

methyl groups at either the 4-N (212c-e) or N7 (212f-h) or both the 4-N and N7-positions 

(212i-k). Thus if the compounds adpopted either Mode I and/or Mode II (Figure 70) for 

binding and the 4-NH was necessary for binding, compounds 212c, 212e-f, 212h-i and 

212k should be poorly active. However, if the compounds bound in Mode III (Figure 70) 
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and the N7-H was necessary for binding, compounds 212d-e, 212g-h, 212j-k should be 

poorly active. If however, all three modes were possible, only compounds 212e, 212h and 

212k should be poorly active since they would be unable to form H-bonds at both the 4-

N and N7 positions. In addition, methylation at the N7- and/or the 4-N could also 

influence the conformation of the 4- and/or 6-substituent relative to the pyrrolo[2,3-d] 

pyrimidine scaffold and could also, in part, influence the potency and selectivity of the 

methylated compounds compared with the parent compounds.183    

Table 14.183 IC50 values (µM) of kinase inhibition, A431 cytotoxicity, and inhibition of the CAM 

assay of 195, 212a-k. 

Compound EGFR  VEGFR-

2 

 

PDGFR-

β 

 

A431 

Cytotoxicity 

CAM  

angiogenesis  
      

195 1.67 >50 >50 31.8 ND 

212a 9.19 0.25 >50 1.21 1.21 

212b 12.62 0.62 8.92 >50 1.32 

212c 53.1 89.2 >500 45.7 1.56 

212d >200 >200 2.8 27.9 6.22 

212e 253.6 >200 71.7 50.9 2.6 

212f 31.2 >200 34.8 >500 0.93 

212g 12.8 116.3 >500 204.3 3.0 

212h 1.2 >200 >500 226.3 1.6 

212i 143.5 >200 1.3 197.4 0.83 

212j >200 >200 348.0 35.6 3.3 

212k 0.5 >200 >500 94.1 2.05 

58 0.23     

212l   3.75   

Semaxanib  12.9   0.04 

Cisplatin    10.6 18.2 

Erlotinib 1.2 124.7 83.1  29.1 

Sunitinib 172.1 18.9 12.2  1.3 

 

The results from the biological evaluation of 212c-k along with standard 

compounds 58, 212l (SU4312, Figure 69), semaxanib, cisplatin, erlotinib and sunitinib 
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are shown in Table 14. 183 These results indicate that methylation of the 4-NH and/or the 

7-NH influences both the specificity and potency of RTK inhibition. Dimethylation of 

both the 4-N and N7 positions afforded improved whole cell EGFR inhibition compared 

to clinically used erlotinib. Mono methylation at the 4-N or N7 position led to improved 

whole cell PDGFR- cytotoxicity compared to clinically used sunitinib. Thus docking 

studies were performed with 212c-k in EGFR, VEGFR-2 and the PDGFR-β homology 

model to explain the molecular basis of the observed RTK inhibition. 

C.2.3.5. Molecular Modeling Studies of 5- Substituted Pyrimido[4,5-b]indoles in a 

PDGFR-Homology Model 

 

 

 

 

 

Figure 71.379 Design and structures of pyrimido[4,5-b]indoles 213b-c. 

 Gangjee et al.379 reported 213b-c (Figure 71) as agents with combination 

chemotherapy potential in a single molecule. Compounds 213b-c were designed as agents 

with RTK, TS and as antitumor agents. Tricyclic compounds like 213a have been 

reported388 in the literature as potent RTK inhibitors. 388 In a general RTK model (Figure 

71)179, 389-391 the 2-NH2, N3 and 4-anilino nitrogen of 213a form hydrogen bonds with the 

hinge region. In addition, the 4-anilino moiety lies in Hydrophobic region 1, and the 
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tricyclic scaffold binds in the purine binding pocket of ATP.186, 388 It was envisioned that 

transposing the phenyl ring from the 4-position of 213a to the 5-position of the tricyclic 

scaffold in 213b-c retains its binding to Hydrophobic region 1 and simultaneously allows 

hydrogen bonds with the hinge region. Thus compounds 213b-c were expected to 

maintain RTK inhibitory activity. In addition, moving the phenyl ring from the 4- to the 

5-position reveals a 2,4-diaminopyrimidine motif on the tricyclic scaffold that has 

shown379 to be highly conducive for DHFR and/or TS inhibition.  

 

Table 15.379 IC50 Values (µM) of kinase inhibition and A431 cytotoxicity assay of 213b-c.  

Compd  EGFR  VEGFR-2  PDGFR-β   A431  Cytotoxicity 

213b 15.07  ± 3.1 22.6  ± 4.5 2.8  ± 0.42 49.2  ± 4.7 

213c 10.41  ± 1.2 56.3  ± 7.1 40.3  ± 5.1 14.1  ± 2.0 

PD153035 0.23  ± 0.05       

Semaxinib   12.9  ± 2.9     

DMBI     3.75  ± 0.31   

Cisplatin       10.6  ± 3.5 

 

 

The kinase inhibitory activities of 213b-c are shown in Table 15. It was seen that 

213b-c were potent inhibitors of VEGFR-2 and PDGFR-β with RTK inhibitory activities 

comparable or better than the standards (except 213c for PDGFR-β). Thus docking 

studies were performed with 213b in the PDGFR-β homology model to explain the 

molecular basis of its potent PDGFR-β inhibition. 
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C.2.4. Topomer CoMFA Analysis of Bicyclic Inhibitors of Multiple Receptor 

Tyrosine Kinases 

 

 

 

 

 

Figure 72. General structures of pyrrolo[2,3-d]pyrimine and furo[2,3-d]pyrimidine based RTK 

inhibitors 

Gangjee et al. have previously reported the design, synthesis and biological 

evaluation of a series of RTK inhibitors based on either a pyrrolo[2,3-d]pyrimidine182, 183, 

379, 380, 387, 392-394 or a furo[2,3-d]pyrimidine395, 396 scaffold (Figure 72). Since the objective 

of the development of these compounds was multiple RTK inhibition in a single molecule, 

a general pharmacophore model of the ATP binding site was used in the design of the 

compounds rather than a specific crystal structure of the ATP binding site of an RTK.379, 

380, 387 Gangjee et al.183 also reported molecular modeling studies to support multiple 

potential binding modes for these compounds in the ATP binding site of RTKs, which 

would enable multiple RTK inhibition. 

 A topomer CoMFA analysis of bicyclic pyrrolo[2,3-d]pyrimine and furo[2,3-

d]pyrimidine based RTK inhibitors has not been previously reported. There are no 

literature reports of CoMFA/ topomer CoMFA analysis of single molecules with multiple 

RTK potential to determine structural features that are condusive to multiple RTK 

inhibitory potential. 
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A topomer CoMFA analysis of a compound set results in the development of 3-D 

steric and electrostatic maps. Thus, analysis of the pyrrolo[2,3-d]pyrimine and furo[2,3-

d]pyrimidine RTK inhibitors would afford steric and electrostatic maps for individual 

kinases (EGFR, VEGFR2 and PDGFR-) against which the compounds were tested. 

Since all the pyrrolo[2,3-d]pyrimine and furo[2,3-d]pyrimidine RTK inhibitors included 

in this study were designed as ATP-site kinase binders, comparison of the electrostatic 

and steric maps should reveal areas of similarity between the maps (common 

pharmacophore element) which could be used to identify regions in the molecules that 

contribute to multiple kinase inhibition and further drug design of molecules with 

multiple RTK inhibitory potential.  

 On the other hand, identification of the differences between the 3-D steric and 

electrostatic maps of the different kinases were anticipated to help identify structural 

features in the molecules which could be explored to enhance selectivity for a kinase or 

selected kinases.  

C.3.COLCHICINE SITE BINDING ANTI-MITOTIC AGENTS 

Novel colchicine site tubulin binding agents as antimitotic agents and molecular 

modeling studies of colchicine site binding agents reported by Gangjee et al. 

C.3.1. Design of 2-amino-4-substituted-5-thioaryl-6-methyl-7-substituted 

pyrrolo[2,3-d]pyrimidines as colchicine site binding agents 

Microtubules play a vital role in mitosis and cell division and are a particularly 

attractive target for drug development, particularly as anticancer agents. Antimitotic agents 

such as paclitaxel, vincristine and vinblastine among others have been successfully used 
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clinically in the treatment of various cancers. However, the utility of such agents are often 

limited by the emergence of resistant cell lines.397 Drug resistance to antimitotic agents is 

primarily caused by overexpression of Pgp and MRP1, which are unidirectional efflux 

pumps that transport drug molecules from the inside of the cells to the exterior. Both vinca 

alkaloids and paclitaxel are substrates of Pgp, leading to a reduction in their concentration 

in the cancer cells, thereby leading to resistance. Methods to overcome these resistance 

mechanisms include co-administration of agents that target the efflux pumps or the use of 

compounds that are not substrates of these pumps, such as epothilones.234-237, 239 A novel 

mechanism for targeting resistant cells, discovered by Gangjee et al., 266 was the 

development of cytotoxic agents which reverse drug resistance.  

Compounds 214a-d were discovered by Gangjee et al. 266 and displayed excellent 

antimitotic properties and reversed drug resistance, by restoring tumor cell sensitivity to 

other anitmitotics to which the tumor cells had become resistant.  

 

 

 

 

Figure 73. Structures of pyrrolo[2,3-d]pyrimines 214a-e. 

 

Compound 214a (Figure 73) was the most potent compound in this series in the 

NCI-60 preclinical tumor cell line panel and inhibited tumor cells 7 to 10 fold better than 

214b (Figure 73).  However, 214b demonstrated effective reversal of Pgp-mediated 

resistance to vinblastine in the NCI/ADR cell lines.266 Other analogs in this series showed 

reduced effectiveness in both inhibition of tumor cells and reversal of drug resistance to 
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vinblastine. Additionally, while 214a,b and other analogs in this series did not reverse the 

MRP1 mediated resistance to vincristine in MCF7/VP cells, they themselves were not 

substrates for MRP1. In 214a-d, removal of the N7-benzyl group led to poor antimitotic 

activity. Efforts to determine the binding site of these compounds266 indicated that the 

compounds did not bind to the known binding sites on tubulin (vinca, colchicine or the 

taxol binding site) and probably bind to a novel site on tubulin.266 Further optimization of 

the phenethyl side chain270 by nine analogs with di-, tri- or tetra-methoxy or chloro 

substitutions on the phenyl ring led to compounds that showed  improved cytotoxicity 

against the resistant tumor cells, NCI/ADR and MCF-7/VP, in culture.  This study by 

Gangjee et al.266 led to the discovery of 214e (Figure 73) which reversed both Pgp-

mediated as well as MRP1-mediated resistance to clinically used antimitotic agents while 

simultaneously displaying antimitotic mediated antitumor activity.270 

 

 

 

 

Figure 74. Structures of pyrrolo[2,3-d]pyrimines 215. 

Methyl 3-[(3’,4’,5’-trimethoxyphenyl)thio]-5-methoxy-1H-indole-2-carboxylate 

215 was reported by De Martino et al.398 as the most active compound in a series of 

arylthioindoles that displayed excellent inhibitory activity against tubulin polymerization 

and of the growth of MCF-7 human breast carcinoma cells. Compound 215 was the most 

potent derivative, (IC50  2.0 M) and was 1.6 times more active than colchicine, equipotent 

as combretastatin A-4 (CSA4) and showed potent inhibition of the growth of MCF-7 cells 

(IC50 13 nM). Preliminary SAR studies indicated that introduction of the 2-



143 

 

methoxycarbonyl function on the indole scaffold improved potency by 2-fold. Oxidation 

of the sulfur atom to the sulfone led to inactive compounds. The 3’,4’,5’-trimethoxyphenyl 

group attached to the sulfur atom provided the best activity. Introduction of the methoxy 

group at the 5-position of indole led to a 7-fold improvement in the inhibition of tubulin 

polymerization activity of 215 compared to the 5-H compound. It was also reported that 

tubulin polymerization was less sensitive to substitutions at the 5-position. The proposed 

binding mode398 of 215 in the colchicine binding site of tubulin (Figure 75) shows that the 

trimethoxy ring of 215 interacts with Cys241 and adopts a conformation similar to the C-

ring of DAMA-colchicine. Additionally, the indole NH was proposed to interact with the 

backbone carbonyl of Thr179 in the active site. 

 

Figure 75. Superimposition of the proposed binding mode of 215 (green) with DAMA-colchicine 

(yellow) in the colchicine binding site.398 

 

 

 

 

 

Figure 75a. Structures of target compounds 216a-h and 217a-h. 

Compounds 216a-h retain design elements from 214a, the most potent compound 

in that series and introduce design elements from 215. The larger sulfur atom in the 5-S 
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linker in 216a-h mimics the ethyl linker in 214a. Additionally, trimethoxyphenyl ring in 

216a-h is conformationally more restricted as compared to the flexibility afforded by the 

2-atom linker to which the corresponding trimethoxyphenethyl ring in 214a is attached. 

Additional conformation restriction on the trimethoxyphenyl ring is afforded by the 

presence of the 6-Me group in 216a-h, which is absent in 214a and its analogs. Varying the 

nature of substituent on the 4-position of 216a-h explores the influence of substitutions at 

this position on the biological activity. Thus, 4-OH (216a, 216e) and 4-NH2 (216d, 216h) 

groups could form hydrogen bonds in the binding site. Compounds with a 4-H group (216c, 

216g) would provide information about the importance of substitutions at the 4-position of 

these molecules. The 4-Cl compounds (216b, 216f) mimic the 4-Me group of 214a. The 

pyrrole NH in 216a-d mimics the indole NH in 215. Compounds 217a-h vary in the nature 

of the aryl group linked to the sulfur atom. The electron poor 4-pyridyl group is in contrast 

to the electron rich trimethoxyphenyl ring in 216a and 216a-h. In addition, the protonatable 

pyridyl group could aid in increasing the water solubility of these compounds and the 

formation of acid salts.  

 

C.3.2. Molecular Modeling Studies in the Colchicine Binding Site of Tubulin. 

 

Figure 76. Structures of tubulin inhibitors 218a,b and 219a-e. 

Table 16.50     IC50 values for inhibition of proliferation of MDA-MB-435 cells and EC50s for 
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cellular microtubule loss.      

Cmpd IC50±SD (MDA-MB-435) EC50 for microtubule depolymerization 

218a 183 ± 3.4 nM  5.8 µM 

218b >10 µM > 40 µM 

(±)-219a•HCl 17.0 ± 0.7 nM  56 nM 

(±)-219b >10 µM > 40 µM 

(±)-219c•HCl 153 ± 11.1 nM 3.0 µM  

(±)-219d•HCl ND > 40 µM 

(±)-219e•HCl 2.7 ± 0.3 µM > 40 µM 

 

Compounds 218a, b (Figure 76) and (±)-219a·HCl (Figure 76) were originally 

designed by Gangjee et al.50, 394 as a part of a series of RTK inhibitors based on the general 

structure A (Figure 76) to determine the binding modes of these compounds in RTK. 

Compounds 218a, b and (±)-219a·HCl did not show RTK inhibition (evaluated against 

EGFR, VEGFR-1 VEGFR-2 and PDGFR-β),269 but in the preclinical screening program of 

the National Cancer Institute in its 60 tumor cell line panel, 218a inhibited the proliferation 

of most of the 60 cancer cell lines with a GI50 < 500 nM  and (±)-219a·HCl inhibited the 

proliferation of the majority of the 60 cell lines with GI50 <30 nM.272, 399  A COMPARE 

analysis267, 269 indicated that the mechanism of action of these compounds could involve 

binding to tubulin. Further biological evaluation of 218a and (±)-219a·HCl50 showed 

dramatic reorganization of the interphase microtubule network and caused formation of 

aberrant mitotic spindles and mitotic accumulation when measured by flow cytometry, 

similar to the effects of colchicine and Combretastatin A-4 phosphate (CA4P). In further 

mechanistic studies, 218a and (±)-219a•HCl was shown to inhibit the polymerization of 

purified bovine brain tubulin about as well as CA4P and inhibited  [3H]colchicine binding  

to the protein.50  
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To determine the structural requirements for the 4´-OMe and N4-Me moieties for 

activity, compounds 218b and (±)-219b-(±)-219e were synthesized.   The results from the 

biological evaluation (Table 16) indicated that a methyl substitution on the 4-aniline N is 

critical for activity in both scaffolds.   In addition, the 4´-OMe moiety is important for 

potent activity. Transposition of the methoxy group from the 4´-position to either the 3'- (in 

(±)-219c·HCl) or 2´- (in (±)-219d·HCl), was detrimental to activity.  The critical 

importance of N-Me and 4’-OMe for inhibitory activity of these compounds remains 

unexplained. Hence, docking studies were hence performed with 218a and 219a to predict 

their bound conformations and binding interactions with residues in the colchicine binding 

site of tubulin.  

A 3.5 Å X-ray crystal structure of the colchicine binding site of tubulin bound to 

DAMA-colchicine (Figure 75, PDB: 1SA0)232 has been resolved. It was of further interest 

to determine if the predicted bound conformation of 218a and (±)-219a could explain the 

observed SAR for microtubule depolymerization for the compounds in this series. Docking 

studies of other compounds reported by the Gangjee laboratory were similarly performed 

and are reported in the Appendix 
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D. CHEMICAL DISCUSSION 

D.1. ANTIFOLATES 

D.1.1. Synthesis of novel pjDHFR inhibitors 

D.1.1.1. Synthesis of novel 2,4-diamino-6-(arylaminomethyl)pyrido[2,3-d]- 

pyrimidines  

 

Scheme 23: Synthesis of target compounds 171 – 173 

 

 

 

 

 

The syntheses of target compounds 171 – 173 (Scheme 23) were performed using 

methods described by Gangjee et al.333 and involved the reductive amination of the key 

intermediate 2,4-diaminopyrido[2,3-d]pyrimidine-6-carbonitrile 91a with the 

appropriately substituted aniline. Intermediate 91a was prepared, in turn, by a method 

previously reported by Piper et al.284 and modified by Gangjee et al.400 Condensation of 

triethyl orthoformate with malononitrile using pyridine as a solvent followed by 

treatment with concentrated HCl at 80 °C afforded the cyclized intermediate 2-amino-6-

chloropyridine-3,5-dicarbonitrile 89a in 24% yield over two steps. Reductive 

dechlorination of 89a in the presence of 5% palladium on barium carbonate with 

hydrogen at 50 psi afforded 2-aminopyridine-3,5-dicarbonitrile 90a. Cyclization of 90a 

with guanidine afforded the key bicyclic intermediate 91a in 36% yield. Reductive 
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amination with the appropriate aniline in a Paar hydrogenation apparatus in presence of 

Raney nickel and hydrogen at atmospheric pressure afforded compounds 171-173. The 

poor yields of the reaction could be accounted for by the electron withdrawing nature of 

the anilines and/or steric hinderance due to the presence of ortho-substitution on the 

aniline and is consistent with similar results previously reported (3 – 16% yields) by 

Gangjee et al.333 Chromatographic separation of the target compounds presented 

significant challenges due to the presence of tailing impurities (Rf ~ 0.15 – 0.22) near the 

product (Rf ~ 0.25 – 0.28 using 5:1:0.1 CHCl3: MeOH: NH4OH as the solvent system) 

necessitating repeated column separation. Additionally, several target compounds in this 

series tend to stick to the silica gel leading to band widening during separation, resulting 

in fractions with mixtures of compounds and a reduction in the reaction yield. Attempts 

to reduce sticking of the compound to the silica gel column by using basic alumina as the 

stationary phase or neutralization of the slight acidic nature of silica gel by packing the 

column with a 1% NH4OH solution in CHCl3 were unsuccessful.  

Scheme 24: Modified synthesis of 170, 174 – 179 

The long synthetic route (Scheme 23) and the tedious isolation of the 

intermediates and the target compounds prompted a search for alternate routes to access 
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these compounds. It was envisioned that 2,4-diaminopyrido[2,3-d]pyrimidine-6-

carbaldehyde 92a could be used as the reductive amination partner with the substituted 

anilines to afford the target compounds. Intermediate 92a is also presumably formed in 

situ during the reductive amination of 91a295 (Scheme 23) and reacts with the substituted 

aniline present in solution to afford the desired compounds. Thus, the direct synthesis of 

92a could avoid an additional in situ hydrolysis step necessary for the reaction to proceed 

in Scheme 23. 

 The synthesis of 92a was performed using methods described by Temple et al.295 

and involves the condensation of triformylmethane 117 with 2,4,6-triaminopyrimidine 

118b under mild conditions. The synthesis of triformylmethane 117 was carried out using 

a method initially reported by Arnold et al.401 and involved the reaction of bromoacetic 

acid 115 with an N,N-DMF-POCl3 complex resulting in the formation of an intermediate 

quaternary salt 116 which underwent hydrolysis in presence of base (NaOH) to afford 117 

which was used without purification.  Literature methods 295, 401 of purification of 117 

involve formation of an intermediate diperchlorate salt which can be recrystallized from 

acetonitrile. Neutralization of the diperchlorate salt with 4N NaOH and subsequent 

sublimation of the isolated crude material affords pure 117.   

 A modified procedure reported by Buděšínský  et al.402 was utilized for the 

synthesis of pure 117. The procedure involves the formation of the bisperbromide 116a as 

the intermediate. Compound 116a was synthesized by the reaction of bromoacetic acid 

with N,N-DMF and POCl3, decomposition of the reaction mixture using ice and 

precipitation of the orange colored salt using an aqueous mixture of bromine and sodium 

bromide. The crude salt was purified by dissolving it in acetonitrile, filtration and 
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reprecipitation by addition of 1,2-dichloroethane. Triformylmethane 117 was synthesized 

from the salt 116a by addition of sodium metabisulfite to a cooled suspension of 116a in 

water followed by basification with NaOH, neutralization with conc. HCl and extraction 

with CH2Cl2 in 64% yield over four steps.  

 Reaction295 of crude 117 with 2,4,6-triaminopyrimidine 118b to afford 92a 

proceeds with comparable efficiency (36 – 42% yield) with both, pure and crude 117.  

Hence, reactions carried out for the bulk synthesis of the key intermediate 92a were 

performed using crude 117. Compound 92a was then treated with appropriate anilines 

under reductive amination conditions333, 403 to provide the target compounds 170, 174 – 

179 in 4 – 9% yields. Though the isolated yield of the target compounds was comparable 

to the method described in Scheme 23, the modified reaction sequence led to a reduction 

in the number of steps in the reaction sequence, reduced isolation of intermediates, and 

thus greatly improved the ease of access of the target compounds.  

 

D.1.1.2. Bulk synthesis of lead compound 170 

Scheme 25: Synthesis of lead compound 170 from 91a 

 

Compound 170 was initially synthesized from 91a utilizing the method described 

in Scheme 23, analogous to the method described for the synthesis of 171 – 173. This 

method involved a long reaction sequence, tedious chromatographic separation and poor 

yields. Hence it was necessary to find an alternate synthetic route to access 170. Initial 
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attempts to synthesize 170 in bulk were carried out using methods described in Scheme 

24 using reductive amination of 92a with 2,5-difluoroaniline 220 in a Paar hydrogenator 

using 15 psi hydrogen as the reductant as shown in Scheme 25. Extending the reaction 

time to 48 or 72 h did not significantly improve the yield of 170 and led to increased 

formation of polar impurities, presumably (2,4-diamino-pyrido[2,3-d]pyrimidin-6-

yl)methanol formed by the reduction of the intermediate aldehyde 92a prior to the 

formation of the Schiff base intermediate by reaction with 2,5-difluoroaniline. Similarly, 

increasing the pressure of hydrogen in the Paar hydrogenation vessel to 35 or 50 psi to 

shorten the reaction time led to increased formation of (2,4-diaminopyrido[2,3-

d]pyrimidin-6-yl)methanol with no improvement in the yield of the desired target 

compound.  

Scheme 26: Synthesis of 170 from 92a 

 

 

 

  

 

 

 

In an attempt to improve the yield of 170, reductive amination was attempted 

using the aldehyde compound 92a and 2,5-difluoroaniline 220 using a Paar hydrogenator 

under varying H2 pressure and reaction time (Scheme 26). Reactions were carried out 

 H2 Pressure Time Yield 

1 15 psi 24 h 10% 

2 35 psi 8 h 8% 

3 50 psi 4 h 3% 

4 50 psi 8 h 9% 

5 15 psi 48 h 11% 

6 15 psi 72 h 10% 
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using 0.5 mmol 92a and 1 mmol of 220. There was no significant improvement in yield 

over those obtained in Scheme 25. Increasing the pressure of H2 to 35 psi (entry 2) led to 

a reduction in reaction time to 8 h. Increasing the reaction time at 35 psi of H2 led to 

significant increase in the polar side products. Increasing the H2 pressure to 50 psi 

(entries 3 and 4) did not increase the yield of 170 but caused increased polar side 

products. Increasing the reaction time at 15 psi of H2 to 48 h or 72 h did not improve the 

yields. 

Synthesis of 170 using stepwise reductive amination 

Abdel-Magid et al404 state that “A reductive amination reaction is described as a 

direct reaction when the carbonyl compound and the amine are mixed with the proper 

reducing agent without prior formation of the intermediate imine or iminium salt. A 

stepwise or indirect reaction involves the preformation of the intermediate imine 

followed by reduction in a separate step.” A stepwise reductive amination was utilized in 

an attempt to improve reaction yields. A variety of reducing agents have been reported in 

the literature including sodium borohydride, sodium cyanoborohydride, sodium 

triacetoxyborohydride, borane-pyridine complex, borohydride exchange resin, 

Ti(OiPr)4/NaBH3CN and NaBH4/Mg(ClO4)2.
405 Based on literature reports,406, 407 it was 

anticipated that the use of a reducing agent should afford 170 in a stepwise manner from 

the intermediate imine resulting from the reaction of 92a and 220 (Scheme 26). A 

stepwise reductive amination approach would have the added advantage of ease of 

scalability, enables the reaction to be performed safely under normal laboratory 

conditions without the use of specialized hardware such as the Paar hydrogenator, and 

avoids the use of high pressure hydrogen gas and avoids the use of toxic, expensive and 
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pyrophoric metals such as Raney Ni.  

 

Scheme 27: Optimization of reductive amination conditions 

 

 

A series of reactions carried out to optimize the reducing agent for the reaction is 

described in Scheme 27 above.  One of the most commonly employed reducing agents 

for reductive amination is sodium borohydride. The reaction was performed by stirring a 

mixture of 92a and 220 in glacial AcOH for 12h at room temperature to permit formation 

of the intermediate imine, addition of the reducing agent and continued stirring for an 

additional 12 – 24 h. The use of 1.5 equivalents of NaBH4 as the reducing agent led to the 

formation of trace amounts of 170 on TLC after 12 h. Increasing the reaction time to 24 h 

led to the formation of multiple close spots on TLC which could not be separated using 

silica gel chromatography under gravity or flash chromatography.  

 

Sodium cyanoborohydride is a milder reducing agent than NaBH4 and has been 

successfully employed in reductive amination procedures due to its stability in acidic 

 Reductant Eq. of reductant Time Result 

1 NaBH4 1.5 12 h Trace amounts 

2 NaBH4 1.5 24 h Multiple close spots on TLC 

3 NaBH3CN 1.5 12 h 7% 

4 Na(CH3COO)3BH 1.5 12 h 11% 

5 Na(CH3COO)3BH 1.5 24 h 12% 

6 Na(CF3COO)3BH 1.5 24 h 6% 

7 Na(CH3COO)3BH 3 24 h 14% 

8 Na(CH3COO)3BH 5 24 h 12% 
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conditions (~ pH 3). It is soluble in polar solvents such as MeOH and shows different 

selectivities at different pH values. At low pH (~ 3) NaBH3CN reduces aldehydes and 

ketons effectively and at higher pH (~ 6) it reduces imines more effectively than 

aldehydes.404, 407 Hence, NaBH3CN was attempted as a reducing agent. This reaction 

(entry 4, 7% yield) showed improved yields compared to NaBH4 and provided the 

impetus for a further scan of reducing agents. The reaction with sodium 

triacetoxyborohydride (entries 5 and 6, 11-12% yield) showed better yields compared to 

reactions with NaBH4 or NaBH3CN. Reactions with sodium trifluoroacetoxyborohydride 

(entry 7, 6% yield) showed poorer yields compared to Na(CH3COO)3BH . Increasing the 

amount of Na(CH3COO)3BH to 3- or 5-equivalents led to marginal improvement in yield. 

It was seen that the best yields were obtained by the use of 3 equivalents of 

Na(CH3COO)3BH with a reaction time of 24 h at room temperature.  

 

The formation of large amounts of polar baseline impurities relative to the desired 

compound spot (TLC), presumably due to the competing reduction of the aldehyde 

group344 of 170 indicated that the rate limiting step could be the formation of the 

intermediate imine. The reversible addition of the aldehyde 92a and 220 leads to the 

formation of a hydroxylamine addition product, which undergoes dehydration to form an 

iminium ion which is the target of the reductant. (Figure 77).  

 

 

Figure 77: Reductive amination mechanism 
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Thus, removal of water from the reaction was anticipated to aid in the formation 

of the iminium intermediate and could help in improving yields. Activated 4 Å molecular 

sieves have been used to scavenge water in reductive amination reactions.405-407  

 

Scheme 28: Optimized reaction conditions for synthesis of 170 

 

Addition of 4 Å molecular sieves to the reaction (Scheme 28) led to improved 

yields (18%). The optimized reaction conditions involved addition of 3 eq. of 

Na(CH3COO)3BH in divided portions 170. Although the reaction in Scheme 28 was 

much cleaner, the presence of trailing impurities necessitated multiple column 

chromatographic separations. Separations were aided by the use of Combiflash separation 

(12g or 24g Teledyne Isco columns, CHCl3: MeOH, 0 – 15% gradient elution). 

A total of 750 mg of 170 was synthesized for biological evaluation studies using 

this methodology. 

 

D.1.1.2. Synthesis of novel 2,4-diamino-6-[(arylthio)methyl]pyrido[2,3-d]pyrimidines  

 

The synthesis of 2,4-diamino-6-[(arylthio)methyl]pyrido[2,3-d]pyrimidine 

compounds 186 - 188 (Scheme 29) was performed from the key bromo intermediate 94a 

using methods described by Gangjee et al.344 The aldehyde intermediate 94a was 

obtained by the hydrolysis of the nitrile group of 91a using Raney Ni and formic acid  at 

reflux 344 or by using methods295 described in Scheme 24.  
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Scheme 29: Synthesis of 2,4-diamino-6-[(arylthio)methyl]pyrido[2,3-d]pyrimidines 186 - 188 

 

 

 

 

 

 

 

Reduction of the aldehyde group of 91a using NaBH4 in MeOH afforded the 

alcohol 92a which was brominated using HBr/AcOH in AcOH to give the bromo 

intermediate 93a. Nucleophilic displacement of the bromo group of 93a with appropriate 

arylthiols using either sodium hydride, potassium carbonate or triethylamine as the base 

and N,N-dimethylacetamide as the solvent afforded the target compounds 186 and 187. 

The use of K2CO3 as the base afforded trace amounts of compound while the use of either 

NEt3 or NaH afforded compounds 186 - 188 in 6-10% yields. 

Compounds 189 and 190 were synthesized by the nucleophilic displacement of 

the bromo intermediate 94a using either K2CO3, NEt3 or NaH as the base and N, N-

dimethylacetamide or N, N-dimethylformamide as the solvent (Scheme 30). Improved 

reaction yields were observed when NaH was used as the base compared to K2CO3 or 

 R Base Result 

1 2’,5’-diCl K2CO3 Trace amount 

2 2’,5’-diCl NEt3 4% 

3 2’,5’-diCl NaH 10% 

4 3’,4’,5’-triCl NEt3 8% 

5 3’,4’,5’-triCl NaH 6% 

6 2’5’-diF NaH 6% 

7 2’,5’-diF NEt3 7% 
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NEt3. The reaction involved stirring the phenol with the base at 0 oC to form the 

phenoxide anion followed by dropwise addition of 94a dissolved in the solvent. The 

reaction was then allowed to warm to rt and stirred for 3-5 days. The reaction was 

monitored by TLC and was quenched when multiple side products began to appear in the 

reaction mixture.  

 

D.1.1.3. Synthesis of novel 2,4-diamino-6-[(aryloxo)methyl]pyrido[2,3-d]pyrimidines  

Scheme 30: Synthesis of 2,4-diamino-6-[(aryloxo)methyl]pyrido[2,3-d]pyrimidines 189 - 191 

 

 

 

 

 

 

 

 

 

 

 

 

D.1.1.4. Docking studies with pyrido[2,3-d]pyrimidines in pcDHFR and pjDHFR 

D.1.1.4.1. Docking Studies with pcDHFR 

Protein and ligand preparation prior to docking: 

Docking studies were performed for 192a using the 1.90 Å crystal structure of 

pcDHFR (PDB: 1LY389) complexed with 2,4-diamino-6-[N-(2',5'-dimethoxybenzyl)-N-

 R Base Result 

1 2’,5’-diCl K2CO3 8% 

2 2’,5’-diCl NEt3 4% 

3 2’,5’-diCl NaH 12% 

4 3,4,5-triCl K2CO3 6% 

5 3’,4’,5’-triCl NEt3 8% 

6 3’,4’,5’-triCl NaH 11% 

7 2’5’-diF K2CO3 complex mixture 

8 2’,5’-diF NEt3 complex mixture 

9 2’,5’-diF NaH complex mixture 
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methylamino] quinazoline, (COQ, Figure 20). The active site was defined by a sphere of 

6.5 Å near the ligand. Protein preparation prior to docking was performed using the LigX 

functionality in MOE 2008.10.408 LigX is a graphical interface and collection of 

procedures for conducting interactive ligand modification and energy minimization in the 

active site of a flexible receptor. In LigX calculations, the receptor atoms far from the 

ligand are constrained and not allowed to move while receptor atoms in the active site of 

the protein are allowed to move but are subject to tether restraints that discourage gross 

movement. The procedure was performed with the default settings.  The process of 

protein preparation using LigX involves addition of hydrogen atoms according to the 

ionization state of the atoms of the molecule/protein loaded. The heavy atoms are then 

fixed and a brief energy minimization is carried out to refine the positions of the added 

hydrogen atoms. The receptor atoms are then tethered during geometry optimization so 

that they do not deviate too much from their initial coordinates and then energy 

minimized using the Amber99 forcefield. Ligands used for docking were sketched in 

MOE, minimized and exported as an SDF file. 

 

Docking: 

Docking of ligands into the pcDHFR active site was performed using LeadIT 

1.3.0.409 Polar hydrogen atoms of amino acids with a polar side chain (Asn23, Ser24, 

Tyr35, Thr61, Ser64, Tyr129 and Thr144) were not constrained, thereby permitting free 

rotation. Base placement of fragments for docking was carried out using triangle 

matching. Default parameters were used for scoring and clash handling. The maximum 

number of solutions per iteration and the maximum number of solution per fragmentation 
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were set to 500. Ten poses were obtained per molecule. Docking processes were repeated 

to ensure reproducibility of the docked conformations.  The docked poses were exported 

to MOE 2008.10, rescored using the affinity dG scoring system, refined using the 

forcefield system and rescored using London dG scoring system. The binding poses were 

also visualized using the ligplot utility in MOE and the Poseview utility in LeadIT 1.3.0. 

 

Validation of docking software: 

The crystal structure of the inhibitor, 2,4-diamino-6-[N-(2',5'-dimethoxybenzyl)-

N-methylamino]quinazoline from PDB: 1LY3, was sketched, prepared and docked into 

the pcDHFR active site as described above. The best docked pose displayed and RMSD 

of 1.072 Å compared to the crystal structure ligand, thereby validating LeadIT 1.3.0 for 

our docking purposes. Docking studies with 192b were performed similarly. 

 

Docking studies with N6-methyl-N6-phenylpyrido[2,3-d]pyrimidine-2,4,6-

triamine, 192b, in pcDHFR  

Docking studies of 192b in the pcDHFR active site (PDB: 1LY3) were performed 

using LeadIT 1.3.0. Figure 78 shows the best scoring pose of 192b in the pcDHFR active 

site. In this pose, the protonated N1 and 2-NH2 of 192a interact in an ionic bond with 

Glu32. This bidentate ionic bond with a conserved acid residue has been observed in 

most DHFR crystal structures.22, 31, 32, 53 The 4-NH2 moiety forms hydrogen bonds with 

the backbone of Ile10 and Ile123. 
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Figure 78: Stereoview. Docked pose of 192b in pcDHFR binding pocket (PDB: 1LY389). 

 

The pyrido[2,3-d]pyrimidine scaffold is stabilized by a pi-stacking interaction 

with Phe36 and with side chain carbon atoms of Met33 and Leu25. The N9-methyl group 

of 192b was 3.94 Å from the terminal methyl group of Ile123 of pcDHFR. In hDHFR, 

the corresponding Val115, being shorter by one carbon, may not interact with the N9-

methyl group. This was expected to improve selectivity as well as potency of these 

compounds against pcDHFR (and pjDHFR) over hDHFR. In addition the N9-methyl 

group of 192b was 3.8 Å away from side chain Ile65 in pcDHFR, and could improve 

potency by hydrophobic interactions. The N9-methyl group also restricts the number of 

possible conformations of the side chain phenyl group compared to the N9-H, thus 

perhaps increasing selectivity.332 The docked score of 192b in pcDHFR was -42.416 

kJ/mol. Thus docking studies corroborate the proposed interactions of the N9-methyl 

group in pcDHFR and lend credence to the importance of the N9-group in the design of 

selective inhibitors of pcDHFR (and pjDHFR) over hDHFR as previously observed by 

Gangjee et al. 332 
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D.1.1.4.2. Homology model of pjDHFR 

There is currently no known crystal structure of pjDHFR. Thus, a homology 

model was hence built to evaluate the binding of 192b-e in pjDHFR. The 206 amino acid 

sequence of the folate domain was obtained from the UniProt database (ID: 

Q9UUP5_PNEJI [Q9UUP5]).  A BLAST search for the pjDHFR sequence showed high 

sequence identity with pcDHFR, (61% sequence identity). The BLAST search was 

carried out on the Uniprot website (www.uniprot.org) using default settings (Threshold: 

10; Matrix: Auto; Gapped Hits: Yes).  

Alignment of the sequences was performed using clustalw program as 

implemented on the Uniprot website. The sequence alignment between pjDHFR and 

pcDHFR (Figure 46) shows a high degree of similarity between the two sequences and 

makes pcDHFR a valid template for model generation. 

 

Homology model building: MOE 2008.10 

The primary pjDHFR FASTA sequence was loaded into MOE 2008.10. Template 

identification was performed using the BLASTP module implemented in MOE 2008.10 

using the default settings and indicated that the pcDHFR crystal structure (PDB: 2FZI44) 

shares high homology with pjDHFR (E value: 1e -65). The E-value is an estimate of the 

likelihood of the score arising due to chance, with low E-values preferred over higher 

values. Thus, the high sequence identity between pjDHFR and pcDHFR (61%) and the 

availability of high quality crystal structures of pcDHFR in the PDB makes it a valid 

template for building the pjDHFR homology models. The homology model was built 

with MOE 2008.10 using the 1.60Å crystal structure of pcDHFR as a template (PDB: 

http://www.uniprot.org/
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2FZI, chain A).  Sequence alignment was performed using MOE_Align using the ‘actual 

secondary structure’ option in MOE. 

  

Model validation: 

The model returned from the software was evaluated using structure assessment 

tools (Ramachandran plot, Protein Structure Analysis (ProSA),410, 411 Procheck,412 

Anolea,413 Gromos,414 and QMEAN415) as implemented on the Swiss-Model website.416 

 

Figure 79: Ramachandran plot and Procheck analysis of the pjDHFR homology model generated 

using MOE 2008.10 

a) Ramachandran plot (Figure 79): A Ramachandran plot generated for the 

pjDHFR model showed that, with the exception of Asp2, all the residues have 

acceptable geometries. Since Asp2 is distant from the active site, and was not 

expected to influence the docking studies, modeling studies were performed 

without any additional refinements. 
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b) Procheck412 (Figure 79): A Procheck analysis of the model indicated 87.5% of 

residues in the most favored regions, 11.5% residues in additional allowed 

regions, 1% in the generously allowed regions and 0% residues in the disallowed 

region.  

 

Figure 80: ProSA analysis of the pjDHFR homology model generated using MOE 2008.10. 

 

c) Protein Structure Analysis (ProSA):410, 411 ProSA calculates an overall quality 

score (z-score) for a specific input structure. A plot of local quality scores points 

to problematic parts of the model. The z-score estimates the overall model quality 

(Figure 80). The Z-score of the input model is plotted along with the z-scores of 

all experimentally determined protein chains in PDB. In this plot, groups of 

structures from different sources (X-ray, NMR) are distinguished by different 

colors (Figure 80). ProSA can be used to check whether the z-score of the input 

model is within the range of scores typically found for native proteins of similar 

size with a score outside a range characteristic for native proteins indicating 

pjDHFR Model Template: 2FZI 

Overall z-score: -10.71 Overall z-score: -10.74 
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probable structural errors. The ProSA analysis of the pjDHFR model fell within 

the range of z-scores of experimentally determined structures.  

 

Details of validation including Anolea,413 Gromos,414 and QMEAN415 are provided in the 

experimental secion. The results from these studies confirmed the validity of the pjDHFR 

model for docking studies.  

 

Active site definition and docking to the pjDHFR model 

The pjDHFR homology model prepared in MOE was superimposed on the X-ray 

crystal structure of pcDHFR (PDB: 2FZI, chain A) and NADPH and DH3 (2,4-diamino-

5-[3',4'-dimethoxy-5'-(5-carboxyl-1-pentynyl)]benzyl pyrimidine), the co-crystallized 

ligand in 2FZI, were added to the model. The active site was defined by a sphere of 6.5 Å 

near the ligand. Docking of ligands to the pjDHFR model was performed using LeadIT 

1.3.0. as described below.  

 

Validation of the docking system 

The pjDHFR structure was obtained by means of homology modeling using 

pcDHFR as template. Hence, the validation of LeadIT 1.3.0 as suitable docking systems 

for pjDHFR was carried out by redocking the native ligand in the X-ray crystal structure 

of pcDHFR (PDB: 2FZI,44chain A). The protein was prepared as mentioned above. The 

ligand was built and minimized in MOE. The docking procedure in LeadIT 1.3.0 was 

constrained to the active site of the protein. Polar hydrogen atoms of amino acids with a 

polar side chain (Ser37, Thr61, Ser64, Ser69, Tyr129, Thr144) were not constrained, 
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thereby permitting free rotation. Base placement of fragments for docking was carried out 

using triangle matching. Default parameters were used for scoring and clash handling. 

The maximum number of solutions per iteration and the maximum number of solution 

per fragmentation were set to 500. Ten poses were obtained per molecule. Docking 

processes were repeated to ensure reproducibility of the docked conformations. The best 

docked pose of the ligand had an RMSD of 0.941 compared to the crystal structure. Thus, 

LeadIT 1.3.0 was validated for docking studies with the proposed analogs. 

 

Homology model building using automated servers: 

 

Figure 81: Ribbon rendition of the superimposition of pjDHFR homology models generated 

using MOE 2008.10 (red), Swiss-Model417-419 (green), Phyre2420 (yellow) and CPHmodel 3.0421 

(blue). RMSD between models = 0.955 Å. The model generated using MOE 2008.10 was used 

for docking studies described below. 
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In addition to the model generated using MOE, additional homology models were 

generated using automated homology modeling servers to validate the model from MOE. 

Model generation using the automated servers was performed by submitting the pjDHFR 

amino acid sequence to the servers (Swiss-Model417-419, Phyre2420 and CPHmodel 3.0421). 

The process was carried out using the respective default settings for all three servers. The 

homology models returned from the three servers was overlaid with the model built using 

MOE 2008.10 (Figure 81). All the four homology models show good overlap with 

RMSD between models of 0.955 Å. 

 

D.1.1.4.3. Docking studies with the pjDHFR homology model 

D.1.1.4.3.1. Docking studies with N6-methyl-N6-(3,4,5-trifluorophenyl)pyrido[2,3-

d]pyrimidine-2,4,6-triamine, 192d, in pjDHFR 

Docking studies were performed for 192b-e (Table 8) using LeadIT 1.3.0. The 

docked pose of 192d, which displays the highest selectivity (35-fold, Table 8) is 

described here. The docking procedure was identical to that described above for the 

validation of the software. The binding poses were visualized using the ligplot utility in 

MOE 2008.10 and the Poseview utility in LeadIT 1.3.0. 

Figure 82 shows the best docked pose of 192d (white) in the folate binding site of 

the pjDHFR model.  In this pose the protonated N1 and 2-NH2 of 192d interact in an 

ionic bond with Asp32. This bidentate ionic bond with a conserved acid residue has been 

observed in most DHFR crystal structures. The 4-NH2 moiety forms hydrogen bonds 

with the backbone of Ile10. The pyrido[2,3-d]pyrimidine scaffold is stabilized by a pi-

stacking interaction with Phe36 and with side chain carbon atoms of Met33 (not shown) 

and Leu25.  
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Figure 82: Stereoview. Docked pose of 192d in the pjDHFR homology model. 

 

 

 

 

 

 

Figure 83: Stereoview. N-Me of 192d interacts with Ile123 (pjDHFR model, red) but not as well 

with Val115 (superimposed  hDHFR422, green) 

The 3’-F of 192d interacts with the hydroxyl moiety of Ser64. The N9-Me moiety 

of 192d is oriented towards the hydrophobic pocket formed by Ile123, Leu72 and Leu65 

and interacts specifically with Ile123. The docking score of 192d was -8.594 kcal/mol for 

pjDHFR compared with -8.412 kcal/mol for hDHFR. With the exception of the trifluoro 

groups, 192b makes similar binding with pjDHFR as compared to 192d. It was of interest 

to explain the potency and selectivity of 192b and 192d (compared to 192c and 192e 

respectively) for pjDHFR. From the IC50 values in Table 8 for the two pairs 192b and 

192c; and 192d and 192e it is evident that the N9-Me moiety makes about a 300- and a 
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200-fold difference in potency for pjDHFR respectively, indicating that the N-Me group 

must contribute significantly to the increased potency. There are two important 

consequences of adding the Me group on the N9. The first one is the interaction of the 

N9-Me with Ile123 in pjDHFR (Figure 83). This interaction would not exist for the N9-H 

analogs, 192c and 192e from modeling studies. The second is that the N9-Me restricts the 

available low energy conformations (50 conformations, calculated using Sybyl X 1.2423) 

the molecule can adopt compared with the unhindered N9-H (94 conformations, 

calculated using Sybyl X 1.2). Thus it is perhaps easier for 192b and 192d to adopt the 

bound conformation than it is for 192c and 192e and results, in part, to the increased IC50 

of 192b and 192d over 192c and 192e. In addition to potency, the selectivity of 192b and 

192d for pjDHFR over hDHFR are superior to that of 192c and 192e. Thus, the N-Me 

moiety must also play a significant role in the high selectivity of 192b and 192d for 

pjDHFR over hDHFR compared to 192c and 192e. In pjDHFR the N9-Me moiety is 3.67 

Å away from the longer Ile123 compared to hDHFR where it is 4.64 Å away from the 

shorter Val115. These superimpositions of the docked structure of 192d in the pjDHFR 

homology model and hDHFR crystal structure (Figure 82) and the highly productive 

interaction of the N9-Me with Ile123 at 3.67 Å and the lack of productive interaction of 

the N9-Me with the shorter Val115 of hDHFR also provides, in part, a molecular 

explanation of the pjDHFR selectivity of 192d over hDHFR. Thus the docking study 

validates the structural rationale for selectivity of 192b and 192d. 

Conformational analysis 

Low energy conformers of 192b-e were generated using the Systematic Search 

option in Sybyl X 1.3423 using 5 o increments.  
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D.1.1.4.4. Docking studies of 168 in the F36C L65P double mutant pjDHFR 

homology model 

D.1.1.4.4.1. Generation of F36C L65P double mutant pjDHFR model 

The F36C L65P double mutant pjDHFR model was generated from the pjDHFR 

model used in the docking studies of 192b-e. using the ‘mutate’ option in MOE 2010.10. 

The resultant double mutant model was minimized using the Amber99 forcefield. The 

protein geometry was verified using Ramachandran plots to ensure absence of outliers in 

the putative active site of the protein. Docking studies were carried out using TMP and 

168 in the wild type and mutated pjDHFR homology models. Preparation of the ligands 

and the docking studies were performed as described earlier. 

 

D.1.1.4.4.2. Docking of TMP in the pjDHFR model  

 

 

 

 

 

 

 

 

Figure 84: Stereoview. Docked pose of TMP in the pjDHFR homology model. 

Figure 84 shows the best docked pose of TMP (white) in the folate binding site of 

the pjDHFR model.  In this pose the protonated N1 and 2-NH2 of TMP interact in an 

ionic bond with Asp32. The 4-NH2 group of TMP can form a hydrogen bond with the 

backbone of Gly124. The pyrimidine scaffold is stabilized by a pi-stacking interaction 
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with Phe36 and with side chain carbon atoms of Met33. The 3’,4’,5’-methoxyphenyl 

moiety of TMP can form hydrophobic interactions with the side chain atoms of Leu25, 

Ser64, and Leu65. The docking scores of TMP were -5.832 kcal/mol with MOE 2010.10 

and -23.023 kJ/mol with LeadIT 2.0.1. 

D.1.1.4.4.3. Docking of TMP in the F36C L65P double mutant pjDHFR model 

 

Figure 85: Stereoview. Docked structure of TMP in the F36C L65P double mutant pjDHFR 

homology model. 

 

Figure 85 shows the best docked pose of TMP (white) in the folate binding site of 

the F36C L65P double mutant pjDHFR active site model. This docked pose maintains 

ionic bond between the protonated N1 and 2-NH2 of TMP and Asp32 as is seen in the 

docked pose of TMP in the unmutated enzyme model (Figure 84). The 4-NH2 group of 

TMP can form a hydrogen bond with the backbone of Ile10. Mutation of Phe36 with 

Cys36 causes a loss of the stacking interactions seen in the unmutated enzyme and could 

explain, in part, the loss of activity of TMP against the mutated enzyme. The 3’,4’,5’-

methoxyphenyl moiety of TMP can form hydrophobic interactions with the side chain 

atoms of Leu25, Ser69, and Pro65. The docking scores of TMP were -4.555 kcal/mol 
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with MOE 2010.10 and -16.367 kJ/mol with LeadIT 2.0.1. 

 

D.1.1.4.4.4. Docking of 168 in the pjDHFR model 

The docked pose of 168 (Figure 86) retains the ionic bond with Asp32 as is seen 

for TMP. The bicyclic scaffold of 168 is stabilized by a pi-stacking interaction with 

Phe36 and with side chain carbon atoms of Met33 and Leu25. The aryl side chain of 168 

can form hydrophobic interactions with the side chain atoms of Leu25, Thr61, Ser64, and 

Leu65 and Pro66. The docking score of 168 was -6.491 kcal/mol with MOE 2010.10 and 

-24.638 kJ/mol with LeadIT 2.0.1. 

 

Figure 86: Stereoview. Docked structure of 168 in the pjDHFR homology model.  

 

D.1.1.4.4.5. Docking of 168 in the F36C L65P double mutant pjDHFR model 

Figure 87 shows the best docked pose of 168 (white) in the folate binding site of 

the  double mutant pjDHFR active site model.The best docked pose of 168 in the folate 

binding site of the F36C L65P double mutant pjDHFR active site model retains the ionic 

bond of the bicyclic scaffold with Asp32. The bicyclic scaffold is placed deeper into the 
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binding pocket which permits the formation of a hydrogen bond with the side chain 

hydroxy moiety of Thr144. 

 

 

 

 

 

 

 

Figure 87: Stereoview. Docked structure of 168 in the double mutant pjDHFR homology model. 

 pjDHFR homology model. 

This additional hydrogen bond, which is not observed in the docked pose of 168 

in the non-mutated enzyme, could offset the loss of stacking interactions between the 

bicyclic scaffold and Phe65 in the non-mutated enzyme. Additional hydrophobic 

interactions between the scaffold and the side chain carbon atoms of Leu25, Met33 and 

Cys36 help to stabilize the docked pose of 168. This additional hydrophobic stabilization 

is less likely with the monocyclic pyrimidine scaffold of TMP in the mutated enzyme. 

The aryl side chain 168 maintains hydrophobic interactions with the side chain atoms of 

Leu25, Thr61, Ser64, and Leu65 and Pro66 as is seen with in the docked pose with the 
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non-mutated enzyme. Thus, a combination of an additional hydrogen bond and 

maintenance of hydrophobic interactions of the bicyclic scaffold and the aryl side chain 

provides, in part, a molecular explanation for the maintenance of potency of 168 against 

the F36C L65P double mutant pjDHFR. The docking score of 168 was -6.026 kcal/mol 

with MOE 2010.10 and -23.155 kJ/mol with LeadIT 2.0.1.  

Docking of 192d in the F36C L65P double mutant pjDHFR model 

 

 

 

 

 

 

 

Figure 88: Stereoview. Docked structure of 192d in the double mutant pjDHFR homology model. 

Figure 88 shows the best docked pose of 192d in the folate binding site of the 

F36C L65P double mutant pjDHFR active site model. In this pose the protonated N1 of 

192d forms the ionic bond with Asp32 while the 2-NH2 group forms a hydrogen bond 

with the side chain hydroxy of Thr144. The pyrido[2,3-d]pyrimidine scaffold forms 

hydrophobic interactions with the side chain carbon atoms of Leu25, Met33 and Cys36. 

The 3’,4’,5’-trifluorophenyl side chain of 192d is oriented similar to the docked 

conformation of 192d in the non-mutated enzyme (Figure 86) and forms hydrophobic 

interactions with Leu25,Thr61 (not shown) Pro65 and Pro66. The docking score of 192d 

was -8.145 kcal/mol with MOE 2010.10 and -30.969 with LeadIT 2.0.1.  

Table 17: Docking scores for the best docked pose of TMP and 168 
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 Wild type pjDHFR F36C L65P Mutated pjDHFR 

 LeadIT 2.0.1 MOE 2010.10 LeadIT 2.0.1 MOE 2010.10 

Trimethoprim -23.023 -5.832 -16.367 -4.555 

168 -24.638 -6.491 -23.155 -6.026 

 

The homology model of pjDHFR and its mutated resistant form (F36C, L65P) 

could thus be used in docking studies to explain the significant loss of activity of TMP 

compared to 168 on the basis of the loss of the stacking interaction of Phe36 with the 

single pyrimidine ring of trimethoprim. Compound 168 has a bicyclic system and is able 

to compensate for most of the loss of this interaction in the mutated resistant pjDHFR via 

to a combination of a reinforced ionic bond between the protonated N1 and N8 nitrogens 

and Asp32, an additional hydrogen bond and maintenance of hydrophobic interactions of 

the bicyclic scaffold and the aryl side chain moiety. This is not possible with the 

monocyclic TMP docked into the resistant mutant pjDHFR. There is good correlation 

between the docking scores of 168 and TMP using both LeadIT 2.0.1 and MOE 2010.10 

and their biological activities against wild type and double mutant pjDHFR. This further 

validates the homology models generated in this study.  

 

D.1.1.4.5. Docking studies with 5-Methyl-6-thioaryl-thieno[2,3-d]pyrimidines in 

pjDHFR 

Figure 89 shows the best docked pose of 193f (Table 10) in the folate binding site 

of the pjDHFR model.  In this pose the protonated N1 and 2-NH2 of 193f interact in an 

ionic bond with Asp32. This bidentate ionic bond with a conserved acid residue has been 

observed in most DHFR crystal structures. High scoring docked poses where a single 

bond between the 2-NH2 of 193f and Asp32 were observed, but were not considered in 
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these molecular modeling studies because such bindings deviate from the bidentate bond 

that is generally observed for 2,4-diamino substituted antifolates binding to a variety of 

DHFRs in their crystal structure.422 

 

Figure 89. Stereoview. Docked pose of 193f (white) in the pjDHFR active site model.  

The 4-NH2 moiety forms hydrogen bonds with the backbone of Ile10 and Val123. 

The thieno[2,3-d]pyrimidine scaffold is stabilized by a pi-stacking interaction with Phe36 

and with the side chain carbon atoms of Ile10, Leu25 and Met33. The 5-Me moiety of 

193f is oriented towards a small hydrophobic pocket formed by Ile123, Leu72 and 

Leu65. The 3’-OMe forms a hydrogen bond with the backbone amide of Leu25. The 

3’,4’-dimethoxyphenyl side chain of 193f is stabilized by hydrophobic interactions with 

the side chain of Leu25, Met33 and Leu65. This orientation of the 3’,4’-dimethoxyphenyl 

side chain affords severe steric clashes with Phe31 in hDHFR (Figure 90). This forces a 

change in the docked conformation of the 3’,4’-dimethoxyphenyl side chain in hDHFR 

that is detrimental to binding and translates to the lower overall docked score of 193f in 

hDHFR (-6.132 kcal/mol) compared to pjDHFR (-6.663 kcal/mol). This docked score 

difference is reflected in the 19-fold selectivity of 193f for pjDHFR. Figure 90 shows the 
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steric clash of the Ar side chain with Phe31 (hDHFR) superimposed on Met33 (pjDHFR) 

where there is no hinderance. 

 

 

 

 

 

 

 

 

 

Figure 90. Stereoview. Steric clash of phenyl side chain of 193f with Phe31 in hDHFR 

 

D.1.2.Molecular modeling studies with tgDHFR 

D.1.2.1 tgDHFR homology model 

When this work was initiated there was no known crystal structure of tgDHFR. A 

homology model was hence built for evaluating the binding of 194a-c (Table 11) in 

tgDHFR. The amino acid sequence of the dihydrofolate domain of the bifunctional 

enzyme was obtained from the Uniprot database (ID:DRTS_TOXGO [Q07422]). 

 

Homology model building with automated comparative protein modeling servers 

The amino acid sequence for tgDHFR (amino acids 1-300) obtained from the Uniprot 

website was submitted to four automated comparative protein modeling servers (Swiss-

Model417-419, M4T Server424, 3D-Jigsaw425 and Proteus2426). Modeling was performed in 



177 

 

the automated mode. The crystal structure templates used by the modeling servers for the 

generation of the models were bifunctional DHFR-TS crystal structures from T. cruzi 

(PDB:2H2Q427, Swiss-Model, M4T Server, 3D-Jigsaw; 33% sequence identity) and P. 

falciparum (PDB:1J3I92, Proteus2, 31% sequence identity). Ramachandran plots were 

generated for all the homology models returned. The models returned by the servers 

showed an average of four outlying amino acid residues. All the observed outlying amino 

acid residues were distant (>8 Å away) from the putative folate binding pocket and were 

not expected to influence the docking results.  

 

Homology model building with MOE 2009.10 

A homology model was also built using MOE 2009.10428 using the crystal 

structure of the bifunctional DHFR-TS from T. cruzi (PDB: 2H2Q, chain A) as the 

template. Sequence alignment was performed using MOE_Align using the ‘actual 

secondary structure’ option in MOE. The final homology model returned by the program 

was subjected to further energy minimization using Amber99 as the forcefield and a 0.5 

RMS gradient. A Ramachandran plot of the model showed the presence of seven outlying 

residues (Phe29, Ala125, Glu136, Tyr138, Asp186, Ile229 and Lys231). The outlying 

amino acids were locally energy minimized using the Amber99 forcefield. The model 

was imported into Sybyl X and refined using the Fix Bumps functionality available 

within Sybyl X.  

 

D.1.2.2. Docking studies with the tgDHFR homology model. 

Active site definition 
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The models returned were superposed with P. falciparum DHFR (PDB:1J3I) and 

the crystal structure ligand (6,6-dimethyl-1-[3-(2,4,5-trichlorophenoxy)propoxy]- 1,6-

dihydro-1,3,5-triazine-2,4-diamine, WR99210)92 and NADPH were added to the model. 

Protein preparation prior to docking was performed using the LigX functionality in MOE 

2009.10.  LigX is a graphical interface and collection of procedures for conducting 

interactive ligand modification and energy minimization in the active site of a flexible 

receptor. In LigX calculations, the receptor atoms far from the ligand are constrained and 

not allowed to move while receptor atoms in the active site of the protein are allowed to 

move but are subject to tether restraints that discourage gross movement. The procedure 

was performed with the default settings.  The process of protein preparation using LigX 

involves addition of hydrogen atoms according to the ionization state of the atoms of the 

molecule/protein loaded. The heavy atoms are then fixed and a brief energy minimization 

is carried out to refine the positions of the added hydrogen atoms. The receptor atoms are 

then tethered during geometry optimization so that they do not deviate too much from 

their initial coordinates and then energy minimized using the Amber99 forcefield. 

Ligands were built using the molecule builder function in MOE and were energy 

minimized to their local minima using the MMF94X forcefield to a constant of 0.05 

kcal/mol. Ligands were docked into the active site of the prepared protein using the 

docking suite as implemented in Flexx 3.1.2. The active site was defined by a sphere of 

6.5 Å near the WR99210 ligand. The docking was performed using Alpha triangle base 

placement method. Around 50 poses were returned for each compound at the end of each 

docking run. The docked poses were imported into MOE 2009.10 and manually 

examined in the binding pocket to ensure quality of docking and to confirm absence of 
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steric clashes with the amino acid residues of the binding pocket. The docked poses were 

scored using the affinity dG scoring system refined using the forcefield system and 

rescored using London dG scoring system implemented in MOE. The binding poses were 

also visualized using the ligplot utility as in MOE.  

Validation of the docking system 

Validation of Flexx429 as a suitable docking system was carried out using two 

docking studies. In the first study, the X-ray crystal structure of P. falciparum DHFR 

(1J3I92) was used for docking WR99210, the native ligand in the crystal structure. The 

protein was prepared as mentioned above. The ligand was built and minimized in MOE. 

Docking was carried out with Flexx as described above. The best docked pose of 

WR99210 had an RMSD of 1.1782 Å compared to the crystal structure ligand. The 

docked pose of WR99210 maintained all the contacts exhibited by the crystal structure 

ligand. The best docked pose of WR99210 had a score of -6.291 kcal/mol.  

Docking studies with compounds 194a-b 

Compounds 194a-b (Table 11) were docked into the tgDHFR model as 

representative examples for compounds in this series using Flexx as described above. The 

docked poses were scored in MOE and ranked on the basis of the scores. The best docked 

poses of 194a-b showed high consistency in terms of the conformation of the ligands in 

the active site (Figure 92, and the protein-ligand contacts made as a result of the 

orientation. The best docked pose of 194a had a score of -6.861 kcal/mol while the best 

docked pose of 194b had a score of -6.742 kcal/mol. The slight difference in the scores of 

the two compounds reflects the observed difference in the tgDHFR inhibitory potencies 

of the two compounds.  
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Figure 91. Stereoview. Superimposition of docked pose of 194a (green) and 194b (purple) in the 

active site of the tgDHFR model showing similar docked conformations. 

 

Figure 92 shows the docked pose of 194a in the folate binding site of the tgDHFR 

model. In this pose, the 2-NH2 and N3 moieties of 194a interact with Asp31. The 

thieno[2,3-d]pyrimidine ring pi-stacks with Phe35 further stabilizing this pose. The 1-

naphthyl ring of 194a is placed in the hydrophobic pocket formed by Phe32, Phe91, Leu23 

and Met87. The naphthyl ring forms pi-stacking interactions with Phe32. 

 

 

 

 

 

 

 

 

Figure 92. Stereoview. Docked pose of 194a (green) in the active site of the tgDHFR model 
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Figure 93. Stereoview. . Superimposition of 194a (white) on the furo[2,3-d]pyrimidine ligand (blue) 

in hDHFR. (PDB: 3K45359). The naphthyl ring of 194a (space fill) shows steric clashes with 

molecular surface near Ile60 and Leu67 (represented in dots) suggesting poor inhibition of hDHFR 

as observed for 194a. 

 

Importantly, the 1-naphthyl moiety is involved in a cation-pi interaction430 with the 

protonated Arg89 stabilizing the docked conformation. The propyl side chain forms 

hydrophobic interactions with Met79, Met87 and Val151. The propyl side chain also aids 

in orienting the naphthyl ring correctly in the hydrophobic pocket and its interactions with 

Arg89. Docking of 194a-b in hDHFR (PDB id: 3K45359) resulted in docked poses outside 

the folate binding site. Superimposition of the thieno[2,3-d]pyrimidine ring of 194a on the 

furo[2,3-d]pyrimidine ring of the bound ligand in 3K45 indicated steric clashes with the 

side chain of Ile60 and Leu67 in hDHFR (Figure 93), which could explain, in part, the 

decreased activity of 194a-b against hDHFR.  
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D.1.3. Molecular modeling studies with T. gondii thymidylate synthase 

 

D.1.3.1. Development of a tgTS homology model: 

When this work was initiated there was known crystal structure of tgTS,  hence a 

homology model was built using the automated comparative protein modeling server 

SWISSMODEL416-419 and using MOE 2010.10431 for evaluating the binding of 194d-k 

(Table 12) in tgTS.  Docking studies were performed using LeadIT 2.1.0131 and Sybyl-X 

1.2.423  

 

Homology model building  

tgTS is a part of a bifunctional DHFR-TS enzyme, as is seen with the TS domains 

of other apicomplexan parasites. The sequence for the TS portion (Uniprot id: Q07422, 

amino acids 322 – 610) was obtained from the Uniprot website. Modeling using the 

Swissmodel server416 was done using the automated mode.  

An alternate model was generated using the homology model module of MOE 

2010.10. Two models using the bifunctional DHFR-TS crystal structures of Trypanosoma 

cruzi (PDB: 2H2Q)432 or wild type Plasmodium falciparum (PDB: 1J3I)92 were generated 

using the homology builder module as implemented in MOE. 
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Sequence alignment: 

 

 

Figure 94. Sequence alignment of T. cruzi TS (DRTS_TRYCR),433 pcTS (TYSY_PNECA),434 tgTS 

(DRTS_TOXGO),435 and hTS (TYSY_HUMAN)436 using Clustal W.437 
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The resulting models were minimized using Amber99 forcefield. Superimposition of the 

resulting models indicated high overall similarities and a C-RMSD of 0.855 Å (Figure 95). 

 

 

 

 

 

 

 

 

 

 

Figure 95. Ribbon diagram of the superimposition of homology models generated using T. cruzi 

(blue), T. cruzi (brown) and swissmodel (magenta) showing good overlap of the models. C-

RMSD: 0.855 Å 

 

Model validation: 

The model returned from the software was evaluated using structure assessment 

tools (Ramachandran plot, ProSA,410, 411 Procheck,412 Anolea,413 Gromos,414 and 

QMEAN415) as implemented on the Swissmodel server.416 

a) Ramachandran plot (Figure 96): A Ramachandran plot generated for the 

pjDHFR model showed that, with the exception of Glu580, all the residues have 

acceptable geometries. Since Glu580 is distant from the active site, and is not 

expected to influence the docking studies, modeling studies were performed 

without any additional refinements. 
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Figure 96: Ramachandran plot and Procheck analysis of the tgTS homology model generated using 

MOE 2008.10 

b) Procheck412 (Figure 96): A Procheck analysis of the model indicated 85.9% of 

residues in the most favored regions, 13.7% residues in additional allowed 

regions, 0% in the generously allowed regions and 0.4% (1 residue, Glu 580) in 

the disallowed region.  

Figure 97: ProSA analysis of the tgTS homology model generated using MOE 2008.10 

c) ProSA:410, 411 ProSA calculates an overall quality score (z-score) for a specific 

input structure for comparison with the z-scores of all experimentally determined 

tgTS Model; Z-score = -8.30 Template: 1J3I; Z-score = -7.45 
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protein chains in PDB. ProSA can be used to check whether the z-score of the 

input model is within the range of scores typically found for native proteins of 

similar size with a score outside a range characteristic for native proteins 

indicating probable structural errors. The ProSA analysis of the tgTS model 

(Figure 97) is comparable to the score of the template (PDB: 1J3I) and fell within 

acceptable limits for z-scores.  

d) Details of validation including Anolea,413 Gromos,414 and QMEAN415 are 

provided in the experimental secion. The results from these studies confirmed the 

validity of the tgTS model for docking studies. 

 

D.1.3.2. Docking studies with the tgTS homology model 

Active site definition and docking to the tgTS model 

The tgTS homology model prepared in MOE was homology aligned and 

superimposed on the X-ray crystal structure of tcTS (PDB: 2H2Q427) containing NADP, 

DUMP and DH3 (2,4-diamino-5-[3',4'-dimethoxy-5'-(5-carboxyl- 1-pentynyl)]benzyl 

pyrimidine), the co-crystallized ligand in 2H2Q, were added to the model. The active site 

was defined by a sphere of 6.5 Å near the ligand. Protein preparation prior to docking 

was performed using the LigX functionality in MOE 2010.10.  The procedure was 

performed with the default settings.  The process of protein preparation using LigX 

involves addition of hydrogen atoms according to the ionization state of the atoms of the 

molecule/protein loaded. The heavy atoms are then fixed and a brief energy minimization 

is carried out to refine the positions of the added hydrogen atoms. The receptor atoms are 

then tethered during geometry optimization so that they do not deviate too much from 
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their initial coordinates and then energy minimized using the Amber99 forcefield. 

Ligands used for docking were sketched in MOE, minimized and exported as an SDF 

file. 

Docking of ligands to the tgTS model were performed using LeadIT 1.3.0131 and 

MOE 2010.10.431 The docking procedure in LeadIT 1.3.0 was constrained to the active 

site of the protein. Polar hydrogen atoms of amino acids with a polar side chain were not 

constrained, thereby permitting free rotation. Base placement of fragments for docking 

was carried out using triangle matching. Default parameters were used for scoring and 

clash handling. The maximum number of solutions per iteration and the maximum 

number of solution per fragmentation were set to 500. Ten poses were obtained per 

molecule. Docking processes were repeated to ensure reproducibility of the docked 

conformations.  The docked poses were exported to MOE 2010.10, rescored using the 

affinity dG scoring system, refined using the forcefield system and rescored using 

London dG scoring system. The binding poses were also visualized using the ligplot 

utility in MOE and the Poseview utility in LeadIT 1.3.0. 

Ligands were docked into the active site of the prepared protein using the docking 

suite as implemented in MOE. The docking was restricted to the active site pocket 

residues using the Alpha triangle placement method. Refinement of the docked poses was 

carried out using the Forcefield refinement scheme and scored using the Affinity dG 

scoring system. Around 30 poses were returned for each compound at the end of each 

docking run. The docked poses were examined in the binding pocket to confirm absence 

of steric clashes with the amino acid residues of the binding pocket. The docked poses 

were scored using the affinity dG scoring system, refined using the forcefield system and 
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rescored using London dG scoring system. The binding poses were also visualized using 

the ligplot utility in MOE. 

 

Validation of the docking system 

The tgTS structure was obtained by means of homology modeling using tcTS as 

template. Hence, the validation of LeadIT and MOE as suitable docking systems for tgTS 

were carried out by redocking the native ligand in the X-ray crystal structure of tcTS (PDB: 

2H2Q). The protein was prepared as mentioned above. The ligand was built and minimized 

in MOE. Docking was carried out with LeadIT and MOE as described above. The best 

docked pose of the ligand had an RMSD of 0.941 Å in LeadIT and 1.036 Å in MOE 

compared to the crystal structure. Thus, LeadIT and MOE were validated and were chosen 

for docking studies with the proposed analogs.  

 

D.1.3.3. Molecular modeling studies of 2-Amino-4-oxo-5-arylthio-substituted 

pyrimido[2,3-d]indoles 194d-j with T. gondii thymidylate synthase 

 

D.1.3.3.1. Docking of 194e in the tgTS homology model 

Figure 98 shows the best docked pose of 194e (white) in the binding site of the 

tgTS model.  In this pose N3 forms a hydrogen bond with Asp553. The pyrido[4,5-

b]indole scaffold is stabilized by hydrophobic interactions with Ile402, Trp403, Asn406, 

Leu486, Leu516, Met608 and Ala609. The 2-naphthyl moiety of 194e forms hydrophobic 

interactions with Phe374, Ile402, Leu516 and Phe520. Specifically, the second ring of the 

2-naphthyl moiety forms hydrophobic interactions with Phe374. This additional 
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interaction of 194e and the 1-naphthyl analog 194f with tgTS Phe374 compared to a lack 

of similar interaction of the phenyl analog 194d (Figure 88) explains, in part, the 10-fold 

improved potency of 194e and 5-fold for 194f for tgTS over 194d. The docking score of 

194e was -25.942 kJ/mol. 

 

 

 

 

 

 

 

 

Figure 98. Stereoview. Docked pose of 194e (white) in the tgTS homology model 

 

 

 

 



190 

 

 

 

 

 

 

Figure 99. Stereoview. Docked pose of 194e (white) in hTS (PDB: 1JU6438) 

 

Figure 100. Stereoview. Docked pose of 194d (white) in the tgTS active site homology model. 

 

The 5-thiophenyl ring of 194d does not extend far enough in the binding pocket to 

interact with Phe374 (Figure 100). The amino acid corresponding to Phe374 in hTS is 

Phe80 and is found to be oriented away from the binding pocket in the hTS crystal 

structure (PDB: 1JU6438) (Figure 99), and would not interact with the 2-naphthyl moiety 

of 194e in its docked pose (Figure 99) and provides, in part, an explanation for the 

significant selectivity of 194e for tgTS over hTS (Table 12). There are indications in the 

literature439 that this region of Phe374 coincides with Ala287 of the C. hominis TS 

structure and is a region previously identified440, 441 as a possible target for species 

selective drug design. 
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D.1.3.3.2.  X-ray crystal structure of 194d in tgTS 

 

 
 

Figure 101. Ribbon depiction of the superimposition of the docked pose of 194d in the tgTS 

homology model (white) and the X-ray crystal structure (red, PDB: 4KY4)354 of 194d in tgTS.  

C RMSD = 0.68 Å 

 

 The X-ray crystal structure of 194d in tgTS was recently published. (PDB: 

4KY4)354 Superimposition of the docked pose of 194d in the tgTS homology model and 

its X-ray crystal structure (Figure 101) showed remarkable similarity between the 

predicted and the crystal structure of tgTS. (C RMSD = 0.68 Å). Further, the predicted 

bound conformation of 194d and its crystallized conformation show strong similarities, 

serving to validate the docking software and docking protocol for future use in designing 
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inhibitors that target tgTS. The crystal structure pose of 194d shows all binding 

interactions seen in its predicted binding pose.  A closer look at the binding pocket 

(Figure 102) shows that, with the exception of Phe374 and Arg603 (not shown), the 

predicted conformation of the binding pocket residues matches their crystal structure 

conformation. As predicted, Phe374 does not interact with 194d. 

 

Figure 102. Superimposition of the docked conformation of 194d in the tgTS homology model 

(white) and its X-ray crystal structure (red, PDB: 4KY4)354 in the tgTS binding pocket.  

 

D.1.3.3.3. Docking of compound 194f in the tgTS homology model 

 

Figure 103 shows the docked pose of 194f in the tgTS active site model. The 

docked pose of 194f is similar to the docked pose of 194e (Figure 98) and retains 

interactions described for 194e in its docked pose.  The docking score of 194f was -

22.996 kJ/mol. The X-ray crystal structure of 194f was recently published (PDB: 

4KYA).354 Superimposition of the docked conformation of 194f in the tgTS homology 
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model  and its X-ray crystal structure 354 (Figure 103) in the tgTS binding pocket shows 

that the predicted interactions of the tricyclic scaffold of 194f are maintained. However, 

the crystal structure conformation of the 1’-naphthyl moiety of 194f is rotated by about 

115o relative to the predicted conformation of the 1’-naphthyl moiety. This occurs, 

presumably, due to the alternate position of the side chains of Phe374 and Arg603in the 

crystal structure compared to their predicted side chain conformations in the homology 

model. The predicted and actual conformation of the backbone residues of Phe374 and 

Arg603 closely match.  It is interesting to note that the predicted relative distance 

between the side chains of Arg603 and Phe374 is similar to that seen in the homology 

model of the active site. (Figure 105) 

 

Figure 103. Stereoview. Docked pose of 194f (white) in the tgTS active site homology model. 
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Figure 104. Stereoview. Superimposition of the docked conformation of 194f  in the tgTS 

homology model (white) and its X-ray crystal structure (red, PDB: 4KY4).354   

 

Figure 105. Stereoview. Difference in the predicted (white) and crystal structure (red)354  

conformations of the 1’-naphthyl of 194f and the side chains of Phe374 and Arg603 in tgTS.   
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The strong correlation between the predicted and bound conformations of 194e 

and 194f provides validation for the utility of the docking software and protocols used in 

this study for design of future analogs against tgTS. 

 

D.1.3.4.Topomer CoMFA analysis of bicyclic inhibitors of hTS and tgTS 

The advantages of using topomer CoMFA over traditional CoMFA are described 

above in the Biochemical Review section. Importantly, topomer CoMFA methods are 

sensitive only to the aligned 3D topomer fragments, and do not have any receptor 

requirements. Hence, it was used for the 3D QSAR analysis of tgTS or hTS inhibitors 

previously reported in our laboratory to elucidate steric and/or electronic features that 

lead to potent activity against either hTS or tgTS. Since the compounds used in this study 

for generating the Topomer CoMFA model share a bicyclic 6-5 (pyrrolo[2,3-d]pyrimidine 

or a thieno[2,3-d]pyrimidine) core, the differences in biological activity against hTS or 

tgTS probably originate from differences in the substitutions on the bicyclic core. 

Topomer CoMFA calculations were performed using Sybyl X 1.25 on a Windows 

platform. 

 

D.1.3.4.1. Data Set for Topomer CoMFA Analysis 

Gangjee et al. 312, 355-365 have reported the synthesis and biological activities 

against hTS and tgTS of >100 bicyclic non-classical pyrrolo[2,3-d]pyrimidines and 

thieno[2,3-d]pyrimidines containing a 2-amino-4-oxo moiety (Figure 58). Of these, 85 

compounds were identified for which discrete biological activities against hTS and/or 

tgTS were reported in the literature. There are no previous literature reports of these 
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compounds in CoMFA studies. The molecules were sketched in MOE 2009.10428 and 

energy minimized using the MMFF94X forcefield to a constant of 0.05 kcal/mol.  The 

molecules were imported into a Sybyl database followed by addition of Gasteiger-Huckel 

charges. The biological activities were added to the table and were converted to the 

corresponding log values for use in the model generation. The compounds showed an 

approximate 3 log unit range in their activities against hTS or tgTS. Approximately 20% 

of these compounds were used for generation of a test set while the rest of the molecules 

were used in the training set.  

 

D.1.3.4.2. Fragmentation for Topomer CoMFA Generation. 

The pyrrolo[2,3-d]pyrimidine and thieno[2,3-d]pyrimidine inhibitors used in this 

study vary in the nature of the substituents on either the 5- or the 6- position.  Hence, 

three different methods were used to fragment the these inhibitors: Fragmentation using 

the ‘Split in two’ option at either the 5- or the 6- positions (Figure 2 A, B) and 

fragmentation involving a common bicyclic scaffold (Figure 2 C) with two substituents 

(R1, R2) attached at the 5- and 6- positions respectively of the scaffold. The resulting 

fragments were stored in separate Sybyl tables.  

 

Model Generation: Topomer CoMFA models were generated using the biological 

evaluation data for hTS and tgTS for each of the three sets generated by the above 

fragmentation schemes. 
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Figure 106: Fragmentation methods for compounds used in this study: (A) Split in two – 

substitutions at the 5-position. (B) Split in two – substitutions at the 6-position. (C) Two 

substitutions (R1, blue and R2, red) on the core scaffold (green) 

 

D.1.3.4.3. Topomer CoMFA Models: 

 The Topomer CoMFA descriptors derived above were used as explanatory 

variables, and the pIC50 values were used as the target variable in PLS regression 

analyses to derive 3D QSAR models using the implementation in the SYBYL package. 

The conventional correlation coefficient r2 and its standard error (r2 stderr), the cross-

validated r2 (q2) and its standard error, (q2 stderr) were subsequently computed for the 

final models. Additionally, the Y-intercept value for the PLS analysis (intercept) was 

returned by the program. Adding the R-group contributions to this value gives the 

predicted activity value. 

 

 

Figure 106A. Method A Figure 106B. Method B 

Figure 106C. Method C 



199 

 

D.1.3.4.4. Statistical data for analysis of tgTS inhibitors 

Table 18a: Topomer CoMFA Statistics – tgTS 

   Method A  Method B  Method C  

Conventional r2  0.942 0.772 0.907 

r2 std. err.  0.23 0.38 0.28 

Cross-validated r2 (q2)   0.778 0.648 0.814 

q2 std. err.  0.44 0.47 0.4 

Intercept  4.19 5.25 6.4 

Opt. no. components  8 4 2 

 

The training set for generation of a Topomer CoMFA model had a total of 65 

compounds and the test set contained 20 compounds. A total of three models were 

generated using Topomer CoMFA using the fragment databases generated by Methods A - 

C. The key statistical parameters associated with these models are shown in Table 18a. 

The CoMFA model generated by splitting the molecule into two (Method A) afforded 

slightly better conventional and cross-validated r2 values compared to the models 

generated by the other two methods. Figure 107.  

 

Figure 107. CoMFA predictions for the training set of tgTS inhibitors using Method A 

All three models showed satisfactory cross-validated r2 values (q2 > 0.5) and were 

used to predict the activities of the test set and showed good predictive abilities. The 
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CoMFA predictions for the training set for Method A is shown in 

D.1.3.4.5. Statistical data for analysis of hTS inhibitors 

Table 18b: Topomer CoMFA Statistics – hTS 

   Method A  Method B  Method C  

Conventional r2  0.909 0.786 0.91 

r2 std. err.  0.25 0.38 0.38 

Cross-validated r2 (q2)   0.759 0.652 0.647 

q2 std. err.  0.4 0.49 0.28 

Intercept  4.63 5.58 4.58 

Opt. no. components  7 5 6 

 

A total of three Topomer CoMFA models were generated, as in the previous case, 

using the fragment databases generated by Methods A - C. The key statistical parameters 

associated with these models are shown in Table 18b. The CoMFA models generated by 

splitting the molecule into two (Method A) and by considering two substitutions on the 

core afforded comparable conventional and cross-validated r2 values compared to the 

model generated by method B. All three models showed satisfactory cross-validated r2 

values (q2 > 0.5). The CoMFA predictions for the training set for Method C is shown in 

Figure 108. 

 

Figure 108. CoMFA predictions for the training set of tgTS inhibitors using Method C 
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D.1.3.4.6. Using the topomer CoMFA model to explain tgTS SAR 

The The Stdev*coefficient contour maps generated using the CoMFA model 

generated using method A (described above) can be used to provide a possible 

explanation for the observed gain in potency for tgTS activity between two inhibitors 

from a series of thieno[2,3-d]pyrimidine inihibitors442 shown below.  

 

 

 

Figure 109. Structures and biological activities of 221a-b. 

 

 

Figure 110. Topomer COMFA maps representing steric and electrostatic contributions for 221a 

(left) and 221b (right). Steric maps: green – steric bulk favored, yellow - steric bulk disfavored; 

Electrostatic maps: red – negative charge favored, blue – positive charge favored. 

 

The synthesis and biological evaluation of 221a-b (Figure 109) was described by 

Gangjee et al.442 Figure 110 represent StDev*Coeff maps that represent steric and 

electrostatic contributions of the substitutions and shows where variability in the 

molecule’s fields can explain differences in the activities of the molecules. In these maps, 

the regions in green favor steric bulk while regions in yellow disfavor steric bulk. The 

regions in red and blue represent electrostatic contributions with regions in blue favoring 
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positive charge while red regions favor negative charge. As can be seen in Figure 110 

(left), the phenyl substitutions in 221a do not reach the large hydrophobic region in green 

where the addition of bulk is favorable. This region is occupied by the naphthyl ring of 

221b (Figure 110, right) and can perhaps explain the increase in potency of 221b as 

compared to 221a.   

 

D.1.3.4.7. Using the topomer CoMFA model to explain tgTS selectivity: 

 

 

 

Figure 111. Structures and biological activities of 222a-b against tgTS and hTS. 

The synthesis and biological evaluation of 222a-b (Figure 111) was described by 

Gangjee et al.358 The 1-naphthyl substituted 222b compound displays a 10-fold 

selectivity for tgTS over hTS and shows a 4-fold increased activity over the phenyl 

substituted compound 222a. Figures 96a-b display the Topomer COMFA maps 

representing steric and electrostatic contributions for 222 in the hTS and tgTS models 

respectively. 

These maps suggest that the region where the 5-thioaryl substituent binds in hTS and tgTS 

differs in its ability to tolerate bulk. Subsequently, the 5-naphthtyl substituent of 222 is able 

to access the larger region in green in tgTS (steric bulk favored) over the yellow region 

(steric bulk disfavored) in hTS.  
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Figure 112. Topomer COMFA maps representing steric and electrostatic contributions for 222b in 

the hTS model. Steric maps: green – steric bulk favored, yellow - steric bulk disfavored; 

Electrostatic maps: red – negative charge favored, blue – positive charge favored. 

 

 

 

 

 

 

 

Figure 113. Topomer COMFA maps representing steric and electrostatic contributions for 222b in 

the tgTS model. Steric maps: green – steric bulk favored, yellow - steric bulk disfavored; 

Electrostatic maps: red – negative charge favored, blue – positive charge favored. 

 

This can explain, in part, the higher potency of 222 for tgTS over hTS. Similar 

findings (Figure 114-115) were also seen in case of the StDev*Coeff maps for 194a-b 

(Table 12), thereby providing further evidence that supports the validity of the topomer 

CoMFA models generated. 



204 

 

 

 

 

 

 

 

 

 

Figure 114. Topomer COMFA maps representing steric and electrostatic contributions for 222a in 

the tgTS model. Steric maps: green – steric bulk favored, yellow – steric bulk disfavored; 

Electrostatic maps: red – negative charge favored, blue – positive charge favored. 

 

 

 

 

 

 

 

 

 

Figure 115. Topomer COMFA maps representing steric and electrostatic contributions for 222b in 

the tgTS model. Steric maps: green – steric bulk favored, yellow - steric bulk disfavored; 

Electrostatic maps: red – negative charge favored, blue – positive charge favored. 

 

  



205 

 

D.1.3.4.8. Comparing Docking Studies with the Topomer CoMFA Model 

Docking studies were performed with 222b in the tgTS homology model to 

ascertain if a molecular basis could be found to explain the observed SAR. In addition, 

docking studies could be used to determine which amino acids in the tgTS active site, if 

any, are responsible for the interactions predicted by the topomer CoMFA model. 

Docking studies were performed using LeadIT 2.1.0 using the procedures described for 

194 in the tgTS homology model above.  

Figure 116 shows the best docked pose of 222b (white) in the binding site of the 

tgTS model.  In this pose the N3 forms a hydrogen bond with Asp513. The thieno[2,3-

d]pyrimidine scaffold is stabilized by hydrophobic interactions with Ile402, Trp403, 

Asn406, Leu486 and Leu516, Met608 and Ala609. The 2-naphthyl moiety forms 

hydrophobic interactions with Ile402, Leu516 and Phe520. 

 

Figure 116. Stereoview. Docked pose of 222b (white) in the active site of the tgTS homology 

model. 

Additional hydrophobic interactions afforded by the second ring in the 2-naphthyl 
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moiety with Phe520 could explain, in part, the 4-fold gain in potency of 222b compared to 

222a. There are indications in the literature439 that this region of Phe374/Phe520 coincides 

with Ala287 of C. hominis TS structure and is a region previously identified440, 441 as a 

possible target for species selective drug design. 
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D.2.RECEPTOR TYROSINE KINASE INHIBITORS 

D.2.1. Synthesis of 2-Amino-4-substituted-6-arylmethyl-7H-pyrrolo[2,3-

d]pyrimidines as RTK inhibitors 

Scheme 31: Synthesis of 2-amino-4-substituted-6-arylmethyl-7H-pyrrolo[2,3-d]pyrimidines 197-

210

 

 Scheme 31 shows the route utilized in the synthesis of target compounds 197 – 

210. The target compounds were synthesized by a nucleophilic displacement of the 

chloro group of the key intermediate 230a-b387 with the corresponding bromothiols, 

phenols or amines 231 under basic conditions using isopropanol or butanol as the solvent 

under reflux conditions. The key intermediates 230a-b were synthesized using literature 

methods reported by Gangjee et al. 387 The corresponding substituted phenyl acetic acids 

223a-b were heated with SOCl2 at reflux to afford the acid chlorides 224a-b which were 

used without purification. Treating the acid chlorides 224a-b with freshly prepared 

diazomethane387 afforded the α-diazoketones 225a-b which were further treated with a 

48% aqueous HBr solution to afford the -bromomethyl benzyl ketones 226a-b which 

were used without purification. Etheral diazomethane was prepared under basic 
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conditions using literature methods387 from N-nitroso-N-methyl urea or N-methyl-N-

nitroso-p-toluenesulfonamide (Diazald). Since N-nitroso-N-methyl urea has been reported 

to be toxic, carcinogenic and a potent mutagen,443 large scale preparation (5-10 mmol 

scale) of ethereal diazomethane was carried out using Diazald. Condensation of 226a-b 

with 2,6-diamino-4-oxo-pyrimidine 231afforded the desired 2-amino-4-oxo-6-substituted 

benzyl pyrrolo[2,3-d]pyrimidines 228a-b in 54-60% yields. Pivaloyl protection of the 2-

NH2 group gave compounds 229a-b. Treatment of 229a-b with POCl3 at reflux afforded 

the key 2-amino-4-chloro-6-substituted benzyl pyrrolo[2,3-d]pyrimidines 230a-b. 

Significantly improved yields (65-76%) were obtained on chlorination of the pivaloyl 

protected 2-amino-4-oxo-6-substituted benzyl pyrrolo[2,3-d]pyrimidines 229a-b 

compared to the unprotected compounds 228a-b as has been previously reported.387 The 

protected compounds showed significantly improved solubility in organic solvents such 

as CHCl3 and MeOH which improved their purification using normal phase column 

chromatography compared to the unprotected analogs.  

Scheme 32: Synthesis of target compounds 197-200 

 

 The synthesis of 197-202 by nucleophilic displacement of the chloro group of 

230a-b by the thiol moiety of 231 is shown in Scheme 32. Different bases such as NEt3, 

K2CO3, Cs2CO3 and tBuOK were used in order to deprotonate the thiol for the 

nucleophilic displacement. The reactions were carried out with 2 eq. of base. The best 
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yields were obtained on using K2CO3 as the base for 3-bromobenzene thiol (entries 1-7) 

and using tBuOK as the base for (3-bromophenyl)methanethiol (entries 8-15). 

 Comp. Ar  X n Time (h) Base Solvent Yield (%) 

1 197 2-MePh S 0 4 K2CO3 iPrOH 34 

2 198 2,4- diClPh S 0 4 K2CO3 iPrOH 30 

3 197 2-MePh S 0 4 Cs2CO3 iPrOH 12 

4 198 2,4- diClPh S 0 24 Cs2CO3 iPrOH 22 

5 197 2-MePh S 0 4 NEt3 iPrOH 12 

6 198 2,4- diClPh S 0 4 NEt3 iPrOH Trace 

7 198 2,4- diClPh S 0 24 NEt3 iPrOH 8 

8 197 2-MePh S 1 4 NEt3 iPrOH N/A 

9 199 2-MePh S 1 24 NEt3 iPrOH Trace 

10 199 2-MePh S 1 4 tBuOK nBuOH   21 

11 199 2-MePh S 1 24 tBuOK nBuOH 24 

12 200 2,4- diClPh S 1 4 K2CO3 iPrOH 5 

13 200 2,4- diClPh S 1 4 K2CO3 nBuOH 15 

14 199 2-MePh S 1 4 K2CO3 iPrOH 6 

15 200 2,4- diClPh S 1 4 tBuOK nBuOH 25 

The choice of base was based on literature precedence.390, 391 Increasing the 

reaction time led to modest improvements in yields in some cases (eg. entries 10, 11). 

Changing the solvent from iPrOH to nBuOH permitted increasing the reaction 

temperature and facilitated improved yields. Conducting the reaction under microwave 

conditions did not lead to an appreciable improvement in yields. Similar yields were 

obtained when the pivoloyl protected 4-chloro compounds were treated with the 

corresponding thiols under basic conditions. Deprotection of the pivaloyl group occured 

by heating the intermediates with 15% KOH in 1,4-dioxane for 12 h.387 Compounds 205 

– 210 (Scheme 33) were synthesized using nucleophilic displacement of the 4-Cl of 230a 

or 230b similar to the synthesis of 197 – 200 described above. 
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Scheme 33: Synthesis of target compounds 205-210

 

 Comp. Ar  X n Time (h) Base Solvent Yield (%) 

1 205 2-MePh O 0 24 K2CO3 iPrOH 18 

2 206 2,4- diClPh O 0 24 K2CO3 iPrOH 22 

3 205 2-MePh O 0 24 Cs2CO3 iPrOH Trace 

4 206 2,4- diClPh O 0 24 Cs2CO3 iPrOH Trace 

5 207 2-MePh O 1 4 K2CO3 iPrOH N/A 

6 207 2-MePh O 1 12 K2CO3 iPrOH N/A 

7 207 2-MePh O 1 24 tBuOK iPrOH Trace 

8 208 2,4- diClPh O 1 24 tBuOK iPrOH Trace 

9 207 2-MePh O 1 24 tBuOK nBuOH 11 

10 208 2,4- diClPh O 1 24 tBuOK nBuOH 10 

11 209 2-MePh NH 1 4 - iPrOH N/A 

12 209 2-MePh NH 1 24 - iPrOH N/A 

13 209 2-MePh NH 1 24 - nBuOH N/A 

14 209 2-MePh NH 1 24 NEt3 nBuOH Trace 

15 209 2-MePh NH 1 24 K2CO3 iPrOH 8 

16 210 2,4- diClPh NH 1 24 K2CO3 iPrOH 13 

 

Scheme 34: Attempted synthesis of 203-204 

 

 Attempts to synthesize the one-carbon linked compounds 203-204 using a Wittig 

reaction390 (Scheme 34) afforded a complex, inseparable mixture of compounds. 

Repeating the reaction using benzaldehyde as a model system also failed to provide the 4-

benzyl substituted analogs. The reaction failed to proceed as expected when it was carried 
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out using the dipivaloyl protected analog of 230a. In order to rule out complications in 

the reaction due to the deprotonation of the acidic pyrrole NH of 230a-b, the 

corresponding N-7 benzyl protected analog (234) of 230a380 was synthesized (Scheme 

35) in 22% yield. 

Scheme 35: Synthesis of target compound 234 

 

Attempts to repeat the Wittig reaction described in Scheme 34 provided a 

complex mixture of compounds which were not separable using normal phase 

chromatography or flash chromatography. Increasing the reaction time from 6 to 24 h led 

to an increase in the number of spots on TLC. Changing the reaction solvent to DMF did 

not change the proportion of the side products.  

Scheme 36: Attempted synthesis of target compound 235 

 

 Attempts to synthesize the two-carbon linked analogs 235 and 236 using Suzuki 

coupling390 of either 230a or its N7-benzyl protected analog 234 with stryrylboronic acid 

as the coupling partner (Scheme 36) did not afford the desired compounds. Increasing the 

reaction time from 12 to 24 h or 48 h led to increasing side products which could not be 

separated using column chromatography. 
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D.2.2. Molecular modeling studies with RTKs 

D.2.2.1 Homology model of PDGFR- 

 

 

 

 

 

 

 

 

 

Figure 117. DISOPRED analysis of PDGFR-kinase domain amino acid sequence. 

 There is currently no known crystal structure of PDGFR-. A homology model 

was hence built for performing molecular modeling studies. The amino acid sequence 

(amino acids 600 – 962) of the PDGFR- kinase domain was obtained from the Uniprot 

database (Uniprot ID:PGFRB_HUMAN [P09619]). A BLASTP search implemented in 

MOE 2007.09383 indicated that chain A of the 2.90 Å c-KIT kinase complex (PDB: 

1PKG384, chain A) shows high sequence similarity with  PDGFR-  (E-value: 1e -58). A 

homology model was then built using MOE 2007.09 and the structure of c-KIT kinase 

complex (PDB: 1PKG, chain A) as the template. 

As has been reported earlier in the literature,339 a DISOPRED 2.0444  analysis of 

the PDGFR-amino acid sequence was performed to predict the ordered and disordered 

regions. The results from this analysis (Figure 117) predicted amino acids 700 – 792 were 
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disordered.  

 

 

Figure 118. Superimposition of the PDGFR- homology model (brown) with the c-KIT crystal 

structure (magenta). The disordered amino acids of PDGFR do not superimpose with the crystal 

structure. 

 

The disordered amino acids were accounted for during the model building step by 

using the ‘actual secondary structure’ option in MOE 2007.09. Using literature methods, 

i.e. truncation of the disordered region, provided models similar to that seen with the 

models generated using the ‘actual secondary structure’ option in MOE 2007.09. The 

final homology model returned by the program was subjected to further energy 

minimization using Amber99 as the forcefield and a 0.5 RMS gradient. Figure 118 shows 

the superimposition of the PDGFR- homology model with the c-KIT crystal structure 

template.  
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Model validation: 

The model generated using MOE 2007.09 was evaluated using structure 

assessment tools (Ramachandran plot, Protein Structure Analysis (ProSA),410, 411 

Anolea,413 Gromos,414 and QMEAN415) as implemented on the Swiss-Model website.416 

 

Figure 119. Ramachandran plot of the PDGFR- homology model. 

 

a) Ramachandran plot (Figure 119):  A Ramachandran plot of the model showed 

the presence of six outlying residues (Glu563, Ser 623, Val722, Asp776, Thr790 

and Glu911). Initial efforts to resolve the structure of the outlying residues by 

tethered energy minimization steps led to the generation of different outlying 

residues. A tethered global energy minimization for the protein did not resolve the 

outlying residues. Attempts to use different software such as Sybyl X to prepare 

the protein did not give satisfactory results. Since these residues are not in the 

proximity of the purpoted ATP binding site and are tethered during the docking 

process, they are not expected to influence the docked conformations of the 

compound. Hence, the model was used without further refinement.  
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b) Protein Structure Analysis (ProSA):410, 411 ProSA calculates an overall quality 

score (z-score) for a specific input structure for comparison with the z-scores of 

all experimentally determined protein chains in PDB. The ProSA analysis of the 

PDGFR- model (Figure 120) is comparable to the score of the template (PDB: 

1PKG, chain A) and fell within acceptable limits for z-scores. 

 

 

 

 

 

 

 

 

 

 

Figure 120. ProSA analysis of the PDGFR- homology model. 

 

Docking studies were performed using the docking suite of MOE 2007.09.  After 

addition of hydrogen atoms, the protein was then “prepared” using the LigX function in 

MOE. LigX is a graphical interface and collection of procedures for conducting 

interactive ligand modification and energy minimization in the active site of a flexible 

receptor. In LigX calculations, the receptor atoms far from the ligand are constrained and 

not allowed to move while receptor atoms in the active site of the protein are allowed to 

move but are subject to tether restraints that discourage gross movement. The procedure 

PDGFR Model; Z-score = -7.09 Template: 1PKG; Z-score = -6.30 
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was performed with the default settings. Ligands were built using the molecule builder 

function in MOE and were energy minimized to its local minima using the MMF94X 

forcefield to a constant of 0.05 kcal/mol.  

Ligands were docked into the active site of the prepared protein using the docking 

suite as implemented in MOE. The docking was restricted to the active site pocket 

residues using Alpha triangle placement method. Refinement of the docked poses was 

carried out using the Forcefield refinement scheme and scored using Affinity dG scoring 

system.  About 30 poses were returned for each compound at the end of each docking 

run. The docked poses were manually examined in the binding pocket to ensure quality of 

docking and to confirm absence of steric clashes with the amino acid residues of the 

binding pocket. The binding poses were also visualized using the ligplot utility as 

implemented in MOE 2007.09.  

 

D.2.2.2. Docking Studies with N4-(3-bromophenyl)-7-(substituted benzyl)-7H-

pyrrolo[2,3-d]-pyrimidine-2,4-diamines as potential multiple RTK inhibitors.  

Table 19.380 IC50 values (µM) of kinase inhibition and the A431 cytotoxicity assay of 195, 196a-k 

and 211a-k.  

Compd 

# 

PDGFR-β 

inhibition 

VEGFR-2 

inhibition 

VEGFR-1 

inhibition 

EGFR 

inhibition 

A431 

cytotoxicity 
195 >50 0.25±0.04 >50 9.19±1.8 1.21±0.42 

196 17.0±5.6 28.11±9.9 >50 0.23±0.06 2.8±1.1 

196c >50 5.58±0.69 26.8±4.1 4.31±1.75 >50 

196d >50 8.28±0.69 42.7±6.1 17.42±3.9 28.6±5.1 

196e 8.92±1.6 0.62±0.21 31.1±5.8 12.62±3.3 >50 

196f >50 >50 >50 1.67±0.3 31.8±6.3 

196g >50 >50 >50 19.77±5.6 33.5±6.2 

196h >50 5.08±0.83 19.2±4.3 >50 >50 

196i >50 >50 15.2±2.9 1.24±0.21 33.2±5.9 

196j >50 5.97±0.78 >50 6.16±1.2 23.5±5.2 

196k 14.7±3.4 9.42±1.9 >50 >50 42.1±18.5 
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Compd 

# 

PDGFR-β 

inhibition 

VEGFR-2 

inhibition 

VEGFR-1 

inhibition 

EGFR 

inhibition 

A431 

cytotoxicity 
211a 159.6±26.3 113.4±17 129.3±20.4 113.3±18.9 15.7±2.8 

211b 34.2±4.4 >200 138.1±24.2 >200 15.3±1.9 

211c 1.5±0.21 17.9±2.4 126.3±19.1 >200 88.4±10.2 

211d >500 65.3±7.9 79.9±8.4 99.9±18.6 16.1±2.2 

211e  >200 >200 69.2±6 40.6 

211f >500 23.8±3.0 99.3±10.3 166.4±20.6 50.4±5.9 

211g 229.6±37.1 64.5±7.8 118.6±11.4 >200 19.2±3.0 

211h 129.3±21.1 14.9±2.1 150±22.1 >200 36.3±4.9 

211i 212.4±16.2 22.9±2.9 50.8±6.2 >200 20.4±3.5 

211j 129.1±20.5 22.9±10.7 >200 >200 13.3±20.5 

211k 1.8±0.29 25.7±4.6 156.5±25 >200 39.0±6.8 

 

Table 19380 shows the results from the biological evaluation studies for 195, 196, 

196c-k and 211a-c (Figure 69) against selected RTKs. Molecular modeling studies were 

performed for 196c and its corresponding analogue 211c as representative examples from 

this set. 

 

Figure 121.380 Stereoview. Superimposition of docked poses of 196c (red) and 211c (white) in the 

ATP binding site of VEGFR2. (PDB: 1YWN) 

Molecular modeling studies380 were carried out using Flexx 3.1.2445 and MOE 



218 

 

2008.10408 in VEGFR2 (pdb code 1YWN)200 and a homology model of PDGFR 

Figures 121 and 122 depict the docked poses of 196c (Figure 67) and its regioisomer 

211c (Figure 73) as a representative study in VEGFR2 and the homology model of 

PDGFR Figure 121 shows the superimposition of the best scored docked poses of 196c 

(red) and 211c (white) in the ATP binding site of VEGFR-2. The binding site of ATP 

competitive inhibitors in RTKs consists of a hinge region, two hydrophobic binding sites 

(Hydrophobic Region I and II) and a Sugar binding pocket (Figure 121) as described 

previously.179, 186, 390, 447 Compounds 196c and 211c adopt different docked conformations 

in the active site. The pyrrolo[2,3-d]pyrimidine ring of 196c occupies the adenine binding 

portion of the ATP binding site. The 2-NH2 moiety forms a hydrogen bond with the 

backbone carobonyl oxygen of Glu915 in the hinge region while the N3 and 4-anilino 

NH are involved in hydrogen bonds with the backbone of Cys917 in the hinge region. 

Additional hydrophobic interactions of the pyrrolo[2,3-d]pyrimidine ring with Leu1033 

(not labeled) can stabilize the docked pose. In this pose, the N7-benzylic substitution 

extends towards Hydrophobic region I and is involved in interactions with Val846, 

Ala864, Val897 and Val914. The N7-benzylic substitution also interacts with the side 

chain carbon atoms of Glu883 and Cys1043. The N4-(3-bromophenyl) is extended 

towards Hydrophobic region II and interacts with the side chains of Phe916, Leu838(not 

shown) and Leu1033 (not shown). 

In contrast, the pyrrolo[2,3-d]pyrimidine scaffold of 196c docks380 in a flipped 

conformation compared to 211c described above that permits the formation of three 

hydrogen bonds with the hinge region (Figure 3). The 2-NH2, N1 and pyrrole NH of 196c 

form hydrogen bonds with the backbone of Glu915 and Cys917. Additionally, the 
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pyrrolo[2,3-d]pyrimidine scaffold forms hydrophobic interactions with Leu838 (not 

shown), Val846, Ala864, Val897 and Leu1033 (not shown). This pose causes the N4-(3-

bromophenyl) moiety to bind in Hydrophobic region I where it interacts with Val846, 

Ala864, Leu887, Val897, Val912 and Val914. Additional hydrophobic interactions with 

the side chain carbon atoms of Lys866 and Glu883 stabilize this docked pose. The 6-

benzylic substitution extends towards Hydrophobic region II and forms interactions with 

Leu838 (not shown), side chain atoms of Phe916, Cys917, Lys918 and Gly920 (not 

shown).  Thus, molecular modeling and docking studies suggest that the 7-benzylic 

substitution forces 211c to adopt a binding mode different from that docked for the 6-

benzylic compound 196c in VEGFR2.  

 

Figure 122.380 Stereo view. Docked pose of 196c (red) and 211c (white) in the putative 

binding site of the PDGFRhomology model

 

There is no reported crystal structure of PDGFRβ bound to a ligand. Hence a 

homology model of PDGFRβ was built using the structure of c-KIT kinase complex 

(PDB: 1PKG) as a template.379 Docking studies380 were performed with 196c and 211c as 
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described above for VEGFR-2. Compound 104 binds to the ATP binding site of 

PDGFR with the pyrrolo[2,3-d]pyrimidine portion occupying the adenine binding site 

(Figure 122). Three hydrogen bonds with the hinge region are maintained in this binding 

mode. The aniline NH hydrogen bonds with the backbone of Cys684 while the N3 and 2-

NH2 moieties form hydrogen bonds with Glu682. This pose causes the bromophenyl 

moiety to bind in Hydrophobic region I and form hydrophobic interactions with Val614, 

Ala632 (not shown), Val665 and Leu833 (not shown) and with the side chain carbon 

atoms of Lys634 andThr681. The N7-benzyl substituent lies in the Sugar binding pocket 

and interacts with Leu606 (not shown), Val614, Val615 (not shown) and Ala848.  The 

best scored pose of 196e binds similar to the binding pose seen with 196c in PDGFRβ. 

The 6-benzylic substituent of 196e accesses the same region accessed by the 7-benzylic 

substituent of 211e, however in a different conformation as shown in Figure 122. It was 

interesting to note that alternate binding modes380 of 211e that scored 1-2 kcal/mol higher 

than the best docked pose indicate different bound conformations of the 7-benzylic 

substituent (Figure 123). In the alternate binding mode, the 7-benzylic substituent 

accesses Hydrophobic region II instead of the sugar binding pocket as is seen in the 

bound conformation in Figure 123 where it interacts with Phe916 and Leu938 (not 

shown).  Compound 196e, which has a 6-benzylic substituent cannot access Hydrophobic 

region II in the poses seen in Figures 103 and 104. These binding modes suggested that 

the presence of multiple docked poses could lead to differences in the activity and/or  

selectivity of these compounds against different kinases as compared to the parent 

compounds 195 and 196. 
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Figure 123.380 Stereoview. Superimposition of the best scored pose (white) and alternate docked 

pose (blue) of 211e in the putative binding site of PDGFR  

 

 

D.2.2.3. Molecular modeling studies of 2-Amino-4-m-bromoanilino-6-arylmethyl-

7H-pyrrolo[2,3-d]pyrimidines as Tyrosine Kinase Inhibitors 

D.2.2.3.1. Docking studies in EGFR.

 

Figure 124.183 Stereoview. Overlay of docked poses of 195 (red), 212a (white) and 212b (blue) in 

EGFR active site (PDB: 1M17). 
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Figure 125.183 Ligand interaction plots of docked poses of 195 (red), 212a (white) and 212b 

(blue) in EGFR active site 

 

Compounds 212c-k were evaluated for activity against cells overexpressing 

EGFR, VEGFR-2 or PDGFR-Table 14).183 Molecular modeling studies were 

performed with the lead compounds 195, 212a-b and their corresponding analogues 

212c-k in an attempt to provide a molecular basis for the observed SAR for these 

compounds.  

In an attempt to explain the activity for 212c-k against EGFR in the whole cell 

assay, docking studies were performed183 using Flexx 3.1.2 and the X-ray crystal 

structure of the 4-anilinoquinazoline inhibitor erlotinib in EGFR (PDB ID: 1M17).192  

Multiple low energy binding modes were seen for all the docked compounds. The 
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binding modes presented in Figure 124 for 195, 212a-b were observed to be within 2 

kcal/mol of the lowest energy pose and permits comparison between the proposed 

binding modes of the three molecules. All the molecules form hydrogen bonds with the 

hinge region using the 2-NH2 moiety. Hinge region hydrogen bonds with the 4-NH is 

observed for 195 and 212b but not 212a. Additional hydrogen bonding using the N3-

nitrogen is seen for 195 and 212a but not for 212b. This explains, in part, the greater 

potency of 195 against EGFR compared with 212a and 212b. The anilino rings of the 

three compounds reside in Hydrophobic site II and can interact with Leu694, Leu768 and 

Pro770. The 6-benzyl moieties of the molecules extend into the Sugar binding pocket and 

interact with Leu694, Phe699 and Val702. The altered conformations of the side chain 

benzyl ring in 212a due to the 2'-Me and in 212b due to the 2'-,5'- diOMe cause the 

benzyl ring to extend away from Val702, reducing the extent of hydrophobic interaction 

of these molecules. Ligand interaction plots for 195, 212a-b are shown in Figure 125.183  

Docked poses183 of the 4-N methylated compound 212c in EGFR show the loss of 

hydrogen bonding to the backbone of Met769 afforded by the 4-NH group in the lead 

compound 195 (Figures 126 and 127). Additionally,212c is oriented farther from the 

hinge region as compared to 195 to accommodate the 4-N methyl group. This results in 

the loss of a hydrogen bond of the N3-nitrogen with the backbone NH of Met769. 

Additional binding interactions afforded by other portions of 212c are similar to those 

seen in the docked pose of 195. This loss in H-bonding of the N3 in 212c could explain, 

in part, its reduction in whole cell activity against EGFR as compared to 195 which lacks 

the 4-N methyl group.183    
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Figure 126.183 Stereoview. Overlay of docked poses of 195 (red) and 212c (white) in EGFR 

active site.    

 

 

 

 

 

 

 

 

 

 

Figure 127. 183  (A) Ligand interaction plots of docked pose of 212c in the EGFR active site. (B) 

Overlay of ligand interaction plots of docked poses of 212c (red) and 195 (green) in the EGFR 

active site. Generated using MOE 2009.10 
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Figure 128. 183 Stereoview. Overlay of docked poses of 212k (red) and 212b (white) in EGFR 

active site  

 

 

 

 

 

 

 

 

 

 

Figure 129. 183 (A) Ligand interaction plots of docked pose of 212k in the EGFR active site. (B) 

Overlay of ligand interaction plots of docked poses of 212k (red) and 212b (green) in the EGFR 

active site. 

 

When comparing the N4, N7-dimethylated compounds 212e, 212h and 212k, it 

was noted183 that the whole cell activity of the compounds increase with increasing size of 

A B 
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the substitution on the 6-benzyl ring. Docking studies with 212k (Figures 128 and 129) 

indicated that this compound adopts a binding mode different from that seen with the 

docked poses of 195, 212a-b. In the docked pose of 212k (Figure 128), the 2-NH2 moiety 

is involved in the lone hinge region hydrogen bond. The N4 and N7-methyl groups alter 

the conformation of the molecule and cause the aniline portion to bind to Hydrophobic 

site I. The 2',5'-dimethoxybenzyl side chain accesses the Sugar binding pocket and is 

placed in a hydrophobic site formed by Leu694, Phe699 and Val702. The 2',5'-dimethoxy 

moieties provide additional hydrogen bonds with Thr766 and Lys721. The 

conformational change due to N4, N7-dimethylation and additional interactions due to 

the nature and orientation of the benzyl side chain could be expected to compensate for 

the loss of hydrogen bonding by either the N4 or N7 nitrogen atom and contribute to the 

increased potency of 212k against EGFR in whole cell assays compared with 212b.  

All the mono- and di-methylated derivatives were comparatively inactive against 

VEGFR-2 in whole cell assays suggesting that, for VEGFR-2 inhibition in whole cells, 

both the N4- and N7- protons are important for binding and necessary for activity. 

Whether this reflects space requirements or hydrogen bond donor ability at the N4- 

and/or N7-positions is not clear.183 

 

D.2.2.3.2. Docking studies in PDGFR-β 

The 4-N-methyl compound, 212i, was the most potent analogue in this series and 

was about 7-fold more potent than its lead analogue 212b in the PDGFR-β whole cell 

assay. Molecular modeling studies183 were performed using Flexx 3.1.2 with the 

homology model of PDGFR- as described above in an attempt to explain the increased 
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activity of 212i compared with 212b in the whole cell assays for PDGFR-. 

 

Figure 130.183 Stereoview. Docked pose of 212b (white) in PDGFR- homology model. 

 

 

Figure 131.183 Stereoview. Overlay of docked poses of 212i (red) and 212b (white) in PDGFR- 

homology model. 
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Figure 132.183 (A) Ligand interaction plots of docked pose of 212b in the PDGFR- model. 

 (B) Overlay of ligand interaction plots of docked poses of 212b (red) and 212i (green) in the 

PDGFR- model. 

  

Figure 130 shows the best docked pose of 212b within 2 kcal/mol of the lowest 

energy pose in the purpoted ATP binding site of the PDGFR-homology model. In this 

pose183 the pyrrolo[2,3-d]pyrimidine ring of 212b rests in the Adenine binding region and 

forms hydrogen bonds with Glu682 and Cys684 in the hinge region via the N1-, 2-NH2 

and N7- nitrogen atoms. These interactions serve to anchor the molecule and permit the 

anilino moiety to bind in Hydrophobic site I where it can interact with Ala848, Val614 

and Leu606. The 2'-OMe substituent forms a hydrogen bond with the backbone of 

Asp688. The docked pose of 212i in the homology model (Figure 131) also maintains 

these interactions seen in the docked pose of 212b. In addition, 212i, which is methylated 

at the N4, binds in a mode which orients the aniline ring deeper in Hydrophobic Site I. 

The bromophenyl residues can form hydrophobic interactions with Val614, Leu606, 

Val665 (not shown), Phe845 and Ala848 and the side chain of Lys634. Additionally, the 

methyl group on the N4 can form hydrophobic interactions with Val614 and Ala848 and 

A      B 
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provide additional stabilization of the pose. Together, these interactions could account, in 

part, for the improvement in activity of 212i over the lead compound 212b. Figure 132 

shows the ligand interaction plots183 for 212b and 212i in the active site of the PDGFR- 

homology model.  

Molecular modeling studies thus indicate the presence of multiple low energy 

binding modes for these molecules and explain, in part, the potent activities of 212f, 212i 

and 212k.183  Thus, while general activity trends can be observed, it would be challenging 

to predict the preferred binding modes for these compounds in receptor tyrosine kinases 

on the basis of molecular modeling and docking studies. 

 

D.2.2.4. Molecular Modeling Studies of 5- Substituted Pyrimido[4,5-b]indoles in a PDGFR-

Homology Model 

 

Figure 133.379 Stereoview of the docked pose of 213b in the putative PDGFR-β active site 

model. 
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Results from the biological evaluation studies of tricyclic compounds 213b-c 

against cells overexpressing EGFR, VEGFR-2 or PDGFR-are shown in Table 15.379 

Molecular modeling studies were carried out using Flexx 3.1.2445 and MOE 2008.10408 in 

VEGFR2 (PDB: 1YWN)200 and a homology model of PDGFR-β379 to explain the 

molecular basis of its potent PDGFR-β inhibition.  

Docking studies were performed using the energy minimized structure of 213b in 

a homology model of PDGFR-β.379 The homology model of PDGFR-β was generated as 

described above. Figure 133 depicts the best docked pose of 213b in the homology model 

of PDGFR-β. In this figure, the 2- and 4- NH2 groups of 213b form hydrogen bonds with 

the backbone residues of the hinge region (Tyr683, Cys684). Additionally, the 5-S-Ph is 

involved in a cation-pi interaction (10-15 kcal/mol stabilization) with the protonated 

Arg604. Figure 133 thus provides a working model for binding to PDGFR-β.    

 

D.2.3. CoMFA analysis of pyrrolo[2,3-d]pyrimidines and furo[2,3-d]pyrimidines as 

multiple receptor tyrosine kinase inhibitors 

The use of traditional CoMFA methods is time-consuming and is very sensitive to 

the initial preparatory steps of molecular alignment and conformer selection.448 The 

dearth of crystal structures of EGFR and VEGFR2 bound to ligands which bear close 

structural similarity to the molecules of our interest make the selection of the active or 

“receptor bound conformation” for alignment of our compounds challenging.  

Additionally, there are no reported crystal structures for PDGFR-bound to ligands, thus 

severely limiting the applicability of conventional CoMFA methods for this analysis.  
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Topomer CoMFA423 minimizes the preparation needed for 3D QSAR analysis 

through an entirely objective and consistent set of alignment rules. Topomer CoMFA 

generates a 3D QSAR by: (a) splitting the molecules into fragments; (b) topomerically 

aligning each fragment; (c) calculating steric and electrostatic field descriptor values for 

the topomerically aligned fragments; and (d) creating a CoMFA table with the field 

descriptor values. The correlation among the molecules can then be analyzed using steric 

and electrostatic contour displays. Since Topomer CoMFA methods are sensitive only to 

the aligned 3D topomer fragments, and do not have any receptor requirements, it was 

used for the 3D QSAR analysis of our RTK inhibitors. Since the compounds used for 

generating the Topomer CoMFA model share either a pyrrolo[2,3-d]pyrimidine or a 

furo[2,3-d]pyrimidine scaffold, the differences in activity probably originate from the 

differing portions of the structures. i. e., the nature of the substitution on the scaffold. 

Topomer CoMFA calculations were performed using Sybyl X 1.1.1423 on a Windows 

platform. 

 

D.2.3.1. Data Set and Biological Activity. 

Gangjee et al. have previously reported the design and synthesis and biological 

evaluation of a series of RTK inhibitors based on either a pyrrolo[2,3-d]pyrimidine182, 183, 

379, 380, 387, 392-394 or a furo[2,3-d]pyrimidine395, 396 scaffold (Figure 72).  The molecules 

used in the model generation were sketched using the molecule builder in MOE 

2009.10428 and energy minimized using the MMFF94x forcefield to a constant of 0.05 

kcal/mol.  The molecules were imported into a Sybyl database followed by addition of 

Gasteiger-Huckel charges. The biological activities were added to the table and were 
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converted to the corresponding log values for use in the model generation. The 

compounds showed an approximately 3 log unit range in their activities against EGFR, 

VEGFR2 and PDGFR-. Approximately 20% of these compounds were used for 

generation of a test set while the rest of the molecules were used in the training set.  

D.2.3.2. Alignment of compounds: 

The energy minimized structures of the 60 compounds (structures and CoMFA 

data presented in the attached excel sheet) were aligned using MOE 2009.10 using the 

flexible align option in MOE in the default settings. The resultant aligned structures are 

shown in Figure 134. 

 

Figure 134: Results from the flexible alignment of the 60 compounds using MOE 2009.10 

 

Fragmentation for Topomer CoMFA Generation.  

The pyrrolo[2,3-d]pyrimidine inhibitors used in this study vary in the nature of the 

substituents on either the 4- or the 6- position.  Three different methods were used to 

fragment the pyrrolo[2,3-d]pyrimidine inhibitors: Fragmentation using the ‘Split in two’ 

option at either the 4- or the 6- positions (Figures 113 A, B) and fragmentation involving a 

common pyrrolo[2,3-d]pyrimidine scaffold (Figure 135 C) with two substituents (R1, R2) 
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attached at the 4- and 6- positions respectively of the scaffold. Since the reported furo[2,3-

d]pyrimidine inhibitors used in this study varied only in the nature of the substituents on 

the 5- position of the scaffold, the molecules, only the ‘Split in two’ option was used in the 

generation of fragments for the furo[2,3-d]pyrimidines. (Figure 135 D). The resulting 

fragments were stored in separate Sybyl tables.  

  

   

 

 

 

 

 

Method A Method B 

Method C Method D 
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Figure 135: Fragmentation methods for pyrrolo[2,3-d]pyrimidines (A – C) and  furo[2,3-

d]pyrimidines (D). (A, B, D) – two fragments. R1: blue, R2: red. (C) – Two substitutions (R1, 

blue and R2, red) on the core scaffold (green).  

 

D.2.3.3. Model Generation: Topomer CoMFA models were generated using the biological 

evaluation data for EGFR, VEGFR2 and PDGFR- for each of the four fragment sets 

generated by the above fragmentation schemes. 

 

D.2.3.4. Results:  

The Topomer CoMFA descriptors derived above were used as explanatory variables, 

and the pIC50 values were used as the target variable in PLS regression analyses to derive 

3D QSAR models using the implementation in the SYBYL package. The conventional 

correlation coefficient r2 and its standard error (r2 stderr), the cross-validated r2 (q2) and its 

standard error, (q2 stderr) were subsequently computed for the final models. Additionally, 

Y-intercept value for the PLS analysis (intercept) was returned by the program. Adding the 

R-group contributions to this value gives the predicted activity value. 

 

D.2.3.4.1. Statistical data for analysis of pyrrolo[2,3-d]pyrimidines 

The training set for generation of a Topomer CoMFA model had a total of 48 
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compounds and the test set contained 12 compounds. A total of nine models were generated 

using Topomer CoMFA using the fragment databases generated for the pyrrolo[2,3-

d]pyrimidine scaffold by Methods A - C. The key statistical parameters associated with 

these models are shown in Tables 20 - 22. In general, for the pyrrolo[2,3-d]pyrimidine 

scaffold, CoMFA models generated by splitting the molecule into two (Tables 20 and 21) 

afforded slightly better conventional and cross-validated r2 values compared to the models 

generated by considering two substitution positions on the pyrrolo[2,3-d]pyrimidine 

scaffold. (Table 22) In all nine cases, the models which showed satisfactory cross-validated 

r2 values (q2 > 0.5) were used to predict the activities of the test set and showed good 

predictive abilities.  

Table 20: Model generated from fragments using Method A 

  Kinase 

EGFR VEGFR2 PDGFR- 

Conventional r
2
 0.895 0.794 0.819 

r
2
 stderr 0.422 0.354 0.447 

Cross-validated r
2
 (q

2
)  0.529 0.552 0.468 

q
2
 stderr 0.47 0.332 0.387 

Intercept 4.62 4.48 3.6 

Opt. no. components 6 5 4 

 

All three models returned from the analysis of fragments developed by Method A 

(Table 20) showed good conventional r2 values. Satisfactory cross-validated r2 values (q2 > 

0.5) were obtained for models generated for EGFR and VEGFR2.  

 
Table 21: Model generated from fragments using Method B 

  Kinase 

EGFR VEGFR2 PDGFR- 

Conventional r
2
 0.834 0.954 0.611 

r
2
 stderr 0.38 0.411 0.243 

Cross-validated r
2
 (q

2
)  0.58 0.504 0.41 
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q
2
 stderr 0.293 0.317 0.329 

Intercept 5.04 4.06 4.02 

Opt. no. components 4 4 3 

 

Models returned from the analysis of fragments developed by Method B (Table 

21) showed good conventional r2 values for EGFR and VEGFR2 but not PDGFR-. 

Satisfactory cross-validated r2 values (q2 > 0.5) were obtained for models generated for 

EGFR and VEGFR2.  

Models returned from the analysis of fragments developed by Method C (Table 

22) showed r2 values lower than those obtained by Methods A and B. However, 

satisfactory cross-validated r2 values (q2 > 0.5) were obtained for models generated for 

EGFR and VEGFR2. 

Table 22: Model generated from fragments using Method C 

  Kinase 

EGFR VEGFR2 PDGFR- 

Conventional r
2
 0.755 0.715 0.682 

r
2
 stderr 0.223 0.281 0.326 

Cross-validated r
2
 (q

2
)  0.521 0.50 0.322 

q
2
 stderr 0.233 0.29 0.42 

Intercept 4.1 4.5 4.1 

Opt. no. components 3 3 4 

 

EGFR: Method A, which generated the fragment database by splitting the molecule in 

two at the 4-position of the pyrrolo[2,3-d]pyrimidine scaffold afforded the best 

conventional r2 (0.895, Table 20) and also gave a satisfactory internal cross-validated q2 

at 0.529 (Optimum number of components, ONC = 6).  

VEGFR2: Method B, which generated the fragment database by splitting the molecule in 

two at the 6-position of the pyrrolo[2,3-d]pyrimidine scaffold afforded the best 

conventional r2 (0.954, Table 21) and also gave a satisfactory internal cross-validated q2 
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at 0.504 (ONC = 4).  

PDGFR-: The model obtained by Method A provided the best conventional r2 (0.819, 

Table 20). All the three models generated failed to provide a satisfactory internal cross-

validated q2 > 0.5 with the best q2 value of 0.468 returned by Method A (Table 22). 

 

D.2.3.4.2. Statistical data for analysis of furo[2,3-d]pyrimidines 

All three kinase models generated for the furo[2,3-d]pyrimidine scaffold showed 

conventional r2 values lower than those returned for the corresponding kinases for the 

pyrrolo[2,3-d]pyrimidine scaffold. The graph of the actual vs. predicted activities indicated 

8 – 10 outlying molecules. Removal of the outlying molecules improved the conventional 

r2 values but did not significantly improve the cross-validated r2 values. 

Table 23: Model generated from fragments using Method D 

  Kinase 

EGFR VEGFR2 PDGFR- 

Conventional r
2
 0.799 0.715 0.688 

r
2
 stderr 0.454 0.39 0.402 

Cross-validated r
2
 (q

2
)  0.489 0.446 0.387 

q
2
 stderr 0.36 0.36 0.294 

Intercept 4.12 4.08 3.64 

Opt. no. components 5 4 4 

 

An analysis of the biological activities indicated that a bias towards less active 

compounds in the database could account, in part, for the failure of the method to provide 

satisfactory q2 values. Refinement of the model will be performed after the biological 

evaluation results of molecules with further variations at different locations of this 

scaffold are obtained.  

The Stdev*coefficient Contour Maps 

The CoMFA model which provided the best results for the three kinases tested for 
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the pyrrolo[2,3-d]pyrimidine scaffold were used to construct the stdev*coefficient 

contour maps for the most active fragments (R1, shown on top in each figure and R2, 

shown below R1 in each figure) for each kinase. (Figures 114 - 116). In the CoMFA steric 

field, the green (sterically favorable) and yellow (sterically unfavorable) contours 

represent 80% and 20% level contributions, respectively. The CoMFA electrostatic 

contour map for kinase inhibitory activity is depicted alongside the steric contour map. 

The red (negative charge favorable) and blue (negative charge unfavorable) contours in 

the CoMFA electrostatic field represent 80% and 20% level contributions, respectively.  

An analysis of the Stdev*coefficient contour maps indicates similarities and 

differences between the steric and electrostatic requirements at the R1 and R2 positions 

among the three kinases. These observed similarities and differences at a fragment level 

could be explored for the generation of new analogs with multiple kinase inhibition.  

 

Thus, topomer CoMFA analysis models that correlate the 3D chemical structures 

of 60 pyrrolo[2,3-d]- pyrimidines and 49 furo[2,3-d]pyrimidines synthesized in our 

laboratory and their inhibitory potencies for EGFR, VEGFR2 and PDGFR- were 

developed. 

 

Fragments were generated from the molecules by either splitting the molecule 

into two for both scaffolds or by considering substitutions at the 4- or 6- positions of the 

pyrrolo[2,3-d]pyrimidine scaffold. Models generated for the pyrrolo[2,3-d]pyrimidines 

showed good conventional r2 values and satisfactory cross-validated r2 (q2) values. The 

models generated for furo[2,3-d]pyrimidines showed reasonable conventional r2 values 
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but not q2 values.  

 

Comparison of the topomer CoMFA maps for pyrrolo[2,3-d]pyrimidines (Figure 

136 – 138) show differences in the steric and/or electronic requirements among the three 

RTKs. These differences could be used, in conjuction with other medicinal chemistry 

techniques and docking studies to modulate the selectivity and/or potency of designed 

small molecule inhibitors with multiple RTK inhibitory potential against the three RTKs. 

 

   

Figure 136. Stdev*coefficient contour maps for EGFR 
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Figure 137. Stdev*coefficient contour maps for VEGFR2 
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Figure 138. Stdev*coefficient contour maps for PDGFR 

D.3.COLCHICINE SITE BINDING ANTI-MITOTIC AGENTS 

D.3.1. Synthesis of novel  2-amino-4-substituted-5-thioaryl-6-methyl-7-substituted 

pyrrolo[2,3-d]pyrimidines as colchicine site binding agents 

Scheme 37: Synthesis of compound 236 

 

 The common synthetic intermediate 3,4,5-trimethoxybenzene thiol 236 was 

synthesized by a Sandmeyer reaction using reported literature methods449 as shown in 

Scheme 37. 3,4,5-Trimethoxyaniline 237 was diazotized using NaNO2 in a 10% HCl 

solution at 0 oC. The diazonium salt was treated with potassium ethyl xanthate at 65 oC to 
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afford the xanthate salt 238 which was purified using chromatography (silica gel, 10% 

EtOAc in hexanes). Basic hydrolysis of the xanthate 238 afforded the desired thiol 236 in 

88% yield. 

 

Scheme 38 shows the synthetic route used for 216a-c, 216f-g. 2-Amino-4-oxo-6-

methyl pyrrolo[2,3-d]pyrimidine 140a was synthesized according to the literature 

procedure reported by Gangjee et al.,312 shown previously in Scheme 16. Compound 

140a was subjected to oxidative thiolation103, 312, 450, 451 with 3,4,5-trimethoxybenzene 

thiol 236 in the presence of iodine at reflux using a 5:1 mixture of EtOH and H2O as the 

solvent to afford compound 216a in 26% yield. The absence of the 5-H proton peak and 

presence of the corresponding aromatic and methoxy peaks in the 1H NMR confirmed 

that the substitution had occurred as anticipated. 

Scheme 38: Synthesis of compounds 216a-c, 216f-g, 217a-c, 217f-g 

 

 

 



243 

 

Chlorination357 of 216a by treatment with POCl3 at reflux in presence of N,N-

dimethylaniline afforded the chloro compound 216b in 26% yield. Chlorination was 

confirmed by 1H NMR by the disappearance of the lactam NH peak at  10.46 and 

deshielding of the other proton peaks. Reductive dehalogenation of 216b using 10% 

palladium on activated carbon and hydrogen at atomospheric pressure afforded 216c. 

Reductive dehalogenation was confirmed by 1H NMR by the appearance of an additional 

peak at  8.46 corresponding to the 4-H. Conditions attempted to optimize the conversion 

of 216b to 216c are listed in Scheme 39 below.  Deprotonation of the pyrrole NH of 216b 

with NaH and subsequent reaction with benzyl bromide380 gave the target compound 216f 

in 12% yield. Reductive dehalogenation of 216f using conditions identical to that used for 

the synthesis of 216c afforded the N7-benzyl protected target compound 217g in 29% 

yield. The 4-pyridylthiol substituted compounds 217a-c and 217f-g were synthesized 

using a similar process as described for the synthesis of 217a-c and 217f-g above. 2-

Amino-6-methyl-5-(pyridin-4-ylthio)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 

217a was synthesized according to the procedure reported by Gangjee et al.355 

 

Scheme 39. Optimization of reaction conditions for conversion of 216b to 216c 
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 Catalyst H2 pressure Time (h) Yield (%) 

1 10% Pd/C 15 psi 4 15 

2 10% Pd/C 15 psi  12 25 

3 10% Pd/C 15 psi  24 40 

3 10% Pd/C with 2 drops NH3 in MeOH 15 psi  24 40 

4 10% Pd/C 35 psi  12 50 

5 10% Pd/C 50 psi  6 40 

6 30% Pd/C 15 psi 12 28 

7 30% Pd/C 15 psi 24 40 

 

 Reductive dehalogenation of 216b to 216c was carried out using H2 in a Paar 

hydrogenation apparatus  in presence of Pd/C as a catalyst. Initial attempts were carried 

out using 10% Pd/C at atmospheric pressure for 4 h led to partial conversion of 216b to 

216c and a 15% isolated yield of 216c. Increasing the reaction time improved the reaction 

yield. Complete conversion of 216b required recharging the reaction vessel with an 

additional equivalent of the catalyst after 12 h. Increasing the H2 pressure to 35 or 50 psi 

did not lead to a significant increase in the yield of 216c. Using 30% Pd/C as the catalyst 

gave similar yields as using 10% Pd/C as the catalyst. Addition of 2 drops of a solution of 

ammonia in methanol to the reaction mixture and recharging the catalyst after 12 h 

provided the best yield of 55% for the conversion of 216b to 216c. 

Scheme 40: Synthesis of target compounds 216d and 216h 

 

 Compounds 216d and 216h were synthesized from compounds 216b and 216d 

respectively by the nucleophilic displacement of the chloro groups by ammonia in a 



245 

 

sealed vessel reaction.357 The presence of an additional amino peak at  5.22 in the 1H 

NMR confirmed that the displacement had taken place. 

Scheme 41: Synthesis of target compounds 217a-h 

 

 Synthesis of target compounds 217a-h from the common synthon 140a is shown 

in Scheme 40. Oxidative thiolation312 of 140a with commercially available thiol 236a in 

presence of I2 in an EtOH:H2O (5:1) mixture at reflux afforded the 5-substituted target 

compound 217a in 34% yield. Chlorination of the 4-oxo moiety of 217a was carried out 

by heating a mixture of 217a in POCl3 at reflux in presence of N,N-dimethylaniline to 

afford target compound 217b in 30% yield. Abstraction of pyrrole NH proton with NaH 

and subsequent nucleophilic displacement380 with benzyl bromide afforded the target 
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compound 217f in 14% yield. While reductive dechlorination of 217b  in a Paar 

hydrogenation apparatus with hydrogen at 15 psi afforded target compound 216c in 30% 

yield, attempts to synthesize target compound 217g from the corresponding chloro 

compound 216f afforded a complex mixture which could not be separated using gravity 

or flash chromatography. Attempts to increase the ratio of Pd/C from 1 eq. to 2 or 3 eq. 

increasing reaction time or performing the hydrogenation at higher pressure (35 or 50 psi) 

did not afford a cleaner reaction,  presumably due to debenzylation of 217g under the 

reaction conditions. Compound 217d was synthesized from 217b by the nucleophilic 

displacement of the 4-Cl of 216b by ammonia in a sealed vessel reaction, similar to the 

synthesis of 216b (Scheme 41). 

 

D.3.2. Molecular Modeling Studies in the Colchicine Binding Site of Tubulin. 

In an attempt to provide a molecular basis of the remarkable activity of the N-Me 

analogs 218a and (±)-219a (Figure 76) and the inactivity of the N-desmethyl analogs 

218b and (±)-219b (Figure 76), we have modeled compounds 218a – 219e (Figure 76) 

into the colchicine binding site.50, 399 The X-ray crystal structure of tubulin at 3.58Å 

resolution was obtained from the protein database (PDB ID 1SA0).232 This crystal 

structure contains the dimers of tubulin complexed with N-deacetyl-N-(2-

mercaptoacetyl)colchicine (DAMA colchicine), a close structural analog of colchicine. 

The binding of colchicine to the tubulin dimer has been described in the literature.243, 452, 

453 Colchine binds to  tubulin at its interface with  tubulin. The colchicine site has 

dimensions of ~10 Å  x ~10 Å x ~4-5 Å and is composed of strands S8 and S9, loop T7 

and helices H7 and H8 from the  subunit and loop T5 from the  subunit of tubulin.232  
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Thr179 and Val181 in the -tubulin subunit form hydrogen bonds with colchicine. 

Additionally, Cys41 forms a hydrogen bond with the oxygen atom of the 3-OMe in the 

A-ring of colchicine. Additional hydrophobic stabilization is afforded by side chain atoms 

of Val181 and Met259.  The carbonyl group of the A-ring also H-bonds with Lys352. 

Docking studies50 were performed using the docking suite of MOE 2008.10. 

Details of the docking protocol used are provided in the experimental section. Multiple 

low-energy conformations (within 1kcal/mol of the best pose) were obtained on docking 

(R)-219a and other analogs. 

 

D.3.2.1. Docking of (R)- and (S)-219a in the colchicine binding site of tubulin. 

Docking of (R)-219a in the colchicine binding site of tubulin.  

 

The multiple docked poses can be explained by the large volume of the active site 

(10 Å x 10 Å x 4-5 Å).232 Figure 139 shows the docked conformation of (R)-219a which 

was selected as a working model for the docking of compounds 218a,b and 219a-e on the 

basis of their structural similarity to the bound conformation of DAMA-colchicine. The 

pose in Figure 139 for (R)-219a was ranked 4th in the results and had a score (-6.838 

kcal/mol) within 1 kcal/mol of the best scored pose.50, 399 
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Figure 139:50, 399 Stereoview. Docked pose of (R)-219a (white) overlaid with DAMA colchicine 

(red) in the colchicine binding site of tubulin.  

 

Comparison of the docked conformation of (R)-219a50, 399 and the crystal structure 

conformation of DAMA colchicine shows overlap of the 4’-OMe phenyl group of (R)- 

219a with the tri-OMe containing A-ring of DAMA colchicine (Figure 139). In this pose 

the 4’-OMe of (R)- 219a overlaps with the 3’-OMe group in the A ring of DAMA 

colchicine. Similar interactions of -OMe groups with Cys241, as observed in Figure 

139, have been reported in the literature.243 The conformation of (R)-219a depicted in 

Figure 139 permits the formation of a hydrogen bond between Cys241 and the oxygen 

atom of the 4’-OMe of (R)-219a as is observed with the 3’-OMe group of DAMA 

colchicine in its X-ray crystal structure with tubulin. The phenyl ring of (R)-219a mimics 

the A ring of colchicine and is involved in hydrophobic interactions with amino acids 

from -tubulin (Leu248, Ala250, Leu255, Ala316). Additionally, the methyl group 

from 4’-OMe could also interact with the side chain of Ile378 and/or with the side chain 

of Val318. 
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The N-Me group of (R)-219a occupies a region in space in proximity to the C5 

and C6 atoms of the B-ring of DAMA-colchicine. In this orientation the N-Me group is 

involved in hydrophobic interactions with the side chain C atoms of Lys254 and 

Ala250. An additional hydrophobic interaction between the N-Me moiety of (R)-219a 

and the side chain C-atom of Leu248 also occurs due to the flexible nature of the protein 

(measured distance between N-Me and side chain C of Leu248 is 4.21Å). These 

interactions could assist in stabilization of the docked conformation of (R)-219a and 

could partly explain the remarkable difference in activity of the N-desmethyl analog, (R)-

219b, of 219a which would lack these additional interactions (Figure 140). The N-Me 

also aids in maintaining the relative conformations of the cyclopenta[d]pyrimidine and 

the phenyl rings of R-219a. While similar docked poses were observed for 219b, the 

docked poses of compounds with the N-Me group consistently scored higher (~1 

kcal/mol) than those of compounds that lacked the N-Me group.50   

 

The cyclopenta[d]pyrimidine of (R)-219a ring partially overlaps with the C-ring 

of DAMA colchicine and is stabilized by hydrophobic interactions with side chains C 

atoms of Leu255, Asn258 and Lys252. The C7 of (R)-219a overlaps the C9 carbonyl 

C of DAMA colchicine. The C2 methyl group of (R)-219a is involved in a hydrophobic 

interaction with Ala180 (4.35Å) while the C6-methyl group of (R)-219a is involved in 

hydrophobic interactions with Val181 and Ala316. There was no significant difference 

in the binding poses and the docked scores of (R)-219a (-6.838 kcal/mol) and (S)-219a (-

6.945 kcal/mol) due to the difference in the chirality of the C6-Me group (Figure 141).  
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Figure 140:50 Stereoview. Superimposition of the docked poses of (R)-219a (white) and 219b 

(magenta) in the colchicine binding site of tubulin. 

 

Figure 141:50 Stereoview. Superimposition of the docked poses of (R)-219a (white), (S)-219a 

(cyan) and DAMA colchicine (red) in the colchicine binding site of tubulin. 

 

While this work was in progress a series of quinazolines454-457 and thieno[3,2-

d]pyrimidines458 as potent apoptosis inducers were published. These reports suggest a 

similar function for the N-methyl moiety, but do not provide details about the binding 

modes of the quinazolines and/or thieno[3,2-d]pyrimidines.  
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Molecular modeling suggests that the binding interactions afforded by the 4’-

OMe group on the anilino ring also plays an important part in dictating the potency of 

these compounds against tubulin. Deletion or moving the 4’-OMe moiety results in a 

significant loss of activity. However, molecular modeling does not provide a reason(s) for 

the loss of potency of (±)-219d compared to (±)-219a. We speculate that the loss of 

potency could be explained either by the loss of interactions by the 4’-OMe moiety of 

219a and/or the additional conformational restriction of the anilino ring by a combination 

of N-methylation and the 2’-OMe moiety of 219d on the phenyl ring or both.50, 400  

 

Figure 142:50 Stereoview. Docking mode of (R)-219a (white) overlaid with docked poses of 15 

ligands243 (blue) in the colchicine binding site of tubulin. 

Comparison of the binding mode of compounds (R)-219a  to the reported binding 

modes243 of 15 known tubulin inhibitors that bind to the colchicine site were carried out. 

As an example, (R)-219a retains the key binding interactions exhibited by the known 

tubulin inhibitors and is in a conformation consistent with those for the reported 

compounds (Figure 142).  
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D.3.2.1. Molecular dynamics calculations 

While there was no significant difference in the binding poses and docked scores 

of (R)-219a (-6.838 kcal/mol) and (S)-219a (-6.945 kcal/mol) due to the chirality of the 

C6-Me group in the initial docking study, the biological evaluation studies of the two 

isomers (Table 23) indicated that (S)-219a showed higher potency towards tubulin in 

vitro assays. It was therefore of interest to perform molecular dynamics studies in order 

to further probe the reasons for the difference in activities between the two enantiomers.  

 

Table 23:
459

 Biological activities of (R)-219a and (S)-219a 

Cmpd IC50 ± SD (nM) IC50 ± SD (nM) 

 SKOV3 SKOV-3 Rr
a
 HeLa WTβIII Rr

b
 

  MDR-1-

6/6 

    

(R,S)-

1•HCl 

34.5 ± 1.4 60.9 ± 4.4 1.8 37.3 ± 4.1 23.9 ± 1.7 0.6 

(S)-1•HCl 16.4 ± 1.6 62.6 ± 6.7 3.8 19.0 ± 0.9 13.3 ± 0.5 0.7 

(R)-1•HCl 85.9 ± 4.5 119.8 ± 

11.3 

1.4 92.9 ± 5.6 67.7 ± 1.3 0.7 

Paclitaxel 2.95 ± 0.07 4,875 ± 

153 

1,622 13.8 ± 0.13 9/05 ± 51.1 6.6 

CA4 6.05 ± 0.61 22.0 ± 6.9 3.6 4.09 ± 0.05 4.02 ± 0.26 0.98 

 

 

Figure 143. Stereo view. Superimposition of the final docked conformations of (R)-219a (blue) 

and (S)-219a (white) in the colchicine site of tubulin. 
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Subjecting the docked poses of (R)-219a and S-219a to an unconstrained 

molecular dynamics protocol in MOE 2010.10 (heating the system from 0o to 300o K 

followed by equilibration, production for 500 ps and cooling to 0o K) revealed differences 

in the final conformations of docked poses of the R- and S-enantiomers in the colchicine 

site as shown in Figure 143. Compound S-219a is bound in a more favorable 

conformation in the colchicine binding pocket as compared to R-219a, which permits the 

formation of hydrophobic interactions between C2-Me and Leu248, and C6-Me and 

Leu255 for S-219a. The corresponding C2- and C6-Me moieties of R-219a do not form 

these hydrophobic interactions with Leu248 and Leu255 respectively. These 

hydrophobic interactions could explain, in part, the improvement in the IC50 value of S-

219a compared to R-219a against isolated tubulin. Prediction of the binding energies of 

the docked conformations of R-219a and S-219a using the Hyde module in LeadIT 

2.0.1460 indicated a greater contribution of the C6-Me group of the S-enantiomer (-6.5 

kJ/mol) towards the total binding energy (-28 kJ/mol) of S-219a as compared to the 

corresponding C6-Me moiety of R-219a (-5.1 kJ/mol) towards the total binding energy of 

R-219a (-25kJ/mol). 
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E. SUMMARY 

 

 

The results from this work are reported into two sections listed below: synthesis of bicyclic 

heterocyclic molecules and molecular modeling studies. 

Synthesis of bicyclic heterocyclic molecules:  

Following structural classes of compounds have been designed, synthesized and studied as 

inhibitors of pjDHFR, RTKs and tubulin:  

4. 2,4-Diamino-6-(substituted-arylmethyl)pyrido[2,3-d]pyrimidines  

5. 4-((3-bromophenyl)linked)-6-(substituted-benzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amines 

6. 6-methyl-5-((substitutedphenyl)thio)-7H-pyrrolo[2,3-d]pyrimidin-2-amines  

From these projects a total of thirty five new compounds (excluding intermediates) were 

synthesized and characterized and were submitted for various biological assays. Results 

from these biological evaluation studies will be presented in due course. These 

compounds are as follows: 

1. 170 6-(((2,5-difluorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

2. 171 6-(((2,4,6-trichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-

diamine 

3. 172 6-(((2,3,4-trichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-

diamine 

4. 173 6-(((2,6-dichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

5. 174 6-(((3,5-dichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

6. 175 6-(((3,4-dichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 
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7. 176 6-(((3,4,6-trichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-

diamine 

8. 177 6-(((2,4,5-trichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-

diamine 

9. 178 6-(((2,3-dichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

10. 179 6-(((2,5-dibromophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

11. 180 6-(((2,6-dinitrophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

12. 186 6-(((2,5-dichlorophenyl)thio)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

13. 187 6-(((3,4,5-trichlorophenyl)thio)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

14. 188 6-(((2,5-difluorophenyl)thio)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

15. 189 6-((2,5-dichlorophenoxy)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

16. 190 6-((3,4,5-trichlorophenoxy)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

17. 191 6-((2,5-difluorophenoxy)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine 

18. 197 4-((3-bromophenyl)thio)-6-(2-methylbenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine 

19. 198 4-((3-bromophenyl)thio)-6-(2,4-dichlorobenzyl)-7H-pyrrolo[2,3-d]pyrimidin-

2-amine 

20. 199 4-((3-bromobenzyl)thio)-6-(2-methylbenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine 

21. 200 4-((3-bromobenzyl)thio)-6-(2,4-dichlorobenzyl)-7H-pyrrolo[2,3-d]pyrimidin-

2-amine 

22. 205 4-(3-bromophenoxy)-6-(2-methylbenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine 
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23. 206 4-(3-bromophenoxy)-6-(2,4-dichlorobenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine 

24. 207 4-((3-bromobenzyl)oxy)-6-(2-methylbenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine 

25. 208 4-((3-bromobenzyl)oxy)-6-(2,4-dichlorobenzyl)-7H-pyrrolo[2,3-d]pyrimidin-

2-amine 

26. 209 N4-(3-bromobenzyl)-6-(2-methylbenzyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-

diamine 

27. 210 N4-(3-bromobenzyl)-6-(2,4-dichlorobenzyl)-7H-pyrrolo[2,3-d]pyrimidine-

2,4-diamine 

28. 216a 2-Amino-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-3,7-dihydro-4H-

pyrrolo[2,3-d]pyrimidin-4-one 

29. 216b 4-chloro-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-

d]pyrimidin-2-amine 

30. 216c 6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine 

31. 216d 6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-d]pyrimidine-

2,4-diamine 

32. 216e 2-amino-7-benzyl-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-3,7-dihydro-

4H-pyrrolo[2,3-d]pyrimidin-4-one 

33. 216f 7-benzyl-4-chloro-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-

pyrrolo[2,3-d]pyrimidin-2-amine 
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34. 216g 7-benzyl-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-

d]pyrimidin-2-amine 

35. 216h 7-benzyl-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-

d]pyrimidine-2,4-diamine 

 

In addition, bulk synthesis of the potent lead compound 170 (750 mg) was carried out to 

facilitate in vivo evaluation. 

During the bulk synthesis of 170, the following synthetic improvements were 

achieved successfully including: 

1. Use of a scalable alternate route to synthesize the advanced intermediate 92a 

(Scheme 24) in one pot. This intermediate was used without purification without 

significantly affecting the yield or purity of the reductive amination step needed 

for synthesis of 170. 

2. Use of mild reductive amination in presence of molecular sieves improved the 

yield of 170 from 7% to 18% and reduced the amounts of side products generated 

which are challenging to separate. Use of benchtop reductive amination instead of 

reductive amination using  a Paar-hydrogenation vessel is easily scalable, permits 

parallel synthesis of multiple analogs from the common intermediate 92a, and 

eliminates the use of hydrogen gas for reduction.  

 

Docking Studies 

Docking studies were performed using LeadIT, MOE, Sybyl or Flexx for the target 

compounds listed above and for other compounds reported by Gangjee et al. against the 
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following targets: 

5. Dihydrofolate reductase: human, P. carinii, P. jirovecii and T. gondii. 

6. Thymidylate synthase: human and T. gondii. 

7. Receptor tyrosine kinases: VEGFR2, EGFR and PDGFR- 

8. Colchicine binding site of tublulin. 

 

There are no reported crystal structures for pjDHFR and PDGFR- At the time this 

work was initiated there were no reported crystal structures for tgDHFR and tgTS. Hence 

homology models were generated for these targets using MOE and validated using tools 

available from the Swissmodel website in order to perform molecular modeling studies. 

Models generated using MOE were validated by comparison with homology models 

generated independently using various automated homology modeling servers available 

online.  The X-ray crystal structures of tgTS complexed with 194d and 194f were very 

recently published. The tgTS homology model generated in this study and employed to 

design novel agents shows remarkable similarity with the recently published X-ray crystal 

structures (C RMSD = 0.68-0.72 Å). (Figure 101) At the time this work was initiated, 

there were no previously reported homology models against pjDHFR. A novel homology 

model was generated for the F36C L65P double mutant form of pjDHFR, which is resistant 

to standard therapeutic agents such as TMP. 

 

Docking studies were performed to provide a molecular basis for the observed activity 

of target compounds against DHFR, RTKs or tubulin. Results from these studies support 

structure-based and ligand-based medicinal chemistry efforts in order to improve potency 
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and/or selectivity of analogs of the docked compounds against these targets. Key findings 

from the docking studies against selected targets are listed below: 

1. pjDHFR homology model: Docking studies of 192d (Figure 83) against pjDHFR 

suggest that the interaction of N-Me of 192d Ile123 in pjDHFR but not with 

Val115 in hDHFR, and conformational restriction of the terminal aniline moiety 

by the N-Me group could explain, in part, the 300-fold improvement in potency of 

192d against pjDHFR compared  to the des-methyl compound 192e. 

Docking studies suggest that steric clash with the larger Phe31 in hDHFR 

compared to the smaller Met33 in pjDHFR (Figure 90) explain, in part, the 19-

fold selectivity of 193f for pjDHFR over hDHFR 

2. F36C L65P double mutant pjDHFR homology model: Docking studies were 

used to explain, in part, the 10-fold loss of potency of 168 against F36C L65P 

double mutant pjDHFR and the 1000-fold loss of potency of standard TMP 

against F36C L65P double mutant pjDHFR compared to wild-type pjDHFR. 

3. tgDHFR homology model: Docking studies of 194a-b (Figure 91) in the 

tgDHFR homology model suggest that the bulky naphthyl moiety in these 

compounds is better accommodated in the larger binding pocket of tgDHFR 

instead of the smaller pocket in hDHFR, and explains, in part, the the decreased 

activity of 194a-b against hDHFR.  

4. tgTS homology model: Docking studies of 194d-j in the tgTS homology model 

suggest that additional interaction of the second ring of the 2-naphthyl moiety of 

194e and the 1-naphthyl analog 194f with tgTS Phe374 compared to a lack of 

similar interaction of the phenyl analog 194d (Figure 88) explains, in part, the 10-
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fold improved potency of 194e and 5-fold for 194f for tgTS over 194d. 

Comparison of the predicted docked pose (Figure 102) and the recently published 

X-ray crystal structure of 194e in tgTS show that the key interactions predicted by 

the docking studies are maintained. This provides validation for the utility of the 

docking software and protocols used in this study for design of analogs of these 

compounds against tgTS. 

5. RTKs: Results from docking studies of three series of bicyclic and tricyclic 

inhibitors against VEGFR2, EGFR and PDGFR- homology model suggest that 

the target compounds can have multiple distinct low-energy binding poses in the 

ATP-binding pocket of these RTKs. In some cases the docking studies could 

explain, in part, the observed activity of the target compounds against RTKs. 

Findings from these docking studies provide validation for the original design 

hypothesis by Gangjee et al. of multiple binding modes of a single agent as a 

means of achieving multiple kinase inhibition in a single molecule. However, the 

presence of multiple distinct binding modes reduces the predictive utility of these 

models for novel compounds against the target RTKs. 

6. Colchicine binding site of tubulin: Results from docking studies suggest that the 

cyclopenta[d]pyrimidines (R)-219and (S)-219 and other compounds in the series 

bind in the colchicine binding site of tubulin with the 4-methoxyphenyl moiety of 

219 mimicking the A-ring of the crystal structure ligand DAMA-colchicine and 

the cyclopenta[d]-pyrimidine scaffold mimicking the C-ring of DAMA-

colchicine. The N4-Me mimicks the C5-C6 bridge of DAMA-colchicine and 

helps maintain the relative orientation of the cyclopenta[d]pyrimidine scaffold 
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and the 4-methoxyphenyl moiety. The 4’-OMe moiety of 219 overlaps the 3-OMe 

of DAMA-colchicine. These findings explain, in part, the molecular basis of the 

importance of both, the N-Me and 4’-OMe moieties in compounds of this series.  

 

Topomer CoMFA models: 

1. tgTS and hTS: Topomer CoMFA provides a useful method for generating 3D-

QSAR models that are insensitive to the initial structural alignment between 

molecules used for model generation. Topomer CoMFA models were developed 

for tgTS and hTS using a set of 85 bicyclic non-classical pyrrolo[2,3-

d]pyrimidines and thieno[2,3-d]pyrimidines using their tgTS and/or hTS 

inhibitory data reported by Gangjee et al. The resultant tgTS topomer CoMFA 

maps representing steric and electronic contributions could be used to explain the 

potency difference between compounds 221a and 221b. Comparison of topomer 

tgTS and hTS CoMFA maps show that the tgTS model is more tolerant to bulk 

compared to the hTS model, and could explain, in part, the 10-fold tgTS 

selectivity of 222a and 222b over hTS. The tgTS topomer CoMFA model was 

further validated by docking 222b in a tgTS homology model and identifying 

Phe374/Phe520 as residues which could interact with the bulky naphthyl ring of 

222b.  

2. RTKs: Topomer CoMFA models were developed for a set of 60 RTK inhibitors 

with either a pyrrolo[2,3-d]pyrimidine or a furo[2,3-d]pyrimidine scaffold by 

using their whole-cell inhibitory data against EGFR, VEGFR2 and PDGFR-. 

Statistically significant models (q2 > 0.3) were developed for the pyrrolo[2,3-
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d]pyrimidine dataset but could not be developed for the furo[2,3-d]pyrimidine 

dataset, possibly due to the low number of furo[2,3-d]pyrimidines for which 

biological data could be obtained. Comparing the topomer CoMFA maps for 

pyrrolo[2,3-d]pyrimidines show differences in the steric and/or electronic 

requirements among the three RTKs, and could be used, in conjuction with other 

medicinal chemistry approaches, to modulate the selectivity and/or potency of 

inhibitors with multiple RTK inhibitory potential. 

 

Drug design efforts that involve virtual library screening using these topomer CoMFA 

models in conjunction with traditional medicinal chemistry techniques and docking are 

currently underway. 
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F. EXPERIMENTAL 

Melting points were determined on a Mel-Temp II melting point apparatus with 

FLUKE 51 K/J thermocouple and are uncorrected. Nuclear magnetic resonance spectra 

for proton (1H) were recorded on a Bruker 300MHz spectrometer or Bruker 400MHz 

spectrometer. The chemical shift values were expressed in ppm (parts per million) 

relative to tetramethylsilane as internal standard; s = singlet, d = double, t = triplet, q = 

quartet, m = multiplet, br = broad singlet. Nuclear magnetic resonance spectra for carbon 

(13C NMR) were recorded on a Bruker 400MHz NMR spectrometer. The relative 

integrals of peak areas agreed with those expected for the assigned structures. High-

resolution mass spectra (HRMS) were recorded on a MICROMASS AUTOSPEC (EBE 

Geometry) double focusing mass spectrometer (Electron Impact – EI) or Waters Q-TOF 

(quadrupole/time-of-flight tandem instrument) mass spectrometer (Electro-Spray 

Ionization – ESI). Thin-layer chromatography (TLC) was performed on WHATMAN 

UV254 silica gel plates with a fluorescent indicator, and the spots were visualized under 

254 and/or 365 nm illumination. Proportions of solvents used for TLC were by volume. 

Column chromatography was performed on 230-400 mesh silica gel purchased from 

ThermoFisher Scientific. All evaporations were carried out under reduced pressure using 

a rotary evaporator. Analytical samples were dried under reduced pressure (0.2 mmHg) in 

an Chem-Dry drying apparatus over P2O5 at 50-80 oC. Elemental analysis was performed 

by Altlantic Microlabs, Norcross, GA. Element compositions are within  0.4% of 

calculated values. Fractional moles of water or organic solvents frequently found in some 

analytical samples could not be prevented despite 24-48 h of drying under reduced 

pressure (0.1 torr) and were confirmed where possible by their presence in the 1H NMR 
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spectra. All solvents and chemicals were purchased from Strem Chemicals Inc., Sigma-

Aldrich Chemical Co. or Fisher Scientific. All of the chemicals and the solvents were 

used as received. 

 

Synthesis of 6-((substituted-phenylamino)methyl)pyrido[2,3-d]pyrimidine-2,4-

diamines  

 

General procedure for synthesis of 170 – 173 

 

Compounds 170 – 173 (Scheme 23) were synthesized using literature methods333 

from the common synthons 91a or 92a and the corresponding anilines. Compounds 

91a333 or 92a284 were synthesized according to literature methods. To a solution of the 

substituted aniline in 70−80% acetic acid were added 91a and Raney Ni. The mixture 

was hydrogenated in a Parr hydrogenation apparatus at atmospheric pressure and room 

temperature for 6 h. TLC analysis using solvent A (5:1:0.1 CHCl3:MeOH:NH4OH) or 

solvent B (6:1 CHCl3:MeOH) showed the disappearance of the starting material and the 

appearance of a product spot along with a spot for the alcohol which resulted from an 

over-reduction of the nitrile 91a or aldehyde 92a. The mixture was treated with Norit® 

and filtered through Celite®. To the acidic filtrate was added 1−3 g of silica gel, and the 

solvent was evaporated to afford a silica gel plug. Alternatively, the acidic filtrate was 

evaporated and the residue dissolved in 50 mL of warm ethanol. The solution was 

adjusted to pH 8 using 1 N Na2CO3 and the resulting crude precipitate filtered. The crude 

product was stirred in hot methanol and filtered, to the filtrate was added 1−3 g of silica 

gel, and the solvent was evaporated to afford a silica gel plug. The resulting plug was 

applied to a 2.2 × 24 cm silica gel column and eluted with solvent C 
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(6:1:0.1CHCl3:MeOH;NH4OH) or solvent D (5:1 CHCl3:MeOH). Fractions containing 

pure product (TLC) were pooled and evaporated to afford analytically pure compounds 

170−191. 

 

6-(((2,5-Difluorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (170) 

 Compound 170 was synthesized from intermediate 91a (0.50 g, 2.64 mmol), 2,5-

fluoroaniline (0.68 g, 5.2 mmol), and Raney Ni (2.0 g) in 100 mL of 80% acetic acid for 

48 h and purified by column chromatography using solvent D to afford a yellow solid 

(0.07 g, 9%):  mp > 232 °C dec; TLC Rf 0.2 in solvent D; 1H NMR (DMSO-d6) δ 4.38 

(d, 2 H, CH2), 6.26−6.33 (m, 3 H, 2-NH2 and NH, exch.), 6.58 (m, 2 H, 2‘,4‘-H), 7.26 (t, 

1 H 3‘-H), 7.49 (br, 2 H, 4-NH2, exch), 8.49 (s, 1 H, 5-H), 8.58 (d, 1 H, 7-H). HR-MS: 

C14H12F2N6: calcd. mass 302.1092, found mass 302.1091. 

 

6-(((2,4,6-Trichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (171) 

Compound 171 was synthesized from intermediate 91a (0.25 g, 1.3 mmol), 2,4,6-

trichloroaniline (0.52 g, 2.6 mmol), and Raney Ni (1.0 g) in 100 mL of 80% acetic acid 

for 48 h and purified by column chromatography using solvent D to afford a brown solid 

(0.02 g, 5%):  mp > 240 °C dec; TLC Rf 0.2 in solvent D; 1H NMR (DMSO-d6) δ 4.35 

(d, 2 H, CH2), 6.26−6.33 (m, 3 H, 2-NH2 and NH, exch.), 7.26 (d, 2 H 3‘,5’-H), 7.49 (br, 

2 H, 4-NH2, exch), 8.49 (s, 1 H, 5-H), 8.58 (d, 1 H, 7-H). HR-MS: C14H11N6Cl3: calcd. 

mass 368.0111, found mass 368.0106. 

 

6-(((2,3,4-Trichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (172) 

Compound 172 was synthesized from intermediate 91a (0.25 g, 1.3 mmol), 2,3,4-
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trichloroaniline (0.52 g, 2.6 mmol), and Raney Ni (1.0 g) in 100 mL of 80% acetic acid 

for 48 h and purified by column chromatography using solvent D to afford a brown solid 

(0.01 g, 3%):  mp > 240 °C dec; TLC Rf 0.2 in solvent D; 1H NMR (DMSO-d6) δ 4.38 

(d, 2 H, CH2), 6.33−6.36 (m, 3 H, 2-NH2 and NH, exch.), 6.41 (d, 1 H 6’-H), 7.09 (d, 1 H 

5’-H), 7.46 (br, 2 H, 4-NH2, exch), 8.49 (s, 1 H, 5-H), 8.56 (d, 1 H, 7-H). HR-MS: 

C14H11N6Cl3: calcd. mass 368.0111, found mass 368.0121. 

 

6-(((2,6-Dichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (173) 

Compound 173 was synthesized from intermediate 91a (0.25 g, 1.32 mmol), 2,6-

dichloroaniline (0.42 g, 2.6 mmol), and Raney Ni (1.0 g) in 100 mL of 80% acetic acid 

for 48 h and purified by column chromatography using solvent B to afford a yellow solid 

(0.02 g, 4%):  mp > 230 °C dec; TLC Rf 0.25 in solvent A; 1H NMR (DMSO-d6) δ 4.38 

(d, 2 H, CH2), 6.26−6.33 (m, 3 H, 2-NH2 and NH, exch.), 6.89 (m, 1 H, 2‘,4‘-H), 7.31-

7.33 (m, 2 H 3‘, 5’-H), 7.49 (br, 2 H, 4-NH2, exch), 8.36 (s, 1 H, 5-H), 8.63 (d, 1 H, 7-H). 

HR-MS: C14H12N6Cl2: calcd. mass 334.0500, found mass 334.0488. 

 

6-(((3,5-Dichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (174) 

Compound 174 was synthesized from intermediate 92a (0.25 g, 1.32 mmol), 3,5-

dichloroaniline (0.44 g, 2.6 mmol), and Raney Ni (1.0 g) in 100 mL of 80% acetic acid 

for 48 h and purified by column chromatography using solvent B to afford a yellow solid 

(0.035 g, 7%):  mp > 236 °C dec; TLC Rf 0.2 in solvent A; 1H NMR (DMSO-d6) δ 4.37 

(d, 2 H, CH2), 6.26−6.33 (m, 3 H, 2-NH2 and NH, exch.), 6.89 (m, 1 H, 2‘,4‘-H), 7.28-

7.33 (m, 1 H 4’-H), 7.59 (br, 2 H, 4-NH2, exch), 8.36 (s, 1 H, 5-H), 8.63 (d, 1 H, 7-H). 

HR-MS: C14H12N6Cl2: calcd. mass 334.0500, found mass 334.0512. 
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6-(((3,4-Dichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (175) 

Compound 175 was synthesized from intermediate 92a (0.25 g, 1.32 mmol), 3,4-

dichloroaniline (0.44 g, 2.6 mmol), and Raney Ni (1.0 g) in 100 mL of 80% acetic acid 

for 48 h and purified by column chromatography using solvent B to afford a yellow solid 

(0.03 g, 6%):  mp > 235 °C dec; TLC Rf 0.23 in solvent A; 1H NMR (DMSO-d6) δ 4.36 

(d, 2 H, CH2), 6.28−6.31 (m, 3 H, 2-NH2 and NH, exch.), 6.90 (m, 1 H, 6‘-H), 7.28-7.33 

(m, 2 H 4’, 5’-H), 7.56 (br, 2 H, 4-NH2, exch), 8.34 (s, 1 H, 5-H), 8.61 (d, 1 H, 7-H). HR-

MS: C14H12N6Cl2: calcd. mass 334.0500, found mass 334.0502. 

 

6-(((3,4,6-Trichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (176) 

Compound 176 was synthesized from intermediate 92a (0.25 g, 1.32 mmol), 3,4-

dichloroaniline (0.44 g, 2.6 mmol), and Raney Ni (1.0 g) in 100 mL of 80% acetic acid 

for 48 h and purified by column chromatography using solvent B to afford a brown solid 

(0.03 g, 6%):  mp > 265 °C dec; TLC Rf 0.23 in solvent A; 1H NMR (DMSO-d6) δ 4.26 

(d, 2 H, CH2), 6.31 (br, 2 H, 2-NH2, exch.), 6.78 – 6.83 (m, 2 H, 6‘-H, NH exch.), 7.47 (s, 

1 H 5’-H), 7.56 (br, 2 H, 4-NH2, exch), 8.30 (s, 1 H, 5-H), 8.58 (d, 1 H, 7-H). HR-MS: 

C14H11N6Cl3: calcd. mass 368.0111, found mass 368.0116. 

 

6-(((2,4,5-Trichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-

diamine (177) 

Compound 177 was synthesized from intermediate 92a (0.25 g, 1.32 

mmol), 3,4-dichloroaniline (0.44 g, 2.6 mmol), and Raney Ni (1.0 g) in 100 mL of 

80% acetic acid for 48 h and purified by column chromatography using solvent B 
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to afford a brown solid (0.03 g, 6%):  mp > 265 °C dec; TLC Rf 0.23 in solvent A; 

1H NMR (DMSO-d6) δ 4.26 (d, 2 H, CH2), 6.31 (br, 2 H, 2-NH2, exch.), 6.78 – 

6.83 (m, 2 H, 6‘-H, NH exch.), 7.47 (s, 1 H 5’-H), 7.56 (br, 2 H, 4-NH2, exch), 

8.30 (s, 1 H, 5-H), 8.58 (d, 1 H, 7-H). HR-MS: C14H11N6Cl3: calcd. mass 

368.0111, found mass 368.0112. 

 

6-(((2,3-Dichlorophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (178) 

Compound 178 was synthesized from intermediate 92a (0.25 g, 1.32 mmol), 3,4-

dichloroaniline (0.44 g, 2.6 mmol), and Raney Ni (1.0 g) in 100 mL of 80% acetic acid 

for 48 h and purified by column chromatography using solvent A to afford a yellow solid 

(0.03 g, 6%):  mp > 233 °C dec; TLC Rf 0.23 in solvent D; 1H NMR (DMSO-d6) δ 4.36 

(d, 2 H, CH2), 6.28−6.31 (m, 3 H, 2-NH2 and NH, exch.), 6.90 (m, 1 H, 6‘-H), 7.28-7.33 

(m, 2 H 4’, 5’-H), 7.56 (br, 2 H, 4-NH2, exch), 8.34 (s, 1 H, 5-H), 8.61 (d, 1 H, 7-H). HR-

MS: C14H12N6Cl2: calcd. mass 334.0500, found mass 334.0505. 

 

6-(((2,5-Dibromophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (179) 

Compound 179 was synthesized from intermediate 92a (0.25 g, 1.32 mmol), 3,4-

dichloroaniline (0.44 g, 2.6 mmol), and Raney Ni (1.0 g) in 100 mL of 80% acetic acid 

for 48 h and purified by column chromatography using solvent A to afford a yellow solid 

(0.03 g, 6%):  mp > 233 °C dec; TLC Rf 0.23 in solvent D; 1H NMR (DMSO-d6) δ 4.37 

(d, 2 H, CH2), 6.26−6.33 (m, 3 H, 2-NH2 and NH, exch), 6.56 (m, 2 H, 2‘,4‘-H), 7.24 (t, 1 

H 3‘-H), 7.49 (br, 2 H, 4-NH2, exch), 8.49 (s, 1 H, 5-H), 8.58 (d, 1 H, 7-H). HR-MS: 

C14H12N6Br2: calcd. mass 421.9490, found mass 421.9501. 



270 

 

6-(((2,6-dinitrophenyl)amino)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (180) 

Compound 180 was synthesized from intermediate 92a (0.25 g, 1.32 mmol), 3,4-

dichloroaniline (0.44 g, 2.6 mmol), and Raney Ni (1.0 g) in 100 mL of 80% acetic acid 

for 48 h and purified by column chromatography using solvent A to afford a yellow solid 

(0.03 g, 6%):  mp > 233 °C dec; TLC Rf 0.23 in solvent D; 1H NMR (DMSO-d6) δ 4.37 

(d, 2 H, CH2), 6.26−6.33 (m, 3 H, 2-NH2 and NH, exch), 6.56 (m, 2 H, 2‘,4‘-H), 7.24 (t, 1 

H 3‘-H), 7.49 (br, 2 H, 4-NH2, exch), 8.49 (s, 1 H, 5-H), 8.58 (d, 1 H, 7-H). HR-MS: 

C14H12N6O4 calcd. mass 356.0982, found mass 356.0969. 

 

General procedure for bulk synthesis of 170 

 

 A mixture of intermediate 92a (0.50 g, 2.64 mmol) and 2,5-fluoroaniline (0.68 g, 

5.2 mmol) in 20 mL of 80% acetic acid was stirred for 12 h in presence of activated 4 Å 

molecular sieves. Sodium triacetoxyborohydride (1.68 g, 7.93 mmol) was added in 

divided portions to the mixture, with the first half being added at 12 h and the other at 24 

h after initiation of the reaction. The reaction was monitored by TLC (5:1 CHCl3:MeOH). 

At the end of the reaction, the solution was filtered by filter paper to remove the 

molecular sieves and concentrated in vacuo. To the concentrated acidified solution was 

added silica gel (1 – 3 g) and a plug was formed by evaporation. The resulting plug was 

applied to a 2.2 × 24 cm silica gel column and eluted with solvent C (6:1:0.1CHCl3: 

MeOH;NH4OH). Fractions containing pure product (TLC) were pooled and evaporated to 

afford analytically pure 170 as yellow solid (0.13 g, 14%):  mp > 232 °C dec; TLC Rf 0.2 

in solvent D; 1H NMR (DMSO-d6) δ 4.38 (d, 2 H, CH2), 6.26−6.33 (m, 3 H, 2-NH2 and 

NH, exch.), 6.58 (m, 2 H, 2‘,4‘-H), 7.26 (t, 1 H 3‘-H), 7.49 (br, 2 H, 4-NH2, exch), 8.49 
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(s, 1 H, 5-H), 8.58 (d, 1 H, 7-H).  

General procedure for the synthesis of compounds 186-191.  

Compounds 186 – 191 were synthesized from intermediate 94a. Intermediate 94a was 

synthesized from 91a using literature methods.344 To a cooled solution (0–5 °C) of the 

appropriate arylthiol dissolved in N,N-dimethyl acetamide or N,N-dimethyl formamide 

was added sodium hydride, triethyl amine or potassium carbonate. The solution was 

stirred under nitrogen for 15 min before intermediate 94a was added. The reaction was 

allowed to warm to room temperature and stirred for 24 h under nitrogen. The desired 

product precipitated out of solution. The yellow solid was filtered and washed with water, 

ethanol and ether. Thin layer chromatographic analyses were performed in two solvent 

systems using solvent A (5:1:0.1 CHCl3:MeOH:NH4OH) or solvent B (6:1 

CHCl3:MeOH). The crude precipitate was re-dissolved in warm N,N-dimethylformamide 

and 1 g of silica gel added to this solution and the solvent was evaporated to afford a plug 

of silica gel for column chromatographic purification. The crude product silica gel plug 

was loaded onto a silica gel column and eluted with solvent D (5:1 CHCl3:MeOH). 

Fractions shown by thin layer chromatography to contain pure product were pooled and 

evaporated to afford a light yellow solid. The solid was washed with water, ethanol and 

ether. All solids were dried in vacuum with the aid of phosphorous pentoxide. 

 

6-(((2,5-dichlorophenyl)thio)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (186) 

Compound 186 was synthesized from intermediate 94a (0.25 g, 1 mmol) and 2,5-

dichlorobenzenethiol (0.21 g, 1.2 mmol) using NaH (0.035 g, 1.5 mmol) as the base in 10 

mL of N,N-dimethyl formamide as the solvent using the general method described above 

and purified by column chromatography using solvent D. Compound 186 was obtained as 



272 

 

a yellow solid (0.03 g, 10%):  mp > 243 °C dec; TLC Rf 0.56 in solvent A; 1H NMR 

(DMSO-d6) δ 4.39 (s, 2 H, CH2), 6.68 (s, 2 H, 2-NH2 exch.), 6.56 (m, 2 H, 2‘,4‘-H), 

7.24-7.49 (m, 3 H 3‘,4’,5’-H), 7.84 (br, 2 H, 4-NH2, exch), 8.49 (s, 1 H, 5-H), 8.68 (d, 1 

H, 7-H). HR-MS: C14H11Cl2N5S: calcd. mass 351.0112, found mass 351.0108. 

 

6-(((3,4,5-trichlorophenyl)thio)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (187) 

Compound 187 was synthesized from intermediate 94a (0.25 g, 1 mmol) and 3,4,5-

trichlorobenzenethiol (0.25 g, 1.2 mmol) using NaH (0.035 g, 1.5 mmol) as the base in 10 

mL of N,N-dimethyl formamide as the solvent using the general method described above 

and purified by column chromatography using solvent D. Compound 187 was obtained as 

a yellow solid (0.03 g, 10%):  mp > 246 °C dec; TLC Rf 0.59 in solvent A; 1H NMR 

(DMSO-d6) δ 4.22 (d, 2 H, CH2), 6.31 (br, 2 H, 2-NH2 exch.), 6.78-6.82 (m, 2 H, 2‘,6‘-H ), 

7.49 (br, 2 H 4-NH2 exch.), 8.30 (d, 1 H, 5-H), 8.58 (d, 1 H, 7-H) HR-MS: C14H10Cl3N5S: 

calcd. mass 384.9722, found mass 384.9716. 

 

6-(((2,5-difluorophenyl)thio)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (188) 

Compound 188 was synthesized from intermediate 94a (0.25 g, 1 mmol) and 2,5-

difluorobenzenethiol (0.15 g, 1.2 mmol) using NaH (0.035 g, 1.5 mmol) as the base in 10 

mL of N,N-dimethyl formamide as the solvent using the general method described above 

and purified by column chromatography using solvent D. Compound 188 was obtained as 

a yellow solid (0.03 g, 10%):  mp > 240°C dec; TLC Rf 0.23 in solvent D; 1H NMR 

(DMSO-d6) δ 4.37 (d, 2 H, CH2), 6.28 (br, 2 H, 2-NH2 exch.), 6.56 (m, 2 H, 2‘,4‘-H), 7.24 

(t, 1 H 3‘-H), 7.49 (br, 2 H, 4-NH2, exch), 8.49 (s, 1 H, 5-H), 8.58 (d, 1 H, 7-H). HR-MS: 
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C14H11F2N5S: calcd. mass 319.0703, found mass 319.0711. 

 

6-((2,5-dichlorophenoxy)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (189) 

Compound 189 was synthesized from intermediate 94a (0.25 g, 1 mmol) and 2,5-

dichlorophenol (0.25 g, 1.2 mmol) using K2CO3 (0.2 g, 1.5 mmol) as the base in 10 mL 

of N,N-dimethyl formamide as the solvent using the general method described above and 

purified by column chromatography using solvent D. Compound 189 was obtained as a 

light yellow solid (0.026 g, 8%):  mp > 230 °C dec; TLC Rf 0.23 in solvent D; 1H NMR 

(DMSO-d6) δ 4.37 (d, 2 H, CH2), 6.26 (br, 2 H, 2-NH2 exch), 6.56 (m, 2 H, 2‘,4‘-H), 

7.24 (t, 1 H 3‘-H), 7.49 (br, 2 H, 4-NH2, exch), 8.49 (s, 1 H, 5-H), 8.58 (d, 1 H, 7-H). 

HR-MS: C14H11Cl2N5O: calcd. mass 335.0341, found mass 335.0344. 

 

6-((3,4,5-trichlorophenoxy)methyl)pyrido[2,3-d]pyrimidine-2,4-diamine (190) 

Compound 190 was synthesized from intermediate 94a (0.25 g, 1 mmol) and 

3,4,5-trichlorophenol (0.23 g, 1.2 mmol) using NaH (0.035 g, 1.5 mmol) as the base in 10 

mL of N,N-dimethyl formamide as the solvent using the general method described above 

and purified by column chromatography using solvent D. Compound 190 was obtained as 

a yellow solid (0.038 g, 11%):  mp > 236 °C dec; TLC Rf 0.23 in solvent D; 1H NMR 

(DMSO-d6) δ 4.23 (d, 2 H, CH2), 6.34 (br, 2 H, 2-NH2 exch.), 6.78-6.83 (m, 2 H, 2‘,6‘-

H), 7.50 (br, 2 H 4-NH2 exch.), 8.31 (d, 1 H, 5-H), 8.58 (d, 1 H, 7-H) HR-MS: 

C14H10Cl3N5O: calcd. mass 368.9951, found mass 368.9960. 

General Procedure for the Synthesis of 228a,b 

Compounds 228a,b were synthesized using reported literature methods.387 A 

solution of substituted phenyl acetic acids (5 mmol) in 5 mL of dry toluene and 5 mL of 
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thionyl chloride was heated at reflux for 1 h and the colorless solution was evaporated in 

vacuo. The resulting acid chloride was dissolved in 10 mL of ether and added dropwise 

with stirring to 30 mL of ethereal diazomethane (about 13 mmol, made from 20 mmol of 

N-nitroso-N-methyl urea)461 at 0–5 °C. The yellow solution was allowed to stand at room 

temperature for 1 h, then 5 mL of 47.5% aqueous HBr was added drop wise to the 

solution and the yellow mixture was heated at 70–80 °C (oil bath) for 1 h. The reaction 

was cooled to room temperature and the ether layer was separated, washed with water (10 

mL), saturated NaHCO3 aqueous solution (10 mL) and water (10 mL) and dried 

(anhydrous Na2SO4). The solution was evaporated to afford the α-bromomethyl benzyl 

ketones 226a-b which were used in the next step without further purification. 

The α-bromomethyl benzyl ketones 226a-b was placed in a 50-mL flask with an 

equivalent amount of 2,6-diaminopyrimidin-4-one 227 and 5 mL dry DMF was added to 

form a clear solution. The mixture was stirred at room temperature for 3 days. After 1 day 

the reaction mixture darkened and at the third day of the reaction, a solid could be 

precipitated out in some cases. To the reaction mixture was added 1 g of silica gel and the 

solvent was evaporated in vacuo to afford a dry plug. This plug was placed on the top of 

45×150 mm silica gel column and eluted with CHCl3/MeOH  (gradient elution, 2% 

MeOH in CHCl3, and 5% MeOH in CHCl3). Fractions containing the product (TLC) 

were pooled and evaporated to afford the pure 2-amino-4-oxo-6-substituted benzyl 

pyrrolo[2,3-d]pyrimidines 228a-b. 

 

2-Amino-4-oxo-6-(2-methylbenzyl)-pyrrolo[2,3-d]pyrimidine 228a 

1-bromo-3-(2-methylphenyl)-acetone 226a was obtained from 2-

methylphenylacetic acid (0.75 g, 5 mmol)using the general procedure described above as 
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a yellow oil (0.64 g, 56%). Rf : 0.55 (Hexane/EtOAc, 3:1). 1H NMR (CDCl3): δ 2.25 (s, 

3H, CH3), 3.85 (s, 2H, CH2), 3.95 (s, 2H, CH2), 7.10–7.22 (m, 4H, Ph–H). 

Using the general procedure described above, compound 226a (1 g, 4.2 mmol) 

reacted with an equivalent amount of 2,6-diaminopyrimidin-4-one 227 to afford 

compound 228a (400 mg, 51%) as a yellow solid. Mp: 287 °C. (Lit.387 290 °C) TLC Rf 

0.56 (CHCl3/CH3OH, 5:1). 1H NMR (DMSO-d6): δ 2.32 (s, 3H, CH3), 3.90 (s, 2H, CH2), 

5.85 (s, 1H, C5-CH), 6.03 (s, 2H, NH2, exch.), 7.14–7.28 (m, 4H, Ar–H), 10.10 (s, 1H, 

NH, exch.), 10.94 (s, 1H, NH).  

 

2-Amino-4-oxo-6-(2,4-dichlorobenzyl)-pyrrolo[2,3-d]pyrimidine 228b 

1-bromo-3-(2,4-dichlorophenyl)-acetone 226b was obtained from 2,4-

dichlorophenylacetic acid (1.02 g, 5 mmol),using the general procedure described above 

as a white solid (0.68 g, 50%). Mp: 71–73 °C. (Lit.387 70 – 73 °C).  TLC Rf0.60 

(Hexane/EtOAc, 3:1). 1H NMR (CDCl3): δ 3.95 (s, 2H, CH2), 4.05 (s, 2H, CH2), 7.20–

7.45 (m, 3H, Ar–H). 

Using the general procedure described above, compound 226b (700 mg, 2.5 mmol) was 

reacted with an equivalent amount of 2,6-diaminopyrimidin-4-one 227 to afford the 

compound 228b (430 mg, 43%) as a yellow solid. Mp: 265 °C. TLC Rf 0.51 

(CHCl3/CH3OH, 5:1). 1H NMR (DMSO-d6): δ 3.94 (s, 2H, CH2), 5.85 (s, 1H, C5-CH), 

7.25–7.60 (m, 3H, Ar–H), 8.24 (s, br., 2H, NH2, exch.), 10.60 (s, 1H, NH, exch.), 11.20 

(s, 1H, NH, exch.).  
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General procedure for the synthesis of compounds 230a-b 

2-Amino-4-oxo-6-substitued-pyrrolo[2,3-d]pyrimidines 228a or 228b (about 1 

mmol), 5 mL of POCl3 and 0.1 mL of PhNMe2 were placed in a 50-mL round-bottom 

flask. The mixture was heated to reflux and kept stirring for 4 h. After evaporation of the 

excess of POCl3, crushed ice was added to the mixture. The reaction mixture was 

neutralized with NH3·H2O (pH 7, tested with a pH paper), and extracted with 

CHCl3 (3×50 mL). The organic phase was combined and dried with Na2SO4. 

Concentration of the chloroform layer afforded a brown solid that was re-dissolved in 

chloroform (2–3 mL) and was placed to the top of a 15×150 mm column and eluted with 

0.1% methanol in chloroform. Alternatively, a silica gel plug was formed using around 

500mg of silica gel and was placed on top of the column for chromatography. Fractions 

containing the product were pooled and evaporated to afford pure 2-amino-4-chloro-6-

substitued-pyrrolo[2,3-d]pyrimidine 230a-b. 

 

2-Amino-4-chloro-6-(2-methylbenzyl)-pyrrolo[2,3-d]pyrimidine 230a 

Compound 230a was synthesized from 2-amino-4-oxo-6-(2-methylbenzyl)-pyrrolo[2,3-

d]pyrimidine 228a (200 mg, 0.78 mmol) using the general procedure described above to 

afford 230a 64 mg (29%) as a light yellow solid. Mp: 250-252 °C (Lit.387 250 °C). 

TLC Rf 0.53 (CHCl3/CH3OH, 10:1). 1H NMR (DMSO-d6): δ 3.91 (s, 2H, CH2), 5.69 (s, 

1H, C5-CH), 6.42 (s, 2H, NH2), 7.13–7.16 (m, 4H, Ar–H), 11.46 (s, 1H, NH). 

2-Amino-4-chloro-6-(2,4-dichlorobenzyl)-pyrrolo[2,3-d]pyrimidine 35b 

Compound 230b was synthesized from 2-amino-4-oxo-6-(2,4-dichlorobenzyl)-

pyrrolo[2,3-d]pyrimidine 228b (300 mg, 0.97 mmol) using the general procedure 
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described above to afford 107 mg (32%) of 230b as a light yellow solid. Mp: >250 °C 

(Lit.387 >255 °C) . TLC Rf 0.5 (CHCl3/CH3OH, 10:1). 1H NMR (DMSO-d6): δ 4.17 (s, 

2H, CH2), 5.82 (s, 1H, C5-CH), 6.48 (s, 2H, NH2), 7.33–7.66 (m, 3H, Ar–H), 11.53 (s, 

1H, NH). 

General method for synthesis of 197-200, 205-210 

Compounds 197-200, 205-210 were synthesized from the nucleophilic 

displacement of the 4-chloro moiety of intermediates 230a-b. Intermediates 230a-b were 

synthesized using literature methods.462 To a cooled solution (0–5 °C) of 3-

bromobenzenethiol, 3-bromophenol, (3-bromophenyl)methanethiol, (3-

bromophenyl)methanol or (3-bromophenyl)methanamine in iPrOH or nBuOH was added 

2 eq. of base (sodium hydride, triethyl amine or potassium carbonate). The solution was 

stirred under nitrogen for 30 min before intermediate 230a or 230b was added. The 

reaction was allowed to warm to room temperature and stirred for 24 h under nitrogen. To 

the solution was added 1-3 g of silica gel was added to the mixture concentrated in vacuo 

to afford a plug of silica gel for column chromatographic purification. Thin layer 

chromatographic analyses were performed in two solvent systems using solvent A 

(5:1:0.1 CHCl3:MeOH:NH4OH) or solvent B (10:1 CHCl3:MeOH). The crude product 

silica gel plug was loaded onto a silica gel column and eluted with solvent D (5:1 

CHCl3:MeOH). Fractions shown by thin layer chromatography to contain pure product 

were pooled and evaporated to afford a solid. The solid was washed with water, ethanol 

and ether. All solids were dried in vacuum with the aid of phosphorous pentoxide. 
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4-((3-bromophenyl)thio)-6-(2-methylbenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(197 ) 

 Compound 197 was synthesized from intermediate 230a (0.2 g, 0.75 mmol) and 

3-bromobenzenethiol (0.27 g, 1.5 mmol) using K2CO3 (0.2 g, 1.5 mmol) as the base in 10 

mL of iPrOH as the solvent using the general method described above and purified by 

column chromatography using solvent D. Compound 189 was obtained (11 mg, 18%) as 

an off white solid. Mp: 241–243 °C. TLC Rf 0.49 (CHCl3/CH3OH, 10:1). 1H NMR 

(DMSO-d6): δ 2.27 (s, 3H, CH3), 3.89 (s, 2H, CH2), 4.36 (s, 2H, CH2) 5.72 (s, 2H, NH2 

exch.), 5.98 (s, 1H, C5-CH), 7.04–7.20 (m, 6H, Ar–H), 7.99–8.09 (m, 2H, Ar–H), 8.88 (s, 

1H, NH, exch.), 10.91 (s, 1H, NH, exch.) Anal. (C20H17N4BrS): Cal. C: 56.48, H: 4.03, N: 

13.17. Found C: 56.45, H: 3.98, N: 13.13. 

 

((3-bromophenyl)thio)-6-(2,4-dichlorobenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(198) 

 Compound 198 was synthesized from intermediate 230b (0.2 g, 0.75 mmol) and 

3-bromobenzenethiol (0.27 g, 1.5 mmol) using K2CO3 (0.2 g, 1.5 mmol) as the base in 10 

mL of iPrOH as the solvent using the general method described above and purified by 

column chromatography using solvent D. Compound 198 was obtained (11 mg, 18%) as 

an off white solid. Mp: 237–239 °C. TLC Rf 0.49 (CHCl3/CH3OH, 10:1). 1H NMR 

(DMSO-d6): δ 2.27 (s, 3H, CH3), 3.89 (s, 2H, CH2), 5.73 (s, 2H, NH2), 5.98 (s, 1H, C5-

CH), 7.04–7.20 (m, 6H, Ar–H), 7.99–8.09 (m, 2H, Ar–H), 8.87 (s, 1H, NH), 10.91 (s, 1H, 

NH). Anal. (C20H17N4BrS): Cal. C: 56.48, H: 4.03, N: 13.17. Found C: 56.45, H: 3.98, N: 

13.13. 
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4-((3-bromobenzyl)thio)-6-(2-methylbenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(199) 

Compound 199 was synthesized from intermediate 230a (0.2 g, 0.75 mmol) and 

3-bromobenzenethiol (0.29 g, 1.5 mmol) using tBuOK (0.16 g, 1.5 mmol) as the base in 

10 mL of iPrOH as the solvent using the general method described above and purified by 

column chromatography using solvent D. Compound 189 was obtained (62 mg, 24%) as 

an off white solid. Mp: 226–228 °C. TLC Rf 0.52 (CHCl3/CH3OH, 10:1). 1H NMR 

(DMSO-d6): δ 2.29 (s, 3H, CH3), 3.85 (s, 2H, CH2), 5.72 (s, 2H, NH2), 5.91 (s, 1H, C5-

CH), 7.08–7.35 (m, 6H, Ar–H), 7.94–8.03 (m, 2H, Ar–H), 10.93 (s, 1H, NH). Anal. 

(C21H19N4BrS): Cal. C: 57.41, H: 4.03, N: 12.75. Found C: 57.45, H: 4.28, N: 12.71. 

 

4-((3-bromobenzyl)thio)-6-(2,4-dichlorobenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(200) 

Compound 200 was synthesized from intermediate 230b (0.2 g, 0.6 mmol) and 3-

bromobenzenethiol (0.25 g, 1.2 mmol) using tBuOK (0.14 g, 1.2 mmol) as the base in 10 

mL of nBuOH as the solvent using the general method described above and purified by 

column chromatography using solvent D. Compound 189 was obtained (44 mg, 15%) as 

an off white solid. Mp: 231–233 °C. TLC Rf 0.52 (CHCl3/CH3OH, 10:1). 1H NMR 

(DMSO-d6): δ 3.96 (s, 2H, CH2), 5.91 (s, 2H, NH2 exch), 6.04 (s, 1H, C5-CH), 7.08–7.45 

(m, 5H, Ar–H), 7.91–8.02 (m, 2H, Ar–H), 11.03 (s, 1H, NH). Anal. (C20H15N4Cl2BrS 

0.35H2O): Cal. C: 48.60, H: 3.06, N: 11.34. Found C: 47.88, H: 3.04, N: 11.12. 
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4-(3-bromophenoxy)-6-(2-methylbenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine (205) 

Compound 205 was synthesized from intermediate 230a (0.2 g, 0.75 mmol) and 

3-3-bromophenol (0.17 g, 1.5 mmol) using K2CO3 (0.16 g, 1.5 mmol) as the base in 10 

mL of iPrOH as the solvent using the general method described above and purified by 

column chromatography using solvent D. Compound 205 was obtained (66 mg, 22%) as 

an off white solid. Mp: > 239 °C dec. TLC Rf 0.49 (CHCl3/CH3OH, 10:1). 1H NMR 

(DMSO-d6): 1H NMR (DMSO-d6): δ 2.26 (s, 3H, CH3), 3.84 (s, 2H, CH2), 5.72 (s, 2H, 

NH2), 5.99 (s, 1H, C5-CH), 6.85–7.14 (m, 6H, Ar–H), 7.94–8.03 (m, 2H, Ar–H), 10.93 

(s, 1H, NH). Anal. (C20H17N4BrO): Cal. C: 58.69, H: 4.19, N: 13.69. Found C: 58.88, H: 

4.03, N: 13.55. 

 

4-(3-bromophenoxy)-6-(2,4-dichlorobenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(206) 

Compound 206 was synthesized from intermediate 230b (0.2 g, 0.75 mmol) and 

3-3-bromophenol (0.21 g, 1.5 mmol) using K2CO3 (0.14 g, 1.5 mmol) as the base in 10 

mL of nBuOH as the solvent using the general method described above and purified by 

column chromatography using solvent D. Compound 205 was obtained (66 mg, 22%) as 

an off white solid. Mp: > 240 °C dec. TLC Rf 0.49 (CHCl3/CH3OH, 10:1). 1H NMR 

(DMSO-d6): δ 4.00 (s, 2H, CH2), 5.84 (s, 2H, NH2 exch.), 6.02 (s, 1H, C5-CH), 7.09–

7.63 (m, 5H, Ar–H), 8.04–8.22 (m, 2H, Ar–H), 10.99 (s, 1H, NH exch.). Anal. 

(C19H13N4BrCl2O 0.15H2O): Cal. C: 49.17, H: 2.82, N: 12.07. Found C: 48.67, H: 2.63, 

N: 11.76. 
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4-((3-bromobenzyl)oxy)-6-(2-methylbenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(207) 

Compound 207 was synthesized from intermediate 230a (0.2 g, 0.75 mmol) and 

3-3-(3-bromophenyl)methanol (0.27 g, 1.5 mmol) using tBuOK (0.16 g, 1.5 mmol) as the 

base in 10 mL of nBuOH as the solvent using the general method described above and 

purified by column chromatography using solvent D. Compound 207 was obtained (32 

mg, 11%) as an off white solid. Mp: 228–231 °C. TLC Rf 0.49 (CHCl3/CH3OH, 10:1). 1H 

NMR (DMSO-d6): δ 2.35 (s, 3H, CH3), 3.88 (s, 2H, CH2), 4.42 (s, 2H, CH2) 5.74 (s, 2H, 

NH2 exch.), 6.01 (s, 1H, C5-CH), 7.05–7.43 (m, 6H, Ar–H), 8.00–8.10 (m, 2H, Ar–H), 

8.91 (s, 1H, NH, exch.), 10.94 (s, 1H, NH, exch.)  Anal. (C21H19N4BrO 0.35MeOH): Cal. 

C: 59.58, H: 4.52, N: 13.24. Found C: 58.77, H: 6.64, N: 12.76. 

4-((3-bromobenzyl)oxy)-6-(2,4-dichlorobenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(208) 

Compound 208 was synthesized from intermediate 230b (0.2 g, 0.61 mmol) and 

3-3-(3-bromophenyl)methanol (0.23 g, 1.2 mmol) using tBuOK (0.14 g, 1.2 mmol) as the 

base in 10 mL of nBuOH as the solvent using the general method described above and 

purified by column chromatography using solvent D. Compound 207 was obtained (32 

mg, 11%) as an off white solid. Mp: 240–242 °C. TLC Rf 0.49 (CHCl3/CH3OH, 10:1). 1H 

NMR (DMSO-d6): δ 4.02 (s, 2H, CH2), 4.59 (s, 2H, CH2) 5.76 (s, 2H, NH2 exch.), 6.02 

(s, 1H, C5-CH), 7.12–7.78 (m, 5H, Ar–H), 7.98–8.06 (m, 2H, Ar–H), 10.98 (s, 1H, NH, 

exch.) Anal. (C20H15N4BrCl2O 0.05H2O): Cal. C: 50.24, H: 3.16, N: 11.72. Found C: 

50.11, H: 3.02, N: 11.34. 
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N4-(3-bromobenzyl)-6-(2-methylbenzyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine 

(209) 

Compound 209 was synthesized from intermediate 230a (0.2 g, 0.75 mmol) and 

(3-bromophenyl)methanamine (0.27 g, 1.5 mmol) using tBuOK (0.16 g, 1.5 mmol) as the 

base in 10 mL of nBuOH as the solvent using the general method described above and 

purified by column chromatography using solvent D. Compound 209 was obtained (23 

mg, 8%) as an off white solid. Mp: 218–221 °C. TLC Rf 0.49 (CHCl3/CH3OH, 10:1). 1H 

NMR (DMSO-d6): δ 2.27 (s, 3H, CH3), 3.89 (s, 2H, CH2), 4.36 (s, 2H, CH2) 5.72 (s, 2H, 

NH2 exch.), 5.98 (s, 1H, C5-CH), 7.04–7.20 (m, 6H, Ar–H), 7.99–8.09 (m, 2H, Ar–H), 

8.88 (s, 1H, NH, exch.), 10.91 (s, 1H, NH, exch.) HRMS (C21H20N5Br 0.35MeOH): 

calcd. mass 421.0902, found mass 421.0960.  

 

N4-(3-bromobenzyl)-6-(2,4-dichlorobenzyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-

diamine (210) 

 

Compound 209 was synthesized from intermediate 230b (0.2 g, 0.6 mmol) and 

(3-bromophenyl)methanamine (0.22 g, 1.2 mmol) using tBuOK (0.14 g, 1.2 mmol) as the 

base in 10 mL of nBuOH as the solvent using the general method described above and 

purified by column chromatography using solvent D. Compound 209 was obtained (40 

mg, 13%) as an off white solid. Mp: 224–227 °C. TLC Rf 0.49 (CHCl3/CH3OH, 10:1). 

1H NMR (DMSO-d6): δ 4.01 (s, 2H, CH2), 4.62 (s, 2H, CH2) 5.81 (s, 2H, NH2 exch.), 

6.04 (s, 1H, C5-CH), 7.05–7.64 (m, 5H, Ar–H), 8.00–8.09 (m, 2H, Ar–H), 8.91 (s, 1H, 

NH, exch), 10.98 (s, 1H, NH, exch.). HRMS (C21H20N5Br 0.35MeOH): calcd. mass 

474.1870, found mass 474.1902. 
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2-Amino-6-methyl-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidine (140a).  

Compound 140a was synthesized using literature methods.312 A suspension of 

2,6-diamino-4-hydroxypyrimidine (1.26 g, 10 mmol) in 25 mL of water containing 

sodium acetate (0.82 g, 10 mmol) was heated to 100 °C until it formed a clear solution. 

Chloroacetone (0.79 mL, 10 mmol) was added to this solution in one lot, following which 

a precipitate began to form within 10 min. The reaction mixture was heated with stirring 

at 100 °C for an additional 4 h, cooled to 0 °C, and filtered to afford 1.05 g (63%) of 

140a as a slight pink colored solid: mp  260 °C (lit.312  260 °C); TLC Rf 0.37 

(CHCl3/MeOH, 4:1); 1H NMR (DMSO-d6) δ 2.14 (s, 3H, 6-CH3), 5.83 (s, 1H, 5-CH), 

5.98 (bs, 2H, 2-NH2), 10.15 (bs, 1H, 7-NH), 10.78 (bs, 1H, 3-NH).  

3,4,5-Trimethoxybenzenethiol (236). 

Compound 236 was synthesized from xanthate 238 using literature methods.449 

Xanthate 238 was synthesized from 3,4,5-trimethoxyaniline 237. Aniline 237 (0.97 g, 

5.44 mmol) was dissolved in MeOH (10 mL) and 10% aqueous HCl and was then cooled 

to 0 °C. A solution of sodium nitrite (0.5 g, 7.25 mmol) in H2O (20 mL) was added 

dropwise over 1 h. The reaction mixture was stirred at 0 °C for an additional 15 min at 

which time the solution was added to a solution of potassium ethyl xanthate (1.73 g, 10.8 

mmol) in H2O (50 mL) at 65 °C. After the mixture was stirred for 15 min, the reaction 

was cooled to 25 °C. The resulting mixture was extracted with EtOAc (3 × 20 mL) and 

the combined organic extracts were washed with brine (20 mL), dried (Na2SO4), and 

concentrated in vacuo. Flash column chromatography of the residue (silica gel, 10% 

EtOAc in hexanes) afforded xanthate 238 (0.72 g, 51%).  Rf 0.36 (EtOAc: hexanes 1:5); 
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1H NMR (CDCl3) δ 6.72 (s, 2 H, ArH), 4.60 (q, 2 H, OCH2), 3.86 (s, 3 H, OCH3), 3.84 (s, 

6 H, OCH3), 1.33 (t, 3 H, CH3) 

A solution of xanthate 238 (0.7 g, 2.43 mmol) in 1N NaOH (20 mL) was heated 

under reflux for 8 h. The solution was concentrated under vacuum, water (75 mL) was 

added, and the solution was extracted with ether (3 × 25 mL). The ether extracts were 

discarded. The aqueous layer was cooled in an ice bath and acidified to pH 1-2 with 6N 

H2SO4. The oil that separated was extracted with ether (3 × 25 mL). The ether layer was 

washed with water (3 × 25 mL) and dried over anhydrous Na2SO4. Ether was removed 

under vacuum to afford a crude oil that contained 236, and was used without further 

purification.     

General procedure for synthesis of 216a, 217a 

 To a solution of 140a (2.0 mmol) in a mixture of ethanol/water (2:1, 90 mL) was 

added the appropriate thiophenol (4.0 mmol) and the reaction mixture was heated to 100-

110 °C. At this point, I2 (4.0 mmol) was added and the heating was continued with 

stirring for a total of 3 hours. To this mixture was added excess Na2S2O7 and 

concentrated under reduced pressure. To the resulting residue was added some silica gel 

and MeOH and the solution was evaporated to dryness to afford a plug which was loaded 

on top of a column and eluted with a gradient of 1-5% MeOH in CHCl3. Fractions 

containing the desired spot (TLC) were pooled and evaporated to dryness. The resulting 

residue was recrystallized from MeOH, filtered and dried to obtain the desired 

compound. 



285 

 

2-Amino-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-3,7-dihydro-4H-pyrrolo[2,3-

d]pyrimidin-4-one (216a). 

 Compound 140a (0.330g, 2 mmol) was reacted with 236 (0.8 g, 4 mmol) in 

presence of I2 (1 g, 4 mmol) using the method described above to afford 216a (194 mg, 

26%) as an off-white solid. Mp  240 °C dec.; TLC Rf 0.44 (CHCl3/MeOH, 5:1, with 2 

drops of NH4OH); 1H NMR (DMSO-d6) δ 2.19 (s, 3H, 6-CH3), 3.82 (s, 3H, OCH3), 3.84 

(s, 6H, OCH3) 6.15 (bs, 2H, 2-NH2 exch.), δ 6.53 (s, 2H, C6H4), 10.46 (s, 1H, 3-NH), 

11.48 (s, 1 H, 7-NH). Anal. (C16H18N4O4S 0.1H2O) C, H, N: Cal. C: 53.03, H: 5.01, N: 

15.46. Found C: 52.61, H: 4.88, N: 15.34. 

2-Amino-6-methyl-5-(pyridin-4-ylthio)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-

one (217a). 

 Compound 140a (0.330g, 2 mmol) was reacted with pyridine-4-thiol 239 (0.45 g, 

4 mmol) in presence of I2 (1 g, 4 mmol) using the method described above to afford 217a 

(94 mg, 16%) as a brown solid. mp 242 °C (lit.355 >250 oC, dec.); TLC Rf 0.27 

(CHCl3/MeOH, 5:1, with 2 drops of NH4OH); 1H NMR (DMSO-d6) δ 2.17 (s, 3 H, 6-

CH3), 6.14 (s, 2 H, 2-NH2 exch.), 6.93 (d, 2 H, 3'-, 5'-CH,), 8.26 (d, 2 H, 2'-, 6'-CH,), 

10.46 (s, 1 H, 3-NH exch.), 11.53 (s, 1 H, 7-NH exch.). 

General method for synthesis of 216b and 217b 

2-Amino-4-oxo-6-substitued-pyrrolo[2,3-d]pyrimidine 216a or 217a (about 1 mmol), 5 

mL of POCl3 and 0.1 mL of PhNMe2 were placed in a 50-mL round-bottom flask. The 

mixture was heated to reflux and kept stirring for 4 h. After evaporation of the excess of 
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POCl3, ice-cold water was added and the reaction mixture was neutralized with 

NH3·H2O. The precipitated solid was collected by filtered, and the filtrate was extracted 

with CHCl3 (3×50 mL). The organic phase was combined and dried (Na2SO4). 

Concentration of the chloroform afforded additional solid compounds. The solids thus 

obtained were dissolved in methanol, then 1 g silica gel was added and removed the 

solvent in vacuo to afford a dry plug. The plug was placed on the top of a 15×150 mm 

column and eluted with 2% methanol in chloroform. Fractions containing the product 

were pooled and evaporated to afford pure 216b or 217b respectively. 

 

4-Chloro-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (216b) 

Reaction of 216a (0.36 g, 1 mmol) with 5 mL POCl3 in presence 0.1 mL of PhNMe2 

using the method described afforded 216b (53 mg, 18%) as a brown solid. mp 250 °C, 

dec.; TLC Rf 0.51 (CHCl3/MeOH, 5:1, with 2 drops of NH4OH) 1H NMR (DMSO-d6) δ 

2.19 (s, 3H, 6-CH3), 3.78 (s, 3H, OCH3), 3.83 (s, 6H, OCH3) 6.15 (bs, 2H, 2-NH2, exch.), 

δ 6.53 (s, 2H, C6H4), 11.84 (s, 1 H, 7-NH, exch.). Anal. (C16H17ClN4O3S 0.1MeOH) C, 

H, N: Cal. C: 50.46, H: 4.50, N: 14.71. Found C: 50.83, H: 4.34, N: 14.12. 

4-Chloro-6-methyl-5-(pyridin-4-ylthio)-7H-pyrrolo[2,3-d]pyrimidin-2-amine (217b) 

Reaction of 217a (0.27 g, 1 mmol) with 5 mL POCl3 in presence 0.1 mL of PhNMe2 

using the method described afforded 217b (35 mg, 12%) above as a tan solid. mp 

250 °C, dec.; TLC Rf 0.36 (CHCl3/MeOH, 5:1, with 2 drops of NH4OH); 1H NMR 
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(DMSO-d6) δ 2.17 (s, 3 H, 6-CH3), 6.21 (s, 2 H, 2-NH2 exch.), 6.94 (d, 2 H, 3'-, 5'-CH,), 

8.24 (d, 2 H, 2'-, 6'-CH,), 11.53 (s, 1 H, 7-NH exch.). 

6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(216c) 

To a solution of 216b (150 mg, 0.4 mmol) was in 20 mL MeOH in a Paar hydrogenation 

vessel was added 10% Pd/C (500 mg) and the mixture subjected to hydrogenation at 15 

psi of hydrogen. The reaction was continued till the appearance of a new spot (TLC) and 

consumption of the starting material spot. The reaction was stopped and the mixture 

filtered through celite to remove Pd/C. The celite was washed with MeOH (2 x 20 mL) 

and the washing combined with the filtrate. To this, 1 g of silica gel was added and the 

solvent removed in vacuo to afford a silica gel plug. This plug was placed on the top of a 

15×150 mm column and eluted with 2% methanol in chloroform. Fractions containing 

the product were pooled and evaporated to afford pure 216c (73 mg, 55%) as a light 

brown solid. Mp  238 °C, dec.; TLC Rf 0.4 (CHCl3/MeOH, 5:1, with 2 drops of 

NH4OH) 1H NMR (DMSO-d6) δ 2.19 (s, 3H, 6-CH3), 3.78 (s, 3H, OCH3), 3.83 (s, 6H, 

OCH3) 6.19 (bs, 2H, 2-NH2, exch.), 6.53 (s, 2H, C6H4), 8.46 (s, 1H, 4-H), 11.82 (s, 1 H, 

7-NH, exch.). Anal. (C16H18N4O3S) C, H, N: Cal. C: 55.48, H: 5.24, N: 16.17. Found C: 

55.82, H: 5.14, N: 16.16. 

6-Methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine 

(216d) 

To a Parr bomb apparatus was added 10 ml methanol and cooled in a dry ice-

acetone bath. To this solution was added ammonia gas for 30 minutes along with 
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continuous stirring. Compound  216b (100 mg, 0.26 mmol) was added to this saturated 

solution of ammonia in methanol following which the bomb was tightly sealed and 

placed in an oil bath at 135 ° C with continuous stirring for 48 hours. At this point tlc 

indicated the disappearance of the starting material and formation of one major spot at Rf 

0.41 CHCl3/MeOH 5:1). The reaction was stopped at this point and the solution 

transferred to a 100 ml round bottom flask. The excess ammonia was allowed to 

evaporate and 2 grams of silica gel was added to this solution following which the 

methanol was evaporated and the plug obtained.  This plug was placed on the top of a 

15×150 mm column and eluted with 2% methanol in chloroform. Fractions containing 

the product were pooled and evaporated to afford pure 216d (58mg, 62%) of as an off-

white solid. mp 243-246 °C; TLC Rf 0.38 (CHCl3/MeOH, 5:1, with 2 drops of NH4OH) 

1H NMR (DMSO-d6) δ 2.17 (s, 3H, 6-CH3), 3.78 (s, 3H, OCH3), 3.84 (s, 6H, OCH3) 5.22 

(bs, 2H, 4-NH2, exch.) 6.20 (bs, 2H, 2-NH2, exch.), δ 6.53 (s, 2H, C6H4), 10.44 (s, 1 H, 7-

NH, exch.) HRMS (C16H19N5O3S) : calcd. mass 361.1209, found mass 361.1212. 

 

2-Amino-7-benzyl-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-3,7-dihydro-4H-

pyrrolo[2,3-d]pyrimidin-4-one (216e) 

To a round bottomed flask was added 216a (100 mg, 0.4 mmol) and dissolved in 

5 ml of DMF. The solution was cooled to 0 °C and sodium hydride (10 mg, 0.4 mmol) 

was added. After stirring at 0 °C for 1 hour, benzylbromide (81 mg, 0.48 mmol) was 

added. The reaction was continued at rt till the appearance of a new spot (TLC) after 

which the reaction was quenched with water. The water phase was extracted with 

chloroform. The organic phase was dried over sodium sulfate and evaporated under 

reduced pressure. The residue was dissolved in methylene chloride, 250 mg silica gel was 
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added to the solution which was then evaporated to dryness to form a plug. The silica gel 

plug obtained was loaded onto a silica gel column and eluted with 1% methanol in 

chloroform. Fractions corresponding to the product (TLC) were pooled and evaporated to 

dryness under reduced pressure to afford 216e (16 mg, 12%) as a light brown solid. mp 

250 °C, dec.; TLC Rf 0.5 (CHCl3/MeOH, 5:1, with 2 drops of NH4OH) Mp  240 °C 

dec.; TLC Rf 0.48 (CHCl3/MeOH, 5:1, with 2 drops of NH4OH); 1H NMR (DMSO-d6) δ 

2.19 (s, 3H, 6-CH3), 3.82 (s, 3H, OCH3), 3.84 (s, 6H, OCH3) 5.30 (s, 2H CH2) 6.15 (bs, 

2H, 2-NH2 exch.),  6.53 (s, 2H, C6H4), 7.22–7.31 (m, 4H, C6H5) 7.49–7.51 (m, 1H, C6H5), 

10.46 (s, 1H, 3-NH exch). HR-MS: C23H24N4O4S: calcd. mass 452.1518, found mass 

452.1511. 

 

7-benzyl-4-chloro-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-

d]pyrimidin-2-amine (216f) 

Compound 216b when reacted with benzyl bromide using conditions described 

for the synthesis of 216e afforded 216f (16 mg, 12%) as a light brown solid. mp 250 °C, 

dec.; TLC Rf 0.55 (CHCl3/MeOH, 5:1, with 2 drops of NH4OH) 1H NMR (DMSO-d6) δ 

2.19 (s, 3H, 6-CH3), 3.82 (s, 3H, OCH3), 3.84 (s, 6H, OCH3) 5.30 (s, 2H CH2) 6.19 (bs, 

2H, 2-NH2 exch.),  6.53 (s, 2H, C6H4), 7.26–7.33 (m, 4H, C6H5) 7.48–7.51 (m, 1H, C6H5). 

HR-MS: C23H23ClN4O3S: calcd. mass 470.1179, found mass 470.1160. 

 

7-benzyl-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (216g) 

Treatment of 216f with 10% Pd/C and hydrogen at 15 psi using a Paar 

hydrogenator and conditions used for the synthesis of 216e afforded 216f (16 mg, 12%) 
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as a light brown solid. mp 240 °C, dec.; TLC Rf 0.4 (CHCl3/MeOH, 5:1, with 2 drops of 

NH4OH) 1H NMR (DMSO-d6) δ 2.21 (s, 3H, 6-CH3), 3.81 (s, 3H, OCH3), 3.83 (s, 6H, 

OCH3) 5.28 (s, 2H CH2) 5.86 (s, 1H 4-H) 6.19 (bs, 2H, 2-NH2 exch.),  6.53 (s, 2H, C6H4), 

7.26–7.33 (m, 4H, C6H5) 7.48–7.51 (m, 1H, C6H5). HR-MS: C23H24N4O3S: calcd. mass 

436.1569, found mass 436.1560. 

7-benzyl-6-methyl-5-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-d]pyrimidine-

2,4-diamine (216h) 

Treatment of 216g with a saturated solution of ammonia in methanol in a paar 

bomb apparatus and conditions used for the synthesis of 216d afforded 216f (16 mg, 

12%) as a light brown solid. mp 250 °C, dec.; TLC Rf 0.6 (CHCl3/MeOH, 5:1, with 2 

drops of NH4OH) 1H NMR (DMSO-d6) δ 2.19 (s, 3 H, 6-CH3), 3.65 (s, 6 H, OCH3), 3.79 

(s, 3 H, OCH3), 5.30 (s, 2H, CH2) 6.19 (bs, 2 H, 2-NH2), 6.56 (d, 1 H, 5‘-CH). 7.22–7.31 

(m, 4H, Ar–H) 7.49–7.51 (m, 2H, Ar–H). HR-MS: C23H25N5O3S: calcd. mass 451.1678, 

found mass 451.1680. 

Validation of homology models: 

 

 In addition to Ramachandran plots, Procheck and ProSA analysis, the following 

model validation tests were carried out for the three homology models generated. 

1. pjDHFR homology model 

Errat2 analysis:416 The program works by analyzing the statistics of non-bonded 

interactions between different atom types. A single output plot is produced that gives the 

value of the error function vs. position of a 9-residue sliding window and can be compared 

with statistics from highly refined structures to give confidence limits. 
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Figure E1. Errat2 analysis of the pjDHFR homology model 
 

 

QMEAN 

 
Figure E2. Comparison of the overall Qmean score of the pjDHFR homology model with PDB 

structures 
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Figure E3. Comparison of the overall Qmean score of the pjDHFR homology model with PDB 

structures  

QMEAN416 is a composite scoring function which is able to derive both global (i.e. for 

the entire structure) and local (i.e. per residue) error estimates based on a single model.   

tgDHFR homology model analysis 
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Figure E4: ANOLEA analysis of the tgDHFR homology model 

 

ANOLEA evaluation:  

The atomic empirical mean force potential ANOLEA416 is used to assess packing 

quality of the models. The program performs energy calculations on a protein chain, 

evaluating the "Non- Local Environment" (NLE) of each heavy atom in the molecule. 

The y-axis of the plot represents the energy for each amino acid of the protein chain. 

Negative energy values (in green) represent favourable energy environment whereas 

positive values (in red) unfavourable energy environment for a given amino acid. Energy 

minimization was performed to minimize the unfavorable energy regions of the model. 
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Figure E5: Z-score analysis of the bond angles, backbone length and dihedral angles of the 
tgDHFR homology model. 

 

 

Z-score analysis416 of the the bond angles, backbone length and dihedral angles of 

the tgDHFR homology model indicate that the values lie within acceptable range. 
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APPENDIX 1 

 

 

Validation of docking software and docking studies with compounds listed in the 

statement of the problem with pjDHFR, tgDHFR, tgTS and RTKs (EGFR and VEGFR2)  

 

Docking studies with pyrido[2,3-d]pyrimidines in pcDHFR  

Validation of LeadIT 1.3.0 for docking in pcDHFR: 

 

Figure A1. Stereoview. Superimposition of best docked pose (white) and the crystal structure (red) 

of the native crystal structure ligand of pcDHFR (PDB: 1LY3). 

 Figure A1 shows the best docked pose (white) of 2,4-diamino-6-[N-(2',5'-

dimethoxybenzyl)-N-methylamino] quinazoline superimposed on its crystal structure in 

pcDHFR (PDB: 1LY3). The docking studies were performed using LeadIT 1.3.0 using 

methods described in the Chemical Discussion section above. As seen in Figure A1, the 

best docked pose retains the key interactions seen in the crystal structure ligand and has an 

RMSD of 1.07 Å compared to the crystal structure ligand, thereby validating LeadIT 1.3.0 

for docking purposes. 
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Docking studies with a pjDHFR homology model 

 

Docking studies with target compounds 170 – 180 in pjDHFR 

 

Docking studies with 171: 

 

 
 

Figure A2. Stereoview. Docked pose of 171 in the active site of the pjDHFR homology model. 

Figure A2 shows the docked pose of the target 171 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 171 adopts a 

flipped conformation in the binding pocket  as compared to the docked post of 173 (Figure 

55). In its docked pose, the N3 and 4-NH2 of 171 interact with Asp32. The 2-NH2 moiety 

forms hydrogen bonds with the backbone of Ala143 and Thr144. Additional hydrogen 

bonding is afforded between the pyridine N of 171 and the side chain OH of Tyr129 and 

between the side chain NH of 171 and the backbone carbonyl of Ile123. The pyrido[2,3-

d]pyrimidine scaffold is stabilized by a pi-stacking interaction with Phe36 and with side 

chain carbon atoms of Met33 and Leu25. The 2,4’,6’-trichlorophenyl moiety of 171 resides 

in the hydrophobic pocket formed by the side chains of Leu25, Thr61, Ser64, Leu65, Pro66 

and Ser69. The docked score of 171 was -26.67 kJ/mol. 
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Docking studies with 172: 

 

 
 

Figure A3. Stereoview. Docked pose of 172 in the active site of the pjDHFR homology model.

 Figure A3 shows the docked pose of compound 172 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 172 binds in an 

orientation similar to that seen in the docked pose of 171 (Figure A2) above. . The docked 

score of 172 was -28.68 kJ/mol. 

Docking studies with 174: 

 

 

Figure A4. Stereoview. Docked pose of 174 in the active site of the pjDHFR homology model. 
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Figure A4 shows the docked pose of compound 174 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 174 binds in an 

orientation similar to that seen in the docked pose of 171 (Figure A2) above. The docked 

score of 174 was -29.97 kJ/mol. 

Docking studies with 175: 

 

Figure A5. Stereoview. Docked pose of 175 in the active site of the pjDHFR homology model. 

Figure A5 shows the docked pose of compound 175 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 175 binds in an 

orientation similar to that seen in the docked pose of 171 (Figure A2) above. The docked 

score of 175 was -27.95 kJ/mol. 

Docking studies with 176:  

Figure A6 shows the docked pose of compound 176 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 176 binds in an 

orientation similar to that seen in the docked pose of 171 (Figure A2) above. The docked 

score of 176 was -28.27 kJ/mol. 
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Figure A6. Stereoview. Docked pose of 176 in the active site of the pjDHFR homology model. 

 

Docking studies with 177: 

 

Figure A7. Stereoview. Docked pose of 177 in the active site of the pjDHFR homology model. 

Figure A7 shows the docked pose of compound 177 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 177 binds in an 

orientation similar to that seen in the docked pose of 171 (Figure A2) above. The docked 

score of 177 was -28.26 kJ/mol. 
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Docking studies with 178: 

 

Figure A8. Docked pose of 178 in the active site of the pjDHFR homology model. 

Figure A8 shows the docked pose of compound 178 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 178 binds in an 

orientation similar to that seen in the docked pose of 171 (Figure A2) above. The docked 

score of 178 was -28.74 kJ/mol. 

Docking studies with 180: 

 

Figure A9. Stereoview. Docked pose of 180 in the active site of the pjDHFR homology model. 
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Figure A9 shows the docked pose of compound 180 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 180 binds in an 

orientation similar to that seen in the docked pose of 173 (Figure 53). The docked pose 

indicates that the side chain NH could form an intramolecular hydrogen bond with the 2’-

NO2 moiety of 180 which can influence the bound conformation of 180 in the pocket. The 

docked score of 180 was -28.28 kJ/mol. 

 

Molecular modeling studies with 2,4-diamino-6-(thioarylmethyl)pyrido[2,3-

d]pyrimidines and 2,4-Diamino-6-(oxoarylmethyl)pyrido[2,3-d]pyrimidines as 

pjDHFR inhibitors 

Docking studies with 187: 

 

Figure A10. Stereoview. Docked pose of 187 in the active site of the pjDHFR homology model. 

Figure A10 shows the docked pose of compound 187 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 187 binds in an 

orientation similar to that seen in the docked pose of 173 (Figure 53). The docked score of 

187 was -23.56 kJ/mol. 
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Docking studies with 188: 

 

Figure A11. Stereoview. Docked pose of 188 in the active site of the pjDHFR homology model. 

Figure A11 shows the docked pose of compound 188 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 188 binds in an 

orientation similar to that seen in the docked pose of 173 (Figure 53). The docked score of 

188 was -25.15 kJ/mol. 

Docking studies with 189: 

 

Figure A12. Stereoview. Docked pose of 189 in the active site of the pjDHFR homology model. 

Figure A12 shows the docked pose of compound 189 in the active site of a pjDHFR 
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homology model generated using pcDHFR as the template. Compound 189 binds in an 

orientation similar to that seen in the docked pose of 173 (Figure 53). The docked score of 

189 was -25.8030 kJ/mol. 

Docking studies with 190: 

 

Figure A13. Stereoview. Docked pose of 190 in the active site of the homology model for pjDHFR. 

Figure A13 shows the docked pose of compound 190 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 190 binds in an 

orientation similar to that seen in the docked pose of 173 (Figure 53). The docked score of 

190 was -24.0010 kJ/mol. 

Docking studies with 191: 

Figure A14 shows the docked pose of compound 191 in the active site of a pjDHFR 

homology model generated using pcDHFR as the template. Compound 191 binds in an 

orientation similar to that seen in the docked pose of 173 (Figure 53). The docked score of 

191 was -25.90 kJ/mol. 
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Figure A14. Docked pose of 191 in the active site of the homology model for pjDHFR. 

 

Molecular modeling studies with the tgDHFR homology model 

Validation of Flexx 3.1.2 for docking: 

 

Figure A15. Stereoview. Superimposition of best docked pose (white) and the crystal structure (red) 

of the native crystal structure ligand of pfDHFR (PDB: 1J3I). 

 Figure A15 shows the best docked pose (white) of 6,6-dimethyl-1-[3-(2,4,5-

trichlorophenoxy)propoxy]- 1,6-dihydro-1,3,5-triazine-2,4-diamine (WR99210)  

superimposed on its crystal structure in pfDHFR (PDB: 1J3I). The docking studies were 
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performed using Flexx 3.1.2 using methods described in the Chemical Discussion section. 

As seen in Figure 13, the best docked pose retains the key interactions and the overall 

bound conformation of WR99210 as seen in the crystal structure and has an RMSD of 1.18 

Å compared to the crystal structure ligand, thereby validating Flexx 3.1.2 for docking 

purposes. 

 

Docking Studies of 2-Amino-4-oxo-5-arylthio-substituted-6-propyl thieno[2,3-

d]pyrimidines 194c with a tgDHFR homology model 

 

Figure A16. Docked pose of 194c in the active site of the pjDHFR homology model. 

Figure A16 shows the docked pose of compound 194c in the active site of a 

pjDHFR homology model generated using pcDHFR as the template. Compound 194c 

binds in an orientation similar to that seen in the docked pose of 194a and 194b (Figure 

92). The 3,4-diCl phenyl moiety in 194c resides in the binding site occupied by the 

naphthyl moieties of 194a-b. The 3,4-diCl phenyl moiety similarly shows steric clashes 

with hDHFR. This can explain, in part, the selectivity of 194c towards tgDHFR over 



338 

 

hDHFR. The docked score of 194c was -6.71 kcal/mol, similar to the docking score of 

194b. 

 

Molecular modeling studies of 2-Amino-4-oxo-5-arylthio-substituted pyrimido[4,5-

b]indoles 194d-j with T. gondii thymidylate synthase 

Docking of 194g in the tgTS homology model 

 

Figure A17. Stereoview. Docked pose of 194g in the active site of the tgTS homology model 

 

Figure A17 shows the docked pose of 194d (white) in the folate binding site of the 

tgDHFR homology model. This docked pose is similar to the docked pose of 194a in tgTS 

(Figure82a). The docked score of 194d was -6.80 kcal/mol, similar to the docking score of 

194b. 
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Molecular modeling studies of 2-Amino-4-oxo-5-arylthio-substituted pyrimido[2,3-

d]indoles 194d-j with T. gondii dihydrofolate reductase 

Docking of 194d in the tgDHFR homology model  

Figure A18 shows the docked pose of 194d (white) in the folate binding site of the 

tgDHFR homology model. The 2-NH2 and N3 moieties of 194d form hydrogen bonds with 

Asp31. The benzene ring in the pyrimido[4,5-b]indole scaffold of 194d affords pi-stacking 

interactions with Phe35 and additional hydrophobic interactions with Val151. In addition, 

the 6-S-side chain helps to orient the naphthyl moiety of 194d into the hydrophobic pocket. 

 

Figure A18. Stereoview. Docked pose of 194d in the active site of the tgDHFR homology model 

 

The naphthyl side chain of 194d maintains the cation-pi interaction with Arg89 (or 

Lys90) and the pi-stacking interaction with Phe32 as is seen with the side chain of 194a. 

Docking of 194d into the active site of hDHFR (PDB: 3K45) did not yield docked poses 

within the active site. Superimposition of the pyrimidine ring of 194d on the pyrimidine 

ring of the bound furo[2,3-d]pyrimidine ligand in 3K45 indicated steric clashes with the 

side chain of Ile60 and Leu67 in hDHFR, which could explain the decreased activity of 
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194d (Table 12) against hDHFR and hence its selectivity for tgDHFR.  

 

Molecular modeling studies in RTKs 

Validation of Flexx 3.1.2 for docking studies with EGFR 

 

Figure A19. Stereoview. Superimposition of best docked pose (white) and the crystal structure (red) 

of the native crystal structure ligand of EGFR (PDB:1M17). 

 Figure A19 shows the best docked pose (white) of erlotinib ([6,7-bis(2-methoxy-

ethoxy)quinazoline-4-yl]-(3-ethynylphenyl)amine) superimposed on its crystal structure in 

EGFR (PDB: 1M17). The docking studies were performed using Flexx 3.1.2 using methods 

described in the Chemical Discussion section. As seen in Figure A19, the best docked pose 

retains the key interactions and the overall bound conformation of erlotinib as seen in the 

crystal structure and has an RMSD of 0.91 Å compared to the crystal structure ligand, 

thereby validating Flexx 3.1.2 for docking purposes. 

Validation of Flexx 3.1.2 for docking studies with VEGFR2 

 Figure A20 shows the best docked pose (white) of the furo[2,3-d]pyrimidine ligand 
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superimposed on its crystal structure in VEGFR2 (PDB: 1YWN). The docking studies were 

performed using Flexx 3.1.2 using methods described in the Chemical Discussion section. 

As seen in Figure A19, the best docked pose retains the key interactions and the overall 

bound conformation of erlotinib as seen in the crystal structure and has an RMSD of 0.91 

Å compared to the crystal structure ligand, thereby validating Flexx 3.1.2 for docking 

purposes. 

 

Figure A20. Stereoview. Superimposition of best docked pose (white) and the crystal structure (red) 

of the furo[2,3-d]pyrimidine ligand of VEGFR2 (PDB:1YWN). 

 

Docking studies with lead 196, and target compounds 196 and 200 in EGFR 

Docking studies with target compounds 197 – 210 in EGFR were performed using 

the same settings as those used for lead compounds 195 and 196. 

Docking studies with lead compound 196 in EGFR 

Figure A21 shows the docked pose of the lead compound 196 (white) in ATP 
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binding site of EGFR (PDB: 1M17). This docked pose is similar to the docked pose of 195 

in EGFR (Figure 62). The docked score of 196 was -20.43 kJ/mol, similar to the docking 

score of 195. 

 

Figure A21. Stereoview. Docked pose of 196 in the ATP binding site of EGFR. (PDB: 1M17) 

 

Figure A22. Stereoview. Docked pose of 200 in the ATP binding site of EGFR. (PDB: 1M17) 

Figure A22 shows the docked pose of the lead compound 200 (white) in ATP 

binding site of EGFR (PDB: 1M17). This docked pose is similar to the docked pose of 197 
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in EGFR (Figure 63). The docked score of 200 was -22.74 kJ/mol, similar to the score of 

195. 

 

Docking studies with leads 195, 196, and target compounds 197 and 210 in VEGFR2 

Docking studies with target compounds 197 – 210 in VEGFR2 were performed 

using the same settings as those used for validation of the docking software. The docked 

poses of  target compounds 197 and 210 are depicted here as illustrative examples. 

 

Docking studies with lead compound 195 in VEGFR2 

 

Figure A23. Stereoview. Superimposition of best docked pose (white) of 195 in VEGFR2 

(PDB:1YWN).200 

Docking studies with lead compound 196 in VEGFR2  

Figures A23 and A24 shows two low enegey  docked poses of the lead compound 

195 (within 1 kcal of each other) VEGFR2 (PDB: 1YWN). In both docked poses, 195 

binds in the ATP binding site of VEGFR2 and forms three hydrogen bonds with the 

hinge region residues (Glu915 and Cys917).   



344 

 

 

Figure A24. Stereoview. Superimposition of best docked pose (white) of 196 in VEGFR2 

(PDB:1YWN).200 

In pose 1 (Figure A23), 195 forms hydrogen bonds with the hinge region using 

the 2-NH2, N3- and the 4-anilino nitrogen atoms (analogous to the proposed Binding 

mode 2 in Figure 68) . In contrast, 195 binds analogous to the proposed Binding mode 5 

(Figure 68) in Figure A24 and forms hydrogen bonds with the hinge region with its 2-

NH2, N3 and pyrrole NH atoms. The 2’-MePh moiety of 195 binds in the Hydrophobic 

site 2 of VEGFR2 while the aniline moiety binds in the sugar binding pocket. In pose 2 

(Figure A24), 195 binds with the 2’-MePh extending towards the sugar binding pocket 

and the aniline moiety binding toward Hydrophobic binding site 1. These alternate low-

energy binding poses provide a molecular basis of the proposed design idea of multiple 

binding poses in a single agent. The docking score of 195 in pose 1 was -21.60 kJ/mol 

while the docking score in pose 2 was -22.80 kJ/mol.  
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Docking studies with target compound 197 in VEGFR2 

 

Figure A25. Stereoview. Superimposition of best docked pose (white) of 197 in VEGFR2 

(PDB:1YWN).200 

 Figure A25 shows the docked pose of the target compound 197 in VEGFR2. The 

docked pose of 197 is similar to that seen in the docked pose of lead 195 in Figure A25. 

The docked score of 197 in VEGFR2 was -18.74 kJ/mol, lower than that of 195. 

Docking studies with target compound 210 in VEGFR2 

 

Figure A26. Stereoview. Superimposition of best docked pose (white) of 197 in VEGFR2 

(PDB:1YWN).200 



346 

 

Figure A26 shows the docked pose of the target compound 197 in VEGFR2. The 

docked pose of 197 is similar to that seen in the docked pose of lead 195 in Figure A25. 

The docked score of 197 in VEGFR2 was -22.61 kJ/mol, comparable to the docked score 

of 195 in VEGFR2. 
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APPENDIX 2 

 

Molecular modeling: docking studies of 223d with GARFTase and AICARFTase    

 

Figure A27. Structures of 223a-g 

Compounds 223a, c-e were reported by Gangjee et al.463 Based on the cellular 

metabolic data, 223d was seen to inhibit both GARFTase (IC50 = 29.7 ± 10.6nM) and 

AICARFTase in KB cells. Thus molecular modeling studies were performed with 223d 

in human GARFTase (PDB ID: 1NJS)464 and human AICARFTase (PDB ID: 1PL0)465 to 

determine the molecular basis of the potent activity of 223d against these enzymes. 

Molecular modeling of compound 223d was performed using LeadIT 1.3.0 and the 

results were visualized using MOE 2011.10.  LeadIT 1.3.0 was validated for docking by 

redocking the native crystal structure ligands 10-CF3CO-DDACTHF (223f) 464 for human 

GARFTase and (BW2315U89, BW2315, 223g) 465 for AICARFTase  into their respective 

crystal structures afforded docked poses with RMSD ~ 1Å.    

           Figure A28 shows the docked pose of 223d in the human GARFTase active site. 

The cofactor binding pocket of GARFTase is located at the interface between the N-

terminal mononucleotide binding domain and the C-terminal half of the structure. The 
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binding site for the folate cofactor moiety consists of three parts:  the pteridine binding 

cleft, the benzoylglutamate region, and the formyl transfer region.  

 

Figure A28. Stereoview. Overlay of the docked pose of 223d (blue) with 10-CF3CO-DDACTHF 

(red) in human GARFTase (PDB ID: 1NJS).464 

 
 

Figure A29.  Stereoview. Overlay of the docked pose of 223d (blue) with 223g (red) in human  

AICARFTase (PDB ID: 1PL0).  

 

 The docked pose shows the pyrrolo[2,3-d]pyrimidine scaffold of 223d to be 

buried deep in the active site and to occupy the same location as the diaminopyrimidone 
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ring in the native crystal structure ligand (10-CF3CO-DDACTHF). This orientation of the 

scaffold permits the 2-amino moiety to form hydrogen bonds to the backbone of Glu141 

and Ser93. The N1 nitrogen interacts with the backbone of Leu92 to form a hydrogen 

bond. The 4-oxo moiety forms a hydrogen bond with Asp144 and forms water-mediated 

hydrogen bonds with Asp142 and Ala140 (not shown).   

The molecule is oriented in a manner which aids the N7 nitrogen to form a 

hydrogen bond with Arg90. The pyrrolo[2,3-d]pyrimidine scaffold resides in a 

hydrophobic pocket formed by Leu85, Ile91 (not shown), Leu92, Val97, and the folate 

binding loop residues 141-146. The flexible 4-atom side chain helps to orient the benzoyl  

moiety of compound 223d into the benzoylglutamate region of the protein. The amide 

NH of the glutamate side chain forms a hydrogen bond with Met89. The α-carboxylic 

acid of the glutamate side chain interacts with Arg64 and additionally interacts with the 

backbone of Ile91. The γ-carboxylic acid can form a water-mediated hydrogen bond with 

Arg90. The interaction of the flexible glutamate side chain is very similar to the 

interaction network observed for the glutamate side chain of 10-CF3CO-DDACTHF.  

Figure A29 shows the overlay of the docked poses of 223d (blue) with the crystal 

structure ligand 223f (red) (a potent inhibitor) in human AICARFTase (PDB ID: 1PL0). 

The pyrrolo[2,3-d]pyrimidine scaffold of  223d occupies the same location as the 

dihydroquinazoline scaffold of 223f. Analogous to 223f the 2-NH2 and N3 nitrogens of 

223d interact with Asp546 while the 4-oxo moiety forms a hydrogen bond with the side 

chain of Asn547. The N7-nitrogen of 223d forms a hydrogen bond with the backbone of 

Met312. The pyrrolo[2,3-d]pyrimidine scaffold of 223d forms hydrophobic interactions 

with Met312, Phe315, Ile452, Pro543 and Phe544. The aryl glutamate section of 223d is 
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oriented similar to the phenyl glutamate side chain of 223f. 

These docking results predict that 223d should bind and inhibit the two folate-

dependent purine biosynthetic enzymes (GARFTase and AICARFTase) and were entirely 

consistent with the results of the in situ metabolic assays (not shown).  
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